Clustered counters are counters which are distributed and shared among all nodes in the Data Grid cluster. Counters can have different consistency levels: strong and weak.
Although a strong/weak consistent counter has separate interfaces, both support updating its value, return the current value and they provide events when its value is updated. Details are provided below in this document to help you choose which one fits best your uses-case.
Copy to ClipboardCopied!Toggle word wrapToggle overflow
The counters can be configured Data Grid configuration file or on-demand via the CounterManager interface detailed later in this document. A counters configured in Data Grid configuration file is created at boot time when the EmbeddedCacheManager is starting. These counters are started eagerly and they are available in all the cluster’s nodes.
configuration.xml
<infinispan>
<cache-container ...>
<!-- To persist counters, you need to configure the global state. -->
<global-state>
<!-- Global state configuration goes here. -->
</global-state>
<!-- Cache configuration goes here. -->
<counters xmlns="urn:infinispan:config:counters:14.0" num-owners="3" reliability="CONSISTENT">
<strong-counter name="c1" initial-value="1" storage="PERSISTENT"/>
<strong-counter name="c2" initial-value="2" storage="VOLATILE" lower-bound="0"/>
<strong-counter name="c3" initial-value="3" storage="PERSISTENT" upper-bound="5"/>
<strong-counter name="c4" initial-value="4" storage="VOLATILE" lower-bound="0" upper-bound="10"/>
<strong-counter name="c5" initial-value="0" upper-bound="100" lifespan="60000"/>
<weak-counter name="c6" initial-value="5" storage="PERSISTENT" concurrency-level="1"/>
</counters>
</cache-container>
</infinispan>
<infinispan>
<cache-container ...>
<!-- To persist counters, you need to configure the global state. -->
<global-state>
<!-- Global state configuration goes here. -->
</global-state>
<!-- Cache configuration goes here. -->
<counters xmlns="urn:infinispan:config:counters:14.0" num-owners="3" reliability="CONSISTENT">
<strong-counter name="c1" initial-value="1" storage="PERSISTENT"/>
<strong-counter name="c2" initial-value="2" storage="VOLATILE" lower-bound="0"/>
<strong-counter name="c3" initial-value="3" storage="PERSISTENT" upper-bound="5"/>
<strong-counter name="c4" initial-value="4" storage="VOLATILE" lower-bound="0" upper-bound="10"/>
<strong-counter name="c5" initial-value="0" upper-bound="100" lifespan="60000"/>
<weak-counter name="c6" initial-value="5" storage="PERSISTENT" concurrency-level="1"/>
</counters>
</cache-container>
</infinispan>
Copy to ClipboardCopied!Toggle word wrapToggle overflow
or programmatically, in the GlobalConfigurationBuilder:
Copy to ClipboardCopied!Toggle word wrapToggle overflow
Note
CounterConfiguration is immutable and can be reused.
The method defineCounter() will return true if the counter is successful configured or false otherwise. However, if the configuration is invalid, the method will throw a CounterConfigurationException. To find out if a counter is already defined, use the method isDefined().
CounterManager manager = ...
if (!manager.isDefined("someCounter")) {
manager.define("someCounter", ...);
}
CounterManager manager = ...
if (!manager.isDefined("someCounter")) {
manager.define("someCounter", ...);
}
Copy to ClipboardCopied!Toggle word wrapToggle overflow
The CounterManager interface is the entry point to define, retrieve and remove counters.
Embedded deployments
CounterManager automatically listen to the creation of EmbeddedCacheManager and proceeds with the registration of an instance of it per EmbeddedCacheManager. It starts the caches needed to store the counter state and configures the default counters.
Retrieving the CounterManager is as simple as invoke the EmbeddedCounterManagerFactory.asCounterManager(EmbeddedCacheManager) as shown in the example below:
// create or obtain your EmbeddedCacheManager
EmbeddedCacheManager manager = ...;
// retrieve the CounterManager
CounterManager counterManager = EmbeddedCounterManagerFactory.asCounterManager(manager);
// create or obtain your EmbeddedCacheManager
EmbeddedCacheManager manager = ...;
// retrieve the CounterManager
CounterManager counterManager = EmbeddedCounterManagerFactory.asCounterManager(manager);
Copy to ClipboardCopied!Toggle word wrapToggle overflow
Server deployments
For Hot Rod clients, the CounterManager is registered in the RemoteCacheManager and can be retrieved as follows:
// create or obtain your RemoteCacheManager
RemoteCacheManager manager = ...;
// retrieve the CounterManager
CounterManager counterManager = RemoteCounterManagerFactory.asCounterManager(manager);
// create or obtain your RemoteCacheManager
RemoteCacheManager manager = ...;
// retrieve the CounterManager
CounterManager counterManager = RemoteCounterManagerFactory.asCounterManager(manager);
Copy to ClipboardCopied!Toggle word wrapToggle overflow
There is a difference between remove a counter via the Strong/WeakCounter interfaces and the CounterManager. The CounterManager.remove(String) removes the counter value from the cluster and removes all the listeners registered in the counter in the local counter instance. In addition, the counter instance is no longer reusable and it may return an invalid results.
On the other side, the Strong/WeakCounter removal only removes the counter value. The instance can still be reused and the listeners still works.
Note
The counter is re-created if it is accessed after a removal.
A counter can be strong (StrongCounter) or weakly consistent (WeakCounter) and both is identified by a name. They have a specific interface but they share some logic, namely, both of them are asynchronous ( a CompletableFuture is returned by each operation), provide an update event and can be reset to its initial value.
If you don’t want to use the async API, it is possible to return a synchronous counter via sync() method. The API is the same but without the CompletableFuture return value.
The following methods are common to both interfaces:
The strong counter provides uses a single key stored in Data Grid cache to provide the consistency needed. All the updates are performed under the key lock to updates its values. On other hand, the reads don’t acquire any locks and reads the current value. Also, with this scheme, it allows to bound the counter value and provide atomic operations like compare-and-set/swap.
A StrongCounter can be retrieved from the CounterManager by using the getStrongCounter() method. As an example:
Copy to ClipboardCopied!Toggle word wrapToggle overflow
incrementAndGet() increments the counter by one and returns the new value.
decrementAndGet() decrements the counter by one and returns the new value.
addAndGet() adds a delta to the counter’s value and returns the new value.
compareAndSet() and compareAndSwap() atomically set the counter’s value if the current value is the expected.
Note
A operation is considered completed when the CompletableFuture is completed.
Note
The difference between compare-and-set and compare-and-swap is that the former returns true if the operation succeeds while the later returns the previous value. The compare-and-swap is successful if the return value is the same as the expected.
When bounded, all the update method above will throw a CounterOutOfBoundsException when they reached the lower or upper bound. The exception has the following methods to check which side bound has been reached:
public boolean isUpperBoundReached();
public boolean isLowerBoundReached();
public boolean isUpperBoundReached();
public boolean isLowerBoundReached();
Copy to ClipboardCopied!Toggle word wrapToggle overflow
StrongCounter counter = counterManager.getStrongCounter("unbounded_counter");
// incrementing the counter
System.out.println("new value is " + counter.incrementAndGet().get());
// decrement the counter's value by 100 using the functional API
counter.addAndGet(-100).thenApply(v -> {
System.out.println("new value is " + v);
return null;
}).get();
// alternative, you can do some work while the counter is updated
CompletableFuture<Long> f = counter.addAndGet(10);
// ... do some work ...
System.out.println("new value is " + f.get());
// and then, check the current value
System.out.println("current value is " + counter.getValue().get());
// finally, reset to initial value
counter.reset().get();
System.out.println("current value is " + counter.getValue().get());
// or set to a new value if zero
System.out.println("compare and set succeeded? " + counter.compareAndSet(0, 1));
StrongCounter counter = counterManager.getStrongCounter("unbounded_counter");
// incrementing the counter
System.out.println("new value is " + counter.incrementAndGet().get());
// decrement the counter's value by 100 using the functional API
counter.addAndGet(-100).thenApply(v -> {
System.out.println("new value is " + v);
return null;
}).get();
// alternative, you can do some work while the counter is updated
CompletableFuture<Long> f = counter.addAndGet(10);
// ... do some work ...
System.out.println("new value is " + f.get());
// and then, check the current value
System.out.println("current value is " + counter.getValue().get());
// finally, reset to initial value
counter.reset().get();
System.out.println("current value is " + counter.getValue().get());
// or set to a new value if zero
System.out.println("compare and set succeeded? " + counter.compareAndSet(0, 1));
Copy to ClipboardCopied!Toggle word wrapToggle overflow
And below, there is another example using a bounded counter:
StrongCounter counter = counterManager.getStrongCounter("bounded_counter");
// incrementing the counter
try {
System.out.println("new value is " + counter.addAndGet(100).get());
} catch (ExecutionException e) {
Throwable cause = e.getCause();
if (cause instanceof CounterOutOfBoundsException) {
if (((CounterOutOfBoundsException) cause).isUpperBoundReached()) {
System.out.println("ops, upper bound reached.");
} else if (((CounterOutOfBoundsException) cause).isLowerBoundReached()) {
System.out.println("ops, lower bound reached.");
}
}
}
// now using the functional API
counter.addAndGet(-100).handle((v, throwable) -> {
if (throwable != null) {
Throwable cause = throwable.getCause();
if (cause instanceof CounterOutOfBoundsException) {
if (((CounterOutOfBoundsException) cause).isUpperBoundReached()) {
System.out.println("ops, upper bound reached.");
} else if (((CounterOutOfBoundsException) cause).isLowerBoundReached()) {
System.out.println("ops, lower bound reached.");
}
}
return null;
}
System.out.println("new value is " + v);
return null;
}).get();
StrongCounter counter = counterManager.getStrongCounter("bounded_counter");
// incrementing the counter
try {
System.out.println("new value is " + counter.addAndGet(100).get());
} catch (ExecutionException e) {
Throwable cause = e.getCause();
if (cause instanceof CounterOutOfBoundsException) {
if (((CounterOutOfBoundsException) cause).isUpperBoundReached()) {
System.out.println("ops, upper bound reached.");
} else if (((CounterOutOfBoundsException) cause).isLowerBoundReached()) {
System.out.println("ops, lower bound reached.");
}
}
}
// now using the functional API
counter.addAndGet(-100).handle((v, throwable) -> {
if (throwable != null) {
Throwable cause = throwable.getCause();
if (cause instanceof CounterOutOfBoundsException) {
if (((CounterOutOfBoundsException) cause).isUpperBoundReached()) {
System.out.println("ops, upper bound reached.");
} else if (((CounterOutOfBoundsException) cause).isLowerBoundReached()) {
System.out.println("ops, lower bound reached.");
}
}
return null;
}
System.out.println("new value is " + v);
return null;
}).get();
Copy to ClipboardCopied!Toggle word wrapToggle overflow
Compare-and-set vs Compare-and-swap examples:
StrongCounter counter = counterManager.getStrongCounter("my-counter");
long oldValue, newValue;
do {
oldValue = counter.getValue().get();
newValue = someLogic(oldValue);
} while (!counter.compareAndSet(oldValue, newValue).get());
StrongCounter counter = counterManager.getStrongCounter("my-counter");
long oldValue, newValue;
do {
oldValue = counter.getValue().get();
newValue = someLogic(oldValue);
} while (!counter.compareAndSet(oldValue, newValue).get());
Copy to ClipboardCopied!Toggle word wrapToggle overflow
With compare-and-swap, it saves one invocation counter invocation (counter.getValue())
StrongCounter counter = counterManager.getStrongCounter("my-counter");
long oldValue = counter.getValue().get();
long currentValue, newValue;
do {
currentValue = oldValue;
newValue = someLogic(oldValue);
} while ((oldValue = counter.compareAndSwap(oldValue, newValue).get()) != currentValue);
StrongCounter counter = counterManager.getStrongCounter("my-counter");
long oldValue = counter.getValue().get();
long currentValue, newValue;
do {
currentValue = oldValue;
newValue = someLogic(oldValue);
} while ((oldValue = counter.compareAndSwap(oldValue, newValue).get()) != currentValue);
Copy to ClipboardCopied!Toggle word wrapToggle overflow
To use a strong counter as a rate limiter, configure upper-bound and lifespan parameters as follows:
The WeakCounter stores the counter’s value in multiple keys in Data Grid cache. The number of keys created is configured by the concurrency-level attribute. Each key stores a partial state of the counter’s value and it can be updated concurrently. It main advantage over the StrongCounter is the lower contention in the cache. On other hand, the read of its value is more expensive and bounds are not allowed.
Warning
The reset operation should be handled with caution. It is not atomic and it produces intermediates values. These value may be seen by a read operation and by any listener registered.
A WeakCounter can be retrieved from the CounterManager by using the getWeakCounter() method. As an example:
The weak counter fits best in uses cases where the result of the update operation is not needed or the counter’s value is not required too often. Collecting statistics is a good example of such an use case.
Below, there is an example of the weak counter usage.
WeakCounter counter = counterManager.getWeakCounter("my_counter");
// increment the counter and check its result
counter.increment().get();
System.out.println("current value is " + counter.getValue());
CompletableFuture<Void> f = counter.add(-100);
//do some work
f.get(); //wait until finished
System.out.println("current value is " + counter.getValue().get());
//using the functional API
counter.reset().whenComplete((aVoid, throwable) -> System.out.println("Reset done " + (throwable == null ? "successfully" : "unsuccessfully"))).get();
System.out.println("current value is " + counter.getValue().get());
WeakCounter counter = counterManager.getWeakCounter("my_counter");
// increment the counter and check its result
counter.increment().get();
System.out.println("current value is " + counter.getValue());
CompletableFuture<Void> f = counter.add(-100);
//do some work
f.get(); //wait until finished
System.out.println("current value is " + counter.getValue().get());
//using the functional API
counter.reset().whenComplete((aVoid, throwable) -> System.out.println("Reset done " + (throwable == null ? "successfully" : "unsuccessfully"))).get();
System.out.println("current value is " + counter.getValue().get());
Copy to ClipboardCopied!Toggle word wrapToggle overflow
Both strong and weak counter supports a listener to receive its updates events. The listener must implement CounterListener and it can be registered by the following method:
Copy to ClipboardCopied!Toggle word wrapToggle overflow
The CounterListener has the following interface:
public interface CounterListener {
void onUpdate(CounterEvent entry);
}
public interface CounterListener {
void onUpdate(CounterEvent entry);
}
Copy to ClipboardCopied!Toggle word wrapToggle overflow
The Handle object returned has the main goal to remove the CounterListener when it is not longer needed. Also, it allows to have access to the CounterListener instance that is it handling. It has the following interface:
public interface Handle<T extends CounterListener> {
T getCounterListener();
void remove();
}
public interface Handle<T extends CounterListener> {
T getCounterListener();
void remove();
}
Copy to ClipboardCopied!Toggle word wrapToggle overflow
Finally, the CounterEvent has the previous and current value and state. It has the following interface:
public interface CounterEvent {
long getOldValue();
State getOldState();
long getNewValue();
State getNewState();
}
public interface CounterEvent {
long getOldValue();
State getOldState();
long getNewValue();
State getNewState();
}
Copy to ClipboardCopied!Toggle word wrapToggle overflow
Note
The state is always State.VALID for unbounded strong counter and weak counter. State.LOWER_BOUND_REACHED and State.UPPER_BOUND_REACHED are only valid for bounded strong counters.
Warning
The weak counter reset() operation will trigger multiple notification with intermediate values.