Dieser Inhalt ist in der von Ihnen ausgewählten Sprache nicht verfügbar.

Chapter 3. Quick Start


3.1. Rule Basics

3.1.1. Stateless Knowledge Sessions

A stateless knowledge session is a session without inference. A stateless session can be called like a function in that you can use it to pass data and then receive the result back.
Stateless knowledge sessions are useful in situations requiring validation, calculation, routing and filtering.

3.1.2. Configuring Rules in a Stateless Session

Procedure 3.1. Task

  1. Create a data model like the driver's license example below:
    public class Applicant {
        private String name;
        private int age;
        private boolean valid;
        // getter and setter methods here
    }
    
    Copy to Clipboard Toggle word wrap
  2. Write the first rule. In this example, a rule is added to disqualify any applicant younger than 18:
    package com.company.license
    
    rule "Is of valid age"
    when
        $a : Applicant( age < 18 )
    then
        $a.setValid( false );
    end
    
    Copy to Clipboard Toggle word wrap
  3. When the Applicant object is inserted into the rule engine, each rule's constraints evaluate it and search for a match. (There is always an implied constraint of "object type" after which there can be any number of explicit field constraints.)
    In the Is of valid age rule there are two constraints:
    • The fact being matched must be of type Applicant
    • The value of Age must be less than eighteen.
    $a is a binding variable. It exists to make possible a reference to the matched object in the rule's consequence (from which place the object's properties can be updated).

    Note

    Use of the dollar sign ($) is optional. It helps to differentiate between variable names and field names.

    Note

    If the rules are in the same folder as the classes, the classpath resource loader can be used to build the first knowledge base.
  4. Use the KnowledgeBuilder to to compile the list of rules into a knowledge base as shown:
    KnowledgeBuilder kbuilder = KnowledgeBuilderFactory.newKnowledgeBuilder();
    kbuilder.add( ResourceFactory.newClassPathResource( "licenseApplication.drl", 
                  getClass() ), ResourceType.DRL );
    if ( kbuilder.hasErrors() ) {
        System.err.println( kbuilder.getErrors().toString() );
    }
    KnowledgeBase kbase = KnowledgeBaseFactory.newKnowledgeBase();
    kbase.addKnowledgePackages( kbuilder.getKnowledgePackages() );
    
    Copy to Clipboard Toggle word wrap
    The above code snippet looks on the classpath for the licenseApplication.drl file, using the method newClassPathResource(). (The resource type is DRL, short for "Drools Rule Language".)
  5. Check the KnowledgeBuilder for any errors. If there are none, you can build the session.
  6. Execute the data against the rules. (Since the applicant is under the age of eighteen, their application will be marked as "invalid.")
    StatelessKnowledgeSession ksession = kbase.newStatelessKnowledgeSession();
    Applicant applicant = new Applicant( "Mr John Smith", 16 );
    assertTrue( applicant.isValid() );
    ksession.execute( applicant );
    assertFalse( applicant.isValid() );
    
    Copy to Clipboard Toggle word wrap
Result

The preceding code executes the data against the rules. Since the applicant is under the age of 18, the application is marked as invalid.

3.1.3. Configuring Rules with Multiple Objects

Procedure 3.2. Task

  1. To execute rules against any object-implementing iterable (such as a collection), add another class as shown in the example code below:
    public class Applicant {
        private String name;
        private int age;
        // getter and setter methods here
    }
    
    public class Application {
        private Date dateApplied;
        private boolean valid;
        // getter and setter methods here
    }
    
    Copy to Clipboard Toggle word wrap
  2. In order to check that the application was made within a legitimate time-frame, add this rule:
    package com.company.license
    
    rule "Is of valid age"
    when
        Applicant( age < 18 )
        $a : Application()     
    then
        $a.setValid( false );
    end
    
    rule "Application was made this year"
    when
        $a : Application( dateApplied > "01-jan-2009" )     
    then
        $a.setValid( false );
    end
    
    Copy to Clipboard Toggle word wrap
  3. Use the JDK converter to implement the iterable interface. (This method commences with the line Arrays.asList(...).) The code shown below executes rules against an iterable list. Every collection element is inserted before any matched rules are fired:
    StatelessKnowledgeSession ksession = kbase.newStatelessKnowledgeSession();
    Applicant applicant = new Applicant( "Mr John Smith", 16 );
    Application application = new Application();
    assertTrue( application.isValid() );
    ksession.execute( Arrays.asList( new Object[] { application, applicant } ) );
    assertFalse( application.isValid() );
    
    Copy to Clipboard Toggle word wrap

    Note

    The execute(Object object) and execute(Iterable objects) methods are actually "wrappers" around a further method called execute(Command command) which comes from the BatchExecutor interface.
  4. Use the CommandFactory to create instructions, so that the following is equivalent to execute( Iterable it ):
    ksession.execute( CommandFactory.newInsertIterable( new Object[] { application, applicant } ) );
    
    Copy to Clipboard Toggle word wrap
  5. Use the BatchExecutor and CommandFactory when working with many different commands or result output identifiers:
    List<Command> cmds = new ArrayList<Command>();
    cmds.add( CommandFactory.newInsert( new Person( "Mr John Smith" ), "mrSmith" );
    cmds.add( CommandFactory.newInsert( new Person( "Mr John Doe" ), "mrDoe" );
    BatchExecutionResults results = ksession.execute( CommandFactory.newBatchExecution( cmds ) );
    assertEquals( new Person( "Mr John Smith" ), results.getValue( "mrSmith" ) );
    
    Copy to Clipboard Toggle word wrap

    Note

    CommandFactory supports many other commands that can be used in the BatchExecutor. Some of these are StartProcess, Query and SetGlobal.

3.1.4. Stateful Sessions

A stateful session allow you to make iterative changes to facts over time. As with the StatelessKnowledgeSession, the StatefulKnowledgeSession supports the BatchExecutor interface. The only difference is the FireAllRules command is not automatically called at the end.

Warning

Ensure that the dispose() method is called after running a stateful session. This is to ensure that there are no memory leaks. This is due to the fact that knowledge bases will obtain references to stateful knowledge sessions when they are created.

3.1.5. Common Use Cases for Stateful Sessions

Monitoring
For example, you can monitor a stock market and automate the buying process.
Diagnostics
Stateful sessions can be used to run fault-finding processes. They could also be used for medical diagnostic processes.
Logistical
For example, they could be applied to problems involving parcel tracking and delivery provisioning.
Ensuring compliance
For example, to validate the legality of market trades.

3.1.6. Stateful Session Monitoring Example

Procedure 3.3. Task

  1. Create a model of what you want to monitor. In this example involving fire alarms, the rooms in a house have been listed. Each has one sprinkler. A fire can start in any of the rooms:
    public class Room 
    {
    	private String name
    		// getter and setter methods here
    }
    
    public class Sprinkler 
    {
    	private Room room;
    	private boolean on;
    	// getter and setter methods here
    }
    
    public class Fire 
    {
    	private Room room;
    	// getter and setter methods here
    }
    
    public class Alarm 
    {
    }
    
    Copy to Clipboard Toggle word wrap
  2. The rules must express the relationships between multiple objects (to define things such as the presence of a sprinkler in a certain room). To do this, use a binding variable as a constraint in a pattern. This results in a cross-product.
  3. Create an instance of the Fire class and insert it into the session.
    The rule below adds a binding to Fire object's room field to constrain matches. This so that only the sprinkler for that room is checked. When this rule fires and the consequence executes, the sprinkler activates:
    rule "When there is a fire turn on the sprinkler"
    when
        Fire($room : room)
        $sprinkler : Sprinkler( room == $room, on == false )
    then
        modify( $sprinkler ) { setOn( true ) };
        System.out.println("Turn on the sprinkler for room "+$room.getName());
    end
    
    Copy to Clipboard Toggle word wrap
    Whereas the stateless session employed standard Java syntax to modify a field, the rule above uses the modify statement. (It acts much like a "with" statement.)

3.1.7. First Order Logic

First order logic allows you to look at sets of data instead of individual instances.

3.1.8. Configuring Rules with First Order Logic

Procedure 3.4. Task

  1. Configure a pattern featuring the keyword Not. First order logic ensures rules will only be matched when no other keywords are present. In this example, the rule turns the sprinkler off when the fire is extinguished:
    rule "When the fire is gone turn off the sprinkler"
    when
        $room : Room( )
        $sprinkler : Sprinkler( room == $room, on == true )
        not Fire( room == $room )
    then
        modify( $sprinkler ) { setOn( false ) };
        System.out.println("Turn off the sprinkler for room "+$room.getName());
    end
    
    Copy to Clipboard Toggle word wrap
  2. An Alarm object is created when there is a fire, but only one Alarm is needed for the entire building no matter how many fires there might be. Not's complement, exists can now be introduced. It matches one or more instances of a category:
    rule "Raise the alarm when we have one or more fires"
    when
        exists Fire()
    then
        insert( new Alarm() );
        System.out.println( "Raise the alarm" );
    end
    
    Copy to Clipboard Toggle word wrap
  3. If there are no more fires, the alarm must be deactivated. To turn it off, use Not again:
    rule "Cancel the alarm when all the fires have gone"
    when
        not Fire()
        $alarm : Alarm()
    then
        retract( $alarm );
        System.out.println( "Cancel the alarm" );
    end
    
    Copy to Clipboard Toggle word wrap
  4. Use this code to print a general health status message when the application first starts and also when the alarm and all of the sprinklers have been deactivated:
    rule "Status output when things are ok"
    when
        not Alarm()
        not Sprinkler( on == true ) 
    then
        System.out.println( "Everything is ok" );
    end
    
    Copy to Clipboard Toggle word wrap
  5. Store the rules in a file called fireAlarm.drl. Save this file in a sub-directory on the class-path.
  6. Finally, build a knowledge base, using the new name, fireAlarm.drl:
    KnowledgeBuilder kbuilder = KnowledgeBuilderFactory.newKnowledgeBuilder();
    kbuilder.add( ResourceFactory.newClassPathResource( "fireAlarm.drl", 
    										getClass() ), ResourceType.DRL );
    										
    if ( kbuilder.hasErrors() )
    	System.err.println( kbuilder.getErrors().toString() );
    
    StatefulKnowledgeSession ksession = kbase.newStatefulKnowledgeSession();
    
    Copy to Clipboard Toggle word wrap

3.1.9. Rule System Sample Configuration

Procedure 3.5. Task

  1. Insert ksession.fireAllRules(). This grants the matched rules permission to run but, since there is no fire in this example, they will merely produce the health message:
    String[] names = new String[]{"kitchen","bedroom","office","livingroom"};
    Map<String,Room> name2room = new HashMap<String,Room>();
    
    for( String name: names )
    {
    	Room room = new Room( name );
    	name2room.put( name, room );
    	ksession.insert( room );
    	Sprinkler sprinkler = new Sprinkler( room );
    	ksession.insert( sprinkler );
    }
    
    ksession.fireAllRules();
    
    Copy to Clipboard Toggle word wrap
    The resulting message reads:
    > Everything is okay
    
    Copy to Clipboard Toggle word wrap
  2. Create and insert two fires. (A fact handle will be kept.)
  3. With the fires now in the engine, call fireAllRules(). The alarm will be raised and the respective sprinklers will be turned on:
    Fire kitchenFire = new Fire( name2room.get( "kitchen" ) );
    Fire officeFire = new Fire( name2room.get( "office" ) );
    
    FactHandle kitchenFireHandle = ksession.insert( kitchenFire );
    FactHandle officeFireHandle = ksession.insert( officeFire );
    
    ksession.fireAllRules();
    
    Copy to Clipboard Toggle word wrap
    The resulting message reads:
    > Raise the alarm
    > Turn on the sprinkler for room kitchen
    > Turn on the sprinkler for room office
    
    Copy to Clipboard Toggle word wrap
  4. When the fires are extinguished, the fire objects are retracted and the sprinklers are turned off. At this point in time, the alarm is canceled and the health message displays once more:
    ksession.retract( kitchenFireHandle );
    ksession.retract( officeFireHandle );
    
    ksession.fireAllRules();
    
    Copy to Clipboard Toggle word wrap
    The resulting message reads:
    > Turn off the sprinkler for room office
    > Turn off the sprinkler for room kitchen
    > Cancel the alarm
    > Everything is okay       
    
    
    Copy to Clipboard Toggle word wrap
Nach oben
Red Hat logoGithubredditYoutubeTwitter

Lernen

Testen, kaufen und verkaufen

Communitys

Über Red Hat Dokumentation

Wir helfen Red Hat Benutzern, mit unseren Produkten und Diensten innovativ zu sein und ihre Ziele zu erreichen – mit Inhalten, denen sie vertrauen können. Entdecken Sie unsere neuesten Updates.

Mehr Inklusion in Open Source

Red Hat hat sich verpflichtet, problematische Sprache in unserem Code, unserer Dokumentation und unseren Web-Eigenschaften zu ersetzen. Weitere Einzelheiten finden Sie in Red Hat Blog.

Über Red Hat

Wir liefern gehärtete Lösungen, die es Unternehmen leichter machen, plattform- und umgebungsübergreifend zu arbeiten, vom zentralen Rechenzentrum bis zum Netzwerkrand.

Theme

© 2025 Red Hat