此内容没有您所选择的语言版本。

8.4. Customizing Lucene's scoring formula


Lucene allows the user to customize its scoring formula by extending org.apache.lucene.search.Similarity. The abstract methods defined in this class match the factors of the follownig formula calculating the score of query q for document d:
score(q,d) = coord(q,d) · queryNorm(q) · ∑t in q ( tf(t in d) · idf(t)2 · t.getBoost() · norm(t,d) )
Expand
Factor Description
tf(t ind) Term frequency factor for the term (t) in the document (d).
idf(t) Inverse document frequency of the term.
coord(q,d) Score factor based on how many of the query terms are found in the specified document.
queryNorm(q) Normalizing factor used to make scores between queries comparable.
t.getBoost() Field boost.
norm(t,d) Encapsulates a few (indexing time) boost and length factors.
It is beyond the scope of this manual to explain this formula in more detail. Please refer to Similarity's Javadocs for more information.
Hibernate Search provides two ways to modify Lucene's similarity calculation. First you can set the default similarity by specifying the fully specified classname of your Similarity implementation using the property hibernate.search.similarity. The default value is org.apache.lucene.search.DefaultSimilarity. Additionally you can override the default similarity on class level using the @Similarity annotation.
@Entity
@Indexed
@Similarity(impl = DummySimilarity.class)
public class Book {
   ...
}
Copy to Clipboard Toggle word wrap
As an exmaple, let's assume it is not important how often a term appears in a document. Documents with a single occurrence of the term should be scored the same as documents with multiple occurrences. In this case your custom implementation of the method tf(float freq) should return 1.0.
返回顶部
Red Hat logoGithubredditYoutubeTwitter

学习

尝试、购买和销售

社区

关于红帽文档

通过我们的产品和服务,以及可以信赖的内容,帮助红帽用户创新并实现他们的目标。 了解我们当前的更新.

让开源更具包容性

红帽致力于替换我们的代码、文档和 Web 属性中存在问题的语言。欲了解更多详情,请参阅红帽博客.

關於紅帽

我们提供强化的解决方案,使企业能够更轻松地跨平台和环境(从核心数据中心到网络边缘)工作。

Theme

© 2025 Red Hat