Este conteúdo não está disponível no idioma selecionado.

Preface


As a data scientist, you can organize your data science work into a single project. A project in OpenShift AI can consist of the following components:

Workbenches
Creating a workbench allows you to work with models in your preferred IDE, such as JupyterLab.
Cluster storage
For projects that require data retention, you can add cluster storage to the project.
Connections
Adding a connection to your project allows you to connect data inputs to your workbenches.
Pipelines
Standardize and automate machine learning workflows to enable you to further enhance and deploy your data science models.
Models and model servers
Deploy a trained data science model to serve intelligent applications. Your model is deployed with an endpoint that allows applications to send requests to the model.
Voltar ao topo
Red Hat logoGithubredditYoutubeTwitter

Aprender

Experimente, compre e venda

Comunidades

Sobre a documentação da Red Hat

Ajudamos os usuários da Red Hat a inovar e atingir seus objetivos com nossos produtos e serviços com conteúdo em que podem confiar. Explore nossas atualizações recentes.

Tornando o open source mais inclusivo

A Red Hat está comprometida em substituir a linguagem problemática em nosso código, documentação e propriedades da web. Para mais detalhes veja o Blog da Red Hat.

Sobre a Red Hat

Fornecemos soluções robustas que facilitam o trabalho das empresas em plataformas e ambientes, desde o data center principal até a borda da rede.

Theme

© 2025 Red Hat