Este conteúdo não está disponível no idioma selecionado.

Appendix A. Tips for Developers


Every good programming textbook covers problems with memory allocation and the performance of specific functions. As you develop your software, be aware of issues that might increase power consumption on the systems on which the software runs. Although these considerations do not affect every line of code, you can optimize your code in areas which are frequent bottlenecks for performance.
Some techniques that are often problematic include:
  • using threads.
  • unnecessary CPU wake-ups and not using wake-ups efficiently. If you must wake up, do everything at once (race to idle) and as quickly as possible.
  • using [f]sync() unnecessarily.
  • unnecessary active polling or using short, regular timeouts. (React to events instead).
  • not using wake-ups efficiently.
  • inefficient disk access. Use large buffers to avoid frequent disk access. Write one large block at a time.
  • inefficient use of timers. Group timers across applications (or even across systems) if possible.
  • excessive I/O, power consumption, or memory usage (including memory leaks)
  • performing unnecessary computation.
The following sections examine some of these areas in greater detail.

A.1. Using Threads

It is widely believed that using threads makes applications perform better and faster, but this is not true in every case.
Python

Python uses the Global Lock Interpreter[1], so threading is profitable only for larger I/O operations. Unladen-swallow [2] is a faster implementation of Python with which you might be able to optimize your code.

Perl

Perl threads were originally created for applications running on systems without forking (such as systems with 32-bit Windows operating systems). In Perl threads, the data is copied for every single thread (Copy On Write). Data is not shared by default, because users should be able to define the level of data sharing. For data sharing the threads::shared module has to be included. However, data is not only then copied (Copy On Write), but the module also creates tied variables for the data, which takes even more time and is even slower. [3]

C

C threads share the same memory, each thread has its own stack, and the kernel does not have to create new file descriptors and allocate new memory space. C can really use the support of more CPUs for more threads. Therefore, to maximize the performance of your threads, use a low-level language like C or C++. If you use a scripting language, consider writing a C binding. Use profilers to identify poorly performing parts of your code. [4]

Red Hat logoGithubRedditYoutubeTwitter

Aprender

Experimente, compre e venda

Comunidades

Sobre a documentação da Red Hat

Ajudamos os usuários da Red Hat a inovar e atingir seus objetivos com nossos produtos e serviços com conteúdo em que podem confiar.

Tornando o open source mais inclusivo

A Red Hat está comprometida em substituir a linguagem problemática em nosso código, documentação e propriedades da web. Para mais detalhes veja oBlog da Red Hat.

Sobre a Red Hat

Fornecemos soluções robustas que facilitam o trabalho das empresas em plataformas e ambientes, desde o data center principal até a borda da rede.

© 2024 Red Hat, Inc.