此内容没有您所选择的语言版本。

Chapter 26. Introducing distributed tracing


Distributed tracing allows you to track the progress of transactions between applications in a distributed system. In a microservices architecture, tracing tracks the progress of transactions between services. Trace data is useful for monitoring application performance and investigating issues with target systems and end-user applications.

In Streams for Apache Kafka, distributed tracing facilitates end-to-end tracking of messages: from source systems to Kafka, and then from Kafka to target systems and applications. This complements the monitoring of metrics in Grafana dashboards and component loggers.

Streams for Apache Kafka provides built-in support for tracing for the following Kafka components:

  • MirrorMaker to trace messages from a source cluster to a target cluster
  • Kafka Connect to trace messages consumed and produced by Kafka Connect
  • Kafka Bridge to trace messages between Kafka and HTTP client applications

Tracing is not supported for Kafka brokers.

26.1. Tracing options

Distributed traces consist of spans, which represent individual units of work performed over a specific time period. When instrumented with tracers, applications generate traces that follow requests as they move through the system, making it easier to identify delays or issues.

OpenTelemetry, a telemetry framework, provides APIs for tracing that are independent of any specific backend tracing system. In Streams for Apache Kafka, the default protocol for transmitting traces between Kafka components and tracing systems is OpenTelemetry’s OTLP (OpenTelemetry Protocol), a vendor-neutral protocol.

While OTLP is the default, Streams for Apache Kafka also supports other tracing systems, such as Jaeger. Jaeger is a distributed tracing system designed for monitoring microservices, and its user interface allows you to query, filter, and analyze trace data in detail.

The Jaeger user interface showing a simple query

The Jaeger user interface showing a simple query

26.2. Environment variables for tracing

Use environment variables to enable tracing for Kafka components or to initialize a tracer for Kafka clients.

Tracing environment variables are subject to change. For the latest information, see the OpenTelemetry documentation.

The following table describes the key environment variables for setting up tracing with OpenTelemetry.

Expand
Table 26.1. OpenTelemetry environment variables
PropertyRequiredDescription

OTEL_SERVICE_NAME

Yes

The name of the tracing service for OpenTelemetry, such as OTLP or Jaeger.

OTEL_EXPORTER_OTLP_ENDPOINT

Yes (if using OTLP exporter)

The OTLP endpoint for exporting trace data to the tracing system. For Jaeger tracing, specify the OTEL_EXPORTER_JAEGER_ENDPOINT. For other tracing systems, specify the appropriate endpoint.

OTEL_TRACES_EXPORTER

No (unless using a non-OTLP exporter)

The exporter used for tracing. The default is otlp, which does not need to be specified. For Jaeger tracing, set this variable to jaeger. For other tracing systems, specify the appropriate exporter.

OTEL_EXPORTER_OTLP_CERTIFICATE

No (required if using TLS with OTLP)

The path to the file containing trusted certificates for TLS authentication. Required to secure communication between Kafka components and the OpenTelemetry endpoint when using TLS with the otlp exporter.

26.3. Setting up distributed tracing

Enable distributed tracing in Kafka components by specifying a tracing type in the custom resource. Instrument tracers in Kafka clients for end-to-end tracking of messages.

To set up distributed tracing, follow these procedures in order:

26.3.1. Prerequisites

Before setting up distributed tracing, make sure backend components are deployed to your OpenShift cluster.

We recommend using the Jaeger operator for deploying Jaeger on your OpenShift cluster. For deployment instructions, see the Jaeger documentation.

Note

Setting up tracing systems is outside the scope of this content.

26.3.2. Enabling tracing in supported Kafka components

Distributed tracing is supported for MirrorMaker, MirrorMaker 2, Kafka Connect, and the Kafka Bridge. Enable tracing using OpenTelemetry by setting the spec.tracing.type property to opentelemetry. Configure the custom resource of the component to specify and enable a tracing system using spec.template properties.

By default, OpenTelemetry uses the OTLP (OpenTelemetry Protocol) exporter and endpoint to gather trace data. This procedure shows the configuration to use OTLP as the tracing system.

If you prefer to use a different tracing system supported by OpenTelemetry, such as Jaeger, you can modify the exporter and endpoint settings in the tracing configuration.

Important

Streams for Apache Kafka no longer supports OpenTracing. If you were previously using OpenTracing with the type: jaeger option, we encourage you to transition to using OpenTelemetry instead.

Enabling tracing in a resource triggers the following events:

  • Interceptor classes are updated in the integrated consumers and producers of the component.
  • For MirrorMaker, MirrorMaker 2, and Kafka Connect, the tracing agent initializes a tracer based on the tracing configuration defined in the resource.
  • For the Kafka Bridge, a tracer based on the tracing configuration defined in the resource is initialized by the Kafka Bridge itself.

Tracing in MirrorMaker and MirrorMaker 2

For MirrorMaker and MirrorMaker 2, messages are traced from the source cluster to the target cluster. The trace data records messages entering and leaving the MirrorMaker or MirrorMaker 2 component.

Tracing in Kafka Connect

For Kafka Connect, only messages produced and consumed by Kafka Connect are traced. To trace messages sent between Kafka Connect and external systems, you must configure tracing in the connectors for those systems.

Tracing in the Kafka Bridge

For the Kafka Bridge, messages produced and consumed by the Kafka Bridge are traced. Incoming HTTP requests from client applications to send and receive messages through the Kafka Bridge are also traced. To have end-to-end tracing, you must configure tracing in your HTTP clients.

Procedure

Perform these steps for each KafkaMirrorMaker, KafkaMirrorMaker2, KafkaConnect, and KafkaBridge resource.

  1. In the spec.template property, configure the tracer service.

    • Use the tracing environment variables as template configuration properties.
    • For OpenTelemetry, set the spec.tracing.type property to opentelemetry.

    Example tracing configuration for Kafka Connect using OpenTelemetry

    apiVersion: kafka.strimzi.io/v1beta2
    kind: KafkaConnect
    metadata:
      name: my-connect-cluster
    spec:
      #...
      template:
        connectContainer:
          env:
            - name: OTEL_SERVICE_NAME
              value: my-otel-service
            - name: OTEL_EXPORTER_OTLP_ENDPOINT
              value: "http://otlp-host:4317"
      tracing:
        type: opentelemetry
      #...
    Copy to Clipboard Toggle word wrap

    Example tracing configuration for MirrorMaker using OpenTelemetry

    apiVersion: kafka.strimzi.io/v1beta2
    kind: KafkaMirrorMaker
    metadata:
      name: my-mirror-maker
    spec:
      #...
      template:
        mirrorMakerContainer:
          env:
            - name: OTEL_SERVICE_NAME
              value: my-otel-service
            - name: OTEL_EXPORTER_OTLP_ENDPOINT
              value: "http://otlp-host:4317"
      tracing:
        type: opentelemetry
    #...
    Copy to Clipboard Toggle word wrap

    Example tracing configuration for MirrorMaker 2 using OpenTelemetry

    apiVersion: kafka.strimzi.io/v1beta2
    kind: KafkaMirrorMaker2
    metadata:
      name: my-mm2-cluster
    spec:
      #...
      template:
        connectContainer:
          env:
            - name: OTEL_SERVICE_NAME
              value: my-otel-service
            - name: OTEL_EXPORTER_OTLP_ENDPOINT
              value: "http://otlp-host:4317"
      tracing:
        type: opentelemetry
    #...
    Copy to Clipboard Toggle word wrap

    Example tracing configuration for the Kafka Bridge using OpenTelemetry

    apiVersion: kafka.strimzi.io/v1beta2
    kind: KafkaBridge
    metadata:
      name: my-bridge
    spec:
      #...
      template:
        bridgeContainer:
          env:
            - name: OTEL_SERVICE_NAME
              value: my-otel-service
            - name: OTEL_EXPORTER_OTLP_ENDPOINT
              value: "http://otlp-host:4317"
      tracing:
        type: opentelemetry
    #...
    Copy to Clipboard Toggle word wrap

  2. (Optional) If TLS authentication is configured on the OTLP endpoint, use the OTEL_EXPORTER_OTLP_CERTIFICATE environment variable to specify the path to a trusted certificate This secures communication between Kafka components and the OpenTelemetry endpoint.

    To provide the certificate, mount a volume containing the secret that holds the trusted certificate. Unless the endpoint address is redirected from http, use https.

    Example configuration for TLS

    apiVersion: kafka.strimzi.io/v1beta2
    kind: KafkaConnect
    metadata:
      name: my-connect-cluster
    spec:
      #...
      template:
        connectContainer:
          env:
            - name: OTEL_SERVICE_NAME
              value: my-otel-service
            - name: OTEL_EXPORTER_OTLP_ENDPOINT
              value: "https://otlp-host:4317"
            - name: OTEL_EXPORTER_OTLP_CERTIFICATE
              value: "/mnt/mysecret/my-certificate.crt"
          volumeMounts:
            - name: tracing-secret-volume
              mountPath: /mnt/mysecret
        pod:
          volumes:
            - name: tracing-secret-volume
              secret:
                secretName: mysecret
      tracing:
        type: opentelemetry
      #...
    Copy to Clipboard Toggle word wrap

  3. Apply the changes to the custom resource configuration.

26.3.3. Initializing tracing for Kafka clients

Initialize a tracer for OpenTelemetry, then instrument your client applications for distributed tracing. You can instrument Kafka producer and consumer clients, and Kafka Streams API applications.

Configure and initialize a tracer using a set of tracing environment variables.

Procedure

In each client application add the dependencies for the tracer:

  1. Add the Maven dependencies to the pom.xml file for the client application:

    Dependencies for OpenTelemetry

    <dependency>
        <groupId>io.opentelemetry.semconv</groupId>
        <artifactId>opentelemetry-semconv</artifactId>
        <version>1.21.0.alpha-redhat-00001</version>
    </dependency>
    <dependency>
        <groupId>io.opentelemetry</groupId>
        <artifactId>opentelemetry-exporter-otlp</artifactId>
        <version>1.34.1.redhat-00001</version>
        <exclusions>
            <exclusion>
                <groupId>io.opentelemetry</groupId>
                <artifactId>opentelemetry-exporter-sender-okhttp</artifactId>
            </exclusion>
        </exclusions>
    </dependency>
    <dependency>
        <groupId>io.opentelemetry</groupId>
        <artifactId>opentelemetry-exporter-sender-grpc-managed-channel</artifactId>
        <version>1.34.1.redhat-00001</version>
        <scope>runtime</scope>
    </dependency>
    <dependency>
        <groupId>io.opentelemetry</groupId>
        <artifactId>opentelemetry-sdk-extension-autoconfigure</artifactId>
        <version>1.34.1.redhat-00001</version>
    </dependency>
    <dependency>
        <groupId>io.opentelemetry.instrumentation</groupId>
        <artifactId>opentelemetry-kafka-clients-2.6</artifactId>
        <version>1.32.0.redhat-00001</version>
    </dependency>
    <dependency>
        <groupId>io.opentelemetry</groupId>
        <artifactId>opentelemetry-sdk</artifactId>
        <version>1.34.1.redhat-00001</version>
    </dependency>
    <dependency>
        <groupId>io.opentelemetry</groupId>
        <artifactId>opentelemetry-exporter-sender-jdk</artifactId>
        <version>1.34.1.alpha-redhat-00001</version>
        <scope>runtime</scope>
    </dependency>
    <dependency>
        <groupId>io.grpc</groupId>
        <artifactId>grpc-netty-shaded</artifactId>
        <version>1.61.0.redhat-00004</version>
    </dependency>
    Copy to Clipboard Toggle word wrap

  2. Define the configuration of the tracer using the tracing environment variables.
  3. Create a tracer, which is initialized with the environment variables:

    Creating a tracer for OpenTelemetry

    OpenTelemetry ot = GlobalOpenTelemetry.get();
    Copy to Clipboard Toggle word wrap

  4. Register the tracer as a global tracer:

    GlobalTracer.register(tracer);
    Copy to Clipboard Toggle word wrap
  5. Instrument your client:

26.3.4. Instrumenting producers and consumers for tracing

Instrument application code to enable tracing in Kafka producers and consumers. Use a decorator pattern or interceptors to instrument your Java producer and consumer application code for tracing. You can then record traces when messages are produced or retrieved from a topic.

OpenTelemetry instrumentation project provides classes that support instrumentation of producers and consumers.

Decorator instrumentation
For decorator instrumentation, create a modified producer or consumer instance for tracing.
Interceptor instrumentation
For interceptor instrumentation, add the tracing capability to the consumer or producer configuration.

Prerequisites

  • You have initialized tracing for the client.

    You enable instrumentation in producer and consumer applications by adding the tracing JARs as dependencies to your project.

Procedure

Perform these steps in the application code of each producer and consumer application. Instrument your client application code using either a decorator pattern or interceptors.

  • To use a decorator pattern, create a modified producer or consumer instance to send or receive messages.

    You pass the original KafkaProducer or KafkaConsumer class.

    Example decorator instrumentation for OpenTelemetry

    // Producer instance
    Producer < String, String > op = new KafkaProducer < > (
        configs,
        new StringSerializer(),
        new StringSerializer()
        );
        Producer < String, String > producer = tracing.wrap(op);
    KafkaTracing tracing = KafkaTracing.create(GlobalOpenTelemetry.get());
    producer.send(...);
    
    //consumer instance
    Consumer<String, String> oc = new KafkaConsumer<>(
        configs,
        new StringDeserializer(),
        new StringDeserializer()
        );
        Consumer<String, String> consumer = tracing.wrap(oc);
    consumer.subscribe(Collections.singleton("mytopic"));
    ConsumerRecords<Integer, String> records = consumer.poll(1000);
    ConsumerRecord<Integer, String> record = ...
    SpanContext spanContext = TracingKafkaUtils.extractSpanContext(record.headers(), tracer);
    Copy to Clipboard Toggle word wrap

  • To use interceptors, set the interceptor class in the producer or consumer configuration.

    You use the KafkaProducer and KafkaConsumer classes in the usual way. The TracingProducerInterceptor and TracingConsumerInterceptor interceptor classes take care of the tracing capability.

    Example producer configuration using interceptors

    senderProps.put(ProducerConfig.INTERCEPTOR_CLASSES_CONFIG,
        TracingProducerInterceptor.class.getName());
    
    KafkaProducer<Integer, String> producer = new KafkaProducer<>(senderProps);
    producer.send(...);
    Copy to Clipboard Toggle word wrap

    Example consumer configuration using interceptors

    consumerProps.put(ConsumerConfig.INTERCEPTOR_CLASSES_CONFIG,
        TracingConsumerInterceptor.class.getName());
    
    KafkaConsumer<Integer, String> consumer = new KafkaConsumer<>(consumerProps);
    consumer.subscribe(Collections.singletonList("messages"));
    ConsumerRecords<Integer, String> records = consumer.poll(1000);
    ConsumerRecord<Integer, String> record = ...
    SpanContext spanContext = TracingKafkaUtils.extractSpanContext(record.headers(), tracer);
    Copy to Clipboard Toggle word wrap

Instrument application code to enable tracing in Kafka Streams API applications. Use a decorator pattern or interceptors to instrument your Kafka Streams API applications for tracing. You can then record traces when messages are produced or retrieved from a topic.

Decorator instrumentation
For decorator instrumentation, create a modified Kafka Streams instance for tracing. For OpenTelemetry, you need to create a custom TracingKafkaClientSupplier class to provide tracing instrumentation for Kafka Streams.
Interceptor instrumentation
For interceptor instrumentation, add the tracing capability to the Kafka Streams producer and consumer configuration.

Prerequisites

  • You have initialized tracing for the client.

    You enable instrumentation in Kafka Streams applications by adding the tracing JARs as dependencies to your project.

  • To instrument Kafka Streams with OpenTelemetry, you’ll need to write a custom TracingKafkaClientSupplier.
  • The custom TracingKafkaClientSupplier can extend Kafka’s DefaultKafkaClientSupplier, overriding the producer and consumer creation methods to wrap the instances with the telemetry-related code.

    Example custom TracingKafkaClientSupplier

    private class TracingKafkaClientSupplier extends DefaultKafkaClientSupplier {
        @Override
        public Producer<byte[], byte[]> getProducer(Map<String, Object> config) {
            KafkaTelemetry telemetry = KafkaTelemetry.create(GlobalOpenTelemetry.get());
            return telemetry.wrap(super.getProducer(config));
        }
    
        @Override
        public Consumer<byte[], byte[]> getConsumer(Map<String, Object> config) {
            KafkaTelemetry telemetry = KafkaTelemetry.create(GlobalOpenTelemetry.get());
            return telemetry.wrap(super.getConsumer(config));
        }
    
        @Override
        public Consumer<byte[], byte[]> getRestoreConsumer(Map<String, Object> config) {
            return this.getConsumer(config);
        }
    
        @Override
        public Consumer<byte[], byte[]> getGlobalConsumer(Map<String, Object> config) {
            return this.getConsumer(config);
        }
    }
    Copy to Clipboard Toggle word wrap

Procedure

Perform these steps for each Kafka Streams API application.

  • To use a decorator pattern, create an instance of the TracingKafkaClientSupplier supplier interface, then provide the supplier interface to KafkaStreams.

    Example decorator instrumentation

    KafkaClientSupplier supplier = new TracingKafkaClientSupplier(tracer);
    KafkaStreams streams = new KafkaStreams(builder.build(), new StreamsConfig(config), supplier);
    streams.start();
    Copy to Clipboard Toggle word wrap

  • To use interceptors, set the interceptor class in the Kafka Streams producer and consumer configuration.

    The TracingProducerInterceptor and TracingConsumerInterceptor interceptor classes take care of the tracing capability.

    Example producer and consumer configuration using interceptors

    props.put(StreamsConfig.PRODUCER_PREFIX + ProducerConfig.INTERCEPTOR_CLASSES_CONFIG, TracingProducerInterceptor.class.getName());
    props.put(StreamsConfig.CONSUMER_PREFIX + ConsumerConfig.INTERCEPTOR_CLASSES_CONFIG, TracingConsumerInterceptor.class.getName());
    Copy to Clipboard Toggle word wrap

Instead of the default OTLP system, you can specify other tracing systems that are supported by OpenTelemetry. You do this by adding the required artifacts to the Kafka image provided with Streams for Apache Kafka. Any required implementation specific environment variables must also be set. You then enable the new tracing implementation using the OTEL_TRACES_EXPORTER environment variable.

This procedure shows how to implement Zipkin tracing.

Procedure

  1. Add the tracing artifacts to the /opt/kafka/libs/ directory of the Kafka image.

    You can use the Kafka container image on the Red Hat Ecosystem Catalog as a base image for creating a new custom image.

    OpenTelemetry artifact for Zipkin

    io.opentelemetry:opentelemetry-exporter-zipkin
    Copy to Clipboard Toggle word wrap

  2. Set the tracing exporter and endpoint for the new tracing implementation.

    Example Zikpin tracer configuration

    apiVersion: kafka.strimzi.io/v1beta2
    kind: KafkaMirrorMaker2
    metadata:
      name: my-mm2-cluster
    spec:
      #...
      template:
        connectContainer:
          env:
            - name: OTEL_SERVICE_NAME
              value: my-zipkin-service
            - name: OTEL_EXPORTER_ZIPKIN_ENDPOINT
              value: http://zipkin-exporter-host-name:9411/api/v2/spans 
    1
    
            - name: OTEL_TRACES_EXPORTER
              value: zipkin 
    2
    
      tracing:
        type: opentelemetry
    #...
    Copy to Clipboard Toggle word wrap

    1
    Specifies the Zipkin endpoint to connect to.
    2
    The Zipkin exporter.

26.3.7. Specifying custom span names for OpenTelemetry

A tracing span is a logical unit of work in Jaeger, with an operation name, start time, and duration. Spans have built-in names, but you can specify custom span names in your Kafka client instrumentation where used.

Specifying custom span names is optional and only applies when using a decorator pattern in producer and consumer client instrumentation or Kafka Streams instrumentation.

Custom span names cannot be specified directly with OpenTelemetry. Instead, you retrieve span names by adding code to your client application to extract additional tags and attributes.

Example code to extract attributes

//Defines attribute extraction for a producer
private static class ProducerAttribExtractor implements AttributesExtractor < ProducerRecord < ? , ? > , Void > {
    @Override
    public void onStart(AttributesBuilder attributes, ProducerRecord < ? , ? > producerRecord) {
        set(attributes, AttributeKey.stringKey("prod_start"), "prod1");
    }
    @Override
    public void onEnd(AttributesBuilder attributes, ProducerRecord < ? , ? > producerRecord, @Nullable Void unused, @Nullable Throwable error) {
        set(attributes, AttributeKey.stringKey("prod_end"), "prod2");
    }
}
//Defines attribute extraction for a consumer
private static class ConsumerAttribExtractor implements AttributesExtractor < ConsumerRecord < ? , ? > , Void > {
    @Override
    public void onStart(AttributesBuilder attributes, ConsumerRecord < ? , ? > producerRecord) {
        set(attributes, AttributeKey.stringKey("con_start"), "con1");
    }
    @Override
    public void onEnd(AttributesBuilder attributes, ConsumerRecord < ? , ? > producerRecord, @Nullable Void unused, @Nullable Throwable error) {
        set(attributes, AttributeKey.stringKey("con_end"), "con2");
    }
}
//Extracts the attributes
public static void main(String[] args) throws Exception {
        Map < String, Object > configs = new HashMap < > (Collections.singletonMap(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "localhost:9092"));
        System.setProperty("otel.traces.exporter", "jaeger");
        System.setProperty("otel.service.name", "myapp1");
        KafkaTracing tracing = KafkaTracing.newBuilder(GlobalOpenTelemetry.get())
            .addProducerAttributesExtractors(new ProducerAttribExtractor())
            .addConsumerAttributesExtractors(new ConsumerAttribExtractor())
            .build();
Copy to Clipboard Toggle word wrap

返回顶部
Red Hat logoGithubredditYoutubeTwitter

学习

尝试、购买和销售

社区

关于红帽文档

通过我们的产品和服务,以及可以信赖的内容,帮助红帽用户创新并实现他们的目标。 了解我们当前的更新.

让开源更具包容性

红帽致力于替换我们的代码、文档和 Web 属性中存在问题的语言。欲了解更多详情,请参阅红帽博客.

關於紅帽

我们提供强化的解决方案,使企业能够更轻松地跨平台和环境(从核心数据中心到网络边缘)工作。

Theme

© 2025 Red Hat