此内容没有您所选择的语言版本。

Chapter 7. Creating a hardware profile for LAB-tuning


Configure a GPU hardware profile in OpenShift AI that users can select when launching a LAB-tuning run.

A GPU hardware profile is required to run LAB-tuning workloads in OpenShift AI. LAB-tuning uses distributed training that must be scheduled on nodes with GPU resources. A GPU hardware profile allows users to target specific GPU-enabled worker nodes when launching pipelines, ensuring that training workloads run on compatible hardware.

Prerequisites

  • You are logged in to OpenShift AI as a user with administrator privileges.
  • The relevant hardware is installed and you have confirmed that it is detected in your environment.

Procedure

  1. Follow the steps described in Creating a hardware profile to create a LAB-tuning hardware profile, adapting the following configurations to your specific cluster setup:

    Expand
    SettingValue

    CPU: Default

    4 Cores

    CPU: Minimum allowed

    2 Cores

    CPU: Maximum allowed

    4 Cores

    Memory: Maximum allowed

    250 GiB or more

    Resource label

    nvidia.com/gpu

    Resource identifier

    nvidia.com/gpu

    Resource type

    Accelerator

    Node selector key (optional)

    node.kubernetes.io/instance-type

    Node selector value

    a2-ultragpu-2g

    Toleration operator (optional)

    Exists

    Toleration key

    nvidia.com/gpu

    Toleration effect

    NoSchedule

  2. Ensure that the new hardware profile is available for use with a checkmark in the Enable column.
返回顶部
Red Hat logoGithubredditYoutubeTwitter

学习

尝试、购买和销售

社区

关于红帽文档

通过我们的产品和服务,以及可以信赖的内容,帮助红帽用户创新并实现他们的目标。 了解我们当前的更新.

让开源更具包容性

红帽致力于替换我们的代码、文档和 Web 属性中存在问题的语言。欲了解更多详情,请参阅红帽博客.

關於紅帽

我们提供强化的解决方案,使企业能够更轻松地跨平台和环境(从核心数据中心到网络边缘)工作。

Theme

© 2025 Red Hat