
OpenShift Container Platform 4.11

Virtualization

OpenShift Virtualization installation, usage, and release notes

Last Updated: 2024-02-07





OpenShift Container Platform 4.11 Virtualization

OpenShift Virtualization installation, usage, and release notes



Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This document provides information about how to use OpenShift Virtualization in OpenShift
Container Platform.



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table of Contents

CHAPTER 1. ABOUT OPENSHIFT VIRTUALIZATION
1.1. WHAT YOU CAN DO WITH OPENSHIFT VIRTUALIZATION

1.1.1. OpenShift Virtualization supported cluster version

CHAPTER 2. OPENSHIFT VIRTUALIZATION ARCHITECTURE
2.1. HOW OPENSHIFT VIRTUALIZATION ARCHITECTURE WORKS
2.2. ABOUT THE HCO-OPERATOR
2.3. ABOUT THE CDI-OPERATOR
2.4. ABOUT THE CLUSTER-NETWORK-ADDONS-OPERATOR
2.5. ABOUT THE HOSTPATH-PROVISIONER-OPERATOR
2.6. ABOUT THE SSP-OPERATOR
2.7. ABOUT THE TEKTON-TASKS-OPERATOR
2.8. ABOUT THE VIRT-OPERATOR

CHAPTER 3. GETTING STARTED WITH OPENSHIFT VIRTUALIZATION
3.1. BEFORE YOU BEGIN

3.1.1. Additional resources
3.2. GETTING STARTED
3.3. NEXT STEPS

3.3.1. Additional resources

CHAPTER 4. OPENSHIFT VIRTUALIZATION RELEASE NOTES
4.1. MAKING OPEN SOURCE MORE INCLUSIVE
4.2. ABOUT RED HAT OPENSHIFT VIRTUALIZATION

4.2.1. OpenShift Virtualization supported cluster version
4.2.2. Supported guest operating systems

4.3. NEW AND CHANGED FEATURES
4.3.1. Quick starts
4.3.2. Storage
4.3.3. Web console

4.4. DEPRECATED AND REMOVED FEATURES
4.4.1. Deprecated features
4.4.2. Removed features

4.5. TECHNOLOGY PREVIEW FEATURES
4.6. BUG FIXES
4.7. KNOWN ISSUES

CHAPTER 5. INSTALLING
5.1. PREPARING YOUR CLUSTER FOR OPENSHIFT VIRTUALIZATION

5.1.1. Hardware and operating system requirements
5.1.2. Physical resource overhead requirements

5.1.2.1. Memory overhead
5.1.2.2. CPU overhead
5.1.2.3. Storage overhead
5.1.2.4. Example

5.1.3. Object maximums
5.1.4. Restricted network environments
5.1.5. Live migration
5.1.6. Snapshots and cloning
5.1.7. Cluster high-availability options

5.2. SPECIFYING NODES FOR OPENSHIFT VIRTUALIZATION COMPONENTS
5.2.1. About node placement for virtualization components

15
15
16

17
17
18
19

20
21
22
22
22

24
24
24
24
25
25

26
26
26
26
26
26
27
27
27
27
27
28
28
29
29

34
34
34
36
36
36
37
37
37
38
38
38
38
39
39

Table of Contents

1



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5.2.1.1. How to apply node placement rules to virtualization components
5.2.1.2. Node placement in the OLM Subscription object
5.2.1.3. Node placement in the HyperConverged object
5.2.1.4. Node placement in the HostPathProvisioner object
5.2.1.5. Additional resources

5.2.2. Example manifests
5.2.2.1. Operator Lifecycle Manager Subscription object

5.2.2.1.1. Example: Node placement with nodeSelector in the OLM Subscription object
5.2.2.1.2. Example: Node placement with tolerations in the OLM Subscription object

5.2.2.2. HyperConverged object
5.2.2.2.1. Example: Node placement with nodeSelector in the HyperConverged Cluster CR
5.2.2.2.2. Example: Node placement with affinity in the HyperConverged Cluster CR
5.2.2.2.3. Example: Node placement with tolerations in the HyperConverged Cluster CR

5.2.2.3. HostPathProvisioner object
5.2.2.3.1. Example: Node placement with nodeSelector in the HostPathProvisioner object

5.3. INSTALLING OPENSHIFT VIRTUALIZATION USING THE WEB CONSOLE
5.3.1. Installing the OpenShift Virtualization Operator
5.3.2. Next steps

5.4. INSTALLING OPENSHIFT VIRTUALIZATION USING THE CLI
5.4.1. Prerequisites
5.4.2. Subscribing to the OpenShift Virtualization catalog by using the CLI
5.4.3. Deploying the OpenShift Virtualization Operator by using the CLI
5.4.4. Next steps

5.5. ENABLING THE VIRTCTL CLIENT
5.5.1. Downloading and installing the virtctl client

5.5.1.1. Downloading the virtctl client
5.5.1.2. Installing the virtctl client

5.5.2. Installing the virtctl RPM package
5.5.2.1. Enabling OpenShift Virtualization repositories
5.5.2.2. Installing the virtctl client using the yum utility

5.5.3. Additional resources
5.6. UNINSTALLING OPENSHIFT VIRTUALIZATION

5.6.1. Uninstalling OpenShift Virtualization by using the web console
5.6.1.1. Deleting the HyperConverged custom resource
5.6.1.2. Deleting Operators from a cluster using the web console
5.6.1.3. Deleting a namespace using the web console
5.6.1.4. Deleting OpenShift Virtualization custom resource definitions

5.6.2. Uninstalling OpenShift Virtualization by using the CLI

CHAPTER 6. UPDATING OPENSHIFT VIRTUALIZATION
6.1. ABOUT UPDATING OPENSHIFT VIRTUALIZATION
6.2. CONFIGURING AUTOMATIC WORKLOAD UPDATES

6.2.1. About workload updates
Migration attempts and timeouts

6.2.2. Configuring workload update methods
6.3. APPROVING PENDING OPERATOR UPDATES

6.3.1. Manually approving a pending Operator update
6.4. MONITORING UPDATE STATUS

6.4.1. Monitoring OpenShift Virtualization upgrade status
6.4.2. Viewing outdated OpenShift Virtualization workloads

6.5. ADDITIONAL RESOURCES

CHAPTER 7. SECURITY POLICIES

39
40
41
41
41

42
42
42
42
43
43
43
44
44
44
45
45
46
46
46
47
48
48
48
49
49
49
50
50
50
51
51
51
51
52
52
53
53

55
55
56
56
56
57
58
58
58
59
59
60

61

OpenShift Container Platform 4.11 Virtualization

2



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7.1. ABOUT WORKLOAD SECURITY
7.2. EXTENDED SELINUX POLICIES FOR VIRT-LAUNCHER PODS
7.3. ADDITIONAL OPENSHIFT CONTAINER PLATFORM SECURITY CONTEXT CONSTRAINTS AND LINUX
CAPABILITIES FOR THE KUBEVIRT-CONTROLLER SERVICE ACCOUNT

7.3.1. Viewing the SCC and RBAC definitions for the kubevirt-controller
7.4. ADDITIONAL RESOURCES

CHAPTER 8. USING THE CLI TOOLS
8.1. PREREQUISITES
8.2. OPENSHIFT CONTAINER PLATFORM CLIENT COMMANDS
8.3. VIRTCTL CLIENT COMMANDS
8.4. CREATING A CONTAINER USING VIRTCTL GUESTFS
8.5. LIBGUESTFS TOOLS AND VIRTCTL GUESTFS
8.6. ADDITIONAL RESOURCES

CHAPTER 9. VIRTUAL MACHINES
9.1. CREATING VIRTUAL MACHINES

9.1.1. Using a Quick Start to create a virtual machine
9.1.2. Quick creating a virtual machine
9.1.3. Creating a virtual machine from a customized template

9.1.3.1. Virtual machine fields
9.1.3.1.1. Networking fields

9.1.3.2. Storage fields
Advanced storage settings

9.1.3.3. Cloud-init fields
9.1.3.4. Pasting in a pre-configured YAML file to create a virtual machine

9.1.4. Using the CLI to create a virtual machine
9.1.5. Virtual machine storage volume types
9.1.6. About RunStrategies for virtual machines
9.1.7. Additional resources

9.2. EDITING VIRTUAL MACHINES
9.2.1. Editing a virtual machine in the web console

9.2.1.1. Virtual machine fields
9.2.2. Editing a virtual machine YAML configuration using the web console
9.2.3. Editing a virtual machine YAML configuration using the CLI
9.2.4. Adding a virtual disk to a virtual machine

9.2.4.1. Editing CD-ROMs for VirtualMachines
9.2.4.2. Storage fields

Advanced storage settings
9.2.5. Adding a network interface to a virtual machine

9.2.5.1. Networking fields
9.2.6. Additional resources

9.3. EDITING BOOT ORDER
9.3.1. Adding items to a boot order list in the web console
9.3.2. Editing a boot order list in the web console
9.3.3. Editing a boot order list in the YAML configuration file
9.3.4. Removing items from a boot order list in the web console

9.4. DELETING VIRTUAL MACHINES
9.4.1. Deleting a virtual machine using the web console
9.4.2. Deleting a virtual machine by using the CLI

9.5. MANAGING VIRTUAL MACHINE INSTANCES
9.5.1. About virtual machine instances
9.5.2. Listing all virtual machine instances using the CLI

61
61

62
62
62

64
64
64
64
66
66
68

69
69
69
70
70
71
72
72
73
74
75
75
77
78
79
80
80
81

82
82
83
83
84
85
86
86
87
87
87
88
88
89
90
90
90
91
91
91

Table of Contents

3



9.5.3. Listing standalone virtual machine instances using the web console
9.5.4. Editing a standalone virtual machine instance using the web console
9.5.5. Deleting a standalone virtual machine instance using the CLI
9.5.6. Deleting a standalone virtual machine instance using the web console

9.6. CONTROLLING VIRTUAL MACHINE STATES
9.6.1. Starting a virtual machine
9.6.2. Restarting a virtual machine
9.6.3. Stopping a virtual machine
9.6.4. Unpausing a virtual machine

9.7. ACCESSING VIRTUAL MACHINE CONSOLES
9.7.1. Accessing virtual machine consoles in the OpenShift Container Platform web console

9.7.1.1. Connecting to the serial console
9.7.1.2. Connecting to the VNC console
9.7.1.3. Connecting to a Windows virtual machine with RDP
9.7.1.4. Switching between virtual machine displays

9.7.2. Accessing virtual machine consoles by using CLI commands
9.7.2.1. Accessing a virtual machine via SSH by using virtctl
9.7.2.2. Accessing the serial console of a virtual machine instance
9.7.2.3. Accessing the graphical console of a virtual machine instances with VNC
9.7.2.4. Connecting to a Windows virtual machine with an RDP console

9.8. AUTOMATING WINDOWS INSTALLATION WITH SYSPREP
9.8.1. Using a Windows DVD to create a VM disk image
9.8.2. Using a disk image to install Windows
9.8.3. Generalizing a Windows VM using sysprep
9.8.4. Specializing a Windows virtual machine
9.8.5. Additional resources

9.9. TRIGGERING VIRTUAL MACHINE FAILOVER BY RESOLVING A FAILED NODE
9.9.1. Prerequisites
9.9.2. Deleting nodes from a bare metal cluster
9.9.3. Verifying virtual machine failover

9.9.3.1. Listing all virtual machine instances using the CLI
9.10. INSTALLING THE QEMU GUEST AGENT ON VIRTUAL MACHINES

9.10.1. Installing QEMU guest agent on a Linux virtual machine
9.10.2. Installing QEMU guest agent on a Windows virtual machine

9.10.2.1. Installing VirtIO drivers on an existing Windows virtual machine
9.10.2.2. Installing VirtIO drivers during Windows installation

9.11. VIEWING THE QEMU GUEST AGENT INFORMATION FOR VIRTUAL MACHINES
9.11.1. Prerequisites
9.11.2. About the QEMU guest agent information in the web console
9.11.3. Viewing the QEMU guest agent information in the web console

9.12. MANAGING CONFIG MAPS, SECRETS, AND SERVICE ACCOUNTS IN VIRTUAL MACHINES
9.12.1. Adding a secret, config map, or service account to a virtual machine
9.12.2. Removing a secret, config map, or service account from a virtual machine
9.12.3. Additional resources

9.13. INSTALLING VIRTIO DRIVER ON AN EXISTING WINDOWS VIRTUAL MACHINE
9.13.1. About VirtIO drivers
9.13.2. Supported VirtIO drivers for Microsoft Windows virtual machines
9.13.3. Adding VirtIO drivers container disk to a virtual machine
9.13.4. Installing VirtIO drivers on an existing Windows virtual machine
9.13.5. Removing the VirtIO container disk from a virtual machine

9.14. INSTALLING VIRTIO DRIVER ON A NEW WINDOWS VIRTUAL MACHINE
9.14.1. Prerequisites
9.14.2. About VirtIO drivers

91
92
92
92
93
93
93
94
94
95
95
95
96
96
97
97
97
99
99

100
101
102
102
102
103
104
104
104
104
105
105
105
105
106
106
107
108
108
108
108
108
109
109
110
110
110
110
111

112
112
113
113
113

OpenShift Container Platform 4.11 Virtualization

4



9.14.3. Supported VirtIO drivers for Microsoft Windows virtual machines
9.14.4. Adding VirtIO drivers container disk to a virtual machine
9.14.5. Installing VirtIO drivers during Windows installation
9.14.6. Removing the VirtIO container disk from a virtual machine

9.15. USING VIRTUAL TRUSTED PLATFORM MODULE DEVICES
9.15.1. About vTPM devices
9.15.2. Adding a vTPM device to a virtual machine

9.16. ADVANCED VIRTUAL MACHINE MANAGEMENT
9.16.1. Working with resource quotas for virtual machines

9.16.1.1. Setting resource quota limits for virtual machines
9.16.1.2. Additional resources

9.16.2. Specifying nodes for virtual machines
9.16.2.1. About node placement for virtual machines
9.16.2.2. Node placement examples

9.16.2.2.1. Example: VM node placement with nodeSelector
9.16.2.2.2. Example: VM node placement with pod affinity and pod anti-affinity
9.16.2.2.3. Example: VM node placement with node affinity
9.16.2.2.4. Example: VM node placement with tolerations

9.16.2.3. Additional resources
9.16.3. Configuring certificate rotation

9.16.3.1. Configuring certificate rotation
9.16.3.2. Troubleshooting certificate rotation parameters

9.16.4. Using UEFI mode for virtual machines
9.16.4.1. About UEFI mode for virtual machines
9.16.4.2. Booting virtual machines in UEFI mode

9.16.5. Configuring PXE booting for virtual machines
9.16.5.1. Prerequisites
9.16.5.2. PXE booting with a specified MAC address
9.16.5.3. OpenShift Virtualization networking glossary

9.16.6. Using huge pages with virtual machines
9.16.6.1. Prerequisites
9.16.6.2. What huge pages do
9.16.6.3. Configuring huge pages for virtual machines

9.16.7. Enabling dedicated resources for virtual machines
9.16.7.1. About dedicated resources
9.16.7.2. Prerequisites
9.16.7.3. Enabling dedicated resources for a virtual machine

9.16.8. Scheduling virtual machines
9.16.8.1. Policy attributes
9.16.8.2. Setting a policy attribute and CPU feature
9.16.8.3. Scheduling virtual machines with the supported CPU model
9.16.8.4. Scheduling virtual machines with the host model

9.16.9. Configuring PCI passthrough
9.16.9.1. About preparing a host device for PCI passthrough

9.16.9.1.1. Adding kernel arguments to enable the IOMMU driver
9.16.9.1.2. Binding PCI devices to the VFIO driver
9.16.9.1.3. Exposing PCI host devices in the cluster using the CLI
9.16.9.1.4. Removing PCI host devices from the cluster using the CLI

9.16.9.2. Configuring virtual machines for PCI passthrough
9.16.9.2.1. Assigning a PCI device to a virtual machine

9.16.9.3. Additional resources
9.16.10. Configuring vGPU passthrough

9.16.10.1. Assigning vGPU passthrough devices to a virtual machine

113
114
115
115
116
116
116
117
117
117
117
118
118
118
119
119

120
121
121
121
121
122
123
123
123
124
124
124
127
127
127
127
128
129
129
129
129
129
130
130
131
131
132
132
132
133
135
137
138
138
139
139
139

Table of Contents

5



9.16.10.2. Additional resources
9.16.11. Configuring mediated devices

9.16.11.1. About using the NVIDIA GPU Operator
9.16.11.2. About using virtual GPUs with OpenShift Virtualization

9.16.11.2.1. Prerequisites
9.16.11.2.2. Configuration overview
9.16.11.2.3. How vGPUs are assigned to nodes
9.16.11.2.4. About changing and removing mediated devices
9.16.11.2.5. Preparing hosts for mediated devices

9.16.11.2.5.1. Adding kernel arguments to enable the IOMMU driver
9.16.11.2.6. Adding and removing mediated devices

9.16.11.2.6.1. Creating and exposing mediated devices
9.16.11.2.6.2. Removing mediated devices from the cluster using the CLI

9.16.11.3. Using mediated devices
9.16.11.3.1. Assigning a mediated device to a virtual machine

9.16.11.4. Additional resources
9.16.12. Configuring a watchdog

9.16.12.1. Prerequisites
9.16.12.2. Defining a watchdog device
9.16.12.3. Installing a watchdog device
9.16.12.4. Additional resources

9.16.13. Automatic importing and updating of pre-defined boot sources
9.16.13.1. Enabling automatic boot source updates
9.16.13.2. Disabling automatic boot source updates
9.16.13.3. Re-enabling automatic boot source updates
9.16.13.4. Configuring a storage class for user-defined boot source updates
9.16.13.5. Enabling automatic updates for user-defined boot sources
9.16.13.6. Disabling an automatic update for a system-defined or user-defined boot source
9.16.13.7. Verifying the status of a boot source

9.16.14. Enabling descheduler evictions on virtual machines
9.16.14.1. Descheduler profiles
9.16.14.2. Installing the descheduler
9.16.14.3. Enabling descheduler evictions on a virtual machine (VM)
9.16.14.4. Additional resources

9.17. IMPORTING VIRTUAL MACHINES
9.17.1. TLS certificates for data volume imports

9.17.1.1. Adding TLS certificates for authenticating data volume imports
9.17.1.2. Example: Config map created from a TLS certificate

9.17.2. Importing virtual machine images with data volumes
9.17.2.1. Prerequisites
9.17.2.2. CDI supported operations matrix
9.17.2.3. About data volumes
9.17.2.4. Importing a virtual machine image into storage by using a data volume
9.17.2.5. Additional resources

9.17.3. Importing virtual machine images into block storage with data volumes
9.17.3.1. Prerequisites
9.17.3.2. About data volumes
9.17.3.3. About block persistent volumes
9.17.3.4. Creating a local block persistent volume
9.17.3.5. Importing a virtual machine image into block storage by using a data volume
9.17.3.6. CDI supported operations matrix
9.17.3.7. Additional resources

9.18. CLONING VIRTUAL MACHINES

140
140
140
141
141
141

142
143
144
144
145
145
146
147
147
147
148
148
148
149
149
149
150
150
151
151
151
152
153
155
155
155
157
157
157
158
158
158
158
158
159
159
159
162
162
163
163
163
163
164
166
166
166

OpenShift Container Platform 4.11 Virtualization

6



9.18.1. Enabling user permissions to clone data volumes across namespaces
9.18.1.1. Prerequisites
9.18.1.2. About data volumes
9.18.1.3. Creating RBAC resources for cloning data volumes

9.18.2. Cloning a virtual machine disk into a new data volume
9.18.2.1. Prerequisites
9.18.2.2. About data volumes
9.18.2.3. Cloning the persistent volume claim of a virtual machine disk into a new data volume
9.18.2.4. CDI supported operations matrix

9.18.3. Cloning a virtual machine by using a data volume template
9.18.3.1. Prerequisites
9.18.3.2. About data volumes
9.18.3.3. Creating a new virtual machine from a cloned persistent volume claim by using a data volume
template
9.18.3.4. CDI supported operations matrix

9.18.4. Cloning a virtual machine disk into a new block storage data volume
9.18.4.1. Prerequisites
9.18.4.2. About data volumes
9.18.4.3. About block persistent volumes
9.18.4.4. Creating a local block persistent volume
9.18.4.5. Cloning the persistent volume claim of a virtual machine disk into a new data volume
9.18.4.6. CDI supported operations matrix

9.19. VIRTUAL MACHINE NETWORKING
9.19.1. Configuring the virtual machine for the default pod network

9.19.1.1. Configuring masquerade mode from the command line
9.19.1.2. Configuring masquerade mode with dual-stack (IPv4 and IPv6)

9.19.2. Creating a service to expose a virtual machine
9.19.2.1. About services

9.19.2.1.1. Dual-stack support
9.19.2.2. Exposing a virtual machine as a service
9.19.2.3. Additional resources

9.19.3. Connecting a virtual machine to a Linux bridge network
9.19.3.1. Connecting to the network through the network attachment definition

9.19.3.1.1. Creating a Linux bridge node network configuration policy
9.19.3.2. Creating a Linux bridge network attachment definition

9.19.3.2.1. Creating a Linux bridge network attachment definition in the web console
9.19.3.2.2. Creating a Linux bridge network attachment definition in the CLI

9.19.3.3. Configuring the virtual machine for a Linux bridge network
9.19.3.3.1. Creating a NIC for a virtual machine in the web console
9.19.3.3.2. Networking fields
9.19.3.3.3. Attaching a virtual machine to an additional network in the CLI

9.19.4. Connecting a virtual machine to an SR-IOV network
9.19.4.1. Prerequisites
9.19.4.2. Configuring SR-IOV network devices
9.19.4.3. Configuring SR-IOV additional network
9.19.4.4. Connecting a virtual machine to an SR-IOV network

9.19.5. Connecting a virtual machine to a service mesh
9.19.5.1. Prerequisites
9.19.5.2. Configuring a virtual machine for the service mesh

9.19.6. Configuring IP addresses for virtual machines
9.19.6.1. Configuring an IP address for a new virtual machine using cloud-init

9.19.7. Viewing the IP address of NICs on a virtual machine
9.19.7.1. Prerequisites

166
167
167
167
168
168
168
169
170
170
171
171

171
172
173
173
173
173
174
175
176
177
177
177
178
179
179
180
180
182
182
183
183
184
184
184
186
186
186
187
188
188
188
191

193
193
194
194
195
196
197
197

Table of Contents

7



9.19.7.2. Viewing the IP address of a virtual machine interface in the CLI
9.19.7.3. Viewing the IP address of a virtual machine interface in the web console

9.19.8. Using a MAC address pool for virtual machines
9.19.8.1. About KubeMacPool
9.19.8.2. Disabling a MAC address pool for a namespace in the CLI
9.19.8.3. Re-enabling a MAC address pool for a namespace in the CLI

9.20. VIRTUAL MACHINE DISKS
9.20.1. Storage features

9.20.1.1. OpenShift Virtualization storage feature matrix
9.20.2. Configuring local storage for virtual machines

9.20.2.1. Creating a hostpath provisioner with a basic storage pool
9.20.2.1.1. About creating storage classes
9.20.2.1.2. Creating a storage class for the CSI driver with the storagePools stanza

9.20.2.2. About storage pools created with PVC templates
9.20.2.2.1. Creating a storage pool with a PVC template

9.20.3. Creating data volumes
9.20.3.1. Creating data volumes using the storage API
9.20.3.2. Creating data volumes using the PVC API
9.20.3.3. Customizing the storage profile

9.20.3.3.1. Setting a default cloning strategy using a storage profile
9.20.3.4. Additional resources

9.20.4. Reserving PVC space for file system overhead
9.20.4.1. How file system overhead affects space for virtual machine disks
9.20.4.2. Overriding the default file system overhead value

9.20.5. Configuring CDI to work with namespaces that have a compute resource quota
9.20.5.1. About CPU and memory quotas in a namespace
9.20.5.2. Overriding CPU and memory defaults
9.20.5.3. Additional resources

9.20.6. Managing data volume annotations
9.20.6.1. Example: Data volume annotations

9.20.7. Using preallocation for data volumes
9.20.7.1. About preallocation
9.20.7.2. Enabling preallocation for a data volume

9.20.8. Uploading local disk images by using the web console
9.20.8.1. Prerequisites
9.20.8.2. CDI supported operations matrix
9.20.8.3. Uploading an image file using the web console
9.20.8.4. Additional resources

9.20.9. Uploading local disk images by using the virtctl tool
9.20.9.1. Prerequisites
9.20.9.2. About data volumes
9.20.9.3. Creating an upload data volume
9.20.9.4. Uploading a local disk image to a data volume
9.20.9.5. CDI supported operations matrix
9.20.9.6. Additional resources

9.20.10. Uploading a local disk image to a block storage data volume
9.20.10.1. Prerequisites
9.20.10.2. About data volumes
9.20.10.3. About block persistent volumes
9.20.10.4. Creating a local block persistent volume
9.20.10.5. Creating an upload data volume
9.20.10.6. Uploading a local disk image to a data volume
9.20.10.7. CDI supported operations matrix

197
197
198
198
198
198
199
199
199

200
200
201
201

202
202
204
204
205
206
208
209
209
209
209
210
210
210
211
211
211
212
212
212
213
213
213
213
215
215
215
215
215
216
217
218
218
218
218
218
218
219

220
221

OpenShift Container Platform 4.11 Virtualization

8



9.20.10.8. Additional resources
9.20.11. Managing virtual machine snapshots

9.20.11.1. About virtual machine snapshots
9.20.11.1.1. Virtual machine snapshot controller and custom resource definitions (CRDs)

9.20.11.2. Installing QEMU guest agent on a Linux virtual machine
9.20.11.3. Installing QEMU guest agent on a Windows virtual machine

9.20.11.3.1. Installing VirtIO drivers on an existing Windows virtual machine
9.20.11.3.2. Installing VirtIO drivers during Windows installation

9.20.11.4. Creating a virtual machine snapshot in the web console
9.20.11.5. Creating a virtual machine snapshot in the CLI
9.20.11.6. Verifying online snapshot creation with snapshot indications
9.20.11.7. Restoring a virtual machine from a snapshot in the web console
9.20.11.8. Restoring a virtual machine from a snapshot in the CLI
9.20.11.9. Deleting a virtual machine snapshot in the web console
9.20.11.10. Deleting a virtual machine snapshot in the CLI
9.20.11.11. Additional resources

9.20.12. Moving a local virtual machine disk to a different node
9.20.12.1. Cloning a local volume to another node

9.20.13. Expanding virtual storage by adding blank disk images
9.20.13.1. About data volumes
9.20.13.2. Creating a blank disk image with data volumes
9.20.13.3. Additional resources

9.20.14. Cloning a data volume using smart-cloning
9.20.14.1. About smart-cloning
9.20.14.2. Cloning a data volume
9.20.14.3. Additional resources

9.20.15. Creating and using boot sources
9.20.15.1. About virtual machines and boot sources
9.20.15.2. Importing a RHEL image as a boot source
9.20.15.3. Adding a boot source for a virtual machine template
9.20.15.4. Creating a virtual machine from a template with an attached boot source
9.20.15.5. Additional resources

9.20.16. Hot plugging virtual disks
9.20.16.1. About hot plugging virtual disks
9.20.16.2. About virtio-scsi
9.20.16.3. Hot plugging a virtual disk using the CLI
9.20.16.4. Hot unplugging a virtual disk using the CLI
9.20.16.5. Hot plugging a virtual disk using the web console
9.20.16.6. Hot unplugging a virtual disk using the web console

9.20.17. Using container disks with virtual machines
9.20.17.1. About container disks

9.20.17.1.1. Importing a container disk into a PVC by using a data volume
9.20.17.1.2. Attaching a container disk to a virtual machine as a containerDisk volume

9.20.17.2. Preparing a container disk for virtual machines
9.20.17.3. Disabling TLS for a container registry to use as insecure registry
9.20.17.4. Next steps

9.20.18. Preparing CDI scratch space
9.20.18.1. About data volumes
9.20.18.2. About scratch space

Manual provisioning
9.20.18.3. CDI operations that require scratch space
9.20.18.4. Defining a storage class
9.20.18.5. CDI supported operations matrix

222
222
223
223
223
224
224
225
226
226
229
230
230
232
232
233
233
233
236
236
236
237
237
237
237
238
239
239
239
240
241
241
242
242
242
242
243
243
243
244
244
244
244
245
246
246
246
246
246
247
247
248
248

Table of Contents

9



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

9.20.18.6. Additional resources
9.20.19. Re-using persistent volumes

9.20.19.1. About reclaiming statically provisioned persistent volumes
9.20.19.2. Reclaiming statically provisioned persistent volumes

9.20.20. Expanding a virtual machine disk
9.20.20.1. Enlarging a virtual machine disk
9.20.20.2. Additional resources

9.20.21. Deleting data volumes
9.20.21.1. About data volumes
9.20.21.2. Listing all data volumes
9.20.21.3. Deleting a data volume

CHAPTER 10. VIRTUAL MACHINE TEMPLATES
10.1. CREATING VIRTUAL MACHINE TEMPLATES

10.1.1. About virtual machine templates
10.1.2. About virtual machines and boot sources
10.1.3. Creating a virtual machine template in the web console
10.1.4. Adding a boot source for a virtual machine template

10.1.4.1. Virtual machine template fields for adding a boot source
10.1.5. Additional resources

10.2. EDITING VIRTUAL MACHINE TEMPLATES
10.2.1. Editing a virtual machine template in the web console

10.2.1.1. Virtual machine template fields
10.2.1.2. Adding a network interface to a virtual machine template
10.2.1.3. Adding a virtual disk to a virtual machine template
10.2.1.4. Editing CD-ROMs for Templates

10.3. ENABLING DEDICATED RESOURCES FOR VIRTUAL MACHINE TEMPLATES
10.3.1. About dedicated resources
10.3.2. Prerequisites
10.3.3. Enabling dedicated resources for a virtual machine template

10.4. DEPLOYING A VIRTUAL MACHINE TEMPLATE TO A CUSTOM NAMESPACE
10.4.1. Creating a custom namespace for templates
10.4.2. Adding templates to a custom namespace

10.4.2.1. Deleting templates from a custom namespace
10.4.2.2. Additional resources

10.5. DELETING VIRTUAL MACHINE TEMPLATES
10.5.1. Deleting a virtual machine template in the web console

CHAPTER 11. LIVE MIGRATION
11.1. VIRTUAL MACHINE LIVE MIGRATION

11.1.1. About live migration
11.1.2. Additional resources

11.2. LIVE MIGRATION LIMITS AND TIMEOUTS
11.2.1. Configuring live migration limits and timeouts
11.2.2. Cluster-wide live migration limits and timeouts

11.3. MIGRATING A VIRTUAL MACHINE INSTANCE TO ANOTHER NODE
11.3.1. Initiating live migration of a virtual machine instance in the web console
11.3.2. Initiating live migration of a virtual machine instance in the CLI

11.4. MIGRATING A VIRTUAL MACHINE OVER A DEDICATED ADDITIONAL NETWORK
11.4.1. Configuring a dedicated secondary network for virtual machine live migration
11.4.2. Additional resources

11.5. MONITORING LIVE MIGRATION OF A VIRTUAL MACHINE INSTANCE
11.5.1. Monitoring live migration of a virtual machine instance in the web console

249
249
249
249
250
250
251
251
251
251

252

253
253
253
253
254
254
255
257
257
257
257
259
259
259
260
260
260
260
260
261
261
262
262
262
263

264
264
264
264
264
264
265
265
266
266
267
267
269
269
269

OpenShift Container Platform 4.11 Virtualization

10



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

11.5.2. Monitoring live migration of a virtual machine instance in the CLI
11.6. CANCELLING THE LIVE MIGRATION OF A VIRTUAL MACHINE INSTANCE

11.6.1. Cancelling live migration of a virtual machine instance in the web console
11.6.2. Cancelling live migration of a virtual machine instance in the CLI

11.7. CONFIGURING VIRTUAL MACHINE EVICTION STRATEGY
11.7.1. Configuring custom virtual machines with the LiveMigration eviction strategy

11.8. CONFIGURING LIVE MIGRATION POLICIES
11.8.1. Configuring a live migration policy

CHAPTER 12. NODE MAINTENANCE
12.1. ABOUT NODE MAINTENANCE

12.1.1. About node maintenance mode
12.1.2. Maintaining bare metal nodes
12.1.3. Additional resources

12.2. AUTOMATIC RENEWAL OF TLS CERTIFICATES
12.2.1. TLS certificates automatic renewal schedules

12.3. MANAGING NODE LABELING FOR OBSOLETE CPU MODELS
12.3.1. About node labeling for obsolete CPU models
12.3.2. About node labeling for CPU features
12.3.3. Configuring obsolete CPU models

12.4. PREVENTING NODE RECONCILIATION
12.4.1. Using skip-node annotation
12.4.2. Additional resources

CHAPTER 13. LOGGING, EVENTS, AND MONITORING
13.1. REVIEWING VIRTUALIZATION OVERVIEW

13.1.1. Prerequisites
13.1.2. Resources monitored actively in the Virtualization Overview page
13.1.3. Resources monitored for top consumption
13.1.4. Reviewing top consumers for projects, virtual machines, and nodes
13.1.5. Additional resources

13.2. VIEWING OPENSHIFT VIRTUALIZATION LOGS
13.2.1. Viewing OpenShift Virtualization logs with the CLI
13.2.2. Viewing virtual machine logs in the web console
13.2.3. Common error messages

13.3. VIEWING EVENTS
13.3.1. About virtual machine events
13.3.2. Viewing the events for a virtual machine in the web console
13.3.3. Viewing namespace events in the CLI
13.3.4. Viewing resource events in the CLI

13.4. DIAGNOSING DATA VOLUMES USING EVENTS AND CONDITIONS
13.4.1. About conditions and events
13.4.2. Analyzing data volumes using conditions and events

13.5. VIEWING INFORMATION ABOUT VIRTUAL MACHINE WORKLOADS
13.5.1. The Virtual Machines dashboard

13.6. MONITORING VIRTUAL MACHINE HEALTH
13.6.1. About readiness and liveness probes
13.6.2. Defining an HTTP readiness probe
13.6.3. Defining a TCP readiness probe
13.6.4. Defining an HTTP liveness probe
13.6.5. Template: Virtual machine configuration file for defining health checks
13.6.6. Additional resources

13.7. USING THE OPENSHIFT CONTAINER PLATFORM DASHBOARD TO GET CLUSTER INFORMATION

269
270
270
270
270
270
271
271

273
273
273
273
274
274
274
274
274
275
277
278
278
278

279
279
279
279
280
281
281
281
281
283
283
283
283
284
284
284
284
285
285
287
287
288
288
289
290
290
291
292
292

Table of Contents

11



13.7.1. About the OpenShift Container Platform dashboards page
13.8. REVIEWING RESOURCE USAGE BY VIRTUAL MACHINES

13.8.1. About reviewing top consumers
13.8.2. Reviewing top consumers
13.8.3. Additional resources

13.9. OPENSHIFT CONTAINER PLATFORM CLUSTER MONITORING, LOGGING, AND TELEMETRY
13.9.1. About OpenShift Container Platform monitoring
13.9.2. Logging architecture
13.9.3. About Telemetry

13.9.3.1. Information collected by Telemetry
13.9.3.1.1. System information
13.9.3.1.2. Sizing Information
13.9.3.1.3. Usage information

13.9.4. CLI troubleshooting and debugging commands
13.10. RUNNING CLUSTER CHECKUPS

13.10.1. About the OpenShift Container Platform cluster checkup framework
13.10.2. Checking network connectivity and latency for virtual machines on a secondary network
13.10.3. Additional resources

13.11. PROMETHEUS QUERIES FOR VIRTUAL RESOURCES
13.11.1. Prerequisites
13.11.2. About querying metrics

13.11.2.1. Querying metrics for all projects as a cluster administrator
13.11.2.2. Querying metrics for user-defined projects as a developer

13.11.3. Virtualization metrics
13.11.3.1. vCPU metrics
13.11.3.2. Network metrics
13.11.3.3. Storage metrics

13.11.3.3.1. Storage-related traffic
13.11.3.3.2. Storage snapshot data
13.11.3.3.3. I/O performance

13.11.3.4. Guest memory swapping metrics
13.11.4. Additional resources

13.12. EXPOSING CUSTOM METRICS FOR VIRTUAL MACHINES
13.12.1. Configuring the node exporter service
13.12.2. Configuring a virtual machine with the node exporter service
13.12.3. Creating a custom monitoring label for virtual machines

13.12.3.1. Querying the node-exporter service for metrics
13.12.4. Creating a ServiceMonitor resource for the node exporter service

13.12.4.1. Accessing the node exporter service outside the cluster
13.12.5. Additional resources

13.13. OPENSHIFT VIRTUALIZATION CRITICAL ALERTS
13.13.1. Network alerts

13.13.1.1. KubeMacPoolDown alert
13.13.2. SSP alerts

13.13.2.1. SSPFailingToReconcile alert
13.13.2.2. SSPOperatorDown alert
13.13.2.3. SSPTemplateValidatorDown alert

13.13.3. Virt alerts
13.13.3.1. NoLeadingVirtOperator alert
13.13.3.2. NoReadyVirtController alert
13.13.3.3. NoReadyVirtOperator alert
13.13.3.4. VirtAPIDown alert
13.13.3.5. VirtApiRESTErrorsBurst alert

293
294
294
295
295
295
295
296
297
297
297
298
298
298
298
298
299
303
303
304
304
304
305
306
306
307
307
307
307
308
308
309
309
309
310
311
312
313
314
315
315
315
315
316
316
317
317
318
318
319

320
321

322

OpenShift Container Platform 4.11 Virtualization

12



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

13.13.3.6. VirtControllerDown alert
13.13.3.7. VirtControllerRESTErrorsBurst alert
13.13.3.8. VirtHandlerRESTErrorsBurst alert
13.13.3.9. VirtOperatorDown alert
13.13.3.10. VirtOperatorRESTErrorsBurst alert

13.13.4. Additional resources
13.14. COLLECTING DATA FOR RED HAT SUPPORT

13.14.1. Collecting data about your environment
13.14.1.1. Additional resources

13.14.2. Collecting data about virtual machines
13.14.2.1. Additional resources

13.14.3. Using the must-gather tool for OpenShift Virtualization
13.14.3.1. must-gather tool options

13.14.3.1.1. Parameters
13.14.3.1.2. Usage and examples

13.14.3.2. Additional resources

CHAPTER 14. BACKUP AND RESTORE
14.1. INSTALLING AND CONFIGURING OADP

14.1.1. Installing the OADP Operator
14.1.2. About backup and snapshot locations and their secrets

Backup locations
Snapshot locations
Secrets
14.1.2.1. Creating a default Secret

14.1.3. Configuring the Data Protection Application
14.1.3.1. Setting Velero CPU and memory resource allocations
14.1.3.2. Enabling self-signed CA certificates

14.1.4. Installing the Data Protection Application
14.1.4.1. Enabling CSI in the DataProtectionApplication CR

14.1.5. Uninstalling OADP
14.2. BACKING UP AND RESTORING VIRTUAL MACHINES

14.2.1. Additional resources
14.3. BACKING UP VIRTUAL MACHINES

14.3.1. Creating a Backup CR
14.3.1.1. Backing up persistent volumes with CSI snapshots
14.3.1.2. Backing up applications with Restic
14.3.1.3. Creating backup hooks

14.3.2. Scheduling backups
14.3.3. Additional resources

14.4. RESTORING VIRTUAL MACHINES
14.4.1. Creating a Restore CR

14.4.1.1. Creating restore hooks

323
324
325
325
327
327
327
328
328
328
329
329
329
330
330
332

333
333
333
333
333
333
334
334
334
335
335
336
339
339
339
340
340
341

342
343
344
345
346
346
346
349

Table of Contents

13



OpenShift Container Platform 4.11 Virtualization

14



CHAPTER 1. ABOUT OPENSHIFT VIRTUALIZATION
Learn about OpenShift Virtualization’s capabilities and support scope.

1.1. WHAT YOU CAN DO WITH OPENSHIFT VIRTUALIZATION

OpenShift Virtualization is an add-on to OpenShift Container Platform that allows you to run and
manage virtual machine workloads alongside container workloads.

OpenShift Virtualization adds new objects into your OpenShift Container Platform cluster by using
Kubernetes custom resources to enable virtualization tasks. These tasks include:

Creating and managing Linux and Windows virtual machines

Connecting to virtual machines through a variety of consoles and CLI tools

Importing and cloning existing virtual machines

Managing network interface controllers and storage disks attached to virtual machines

Live migrating virtual machines between nodes

An enhanced web console provides a graphical portal to manage these virtualized resources alongside
the OpenShift Container Platform cluster containers and infrastructure.

OpenShift Virtualization is designed and tested to work well with Red Hat OpenShift Data Foundation
features.

IMPORTANT

When you deploy OpenShift Virtualization with OpenShift Data Foundation, you must
create a dedicated storage class for Windows virtual machine disks. See Optimizing ODF
PersistentVolumes for Windows VMs for details.

You can use OpenShift Virtualization with the OVN-Kubernetes, OpenShift SDN, or one of the other
certified default Container Network Interface (CNI) network providers listed in Certified OpenShift CNI
Plug-ins.

You can check your OpenShift Virtualization cluster for compliance issues by installing the Compliance
Operator and running a scan with the ocp4-moderate and ocp4-moderate-node profiles. The
Compliance Operator uses OpenSCAP, a NIST-certified tool, to scan and enforce security policies.

IMPORTANT

OpenShift Virtualization integration with the Compliance Operator is a Technology
Preview feature only. Technology Preview features are not supported with Red Hat
production service level agreements (SLAs) and might not be functionally complete. Red
Hat does not recommend using them in production. These features provide early access
to upcoming product features, enabling customers to test functionality and provide
feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

CHAPTER 1. ABOUT OPENSHIFT VIRTUALIZATION

15

https://access.redhat.com/articles/6978371
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/networking/#about-ovn-kubernetes
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/networking/#about-openshift-sdn
https://access.redhat.com/articles/5436171
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/security_and_compliance/#understanding-compliance
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/security_and_compliance/#compliance-operator-supported-profiles
https://www.nist.gov/
https://access.redhat.com/support/offerings/techpreview/


1.1.1. OpenShift Virtualization supported cluster version

OpenShift Virtualization 4.11 is supported for use on OpenShift Container Platform 4.11 clusters. To use
the latest z-stream release of OpenShift Virtualization, you must first upgrade to the latest version of
OpenShift Container Platform.

OpenShift Container Platform 4.11 Virtualization

16



CHAPTER 2. OPENSHIFT VIRTUALIZATION ARCHITECTURE
Learn about OpenShift Virtualization architecture.

2.1. HOW OPENSHIFT VIRTUALIZATION ARCHITECTURE WORKS

After you install OpenShift Virtualization, the Operator Lifecycle Manager (OLM) deploys operator pods
for each component of OpenShift Virtualization:

Compute: virt-operator

Storage: cdi-operator

Network: cluster-network-addons-operator

Scaling: ssp-operator

Templating: tekton-tasks-operator

OLM also deploys the hyperconverged-cluster-operator pod, which is responsible for the deployment,
configuration, and life cycle of other components, and several helper pods: hco-webhook, and 
hyperconverged-cluster-cli-download.

After all operator pods are successfully deployed, you should create the HyperConverged custom
resource (CR). The configurations set in the HyperConverged CR serve as the single source of truth
and the entrypoint for OpenShift Virtualization, and guide the behavior of the CRs.

The HyperConverged CR creates corresponding CRs for the operators of all other components within
its reconciliation loop. Each operator then creates resources such as daemon sets, config maps, and
additional components for the OpenShift Virtualization control plane. For example, when the hco-
operator creates the KubeVirt CR, the virt-operator reconciles it and create additional resources such
as virt-controller, virt-handler, and virt-api.

The OLM deploys the hostpath-provisioner-operator, but it is not functional until you create a 
hostpath provisioner (HPP) CR.

CHAPTER 2. OPENSHIFT VIRTUALIZATION ARCHITECTURE

17



Additional resources

HyperConverged CR configuration

Virtctl client commands

2.2. ABOUT THE HCO-OPERATOR

The hco-operator (HCO) provides a single entry point for deploying and managing OpenShift
Virtualization and several helper operators with opinionated defaults. It also creates custom resources
(CRs) for those operators.

OpenShift Container Platform 4.11 Virtualization

18

https://github.com/kubevirt/hyperconverged-cluster-operator/blob/main/docs/cluster-configuration.md
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/virtualization/#virt-virtctl-commands_virt-using-the-cli-tools


Table 2.1. hco-operator components

Component Description

deployment/hco-webhook Validates the HyperConverged custom resource
contents.

deployment/hyperconverged-cluster-cli-
download

Provides the virtctl tool binaries to the cluster so
that you can download them directly from the
cluster.

KubeVirt/kubevirt-kubevirt-hyperconverged Contains all operators, CRs, and objects needed by
OpenShift Virtualization.

SSP/ssp-kubevirt-hyperconverged An SSP CR. This is automatically created by the HCO.

CDI/cdi-kubevirt-hyperconverged A CDI CR. This is automatically created by the HCO.

NetworkAddonsConfig/cluster A CR that instructs and is managed by the cluster-
network-addons-operator.

2.3. ABOUT THE CDI-OPERATOR

The cdi-operator manages the Containerized Data Importer (CDI), and its related resources, which
imports a virtual machine (VM) image into a persistent volume claim (PVC) by using a data volume.

CHAPTER 2. OPENSHIFT VIRTUALIZATION ARCHITECTURE

19



Table 2.2. cdi-operator components

Component Description

deployment/cdi-apiserver Manages the authorization to upload VM disks into
PVCs by issuing secure upload tokens.

deployment/cdi-uploadproxy Directs external disk upload traffic to the
appropriate upload server pod so that it can be
written to the correct PVC. Requires a valid upload
token.

pod/cdi-importer Helper pod that imports a virtual machine image into
a PVC when creating a data volume.

2.4. ABOUT THE CLUSTER-NETWORK-ADDONS-OPERATOR

The cluster-network-addons-operator deploys networking components on a cluster and manages the
related resources for extended network functionality.

Table 2.3. cluster-network-addons-operator components

OpenShift Container Platform 4.11 Virtualization

20



Component Description

deployment/kubemacpool-cert-manager Manages TLS certificates of Kubemacpool’s
webhooks.

deployment/kubemacpool-mac-controller-
manager

Provides a MAC address pooling service for virtual
machine (VM) network interface cards (NICs).

daemonset/bridge-marker Marks network bridges available on nodes as node
resources.

daemonset/kube-cni-linux-bridge-plugin Installs CNI plugins on cluster nodes, enabling the
attachment of VMs to Linux bridges through network
attachment definitions.

2.5. ABOUT THE HOSTPATH-PROVISIONER-OPERATOR

The hostpath-provisioner-operator deploys and manages the multi-node hostpath provisioner (HPP)
and related resources.

Table 2.4. hostpath-provisioner-operator components

Component Description

deployment/hpp-pool-hpp-csi-pvc-block-
<worker_node_name>

Provides a worker for each node where the hostpath
provisioner (HPP) is designated to run. The pods
mount the specified backing storage on the node.

daemonset/hostpath-provisioner-csi Implements the Container Storage Interface (CSI)
driver interface of the HPP.

daemonset/hostpath-provisioner Implements the legacy driver interface of the HPP.

CHAPTER 2. OPENSHIFT VIRTUALIZATION ARCHITECTURE

21



2.6. ABOUT THE SSP-OPERATOR

The ssp-operator deploys the common templates, the related default boot sources, and the template
validator.

Table 2.5. ssp-operator components

Component Description

deployment/virt-template-validator Checks vm.kubevirt.io/validations annotations
on virtual machines created from templates, and
rejects them if they are invalid.

2.7. ABOUT THE TEKTON-TASKS-OPERATOR

The tekton-tasks-operator deploys example pipelines showing the usage of OpenShift Pipelines for
VMs. It also deploys additional OpenShift Pipeline tasks that allow users to create VMs from templates,
copy and modify templates, and create data volumes.

2.8. ABOUT THE VIRT-OPERATOR

The virt-operator deploys, upgrades, and manages OpenShift Virtualization without disrupting current
virtual machine (VM) workloads.

OpenShift Container Platform 4.11 Virtualization

22



Table 2.6. virt-operator components

Component Description

deployment/virt-api HTTP API server that serves as the entry point for all
virtualization-related flows.

deployment/virt-controller Observes the creation of a new VM instance object
and creates a corresponding pod. When the pod is
scheduled on a node, virt-controller updates the
VM with the node name.

daemonset/virt-handler Monitors any changes to a VM and instructs virt-
launcher to perform the required operations. This
component is node-specific.

pod/virt-launcher Contains the VM that was created by the user as
implemented by libvirt and qemu.

CHAPTER 2. OPENSHIFT VIRTUALIZATION ARCHITECTURE

23



CHAPTER 3. GETTING STARTED WITH OPENSHIFT
VIRTUALIZATION

You can install and configure a basic OpenShift Virtualization environment to explore its features and
functionality.

NOTE

Cluster configuration procedures require cluster-admin privileges.

3.1. BEFORE YOU BEGIN

Prepare your cluster for OpenShift Virtualization.

Review the storage requirements for cloning, snapshots, and live migration.

Install the OpenShift Virtualization Operator.

Install the virtctl tool.

3.1.1. Additional resources

Using a CSI-enabled storage provider .

Configuring local storage  for virtual machines.

About the Kubernetes NMState Operator .

Specifying nodes for virtual machines .

3.2. GETTING STARTED

Create a virtual machine:

Quick create a virtual machine using the web console.

Create and customize Windows boot sources.

Install VirtIO drivers and the QEMU guest agent  on the virtual machine.

Connect to a virtual machine:

Connect to a virtual machine

Connect to the serial console or VNC console of a virtual machine using the web console.

Connect to a virtual machine using SSH.

Connect to a Windows virtual machine using RDP.

Manage a virtual machine

Stop, start, pause, and restart a virtual machine from the web console .

Manage a virtual machine, expose a port, and connect to the serial console of a virtual

OpenShift Container Platform 4.11 Virtualization

24

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/virtualization/#preparing-cluster-for-virt
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/virtualization/#virt-features-for-storage
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/virtualization/#virt-installing-virt-operator_installing-virt-web
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/virtualization/#virt-enabling-virtctl
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/storage/#persistent-storage-csi
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/virtualization/#virt-configuring-local-storage-for-vms
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/networking/#k8s-nmstate-about-the-k8s-nmstate-operator
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/virtualization/#virt-specifying-nodes-for-vms
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/virtualization/#virt-quick-creating-vm_virt-create-vms
https://cloud.redhat.com/blog/virtual-machines-as-code-with-openshift-gitops-and-openshift-virtualization
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/virtualization/#virt-installing-virtio-drivers-installing-windows_virt-installing-qemu-guest-agent
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/virtualization/#virt-vm-serial-console-web_virt-accessing-vm-consoles
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/virtualization/#virt-connecting-vnc-console_virt-accessing-vm-consoles
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/virtualization/#virt-accessing-vmi-ssh_virt-accessing-vm-consoles
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/virtualization/#virt-vm-rdp-console-web_virt-accessing-vm-consoles
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/virtualization/#virt-controlling-vm-states


Manage a virtual machine, expose a port, and connect to the serial console of a virtual
machine from the command line  with virtctl.

3.3. NEXT STEPS

Connect VMs to secondary networks

Connect a virtual machine to a Linux bridge network .

Connect a virtual machine to an SR-IOV network .

Monitor your OpenShift Virtualization environment

Monitor resources, details, status, and top consumers on the Virtualization Overview page.

View high-level information about your virtual machines on the Virtual Machines dashboard.

View virtual machine logs.

Automating deployments

Automate Windows virtual machine deployments  with sysprep.

3.3.1. Additional resources

Creating virtual machine templates

Live migration

Virtual machine templates

Configuring local storage

Backup and restore

CHAPTER 3. GETTING STARTED WITH OPENSHIFT VIRTUALIZATION

25

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/virtualization/#virt-virtctl-commands_virt-using-the-cli-tools
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/virtualization/#virt-attaching-vm-multiple-networks
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/virtualization/#virt-attaching-vm-to-sriov-network
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/virtualization/#virt-reviewing-virtualization-overview
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/virtualization/#virt-viewing-information-about-vm-workloads
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/virtualization/#virt-logs
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/virtualization/#virt-automating-windows-sysprep
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/virtualization/#virt-creating-vm-template
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/virtualization/#virt-live-migration
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/virtualization/#virt-creating-vm-template
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/virtualization/#virt-configuring-local-storage-for-vms
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/virtualization/#virt-backup-restore-overview


CHAPTER 4. OPENSHIFT VIRTUALIZATION RELEASE NOTES

4.1. MAKING OPEN SOURCE MORE INCLUSIVE

Red Hat is committed to replacing problematic language in our code, documentation, and web
properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the
enormity of this endeavor, these changes will be implemented gradually over several upcoming releases.
For more details, see our CTO Chris Wright’s message .

4.2. ABOUT RED HAT OPENSHIFT VIRTUALIZATION

Red Hat OpenShift Virtualization enables you to bring traditional virtual machines (VMs) into OpenShift
Container Platform where they run alongside containers, and are managed as native Kubernetes objects.

OpenShift Virtualization is represented by the  icon.

You can use OpenShift Virtualization with either the OVN-Kubernetes or the OpenShiftSDN default
Container Network Interface (CNI) network provider.

Learn more about what you can do with OpenShift Virtualization .

Learn more about OpenShift Virtualization architecture and deployments .

Prepare your cluster for OpenShift Virtualization.

4.2.1. OpenShift Virtualization supported cluster version

OpenShift Virtualization 4.11 is supported for use on OpenShift Container Platform 4.11 clusters. To use
the latest z-stream release of OpenShift Virtualization, you must first upgrade to the latest version of
OpenShift Container Platform.

4.2.2. Supported guest operating systems

To view the supported guest operating systems for OpenShift Virtualization, refer to Certified Guest
Operating Systems in Red Hat OpenStack Platform, Red Hat Virtualization and OpenShift Virtualization.

4.3. NEW AND CHANGED FEATURES

You can now deploy OpenShift Virtualization on a three-node cluster with zero compute nodes.

Virtual machines run as unprivileged workloads in session mode by default. This feature
improves cluster security by mitigating escalation-of-privilege attacks.

Red Hat Enterprise Linux (RHEL) 9 is now supported as a guest operating system.

The link for installing the Migration Toolkit for Virtualization (MTV) Operator in the OpenShift
Container Platform web console has been moved. It is now located in the Related operators
section of the Getting started resources card on the Virtualization → Overview page.

You can configure the verbosity level of the virtLauncher, virtHandler, virtController, virtAPI,
and virtOperator pod logs to debug specific components by editing the HyperConverged
custom resource (CR).

OpenShift Container Platform 4.11 Virtualization

26

https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/networking/#about-ovn-kubernetes
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/networking/#about-openshift-sdn
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/virtualization/#about-virt
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/virtualization/#virt-how-virt-works_virt-architecture
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/virtualization/#preparing-cluster-for-virt
https://access.redhat.com/articles/973163#ocpvirt
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/installing/#installation-three-node-cluster_installing-bare-metal
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/virtualization/#virt-logs


4.3.1. Quick starts

Quick start tours are available for several OpenShift Virtualization features. To view the tours,
click the Help icon ? in the menu bar on the header of the OpenShift Virtualization console and
then select Quick Starts. You can filter the available tours by entering the virtualization
keyword in the Filter field.

4.3.2. Storage

New metrics are available that provide information about virtual machine snapshots.

You can reduce the number of logs on disconnected environments or reduce resource usage by
disabling the automatic imports and updates for a boot source .

4.3.3. Web console

You can set the boot mode of templates and virtual machines to BIOS, UEFI, or UEFI (secure)
by using the web console.

You can now enable and disable the descheduler from the web console on the Scheduling tab
of the VirtualMachine details page.

You can access virtual machines by navigating to Virtualization → VirtualMachines in the side
menu. Each virtual machine now has an updated Overview tab that provides information about
the virtual machine configuration, alerts, snapshots, network interfaces, disks, usage data, and
hardware devices.

The Create a Virtual Machine wizard in the web console is now replaced by the Catalog page,
which lists available templates that you can use to create a virtual machine. You can use a
template with an available boot source to quickly create a virtual machine or you can customize
a template to create a virtual machine.

If your Windows virtual machine has a vGPU attached, you can now switch between the default
display and the vGPU display by using the web console.

You can access virtual machine templates by navigating to Virtualization → Templates in the
side menu. The updated VirtualMachine Templates page now provides useful information
about each template, including workload profile, boot source, and CPU and memory
configuration.

The Create Template wizard has been removed from the VirtualMachine Templates page.
You create a virtual machine template  by editing a YAML file example.

4.4. DEPRECATED AND REMOVED FEATURES

4.4.1. Deprecated features

Deprecated features are included in the current release and supported. However, they will be removed
in a future release and are not recommended for new deployments.

In a future release, support for the legacy HPP custom resource, and the associated storage
class, will be deprecated. Beginning in OpenShift Virtualization 4.11, the HPP Operator uses the
Kubernetes Container Storage Interface (CSI) driver to configure local storage. The Operator

CHAPTER 4. OPENSHIFT VIRTUALIZATION RELEASE NOTES

27

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/virtualization/#virt-storage-snapshot-data_virt-prometheus-queries
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/virtualization/#virt-disable-individual-bootsource-update_virt-automatic-bootsource-updates
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/virtualization/#virt-editing-vm-web_virt-edit-vms
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/virtualization/#virt-vm-fields-web_virt-create-vms
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/virtualization/#virt-about-the-vm-dashboard_virt-viewing-information-about-vm-workloads
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/virtualization/#virt-quick-creating-vm_virt-create-vms
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/virtualization/#virt-switching-displays_virt-accessing-vm-consoles
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/virtualization/#virt-creating-template_virt-creating-vm-template


continues to support the existing (legacy) format of the HPP custom resource and the
associated storage class. If you use the HPP Operator, plan to create a storage class for the CSI
driver as part of your migration strategy.

4.4.2. Removed features

Removed features are not supported in the current release.

OpenShift Virtualization 4.11 removes support for nmstate, including the following objects:

NodeNetworkState

NodeNetworkConfigurationPolicy

NodeNetworkConfigurationEnactment

To preserve and support your existing nmstate configuration, install the Kubernetes NMState
Operator before updating to OpenShift Virtualization 4.11. You can install it from the
OperatorHub in the OpenShift Container Platform web console, or by using the OpenShift CLI
(oc).

The Node Maintenance Operator (NMO) is no longer shipped with OpenShift Virtualization. You
can install the NMO from the OperatorHub in the OpenShift Container Platform web console,
or by using the OpenShift CLI (oc).
You must perform one of the following tasks before updating to OpenShift Virtualization 4.11
from OpenShift Virtualization 4.10.2 and later releases:

Move all nodes out of maintenance mode.

Install the standalone NMO and replace the 
nodemaintenances.nodemaintenance.kubevirt.io custom resource (CR) with a 
nodemaintenances.nodemaintenance.medik8s.io CR.

You can no longer mark virtual machine templates as favorites.

4.5. TECHNOLOGY PREVIEW FEATURES

Some features in this release are currently in Technology Preview. These experimental features are not
intended for production use. Note the following scope of support on the Red Hat Customer Portal for
these features:

Technology Preview Features Support Scope

You can now use Microsoft Windows 11 as a guest operating system. However, OpenShift
Virtualization 4.11 does not support USB disks, which are required for a critical function of
BitLocker recovery. To protect recovery keys, use other methods described in the BitLocker
recovery guide.

You can now deploy OpenShift Virtualization on AWS bare metal nodes .

OpenShift Virtualization has critical alerts that inform you when a problem occurs that requires
immediate attention. Now, each alert has a corresponding description of the problem, a reason
for why the alert is occurring, a troubleshooting process to diagnose the source of the problem,
and steps for resolving the alert.

Administrators can now declaratively create and expose mediated devices  such as virtual

OpenShift Container Platform 4.11 Virtualization

28

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/virtualization/#virt-configuring-local-storage-for-vms
https://nmstate.io/
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/networking/#k8s-nmstate-about-the-k8s-nmstate-operator
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/nodes/#node-maintenance-operator
https://access.redhat.com/support/offerings/techpreview
https://learn.microsoft.com/en-us/windows/security/information-protection/bitlocker/bitlocker-recovery-guide-plan
https://access.redhat.com/articles/6409731
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/virtualization/#virt-virtualization-alerts


Administrators can now declaratively create and expose mediated devices  such as virtual
graphics processing units (vGPUs) by editing the HyperConverged CR. Virtual machine owners
can then assign these devices to VMs.

You can transfer the static IP configuration of the NIC attached to the bridge  by applying a
single NodeNetworkConfigurationPolicy manifest to the cluster.

You can now install OpenShift Virtualization on IBM Cloud bare-metal servers. Bare-metal
servers offered by other cloud providers are not supported.

You can check your OpenShift Virtualization cluster for compliance issues by installing the
Compliance Operator and running a scan with the ocp4-moderate and ocp4-moderate-node
profiles.

OpenShift Virtualization now includes a diagnostic framework to run predefined checkups that
can be used for cluster maintenance and troubleshooting. You can run a predefined checkup to
check network connectivity and latency  for virtual machines on a secondary network.

You can create live migration policies with specific parameters, such as bandwidth usage,
maximum number of parallel migrations, and timeout, and apply the policies to groups of virtual
machines by using virtual machine and namespace labels.

4.6. BUG FIXES

Previously, on a large cluster, the OpenShift Virtualization MAC pool manager would take too
much time to boot and OpenShift Virtualization might not become ready. With this update, the
pool initialization and startup latency is reduced. As a result, VMs can now be successfully
defined. (BZ#2035344)

If a Windows VM crashes or hangs during shutdown, you can now manually issue a force
shutdown request to stop the VM. (BZ#2040766)

The YAML examples in the VM wizard have now been updated to contain the latest upstream
changes. (BZ#2055492)

The Add Network Interface button on the VM Network Interfaces tab is no longer disabled
for non-privileged users. (BZ#2056420)

A non-privileged user can now successfully add disks to a VM without getting a RBAC rule error.
(BZ#2056421)

The web console now successfully displays virtual machine templates that are deployed to a
custom namespace. (BZ#2054650)

Previously, updating a Single Node OpenShift (SNO) cluster failed if the 
spec.evictionStrategy field was set to LiveMigrate for a VMI. For live migration to succeed, the
cluster must have more than one compute node. With this update, the spec.evictionStrategy
field is removed from the virtual machine template in a SNO environment. As a result, cluster
update is now successful. (BZ#2073880)

4.7. KNOWN ISSUES

You cannot run OpenShift Virtualization on a single-stack IPv6 cluster. (BZ#2193267)

In a heterogeneous cluster with different compute nodes, virtual machines that have HyperV

CHAPTER 4. OPENSHIFT VIRTUALIZATION RELEASE NOTES

29

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/virtualization/#virt-configuring-mediated-devices
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/networking/#capturing-nic-static-ip_k8s-nmstate-updating-node-network-config
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/security_and_compliance/#understanding-compliance
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/security_and_compliance/#compliance-operator-supported-profiles
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/virtualization/#virt-running-cluster-checkups
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/virtualization/#virt-measuring-latency-vm-secondary-network_virt-running-cluster-checkups
https://bugzilla.redhat.com/show_bug.cgi?id=2035344
https://bugzilla.redhat.com/show_bug.cgi?id=2040766
https://bugzilla.redhat.com/show_bug.cgi?id=2055492
https://bugzilla.redhat.com/show_bug.cgi?id=2056420
https://bugzilla.redhat.com/show_bug.cgi?id=2056421
https://bugzilla.redhat.com/show_bug.cgi?id=2054650
https://bugzilla.redhat.com/show_bug.cgi?id=2073880
https://bugzilla.redhat.com/show_bug.cgi?id=2193267


In a heterogeneous cluster with different compute nodes, virtual machines that have HyperV
Reenlightenment enabled cannot be scheduled on nodes that do not support timestamp-
counter scaling (TSC) or have the appropriate TSC frequency. (BZ#2151169)

When you use two pods with different SELinux contexts, VMs with the ocs-storagecluster-
cephfs storage class fail to migrate and the VM status changes to Paused. This is because both
pods try to access the shared ReadWriteMany CephFS volume at the same time.
(BZ#2092271)

As a workaround, use the ocs-storagecluster-ceph-rbd storage class to live migrate VMs
on a cluster that uses Red Hat Ceph Storage.

Restoring a VM snapshot fails if you update OpenShift Container Platform to version 4.11
without also updating OpenShift Virtualization. This is due to a mismatch between the API
versions used for snapshot objects. (BZ#2159442)

As a workaround, update OpenShift Virtualization to the same minor version as OpenShift
Container Platform. To ensure that the versions are kept in sync, use the recommended
Automatic approval strategy.

Uninstalling OpenShift Virtualization does not remove the node labels created by OpenShift
Virtualization. You must remove the labels manually. (CNV-22036)

The OVN-Kubernetes cluster network provider crashes from peak RAM and CPU usage if you
create a large number of NodePort services. This can happen if you use NodePort services to
expose SSH access to a large number of virtual machines (VMs). (OCPBUGS-1940)

As a workaround, use the OpenShift SDN cluster network provider if you want to expose
SSH access to a large number of VMs via NodePort services.

Updating to OpenShift Virtualization 4.11 from version 4.10 is blocked until you install the
standalone Kubernetes NMState Operator. This occurs even if your cluster configuration does
not use any nmstate resources. (BZ#2126537)

As a workaround:

1. Verify that there are no node network configuration policies defined on the cluster:

2. Choose the appropriate method to update OpenShift Virtualization:

a. If the list of node network configuration policies is not empty, exit this procedure
and install the Kubernetes NMState Operator  to preserve and support your existing
nmstate configuration.

b. If the list is empty, go to step 3.

3. Annotate the HyperConverged custom resource (CR). The following command
overwrites any existing JSON patches:

NOTE

$ oc get nncp

$ oc annotate --overwrite -n openshift-cnv hco kubevirt-hyperconverged 
'networkaddonsconfigs.kubevirt.io/jsonpatch=[{"op": "replace","path": 
"/spec/nmstate", "value": null}]'

OpenShift Container Platform 4.11 Virtualization

30

https://bugzilla.redhat.com/show_bug.cgi?id=2151169
https://bugzilla.redhat.com/show_bug.cgi?id=2092271
https://bugzilla.redhat.com/show_bug.cgi?id=2159442
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/virtualization/#upgrading-virt
https://issues.redhat.com/browse/CNV-22036
https://issues.redhat.com/browse/OCPBUGS-1940
https://nmstate.io/
https://bugzilla.redhat.com/show_bug.cgi?id=2126537
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/networking/#k8s-nmstate-about-the-k8s-nmstate-operator


NOTE

The HyperConverged object reports a TaintedConfiguration condition
while this patch is applied. This is benign.

4. Update OpenShift Virtualization.

5. After the update completes, remove the annotation by running the following command:

6. Optional: Add back any previously configured JSON patches that were overwritten.

Some persistent volume claim (PVC) annotations created by the Containerized Data Importer
(CDI) can cause the virtual machine snapshot restore operation to hang indefinitely.
(BZ#2070366)

As a workaround, you can remove the annotations manually:

1. Obtain the VirtualMachineSnapshotContent custom resource (CR) name from the 
status.virtualMachineSnapshotContentName value in the VirtualMachineSnapshot
CR.

2. Edit the VirtualMachineSnapshotContent CR and remove all lines that contain 
k8s.io/cloneRequest.

3. If you did not specify a value for spec.dataVolumeTemplates in the VirtualMachine
object, delete any DataVolume and PersistentVolumeClaim objects in this
namespace where both of the following conditions are true:

a. The object’s name begins with restore-.

b. The object is not referenced by virtual machines.
This step is optional if you specified a value for spec.dataVolumeTemplates.

4. Repeat the restore operation with the updated VirtualMachineSnapshot CR.

Windows 11 virtual machines do not boot on clusters running in FIPS mode. Windows 11 requires a
TPM (trusted platform module) device by default. However, the swtpm (software TPM
emulator) package is incompatible with FIPS. (BZ#2089301)

In a Single Node OpenShift (SNO) cluster, a VMCannotBeEvicted alert occurs on virtual
machines that are created from common templates that have the eviction strategy set to 
LiveMigrate. (BZ#2092412)

The QEMU guest agent on a Fedora 35 virtual machine is blocked by SELinux and does not
report data. Other Fedora versions might be affected. (BZ#2028762)

As a workaround, disable SELinux on the virtual machine, run the QEMU guest agent
commands, and then re-enable SELinux.

If your OpenShift Container Platform cluster uses OVN-Kubernetes as the default Container
Network Interface (CNI) provider, you cannot attach a Linux bridge or bonding device to a
host’s default interface because of a change in the host network topology of OVN-Kubernetes.
(BZ#1885605)

$ oc annotate -n openshift-cnv hco kubevirt-hyperconverged 
networkaddonsconfigs.kubevirt.io/jsonpatch-

CHAPTER 4. OPENSHIFT VIRTUALIZATION RELEASE NOTES

31

https://bugzilla.redhat.com/show_bug.cgi?id=2070366
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/virtualization/#virtual-machine-snapshot-controller-and-custom-resource-definitions-crds
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/virtualization/#virt-restoring-vm-from-snapshot-cli_virt-managing-vm-snapshots
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html-single/security_hardening/index#con_federal-information-processing-standard-fips_assembly_installing-the-system-in-fips-mode
https://bugzilla.redhat.com/show_bug.cgi?id=2089301
https://bugzilla.redhat.com/show_bug.cgi?id=2092412
https://bugzilla.redhat.com/show_bug.cgi?id=2028762
https://bugzilla.redhat.com/show_bug.cgi?id=1885605


1

As a workaround, you can use a secondary network interface connected to your host, or
switch to the OpenShift SDN default CNI provider.

If you use Red Hat Ceph Storage or Red Hat OpenShift Data Foundation Storage, cloning more
than 100 VMs at once might fail. (BZ#1989527)

As a workaround, you can perform a host-assisted copy by setting spec.cloneStrategy: 
copy in the storage profile manifest. For example:

The default cloning method set to copy.

In some instances, multiple virtual machines can mount the same PVC in read-write mode, which
might result in data corruption. (BZ#1992753)

As a workaround, avoid using a single PVC in read-write mode with multiple VMs.

The Pod Disruption Budget (PDB) prevents pod disruptions for migratable virtual machine
images. If the PDB detects pod disruption, then openshift-monitoring sends a 
PodDisruptionBudgetAtLimit alert every 60 minutes for virtual machine images that use the 
LiveMigrate eviction strategy. (BZ#2026733)

As a workaround, silence alerts.

OpenShift Virtualization links a service account token in use by a pod to that specific pod.
OpenShift Virtualization implements a service account volume by creating a disk image that
contains a token. If you migrate a VM, then the service account volume becomes invalid.
(BZ#2037611)

As a workaround, use user accounts rather than service accounts because user account
tokens are not bound to a specific pod.

If you configure the HyperConverged custom resource (CR) to enable mediated devices
before drivers are installed, the new device configuration does not take effect. This issue can be
triggered by updates. For example, if virt-handler is updated before daemonset, which installs
NVIDIA drivers, then nodes cannot provide virtual machine GPUs. (BZ#2046298)

As a workaround:

1. Remove mediatedDevicesConfiguration and permittedHostDevices from the 
HyperConverged CR.

2. Update both mediatedDevicesConfiguration and permittedHostDevices stanzas

apiVersion: cdi.kubevirt.io/v1beta1
kind: StorageProfile
metadata:
  name: <provisioner_class>
#   ...
spec:
  claimPropertySets:
  - accessModes:
    - ReadWriteOnce
    volumeMode: Filesystem
  cloneStrategy: copy 1
status:
  provisioner: <provisioner>
  storageClass: <provisioner_class>

OpenShift Container Platform 4.11 Virtualization

32

https://bugzilla.redhat.com/show_bug.cgi?id=1989527
https://bugzilla.redhat.com/show_bug.cgi?id=1992753
https://bugzilla.redhat.com/show_bug.cgi?id=2026733
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/monitoring/#silencing-alerts_managing-alerts
https://bugzilla.redhat.com/show_bug.cgi?id=2037611
https://bugzilla.redhat.com/show_bug.cgi?id=2046298


2. Update both mediatedDevicesConfiguration and permittedHostDevices stanzas
with the configuration you want to use.

If you clone more than 100 VMs using the csi-clone cloning strategy, then the Ceph CSI might
not purge the clones. Manually deleting the clones can also fail. (BZ#2055595)

As a workaround, you can restart the ceph-mgr to purge the VM clones.

CHAPTER 4. OPENSHIFT VIRTUALIZATION RELEASE NOTES

33

https://bugzilla.redhat.com/show_bug.cgi?id=2055595


CHAPTER 5. INSTALLING

5.1. PREPARING YOUR CLUSTER FOR OPENSHIFT VIRTUALIZATION

Review this section before you install OpenShift Virtualization to ensure that your cluster meets the
requirements.

IMPORTANT

You can use any installation method, including user-provisioned, installer-provisioned, or
assisted installer, to deploy OpenShift Container Platform. However, the installation
method and the cluster topology might affect OpenShift Virtualization functionality, such
as snapshots or live migration.

Single-node OpenShift differences

You can install OpenShift Virtualization on a single-node cluster. See About single-node OpenShift for
more information. Single-node OpenShift does not support high availability, which results in the
following differences:

Pod disruption budgets  are not supported.

Live migration is not supported.

Templates or virtual machines that use data volumes or storage profiles must not have the 
evictionStrategy set.

FIPS mode

If you install your cluster in FIPS mode, no additional setup is required for OpenShift Virtualization.

IPv6

You cannot run OpenShift Virtualization on a single-stack IPv6 cluster. (BZ#2193267)

5.1.1. Hardware and operating system requirements

Review the following hardware and operating system requirements for OpenShift Virtualization.

Supported platforms

On-premise bare metal servers

Amazon Web Services bare metal instances. See Deploy OpenShift Virtualization on AWS Bare
Metal Nodes for details.

IBM Cloud Bare Metal Servers. See Deploy OpenShift Virtualization on IBM Cloud Bare Metal
Nodes for details.

IMPORTANT

OpenShift Container Platform 4.11 Virtualization

34

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/installing/#install-sno-about-installing-on-a-single-node_install-sno-preparing
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/nodes/#priority-preemption-other_nodes-pods-priority
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/virtualization/#virt-live-migration
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/virtualization/#virt-configuring-vmi-eviction-strategy
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/installing/#installing-fips-mode_installing-fips
https://bugzilla.redhat.com/show_bug.cgi?id=2193267
https://access.redhat.com/articles/6409731
https://access.redhat.com/articles/6738731


IMPORTANT

Installing OpenShift Virtualization on AWS bare metal instances or on IBM Cloud Bare
Metal Servers is a Technology Preview feature only. Technology Preview features are not
supported with Red Hat production service level agreements (SLAs) and might not be
functionally complete. Red Hat does not recommend using them in production. These
features provide early access to upcoming product features, enabling customers to test
functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

Bare metal instances or servers offered by other cloud providers are not supported.

CPU requirements

Supported by Red Hat Enterprise Linux (RHEL) 8

Support for Intel 64 or AMD64 CPU extensions

Intel VT or AMD-V hardware virtualization extensions enabled

NX (no execute) flag enabled

Storage requirements

Supported by OpenShift Container Platform

WARNING

If you deploy OpenShift Virtualization with Red Hat OpenShift Data Foundation,
you must create a dedicated storage class for Windows virtual machine disks. See
Optimizing ODF PersistentVolumes for Windows VMs  for details.

Operating system requirements

Red Hat Enterprise Linux CoreOS (RHCOS) installed on worker nodes

NOTE

RHEL worker nodes are not supported.

If your cluster uses worker nodes with different CPUs, live migration failures can occur because
different CPUs have different capabilities. To avoid such failures, use CPUs with appropriate
capacity for each node and set node affinity on your virtual machines to ensure successful
migration. See Configuring a required node affinity rule  for more information.

Additional resources

About RHCOS.



CHAPTER 5. INSTALLING

35

https://access.redhat.com/support/offerings/techpreview/
https://access.redhat.com/articles/6978371
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/nodes/#nodes-scheduler-node-affinity-configuring-required_nodes-scheduler-node-affinity
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/architecture/#rhcos-about_architecture-rhcos


1

2

3

4

Red Hat Ecosystem Catalog  for supported CPUs.

Supported storage.

5.1.2. Physical resource overhead requirements

OpenShift Virtualization is an add-on to OpenShift Container Platform and imposes additional overhead
that you must account for when planning a cluster. Each cluster machine must accommodate the
following overhead requirements in addition to the OpenShift Container Platform requirements.
Oversubscribing the physical resources in a cluster can affect performance.

IMPORTANT

The numbers noted in this documentation are based on Red Hat’s test methodology and
setup. These numbers can vary based on your own individual setup and environments.

5.1.2.1. Memory overhead

Calculate the memory overhead values for OpenShift Virtualization by using the equations below.

Cluster memory overhead

Memory overhead per infrastructure node ≈ 150 MiB

Memory overhead per worker node ≈ 360 MiB

Additionally, OpenShift Virtualization environment resources require a total of 2179 MiB of RAM that is
spread across all infrastructure nodes.

Virtual machine memory overhead

Memory overhead per virtual machine ≈ (1.002 × requested memory) \
              + 216 MiB \ 1
              + 8 MiB × (number of vCPUs) \ 2
              + 16 MiB × (number of graphics devices) \ 3
              + (additional memory overhead) 4

Required for the processes that run in the virt-launcher pod.

Number of virtual CPUs requested by the virtual machine.

Number of virtual graphics cards requested by the virtual machine.

Additional memory overhead:

If your environment includes a Single Root I/O Virtualization (SR-IOV) network device or a
Graphics Processing Unit (GPU), allocate 1 GiB additional memory overhead for each
device.

5.1.2.2. CPU overhead

Calculate the cluster processor overhead requirements for OpenShift Virtualization by using the

OpenShift Container Platform 4.11 Virtualization

36

https://catalog.redhat.com
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/storage/#storage-overview


Calculate the cluster processor overhead requirements for OpenShift Virtualization by using the
equation below. The CPU overhead per virtual machine depends on your individual setup.

Cluster CPU overhead

CPU overhead for infrastructure nodes ≈ 4 cores

OpenShift Virtualization increases the overall utilization of cluster level services such as logging, routing,
and monitoring. To account for this workload, ensure that nodes that host infrastructure components
have capacity allocated for 4 additional cores (4000 millicores) distributed across those nodes.

CPU overhead for worker nodes ≈ 2 cores + CPU overhead per virtual machine

Each worker node that hosts virtual machines must have capacity for 2 additional cores (2000
millicores) for OpenShift Virtualization management workloads in addition to the CPUs required for
virtual machine workloads.

Virtual machine CPU overhead

If dedicated CPUs are requested, there is a 1:1 impact on the cluster CPU overhead requirement.
Otherwise, there are no specific rules about how many CPUs a virtual machine requires.

5.1.2.3. Storage overhead

Use the guidelines below to estimate storage overhead requirements for your OpenShift Virtualization
environment.

Cluster storage overhead

Aggregated storage overhead per node ≈ 10 GiB

10 GiB is the estimated on-disk storage impact for each node in the cluster when you install OpenShift
Virtualization.

Virtual machine storage overhead

Storage overhead per virtual machine depends on specific requests for resource allocation within the
virtual machine. The request could be for ephemeral storage on the node or storage resources hosted
elsewhere in the cluster. OpenShift Virtualization does not currently allocate any additional ephemeral
storage for the running container itself.

5.1.2.4. Example

As a cluster administrator, if you plan to host 10 virtual machines in the cluster, each with 1 GiB of RAM
and 2 vCPUs, the memory impact across the cluster is 11.68 GiB. The estimated on-disk storage impact
for each node in the cluster is 10 GiB and the CPU impact for worker nodes that host virtual machine
workloads is a minimum of 2 cores.

5.1.3. Object maximums

You must consider the following tested object maximums when planning your cluster:

OpenShift Container Platform object maximums.

OpenShift Virtualization object maximums.

CHAPTER 5. INSTALLING

37

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/scalability_and_performance/#planning-your-environment-according-to-object-maximums
https://access.redhat.com/articles/6571671


5.1.4. Restricted network environments

If you install OpenShift Virtualization in a restricted environment with no internet connectivity, you must
configure Operator Lifecycle Manager for restricted networks .

If you have limited internet connectivity, you can configure proxy support in Operator Lifecycle Manager
to access the Red Hat-provided OperatorHub.

5.1.5. Live migration

Live migration has the following requirements:

Shared storage with ReadWriteMany (RWX) access mode.

Sufficient RAM and network bandwidth.

If the virtual machine uses a host model CPU, the nodes must support the virtual machine’s host
model CPU.

NOTE

You must ensure that there is enough memory request capacity in the cluster to support
node drains that result in live migrations. You can determine the approximate required
spare memory by using the following calculation:

Product of (Maximum number of nodes that can drain in parallel) and (Highest total VM 
memory request allocations across nodes)

  The default number of migrations that can run in parallel  in the cluster is 5.

5.1.6. Snapshots and cloning

See OpenShift Virtualization storage features  for snapshot and cloning requirements.

5.1.7. Cluster high-availability options

You can configure one of the following high-availability (HA) options for your cluster:

Automatic high availability for installer-provisioned infrastructure (IPI) is available by deploying
machine health checks .

NOTE

In OpenShift Container Platform clusters installed using installer-provisioned
infrastructure and with MachineHealthCheck properly configured, if a node fails
the MachineHealthCheck and becomes unavailable to the cluster, it is recycled.
What happens next with VMs that ran on the failed node depends on a series of
conditions. See About RunStrategies for virtual machines for more detailed
information about the potential outcomes and how RunStrategies affect those
outcomes.

Automatic high availability for both IPI and non-IPI is available by using the Node Health Check
Operator on the OpenShift Container Platform cluster to deploy the NodeHealthCheck
controller. The controller identifies unhealthy nodes and uses the Self Node Remediation

OpenShift Container Platform 4.11 Virtualization

38

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/operators/#olm-restricted-networks
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/operators/#olm-configuring-proxy-support
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/virtualization/#virt-live-migration-limits
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/virtualization/#virt-features-for-storage
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/installing/#ipi-install-overview
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/machine_management/#machine-health-checks-about_deploying-machine-health-checks
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/virtualization/#virt-about-runstrategies-vms_virt-create-vms
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/nodes/#node-health-check-operator


Operator to remediate the unhealthy nodes.

IMPORTANT

Node Health Check Operator is a Technology Preview feature only. Technology
Preview features are not supported with Red Hat production service level
agreements (SLAs) and might not be functionally complete. Red Hat does not
recommend using them in production. These features provide early access to
upcoming product features, enabling customers to test functionality and provide
feedback during the development process.

For more information about the support scope of Red Hat Technology Preview
features, see Technology Preview Features Support Scope .

High availability for any platform is available by using either a monitoring system or a qualified
human to monitor node availability. When a node is lost, shut it down and run oc delete node 
<lost_node>.

NOTE

Without an external monitoring system or a qualified human monitoring node
health, virtual machines lose high availability.

5.2. SPECIFYING NODES FOR OPENSHIFT VIRTUALIZATION
COMPONENTS

Specify the nodes where you want to deploy OpenShift Virtualization Operators, workloads, and
controllers by configuring node placement rules.

NOTE

You can configure node placement for some components after installing OpenShift
Virtualization, but there must not be virtual machines present if you want to configure
node placement for workloads.

5.2.1. About node placement for virtualization components

You might want to customize where OpenShift Virtualization deploys its components to ensure that:

Virtual machines only deploy on nodes that are intended for virtualization workloads.

Operators only deploy on infrastructure nodes.

Certain nodes are unaffected by OpenShift Virtualization. For example, you have workloads
unrelated to virtualization running on your cluster, and you want those workloads to be isolated
from OpenShift Virtualization.

5.2.1.1. How to apply node placement rules to virtualization components

You can specify node placement rules for a component by editing the corresponding object directly or
by using the web console.

For the OpenShift Virtualization Operators that Operator Lifecycle Manager (OLM) deploys,

CHAPTER 5. INSTALLING

39

https://access.redhat.com/support/offerings/techpreview/


For the OpenShift Virtualization Operators that Operator Lifecycle Manager (OLM) deploys,
edit the OLM Subscription object directly. Currently, you cannot configure node placement
rules for the Subscription object by using the web console.

For components that the OpenShift Virtualization Operators deploy, edit the HyperConverged
object directly or configure it by using the web console during OpenShift Virtualization
installation.

For the hostpath provisioner, edit the HostPathProvisioner object directly or configure it by
using the web console.

WARNING

You must schedule the hostpath provisioner and the virtualization
components on the same nodes. Otherwise, virtualization pods that use the
hostpath provisioner cannot run.

Depending on the object, you can use one or more of the following rule types:

nodeSelector

Allows pods to be scheduled on nodes that are labeled with the key-value pair or pairs that you
specify in this field. The node must have labels that exactly match all listed pairs.

affinity

Enables you to use more expressive syntax to set rules that match nodes with pods. Affinity also
allows for more nuance in how the rules are applied. For example, you can specify that a rule is a
preference, rather than a hard requirement, so that pods are still scheduled if the rule is not satisfied.

tolerations

Allows pods to be scheduled on nodes that have matching taints. If a taint is applied to a node, that
node only accepts pods that tolerate the taint.

5.2.1.2. Node placement in the OLM Subscription object

To specify the nodes where OLM deploys the OpenShift Virtualization Operators, edit the 
Subscription object during OpenShift Virtualization installation. You can include node placement rules
in the spec.config field, as shown in the following example:



apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
  name: hco-operatorhub
  namespace: openshift-cnv
spec:
  source: redhat-operators
  sourceNamespace: openshift-marketplace
  name: kubevirt-hyperconverged
  startingCSV: kubevirt-hyperconverged-operator.v4.11.8
  channel: "stable"
  config: 1

OpenShift Container Platform 4.11 Virtualization

40



1

1

1

The config field supports nodeSelector and tolerations, but it does not support affinity.

5.2.1.3. Node placement in the HyperConverged object

To specify the nodes where OpenShift Virtualization deploys its components, you can include the 
nodePlacement object in the HyperConverged Cluster custom resource (CR) file that you create
during OpenShift Virtualization installation. You can include nodePlacement under the spec.infra and 
spec.workloads fields, as shown in the following example:

The nodePlacement fields support nodeSelector, affinity, and tolerations fields.

5.2.1.4. Node placement in the HostPathProvisioner object

You can configure node placement rules in the spec.workload field of the HostPathProvisioner
object that you create when you install the hostpath provisioner.

The workload field supports nodeSelector, affinity, and tolerations fields.

5.2.1.5. Additional resources

Specifying nodes for virtual machines

Placing pods on specific nodes using node selectors

Controlling pod placement on nodes using node affinity rules

Controlling pod placement using node taints

apiVersion: hco.kubevirt.io/v1beta1
kind: HyperConverged
metadata:
  name: kubevirt-hyperconverged
  namespace: openshift-cnv
spec:
  infra:
    nodePlacement: 1
    ...
  workloads:
    nodePlacement:
    ...

apiVersion: hostpathprovisioner.kubevirt.io/v1beta1
kind: HostPathProvisioner
metadata:
  name: hostpath-provisioner
spec:
  imagePullPolicy: IfNotPresent
  pathConfig:
    path: "</path/to/backing/directory>"
    useNamingPrefix: false
  workload: 1

CHAPTER 5. INSTALLING

41

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/virtualization/#virt-specifying-nodes-for-vms
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/nodes/#nodes-scheduler-node-selectors
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/nodes/#nodes-scheduler-node-affinity
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/nodes/#nodes-scheduler-taints-tolerations


Installing OpenShift Virtualization using the CLI

Installing OpenShift Virtualization using the web console

Configuring local storage for virtual machines

5.2.2. Example manifests

The following example YAML files use nodePlacement, affinity, and tolerations objects to customize
node placement for OpenShift Virtualization components.

5.2.2.1. Operator Lifecycle Manager Subscription object

5.2.2.1.1. Example: Node placement with nodeSelector in the OLM Subscription object

In this example, nodeSelector is configured so that OLM places the OpenShift Virtualization Operators
on nodes that are labeled with example.io/example-infra-key = example-infra-value.

5.2.2.1.2. Example: Node placement with tolerations in the OLM Subscription object

In this example, nodes that are reserved for OLM to deploy OpenShift Virtualization Operators are
labeled with the key=virtualization:NoSchedule taint. Only pods with the matching tolerations are
scheduled to these nodes.

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
  name: hco-operatorhub
  namespace: openshift-cnv
spec:
  source: redhat-operators
  sourceNamespace: openshift-marketplace
  name: kubevirt-hyperconverged
  startingCSV: kubevirt-hyperconverged-operator.v4.11.8
  channel: "stable"
  config:
    nodeSelector:
      example.io/example-infra-key: example-infra-value

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
  name: hco-operatorhub
  namespace: openshift-cnv
spec:
  source: redhat-operators
  sourceNamespace: openshift-marketplace
  name: kubevirt-hyperconverged
  startingCSV: kubevirt-hyperconverged-operator.v4.11.8
  channel: "stable"
  config:
    tolerations:
    - key: "key"

OpenShift Container Platform 4.11 Virtualization

42

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/virtualization/#installing-virt-cli
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/virtualization/#installing-virt-web
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/virtualization/#virt-configuring-local-storage-for-vms


5.2.2.2. HyperConverged object

5.2.2.2.1. Example: Node placement with nodeSelector in the HyperConverged Cluster CR

In this example, nodeSelector is configured so that infrastructure resources are placed on nodes that
are labeled with example.io/example-infra-key = example-infra-value and workloads are placed on
nodes labeled with example.io/example-workloads-key = example-workloads-value.

5.2.2.2.2. Example: Node placement with affinity in the HyperConverged Cluster CR

In this example, affinity is configured so that infrastructure resources are placed on nodes that are
labeled with example.io/example-infra-key = example-value and workloads are placed on nodes
labeled with example.io/example-workloads-key = example-workloads-value. Nodes that have more
than eight CPUs are preferred for workloads, but if they are not available, pods are still scheduled.

      operator: "Equal"
      value: "virtualization"
      effect: "NoSchedule"

apiVersion: hco.kubevirt.io/v1beta1
kind: HyperConverged
metadata:
  name: kubevirt-hyperconverged
  namespace: openshift-cnv
spec:
  infra:
    nodePlacement:
      nodeSelector:
        example.io/example-infra-key: example-infra-value
  workloads:
    nodePlacement:
      nodeSelector:
        example.io/example-workloads-key: example-workloads-value

apiVersion: hco.kubevirt.io/v1beta1
kind: HyperConverged
metadata:
  name: kubevirt-hyperconverged
  namespace: openshift-cnv
spec:
  infra:
    nodePlacement:
      affinity:
        nodeAffinity:
          requiredDuringSchedulingIgnoredDuringExecution:
            nodeSelectorTerms:
            - matchExpressions:
              - key: example.io/example-infra-key
                operator: In
                values:
                - example-infra-value
  workloads:
    nodePlacement:
      affinity:

CHAPTER 5. INSTALLING

43



5.2.2.2.3. Example: Node placement with tolerations in the HyperConverged Cluster CR

In this example, nodes that are reserved for OpenShift Virtualization components are labeled with the 
key=virtualization:NoSchedule taint. Only pods with the matching tolerations are scheduled to these
nodes.

5.2.2.3. HostPathProvisioner object

5.2.2.3.1. Example: Node placement with nodeSelector in the HostPathProvisioner object

In this example, nodeSelector is configured so that workloads are placed on nodes labeled with 
example.io/example-workloads-key = example-workloads-value.

        nodeAffinity:
          requiredDuringSchedulingIgnoredDuringExecution:
            nodeSelectorTerms:
            - matchExpressions:
              - key: example.io/example-workloads-key
                operator: In
                values:
                - example-workloads-value
          preferredDuringSchedulingIgnoredDuringExecution:
          - weight: 1
            preference:
              matchExpressions:
              - key: example.io/num-cpus
                operator: Gt
                values:
                - 8

apiVersion: hco.kubevirt.io/v1beta1
kind: HyperConverged
metadata:
  name: kubevirt-hyperconverged
  namespace: openshift-cnv
spec:
  workloads:
    nodePlacement:
      tolerations:
      - key: "key"
        operator: "Equal"
        value: "virtualization"
        effect: "NoSchedule"

apiVersion: hostpathprovisioner.kubevirt.io/v1beta1
kind: HostPathProvisioner
metadata:
  name: hostpath-provisioner
spec:
  imagePullPolicy: IfNotPresent
  pathConfig:
    path: "</path/to/backing/directory>"
    useNamingPrefix: false

OpenShift Container Platform 4.11 Virtualization

44



5.3. INSTALLING OPENSHIFT VIRTUALIZATION USING THE WEB
CONSOLE

Install OpenShift Virtualization to add virtualization functionality to your OpenShift Container Platform
cluster.

You can use the OpenShift Container Platform 4.11 web console to subscribe to and deploy the
OpenShift Virtualization Operators.

5.3.1. Installing the OpenShift Virtualization Operator

You can install the OpenShift Virtualization Operator from the OpenShift Container Platform web
console.

Prerequisites

Install OpenShift Container Platform 4.11 on your cluster.

Log in to the OpenShift Container Platform web console as a user with cluster-admin
permissions.

Procedure

1. From the Administrator perspective, click Operators → OperatorHub.

2. In the Filter by keyword field, type Virtualization.

3. Select the {CNVOperatorDisplayName} tile with the Red Hat source label.

4. Read the information about the Operator and click Install.

5. On the Install Operator page:

a. Select stable from the list of available Update Channel options. This ensures that you
install the version of OpenShift Virtualization that is compatible with your OpenShift
Container Platform version.

b. For Installed Namespace, ensure that the Operator recommended namespace option is
selected. This installs the Operator in the mandatory openshift-cnv namespace, which is
automatically created if it does not exist.

WARNING

Attempting to install the OpenShift Virtualization Operator in a
namespace other than openshift-cnv causes the installation to fail.

c. For Approval Strategy, it is highly recommended that you select Automatic, which is the

  workload:
    nodeSelector:
      example.io/example-workloads-key: example-workloads-value



CHAPTER 5. INSTALLING

45

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/web_console/#web-console-overview_web-console


c. For Approval Strategy, it is highly recommended that you select Automatic, which is the
default value, so that OpenShift Virtualization automatically updates when a new version is
available in the stable update channel.
While it is possible to select the Manual approval strategy, this is inadvisable because of the
high risk that it presents to the supportability and functionality of your cluster. Only select
Manual if you fully understand these risks and cannot use Automatic.

WARNING

Because OpenShift Virtualization is only supported when used with the
corresponding OpenShift Container Platform version, missing
OpenShift Virtualization updates can cause your cluster to become
unsupported.

6. Click Install to make the Operator available to the openshift-cnv namespace.

7. When the Operator installs successfully, click Create HyperConverged.

8. Optional: Configure Infra and Workloads node placement options for OpenShift Virtualization
components.

9. Click Create to launch OpenShift Virtualization.

Verification

Navigate to the Workloads → Pods page and monitor the OpenShift Virtualization pods until
they are all Running. After all the pods display the Running state, you can use OpenShift
Virtualization.

5.3.2. Next steps

You might want to additionally configure the following components:

The hostpath provisioner is a local storage provisioner designed for OpenShift Virtualization. If
you want to configure local storage for virtual machines, you must enable the hostpath
provisioner first.

5.4. INSTALLING OPENSHIFT VIRTUALIZATION USING THE CLI

Install OpenShift Virtualization to add virtualization functionality to your OpenShift Container Platform
cluster. You can subscribe to and deploy the OpenShift Virtualization Operators by using the command
line to apply manifests to your cluster.

NOTE

To specify the nodes where you want OpenShift Virtualization to install its components,
configure node placement rules.

5.4.1. Prerequisites



OpenShift Container Platform 4.11 Virtualization

46

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/virtualization/#virt-creating-hpp-basic-storage-pool_virt-configuring-local-storage-for-vms
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/virtualization/#virt-specifying-nodes-for-virtualization-components


1

Install OpenShift Container Platform 4.11 on your cluster.

Install the OpenShift CLI (oc).

Log in as a user with cluster-admin privileges.

5.4.2. Subscribing to the OpenShift Virtualization catalog by using the CLI

Before you install OpenShift Virtualization, you must subscribe to the OpenShift Virtualization catalog.
Subscribing gives the openshift-cnv namespace access to the OpenShift Virtualization Operators.

To subscribe, configure Namespace, OperatorGroup, and Subscription objects by applying a single
manifest to your cluster.

Procedure

1. Create a YAML file that contains the following manifest:

Using the stable channel ensures that you install the version of OpenShift Virtualization
that is compatible with your OpenShift Container Platform version.

2. Create the required Namespace, OperatorGroup, and Subscription objects for OpenShift
Virtualization by running the following command:

NOTE

apiVersion: v1
kind: Namespace
metadata:
  name: openshift-cnv
---
apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
  name: kubevirt-hyperconverged-group
  namespace: openshift-cnv
spec:
  targetNamespaces:
    - openshift-cnv
---
apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
  name: hco-operatorhub
  namespace: openshift-cnv
spec:
  source: redhat-operators
  sourceNamespace: openshift-marketplace
  name: kubevirt-hyperconverged
  startingCSV: kubevirt-hyperconverged-operator.v4.11.8
  channel: "stable" 1

$ oc apply -f <file name>.yaml

CHAPTER 5. INSTALLING

47



NOTE

You can configure certificate rotation parameters in the YAML file.

5.4.3. Deploying the OpenShift Virtualization Operator by using the CLI

You can deploy the OpenShift Virtualization Operator by using the oc CLI.

Prerequisites

An active subscription to the OpenShift Virtualization catalog in the openshift-cnv namespace.

Procedure

1. Create a YAML file that contains the following manifest:

2. Deploy the OpenShift Virtualization Operator by running the following command:

Verification

Ensure that OpenShift Virtualization deployed successfully by watching the PHASE of the
cluster service version (CSV) in the openshift-cnv namespace. Run the following command:

The following output displays if deployment was successful:

Example output

5.4.4. Next steps

You might want to additionally configure the following components:

The hostpath provisioner is a local storage provisioner designed for OpenShift Virtualization. If
you want to configure local storage for virtual machines, you must enable the hostpath
provisioner first.

5.5. ENABLING THE VIRTCTL CLIENT

The virtctl client is a command-line utility for managing OpenShift Virtualization resources. It is available

apiVersion: hco.kubevirt.io/v1beta1
kind: HyperConverged
metadata:
  name: kubevirt-hyperconverged
  namespace: openshift-cnv
spec:

$ oc apply -f <file_name>.yaml

$ watch oc get csv -n openshift-cnv

NAME                                      DISPLAY                    VERSION   REPLACES   PHASE
kubevirt-hyperconverged-operator.v4.11.8   OpenShift Virtualization   4.11.8                
Succeeded

OpenShift Container Platform 4.11 Virtualization

48

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/virtualization/#virt-configuring-certificate-rotation
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/virtualization/#virt-creating-hpp-basic-storage-pool_virt-configuring-local-storage-for-vms


The virtctl client is a command-line utility for managing OpenShift Virtualization resources. It is available
for Linux, macOS, and Windows distributions.

5.5.1. Downloading and installing the virtctl client

5.5.1.1. Downloading the virtctl client

Download the virtctl client by using the link provided in the ConsoleCLIDownload custom resource
(CR).

Procedure

1. View the ConsoleCLIDownload object by running the following command:

2. Download the virtctl client by using the link listed for your distribution.

5.5.1.2. Installing the virtctl client

Extract and install the virtctl client after downloading from the appropriate location for your operating
system.

Prerequisites

You must have downloaded the virtctl client.

Procedure

For Linux:

1. Extract the tarball. The following CLI command extracts it into the same directory as the
tarball:

2. Navigate the extracted folder hierachy and run the following command to make the virtctl
binary executable:

3. Move the virtctl binary to a directory in your PATH environment variable.

4. To check your path, run the following command:

For Windows users:

1. Unpack and unzip the archive.

2. Navigate the extracted folder hierarchy and double-click the virtctl executable file to install
the client.

$ oc get ConsoleCLIDownload virtctl-clidownloads-kubevirt-hyperconverged -o yaml

$ tar -xvf <virtctl-version-distribution.arch>.tar.gz

$ chmod +x <virtctl-file-name>

$ echo $PATH

CHAPTER 5. INSTALLING

49



3. Move the virtctl binary to a directory in your PATH environment variable.

4. To check your path, run the following command:

For macOS users:

1. Unpack and unzip the archive.

2. Move the virtctl binary to a directory in your PATH environment variable.

3. To check your path, run the following command:

5.5.2. Installing the virtctl RPM package

You can install the virtctl client as an RPM after enabling the OpenShift Virtualization repository.

5.5.2.1. Enabling OpenShift Virtualization repositories

Enable the OpenShift Virtualization repository for your version of Red Hat Enterprise Linux (RHEL).

Prerequisites

Your system is registered to a Red Hat account with an active subscription to the "Red Hat
Container Native Virtualization" entitlement.

Procedure

Enable the appropriate OpenShift Virtualization repository for your operating system by using
the subscription-manager CLI tool.

To enable the repository for RHEL 8, run:

To enable the repository for RHEL 7, run:

5.5.2.2. Installing the virtctl client using the yum utility

Install the virtctl client from the kubevirt-virtctl package.

Prerequisites

You enabled an OpenShift Virtualization repository on your Red Hat Enterprise Linux (RHEL)
system.

Procedure

C:\> path

echo $PATH

# subscription-manager repos --enable cnv-4.11-for-rhel-8-x86_64-rpms

# subscription-manager repos --enable rhel-7-server-cnv-4.11-rpms

OpenShift Container Platform 4.11 Virtualization

50



Install the kubevirt-virtctl package:

5.5.3. Additional resources

Using the CLI tools for OpenShift Virtualization.

5.6. UNINSTALLING OPENSHIFT VIRTUALIZATION

You uninstall OpenShift Virtualization by using the web console or the command line interface (CLI) to
delete the OpenShift Virtualization workloads, the Operator, and its resources.

5.6.1. Uninstalling OpenShift Virtualization by using the web console

You uninstall OpenShift Virtualization by using the web console to perform the following tasks:

1. Delete the HyperConverged CR.

2. Delete the OpenShift Virtualization Operator.

3. Delete the openshift-cnv namespace.

4. Delete the OpenShift Virtualization custom resource definitions (CRDs) .

IMPORTANT

You must first delete all virtual machines, virtual machine instances, and data volumes.

You cannot uninstall OpenShift Virtualization while its workloads remain on the cluster.

5.6.1.1. Deleting the HyperConverged custom resource

To uninstall OpenShift Virtualization, you first delete the HyperConverged custom resource (CR).

Prerequisites

You have access to an OpenShift Container Platform cluster using an account with cluster-
admin permissions.

Procedure

1. Navigate to the Operators → Installed Operators page.

2. Select the OpenShift Virtualization Operator.

3. Click the OpenShift Virtualization Deployment tab.

4. Click the Options menu  beside kubevirt-hyperconverged and select Delete
HyperConverged.

5. Click Delete in the confirmation window.

# yum install kubevirt-virtctl

CHAPTER 5. INSTALLING

51

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/virtualization/#virt-using-the-cli-tools
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/web_console/#web-console-overview_web-console
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/virtualization/#virt-deleting-deployment-custom-resource_uninstalling-virt
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/virtualization/#olm-deleting-operators-from-a-cluster-using-web-console_uninstalling-virt
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/virtualization/#deleting-a-namespace-using-the-web-console_uninstalling-virt
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/virtualization/#virt-deleting-virt-crds-web_uninstalling-virt
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/virtualization/#virt-delete-vm-web_virt-delete-vms
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/virtualization/#virt-deleting-vmis-cli_virt-manage-vmis
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/virtualization/#virt-deleting-dvs_virt-deleting-datavolumes


5.6.1.2. Deleting Operators from a cluster using the web console

Cluster administrators can delete installed Operators from a selected namespace by using the web
console.

Prerequisites

You have access to an OpenShift Container Platform cluster web console using an account with
cluster-admin permissions.

Procedure

1. Navigate to the Operators → Installed Operators page.

2. Scroll or enter a keyword into the Filter by name field to find the Operator that you want to
remove. Then, click on it.

3. On the right side of the Operator Details page, select Uninstall Operator from the Actions list.
An Uninstall Operator? dialog box is displayed.

4. Select Uninstall to remove the Operator, Operator deployments, and pods. Following this
action, the Operator stops running and no longer receives updates.

NOTE

This action does not remove resources managed by the Operator, including
custom resource definitions (CRDs) and custom resources (CRs). Dashboards
and navigation items enabled by the web console and off-cluster resources that
continue to run might need manual clean up. To remove these after uninstalling
the Operator, you might need to manually delete the Operator CRDs.

5.6.1.3. Deleting a namespace using the web console

You can delete a namespace by using the OpenShift Container Platform web console.

Prerequisites

You have access to an OpenShift Container Platform cluster using an account with cluster-
admin permissions.

Procedure

1. Navigate to Administration → Namespaces.

2. Locate the namespace that you want to delete in the list of namespaces.

3. On the far right side of the namespace listing, select Delete Namespace from the Options

menu  .

4. When the Delete Namespace pane opens, enter the name of the namespace that you want to
delete in the field.

5. Click Delete.

OpenShift Container Platform 4.11 Virtualization

52



5.6.1.4. Deleting OpenShift Virtualization custom resource definitions

You can delete the OpenShift Virtualization custom resource definitions (CRDs) by using the web
console.

Prerequisites

You have access to an OpenShift Container Platform cluster using an account with cluster-
admin permissions.

Procedure

1. Navigate to Administration → CustomResourceDefinitions.

2. Select the Label filter and enter operators.coreos.com/kubevirt-hyperconverged.openshift-
cnv in the Search field to display the OpenShift Virtualization CRDs.

3. Click the Options menu  beside each CRD and select Delete CustomResourceDefinition.

5.6.2. Uninstalling OpenShift Virtualization by using the CLI

You can uninstall OpenShift Virtualization by using the command line interface (CLI) .

Prerequisites

You have access to an OpenShift Container Platform cluster using an account with cluster-
admin permissions.

You have installed the OpenShift CLI (oc).

You have deleted all virtual machines, virtual machine instances, and data volumes. You cannot
uninstall OpenShift Virtualization while its workloads remain on the cluster.

Procedure

1. Delete the HyperConverged custom resource:

2. Delete the OpenShift Virtualization Operator subscription:

3. Delete the OpenShift Virtualization ClusterServiceVersion resource:

4. Delete the OpenShift Virtualization namespace:

5. List the OpenShift Virtualization custom resource definitions (CRDs) by running the oc delete 

$ oc delete HyperConverged kubevirt-hyperconverged -n openshift-cnv

$ oc delete subscription kubevirt-hyperconverged -n openshift-cnv

$ oc delete csv -n openshift-cnv -l operators.coreos.com/kubevirt-hyperconverged.openshift-
cnv

$ oc delete namespace openshift-cnv

CHAPTER 5. INSTALLING

53

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/cli_tools/#cli-getting-started
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/virtualization/#virt-delete-vm-web_virt-delete-vms
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/virtualization/#virt-deleting-vmis-cli_virt-manage-vmis
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/virtualization/#virt-deleting-dvs_virt-deleting-datavolumes


5. List the OpenShift Virtualization custom resource definitions (CRDs) by running the oc delete 
crd command with the dry-run option:

Example output

customresourcedefinition.apiextensions.k8s.io "cdis.cdi.kubevirt.io" deleted (dry run)
customresourcedefinition.apiextensions.k8s.io 
"hostpathprovisioners.hostpathprovisioner.kubevirt.io" deleted (dry run)
customresourcedefinition.apiextensions.k8s.io "hyperconvergeds.hco.kubevirt.io" deleted 
(dry run)
customresourcedefinition.apiextensions.k8s.io "kubevirts.kubevirt.io" deleted (dry run)
customresourcedefinition.apiextensions.k8s.io 
"networkaddonsconfigs.networkaddonsoperator.network.kubevirt.io" deleted (dry run)
customresourcedefinition.apiextensions.k8s.io "ssps.ssp.kubevirt.io" deleted (dry run)
customresourcedefinition.apiextensions.k8s.io "tektontasks.tektontasks.kubevirt.io" deleted 
(dry run)

6. Delete the CRDs by running the oc delete crd command without the dry-run option:

$ oc delete crd --dry-run=client -l operators.coreos.com/kubevirt-hyperconverged.openshift-
cnv

$ oc delete crd -l operators.coreos.com/kubevirt-hyperconverged.openshift-cnv

OpenShift Container Platform 4.11 Virtualization

54



CHAPTER 6. UPDATING OPENSHIFT VIRTUALIZATION
Learn how Operator Lifecycle Manager (OLM) delivers z-stream and minor version updates for
OpenShift Virtualization.

NOTE

The Node Maintenance Operator (NMO) is no longer shipped with OpenShift
Virtualization. You can install the NMO from the OperatorHub in the OpenShift
Container Platform web console, or by using the OpenShift CLI (oc).
You must perform one of the following tasks before updating to OpenShift
Virtualization 4.11 from OpenShift Virtualization 4.10.2 and later releases:

Move all nodes out of maintenance mode.

Install the standalone NMO and replace the 
nodemaintenances.nodemaintenance.kubevirt.io custom resource (CR)
with a nodemaintenances.nodemaintenance.medik8s.io CR.

6.1. ABOUT UPDATING OPENSHIFT VIRTUALIZATION

Operator Lifecycle Manager (OLM) manages the lifecycle of the OpenShift Virtualization
Operator. The Marketplace Operator, which is deployed during OpenShift Container Platform
installation, makes external Operators available to your cluster.

OLM provides z-stream and minor version updates for OpenShift Virtualization. Minor version
updates become available when you update OpenShift Container Platform to the next minor
version. You cannot update OpenShift Virtualization to the next minor version without first
updating OpenShift Container Platform.

OpenShift Virtualization subscriptions use a single update channel that is named stable. The
stable channel ensures that your OpenShift Virtualization and OpenShift Container Platform
versions are compatible.

If your subscription’s approval strategy is set to Automatic, the update process starts as soon as
a new version of the Operator is available in the stable channel. It is highly recommended to use
the Automatic approval strategy to maintain a supportable environment. Each minor version of
OpenShift Virtualization is only supported if you run the corresponding OpenShift Container
Platform version. For example, you must run OpenShift Virtualization 4.11 on OpenShift
Container Platform 4.11.

Though it is possible to select the Manual approval strategy, this is not recommended
because it risks the supportability and functionality of your cluster. With the Manual
approval strategy, you must manually approve every pending update. If OpenShift
Container Platform and OpenShift Virtualization updates are out of sync, your cluster
becomes unsupported.

The amount of time an update takes to complete depends on your network connection. Most
automatic updates complete within fifteen minutes.

Updating OpenShift Virtualization does not interrupt network connections.

Data volumes and their associated persistent volume claims are preserved during update.

IMPORTANT

CHAPTER 6. UPDATING OPENSHIFT VIRTUALIZATION

55

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/nodes/#node-maintenance-operator


IMPORTANT

If you have virtual machines running that use hostpath provisioner storage, they cannot
be live migrated and might block an OpenShift Container Platform cluster update.

As a workaround, you can reconfigure the virtual machines so that they can be powered
off automatically during a cluster update. Remove the evictionStrategy: LiveMigrate
field and set the runStrategy field to Always.

6.2. CONFIGURING AUTOMATIC WORKLOAD UPDATES

6.2.1. About workload updates

When you update OpenShift Virtualization, virtual machine workloads, including libvirt, virt-launcher,
and qemu, update automatically if they support live migration.

NOTE

Each virtual machine has a virt-launcher pod that runs the virtual machine instance
(VMI). The virt-launcher pod runs an instance of libvirt, which is used to manage the
virtual machine (VM) process.

You can configure how workloads are updated by editing the spec.workloadUpdateStrategy stanza of
the HyperConverged custom resource (CR). There are two available workload update methods: 
LiveMigrate and Evict.

Because the Evict method shuts down VMI pods, only the LiveMigrate update strategy is enabled by
default.

When LiveMigrate is the only update strategy enabled:

VMIs that support live migration are migrated during the update process. The VM guest moves
into a new pod with the updated components enabled.

VMIs that do not support live migration are not disrupted or updated.

If a VMI has the LiveMigrate eviction strategy but does not support live migration, it is not
updated.

If you enable both LiveMigrate and Evict:

VMIs that support live migration use the LiveMigrate update strategy.

VMIs that do not support live migration use the Evict update strategy. If a VMI is controlled by a 
VirtualMachine object that has a runStrategy value of always, a new VMI is created in a new
pod with updated components.

Migration attempts and timeouts
When updating workloads, live migration fails if a pod is in the Pending state for the following periods:

5 minutes

If the pod is pending because it is Unschedulable.

15 minutes

If the pod is stuck in the pending state for any reason.

OpenShift Container Platform 4.11 Virtualization

56



1

2

When a VMI fails to migrate, the virt-controller tries to migrate it again. It repeats this process until all
migratable VMIs are running on new virt-launcher pods. If a VMI is improperly configured, however,
these attempts can repeat indefinitely.

NOTE

Each attempt corresponds to a migration object. Only the five most recent attempts are
held in a buffer. This prevents migration objects from accumulating on the system while
retaining information for debugging.

6.2.2. Configuring workload update methods

You can configure workload update methods by editing the HyperConverged custom resource (CR).

Prerequisites

To use live migration as an update method, you must first enable live migration in the cluster.

NOTE

If a VirtualMachineInstance CR contains evictionStrategy: LiveMigrate and
the virtual machine instance (VMI) does not support live migration, the VMI will
not update.

Procedure

1. To open the HyperConverged CR in your default editor, run the following command:

2. Edit the workloadUpdateStrategy stanza of the HyperConverged CR. For example:

The methods that can be used to perform automated workload updates. The available
values are LiveMigrate and Evict. If you enable both options as shown in this example,
updates use LiveMigrate for VMIs that support live migration and Evict for any VMIs that
do not support live migration. To disable automatic workload updates, you can either
remove the workloadUpdateStrategy stanza or set workloadUpdateMethods: [] to leave
the array empty.

The least disruptive update method. VMIs that support live migration are updated by

$ oc edit hco -n openshift-cnv kubevirt-hyperconverged

apiVersion: hco.kubevirt.io/v1beta1
kind: HyperConverged
metadata:
  name: kubevirt-hyperconverged
spec:
  workloadUpdateStrategy:
    workloadUpdateMethods: 1
    - LiveMigrate 2
    - Evict 3
    batchEvictionSize: 10 4
    batchEvictionInterval: "1m0s" 5
...

CHAPTER 6. UPDATING OPENSHIFT VIRTUALIZATION

57



3

4

5

The least disruptive update method. VMIs that support live migration are updated by
migrating the virtual machine (VM) guest into a new pod with the updated components

A disruptive method that shuts down VMI pods during upgrade. Evict is the only update
method available if live migration is not enabled in the cluster. If a VMI is controlled by a 
VirtualMachine object that has runStrategy: always configured, a new VMI is created in a
new pod with updated components.

The number of VMIs that can be forced to be updated at a time by using the Evict method.
This does not apply to the LiveMigrate method.

The interval to wait before evicting the next batch of workloads. This does not apply to the 
LiveMigrate method.

NOTE

You can configure live migration limits and timeouts by editing the 
spec.liveMigrationConfig stanza of the HyperConverged CR.

3. To apply your changes, save and exit the editor.

6.3. APPROVING PENDING OPERATOR UPDATES

6.3.1. Manually approving a pending Operator update

If an installed Operator has the approval strategy in its subscription set to Manual, when new updates are
released in its current update channel, the update must be manually approved before installation can
begin.

Prerequisites

An Operator previously installed using Operator Lifecycle Manager (OLM).

Procedure

1. In the Administrator perspective of the OpenShift Container Platform web console, navigate
to Operators → Installed Operators.

2. Operators that have a pending update display a status with Upgrade available. Click the name
of the Operator you want to update.

3. Click the Subscription tab. Any update requiring approval are displayed next to Upgrade
Status. For example, it might display 1 requires approval.

4. Click 1 requires approval, then click Preview Install Plan.

5. Review the resources that are listed as available for update. When satisfied, click Approve.

6. Navigate back to the Operators → Installed Operators page to monitor the progress of the
update. When complete, the status changes to Succeeded and Up to date.

6.4. MONITORING UPDATE STATUS

OpenShift Container Platform 4.11 Virtualization

58



6.4.1. Monitoring OpenShift Virtualization upgrade status

To monitor the status of a OpenShift Virtualization Operator upgrade, watch the cluster service version
(CSV) PHASE. You can also monitor the CSV conditions in the web console or by running the command
provided here.

NOTE

The PHASE and conditions values are approximations that are based on available
information.

Prerequisites

Log in to the cluster as a user with the cluster-admin role.

Install the OpenShift CLI (oc).

Procedure

1. Run the following command:

2. Review the output, checking the PHASE field. For example:

Example output

3. Optional: Monitor the aggregated status of all OpenShift Virtualization component conditions
by running the following command:

A successful upgrade results in the following output:

Example output

6.4.2. Viewing outdated OpenShift Virtualization workloads

You can view a list of outdated workloads by using the CLI.

NOTE

$ oc get csv -n openshift-cnv

VERSION  REPLACES                                        PHASE
4.9.0    kubevirt-hyperconverged-operator.v4.8.2         Installing
4.9.0    kubevirt-hyperconverged-operator.v4.9.0         Replacing

$ oc get hco -n openshift-cnv kubevirt-hyperconverged \
-o=jsonpath='{range .status.conditions[*]}{.type}{"\t"}{.status}{"\t"}{.message}{"\n"}{end}'

ReconcileComplete  True  Reconcile completed successfully
Available          True  Reconcile completed successfully
Progressing        False Reconcile completed successfully
Degraded           False Reconcile completed successfully
Upgradeable        True  Reconcile completed successfully

CHAPTER 6. UPDATING OPENSHIFT VIRTUALIZATION

59



NOTE

If there are outdated virtualization pods in your cluster, the 
OutdatedVirtualMachineInstanceWorkloads alert fires.

Procedure

To view a list of outdated virtual machine instances (VMIs), run the following command:

NOTE

Configure workload updates to ensure that VMIs update automatically.

6.5. ADDITIONAL RESOURCES

What are Operators?

Operator Lifecycle Manager concepts and resources

Cluster service versions (CSVs)

Virtual machine live migration

Configuring virtual machine eviction strategy

Configuring live migration limits and timeouts

$ oc get vmi -l kubevirt.io/outdatedLauncherImage --all-namespaces

OpenShift Container Platform 4.11 Virtualization

60

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/virtualization/#configuring-workload-updates_upgrading-virt
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/operators/#olm-what-operators-are
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/operators/#olm-understanding-olm
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/operators/#olm-csv_olm-understanding-olm
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/virtualization/#virt-live-migration
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/virtualization/#virt-configuring-vmi-eviction-strategy
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/virtualization/#virt-configuring-live-migration-limits_virt-live-migration-limits


CHAPTER 7. SECURITY POLICIES
Virtual machine (VM) workloads run as unprivileged pods. So that VMs can use OpenShift Virtualization
features, some pods are granted custom security policies that are not available to other pod owners:

An extended container_t SELinux policy applies to virt-launcher pods.

Security context constraints  (SCCs) are defined for the kubevirt-controller service account.

7.1. ABOUT WORKLOAD SECURITY

By default, virtual machine (VM) workloads do not run with root privileges in OpenShift Virtualization.

For each VM, a virt-launcher pod runs an instance of libvirt in session mode to manage the VM process.
In session mode, the libvirt daemon runs as a non-root user account and only permits connections from
clients that are running under the same user identifier (UID). Therefore, VMs run as unprivileged pods,
adhering to the security principle of least privilege.

There are no supported OpenShift Virtualization features that require root privileges. If a feature
requires root, it might not be supported for use with OpenShift Virtualization.

7.2. EXTENDED SELINUX POLICIES FOR VIRT-LAUNCHER PODS

The container_t SELinux policy for virt-launcher pods is extended to enable essential functions of
OpenShift Virtualization.

The following policy is required for network multi-queue, which enables network performance to
scale as the number of available vCPUs increases:

allow process self (tun_socket (relabelfrom relabelto attach_queue))

The following policy allows virt-launcher to read files under the /proc directory, including 
/proc/cpuinfo and /proc/uptime:

allow process proc_type (file (getattr open read))

The following policy allows libvirtd to relay network-related debug messages.

allow process self (netlink_audit_socket (nlmsg_relay))

NOTE

Without this policy, any attempt to relay network debug messages is blocked.
This might fill the node’s audit logs with SELinux denials.

The following policies allow libvirtd to access hugetblfs, which is required to support huge
pages:

allow process hugetlbfs_t (dir (add_name create write remove_name rmdir setattr))

allow process hugetlbfs_t (file (create unlink))

The following policies allow virtiofs to mount filesystems and access NFS:

allow process nfs_t (dir (mounton))

CHAPTER 7. SECURITY POLICIES

61

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/authentication_and_authorization/#security-context-constraints-about_configuring-internal-oauth


allow process proc_t (dir (mounton))

allow process proc_t (filesystem (mount unmount))

7.3. ADDITIONAL OPENSHIFT CONTAINER PLATFORM SECURITY
CONTEXT CONSTRAINTS AND LINUX CAPABILITIES FOR THE
KUBEVIRT-CONTROLLER SERVICE ACCOUNT

Security context constraints (SCCs) control permissions for pods. These permissions include actions
that a pod, a collection of containers, can perform and what resources it can access. You can use SCCs
to define a set of conditions that a pod must run with to be accepted into the system.

The virt-controller is a cluster controller that creates the virt-launcher pods for virtual machines in the
cluster. These pods are granted permissions by the kubevirt-controller service account.

The kubevirt-controller service account is granted additional SCCs and Linux capabilities so that it can
create virt-launcher pods with the appropriate permissions. These extended permissions allow virtual
machines to use OpenShift Virtualization features that are beyond the scope of typical pods.

The kubevirt-controller service account is granted the following SCCs:

scc.AllowHostDirVolumePlugin = true
This allows virtual machines to use the hostpath volume plugin.

scc.AllowPrivilegedContainer = false
This ensures the virt-launcher pod is not run as a privileged container.

scc.AllowedCapabilities = []corev1.Capability{"SYS_NICE", "NET_BIND_SERVICE", 
"SYS_PTRACE"}

SYS_NICE allows setting the CPU affinity.

NET_BIND_SERVICE allows DHCP and Slirp operations.

SYS_PTRACE enables certain versions of libvirt to find the process ID (PID) of swtpm, a
software Trusted Platform Module (TPM) emulator.

7.3.1. Viewing the SCC and RBAC definitions for the kubevirt-controller

You can view the SecurityContextConstraints definition for the kubevirt-controller by using the oc
tool:

You can view the RBAC definition for the kubevirt-controller clusterrole by using the oc tool:

7.4. ADDITIONAL RESOURCES

Managing security context constraints

Using RBAC to define and apply permissions

Optimizing virtual machine network performance  in the Red Hat Enterprise Linux (RHEL)

$ oc get scc kubevirt-controller -o yaml

$ oc get clusterrole kubevirt-controller -o yaml

OpenShift Container Platform 4.11 Virtualization

62

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/authentication_and_authorization/#security-context-constraints-about_configuring-internal-oauth
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/authentication_and_authorization/#using-rbac


Optimizing virtual machine network performance  in the Red Hat Enterprise Linux (RHEL)
documentation

Using huge pages with virtual machines

Configuring huge pages  in the RHEL documentation

CHAPTER 7. SECURITY POLICIES

63

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html-single/monitoring_and_managing_system_status_and_performance/index#optimizing-virtual-machine-network-performance_optimizing-virtual-machine-performance-in-rhel
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/virtualization/#virt-using-huge-pages-with-vms
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html-single/monitoring_and_managing_system_status_and_performance/index#configuring-huge-pages_monitoring-and-managing-system-status-and-performance


CHAPTER 8. USING THE CLI TOOLS
The two primary CLI tools used for managing resources in the cluster are:

The OpenShift Virtualization virtctl client

The OpenShift Container Platform oc client

8.1. PREREQUISITES

You must enable the virtctl client.

8.2. OPENSHIFT CONTAINER PLATFORM CLIENT COMMANDS

The OpenShift Container Platform oc client is a command-line utility for managing OpenShift Container
Platform resources, including the VirtualMachine (vm) and VirtualMachineInstance (vmi) object
types.

NOTE

You can use the -n <namespace> flag to specify a different project.

Table 8.1. oc commands

Command Description

oc login -u <user_name> Log in to the OpenShift Container Platform cluster as 
<user_name>.

oc get <object_type> Display a list of objects for the specified object type in the
current project.

oc describe <object_type> 
<resource_name>

Display details of the specific resource in the current project.

oc create -f <object_config> Create a resource in the current project from a file name or
from stdin.

oc edit <object_type> 
<resource_name>

Edit a resource in the current project.

oc delete <object_type> 
<resource_name>

Delete a resource in the current project.

For more comprehensive information on oc client commands, see the OpenShift Container Platform
CLI tools documentation.

8.3. VIRTCTL CLIENT COMMANDS

The virtctl client is a command-line utility for managing OpenShift Virtualization resources.

OpenShift Container Platform 4.11 Virtualization

64

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/virtualization/#virt-enabling-virtctl
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/cli_tools/#cli-developer-commands


To view a list of virtctl commands, run the following command:

To view a list of options that you can use with a specific command, run it with the -h or --help flag. For
example:

To view a list of global command options that you can use with any virtctl command, run the following
command:

The following table contains the virtctl commands used throughout the OpenShift Virtualization
documentation.

Table 8.2. virtctl client commands

Command Description

virtctl start <vm_name> Start a virtual machine.

virtctl start --paused <vm_name> Start a virtual machine in a paused state. This option enables
you to interrupt the boot process from the VNC console.

virtctl stop <vm_name> Stop a virtual machine.

virtctl stop <vm_name> --grace-
period 0 --force

Force stop a virtual machine. This option might cause data
inconsistency or data loss.

virtctl pause vm|vmi <object_name> Pause a virtual machine or virtual machine instance. The
machine state is kept in memory.

virtctl unpause vm|vmi 
<object_name>

Unpause a virtual machine or virtual machine instance.

virtctl migrate <vm_name> Migrate a virtual machine.

virtctl restart <vm_name> Restart a virtual machine.

virtctl expose <vm_name> Create a service that forwards a designated port of a virtual
machine or virtual machine instance and expose the service
on the specified port of the node.

virtctl console <vmi_name> Connect to a serial console of a virtual machine instance.

$ virtctl help

$ virtctl image-upload -h

$ virtctl options

CHAPTER 8. USING THE CLI TOOLS

65



1

virtctl vnc --
kubeconfig=$KUBECONFIG 
<vmi_name>

Open a VNC (Virtual Network Client) connection to a virtual
machine instance. Access the graphical console of a virtual
machine instance through a VNC which requires a remote
viewer on your local machine.

virtctl vnc --
kubeconfig=$KUBECONFIG --proxy-
only=true <vmi-name>

Display the port number and connect manually to the virtual
machine instance by using any viewer through the VNC
connection.

virtctl vnc --
kubeconfig=$KUBECONFIG --port=
<port-number> <vmi-name>

Specify a port number to run the proxy on the specified port,
if that port is available. If a port number is not specified, the
proxy runs on a random port.

virtctl image-upload dv 
<datavolume_name> --image-path=
</path/to/image> --no-create

Upload a virtual machine image to a data volume that already
exists.

virtctl image-upload dv 
<datavolume_name> --size=
<datavolume_size> --image-path=
</path/to/image>

Upload a virtual machine image to a new data volume.

virtctl version Display the client and server version information.

virtctl fslist <vmi_name> Return a full list of file systems available on the guest
machine.

virtctl guestosinfo <vmi_name> Return guest agent information about the operating system.

virtctl userlist <vmi_name> Return a full list of logged-in users on the guest machine.

Command Description

8.4. CREATING A CONTAINER USING VIRTCTL GUESTFS

You can use the virtctl guestfs command to deploy an interactive container with libguestfs-tools and a
persistent volume claim (PVC) attached to it.

Procedure

To deploy a container with libguestfs-tools, mount the PVC, and attach a shell to it, run the
following command:

The PVC name is a required argument. If you do not include it, an error message appears.

8.5. LIBGUESTFS TOOLS AND VIRTCTL GUESTFS

$ virtctl guestfs -n <namespace> <pvc_name> 1

OpenShift Container Platform 4.11 Virtualization

66



Libguestfs tools help you access and modify virtual machine (VM) disk images. You can use libguestfs
tools to view and edit files in a guest, clone and build virtual machines, and format and resize disks.

You can also use the virtctl guestfs command and its sub-commands to modify, inspect, and debug VM
disks on a PVC. To see a complete list of possible sub-commands, enter virt- on the command line and
press the Tab key. For example:

Command Description

virt-edit -a /dev/vda /etc/motd Edit a file interactively in your terminal.

virt-customize -a /dev/vda --ssh-
inject root:string:<public key 
example>

Inject an ssh key into the guest and create a login.

virt-df -a /dev/vda -h See how much disk space is used by a VM.

virt-customize -a /dev/vda --run-
command 'rpm -qa > /rpm-list'

See the full list of all RPMs installed on a guest by creating an
output file containing the full list.

virt-cat -a /dev/vda /rpm-list Display the output file list of all RPMs created using the virt-
customize -a /dev/vda --run-command 'rpm -qa > 
/rpm-list' command in your terminal.

virt-sysprep -a /dev/vda Seal a virtual machine disk image to be used as a template.

By default, virtctl guestfs creates a session with everything needed to manage a VM disk. However, the
command also supports several flag options if you want to customize the behavior:

Flag Option Description

--h or --help Provides help for guestfs.

-n <namespace> option with a 
<pvc_name> argument

To use a PVC from a specific namespace.

If you do not use the -n <namespace> option, your current
project is used. To change projects, use oc project 
<namespace>.

If you do not include a <pvc_name> argument, an error
message appears.

--image string Lists the libguestfs-tools container image.

You can configure the container to use a custom image by
using the --image option.

CHAPTER 8. USING THE CLI TOOLS

67



--kvm Indicates that kvm is used by the libguestfs-tools
container.

By default, virtctl guestfs sets up kvm for the interactive
container, which greatly speeds up the libguest-tools
execution because it uses QEMU.

If a cluster does not have any kvm supporting nodes, you
must disable kvm by setting the option --kvm=false.

If not set, the libguestfs-tools pod remains pending
because it cannot be scheduled on any node.

--pull-policy string Shows the pull policy for the libguestfs image.

You can also overwrite the image’s pull policy by setting the 
pull-policy option.

Flag Option Description

The command also checks if a PVC is in use by another pod, in which case an error message appears.
However, once the libguestfs-tools process starts, the setup cannot avoid a new pod using the same
PVC. You must verify that there are no active virtctl guestfs pods before starting the VM that accesses
the same PVC.

NOTE

The virtctl guestfs command accepts only a single PVC attached to the interactive pod.

8.6. ADDITIONAL RESOURCES

Libguestfs: tools for accessing and modifying virtual machine disk images .

OpenShift Container Platform 4.11 Virtualization

68

https://libguestfs.org


CHAPTER 9. VIRTUAL MACHINES

9.1. CREATING VIRTUAL MACHINES

Use one of these procedures to create a virtual machine:

Quick Start guided tour

Quick create from the Catalog

Pasting a pre-configured YAML file with the virtual machine wizard

Using the CLI

WARNING

Do not create virtual machines in openshift-* namespaces. Instead, create a new
namespace or use an existing namespace without the openshift prefix.

When you create virtual machines from the web console, select a virtual machine template that is
configured with a boot source. Virtual machine templates with a boot source are labeled as Available
boot source or they display a customized label text. Using templates with an available boot source
expedites the process of creating virtual machines.

Templates without a boot source are labeled as Boot source required. You can use these templates if
you complete the steps for adding a boot source to the virtual machine .

IMPORTANT

Due to differences in storage behavior, some virtual machine templates are incompatible
with single-node OpenShift. To ensure compatibility, do not set the evictionStrategy
field for any templates or virtual machines that use data volumes or storage profiles.

9.1.1. Using a Quick Start to create a virtual machine

The web console provides Quick Starts with instructional guided tours for creating virtual machines. You
can access the Quick Starts catalog by selecting the Help menu in the Administrator perspective to
view the Quick Starts catalog. When you click on a Quick Start tile and begin the tour, the system guides
you through the process.

Tasks in a Quick Start begin with selecting a Red Hat template. Then, you can add a boot source and
import the operating system image. Finally, you can save the custom template and use it to create a
virtual machine.

Prerequisites

Access to the website where you can download the URL link for the operating system image.

Procedure



CHAPTER 9. VIRTUAL MACHINES

69

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/virtualization/#virt-adding-a-boot-source-web_virt-creating-vm-template


1. In the web console, select Quick Starts from the Help menu.

2. Click on a tile in the Quick Starts catalog. For example: Creating a Red Hat Linux Enterprise
Linux virtual machine.

3. Follow the instructions in the guided tour and complete the tasks for importing an operating
system image and creating a virtual machine. The Virtualization → VirtualMachines page
displays the virtual machine.

9.1.2. Quick creating a virtual machine

You can quickly create a virtual machine (VM) by using a template with an available boot source.

Procedure

1. Click Virtualization → Catalog in the side menu.

2. Click Boot source available to filter templates with boot sources.

NOTE

By default, the template list will show only Default Templates. Click All Items
when filtering to see all available templates for your chosen filters.

3. Click a template to view its details.

4. Click Quick Create VirtualMachine to create a VM from the template.
The virtual machine Details page is displayed with the provisioning status.

Verification

1. Click Events to view a stream of events as the VM is provisioned.

2. Click Console to verify that the VM booted successfully.

9.1.3. Creating a virtual machine from a customized template

Some templates require additional parameters, for example, a PVC with a boot source. You can
customize select parameters of a template to create a virtual machine (VM).

Procedure

1. In the web console, select a template:

a. Click Virtualization → Catalog in the side menu.

b. Optional: Filter the templates by project, keyword, operating system, or workload profile.

c. Click the template that you want to customize.

2. Click Customize VirtualMachine.

3. Specify parameters for your VM, including its Name and Disk source. You can optionally specify
a data source to clone.

OpenShift Container Platform 4.11 Virtualization

70



Verification

1. Click Events to view a stream of events as the VM is provisioned.

2. Click Console to verify that the VM booted successfully.

Refer to the virtual machine fields section when creating a VM from the web console.

9.1.3.1. Virtual machine fields

The following table lists the virtual machine fields that you can edit in the OpenShift Container Platform
web console:

Table 9.1. Virtual machine fields

Tab Fields or functionality

Overview
Description

CPU/Memory

Boot mode

GPU devices

Host devices

YAML
View, edit, or download the custom
resource.

Scheduling
Node selector

Tolerations

Affinity rules

Dedicated resources

Eviction strategy

Descheduler setting

Environment
Add, edit, or delete a config map, secret, or
service account.

Network Interfaces
Add, edit, or delete a network interface.

Disks
Add, edit, or delete a disk.

CHAPTER 9. VIRTUAL MACHINES

71



Scripts
cloud-init settings

Authorized SSH key

Sysprep answer files

Metadata
Labels

Annotations

Tab Fields or functionality

9.1.3.1.1. Networking fields

Name Description

Name Name for the network interface controller.

Model Indicates the model of the network interface
controller. Supported values are e1000e and virtio.

Network List of available network attachment definitions.

Type List of available binding methods. Select the binding
method suitable for the network interface:

Default pod network: masquerade

Linux bridge network: bridge

SR-IOV network: SR-IOV

MAC Address MAC address for the network interface controller. If a
MAC address is not specified, one is assigned
automatically.

9.1.3.2. Storage fields

Name Selection Description

Source Blank (creates PVC) Create an empty disk.

Import via URL
(creates PVC)

Import content via URL (HTTP or
HTTPS endpoint).

OpenShift Container Platform 4.11 Virtualization

72



Use an existing PVC Use a PVC that is already available in
the cluster.

Clone existing PVC
(creates PVC)

Select an existing PVC available in the
cluster and clone it.

Import via Registry
(creates PVC)

Import content via container registry.

Container (ephemeral) Upload content from a container
located in a registry accessible from the
cluster. The container disk should be
used only for read-only filesystems
such as CD-ROMs or temporary virtual
machines.

Name  Name of the disk. The name can
contain lowercase letters (a-z),
numbers (0-9), hyphens (-), and
periods (.), up to a maximum of 253
characters. The first and last characters
must be alphanumeric. The name must
not contain uppercase letters, spaces,
or special characters.

Size  Size of the disk in GiB.

Type  Type of disk. Example: Disk or CD-ROM

Interface  Type of disk device. Supported
interfaces are virtIO, SATA, and SCSI.

Storage Class  The storage class that is used to create
the disk.

Name Selection Description

Advanced storage settings
The following advanced storage settings are optional and available for Blank, Import via URL, and
Clone existing PVC disks. Before OpenShift Virtualization 4.11, if you do not specify these parameters,
the system uses the default values from the kubevirt-storage-class-defaults config map. In OpenShift
Virtualization 4.11 and later, the system uses the default values from the storage profile .

NOTE

Use storage profiles to ensure consistent advanced storage settings when provisioning
storage for OpenShift Virtualization.

To manually specify Volume Mode and Access Mode, you must clear the Apply
optimized StorageProfile settings checkbox, which is selected by default.

CHAPTER 9. VIRTUAL MACHINES

73

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/virtualization/#virt-customizing-storage-profile_virt-creating-data-volumes


Name Mode
description

Parameter Parameter description

Volume Mode Defines whether
the persistent
volume uses a
formatted file
system or raw
block state.
Default is
Filesystem.

Filesystem Stores the virtual disk on a file
system-based volume.

Block Stores the virtual disk directly
on the block volume. Only use 
Block if the underlying
storage supports it.

Access Mode Access mode of
the persistent
volume.

ReadWriteOnce
(RWO)

Volume can be mounted as
read-write by a single node.

ReadWriteMany
(RWX)

Volume can be mounted as
read-write by many nodes at
one time.

NOTE

This is required
for some
features, such
as live
migration of
virtual
machines
between
nodes.

ReadOnlyMany
(ROX)

Volume can be mounted as
read only by many nodes.

9.1.3.3. Cloud-init fields

Name Description

Hostname Sets a specific hostname for the virtual machine.

Authorized SSH Keys The user’s public key that is copied to
~/.ssh/authorized_keys on the virtual machine.

Custom script Replaces other options with a field in which you paste
a custom cloud-init script.

To configure storage class defaults, use storage profiles. For more information, see Customizing the
storage profile.

OpenShift Container Platform 4.11 Virtualization

74

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/virtualization/#virt-customizing-storage-profile_virt-creating-data-volumes


9.1.3.4. Pasting in a pre-configured YAML file to create a virtual machine

Create a virtual machine by writing or pasting a YAML configuration file. A valid example virtual machine
configuration is provided by default whenever you open the YAML edit screen.

If your YAML configuration is invalid when you click Create, an error message indicates the parameter in
which the error occurs. Only one error is shown at a time.

NOTE

Navigating away from the YAML screen while editing cancels any changes to the
configuration you have made.

Procedure

1. Click Virtualization → VirtualMachines from the side menu.

2. Click Create and select With YAML.

3. Write or paste your virtual machine configuration in the editable window.

a. Alternatively, use the example virtual machine provided by default in the YAML screen.

4. Optional: Click Download to download the YAML configuration file in its present state.

5. Click Create to create the virtual machine.

The virtual machine is listed on the VirtualMachines page.

9.1.4. Using the CLI to create a virtual machine

You can create a virtual machine from a virtualMachine manifest.

Procedure

1. Edit the VirtualMachine manifest for your VM. For example, the following manifest configures a
Red Hat Enterprise Linux (RHEL) VM:

Example 9.1. Example manifest for a RHEL VM

apiVersion: kubevirt.io/v1
kind: VirtualMachine
metadata:
  labels:
    app: <vm_name> 1
  name: <vm_name>
spec:
  dataVolumeTemplates:
  - apiVersion: cdi.kubevirt.io/v1beta1
    kind: DataVolume
    metadata:
      name: <vm_name>
    spec:
      sourceRef:
        kind: DataSource
        name: rhel9

CHAPTER 9. VIRTUAL MACHINES

75



1

2

        namespace: openshift-virtualization-os-images
      storage:
        resources:
          requests:
            storage: 30Gi
  running: false
  template:
    metadata:
      labels:
        kubevirt.io/domain: <vm_name>
    spec:
      domain:
        cpu:
          cores: 1
          sockets: 2
          threads: 1
        devices:
          disks:
          - disk:
              bus: virtio
            name: rootdisk
          - disk:
              bus: virtio
            name: cloudinitdisk
          interfaces:
          - masquerade: {}
            name: default
          rng: {}
        features:
          smm:
            enabled: true
        firmware:
          bootloader:
            efi: {}
        resources:
          requests:
            memory: 8Gi
      evictionStrategy: LiveMigrate
      networks:
      - name: default
        pod: {}
      volumes:
      - dataVolume:
          name: <vm_name>
        name: rootdisk
      - cloudInitNoCloud:
          userData: |-
            #cloud-config
            user: cloud-user
            password: '<password>' 2
            chpasswd: { expire: False }
        name: cloudinitdisk

Specify the name of the virtual machine.

Specify the password for cloud-user.

OpenShift Container Platform 4.11 Virtualization

76



2. Create a virtual machine by using the manifest file:

3. Optional: Start the virtual machine:

9.1.5. Virtual machine storage volume types

Storage volume type Description

ephemeral A local copy-on-write (COW) image that uses a
network volume as a read-only backing store. The
backing volume must be a PersistentVolumeClaim.
The ephemeral image is created when the virtual
machine starts and stores all writes locally. The
ephemeral image is discarded when the virtual
machine is stopped, restarted, or deleted. The
backing volume (PVC) is not mutated in any way.

persistentVolumeClaim Attaches an available PV to a virtual machine.
Attaching a PV allows for the virtual machine data to
persist between sessions.

Importing an existing virtual machine disk into a PVC
by using CDI and attaching the PVC to a virtual
machine instance is the recommended method for
importing existing virtual machines into OpenShift
Container Platform. There are some requirements
for the disk to be used within a PVC.

dataVolume Data volumes build on the 
persistentVolumeClaim disk type by managing
the process of preparing the virtual machine disk via
an import, clone, or upload operation. VMs that use
this volume type are guaranteed not to start until the
volume is ready.

Specify type: dataVolume or type: "". If you
specify any other value for type, such as 
persistentVolumeClaim, a warning is displayed,
and the virtual machine does not start.

cloudInitNoCloud Attaches a disk that contains the referenced cloud-
init NoCloud data source, providing user data and
metadata to the virtual machine. A cloud-init
installation is required inside the virtual machine disk.

$ oc create -f <vm_manifest_file>.yaml

$ virtctl start <vm_name>

CHAPTER 9. VIRTUAL MACHINES

77



containerDisk References an image, such as a virtual machine disk,
that is stored in the container image registry. The
image is pulled from the registry and attached to the
virtual machine as a disk when the virtual machine is
launched.

A containerDisk volume is not limited to a single
virtual machine and is useful for creating large
numbers of virtual machine clones that do not
require persistent storage.

Only RAW and QCOW2 formats are supported disk
types for the container image registry. QCOW2 is
recommended for reduced image size.

NOTE

A containerDisk volume is
ephemeral. It is discarded when the
virtual machine is stopped, restarted,
or deleted. A containerDisk
volume is useful for read-only file
systems such as CD-ROMs or for
disposable virtual machines.

emptyDisk Creates an additional sparse QCOW2 disk that is tied
to the life-cycle of the virtual machine interface. The
data survives guest-initiated reboots in the virtual
machine but is discarded when the virtual machine
stops or is restarted from the web console. The
empty disk is used to store application dependencies
and data that otherwise exceeds the limited
temporary file system of an ephemeral disk.

The disk capacity size must also be provided.

Storage volume type Description

9.1.6. About RunStrategies for virtual machines

A RunStrategy for virtual machines determines a virtual machine instance’s (VMI) behavior, depending
on a series of conditions. The spec.runStrategy setting exists in the virtual machine configuration
process as an alternative to the spec.running setting. The spec.runStrategy setting allows greater
flexibility for how VMIs are created and managed, in contrast to the spec.running setting with only true
or false responses. However, the two settings are mutually exclusive. Only either spec.running or 
spec.runStrategy can be used. An error occurs if both are used.

There are four defined RunStrategies.

Always

A VMI is always present when a virtual machine is created. A new VMI is created if the original stops

OpenShift Container Platform 4.11 Virtualization

78



1

A VMI is always present when a virtual machine is created. A new VMI is created if the original stops
for any reason, which is the same behavior as spec.running: true.

RerunOnFailure

A VMI is re-created if the previous instance fails due to an error. The instance is not re-created if the
virtual machine stops successfully, such as when it shuts down.

Manual

The start, stop, and restart virtctl client commands can be used to control the VMI’s state and
existence.

Halted

No VMI is present when a virtual machine is created, which is the same behavior as spec.running: 
false.

Different combinations of the start, stop and restart virtctl commands affect which RunStrategy is
used.

The following table follows a VM’s transition from different states. The first column shows the VM’s
initial RunStrategy. Each additional column shows a virtctl command and the new RunStrategy after
that command is run.

Initial RunStrategy start stop restart

Always - Halted Always

RerunOnFailure - Halted RerunOnFailure

Manual Manual Manual Manual

Halted Always - -

NOTE

In OpenShift Virtualization clusters installed using installer-provisioned infrastructure,
when a node fails the MachineHealthCheck and becomes unavailable to the cluster, VMs
with a RunStrategy of Always or RerunOnFailure are rescheduled on a new node.

The VMI’s current RunStrategy setting.

9.1.7. Additional resources

The VirtualMachineSpec definition in the KubeVirt v0.53.2 API Reference provides broader
context for the parameters and hierarchy of the virtual machine specification.

NOTE

apiVersion: kubevirt.io/v1
kind: VirtualMachine
spec:
  RunStrategy: Always 1
  template:
...

CHAPTER 9. VIRTUAL MACHINES

79

https://kubevirt.io/api-reference/v0.53.2/definitions.html#_v1_virtualmachinespec


NOTE

The KubeVirt API Reference is the upstream project reference and might contain
parameters that are not supported in OpenShift Virtualization.

Enable the CPU Manager to use the high-performance workload profile.

See Prepare a container disk before adding it to a virtual machine as a containerDisk volume.

See Deploying machine health checks  for further details on deploying and enabling machine
health checks.

See Installer-provisioned infrastructure overview  for further details on installer-provisioned
infrastructure.

Customizing the storage profile

9.2. EDITING VIRTUAL MACHINES

You can update a virtual machine configuration using either the YAML editor in the web console or the
OpenShift CLI on the command line. You can also update a subset of the parameters in the Virtual
Machine Details screen.

9.2.1. Editing a virtual machine in the web console

Edit select values of a virtual machine in the web console by clicking the pencil icon next to the relevant
field. Other values can be edited using the CLI.

You can edit labels and annotations for any templates, including those provided by Red Hat. Other fields
are editable for user-customized templates only.

Procedure

1. Click Virtualization → VirtualMachines from the side menu.

2. Optional: Use the Filter drop-down menu to sort the list of virtual machines by attributes such
as status, template, node, or operating system (OS).

3. Select a virtual machine to open the VirtualMachine details page.

4. Click any field that has the pencil icon, which indicates that the field is editable. For example,
click the current Boot mode setting, such as BIOS or UEFI, to open the Boot mode window and
select an option from the list.

5. Make the relevant changes and click Save.

NOTE

If the virtual machine is running, changes to Boot Order or Flavor will not take effect
until you restart the virtual machine.

You can view pending changes by clicking View Pending Changes on the right side of the
relevant field. The Pending Changes banner at the top of the page displays a list of all
changes that will be applied when the virtual machine restarts.

OpenShift Container Platform 4.11 Virtualization

80

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/scalability_and_performance/#using-cpu-manager
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/virtualization/#virt-using-container-disks-with-vms
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/machine_management/#machine-health-checks-about_deploying-machine-health-checks
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/installing/#ipi-install-overview
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/virtualization/#virt-customizing-storage-profile_virt-creating-data-volumes


9.2.1.1. Virtual machine fields

The following table lists the virtual machine fields that you can edit in the OpenShift Container Platform
web console:

Table 9.2. Virtual machine fields

Tab Fields or functionality

Details
Labels

Annotations

Description

CPU/Memory

Boot mode

Boot order

GPU devices

Host devices

SSH access

YAML
View, edit, or download the custom
resource.

Scheduling
Node selector

Tolerations

Affinity rules

Dedicated resources

Eviction strategy

Descheduler setting

Network Interfaces
Add, edit, or delete a network interface.

Disks
Add, edit, or delete a disk.

Scripts
cloud-init settings

CHAPTER 9. VIRTUAL MACHINES

81



Snapshots
Add, restore, or delete a virtual machine
snapshot.

Tab Fields or functionality

9.2.2. Editing a virtual machine YAML configuration using the web console

You can edit the YAML configuration of a virtual machine in the web console. Some parameters cannot
be modified. If you click Save with an invalid configuration, an error message indicates the parameter
that cannot be changed.

NOTE

Navigating away from the YAML screen while editing cancels any changes to the
configuration you have made.

Procedure

1. Click Virtualization → VirtualMachines from the side menu.

2. Select a virtual machine.

3. Click the YAML tab to display the editable configuration.

4. Optional: You can click Download to download the YAML file locally in its current state.

5. Edit the file and click Save.

A confirmation message shows that the modification has been successful and includes the updated
version number for the object.

9.2.3. Editing a virtual machine YAML configuration using the CLI

Use this procedure to edit a virtual machine YAML configuration using the CLI.

Prerequisites

You configured a virtual machine with a YAML object configuration file.

You installed the oc CLI.

Procedure

1. Run the following command to update the virtual machine configuration:

2. Open the object configuration.

3. Edit the YAML.

4. If you edit a running virtual machine, you need to do one of the following:
Restart the virtual machine.

$ oc edit <object_type> <object_ID>

OpenShift Container Platform 4.11 Virtualization

82



Restart the virtual machine.

Run the following command for the new configuration to take effect:

9.2.4. Adding a virtual disk to a virtual machine

Use this procedure to add a virtual disk to a virtual machine.

Procedure

1. Click Virtualization → VirtualMachines from the side menu.

2. Select a virtual machine to open the VirtualMachine details screen.

3. Click the Disks tab and then click Add disk.

4. In the Add disk window, specify the Source, Name, Size, Type, Interface, and Storage Class.

a. Optional: You can enable preallocation if you use a blank disk source and require maximum
write performance when creating data volumes. To do so, select the Enable preallocation
checkbox.

b. Optional: You can clear Apply optimized StorageProfile settings to change the Volume
Mode and Access Mode for the virtual disk. If you do not specify these parameters, the
system uses the default values from the kubevirt-storage-class-defaults config map.

5. Click Add.

NOTE

If the virtual machine is running, the new disk is in the pending restart state and will not
be attached until you restart the virtual machine.

The Pending Changes banner at the top of the page displays a list of all changes that will
be applied when the virtual machine restarts.

To configure storage class defaults, use storage profiles. For more information, see Customizing the
storage profile.

9.2.4.1. Editing CD-ROMs for VirtualMachines

Use the following procedure to edit CD-ROMs for virtual machines.

Procedure

1. Click Virtualization → VirtualMachines from the side menu.

2. Select a virtual machine to open the VirtualMachine details screen.

3. Click the Disks tab.

$ oc apply <object_type> <object_ID>

CHAPTER 9. VIRTUAL MACHINES

83

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/virtualization/#virt-customizing-storage-profile_virt-creating-data-volumes


4. Click the Options menu  for the CD-ROM that you want to edit and select Edit.

5. In the Edit CD-ROM window, edit the fields: Source, Persistent Volume Claim, Name, Type,
and Interface.

6. Click Save.

9.2.4.2. Storage fields

Name Selection Description

Source Blank (creates PVC) Create an empty disk.

Import via URL
(creates PVC)

Import content via URL (HTTP or
HTTPS endpoint).

Use an existing PVC Use a PVC that is already available in
the cluster.

Clone existing PVC
(creates PVC)

Select an existing PVC available in the
cluster and clone it.

Import via Registry
(creates PVC)

Import content via container registry.

Container (ephemeral) Upload content from a container
located in a registry accessible from the
cluster. The container disk should be
used only for read-only filesystems
such as CD-ROMs or temporary virtual
machines.

Name  Name of the disk. The name can
contain lowercase letters (a-z),
numbers (0-9), hyphens (-), and
periods (.), up to a maximum of 253
characters. The first and last characters
must be alphanumeric. The name must
not contain uppercase letters, spaces,
or special characters.

Size  Size of the disk in GiB.

Type  Type of disk. Example: Disk or CD-ROM

Interface  Type of disk device. Supported
interfaces are virtIO, SATA, and SCSI.

OpenShift Container Platform 4.11 Virtualization

84



Storage Class  The storage class that is used to create
the disk.

Name Selection Description

Advanced storage settings
The following advanced storage settings are optional and available for Blank, Import via URL, and
Clone existing PVC disks. Before OpenShift Virtualization 4.11, if you do not specify these parameters,
the system uses the default values from the kubevirt-storage-class-defaults config map. In OpenShift
Virtualization 4.11 and later, the system uses the default values from the storage profile .

NOTE

Use storage profiles to ensure consistent advanced storage settings when provisioning
storage for OpenShift Virtualization.

To manually specify Volume Mode and Access Mode, you must clear the Apply
optimized StorageProfile settings checkbox, which is selected by default.

Name Mode
description

Parameter Parameter description

Volume Mode Defines whether
the persistent
volume uses a
formatted file
system or raw
block state.
Default is
Filesystem.

Filesystem Stores the virtual disk on a file
system-based volume.

Block Stores the virtual disk directly
on the block volume. Only use 
Block if the underlying
storage supports it.

Access Mode Access mode of
the persistent
volume.

ReadWriteOnce
(RWO)

Volume can be mounted as
read-write by a single node.

ReadWriteMany
(RWX)

Volume can be mounted as
read-write by many nodes at
one time.

NOTE

This is required
for some
features, such
as live
migration of
virtual
machines
between
nodes.

CHAPTER 9. VIRTUAL MACHINES

85

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/virtualization/#virt-customizing-storage-profile_virt-creating-data-volumes


ReadOnlyMany
(ROX)

Volume can be mounted as
read only by many nodes.

Name Mode
description

Parameter Parameter description

9.2.5. Adding a network interface to a virtual machine

Use this procedure to add a network interface to a virtual machine.

Procedure

1. Click Virtualization → VirtualMachines from the side menu.

2. Select a virtual machine to open the VirtualMachine details screen.

3. Click the Network Interfaces tab.

4. Click Add Network Interface.

5. In the Add Network Interface window, specify the Name, Model, Network, Type, and MAC
Address of the network interface.

6. Click Add.

NOTE

If the virtual machine is running, the new network interface is in the pending restart state
and changes will not take effect until you restart the virtual machine.

The Pending Changes banner at the top of the page displays a list of all changes that will
be applied when the virtual machine restarts.

9.2.5.1. Networking fields

Name Description

Name Name for the network interface controller.

Model Indicates the model of the network interface
controller. Supported values are e1000e and virtio.

Network List of available network attachment definitions.

OpenShift Container Platform 4.11 Virtualization

86



Type List of available binding methods. Select the binding
method suitable for the network interface:

Default pod network: masquerade

Linux bridge network: bridge

SR-IOV network: SR-IOV

MAC Address MAC address for the network interface controller. If a
MAC address is not specified, one is assigned
automatically.

Name Description

9.2.6. Additional resources

Customizing the storage profile

9.3. EDITING BOOT ORDER

You can update the values for a boot order list by using the web console or the CLI.

With Boot Order in the Virtual Machine Overview page, you can:

Select a disk or network interface controller (NIC) and add it to the boot order list.

Edit the order of the disks or NICs in the boot order list.

Remove a disk or NIC from the boot order list, and return it back to the inventory of bootable
sources.

9.3.1. Adding items to a boot order list in the web console

Add items to a boot order list by using the web console.

Procedure

1. Click Virtualization → VirtualMachines from the side menu.

2. Select a virtual machine to open the VirtualMachine details page.

3. Click the Details tab.

4. Click the pencil icon that is located on the right side of Boot Order. If a YAML configuration
does not exist, or if this is the first time that you are creating a boot order list, the following
message displays: No resource selected. VM will attempt to boot from disks by order of
appearance in YAML file.

5. Click Add Source and select a bootable disk or network interface controller (NIC) for the virtual
machine.

6. Add any additional disks or NICs to the boot order list.

CHAPTER 9. VIRTUAL MACHINES

87

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/virtualization/#virt-customizing-storage-profile_virt-creating-data-volumes


7. Click Save.

NOTE

If the virtual machine is running, changes to Boot Order will not take effect until you
restart the virtual machine.

You can view pending changes by clicking View Pending Changes on the right side of the
Boot Order field. The Pending Changes banner at the top of the page displays a list of
all changes that will be applied when the virtual machine restarts.

9.3.2. Editing a boot order list in the web console

Edit the boot order list in the web console.

Procedure

1. Click Virtualization → VirtualMachines from the side menu.

2. Select a virtual machine to open the VirtualMachine details page.

3. Click the Details tab.

4. Click the pencil icon that is located on the right side of Boot Order.

5. Choose the appropriate method to move the item in the boot order list:

If you do not use a screen reader, hover over the arrow icon next to the item that you want
to move, drag the item up or down, and drop it in a location of your choice.

If you use a screen reader, press the Up Arrow key or Down Arrow key to move the item in
the boot order list. Then, press the Tab key to drop the item in a location of your choice.

6. Click Save.

NOTE

If the virtual machine is running, changes to the boot order list will not take effect until
you restart the virtual machine.

You can view pending changes by clicking View Pending Changes on the right side of the
Boot Order field. The Pending Changes banner at the top of the page displays a list of
all changes that will be applied when the virtual machine restarts.

9.3.3. Editing a boot order list in the YAML configuration file

Edit the boot order list in a YAML configuration file by using the CLI.

Procedure

1. Open the YAML configuration file for the virtual machine by running the following command:

2. Edit the YAML file and modify the values for the boot order associated with a disk or network

$ oc edit vm example

OpenShift Container Platform 4.11 Virtualization

88



1

2

2. Edit the YAML file and modify the values for the boot order associated with a disk or network
interface controller (NIC). For example:

The boot order value specified for the disk.

The boot order value specified for the network interface controller.

3. Save the YAML file.

4. Click reload the content to apply the updated boot order values from the YAML file to the
boot order list in the web console.

9.3.4. Removing items from a boot order list in the web console

Remove items from a boot order list by using the web console.

Procedure

1. Click Virtualization → VirtualMachines from the side menu.

2. Select a virtual machine to open the VirtualMachine details page.

3. Click the Details tab.

4. Click the pencil icon that is located on the right side of Boot Order.

5. Click the Remove icon  next to the item. The item is removed from the boot order list and
saved in the list of available boot sources. If you remove all items from the boot order list, the
following message displays: No resource selected. VM will attempt to boot from disks by
order of appearance in YAML file.

NOTE

disks:
  - bootOrder: 1 1
    disk:
      bus: virtio
    name: containerdisk
  - disk:
      bus: virtio
    name: cloudinitdisk
  - cdrom:
      bus: virtio
    name: cd-drive-1
interfaces:
  - boot Order: 2 2
    macAddress: '02:96:c4:00:00'
    masquerade: {}
    name: default

CHAPTER 9. VIRTUAL MACHINES

89



NOTE

If the virtual machine is running, changes to Boot Order will not take effect until you
restart the virtual machine.

You can view pending changes by clicking View Pending Changes on the right side of the
Boot Order field. The Pending Changes banner at the top of the page displays a list of
all changes that will be applied when the virtual machine restarts.

9.4. DELETING VIRTUAL MACHINES

You can delete a virtual machine from the web console or by using the oc command line interface.

9.4.1. Deleting a virtual machine using the web console

Deleting a virtual machine permanently removes it from the cluster.

NOTE

When you delete a virtual machine, the data volume it uses is automatically deleted.

Procedure

1. In the OpenShift Container Platform console, click Virtualization → VirtualMachines from the
side menu.

2. Click the Options menu  of the virtual machine that you want to delete and select Delete.

Alternatively, click the virtual machine name to open the VirtualMachine details page and
click Actions → Delete.

3. In the confirmation pop-up window, click Delete to permanently delete the virtual machine.

9.4.2. Deleting a virtual machine by using the CLI

You can delete a virtual machine by using the oc command line interface (CLI). The oc client enables
you to perform actions on multiple virtual machines.

NOTE

When you delete a virtual machine, the data volume it uses is automatically deleted.

Prerequisites

Identify the name of the virtual machine that you want to delete.

Procedure

Delete the virtual machine by running the following command:

NOTE

$ oc delete vm <vm_name>

OpenShift Container Platform 4.11 Virtualization

90



NOTE

This command only deletes objects that exist in the current project. Specify the -
n <project_name> option if the object you want to delete is in a different project
or namespace.

9.5. MANAGING VIRTUAL MACHINE INSTANCES

If you have standalone virtual machine instances (VMIs) that were created independently outside of the
OpenShift Virtualization environment, you can manage them by using the web console or by using oc or 
virtctl commands from the command-line interface (CLI).

The virtctl command provides more virtualization options than the oc command. For example, you can
use virtctl to pause a VM or expose a port.

9.5.1. About virtual machine instances

A virtual machine instance (VMI) is a representation of a running virtual machine (VM). When a VMI is
owned by a VM or by another object, you manage it through its owner in the web console or by using the 
oc command-line interface (CLI).

A standalone VMI is created and started independently with a script, through automation, or by using
other methods in the CLI. In your environment, you might have standalone VMIs that were developed
and started outside of the OpenShift Virtualization environment. You can continue to manage those
standalone VMIs by using the CLI. You can also use the web console for specific tasks associated with
standalone VMIs:

List standalone VMIs and their details.

Edit labels and annotations for a standalone VMI.

Delete a standalone VMI.

When you delete a VM, the associated VMI is automatically deleted. You delete a standalone VMI
directly because it is not owned by VMs or other objects.

NOTE

Before you uninstall OpenShift Virtualization, list and view the standalone VMIs by using
the CLI or the web console. Then, delete any outstanding VMIs.

9.5.2. Listing all virtual machine instances using the CLI

You can list all virtual machine instances (VMIs) in your cluster, including standalone VMIs and those
owned by virtual machines, by using the oc command-line interface (CLI).

Procedure

List all VMIs by running the following command:

9.5.3. Listing standalone virtual machine instances using the web console

Using the web console, you can list and view standalone virtual machine instances (VMIs) in your cluster

$ oc get vmis -A

CHAPTER 9. VIRTUAL MACHINES

91

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/virtualization/#virt-using-the-cli-tools


Using the web console, you can list and view standalone virtual machine instances (VMIs) in your cluster
that are not owned by virtual machines (VMs).

NOTE

VMIs that are owned by VMs or other objects are not displayed in the web console. The
web console displays only standalone VMIs. If you want to list all VMIs in your cluster, you
must use the CLI.

Procedure

Click Virtualization → VirtualMachines from the side menu.
You can identify a standalone VMI by a dark colored badge next to its name.

9.5.4. Editing a standalone virtual machine instance using the web console

You can edit the annotations and labels of a standalone virtual machine instance (VMI) using the web
console. Other fields are not editable.

Procedure

1. In the OpenShift Container Platform console, click Virtualization → VirtualMachines from the
side menu.

2. Select a standalone VMI to open the VirtualMachineInstance details page.

3. On the Details tab, click the pencil icon beside Annotations or Labels.

4. Make the relevant changes and click Save.

9.5.5. Deleting a standalone virtual machine instance using the CLI

You can delete a standalone virtual machine instance (VMI) by using the oc command-line interface
(CLI).

Prerequisites

Identify the name of the VMI that you want to delete.

Procedure

Delete the VMI by running the following command:

9.5.6. Deleting a standalone virtual machine instance using the web console

Delete a standalone virtual machine instance (VMI) from the web console.

Procedure

1. In the OpenShift Container Platform web console, click Virtualization → VirtualMachines from
the side menu.

$ oc delete vmi <vmi_name>

OpenShift Container Platform 4.11 Virtualization

92



2. Click Actions → Delete VirtualMachineInstance.

3. In the confirmation pop-up window, click Delete to permanently delete the standalone VMI.

9.6. CONTROLLING VIRTUAL MACHINE STATES

You can stop, start, restart, and unpause virtual machines from the web console.

You can use virtctl to manage virtual machine states and perform other actions from the CLI. For
example, you can use virtctl to force stop a VM or expose a port.

9.6.1. Starting a virtual machine

You can start a virtual machine from the web console.

Procedure

1. Click Virtualization → VirtualMachines from the side menu.

2. Find the row that contains the virtual machine that you want to start.

3. Navigate to the appropriate menu for your use case:

To stay on this page, where you can perform actions on multiple virtual machines:

a. Click the Options menu  located at the far right end of the row.

To view comprehensive information about the selected virtual machine before you start it:

a. Access the VirtualMachine details page by clicking the name of the virtual machine.

b. Click Actions.

4. Select Restart.

5. In the confirmation window, click Start to start the virtual machine.

NOTE

When you start virtual machine that is provisioned from a URL source for the first time,
the virtual machine has a status of Importing while OpenShift Virtualization imports the
container from the URL endpoint. Depending on the size of the image, this process might
take several minutes.

9.6.2. Restarting a virtual machine

You can restart a running virtual machine from the web console.

IMPORTANT

To avoid errors, do not restart a virtual machine while it has a status of Importing.

Procedure

CHAPTER 9. VIRTUAL MACHINES

93

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/virtualization/#virt-using-the-cli-tools


1. Click Virtualization → VirtualMachines from the side menu.

2. Find the row that contains the virtual machine that you want to restart.

3. Navigate to the appropriate menu for your use case:

To stay on this page, where you can perform actions on multiple virtual machines:

a. Click the Options menu  located at the far right end of the row.

To view comprehensive information about the selected virtual machine before you restart it:

a. Access the VirtualMachine details page by clicking the name of the virtual machine.

b. Click Actions → Restart.

4. In the confirmation window, click Restart to restart the virtual machine.

9.6.3. Stopping a virtual machine

You can stop a virtual machine from the web console.

Procedure

1. Click Virtualization → VirtualMachines from the side menu.

2. Find the row that contains the virtual machine that you want to stop.

3. Navigate to the appropriate menu for your use case:

To stay on this page, where you can perform actions on multiple virtual machines:

a. Click the Options menu  located at the far right end of the row.

To view comprehensive information about the selected virtual machine before you stop it:

a. Access the VirtualMachine details page by clicking the name of the virtual machine.

b. Click Actions → Stop.

4. In the confirmation window, click Stop to stop the virtual machine.

9.6.4. Unpausing a virtual machine

You can unpause a paused virtual machine from the web console.

Prerequisites

At least one of your virtual machines must have a status of Paused.

NOTE

You can pause virtual machines by using the virtctl client.

OpenShift Container Platform 4.11 Virtualization

94



Procedure

1. Click Virtualization → VirtualMachines from the side menu.

2. Find the row that contains the virtual machine that you want to unpause.

3. Navigate to the appropriate menu for your use case:

To stay on this page, where you can perform actions on multiple virtual machines:

a. In the Status column, click Paused.

To view comprehensive information about the selected virtual machine before you unpause
it:

a. Access the VirtualMachine details page by clicking the name of the virtual machine.

b. Click the pencil icon that is located on the right side of Status.

4. In the confirmation window, click Unpause to unpause the virtual machine.

9.7. ACCESSING VIRTUAL MACHINE CONSOLES

OpenShift Virtualization provides different virtual machine consoles that you can use to accomplish
different product tasks. You can access these consoles through the OpenShift Container Platform web
console and by using CLI commands.

NOTE

Running concurrent VNC connections to a single virtual machine is not currently
supported.

9.7.1. Accessing virtual machine consoles in the OpenShift Container Platform web
console

You can connect to virtual machines by using the serial console or the VNC console in the OpenShift
Container Platform web console.

You can connect to Windows virtual machines by using the desktop viewer console, which uses RDP
(remote desktop protocol), in the OpenShift Container Platform web console.

9.7.1.1. Connecting to the serial console

Connect to the serial console of a running virtual machine from the Console tab on the VirtualMachine
details page of the web console.

Procedure

1. In the OpenShift Container Platform console, click Virtualization → VirtualMachines from the
side menu.

2. Select a virtual machine to open the VirtualMachine details page.

3. Click the Console tab. The VNC console opens by default.

4. Click Disconnect to ensure that only one console session is open at a time. Otherwise, the VNC

CHAPTER 9. VIRTUAL MACHINES

95



4. Click Disconnect to ensure that only one console session is open at a time. Otherwise, the VNC
console session remains active in the background.

5. Click the VNC Console drop-down list and select Serial Console.

6. Click Disconnect to end the console session.

7. Optional: Open the serial console in a separate window by clicking Open Console in New
Window.

9.7.1.2. Connecting to the VNC console

Connect to the VNC console of a running virtual machine from the Console tab on the VirtualMachine
details page of the web console.

Procedure

1. In the OpenShift Container Platform console, click Virtualization → VirtualMachines from the
side menu.

2. Select a virtual machine to open the VirtualMachine details page.

3. Click the Console tab. The VNC console opens by default.

4. Optional: Open the VNC console in a separate window by clicking Open Console in New
Window.

5. Optional: Send key combinations to the virtual machine by clicking Send Key.

6. Click outside the console window and then click Disconnect to end the session.

9.7.1.3. Connecting to a Windows virtual machine with RDP

The Desktop viewer console, which utilizes the Remote Desktop Protocol (RDP), provides a better
console experience for connecting to Windows virtual machines.

To connect to a Windows virtual machine with RDP, download the console.rdp file for the virtual
machine from the Console tab on the VirtualMachine details page of the web console and supply it to
your preferred RDP client.

Prerequisites

A running Windows virtual machine with the QEMU guest agent installed. The qemu-guest-
agent is included in the VirtIO drivers.

An RDP client installed on a machine on the same network as the Windows virtual machine.

Procedure

1. In the OpenShift Container Platform console, click Virtualization → VirtualMachines from the
side menu.

2. Click a Windows virtual machine to open the VirtualMachine details page.

3. Click the Console tab.

OpenShift Container Platform 4.11 Virtualization

96



4. From the list of consoles, select Desktop viewer.

5. Click Launch Remote Desktop to download the console.rdp file.

6. Reference the console.rdp file in your preferred RDP client to connect to the Windows virtual
machine.

9.7.1.4. Switching between virtual machine displays

If your Windows virtual machine (VM) has a vGPU attached, you can switch between the default display
and the vGPU display by using the web console.

Prerequisites

The mediated device is configured in the HyperConverged custom resource and assigned to
the VM.

The VM is running.

Procedure

1. In the OpenShift Container Platform console, click Virtualization → VirtualMachines

2. Select a Windows virtual machine to open the Overview screen.

3. Click the Console tab.

4. From the list of consoles, select VNC console.

5. Choose the appropriate key combination from the Send Key list:

a. To access the default VM display, select Ctl + Alt+ 1.

b. To access the vGPU display, select Ctl + Alt + 2.

Additional resources

Configuring mediated devices

9.7.2. Accessing virtual machine consoles by using CLI commands

9.7.2.1. Accessing a virtual machine via SSH by using virtctl

You can use the virtctl ssh command to forward SSH traffic to a virtual machine (VM).

NOTE

Heavy SSH traffic on the control plane can slow down the API server. If you regularly need
a large number of connections, use a dedicated Kubernetes Service object to access the
virtual machine.

Prerequisites

You have access to an OpenShift Container Platform cluster with cluster-admin permissions.

CHAPTER 9. VIRTUAL MACHINES

97

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/virtualization/#virt-configuring-mediated-devices


1

1

2

You have installed the OpenShift CLI (oc).

You have installed the virtctl client.

The virtual machine you want to access is running.

You are in the same project as the VM.

Procedure

1. Use the ssh-keygen command to generate an SSH public key pair:

Specify the file in which to store the keys.

2. Create an SSH authentication secret which contains the SSH public key to access the VM:

3. Add a reference to the secret in the VirtualMachine manifest. For example:

Reference to the SSH authentication Secret object.

The SSH public key is injected into the VM as cloud-init metadata using the configDrive
provider.

4. Restart the VM to apply your changes.

5. Run the following command to access the VM via SSH:

6. Optional: To securely transfer files to or from the VM, use the following commands:

Copy a file from your machine to the VM

$ ssh-keygen -f <key_file> 1

$ oc create secret generic my-pub-key --from-file=key1=<key_file>.pub

apiVersion: kubevirt.io/v1
kind: VirtualMachine
metadata:
  name: testvm
spec:
  running: true
  template:
    spec:
      accessCredentials:
      - sshPublicKey:
          source:
            secret:
              secretName: my-pub-key 1
          propagationMethod:
            configDrive: {} 2
# ...

$ virtctl ssh -i <key_file> <vm_username>@<vm_name>

OpenShift Container Platform 4.11 Virtualization

98



Copy a file from the VM to your machine

Additional resources

Creating a service to expose a virtual machine

Understanding secrets

9.7.2.2. Accessing the serial console of a virtual machine instance

The virtctl console command opens a serial console to the specified virtual machine instance.

Prerequisites

The virt-viewer package must be installed.

The virtual machine instance you want to access must be running.

Procedure

Connect to the serial console with virtctl:

9.7.2.3. Accessing the graphical console of a virtual machine instances with VNC

The virtctl client utility can use the remote-viewer function to open a graphical console to a running
virtual machine instance. This capability is included in the virt-viewer package.

Prerequisites

The virt-viewer package must be installed.

The virtual machine instance you want to access must be running.

NOTE

If you use virtctl via SSH on a remote machine, you must forward the X session to your
machine.

Procedure

1. Connect to the graphical interface with the virtctl utility:

2. If the command failed, try using the -v flag to collect troubleshooting information:

$ virtctl scp -i <key_file> <filename> <vm_username>@<vm_name>:

$ virtctl scp -i <key_file> <vm_username@<vm_name>:<filename> .

$ virtctl console <VMI>

$ virtctl vnc <VMI>

CHAPTER 9. VIRTUAL MACHINES

99

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/virtualization/#virt-creating-service-vm
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/nodes/#nodes-pods-secrets-about_nodes-pods-secrets


1

9.7.2.4. Connecting to a Windows virtual machine with an RDP console

Create a Kubernetes Service object to connect to a Windows virtual machine (VM) by using your local
Remote Desktop Protocol (RDP) client.

Prerequisites

A running Windows virtual machine with the QEMU guest agent installed. The qemu-guest-
agent object is included in the VirtIO drivers.

An RDP client installed on your local machine.

Procedure

1. Edit the VirtualMachine manifest to add the label for service creation:

Add the label special: key in the spec.template.metadata.labels section.

NOTE

Labels on a virtual machine are passed through to the pod. The special: key
label must match the label in the spec.selector attribute of the Service
manifest.

2. Save the VirtualMachine manifest file to apply your changes.

3. Create a Service manifest to expose the VM:

$ virtctl vnc <VMI> -v 4

apiVersion: kubevirt.io/v1
kind: VirtualMachine
metadata:
  name: vm-ephemeral
  namespace: example-namespace
spec:
  running: false
  template:
    metadata:
      labels:
        special: key 1
# ...

apiVersion: v1
kind: Service
metadata:
  name: rdpservice 1
  namespace: example-namespace 2
spec:
  ports:
  - targetPort: 3389 3
    protocol: TCP

OpenShift Container Platform 4.11 Virtualization

100



1

2

3

4

5

The name of the Service object.

The namespace where the Service object resides. This must match the 
metadata.namespace field of the VirtualMachine manifest.

The VM port to be exposed by the service. It must reference an open port if a port list is
defined in the VM manifest.

The reference to the label that you added in the spec.template.metadata.labels stanza of
the VirtualMachine manifest.

The type of service.

4. Save the Service manifest file.

5. Create the service by running the following command:

6. Start the VM. If the VM is already running, restart it.

7. Query the Service object to verify that it is available:

Example output for NodePort service

8. Run the following command to obtain the IP address for the node:

Example output

9. Specify the node IP address and the assigned port in your preferred RDP client.

10. Enter the user name and password to connect to the Windows virtual machine.

9.8. AUTOMATING WINDOWS INSTALLATION WITH SYSPREP

You can use Microsoft DVD images and sysprep to automate the installation, setup, and software
provisioning of Windows virtual machines.

  selector:
    special: key 4
  type: NodePort 5
# ...

$ oc create -f <service_name>.yaml

$ oc get service -n example-namespace

NAME        TYPE        CLUSTER-IP     EXTERNAL-IP   PORT(S)            AGE
rdpservice   NodePort    172.30.232.73   <none>       3389:30000/TCP    5m

$ oc get node <node_name> -o wide

NAME    STATUS   ROLES   AGE    VERSION  INTERNAL-IP      EXTERNAL-IP
node01  Ready    worker  6d22h  v1.24.0  192.168.55.101   <none>

CHAPTER 9. VIRTUAL MACHINES

101



9.8.1. Using a Windows DVD to create a VM disk image

Microsoft does not provide disk images for download, but you can create a disk image using a Windows
DVD. This disk image can then be used to create virtual machines.

Procedure

1. In the OpenShift Virtualization web console, click Storage → PersistentVolumeClaims →
Create PersistentVolumeClaim With Data upload form.

2. Select the intended project.

3. Set the Persistent Volume Claim Name.

4. Upload the VM disk image from the Windows DVD. The image is now available as a boot source
to create a new Windows VM.

9.8.2. Using a disk image to install Windows

You can use a disk image to install Windows on your virtual machine.

Prerequisites

You must create a disk image using a Windows DVD.

You must create an autounattend.xml answer file. See the Microsoft documentation for details.

Procedure

1. In the OpenShift Container Platform console, click Virtualization → Catalog from the side
menu.

2. Select a Windows template and click Customize VirtualMachine.

3. Select Upload (Upload a new file to a PVC) from the Disk source list and browse to the DVD
image.

4. Click Review and create VirtualMachine.

5. Clear Clone available operating system source to this Virtual Machine.

6. Clear Start this VirtualMachine after creation.

7. On the Sysprep section of the Scripts tab, click Edit.

8. Browse to the autounattend.xml answer file and click Save.

9. Click Create VirtualMachine.

10. On the YAML tab, replace running:false with runStrategy: RerunOnFailure and click Save.

The VM will start with the sysprep disk containing the autounattend.xml answer file.

9.8.3. Generalizing a Windows VM using sysprep

Generalizing an image allows that image to remove all system-specific configuration data when the

OpenShift Container Platform 4.11 Virtualization

102

https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/update-windows-settings-and-scripts-create-your-own-answer-file-sxs


Generalizing an image allows that image to remove all system-specific configuration data when the
image is deployed on a virtual machine (VM).

Before generalizing the VM, you must ensure the sysprep tool cannot detect an answer file after the
unattended Windows installation.

Procedure

1. In the OpenShift Container Platform console, click Virtualization → VirtualMachines.

2. Select a Windows VM to open the VirtualMachine details page.

3. Click the Disks tab.

4. Click the Options menu  for the sysprep disk and select Detach.

5. Click Detach.

6. Rename C:\Windows\Panther\unattend.xml to avoid detection by the sysprep tool.

7. Start the sysprep program by running the following command:

8. After the sysprep tool completes, the Windows VM shuts down. The disk image of the VM is
now available to use as an installation image for Windows VMs.

You can now specialize the VM.

9.8.4. Specializing a Windows virtual machine

Specializing a virtual machine (VM) configures the computer-specific information from a generalized
Windows image onto the VM.

Prerequisites

You must have a generalized Windows disk image.

You must create an unattend.xml answer file. See the Microsoft documentation for details.

Procedure

1. In the OpenShift Container Platform console, click Virtualization → Catalog.

2. Select a Windows template and click Customize VirtualMachine.

3. Select PVC (clone PVC) from the Disk source list.

4. Specify the Persistent Volume Claim project and Persistent Volume Claim name of the
generalized Windows image.

5. Click Review and create VirtualMachine.

6. Click the Scripts tab.

%WINDIR%\System32\Sysprep\sysprep.exe /generalize /shutdown /oobe /mode:vm

CHAPTER 9. VIRTUAL MACHINES

103

https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/update-windows-settings-and-scripts-create-your-own-answer-file-sxs?view=windows-11


7. In the Sysprep section, click Edit, browse to the unattend.xml answer file, and click Save.

8. Click Create VirtualMachine.

During the initial boot, Windows uses the unattend.xml answer file to specialize the VM. The VM is now
ready to use.

9.8.5. Additional resources

Creating virtual machines

Microsoft, Sysprep (Generalize) a Windows installation

Microsoft, generalize

Microsoft, specialize

9.9. TRIGGERING VIRTUAL MACHINE FAILOVER BY RESOLVING A
FAILED NODE

If a node fails and machine health checks  are not deployed on your cluster, virtual machines (VMs) with 
RunStrategy: Always configured are not automatically relocated to healthy nodes. To trigger VM
failover, you must manually delete the Node object.

NOTE

If you installed your cluster by using installer-provisioned infrastructure and you properly
configured machine health checks:

Failed nodes are automatically recycled.

Virtual machines with RunStrategy set to Always or RerunOnFailure are
automatically scheduled on healthy nodes.

9.9.1. Prerequisites

A node where a virtual machine was running has the NotReady condition.

The virtual machine that was running on the failed node has RunStrategy set to Always.

You have installed the OpenShift CLI (oc).

9.9.2. Deleting nodes from a bare metal cluster

When you delete a node using the CLI, the node object is deleted in Kubernetes, but the pods that exist
on the node are not deleted. Any bare pods not backed by a replication controller become inaccessible
to OpenShift Container Platform. Pods backed by replication controllers are rescheduled to other
available nodes. You must delete local manifest pods.

Procedure

Delete a node from an OpenShift Container Platform cluster running on bare metal by completing the
following steps:

1. Mark the node as unschedulable:

OpenShift Container Platform 4.11 Virtualization

104

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/virtualization/#virt-create-vms
https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/sysprep--generalize--a-windows-installation
https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/generalize
https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/specialize
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/machine_management/#machine-health-checks-about_deploying-machine-health-checks
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/installing/#ipi-install-overview
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/virtualization/#virt-about-runstrategies-vms_virt-create-vms
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/nodes/#nodes-nodes-viewing-listing_nodes-nodes-viewing


2. Drain all pods on the node:

This step might fail if the node is offline or unresponsive. Even if the node does not respond, it
might still be running a workload that writes to shared storage. To avoid data corruption, power
down the physical hardware before you proceed.

3. Delete the node from the cluster:

Although the node object is now deleted from the cluster, it can still rejoin the cluster after
reboot or if the kubelet service is restarted. To permanently delete the node and all its data, you
must decommission the node.

4. If you powered down the physical hardware, turn it back on so that the node can rejoin the
cluster.

9.9.3. Verifying virtual machine failover

After all resources are terminated on the unhealthy node, a new virtual machine instance (VMI) is
automatically created on a healthy node for each relocated VM. To confirm that the VMI was created,
view all VMIs by using the oc CLI.

9.9.3.1. Listing all virtual machine instances using the CLI

You can list all virtual machine instances (VMIs) in your cluster, including standalone VMIs and those
owned by virtual machines, by using the oc command-line interface (CLI).

Procedure

List all VMIs by running the following command:

9.10. INSTALLING THE QEMU GUEST AGENT ON VIRTUAL MACHINES

The QEMU guest agent  is a daemon that runs on the virtual machine and passes information to the host
about the virtual machine, users, file systems, and secondary networks.

9.10.1. Installing QEMU guest agent on a Linux virtual machine

The qemu-guest-agent is widely available and available by default in Red Hat virtual machines. Install
the agent and start the service.

To check if your virtual machine (VM) has the QEMU guest agent installed and running, verify that 
AgentConnected is listed in the VM spec.

NOTE

$ oc adm cordon <node_name>

$ oc adm drain <node_name> --force=true

$ oc delete node <node_name>

$ oc get vmis -A

CHAPTER 9. VIRTUAL MACHINES

105

https://access.redhat.com/solutions/84663
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/virtualization/#virt-viewing-qemu-guest-agent-web


NOTE

To create snapshots of an online (Running state) VM with the highest integrity, install the
QEMU guest agent.

The QEMU guest agent takes a consistent snapshot by attempting to quiesce the VM’s
file system as much as possible, depending on the system workload. This ensures that in-
flight I/O is written to the disk before the snapshot is taken. If the guest agent is not
present, quiescing is not possible and a best-effort snapshot is taken. The conditions
under which the snapshot was taken are reflected in the snapshot indications that are
displayed in the web console or CLI.

Procedure

1. Access the virtual machine command line through one of the consoles or by SSH.

2. Install the QEMU guest agent on the virtual machine:

3. Ensure the service is persistent and start it:

9.10.2. Installing QEMU guest agent on a Windows virtual machine

For Windows virtual machines, the QEMU guest agent is included in the VirtIO drivers. Install the drivers
on an existing or a new Windows installation.

To check if your virtual machine (VM) has the QEMU guest agent installed and running, verify that 
AgentConnected is listed in the VM spec.

NOTE

To create snapshots of an online (Running state) VM with the highest integrity, install the
QEMU guest agent.

The QEMU guest agent takes a consistent snapshot by attempting to quiesce the VM’s
file system as much as possible, depending on the system workload. This ensures that in-
flight I/O is written to the disk before the snapshot is taken. If the guest agent is not
present, quiescing is not possible and a best-effort snapshot is taken. The conditions
under which the snapshot was taken are reflected in the snapshot indications that are
displayed in the web console or CLI.

9.10.2.1. Installing VirtIO drivers on an existing Windows virtual machine

Install the VirtIO drivers from the attached SATA CD drive to an existing Windows virtual machine.

NOTE

This procedure uses a generic approach to adding drivers to Windows. The process might
differ slightly between versions of Windows. See the installation documentation for your
version of Windows for specific installation steps.

$ yum install -y qemu-guest-agent

$ systemctl enable --now qemu-guest-agent

OpenShift Container Platform 4.11 Virtualization

106



Procedure

1. Start the virtual machine and connect to a graphical console.

2. Log in to a Windows user session.

3. Open Device Manager and expand Other devices to list any Unknown device.

a. Open the Device Properties to identify the unknown device. Right-click the device and
select Properties.

b. Click the Details tab and select Hardware Ids in the Property list.

c. Compare the Value for the Hardware Ids with the supported VirtIO drivers.

4. Right-click the device and select Update Driver Software.

5. Click Browse my computer for driver software and browse to the attached SATA CD drive,
where the VirtIO drivers are located. The drivers are arranged hierarchically according to their
driver type, operating system, and CPU architecture.

6. Click Next to install the driver.

7. Repeat this process for all the necessary VirtIO drivers.

8. After the driver installs, click Close to close the window.

9. Reboot the virtual machine to complete the driver installation.

9.10.2.2. Installing VirtIO drivers during Windows installation

Install the VirtIO drivers from the attached SATA CD driver during Windows installation.

NOTE

This procedure uses a generic approach to the Windows installation and the installation
method might differ between versions of Windows. See the documentation for the
version of Windows that you are installing.

Procedure

1. Start the virtual machine and connect to a graphical console.

2. Begin the Windows installation process.

3. Select the Advanced installation.

4. The storage destination will not be recognized until the driver is loaded. Click Load driver.

5. The drivers are attached as a SATA CD drive. Click OK and browse the CD drive for the storage
driver to load. The drivers are arranged hierarchically according to their driver type, operating
system, and CPU architecture.

6. Repeat the previous two steps for all required drivers.

7. Complete the Windows installation.

CHAPTER 9. VIRTUAL MACHINES

107



9.11. VIEWING THE QEMU GUEST AGENT INFORMATION FOR VIRTUAL
MACHINES

When the QEMU guest agent runs on the virtual machine, you can use the web console to view
information about the virtual machine, users, file systems, and secondary networks.

9.11.1. Prerequisites

Install the QEMU guest agent  on the virtual machine.

9.11.2. About the QEMU guest agent information in the web console

When the QEMU guest agent is installed, the Overview and Details tabs on the VirtualMachine details
page displays information about the hostname, operating system, time zone, and logged in users.

The VirtualMachine details page shows information about the guest operating system installed on the
virtual machine. The Details tab displays a table with information for logged in users. The Disks tab
displays a table with information for file systems.

NOTE

If the QEMU guest agent is not installed, the Overview and the Details tabs display
information about the operating system that was specified when the virtual machine was
created.

9.11.3. Viewing the QEMU guest agent information in the web console

You can use the web console to view information for virtual machines that is passed by the QEMU guest
agent to the host.

Procedure

1. Click Virtualization → VirtualMachines from the side menu.

2. Select a virtual machine name to open the VirtualMachine details page.

3. Click the Details tab to view active users.

4. Click the Disks tab to view information about the file systems.

9.12. MANAGING CONFIG MAPS, SECRETS, AND SERVICE ACCOUNTS
IN VIRTUAL MACHINES

You can use secrets, config maps, and service accounts to pass configuration data to virtual machines.
For example, you can:

Give a virtual machine access to a service that requires credentials by adding a secret to the
virtual machine.

Store non-confidential configuration data in a config map so that a pod or another object can
consume the data.

Allow a component to access the API server by associating a service account with that
component.

OpenShift Container Platform 4.11 Virtualization

108

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/virtualization/#virt-installing-qemu-guest-agent


NOTE

OpenShift Virtualization exposes secrets, config maps, and service accounts as virtual
machine disks so that you can use them across platforms without additional overhead.

9.12.1. Adding a secret, config map, or service account to a virtual machine

You add a secret, config map, or service account to a virtual machine by using the OpenShift Container
Platform web console.

These resources are added to the virtual machine as disks. You then mount the secret, config map, or
service account as you would mount any other disk.

If the virtual machine is running, changes will not take effect until you restart the virtual machine. The
newly added resources are marked as pending changes for both the Environment and Disks tab in the
Pending Changes banner at the top of the page.

Prerequisites

The secret, config map, or service account that you want to add must exist in the same
namespace as the target virtual machine.

Procedure

1. Click Virtualization → VirtualMachines from the side menu.

2. Select a virtual machine to open the VirtualMachine details page.

3. In the Environment tab, click Add Config Map, Secret or Service Account.

4. Click Select a resource and select a resource from the list. A six character serial number is
automatically generated for the selected resource.

5. Optional: Click Reload to revert the environment to its last saved state.

6. Click Save.

Verification

1. On the VirtualMachine details page, click the Disks tab and verify that the secret, config map,
or service account is included in the list of disks.

2. Restart the virtual machine by clicking Actions → Restart.

You can now mount the secret, config map, or service account as you would mount any other disk.

9.12.2. Removing a secret, config map, or service account from a virtual machine

Remove a secret, config map, or service account from a virtual machine by using the OpenShift
Container Platform web console.

Prerequisites

You must have at least one secret, config map, or service account that is attached to a virtual
machine.

CHAPTER 9. VIRTUAL MACHINES

109



Procedure

1. Click Virtualization → VirtualMachines from the side menu.

2. Select a virtual machine to open the VirtualMachine details page.

3. Click the Environment tab.

4. Find the item that you want to delete in the list, and click Remove  on the right side of the
item.

5. Click Save.

NOTE

You can reset the form to the last saved state by clicking Reload.

Verification

1. On the VirtualMachine details page, click the Disks tab.

2. Check to ensure that the secret, config map, or service account that you removed is no longer
included in the list of disks.

9.12.3. Additional resources

Providing sensitive data to pods

Understanding and creating service accounts

Understanding config maps

9.13. INSTALLING VIRTIO DRIVER ON AN EXISTING WINDOWS
VIRTUAL MACHINE

9.13.1. About VirtIO drivers

VirtIO drivers are paravirtualized device drivers required for Microsoft Windows virtual machines to run
in OpenShift Virtualization. The supported drivers are available in the container-native-
virtualization/virtio-win container disk of the Red Hat Ecosystem Catalog .

The container-native-virtualization/virtio-win container disk must be attached to the virtual machine
as a SATA CD drive to enable driver installation. You can install VirtIO drivers during Windows
installation on the virtual machine or added to an existing Windows installation.

After the drivers are installed, the container-native-virtualization/virtio-win container disk can be
removed from the virtual machine.

See also: Installing Virtio drivers on a new Windows virtual machine .

9.13.2. Supported VirtIO drivers for Microsoft Windows virtual machines

Table 9.3. Supported drivers

OpenShift Container Platform 4.11 Virtualization

110

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/nodes/#nodes-pods-secrets-about
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/authentication_and_authorization/#service-accounts-overview
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/nodes/#nodes-pods-configmap-overview_builds-configmaps
https://access.redhat.com/containers/#/registry.access.redhat.com/container-native-virtualization/virtio-win
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/virtualization/#virt-installing-virtio-drivers-on-new-windows-vm


1

Driver name Hardware ID Description

viostor VEN_1AF4&DEV_1001
VEN_1AF4&DEV_1042

The block driver. Sometimes
displays as an SCSI Controller in
the Other devices group.

viorng VEN_1AF4&DEV_1005
VEN_1AF4&DEV_1044

The entropy source driver.
Sometimes displays as a PCI
Device in the Other devices
group.

NetKVM VEN_1AF4&DEV_1000
VEN_1AF4&DEV_1041

The network driver. Sometimes
displays as an Ethernet
Controller in the Other devices
group. Available only if a VirtIO
NIC is configured.

9.13.3. Adding VirtIO drivers container disk to a virtual machine

OpenShift Virtualization distributes VirtIO drivers for Microsoft Windows as a container disk, which is
available from the Red Hat Ecosystem Catalog . To install these drivers to a Windows virtual machine,
attach the container-native-virtualization/virtio-win container disk to the virtual machine as a SATA
CD drive in the virtual machine configuration file.

Prerequisites

Download the container-native-virtualization/virtio-win container disk from the Red Hat
Ecosystem Catalog. This is not mandatory, because the container disk will be downloaded from
the Red Hat registry if it not already present in the cluster, but it can reduce installation time.

Procedure

1. Add the container-native-virtualization/virtio-win container disk as a cdrom disk in the
Windows virtual machine configuration file. The container disk will be downloaded from the
registry if it is not already present in the cluster.

OpenShift Virtualization boots virtual machine disks in the order defined in the 
VirtualMachine configuration file. You can either define other disks for the virtual machine
before the container-native-virtualization/virtio-win container disk or use the optional 

spec:
  domain:
    devices:
      disks:
        - name: virtiocontainerdisk
          bootOrder: 2 1
          cdrom:
            bus: sata
volumes:
  - containerDisk:
      image: container-native-virtualization/virtio-win
    name: virtiocontainerdisk

CHAPTER 9. VIRTUAL MACHINES

111

https://access.redhat.com/containers/#/registry.access.redhat.com/container-native-virtualization/virtio-win
https://access.redhat.com/containers/#/registry.access.redhat.com/container-native-virtualization/virtio-win


bootOrder parameter to ensure the virtual machine boots from the correct disk. If you
specify the bootOrder for a disk, it must be specified for all disks in the configuration.

2. The disk is available once the virtual machine has started:

If you add the container disk to a running virtual machine, use oc apply -f <vm.yaml> in the
CLI or reboot the virtual machine for the changes to take effect.

If the virtual machine is not running, use virtctl start <vm>.

After the virtual machine has started, the VirtIO drivers can be installed from the attached SATA CD
drive.

9.13.4. Installing VirtIO drivers on an existing Windows virtual machine

Install the VirtIO drivers from the attached SATA CD drive to an existing Windows virtual machine.

NOTE

This procedure uses a generic approach to adding drivers to Windows. The process might
differ slightly between versions of Windows. See the installation documentation for your
version of Windows for specific installation steps.

Procedure

1. Start the virtual machine and connect to a graphical console.

2. Log in to a Windows user session.

3. Open Device Manager and expand Other devices to list any Unknown device.

a. Open the Device Properties to identify the unknown device. Right-click the device and
select Properties.

b. Click the Details tab and select Hardware Ids in the Property list.

c. Compare the Value for the Hardware Ids with the supported VirtIO drivers.

4. Right-click the device and select Update Driver Software.

5. Click Browse my computer for driver software and browse to the attached SATA CD drive,
where the VirtIO drivers are located. The drivers are arranged hierarchically according to their
driver type, operating system, and CPU architecture.

6. Click Next to install the driver.

7. Repeat this process for all the necessary VirtIO drivers.

8. After the driver installs, click Close to close the window.

9. Reboot the virtual machine to complete the driver installation.

9.13.5. Removing the VirtIO container disk from a virtual machine

After installing all required VirtIO drivers to the virtual machine, the container-native-

OpenShift Container Platform 4.11 Virtualization

112



After installing all required VirtIO drivers to the virtual machine, the container-native-
virtualization/virtio-win container disk no longer needs to be attached to the virtual machine. Remove
the container-native-virtualization/virtio-win container disk from the virtual machine configuration file.

Procedure

1. Edit the configuration file and remove the disk and the volume.

2. Reboot the virtual machine for the changes to take effect.

9.14. INSTALLING VIRTIO DRIVER ON A NEW WINDOWS VIRTUAL
MACHINE

9.14.1. Prerequisites

Windows installation media accessible by the virtual machine, such as importing an ISO into a
data volume and attaching it to the virtual machine.

9.14.2. About VirtIO drivers

VirtIO drivers are paravirtualized device drivers required for Microsoft Windows virtual machines to run
in OpenShift Virtualization. The supported drivers are available in the container-native-
virtualization/virtio-win container disk of the Red Hat Ecosystem Catalog .

The container-native-virtualization/virtio-win container disk must be attached to the virtual machine
as a SATA CD drive to enable driver installation. You can install VirtIO drivers during Windows
installation on the virtual machine or added to an existing Windows installation.

After the drivers are installed, the container-native-virtualization/virtio-win container disk can be
removed from the virtual machine.

See also: Installing VirtIO driver on an existing Windows virtual machine .

9.14.3. Supported VirtIO drivers for Microsoft Windows virtual machines

Table 9.4. Supported drivers

$ oc edit vm <vm-name>

spec:
  domain:
    devices:
      disks:
        - name: virtiocontainerdisk
          bootOrder: 2
          cdrom:
            bus: sata
volumes:
  - containerDisk:
      image: container-native-virtualization/virtio-win
    name: virtiocontainerdisk

CHAPTER 9. VIRTUAL MACHINES

113

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/virtualization/#virt-importing-vm-datavolume_virt-importing-virtual-machine-images-datavolumes
https://access.redhat.com/containers/#/registry.access.redhat.com/container-native-virtualization/virtio-win
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/virtualization/#virt-installing-virtio-drivers-on-existing-windows-vm


1

Driver name Hardware ID Description

viostor VEN_1AF4&DEV_1001
VEN_1AF4&DEV_1042

The block driver. Sometimes
displays as an SCSI Controller in
the Other devices group.

viorng VEN_1AF4&DEV_1005
VEN_1AF4&DEV_1044

The entropy source driver.
Sometimes displays as a PCI
Device in the Other devices
group.

NetKVM VEN_1AF4&DEV_1000
VEN_1AF4&DEV_1041

The network driver. Sometimes
displays as an Ethernet
Controller in the Other devices
group. Available only if a VirtIO
NIC is configured.

9.14.4. Adding VirtIO drivers container disk to a virtual machine

OpenShift Virtualization distributes VirtIO drivers for Microsoft Windows as a container disk, which is
available from the Red Hat Ecosystem Catalog . To install these drivers to a Windows virtual machine,
attach the container-native-virtualization/virtio-win container disk to the virtual machine as a SATA
CD drive in the virtual machine configuration file.

Prerequisites

Download the container-native-virtualization/virtio-win container disk from the Red Hat
Ecosystem Catalog. This is not mandatory, because the container disk will be downloaded from
the Red Hat registry if it not already present in the cluster, but it can reduce installation time.

Procedure

1. Add the container-native-virtualization/virtio-win container disk as a cdrom disk in the
Windows virtual machine configuration file. The container disk will be downloaded from the
registry if it is not already present in the cluster.

OpenShift Virtualization boots virtual machine disks in the order defined in the 
VirtualMachine configuration file. You can either define other disks for the virtual machine
before the container-native-virtualization/virtio-win container disk or use the optional 

spec:
  domain:
    devices:
      disks:
        - name: virtiocontainerdisk
          bootOrder: 2 1
          cdrom:
            bus: sata
volumes:
  - containerDisk:
      image: container-native-virtualization/virtio-win
    name: virtiocontainerdisk

OpenShift Container Platform 4.11 Virtualization

114

https://access.redhat.com/containers/#/registry.access.redhat.com/container-native-virtualization/virtio-win
https://access.redhat.com/containers/#/registry.access.redhat.com/container-native-virtualization/virtio-win


bootOrder parameter to ensure the virtual machine boots from the correct disk. If you
specify the bootOrder for a disk, it must be specified for all disks in the configuration.

2. The disk is available once the virtual machine has started:

If you add the container disk to a running virtual machine, use oc apply -f <vm.yaml> in the
CLI or reboot the virtual machine for the changes to take effect.

If the virtual machine is not running, use virtctl start <vm>.

After the virtual machine has started, the VirtIO drivers can be installed from the attached SATA CD
drive.

9.14.5. Installing VirtIO drivers during Windows installation

Install the VirtIO drivers from the attached SATA CD driver during Windows installation.

NOTE

This procedure uses a generic approach to the Windows installation and the installation
method might differ between versions of Windows. See the documentation for the
version of Windows that you are installing.

Procedure

1. Start the virtual machine and connect to a graphical console.

2. Begin the Windows installation process.

3. Select the Advanced installation.

4. The storage destination will not be recognized until the driver is loaded. Click Load driver.

5. The drivers are attached as a SATA CD drive. Click OK and browse the CD drive for the storage
driver to load. The drivers are arranged hierarchically according to their driver type, operating
system, and CPU architecture.

6. Repeat the previous two steps for all required drivers.

7. Complete the Windows installation.

9.14.6. Removing the VirtIO container disk from a virtual machine

After installing all required VirtIO drivers to the virtual machine, the container-native-
virtualization/virtio-win container disk no longer needs to be attached to the virtual machine. Remove
the container-native-virtualization/virtio-win container disk from the virtual machine configuration file.

Procedure

1. Edit the configuration file and remove the disk and the volume.

$ oc edit vm <vm-name>

spec:

CHAPTER 9. VIRTUAL MACHINES

115



2. Reboot the virtual machine for the changes to take effect.

9.15. USING VIRTUAL TRUSTED PLATFORM MODULE DEVICES

Add a virtual Trusted Platform Module (vTPM) device to a new or existing virtual machine by editing the 
VirtualMachine (VM) or VirtualMachineInstance (VMI) manifest.

9.15.1. About vTPM devices

A virtual Trusted Platform Module (vTPM) device functions like a physical Trusted Platform Module
(TPM) hardware chip.

You can use a vTPM device with any operating system, but Windows 11 requires the presence of a TPM
chip to install or boot. A vTPM device allows VMs created from a Windows 11 image to function without a
physical TPM chip.

If you do not enable vTPM, then the VM does not recognize a TPM device, even if the node has one.

vTPM devices also protect virtual machines by temporarily storing secrets without physical hardware.
However, using vTPM for persistent secret storage is not currently supported. vTPM discards stored
secrets after a VM shuts down.

9.15.2. Adding a vTPM device to a virtual machine

Adding a virtual Trusted Platform Module (vTPM) device to a virtual machine (VM) allows you to run a
VM created from a Windows 11 image without a physical TPM device. A vTPM device also temporarily
stores secrets for that VM.

Procedure

1. Run the following command to update the VM configuration:

2. Edit the VM spec so that it includes the tpm: {} line. For example:

  domain:
    devices:
      disks:
        - name: virtiocontainerdisk
          bootOrder: 2
          cdrom:
            bus: sata
volumes:
  - containerDisk:
      image: container-native-virtualization/virtio-win
    name: virtiocontainerdisk

$ oc edit vm <vm_name>

apiVersion: kubevirt.io/v1
kind: VirtualMachine
metadata:
    name: example-vm
spec:
  template:

OpenShift Container Platform 4.11 Virtualization

116



1

1

Adds the TPM device to the VM.

3. To apply your changes, save and exit the editor.

4. Optional: If you edited a running virtual machine, you must restart it for the changes to take
effect.

9.16. ADVANCED VIRTUAL MACHINE MANAGEMENT

9.16.1. Working with resource quotas for virtual machines

Create and manage resource quotas for virtual machines.

9.16.1.1. Setting resource quota limits for virtual machines

Resource quotas that only use requests automatically work with virtual machines (VMs). If your resource
quota uses limits, you must manually set resource limits on VMs. Resource limits must be at least 100
MiB larger than resource requests.

Procedure

1. Set limits for a VM by editing the VirtualMachine manifest. For example:

This configuration is supported because the limits.memory value is at least 100Mi larger
than the requests.memory value.

2. Save the VirtualMachine manifest.

9.16.1.2. Additional resources

    spec:
      domain:
        devices:
          tpm: {} 1
...

apiVersion: kubevirt.io/v1
kind: VirtualMachine
metadata:
  name: with-limits
spec:
  running: false
  template:
    spec:
      domain:
# ...
        resources:
          requests:
            memory: 128Mi
          limits:
            memory: 256Mi  1

CHAPTER 9. VIRTUAL MACHINES

117



Resource quotas per project

Resource quotas across multiple projects

9.16.2. Specifying nodes for virtual machines

You can place virtual machines (VMs) on specific nodes by using node placement rules.

9.16.2.1. About node placement for virtual machines

To ensure that virtual machines (VMs) run on appropriate nodes, you can configure node placement
rules. You might want to do this if:

You have several VMs. To ensure fault tolerance, you want them to run on different nodes.

You have two chatty VMs. To avoid redundant inter-node routing, you want the VMs to run on
the same node.

Your VMs require specific hardware features that are not present on all available nodes.

You have a pod that adds capabilities to a node, and you want to place a VM on that node so
that it can use those capabilities.

NOTE

Virtual machine placement relies on any existing node placement rules for workloads. If
workloads are excluded from specific nodes on the component level, virtual machines
cannot be placed on those nodes.

You can use the following rule types in the spec field of a VirtualMachine manifest:

nodeSelector

Allows virtual machines to be scheduled on nodes that are labeled with the key-value pair or pairs
that you specify in this field. The node must have labels that exactly match all listed pairs.

affinity

Enables you to use more expressive syntax to set rules that match nodes with virtual machines. For
example, you can specify that a rule is a preference, rather than a hard requirement, so that virtual
machines are still scheduled if the rule is not satisfied. Pod affinity, pod anti-affinity, and node affinity
are supported for virtual machine placement. Pod affinity works for virtual machines because the 
VirtualMachine workload type is based on the Pod object.

NOTE

Affinity rules only apply during scheduling. OpenShift Container Platform does not
reschedule running workloads if the constraints are no longer met.

tolerations

Allows virtual machines to be scheduled on nodes that have matching taints. If a taint is applied to a
node, that node only accepts virtual machines that tolerate the taint.

9.16.2.2. Node placement examples

The following example YAML file snippets use nodePlacement, affinity, and tolerations fields to

OpenShift Container Platform 4.11 Virtualization

118

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/building_applications/#quotas-setting-per-project
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/building_applications/#quotas-setting-across-multiple-projects


The following example YAML file snippets use nodePlacement, affinity, and tolerations fields to
customize node placement for virtual machines.

9.16.2.2.1. Example: VM node placement with nodeSelector

In this example, the virtual machine requires a node that has metadata containing both example-key-1 = 
example-value-1 and example-key-2 = example-value-2 labels.

WARNING

If there are no nodes that fit this description, the virtual machine is not scheduled.

Example VM manifest

9.16.2.2.2. Example: VM node placement with pod affinity and pod anti-affinity

In this example, the VM must be scheduled on a node that has a running pod with the label example-
key-1 = example-value-1. If there is no such pod running on any node, the VM is not scheduled.

If possible, the VM is not scheduled on a node that has any pod with the label example-key-2 = 
example-value-2. However, if all candidate nodes have a pod with this label, the scheduler ignores this
constraint.

Example VM manifest



metadata:
  name: example-vm-node-selector
apiVersion: kubevirt.io/v1
kind: VirtualMachine
spec:
  template:
    spec:
      nodeSelector:
        example-key-1: example-value-1
        example-key-2: example-value-2
...

metadata:
  name: example-vm-pod-affinity
apiVersion: kubevirt.io/v1
kind: VirtualMachine
spec:
  affinity:
    podAffinity:
      requiredDuringSchedulingIgnoredDuringExecution: 1
      - labelSelector:
          matchExpressions:
          - key: example-key-1
            operator: In

CHAPTER 9. VIRTUAL MACHINES

119



1

2

If you use the requiredDuringSchedulingIgnoredDuringExecution rule type, the VM is not
scheduled if the constraint is not met.

If you use the preferredDuringSchedulingIgnoredDuringExecution rule type, the VM is still
scheduled if the constraint is not met, as long as all required constraints are met.

9.16.2.2.3. Example: VM node placement with node affinity

In this example, the VM must be scheduled on a node that has the label example.io/example-key = 
example-value-1 or the label example.io/example-key = example-value-2. The constraint is met if
only one of the labels is present on the node. If neither label is present, the VM is not scheduled.

If possible, the scheduler avoids nodes that have the label example-node-label-key = example-node-
label-value. However, if all candidate nodes have this label, the scheduler ignores this constraint.

Example VM manifest

            values:
            - example-value-1
        topologyKey: kubernetes.io/hostname
    podAntiAffinity:
      preferredDuringSchedulingIgnoredDuringExecution: 2
      - weight: 100
        podAffinityTerm:
          labelSelector:
            matchExpressions:
            - key: example-key-2
              operator: In
              values:
              - example-value-2
          topologyKey: kubernetes.io/hostname
...

metadata:
  name: example-vm-node-affinity
apiVersion: kubevirt.io/v1
kind: VirtualMachine
spec:
  affinity:
    nodeAffinity:
      requiredDuringSchedulingIgnoredDuringExecution: 1
        nodeSelectorTerms:
        - matchExpressions:
          - key: example.io/example-key
            operator: In
            values:
            - example-value-1
            - example-value-2
      preferredDuringSchedulingIgnoredDuringExecution: 2
      - weight: 1
        preference:
          matchExpressions:
          - key: example-node-label-key
            operator: In

OpenShift Container Platform 4.11 Virtualization

120



1

2

If you use the requiredDuringSchedulingIgnoredDuringExecution rule type, the VM is not
scheduled if the constraint is not met.

If you use the preferredDuringSchedulingIgnoredDuringExecution rule type, the VM is still
scheduled if the constraint is not met, as long as all required constraints are met.

9.16.2.2.4. Example: VM node placement with tolerations

In this example, nodes that are reserved for virtual machines are already labeled with the 
key=virtualization:NoSchedule taint. Because this virtual machine has matching tolerations, it can
schedule onto the tainted nodes.

NOTE

A virtual machine that tolerates a taint is not required to schedule onto a node with that
taint.

Example VM manifest

9.16.2.3. Additional resources

Specifying nodes for virtualization components

Placing pods on specific nodes using node selectors

Controlling pod placement on nodes using node affinity rules

Controlling pod placement using node taints

9.16.3. Configuring certificate rotation

Configure certificate rotation parameters to replace existing certificates.

9.16.3.1. Configuring certificate rotation

You can do this during OpenShift Virtualization installation in the web console or after installation in the 
HyperConverged custom resource (CR).

            values:
            - example-node-label-value
...

metadata:
  name: example-vm-tolerations
apiVersion: kubevirt.io/v1
kind: VirtualMachine
spec:
  tolerations:
  - key: "key"
    operator: "Equal"
    value: "virtualization"
    effect: "NoSchedule"
...

CHAPTER 9. VIRTUAL MACHINES

121

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/virtualization/#virt-specifying-nodes-for-virtualization-components
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/nodes/#nodes-scheduler-node-selectors
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/nodes/#nodes-scheduler-node-affinity
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/nodes/#nodes-scheduler-taints-tolerations


1

2

3

Procedure

1. Open the HyperConverged CR by running the following command:

2. Edit the spec.certConfig fields as shown in the following example. To avoid overloading the
system, ensure that all values are greater than or equal to 10 minutes. Express all values as
strings that comply with the golang ParseDuration format.

The value of ca.renewBefore must be less than or equal to the value of ca.duration.

The value of server.duration must be less than or equal to the value of ca.duration.

The value of server.renewBefore must be less than or equal to the value of 
server.duration.

3. Apply the YAML file to your cluster.

9.16.3.2. Troubleshooting certificate rotation parameters

Deleting one or more certConfig values causes them to revert to the default values, unless the default
values conflict with one of the following conditions:

The value of ca.renewBefore must be less than or equal to the value of ca.duration.

The value of server.duration must be less than or equal to the value of ca.duration.

The value of server.renewBefore must be less than or equal to the value of server.duration.

If the default values conflict with these conditions, you will receive an error.

If you remove the server.duration value in the following example, the default value of 24h0m0s is
greater than the value of ca.duration, conflicting with the specified conditions.

Example

$ oc edit hco -n openshift-cnv kubevirt-hyperconverged

apiVersion: hco.kubevirt.io/v1beta1
kind: HyperConverged
metadata:
 name: kubevirt-hyperconverged
 namespace: openshift-cnv
spec:
  certConfig:
    ca:
      duration: 48h0m0s
      renewBefore: 24h0m0s 1
    server:
      duration: 24h0m0s  2
      renewBefore: 12h0m0s  3

certConfig:
   ca:
     duration: 4h0m0s

OpenShift Container Platform 4.11 Virtualization

122

https://golang.org/pkg/time/#ParseDuration


This results in the following error message:

The error message only mentions the first conflict. Review all certConfig values before you proceed.

9.16.4. Using UEFI mode for virtual machines

You can boot a virtual machine (VM) in Unified Extensible Firmware Interface (UEFI) mode.

9.16.4.1. About UEFI mode for virtual machines

Unified Extensible Firmware Interface (UEFI), like legacy BIOS, initializes hardware components and
operating system image files when a computer starts. UEFI supports more modern features and
customization options than BIOS, enabling faster boot times.

It stores all the information about initialization and startup in a file with a .efi extension, which is stored
on a special partition called EFI System Partition (ESP). The ESP also contains the boot loader programs
for the operating system that is installed on the computer.

9.16.4.2. Booting virtual machines in UEFI mode

You can configure a virtual machine to boot in UEFI mode by editing the VirtualMachine manifest.

Prerequisites

Install the OpenShift CLI (oc).

Procedure

1. Edit or create a VirtualMachine manifest file. Use the spec.firmware.bootloader stanza to
configure UEFI mode:

Booting in UEFI mode with secure boot active

     renewBefore: 1h0m0s
   server:
     duration: 4h0m0s
     renewBefore: 4h0m0s

error: hyperconvergeds.hco.kubevirt.io "kubevirt-hyperconverged" could not be patched: admission 
webhook "validate-hco.kubevirt.io" denied the request: spec.certConfig: ca.duration is smaller than 
server.duration

apiversion: kubevirt.io/v1
kind: VirtualMachine
metadata:
  labels:
    special: vm-secureboot
  name: vm-secureboot
spec:
  template:
    metadata:
      labels:
        special: vm-secureboot
    spec:

CHAPTER 9. VIRTUAL MACHINES

123



1

2

OpenShift Virtualization requires System Management Mode (SMM) to be enabled for
Secure Boot in UEFI mode to occur.

OpenShift Virtualization supports a VM with or without Secure Boot when using UEFI
mode. If Secure Boot is enabled, then UEFI mode is required. However, UEFI mode can be
enabled without using Secure Boot.

2. Apply the manifest to your cluster by running the following command:

9.16.5. Configuring PXE booting for virtual machines

PXE booting, or network booting, is available in OpenShift Virtualization. Network booting allows a
computer to boot and load an operating system or other program without requiring a locally attached
storage device. For example, you can use it to choose your desired OS image from a PXE server when
deploying a new host.

9.16.5.1. Prerequisites

A Linux bridge must be connected.

The PXE server must be connected to the same VLAN as the bridge.

9.16.5.2. PXE booting with a specified MAC address

As an administrator, you can boot a client over the network by first creating a 
NetworkAttachmentDefinition object for your PXE network. Then, reference the network attachment
definition in your virtual machine instance configuration file before you start the virtual machine
instance. You can also specify a MAC address in the virtual machine instance configuration file, if
required by the PXE server.

Prerequisites

A Linux bridge must be connected.

The PXE server must be connected to the same VLAN as the bridge.

      domain:
        devices:
          disks:
          - disk:
              bus: virtio
            name: containerdisk
        features:
          acpi: {}
          smm:
            enabled: true 1
        firmware:
          bootloader:
            efi:
              secureBoot: true 2
...

$ oc create -f <file_name>.yaml

OpenShift Container Platform 4.11 Virtualization

124

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/virtualization/#virt-attaching-vm-multiple-networks


1

2

Procedure

1. Configure a PXE network on the cluster:

a. Create the network attachment definition file for PXE network pxe-net-conf:

Optional: The VLAN tag.

The cnv-tuning plugin provides support for custom MAC addresses.

NOTE

The virtual machine instance will be attached to the bridge br1 through an
access port with the requested VLAN.

2. Create the network attachment definition by using the file you created in the previous step:

3. Edit the virtual machine instance configuration file to include the details of the interface and
network.

a. Specify the network and MAC address, if required by the PXE server. If the MAC address is
not specified, a value is assigned automatically.
Ensure that bootOrder is set to 1 so that the interface boots first. In this example, the
interface is connected to a network called <pxe-net>:

apiVersion: "k8s.cni.cncf.io/v1"
kind: NetworkAttachmentDefinition
metadata:
  name: pxe-net-conf
spec:
  config: '{
    "cniVersion": "0.3.1",
    "name": "pxe-net-conf",
    "plugins": [
      {
        "type": "cnv-bridge",
        "bridge": "br1",
        "vlan": 1 1
      },
      {
        "type": "cnv-tuning" 2
      }
    ]
  }'

$ oc create -f pxe-net-conf.yaml

interfaces:
- masquerade: {}
  name: default
- bridge: {}
  name: pxe-net
  macAddress: de:00:00:00:00:de
  bootOrder: 1

CHAPTER 9. VIRTUAL MACHINES

125



NOTE

Boot order is global for interfaces and disks.

b. Assign a boot device number to the disk to ensure proper booting after operating system
provisioning.
Set the disk bootOrder value to 2:

c. Specify that the network is connected to the previously created network attachment
definition. In this scenario, <pxe-net> is connected to the network attachment definition
called <pxe-net-conf>:

4. Create the virtual machine instance:

Example output

1. Wait for the virtual machine instance to run:

2. View the virtual machine instance using VNC:

3. Watch the boot screen to verify that the PXE boot is successful.

4. Log in to the virtual machine instance:

5. Verify the interfaces and MAC address on the virtual machine and that the interface connected
to the bridge has the specified MAC address. In this case, we used eth1 for the PXE boot,

devices:
  disks:
  - disk:
      bus: virtio
    name: containerdisk
    bootOrder: 2

networks:
- name: default
  pod: {}
- name: pxe-net
  multus:
    networkName: pxe-net-conf

$ oc create -f vmi-pxe-boot.yaml

  virtualmachineinstance.kubevirt.io "vmi-pxe-boot" created

$ oc get vmi vmi-pxe-boot -o yaml | grep -i phase
  phase: Running

$ virtctl vnc vmi-pxe-boot

$ virtctl console vmi-pxe-boot

OpenShift Container Platform 4.11 Virtualization

126



without an IP address. The other interface, eth0, got an IP address from OpenShift Container
Platform.

Example output

9.16.5.3. OpenShift Virtualization networking glossary

OpenShift Virtualization provides advanced networking functionality by using custom resources and
plugins.

The following terms are used throughout OpenShift Virtualization documentation:

Container Network Interface (CNI)

a Cloud Native Computing Foundation project, focused on container network connectivity.
OpenShift Virtualization uses CNI plugins to build upon the basic Kubernetes networking
functionality.

Multus

a "meta" CNI plugin that allows multiple CNIs to exist so that a pod or virtual machine can use the
interfaces it needs.

Custom resource definition (CRD)

a Kubernetes API resource that allows you to define custom resources, or an object defined by using
the CRD API resource.

Network attachment definition (NAD)

a CRD introduced by the Multus project that allows you to attach pods, virtual machines, and virtual
machine instances to one or more networks.

Node network configuration policy (NNCP)

a description of the requested network configuration on nodes. You update the node network
configuration, including adding and removing interfaces, by applying a 
NodeNetworkConfigurationPolicy manifest to the cluster.

Preboot eXecution Environment (PXE)

an interface that enables an administrator to boot a client machine from a server over the network.
Network booting allows you to remotely load operating systems and other software onto the client.

9.16.6. Using huge pages with virtual machines

You can use huge pages as backing memory for virtual machines in your cluster.

9.16.6.1. Prerequisites

Nodes must have pre-allocated huge pages configured.

9.16.6.2. What huge pages do

Memory is managed in blocks known as pages. On most systems, a page is 4Ki. 1Mi of memory is equal to

$ ip addr

...
3. eth1: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN group default qlen 1000
   link/ether de:00:00:00:00:de brd ff:ff:ff:ff:ff:ff

CHAPTER 9. VIRTUAL MACHINES

127

https://www.cncf.io/
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/scalability_and_performance/#configuring-huge-pages_huge-pages


256 pages; 1Gi of memory is 256,000 pages, and so on. CPUs have a built-in memory management unit
that manages a list of these pages in hardware. The Translation Lookaside Buffer (TLB) is a small
hardware cache of virtual-to-physical page mappings. If the virtual address passed in a hardware
instruction can be found in the TLB, the mapping can be determined quickly. If not, a TLB miss occurs,
and the system falls back to slower, software-based address translation, resulting in performance issues.
Since the size of the TLB is fixed, the only way to reduce the chance of a TLB miss is to increase the
page size.

A huge page is a memory page that is larger than 4Ki. On x86_64 architectures, there are two common
huge page sizes: 2Mi and 1Gi. Sizes vary on other architectures. To use huge pages, code must be
written so that applications are aware of them. Transparent Huge Pages (THP) attempt to automate the
management of huge pages without application knowledge, but they have limitations. In particular, they
are limited to 2Mi page sizes. THP can lead to performance degradation on nodes with high memory
utilization or fragmentation due to defragmenting efforts of THP, which can lock memory pages. For this
reason, some applications may be designed to (or recommend) usage of pre-allocated huge pages
instead of THP.

In OpenShift Virtualization, virtual machines can be configured to consume pre-allocated huge pages.

9.16.6.3. Configuring huge pages for virtual machines

You can configure virtual machines to use pre-allocated huge pages by including the 
memory.hugepages.pageSize and resources.requests.memory parameters in your virtual machine
configuration.

The memory request must be divisible by the page size. For example, you cannot request 500Mi
memory with a page size of 1Gi.

NOTE

The memory layouts of the host and the guest OS are unrelated. Huge pages requested
in the virtual machine manifest apply to QEMU. Huge pages inside the guest can only be
configured based on the amount of available memory of the virtual machine instance.

If you edit a running virtual machine, the virtual machine must be rebooted for the changes to take
effect.

Prerequisites

Nodes must have pre-allocated huge pages configured.

Procedure

1. In your virtual machine configuration, add the resources.requests.memory and 
memory.hugepages.pageSize parameters to the spec.domain. The following configuration
snippet is for a virtual machine that requests a total of 4Gi memory with a page size of 1Gi:

kind: VirtualMachine
...
spec:
  domain:
    resources:
      requests:
        memory: "4Gi" 1
    memory:

OpenShift Container Platform 4.11 Virtualization

128



1

2

The total amount of memory requested for the virtual machine. This value must be divisible
by the page size.

The size of each huge page. Valid values for x86_64 architecture are 1Gi and 2Mi. The
page size must be smaller than the requested memory.

2. Apply the virtual machine configuration:

9.16.7. Enabling dedicated resources for virtual machines

To improve performance, you can dedicate node resources, such as CPU, to a virtual machine.

9.16.7.1. About dedicated resources

When you enable dedicated resources for your virtual machine, your virtual machine’s workload is
scheduled on CPUs that will not be used by other processes. By using dedicated resources, you can
improve the performance of the virtual machine and the accuracy of latency predictions.

9.16.7.2. Prerequisites

The CPU Manager must be configured on the node. Verify that the node has the cpumanager 
= true label before scheduling virtual machine workloads.

The virtual machine must be powered off.

9.16.7.3. Enabling dedicated resources for a virtual machine

You enable dedicated resources for a virtual machine in the Details tab. Virtual machines that were
created from a Red Hat template can be configured with dedicated resources.

Procedure

1. In the OpenShift Container Platform console, click Virtualization → VirtualMachines from the
side menu.

2. Select a virtual machine to open the VirtualMachine details page.

3. On the Scheduling tab, click the pencil icon beside Dedicated Resources.

4. Select Schedule this workload with dedicated resources (guaranteed policy).

5. Click Save.

9.16.8. Scheduling virtual machines

You can schedule a virtual machine (VM) on a node by ensuring that the VM’s CPU model and policy

      hugepages:
        pageSize: "1Gi" 2
...

$ oc apply -f <virtual_machine>.yaml

CHAPTER 9. VIRTUAL MACHINES

129

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/scalability_and_performance/#using-cpu-manager-and-topology-manager


You can schedule a virtual machine (VM) on a node by ensuring that the VM’s CPU model and policy
attribute are matched for compatibility with the CPU models and policy attributes supported by the
node.

9.16.8.1. Policy attributes

You can schedule a virtual machine (VM) by specifying a policy attribute and a CPU feature that is
matched for compatibility when the VM is scheduled on a node. A policy attribute specified for a VM
determines how that VM is scheduled on a node.

Policy attribute Description

force The VM is forced to be scheduled on a node. This is true even if the host
CPU does not support the VM’s CPU.

require Default policy that applies to a VM if the VM is not configured with a
specific CPU model and feature specification. If a node is not configured to
support CPU node discovery with this default policy attribute or any one of
the other policy attributes, VMs are not scheduled on that node. Either the
host CPU must support the VM’s CPU or the hypervisor must be able to
emulate the supported CPU model.

optional The VM is added to a node if that VM is supported by the host’s physical
machine CPU.

disable The VM cannot be scheduled with CPU node discovery.

forbid The VM is not scheduled even if the feature is supported by the host CPU
and CPU node discovery is enabled.

9.16.8.2. Setting a policy attribute and CPU feature

You can set a policy attribute and CPU feature for each virtual machine (VM) to ensure that it is
scheduled on a node according to policy and feature. The CPU feature that you set is verified to ensure
that it is supported by the host CPU or emulated by the hypervisor.

Procedure

Edit the domain spec of your VM configuration file. The following example sets the CPU
feature and the require policy for a virtual machine (VM):

apiVersion: kubevirt.io/v1
kind: VirtualMachine
metadata:
  name: myvm
spec:
  template:
    spec:
      domain:
        cpu:

OpenShift Container Platform 4.11 Virtualization

130



1

2

1

Name of the CPU feature for the VM.

Policy attribute for the VM.

9.16.8.3. Scheduling virtual machines with the supported CPU model

You can configure a CPU model for a virtual machine (VM) to schedule it on a node where its CPU
model is supported.

Procedure

Edit the domain spec of your virtual machine configuration file. The following example shows a
specific CPU model defined for a VM:

CPU model for the VM.

9.16.8.4. Scheduling virtual machines with the host model

When the CPU model for a virtual machine (VM) is set to host-model, the VM inherits the CPU model of
the node where it is scheduled.

Procedure

Edit the domain spec of your VM configuration file. The following example shows host-model
being specified for the virtual machine:

          features:
            - name: apic 1
              policy: require 2

apiVersion: kubevirt.io/v1
kind: VirtualMachine
metadata:
  name: myvm
spec:
  template:
    spec:
      domain:
        cpu:
          model: Conroe 1

apiVersion: kubevirt/v1alpha3
kind: VirtualMachine
metadata:
  name: myvm
spec:
  template:
    spec:
      domain:
        cpu:
          model: host-model 1

CHAPTER 9. VIRTUAL MACHINES

131



1 The VM that inherits the CPU model of the node where it is scheduled.

9.16.9. Configuring PCI passthrough

The Peripheral Component Interconnect (PCI) passthrough feature enables you to access and manage
hardware devices from a virtual machine. When PCI passthrough is configured, the PCI devices function
as if they were physically attached to the guest operating system.

Cluster administrators can expose and manage host devices that are permitted to be used in the cluster
by using the oc command-line interface (CLI).

9.16.9.1. About preparing a host device for PCI passthrough

To prepare a host device for PCI passthrough by using the CLI, create a MachineConfig object and add
kernel arguments to enable the Input-Output Memory Management Unit (IOMMU). Bind the PCI device
to the Virtual Function I/O (VFIO) driver and then expose it in the cluster by editing the 
permittedHostDevices field of the HyperConverged custom resource (CR). The 
permittedHostDevices list is empty when you first install the OpenShift Virtualization Operator.

To remove a PCI host device from the cluster by using the CLI, delete the PCI device information from
the HyperConverged CR.

9.16.9.1.1. Adding kernel arguments to enable the IOMMU driver

To enable the IOMMU (Input-Output Memory Management Unit) driver in the kernel, create the 
MachineConfig object and add the kernel arguments.

Prerequisites

Administrative privilege to a working OpenShift Container Platform cluster.

Intel or AMD CPU hardware.

Intel Virtualization Technology for Directed I/O extensions or AMD IOMMU in the BIOS (Basic
Input/Output System) is enabled.

Procedure

1. Create a MachineConfig object that identifies the kernel argument. The following example
shows a kernel argument for an Intel CPU.

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
  labels:
    machineconfiguration.openshift.io/role: worker 1
  name: 100-worker-iommu 2
spec:
  config:
    ignition:
      version: 3.2.0
  kernelArguments:
      - intel_iommu=on 3
...

OpenShift Container Platform 4.11 Virtualization

132



1

2

3

Applies the new kernel argument only to worker nodes.

The name indicates the ranking of this kernel argument (100) among the machine configs
and its purpose. If you have an AMD CPU, specify the kernel argument as amd_iommu=on.

Identifies the kernel argument as intel_iommu for an Intel CPU.

2. Create the new MachineConfig object:

Verification

Verify that the new MachineConfig object was added.

9.16.9.1.2. Binding PCI devices to the VFIO driver

To bind PCI devices to the VFIO (Virtual Function I/O) driver, obtain the values for vendor-ID and 
device-ID from each device and create a list with the values. Add this list to the MachineConfig object.
The MachineConfig Operator generates the /etc/modprobe.d/vfio.conf on the nodes with the PCI
devices, and binds the PCI devices to the VFIO driver.

Prerequisites

You added kernel arguments to enable IOMMU for the CPU.

Procedure

1. Run the lspci command to obtain the vendor-ID and the device-ID for the PCI device.

Example output

2. Create a Butane config file, 100-worker-vfiopci.bu, binding the PCI device to the VFIO driver.

NOTE

See "Creating machine configs with Butane" for information about Butane.

Example

$ oc create -f 100-worker-kernel-arg-iommu.yaml

$ oc get MachineConfig

$ lspci -nnv | grep -i nvidia

02:01.0 3D controller [0302]: NVIDIA Corporation GV100GL [Tesla V100 PCIe 32GB] 
[10de:1eb8] (rev a1)

variant: openshift
version: 4.11.0
metadata:

CHAPTER 9. VIRTUAL MACHINES

133



1

2

3

Applies the new kernel argument only to worker nodes.

Specify the previously determined vendor-ID value (10de) and the device-ID value (1eb8)
to bind a single device to the VFIO driver. You can add a list of multiple devices with their
vendor and device information.

The file that loads the vfio-pci kernel module on the worker nodes.

3. Use Butane to generate a MachineConfig object file, 100-worker-vfiopci.yaml, containing the
configuration to be delivered to the worker nodes:

4. Apply the MachineConfig object to the worker nodes:

5. Verify that the MachineConfig object was added.

Example output

  name: 100-worker-vfiopci
  labels:
    machineconfiguration.openshift.io/role: worker 1
storage:
  files:
  - path: /etc/modprobe.d/vfio.conf
    mode: 0644
    overwrite: true
    contents:
      inline: |
        options vfio-pci ids=10de:1eb8 2
  - path: /etc/modules-load.d/vfio-pci.conf 3
    mode: 0644
    overwrite: true
    contents:
      inline: vfio-pci

$ butane 100-worker-vfiopci.bu -o 100-worker-vfiopci.yaml

$ oc apply -f 100-worker-vfiopci.yaml

$ oc get MachineConfig

NAME                             GENERATEDBYCONTROLLER                      IGNITIONVERSION  
AGE
00-master                        d3da910bfa9f4b599af4ed7f5ac270d55950a3a1   3.2.0            25h
00-worker                        d3da910bfa9f4b599af4ed7f5ac270d55950a3a1   3.2.0            25h
01-master-container-runtime      d3da910bfa9f4b599af4ed7f5ac270d55950a3a1   3.2.0            
25h
01-master-kubelet                d3da910bfa9f4b599af4ed7f5ac270d55950a3a1   3.2.0            
25h
01-worker-container-runtime      d3da910bfa9f4b599af4ed7f5ac270d55950a3a1   3.2.0            
25h
01-worker-kubelet                d3da910bfa9f4b599af4ed7f5ac270d55950a3a1   3.2.0            

OpenShift Container Platform 4.11 Virtualization

134



Verification

Verify that the VFIO driver is loaded.

The output confirms that the VFIO driver is being used.

Example output

04:00.0 3D controller [0302]: NVIDIA Corporation GP102GL [Tesla P40] [10de:1eb8] (rev a1)
        Subsystem: NVIDIA Corporation Device [10de:1eb8]
        Kernel driver in use: vfio-pci
        Kernel modules: nouveau

9.16.9.1.3. Exposing PCI host devices in the cluster using the CLI

To expose PCI host devices in the cluster, add details about the PCI devices to the 
spec.permittedHostDevices.pciHostDevices array of the HyperConverged custom resource (CR).

Procedure

1. Edit the HyperConverged CR in your default editor by running the following command:

2. Add the PCI device information to the spec.permittedHostDevices.pciHostDevices array. For
example:

Example configuration file

25h
100-worker-iommu                                                            3.2.0            30s
100-worker-vfiopci-configuration                                            3.2.0            30s

$ lspci -nnk -d 10de:

$ oc edit hyperconverged kubevirt-hyperconverged -n openshift-cnv

apiVersion: hco.kubevirt.io/v1
kind: HyperConverged
metadata:
  name: kubevirt-hyperconverged
  namespace: openshift-cnv
spec:
  permittedHostDevices: 1
    pciHostDevices: 2
    - pciDeviceSelector: "10DE:1DB6" 3
      resourceName: "nvidia.com/GV100GL_Tesla_V100" 4
    - pciDeviceSelector: "10DE:1EB8"
      resourceName: "nvidia.com/TU104GL_Tesla_T4"
    - pciDeviceSelector: "8086:6F54"
      resourceName: "intel.com/qat"
      externalResourceProvider: true 5
...

CHAPTER 9. VIRTUAL MACHINES

135



1

2

3

4

5

The host devices that are permitted to be used in the cluster.

The list of PCI devices available on the node.

The vendor-ID and the device-ID required to identify the PCI device.

The name of a PCI host device.

Optional: Setting this field to true indicates that the resource is provided by an external
device plugin. OpenShift Virtualization allows the usage of this device in the cluster but
leaves the allocation and monitoring to an external device plugin.

NOTE

The above example snippet shows two PCI host devices that are named 
nvidia.com/GV100GL_Tesla_V100 and nvidia.com/TU104GL_Tesla_T4 added
to the list of permitted host devices in the HyperConverged CR. These devices
have been tested and verified to work with OpenShift Virtualization.

3. Save your changes and exit the editor.

Verification

Verify that the PCI host devices were added to the node by running the following command.
The example output shows that there is one device each associated with the 
nvidia.com/GV100GL_Tesla_V100, nvidia.com/TU104GL_Tesla_T4, and intel.com/qat
resource names.

Example output

$ oc describe node <node_name>

Capacity:
  cpu:                            64
  devices.kubevirt.io/kvm:        110
  devices.kubevirt.io/tun:        110
  devices.kubevirt.io/vhost-net:  110
  ephemeral-storage:              915128Mi
  hugepages-1Gi:                  0
  hugepages-2Mi:                  0
  memory:                         131395264Ki
  nvidia.com/GV100GL_Tesla_V100   1
  nvidia.com/TU104GL_Tesla_T4     1
  intel.com/qat:                  1
  pods:                           250
Allocatable:
  cpu:                            63500m
  devices.kubevirt.io/kvm:        110
  devices.kubevirt.io/tun:        110
  devices.kubevirt.io/vhost-net:  110
  ephemeral-storage:              863623130526
  hugepages-1Gi:                  0
  hugepages-2Mi:                  0
  memory:                         130244288Ki

OpenShift Container Platform 4.11 Virtualization

136



9.16.9.1.4. Removing PCI host devices from the cluster using the CLI

To remove a PCI host device from the cluster, delete the information for that device from the 
HyperConverged custom resource (CR).

Procedure

1. Edit the HyperConverged CR in your default editor by running the following command:

2. Remove the PCI device information from the spec.permittedHostDevices.pciHostDevices
array by deleting the pciDeviceSelector, resourceName and externalResourceProvider (if
applicable) fields for the appropriate device. In this example, the intel.com/qat resource has
been deleted.

Example configuration file

3. Save your changes and exit the editor.

Verification

Verify that the PCI host device was removed from the node by running the following command.
The example output shows that there are zero devices associated with the intel.com/qat
resource name.

Example output

  nvidia.com/GV100GL_Tesla_V100   1
  nvidia.com/TU104GL_Tesla_T4     1
  intel.com/qat:                  1
  pods:                           250

$ oc edit hyperconverged kubevirt-hyperconverged -n openshift-cnv

apiVersion: hco.kubevirt.io/v1
kind: HyperConverged
metadata:
  name: kubevirt-hyperconverged
  namespace: openshift-cnv
spec:
  permittedHostDevices:
    pciHostDevices:
    - pciDeviceSelector: "10DE:1DB6"
      resourceName: "nvidia.com/GV100GL_Tesla_V100"
    - pciDeviceSelector: "10DE:1EB8"
      resourceName: "nvidia.com/TU104GL_Tesla_T4"
...

$ oc describe node <node_name>

Capacity:
  cpu:                            64
  devices.kubevirt.io/kvm:        110
  devices.kubevirt.io/tun:        110

CHAPTER 9. VIRTUAL MACHINES

137



1

9.16.9.2. Configuring virtual machines for PCI passthrough

After the PCI devices have been added to the cluster, you can assign them to virtual machines. The PCI
devices are now available as if they are physically connected to the virtual machines.

9.16.9.2.1. Assigning a PCI device to a virtual machine

When a PCI device is available in a cluster, you can assign it to a virtual machine and enable PCI
passthrough.

Procedure

Assign the PCI device to a virtual machine as a host device.

Example

The name of the PCI device that is permitted on the cluster as a host device. The virtual
machine can access this host device.

Verification

  devices.kubevirt.io/vhost-net:  110
  ephemeral-storage:              915128Mi
  hugepages-1Gi:                  0
  hugepages-2Mi:                  0
  memory:                         131395264Ki
  nvidia.com/GV100GL_Tesla_V100   1
  nvidia.com/TU104GL_Tesla_T4     1
  intel.com/qat:                  0
  pods:                           250
Allocatable:
  cpu:                            63500m
  devices.kubevirt.io/kvm:        110
  devices.kubevirt.io/tun:        110
  devices.kubevirt.io/vhost-net:  110
  ephemeral-storage:              863623130526
  hugepages-1Gi:                  0
  hugepages-2Mi:                  0
  memory:                         130244288Ki
  nvidia.com/GV100GL_Tesla_V100   1
  nvidia.com/TU104GL_Tesla_T4     1
  intel.com/qat:                  0
  pods:                           250

apiVersion: kubevirt.io/v1
kind: VirtualMachine
spec:
  domain:
    devices:
      hostDevices:
      - deviceName: nvidia.com/TU104GL_Tesla_T4 1
        name: hostdevices1

OpenShift Container Platform 4.11 Virtualization

138



Use the following command to verify that the host device is available from the virtual machine.

Example output

9.16.9.3. Additional resources

Enabling Intel VT-X and AMD-V Virtualization Hardware Extensions in BIOS

Managing file permissions

Post-installation machine configuration tasks

9.16.10. Configuring vGPU passthrough

Your virtual machines can access a virtual GPU (vGPU) hardware. Assigning a vGPU to your virtual
machine allows you do the following:

Access a fraction of the underlying hardware’s GPU to achieve high performance benefits in
your virtual machine.

Streamline resource-intensive I/O operations.

IMPORTANT

vGPU passthrough can only be assigned to devices that are connected to clusters
running in a bare metal environment.

9.16.10.1. Assigning vGPU passthrough devices to a virtual machine

Use the OpenShift Container Platform web console to assign vGPU passthrough devices to your virtual
machine.

Prerequisites

The virtual machine must be stopped.

Procedure

1. In the OpenShift Container Platform web console, click Virtualization → VirtualMachines from
the side menu.

2. Select the virtual machine to which you want to assign the device.

3. On the Details tab, click GPU devices.
If you add a vGPU device as a host device, you cannot access the device with the VNC console.

4. Click Add GPU device, enter the Name and select the device from the Device name list.

5. Click Save.

$ lspci -nnk | grep NVIDIA

$ 02:01.0 3D controller [0302]: NVIDIA Corporation GV100GL [Tesla V100 PCIe 32GB] 
[10de:1eb8] (rev a1)

CHAPTER 9. VIRTUAL MACHINES

139

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/virtualization_deployment_and_administration_guide/sect-troubleshooting-enabling_intel_vt_x_and_amd_v_virtualization_hardware_extensions_in_bios
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_basic_system_settings/assembly_managing-file-permissions_configuring-basic-system-settings
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/post-installation_configuration/#post-install-machine-configuration-tasks


6. Click the YAML tab to verify that the new devices have been added to your cluster
configuration in the hostDevices section.

NOTE

You can add hardware devices to virtual machines created from customized templates or
a YAML file. You cannot add devices to pre-supplied boot source templates for specific
operating systems, such as Windows 10 or RHEL 7.

To display resources that are connected to your cluster, click Compute → Hardware
Devices from the side menu.

9.16.10.2. Additional resources

Creating virtual machines

Creating virtual machine templates

9.16.11. Configuring mediated devices

OpenShift Virtualization automatically creates mediated devices, such as virtual GPUs (vGPUs), if you
provide a list of devices in the HyperConverged custom resource (CR).

IMPORTANT

Declarative configuration of mediated devices is a Technology Preview feature only.
Technology Preview features are not supported with Red Hat production service level
agreements (SLAs) and might not be functionally complete. Red Hat does not
recommend using them in production. These features provide early access to upcoming
product features, enabling customers to test functionality and provide feedback during
the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

9.16.11.1. About using the NVIDIA GPU Operator

The NVIDIA GPU Operator manages NVIDIA GPU resources in an OpenShift Container Platform cluster
and automates tasks related to bootstrapping GPU nodes. Since the GPU is a special resource in the
cluster, you must install some components before deploying application workloads onto the GPU. These
components include the NVIDIA drivers which enables compute unified device architecture (CUDA),
Kubernetes device plugin, container runtime and others such as automatic node labelling, monitoring
and more.

NOTE

The NVIDIA GPU Operator is supported only by NVIDIA. For more information about
obtaining support from NVIDIA, see Obtaining Support from NVIDIA .

There are two ways to enable GPUs with OpenShift Container Platform OpenShift Virtualization: the
OpenShift Container Platform-native way described here and by using the NVIDIA GPU Operator.

The NVIDIA GPU Operator is a Kubernetes Operator that enables OpenShift Container Platform
OpenShift Virtualization to expose GPUs to virtualized workloads running on OpenShift Container

OpenShift Container Platform 4.11 Virtualization

140

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/virtualization/#virt-create-vms
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/virtualization/#virt-creating-vm-template
https://access.redhat.com/support/offerings/techpreview/
https://access.redhat.com/solutions/5174941


Platform. It allows users to easily provision and manage GPU-enabled virtual machines, providing them
with the ability to run complex artificial intelligence/machine learning (AI/ML) workloads on the same
platform as their other workloads. It also provides an easy way to scale the GPU capacity of their
infrastructure, allowing for rapid growth of GPU-based workloads.

For more information about using the NVIDIA GPU Operator to provision worker nodes for running
GPU-accelerated VMs, see NVIDIA GPU Operator with OpenShift Virtualization.

9.16.11.2. About using virtual GPUs with OpenShift Virtualization

Some graphics processing unit (GPU) cards support the creation of virtual GPUs (vGPUs). OpenShift
Virtualization can automatically create vGPUs and other mediated devices if an administrator provides
configuration details in the HyperConverged custom resource (CR). This automation is especially
useful for large clusters.

NOTE

Refer to your hardware vendor’s documentation for functionality and support details.

Mediated device

A physical device that is divided into one or more virtual devices. A vGPU is a type of mediated
device (mdev); the performance of the physical GPU is divided among the virtual devices. You can
assign mediated devices to one or more virtual machines (VMs), but the number of guests must be
compatible with your GPU. Some GPUs do not support multiple guests.

9.16.11.2.1. Prerequisites

If your hardware vendor provides drivers, you installed them on the nodes where you want to
create mediated devices.

If you use NVIDIA cards, you installed the NVIDIA GRID driver .

9.16.11.2.2. Configuration overview

When configuring mediated devices, an administrator must complete the following tasks:

Create the mediated devices.

Expose the mediated devices to the cluster.

The HyperConverged CR includes APIs that accomplish both tasks.

Creating mediated devices

...
spec:
  mediatedDevicesConfiguration:
    mediatedDevicesTypes: 1
    - <device_type>
    nodeMediatedDeviceTypes: 2
    - mediatedDevicesTypes: 3
      - <device_type>

CHAPTER 9. VIRTUAL MACHINES

141

https://docs.nvidia.com/datacenter/cloud-native/gpu-operator/openshift/openshift-virtualization.html
https://access.redhat.com/solutions/6738411


1

2

3

4

1

2

Required: Configures global settings for the cluster.

Optional: Overrides the global configuration for a specific node or group of nodes. Must be used
with the global mediatedDevicesTypes configuration.

Required if you use nodeMediatedDeviceTypes. Overrides the global mediatedDevicesTypes
configuration for the specified nodes.

Required if you use nodeMediatedDeviceTypes. Must include a key:value pair.

Exposing mediated devices to the cluster

Exposes the mediated devices that map to this value on the host.

NOTE

You can see the mediated device types that your device supports by viewing the
contents of /sys/bus/pci/devices/<slot>:<bus>:<domain>.
<function>/mdev_supported_types/<type>/name, substituting the correct values
for your system.

For example, the name file for the nvidia-231 type contains the selector string GRID 
T4-2Q. Using GRID T4-2Q as the mdevNameSelector value allows nodes to use the
nvidia-231 type.

The resourceName should match that allocated on the node. Find the resourceName by using the
following command:

9.16.11.2.3. How vGPUs are assigned to nodes

For each physical device, OpenShift Virtualization configures the following values:

A single mdev type.

The maximum number of instances of the selected mdev type.

      nodeSelector: 4
        <node_selector_key>: <node_selector_value>
...

...
  permittedHostDevices:
    mediatedDevices:
    - mdevNameSelector: GRID T4-2Q 1
      resourceName: nvidia.com/GRID_T4-2Q 2
...

$ oc get $NODE -o json \
  | jq '.status.allocatable \
    | with_entries(select(.key | startswith("nvidia.com/"))) \
    | with_entries(select(.value != "0"))'

OpenShift Container Platform 4.11 Virtualization

142



The cluster architecture affects how devices are created and assigned to nodes.

Large cluster with multiple cards per node

On nodes with multiple cards that can support similar vGPU types, the relevant device types are
created in a round-robin manner. For example:

In this scenario, each node has two cards, both of which support the following vGPU types:

On each node, OpenShift Virtualization creates the following vGPUs:

16 vGPUs of type nvidia-105 on the first card.

2 vGPUs of type nvidia-108 on the second card.

One node has a single card that supports more than one requested vGPU type

OpenShift Virtualization uses the supported type that comes first on the mediatedDevicesTypes
list.
For example, the card on a node card supports nvidia-223 and nvidia-224. The following 
mediatedDevicesTypes list is configured:

In this example, OpenShift Virtualization uses the nvidia-223 type.

9.16.11.2.4. About changing and removing mediated devices

The cluster’s mediated device configuration can be updated with OpenShift Virtualization by:

Editing the HyperConverged CR and change the contents of the mediatedDevicesTypes
stanza.

...
mediatedDevicesConfiguration:
  mediatedDevicesTypes:
  - nvidia-222
  - nvidia-228
  - nvidia-105
  - nvidia-108
...

nvidia-105
...
nvidia-108
nvidia-217
nvidia-299
...

...
mediatedDevicesConfiguration:
  mediatedDevicesTypes:
  - nvidia-22
  - nvidia-223
  - nvidia-224
...

CHAPTER 9. VIRTUAL MACHINES

143



Changing the node labels that match the nodeMediatedDeviceTypes node selector.

Removing the device information from the spec.mediatedDevicesConfiguration and 
spec.permittedHostDevices stanzas of the HyperConverged CR.

NOTE

If you remove the device information from the spec.permittedHostDevices
stanza without also removing it from the spec.mediatedDevicesConfiguration
stanza, you cannot create a new mediated device type on the same node. To
properly remove mediated devices, remove the device information from both
stanzas.

Depending on the specific changes, these actions cause OpenShift Virtualization to reconfigure
mediated devices or remove them from the cluster nodes.

9.16.11.2.5. Preparing hosts for mediated devices

You must enable the Input-Output Memory Management Unit (IOMMU) driver before you can
configure mediated devices.

9.16.11.2.5.1. Adding kernel arguments to enable the IOMMU driver

To enable the IOMMU (Input-Output Memory Management Unit) driver in the kernel, create the 
MachineConfig object and add the kernel arguments.

Prerequisites

Administrative privilege to a working OpenShift Container Platform cluster.

Intel or AMD CPU hardware.

Intel Virtualization Technology for Directed I/O extensions or AMD IOMMU in the BIOS (Basic
Input/Output System) is enabled.

Procedure

1. Create a MachineConfig object that identifies the kernel argument. The following example
shows a kernel argument for an Intel CPU.

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
  labels:
    machineconfiguration.openshift.io/role: worker 1
  name: 100-worker-iommu 2
spec:
  config:
    ignition:
      version: 3.2.0
  kernelArguments:
      - intel_iommu=on 3
...

OpenShift Container Platform 4.11 Virtualization

144



1

2

3

Applies the new kernel argument only to worker nodes.

The name indicates the ranking of this kernel argument (100) among the machine configs
and its purpose. If you have an AMD CPU, specify the kernel argument as amd_iommu=on.

Identifies the kernel argument as intel_iommu for an Intel CPU.

2. Create the new MachineConfig object:

Verification

Verify that the new MachineConfig object was added.

9.16.11.2.6. Adding and removing mediated devices

You can add or remove mediated devices.

9.16.11.2.6.1. Creating and exposing mediated devices

You can expose and create mediated devices such as virtual GPUs (vGPUs) by editing the 
HyperConverged custom resource (CR).

Prerequisites

You enabled the IOMMU (Input-Output Memory Management Unit) driver.

Procedure

1. Edit the HyperConverged CR in your default editor by running the following command:

2. Add the mediated device information to the HyperConverged CR spec, ensuring that you
include the mediatedDevicesConfiguration and permittedHostDevices stanzas. For example:

Example configuration file

$ oc create -f 100-worker-kernel-arg-iommu.yaml

$ oc get MachineConfig

$ oc edit hyperconverged kubevirt-hyperconverged -n openshift-cnv

apiVersion: hco.kubevirt.io/v1
kind: HyperConverged
metadata:
  name: kubevirt-hyperconverged
  namespace: openshift-cnv
spec:
  mediatedDevicesConfiguration: <.>
    mediatedDevicesTypes: <.>
    - nvidia-231
    nodeMediatedDeviceTypes: <.>
    - mediatedDevicesTypes: <.>
      - nvidia-233

CHAPTER 9. VIRTUAL MACHINES

145



<.> Creates mediated devices. <.> Required: Global mediatedDevicesTypes configuration. <.>
Optional: Overrides the global configuration for specific nodes. <.> Required if you use 
nodeMediatedDeviceTypes. <.> Exposes mediated devices to the cluster.

3. Save your changes and exit the editor.

Verification

You can verify that a device was added to a specific node by running the following command:

9.16.11.2.6.2. Removing mediated devices from the cluster using the CLI

To remove a mediated device from the cluster, delete the information for that device from the 
HyperConverged custom resource (CR).

Procedure

1. Edit the HyperConverged CR in your default editor by running the following command:

2. Remove the device information from the spec.mediatedDevicesConfiguration and 
spec.permittedHostDevices stanzas of the HyperConverged CR. Removing both entries
ensures that you can later create a new mediated device type on the same node. For example:

Example configuration file

      nodeSelector:
        kubernetes.io/hostname: node-11.redhat.com
  permittedHostDevices: <.>
    mediatedDevices:
    - mdevNameSelector: GRID T4-2Q
      resourceName: nvidia.com/GRID_T4-2Q
    - mdevNameSelector: GRID T4-8Q
      resourceName: nvidia.com/GRID_T4-8Q
...

$ oc describe node <node_name>

$ oc edit hyperconverged kubevirt-hyperconverged -n openshift-cnv

apiVersion: hco.kubevirt.io/v1
kind: HyperConverged
metadata:
  name: kubevirt-hyperconverged
  namespace: openshift-cnv
spec:
  mediatedDevicesConfiguration:
    mediatedDevicesTypes: 1
      - nvidia-231
  permittedHostDevices:
    mediatedDevices: 2
    - mdevNameSelector: GRID T4-2Q
      resourceName: nvidia.com/GRID_T4-2Q

OpenShift Container Platform 4.11 Virtualization

146



1

2

1

2

To remove the nvidia-231 device type, delete it from the mediatedDevicesTypes array.

To remove the GRID T4-2Q device, delete the mdevNameSelector field and its
corresponding resourceName field.

3. Save your changes and exit the editor.

9.16.11.3. Using mediated devices

A vGPU is a type of mediated device; the performance of the physical GPU is divided among the virtual
devices. You can assign mediated devices to one or more virtual machines.

9.16.11.3.1. Assigning a mediated device to a virtual machine

Assign mediated devices such as virtual GPUs (vGPUs) to virtual machines.

Prerequisites

The mediated device is configured in the HyperConverged custom resource.

Procedure

Assign the mediated device to a virtual machine (VM) by editing the 
spec.domain.devices.gpus stanza of the VirtualMachine manifest:

Example virtual machine manifest

The resource name associated with the mediated device.

A name to identify the device on the VM.

Verification

To verify that the device is available from the virtual machine, run the following command,
substituting <device_name> with the deviceName value from the VirtualMachine manifest:

9.16.11.4. Additional resources

Enabling Intel VT-X and AMD-V Virtualization Hardware Extensions in BIOS

apiVersion: kubevirt.io/v1
kind: VirtualMachine
spec:
  domain:
    devices:
      gpus:
      - deviceName: nvidia.com/TU104GL_Tesla_T4 1
        name: gpu1 2
      - deviceName: nvidia.com/GRID_T4-1Q
        name: gpu2

$ lspci -nnk | grep <device_name>

CHAPTER 9. VIRTUAL MACHINES

147

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/virtualization_deployment_and_administration_guide/sect-troubleshooting-enabling_intel_vt_x_and_amd_v_virtualization_hardware_extensions_in_bios


1

9.16.12. Configuring a watchdog

Expose a watchdog by configuring the virtual machine (VM) for a watchdog device, installing the
watchdog, and starting the watchdog service.

9.16.12.1. Prerequisites

The virtual machine must have kernel support for an i6300esb watchdog device. Red Hat
Enterprise Linux (RHEL) images support i6300esb.

9.16.12.2. Defining a watchdog device

Define how the watchdog proceeds when the operating system (OS) no longer responds.

Table 9.5. Available actions

poweroff The virtual machine (VM) powers down immediately. If spec.running is set to true, or 
spec.runStrategy is not set to manual, then the VM reboots.

reset The VM reboots in place and the guest OS cannot react. Because the length of time required
for the guest OS to reboot can cause liveness probes to timeout, use of this option is
discouraged. This timeout can extend the time it takes the VM to reboot if cluster-level
protections notice the liveness probe failed and forcibly reschedule it.

shutdown The VM gracefully powers down by stopping all services.

Procedure

1. Create a YAML file with the following contents:

Specify the watchdog action (poweroff, reset, or shutdown).

apiVersion: kubevirt.io/v1
kind: VirtualMachine
metadata:
  labels:
    kubevirt.io/vm: vm2-rhel84-watchdog
  name: <vm-name>
spec:
  running: false
  template:
    metadata:
     labels:
        kubevirt.io/vm: vm2-rhel84-watchdog
    spec:
      domain:
        devices:
          watchdog:
            name: <watchdog>
            i6300esb:
              action: "poweroff" 1
...

OpenShift Container Platform 4.11 Virtualization

148



The example above configures the i6300esb watchdog device on a RHEL8 VM with the
poweroff action and exposes the device as /dev/watchdog.

This device can now be used by the watchdog binary.

2. Apply the YAML file to your cluster by running the following command:

IMPORTANT

This procedure is provided for testing watchdog functionality only and must not be run on
production machines.

1. Run the following command to verify that the VM is connected to the watchdog device:

2. Run one of the following commands to confirm the watchdog is active:

Trigger a kernel panic:

Terminate the watchdog service:

9.16.12.3. Installing a watchdog device

Install the watchdog package on your virtual machine and start the watchdog service.

Procedure

1. As a root user, install the watchdog package and dependencies:

2. Uncomment the following line in the /etc/watchdog.conf file, and save the changes:

3. Enable the watchdog service to start on boot:

9.16.12.4. Additional resources

Monitoring application health by using health checks

9.16.13. Automatic importing and updating of pre-defined boot sources

$ oc apply -f <file_name>.yaml

$ lspci | grep watchdog -i

# echo c > /proc/sysrq-trigger

# pkill -9 watchdog

# yum install watchdog

#watchdog-device = /dev/watchdog

# systemctl enable --now watchdog.service

CHAPTER 9. VIRTUAL MACHINES

149

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/building_applications/#monitoring-application-health


1

You can use boot sources that are system-defined and included with OpenShift Virtualization or user-
defined, which you create. System-defined boot source imports and updates are controlled by the
product feature gate. You can enable, disable, or re-enable updates using the feature gate. User-
defined boot sources are not controlled by the product feature gate and must be individually managed
to opt in or opt out of automatic imports and updates.

IMPORTANT

As of version 4.10, OpenShift Virtualization automatically imports and updates boot
sources, unless you manually opt out or do not set a default storage class.

If you upgrade to version 4.10, you must manually enable automatic imports and updates
for boot sources from version 4.9 or earlier.

9.16.13.1. Enabling automatic boot source updates

If you have boot sources from OpenShift Virtualization 4.9 or earlier, you must manually turn on
automatic updates for these boot sources. All boot sources in OpenShift Virtualization 4.10 and later are
automatically updated by default.

To enable automatic boot source imports and updates, set the cdi.kubevirt.io/dataImportCron field to 
true for each boot source you want to update automatically.

Procedure

To turn on automatic updates for a boot source, use the following command to apply the 
dataImportCron label to the data source:

Specifying true turns on automatic updates for the rhel8 boot source.

9.16.13.2. Disabling automatic boot source updates

Disabling automatic boot source imports and updates can be helpful to reduce the number of logs in
disconnected environments or to reduce resource usage.

To disable automatic boot source imports and updates, set the 
spec.featureGates.enableCommonBootImageImport field in the HyperConverged custom resource
(CR) to false.

NOTE

User-defined boot sources are not affected by this setting.

Procedure

Use the following command to disable automatic boot source updates:

$ oc label --overwrite DataSource rhel8 -n openshift-virtualization-os-images 
cdi.kubevirt.io/dataImportCron=true 1

$ oc patch hco kubevirt-hyperconverged -n openshift-cnv \
 --type json -p '[{"op": "replace", "path": 
"/spec/featureGates/enableCommonBootImageImport", \

OpenShift Container Platform 4.11 Virtualization

150



9.16.13.3. Re-enabling automatic boot source updates

If you have previously disabled automatic boot source updates, you must manually re-enable the
feature. Set the spec.featureGates.enableCommonBootImageImport field in the HyperConverged
custom resource (CR) to true.

Procedure

Use the following command to re-enable automatic updates:

9.16.13.4. Configuring a storage class for user-defined boot source updates

You can configure a storage class that allows automatic importing and updating for user-defined boot
sources.

Procedure

1. Define a new storageClassName by editing the HyperConverged custom resource (CR).

2. Set the new default storage class by running the following commands:

9.16.13.5. Enabling automatic updates for user-defined boot sources

OpenShift Virtualization automatically updates system-defined boot sources by default, but does not
automatically update user-defined boot sources. You must manually enable automatic imports and
updates on a user-defined boot sources by editing the HyperConverged custom resource (CR).

 "value": false}]'

$ oc patch hco kubevirt-hyperconverged -n openshift-cnv --type json -p '[{"op": "replace", 
"path": "/spec/featureGates/enableCommonBootImageImport", "value": true}]'

apiVersion: hco.kubevirt.io/v1beta1
kind: HyperConverged
metadata:
  name: kubevirt-hyperconverged
spec:
  dataImportCronTemplates:
  - metadata:
      name: rhel8-image-cron
    spec:
      template:
        spec:
          storageClassName: <appropriate_class_name>
...

$ oc patch storageclass <current_default_storage_class> -p '{"metadata": {"annotations":
{"storageclass.kubernetes.io/is-default-class":"false"}}}'

$ oc patch storageclass <appropriate_storage_class> -p '{"metadata": {"annotations":
{"storageclass.kubernetes.io/is-default-class":"true"}}}'

CHAPTER 9. VIRTUAL MACHINES

151



1

2

3

4

5

Procedure

1. Use the following command to open the HyperConverged CR for editing:

2. Edit the HyperConverged CR, adding the appropriate template and boot source in the 
dataImportCronTemplates section. For example:

Example in CentOS 7

This annotation is required for storage classes with volumeBindingMode set to 
WaitForFirstConsumer.

Schedule for the job specified in cron format.

Use to create a data volume from a registry source. Use the default pod pullMethod and
not node pullMethod, which is based on the node docker cache. The node docker cache is
useful when a registry image is available via Container.Image, but the CDI importer is not
authorized to access it.

For the custom image to be detected as an available boot source, the name of the image’s 
managedDataSource must match the name of the template’s DataSource, which is found
under spec.dataVolumeTemplates.spec.sourceRef.name in the VM template YAML file.

Use All to retain data volumes and data sources when the cron job is deleted. Use None to
delete data volumes and data sources when the cron job is deleted.

9.16.13.6. Disabling an automatic update for a system-defined or user-defined boot source

$ oc edit -n openshift-cnv HyperConverged

apiVersion: hco.kubevirt.io/v1beta1
kind: HyperConverged
metadata:
  name: kubevirt-hyperconverged
spec:
  dataImportCronTemplates:
  - metadata:
      name: centos7-image-cron
      annotations:
        cdi.kubevirt.io/storage.bind.immediate.requested: "true" 1
    spec:
      schedule: "0 */12 * * *" 2
      template:
        spec:
          source:
            registry: 3
              url: docker://quay.io/containerdisks/centos:7-2009
          storage:
            resources:
              requests:
                storage: 10Gi
      managedDataSource: centos7 4
      retentionPolicy: "None" 5

OpenShift Container Platform 4.11 Virtualization

152



You can disable automatic imports and updates for a user-defined boot source and for a system-
defined boot source.

Because system-defined boot sources are not listed by default in the spec.dataImportCronTemplates
of the HyperConverged custom resource (CR), you must add the boot source and disable auto imports
and updates.

Procedure

To disable automatic imports and updates for a user-defined boot source, remove the boot
source from the spec.dataImportCronTemplates field in the custom resource list.

To disable automatic imports and updates for a system-defined boot source:

Edit the HyperConverged CR and add the boot source to 
spec.dataImportCronTemplates.

Disable automatic imports and updates by setting the 
dataimportcrontemplate.kubevirt.io/enable annotation to false. For example:

9.16.13.7. Verifying the status of a boot source

You can verify whether a boot source is system-defined or user-defined.

The status section of each boot source listed in the status.dataImportChronTemplates field of the 
HyperConverged CR indicates the type of boot source. For example, commonTemplate: true
indicates a system-defined (commonTemplate) boot source and status: {} indicates a user-defined
boot source.

Procedure

1. Use the oc get command to list the dataImportChronTemplates in the HyperConverged CR.

2. Verify the status of the boot source.

Example output

apiVersion: hco.kubevirt.io/v1beta1
kind: HyperConverged
metadata:
  name: kubevirt-hyperconverged
spec:
  dataImportCronTemplates:
  - metadata:
      annotations:
        dataimportcrontemplate.kubevirt.io/enable: false
      name: rhel8-image-cron
...

...
apiVersion: hco.kubevirt.io/v1beta1
kind: HyperConverged
...
spec:
  ...

CHAPTER 9. VIRTUAL MACHINES

153



1

2

3

4

The status field for the HyperConverged CR.

The dataImportCronTemplates field, which lists all defined boot sources.

Indicates a system-defined boot source.

Indicates a user-defined boot source.

status: 1
  ...
  dataImportCronTemplates: 2
  - metadata:
      annotations:
        cdi.kubevirt.io/storage.bind.immediate.requested: "true"
      name: centos-7-image-cron
    spec:
      garbageCollect: Outdated
      managedDataSource: centos7
      schedule: 55 8/12 * * *
      template:
        metadata: {}
        spec:
          source:
            registry:
              url: docker://quay.io/containerdisks/centos:7-2009
          storage:
            resources:
              requests:
                storage: 30Gi
        status: {}
    status:
      commonTemplate: true 3
    ...
  - metadata:
      annotations:
        cdi.kubevirt.io/storage.bind.immediate.requested: "true"
      name: user-defined-dic
    spec:
      garbageCollect: Outdated
      managedDataSource: user-defined-centos-stream8
      schedule: 55 8/12 * * *
      template:
        metadata: {}
        spec:
          source:
            registry:
              pullMethod: node
              url: docker://quay.io/containerdisks/centos-stream:8
          storage:
            resources:
              requests:
                storage: 30Gi
        status: {}
    status: {} 4
...

OpenShift Container Platform 4.11 Virtualization

154



9.16.14. Enabling descheduler evictions on virtual machines

You can use the descheduler to evict pods so that the pods can be rescheduled onto more appropriate
nodes. If the pod is a virtual machine, the pod eviction causes the virtual machine to be live migrated to
another node.

IMPORTANT

Descheduler eviction for virtual machines is a Technology Preview feature only.
Technology Preview features are not supported with Red Hat production service level
agreements (SLAs) and might not be functionally complete. Red Hat does not
recommend using them in production. These features provide early access to upcoming
product features, enabling customers to test functionality and provide feedback during
the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

9.16.14.1. Descheduler profiles

Use the Technology Preview DevPreviewLongLifecycle profile to enable the descheduler on a virtual
machine. This is the only descheduler profile currently available for OpenShift Virtualization. To ensure
proper scheduling, create VMs with CPU and memory requests for the expected load.

DevPreviewLongLifecycle

This profile balances resource usage between nodes and enables the following strategies:

RemovePodsHavingTooManyRestarts: removes pods whose containers have been
restarted too many times and pods where the sum of restarts over all containers (including
Init Containers) is more than 100. Restarting the VM guest operating system does not
increase this count.

LowNodeUtilization: evicts pods from overutilized nodes when there are any underutilized
nodes. The destination node for the evicted pod will be determined by the scheduler.

A node is considered underutilized if its usage is below 20% for all thresholds (CPU,
memory, and number of pods).

A node is considered overutilized if its usage is above 50% for any of the thresholds
(CPU, memory, and number of pods).

9.16.14.2. Installing the descheduler

The descheduler is not available by default. To enable the descheduler, you must install the Kube
Descheduler Operator from OperatorHub and enable one or more descheduler profiles.

By default, the descheduler runs in predictive mode, which means that it only simulates pod evictions.
You must change the mode to automatic for the descheduler to perform the pod evictions.

IMPORTANT

CHAPTER 9. VIRTUAL MACHINES

155

https://access.redhat.com/support/offerings/techpreview/


IMPORTANT

If you have enabled hosted control planes in your cluster, set a custom priority threshold
to lower the chance that pods in the hosted control plane namespaces are evicted. Set
the priority threshold class name to hypershift-control-plane, because it has the lowest
priority value (100000000) of the hosted control plane priority classes.

Prerequisites

Cluster administrator privileges.

Access to the OpenShift Container Platform web console.

Procedure

1. Log in to the OpenShift Container Platform web console.

2. Create the required namespace for the Kube Descheduler Operator.

a. Navigate to Administration → Namespaces and click Create Namespace.

b. Enter openshift-kube-descheduler-operator in the Name field, enter 
openshift.io/cluster-monitoring=true in the Labels field to enable descheduler metrics,
and click Create.

3. Install the Kube Descheduler Operator.

a. Navigate to Operators → OperatorHub.

b. Type Kube Descheduler Operator into the filter box.

c. Select the Kube Descheduler Operator and click Install.

d. On the Install Operator page, select A specific namespace on the cluster. Select
openshift-kube-descheduler-operator from the drop-down menu.

e. Adjust the values for the Update Channel and Approval Strategy to the desired values.

f. Click Install.

4. Create a descheduler instance.

a. From the Operators → Installed Operators page, click the Kube Descheduler Operator.

b. Select the Kube Descheduler tab and click Create KubeDescheduler.

c. Edit the settings as necessary.

i. To evict pods instead of simulating the evictions, change the Mode field to Automatic.

ii. Expand the Profiles section and select DevPreviewLongLifecycle. The 
AffinityAndTaints profile is enabled by default.

IMPORTANT

The only profile currently available for OpenShift Virtualization is 
DevPreviewLongLifecycle.

OpenShift Container Platform 4.11 Virtualization

156



1

You can also configure the profiles and settings for the descheduler later using the OpenShift CLI (oc).

9.16.14.3. Enabling descheduler evictions on a virtual machine (VM)

After the descheduler is installed, you can enable descheduler evictions on your VM by adding an
annotation to the VirtualMachine custom resource (CR).

Prerequisites

Install the descheduler in the OpenShift Container Platform web console or OpenShift CLI
(oc).

Ensure that the VM is not running.

Procedure

1. Before starting the VM, add the descheduler.alpha.kubernetes.io/evict annotation to the 
VirtualMachine CR:

2. If you did not already set the DevPreviewLongLifecycle profile in the web console during
installation, specify the DevPreviewLongLifecycle in the spec.profile section of the 
KubeDescheduler object:

By default, the descheduler does not evict pods. To evict pods, set mode to Automatic.

The descheduler is now enabled on the VM.

9.16.14.4. Additional resources

Evicting pods using the descheduler

9.17. IMPORTING VIRTUAL MACHINES

apiVersion: kubevirt.io/v1
kind: VirtualMachine
spec:
  template:
    metadata:
      annotations:
        descheduler.alpha.kubernetes.io/evict: "true"

apiVersion: operator.openshift.io/v1
kind: KubeDescheduler
metadata:
  name: cluster
  namespace: openshift-kube-descheduler-operator
spec:
  deschedulingIntervalSeconds: 3600
  profiles:
  - DevPreviewLongLifecycle
  mode: Predictive 1

CHAPTER 9. VIRTUAL MACHINES

157

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/nodes/#nodes-descheduler


9.17.1. TLS certificates for data volume imports

9.17.1.1. Adding TLS certificates for authenticating data volume imports

TLS certificates for registry or HTTPS endpoints must be added to a config map to import data from
these sources. This config map must be present in the namespace of the destination data volume.

Create the config map by referencing the relative file path for the TLS certificate.

Procedure

1. Ensure you are in the correct namespace. The config map can only be referenced by data
volumes if it is in the same namespace.

2. Create the config map:

9.17.1.2. Example: Config map created from a TLS certificate

The following example is of a config map created from ca.pem TLS certificate.

9.17.2. Importing virtual machine images with data volumes

Use the Containerized Data Importer (CDI) to import a virtual machine image into a persistent volume
claim (PVC) by using a data volume. You can attach a data volume to a virtual machine for persistent
storage.

The virtual machine image can be hosted at an HTTP or HTTPS endpoint, or built into a container disk
and stored in a container registry.

IMPORTANT

When you import a disk image into a PVC, the disk image is expanded to use the full
storage capacity that is requested in the PVC. To use this space, the disk partitions and
file system(s) in the virtual machine might need to be expanded.

The resizing procedure varies based on the operating system installed on the virtual
machine. See the operating system documentation for details.

9.17.2.1. Prerequisites
If the endpoint requires a TLS certificate, the certificate must be included in a config map  in the

$ oc get ns

$ oc create configmap <configmap-name> --from-file=</path/to/file/ca.pem>

apiVersion: v1
kind: ConfigMap
metadata:
  name: tls-certs
data:
  ca.pem: |
    -----BEGIN CERTIFICATE-----
    ... <base64 encoded cert> ...
    -----END CERTIFICATE-----

OpenShift Container Platform 4.11 Virtualization

158



If the endpoint requires a TLS certificate, the certificate must be included in a config map  in the
same namespace as the data volume and referenced in the data volume configuration.

To import a container disk:

You might need to prepare a container disk from a virtual machine image  and store it in your
container registry before importing it.

If the container registry does not have TLS, you must add the registry to the 
insecureRegistries field of the HyperConverged custom resource before you can import
a container disk from it.

You might need to define a storage class or prepare CDI scratch space  for this operation to
complete successfully.

9.17.2.2. CDI supported operations matrix

This matrix shows the supported CDI operations for content types against endpoints, and which of these
operations requires scratch space.

Content types HTTP HTTPS HTTP basic
auth

Registry Upload

KubeVirt
(QCOW2)

✓ QCOW2
✓ GZ*
✓ XZ*

✓ QCOW2**
✓ GZ*
✓ XZ*

✓ QCOW2
✓ GZ*
✓ XZ*

✓ QCOW2*
□ GZ
□ XZ

✓ QCOW2*
✓ GZ*
✓ XZ*

KubeVirt
(RAW)

✓ RAW
✓ GZ
✓ XZ

✓ RAW
✓ GZ
✓ XZ

✓ RAW
✓ GZ
✓ XZ

✓ RAW*
□ GZ
□ XZ

✓ RAW*
✓ GZ*
✓ XZ*

✓ Supported operation

□ Unsupported operation

* Requires scratch space

** Requires scratch space if a custom certificate authority is required

NOTE

CDI now uses the OpenShift Container Platform cluster-wide proxy configuration.

9.17.2.3. About data volumes

DataVolume objects are custom resources that are provided by the Containerized Data Importer (CDI)
project. Data volumes orchestrate import, clone, and upload operations that are associated with an
underlying persistent volume claim (PVC). Data volumes are integrated with OpenShift Virtualization,
and they prevent a virtual machine from being started before the PVC has been prepared.

9.17.2.4. Importing a virtual machine image into storage by using a data volume

You can import a virtual machine image into storage by using a data volume.

CHAPTER 9. VIRTUAL MACHINES

159

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/virtualization/#virt-adding-tls-certificates-for-authenticating-dv-imports_virt-tls-certificates-for-dv-imports
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/virtualization/#virt-preparing-container-disk-for-vms_virt-using-container-disks-with-vms
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/virtualization/#virt-disabling-tls-for-registry_virt-using-container-disks-with-vms
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/virtualization/#virt-defining-storageclass_virt-preparing-cdi-scratch-space
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/networking/#enable-cluster-wide-proxy


1

2

3

The virtual machine image can be hosted at an HTTP or HTTPS endpoint or the image can be built into
a container disk and stored in a container registry.

You specify the data source for the image in a VirtualMachine configuration file. When the virtual
machine is created, the data volume with the virtual machine image is imported into storage.

Prerequisites

To import a virtual machine image you must have the following:

A virtual machine disk image in RAW, ISO, or QCOW2 format, optionally compressed by
using xz or gz.

An HTTP or HTTPS endpoint where the image is hosted, along with any authentication
credentials needed to access the data source.

To import a container disk, you must have a virtual machine image built into a container disk and
stored in a container registry, along with any authentication credentials needed to access the
data source.

If the virtual machine must communicate with servers that use self-signed certificates or
certificates not signed by the system CA bundle, you must create a config map in the same
namespace as the data volume.

Procedure

1. If your data source requires authentication, create a Secret manifest, specifying the data
source credentials, and save it as endpoint-secret.yaml:

Specify the name of the Secret.

Specify the Base64-encoded key ID or user name.

Specify the Base64-encoded secret key or password.

2. Apply the Secret manifest:

3. Edit the VirtualMachine manifest, specifying the data source for the virtual machine image you
want to import, and save it as vm-fedora-datavolume.yaml:

apiVersion: kubevirt.io/v1

apiVersion: v1
kind: Secret
metadata:
  name: endpoint-secret 1
  labels:
    app: containerized-data-importer
type: Opaque
data:
  accessKeyId: "" 2
  secretKey:   "" 3

$ oc apply -f endpoint-secret.yaml

OpenShift Container Platform 4.11 Virtualization

160



1

2

3

kind: VirtualMachine
metadata:
  creationTimestamp: null
  labels:
    kubevirt.io/vm: vm-fedora-datavolume
  name: vm-fedora-datavolume 1
spec:
  dataVolumeTemplates:
  - metadata:
      creationTimestamp: null
      name: fedora-dv 2
    spec:
      storage:
        resources:
          requests:
            storage: 10Gi
        storageClassName: local
      source:
        http: 3
          url: "https://mirror.arizona.edu/fedora/linux/releases/35/Cloud/x86_64/images/Fedora-
Cloud-Base-35-1.2.x86_64.qcow2" 4
          secretRef: endpoint-secret 5
          certConfigMap: "" 6
    status: {}
  running: true
  template:
    metadata:
      creationTimestamp: null
      labels:
        kubevirt.io/vm: vm-fedora-datavolume
    spec:
      domain:
        devices:
          disks:
          - disk:
              bus: virtio
            name: datavolumedisk1
        machine:
          type: ""
        resources:
          requests:
            memory: 1.5Gi
      terminationGracePeriodSeconds: 180
      volumes:
      - dataVolume:
          name: fedora-dv
        name: datavolumedisk1
status: {}

Specify the name of the virtual machine.

Specify the name of the data volume.

Specify http for an HTTP or HTTPS endpoint. Specify registry for a container disk image
imported from a registry.

Specify the URL or registry endpoint of the virtual machine image you want to import. This

CHAPTER 9. VIRTUAL MACHINES

161



4

5

6

1

Specify the URL or registry endpoint of the virtual machine image you want to import. This
example references a virtual machine image at an HTTPS endpoint. An example of a
container registry endpoint is url: "docker://kubevirt/fedora-cloud-container-disk-
demo:latest".

Specify the Secret name if you created a Secret for the data source.

Optional: Specify a CA certificate config map.

4. Create the virtual machine:

NOTE

The oc create command creates the data volume and the virtual machine. The
CDI controller creates an underlying PVC with the correct annotation and the
import process begins. When the import is complete, the data volume status
changes to Succeeded. You can start the virtual machine.

Data volume provisioning happens in the background, so there is no need to
monitor the process.

Verification

1. The importer pod downloads the virtual machine image or container disk from the specified
URL and stores it on the provisioned PV. View the status of the importer pod by running the
following command:

2. Monitor the data volume until its status is Succeeded by running the following command:

Specify the data volume name that you defined in the VirtualMachine manifest.

3. Verify that provisioning is complete and that the virtual machine has started by accessing its
serial console:

9.17.2.5. Additional resources

Configure preallocation mode to improve write performance for data volume operations.

9.17.3. Importing virtual machine images into block storage with data volumes

You can import an existing virtual machine image into your OpenShift Container Platform cluster.
OpenShift Virtualization uses data volumes to automate the import of data and the creation of an
underlying persistent volume claim (PVC).

IMPORTANT

$ oc create -f vm-fedora-datavolume.yaml

$ oc get pods

$ oc describe dv fedora-dv 1

$ virtctl console vm-fedora-datavolume

OpenShift Container Platform 4.11 Virtualization

162

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/virtualization/#virt-using-preallocation-for-datavolumes


1

2

IMPORTANT

When you import a disk image into a PVC, the disk image is expanded to use the full
storage capacity that is requested in the PVC. To use this space, the disk partitions and
file system(s) in the virtual machine might need to be expanded.

The resizing procedure varies based on the operating system that is installed on the
virtual machine. See the operating system documentation for details.

9.17.3.1. Prerequisites

If you require scratch space according to the CDI supported operations matrix , you must first
define a storage class or prepare CDI scratch space  for this operation to complete successfully.

9.17.3.2. About data volumes

DataVolume objects are custom resources that are provided by the Containerized Data Importer (CDI)
project. Data volumes orchestrate import, clone, and upload operations that are associated with an
underlying persistent volume claim (PVC). Data volumes are integrated with OpenShift Virtualization,
and they prevent a virtual machine from being started before the PVC has been prepared.

9.17.3.3. About block persistent volumes

A block persistent volume (PV) is a PV that is backed by a raw block device. These volumes do not have
a file system and can provide performance benefits for virtual machines by reducing overhead.

Raw block volumes are provisioned by specifying volumeMode: Block in the PV and persistent volume
claim (PVC) specification.

9.17.3.4. Creating a local block persistent volume

Create a local block persistent volume (PV) on a node by populating a file and mounting it as a loop
device. You can then reference this loop device in a PV manifest as a Block volume and use it as a block
device for a virtual machine image.

Procedure

1. Log in as root to the node on which to create the local PV. This procedure uses node01 for its
examples.

2. Create a file and populate it with null characters so that it can be used as a block device. The
following example creates a file loop10 with a size of 2Gb (20 100Mb blocks):

3. Mount the loop10 file as a loop device.

File path where the loop device is mounted.

The file created in the previous step to be mounted as the loop device.

$ dd if=/dev/zero of=<loop10> bs=100M count=20

$ losetup </dev/loop10>d3 <loop10> 1  2

CHAPTER 9. VIRTUAL MACHINES

163

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/virtualization/#virt-defining-storageclass_virt-preparing-cdi-scratch-space


1

2

3

4

1

4. Create a PersistentVolume manifest that references the mounted loop device.

The path of the loop device on the node.

Specifies it is a block PV.

Optional: Set a storage class for the PV. If you omit it, the cluster default is used.

The node on which the block device was mounted.

5. Create the block PV.

The file name of the persistent volume created in the previous step.

9.17.3.5. Importing a virtual machine image into block storage by using a data volume

You can import a virtual machine image into block storage by using a data volume. You reference the
data volume in a VirtualMachine manifest before you create a virtual machine.

Prerequisites

A virtual machine disk image in RAW, ISO, or QCOW2 format, optionally compressed by using xz
or gz.

An HTTP or HTTPS endpoint where the image is hosted, along with any authentication
credentials needed to access the data source.

kind: PersistentVolume
apiVersion: v1
metadata:
  name: <local-block-pv10>
  annotations:
spec:
  local:
    path: </dev/loop10> 1
  capacity:
    storage: <2Gi>
  volumeMode: Block 2
  storageClassName: local 3
  accessModes:
    - ReadWriteOnce
  persistentVolumeReclaimPolicy: Delete
  nodeAffinity:
    required:
      nodeSelectorTerms:
      - matchExpressions:
        - key: kubernetes.io/hostname
          operator: In
          values:
          - <node01> 4

# oc create -f <local-block-pv10.yaml> 1

OpenShift Container Platform 4.11 Virtualization

164



1

2

3

1

2

3

4

Procedure

1. If your data source requires authentication, create a Secret manifest, specifying the data
source credentials, and save it as endpoint-secret.yaml:

Specify the name of the Secret.

Specify the Base64-encoded key ID or user name.

Specify the Base64-encoded secret key or password.

2. Apply the Secret manifest:

3. Create a DataVolume manifest, specifying the data source for the virtual machine image and 
Block for storage.volumeMode.

Specify the name of the data volume.

Optional: Set the storage class or omit it to accept the cluster default.

Specify the HTTP or HTTPS URL of the image to import.

Specify the Secret name if you created a Secret for the data source.

The volume mode and access mode are detected automatically for known storage

apiVersion: v1
kind: Secret
metadata:
  name: endpoint-secret 1
  labels:
    app: containerized-data-importer
type: Opaque
data:
  accessKeyId: "" 2
  secretKey:   "" 3

$ oc apply -f endpoint-secret.yaml

apiVersion: cdi.kubevirt.io/v1beta1
kind: DataVolume
metadata:
  name: import-pv-datavolume 1
spec:
  storageClassName: local 2
    source:
      http:
        url: "https://mirror.arizona.edu/fedora/linux/releases/35/Cloud/x86_64/images/Fedora-
Cloud-Base-35-1.2.x86_64.qcow2" 3
        secretRef: endpoint-secret 4
  storage:
    volumeMode: Block 5
    resources:
      requests:
        storage: 10Gi

CHAPTER 9. VIRTUAL MACHINES

165



5 The volume mode and access mode are detected automatically for known storage
provisioners. Otherwise, specify Block.

4. Create the data volume to import the virtual machine image:

You can reference this data volume in a VirtualMachine manifest before you create a virtual machine.

9.17.3.6. CDI supported operations matrix

This matrix shows the supported CDI operations for content types against endpoints, and which of these
operations requires scratch space.

Content types HTTP HTTPS HTTP basic
auth

Registry Upload

KubeVirt
(QCOW2)

✓ QCOW2
✓ GZ*
✓ XZ*

✓ QCOW2**
✓ GZ*
✓ XZ*

✓ QCOW2
✓ GZ*
✓ XZ*

✓ QCOW2*
□ GZ
□ XZ

✓ QCOW2*
✓ GZ*
✓ XZ*

KubeVirt
(RAW)

✓ RAW
✓ GZ
✓ XZ

✓ RAW
✓ GZ
✓ XZ

✓ RAW
✓ GZ
✓ XZ

✓ RAW*
□ GZ
□ XZ

✓ RAW*
✓ GZ*
✓ XZ*

✓ Supported operation

□ Unsupported operation

* Requires scratch space

** Requires scratch space if a custom certificate authority is required

NOTE

CDI now uses the OpenShift Container Platform cluster-wide proxy configuration.

9.17.3.7. Additional resources

Configure preallocation mode to improve write performance for data volume operations.

9.18. CLONING VIRTUAL MACHINES

9.18.1. Enabling user permissions to clone data volumes across namespaces

The isolating nature of namespaces means that users cannot by default clone resources between
namespaces.

To enable a user to clone a virtual machine to another namespace, a user with the cluster-admin role
must create a new cluster role. Bind this cluster role to a user to enable them to clone virtual machines to
the destination namespace.

$ oc create -f import-pv-datavolume.yaml

OpenShift Container Platform 4.11 Virtualization

166

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/networking/#enable-cluster-wide-proxy
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/virtualization/#virt-using-preallocation-for-datavolumes


1

1

9.18.1.1. Prerequisites

Only a user with the cluster-admin role can create cluster roles.

9.18.1.2. About data volumes

DataVolume objects are custom resources that are provided by the Containerized Data Importer (CDI)
project. Data volumes orchestrate import, clone, and upload operations that are associated with an
underlying persistent volume claim (PVC). Data volumes are integrated with OpenShift Virtualization,
and they prevent a virtual machine from being started before the PVC has been prepared.

9.18.1.3. Creating RBAC resources for cloning data volumes

Create a new cluster role that enables permissions for all actions for the datavolumes resource.

Procedure

1. Create a ClusterRole manifest:

Unique name for the cluster role.

2. Create the cluster role in the cluster:

The file name of the ClusterRole manifest created in the previous step.

3. Create a RoleBinding manifest that applies to both the source and destination namespaces
and references the cluster role created in the previous step.

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
  name: <datavolume-cloner> 1
rules:
- apiGroups: ["cdi.kubevirt.io"]
  resources: ["datavolumes/source"]
  verbs: ["*"]

$ oc create -f <datavolume-cloner.yaml> 1

apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
  name: <allow-clone-to-user> 1
  namespace: <Source namespace> 2
subjects:
- kind: ServiceAccount
  name: default
  namespace: <Destination namespace> 3
roleRef:
  kind: ClusterRole
  name: datavolume-cloner 4
  apiGroup: rbac.authorization.k8s.io

CHAPTER 9. VIRTUAL MACHINES

167

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/authentication_and_authorization/#default-roles_using-rbac


1

2

3

4

1

Unique name for the role binding.

The namespace for the source data volume.

The namespace to which the data volume is cloned.

The name of the cluster role created in the previous step.

4. Create the role binding in the cluster:

The file name of the RoleBinding manifest created in the previous step.

9.18.2. Cloning a virtual machine disk into a new data volume

You can clone the persistent volume claim (PVC) of a virtual machine disk into a new data volume by
referencing the source PVC in your data volume configuration file.

WARNING

Cloning operations between different volume modes are supported, such as cloning
from a persistent volume (PV) with volumeMode: Block to a PV with 
volumeMode: Filesystem.

However, you can only clone between different volume modes if they are of the 
contentType: kubevirt.

TIP

When you enable preallocation globally, or for a single data volume, the Containerized Data Importer
(CDI) preallocates disk space during cloning. Preallocation enhances write performance. For more
information, see Using preallocation for data volumes .

9.18.2.1. Prerequisites

Users need additional permissions to clone the PVC of a virtual machine disk into another
namespace.

9.18.2.2. About data volumes

DataVolume objects are custom resources that are provided by the Containerized Data Importer (CDI)
project. Data volumes orchestrate import, clone, and upload operations that are associated with an
underlying persistent volume claim (PVC). Data volumes are integrated with OpenShift Virtualization,
and they prevent a virtual machine from being started before the PVC has been prepared.

9.18.2.3. Cloning the persistent volume claim of a virtual machine disk into a new data

$ oc create -f <datavolume-cloner.yaml> 1



OpenShift Container Platform 4.11 Virtualization

168

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/virtualization/#virt-using-preallocation-for-datavolumes
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/virtualization/#virt-enabling-user-permissions-to-clone-datavolumes


1

2

3

4

9.18.2.3. Cloning the persistent volume claim of a virtual machine disk into a new data
volume

You can clone a persistent volume claim (PVC) of an existing virtual machine disk into a new data
volume. The new data volume can then be used for a new virtual machine.

NOTE

When a data volume is created independently of a virtual machine, the lifecycle of the
data volume is independent of the virtual machine. If the virtual machine is deleted,
neither the data volume nor its associated PVC is deleted.

Prerequisites

Determine the PVC of an existing virtual machine disk to use. You must power down the virtual
machine that is associated with the PVC before you can clone it.

Install the OpenShift CLI (oc).

Procedure

1. Examine the virtual machine disk you want to clone to identify the name and namespace of the
associated PVC.

2. Create a YAML file for a data volume that specifies the name of the new data volume, the name
and namespace of the source PVC, and the size of the new data volume.
For example:

The name of the new data volume.

The namespace where the source PVC exists.

The name of the source PVC.

The size of the new data volume. You must allocate enough space, or the cloning operation
fails. The size must be the same as or larger than the source PVC.

3. Start cloning the PVC by creating the data volume:

apiVersion: cdi.kubevirt.io/v1beta1
kind: DataVolume
metadata:
  name: <cloner-datavolume> 1
spec:
  source:
    pvc:
      namespace: "<source-namespace>" 2
      name: "<my-favorite-vm-disk>" 3
  pvc:
    accessModes:
      - ReadWriteOnce
    resources:
      requests:
        storage: <2Gi> 4

CHAPTER 9. VIRTUAL MACHINES

169



NOTE

Data volumes prevent a virtual machine from starting before the PVC is
prepared, so you can create a virtual machine that references the new data
volume while the PVC clones.

9.18.2.4. CDI supported operations matrix

This matrix shows the supported CDI operations for content types against endpoints, and which of these
operations requires scratch space.

Content types HTTP HTTPS HTTP basic
auth

Registry Upload

KubeVirt
(QCOW2)

✓ QCOW2
✓ GZ*
✓ XZ*

✓ QCOW2**
✓ GZ*
✓ XZ*

✓ QCOW2
✓ GZ*
✓ XZ*

✓ QCOW2*
□ GZ
□ XZ

✓ QCOW2*
✓ GZ*
✓ XZ*

KubeVirt
(RAW)

✓ RAW
✓ GZ
✓ XZ

✓ RAW
✓ GZ
✓ XZ

✓ RAW
✓ GZ
✓ XZ

✓ RAW*
□ GZ
□ XZ

✓ RAW*
✓ GZ*
✓ XZ*

✓ Supported operation

□ Unsupported operation

* Requires scratch space

** Requires scratch space if a custom certificate authority is required

9.18.3. Cloning a virtual machine by using a data volume template

You can create a new virtual machine by cloning the persistent volume claim (PVC) of an existing VM. By
including a dataVolumeTemplate in your virtual machine configuration file, you create a new data
volume from the original PVC.

WARNING

Cloning operations between different volume modes are supported, such as cloning
from a persistent volume (PV) with volumeMode: Block to a PV with 
volumeMode: Filesystem.

However, you can only clone between different volume modes if they are of the 
contentType: kubevirt.

TIP

$ oc create -f <cloner-datavolume>.yaml



OpenShift Container Platform 4.11 Virtualization

170



TIP

When you enable preallocation globally, or for a single data volume, the Containerized Data Importer
(CDI) preallocates disk space during cloning. Preallocation enhances write performance. For more
information, see Using preallocation for data volumes .

9.18.3.1. Prerequisites

Users need additional permissions to clone the PVC of a virtual machine disk into another
namespace.

9.18.3.2. About data volumes

DataVolume objects are custom resources that are provided by the Containerized Data Importer (CDI)
project. Data volumes orchestrate import, clone, and upload operations that are associated with an
underlying persistent volume claim (PVC). Data volumes are integrated with OpenShift Virtualization,
and they prevent a virtual machine from being started before the PVC has been prepared.

9.18.3.3. Creating a new virtual machine from a cloned persistent volume claim by using a
data volume template

You can create a virtual machine that clones the persistent volume claim (PVC) of an existing virtual
machine into a data volume. Reference a dataVolumeTemplate in the virtual machine manifest and the 
source PVC is cloned to a data volume, which is then automatically used for the creation of the virtual
machine.

NOTE

When a data volume is created as part of the data volume template of a virtual machine,
the lifecycle of the data volume is then dependent on the virtual machine. If the virtual
machine is deleted, the data volume and associated PVC are also deleted.

Prerequisites

Determine the PVC of an existing virtual machine disk to use. You must power down the virtual
machine that is associated with the PVC before you can clone it.

Install the OpenShift CLI (oc).

Procedure

1. Examine the virtual machine you want to clone to identify the name and namespace of the
associated PVC.

2. Create a YAML file for a VirtualMachine object. The following virtual machine example clones 
my-favorite-vm-disk, which is located in the source-namespace namespace. The 2Gi data
volume called favorite-clone is created from my-favorite-vm-disk.
For example:

apiVersion: kubevirt.io/v1
kind: VirtualMachine
metadata:
  labels:
    kubevirt.io/vm: vm-dv-clone

CHAPTER 9. VIRTUAL MACHINES

171

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/virtualization/#virt-using-preallocation-for-datavolumes
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/virtualization/#virt-enabling-user-permissions-to-clone-datavolumes


1 The virtual machine to create.

3. Create the virtual machine with the PVC-cloned data volume:

9.18.3.4. CDI supported operations matrix

This matrix shows the supported CDI operations for content types against endpoints, and which of these
operations requires scratch space.

Content types HTTP HTTPS HTTP basic
auth

Registry Upload

KubeVirt
(QCOW2)

✓ QCOW2
✓ GZ*
✓ XZ*

✓ QCOW2**
✓ GZ*
✓ XZ*

✓ QCOW2
✓ GZ*
✓ XZ*

✓ QCOW2*
□ GZ
□ XZ

✓ QCOW2*
✓ GZ*
✓ XZ*

  name: vm-dv-clone 1
spec:
  running: false
  template:
    metadata:
      labels:
        kubevirt.io/vm: vm-dv-clone
    spec:
      domain:
        devices:
          disks:
          - disk:
              bus: virtio
            name: root-disk
        resources:
          requests:
            memory: 64M
      volumes:
      - dataVolume:
          name: favorite-clone
        name: root-disk
  dataVolumeTemplates:
  - metadata:
      name: favorite-clone
    spec:
      storage:
        accessModes:
        - ReadWriteOnce
        resources:
          requests:
            storage: 2Gi
      source:
        pvc:
          namespace: "source-namespace"
          name: "my-favorite-vm-disk"

$ oc create -f <vm-clone-datavolumetemplate>.yaml

OpenShift Container Platform 4.11 Virtualization

172



KubeVirt
(RAW)

✓ RAW
✓ GZ
✓ XZ

✓ RAW
✓ GZ
✓ XZ

✓ RAW
✓ GZ
✓ XZ

✓ RAW*
□ GZ
□ XZ

✓ RAW*
✓ GZ*
✓ XZ*

Content types HTTP HTTPS HTTP basic
auth

Registry Upload

✓ Supported operation

□ Unsupported operation

* Requires scratch space

** Requires scratch space if a custom certificate authority is required

9.18.4. Cloning a virtual machine disk into a new block storage data volume

You can clone the persistent volume claim (PVC) of a virtual machine disk into a new block data volume
by referencing the source PVC in your data volume configuration file.

WARNING

Cloning operations between different volume modes are supported, such as cloning
from a persistent volume (PV) with volumeMode: Block to a PV with 
volumeMode: Filesystem.

However, you can only clone between different volume modes if they are of the 
contentType: kubevirt.

TIP

When you enable preallocation globally, or for a single data volume, the Containerized Data Importer
(CDI) preallocates disk space during cloning. Preallocation enhances write performance. For more
information, see Using preallocation for data volumes .

9.18.4.1. Prerequisites

Users need additional permissions to clone the PVC of a virtual machine disk into another
namespace.

9.18.4.2. About data volumes

DataVolume objects are custom resources that are provided by the Containerized Data Importer (CDI)
project. Data volumes orchestrate import, clone, and upload operations that are associated with an
underlying persistent volume claim (PVC). Data volumes are integrated with OpenShift Virtualization,
and they prevent a virtual machine from being started before the PVC has been prepared.

9.18.4.3. About block persistent volumes



CHAPTER 9. VIRTUAL MACHINES

173

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/virtualization/#virt-using-preallocation-for-datavolumes
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/virtualization/#virt-enabling-user-permissions-to-clone-datavolumes


1

2

A block persistent volume (PV) is a PV that is backed by a raw block device. These volumes do not have
a file system and can provide performance benefits for virtual machines by reducing overhead.

Raw block volumes are provisioned by specifying volumeMode: Block in the PV and persistent volume
claim (PVC) specification.

9.18.4.4. Creating a local block persistent volume

Create a local block persistent volume (PV) on a node by populating a file and mounting it as a loop
device. You can then reference this loop device in a PV manifest as a Block volume and use it as a block
device for a virtual machine image.

Procedure

1. Log in as root to the node on which to create the local PV. This procedure uses node01 for its
examples.

2. Create a file and populate it with null characters so that it can be used as a block device. The
following example creates a file loop10 with a size of 2Gb (20 100Mb blocks):

3. Mount the loop10 file as a loop device.

File path where the loop device is mounted.

The file created in the previous step to be mounted as the loop device.

4. Create a PersistentVolume manifest that references the mounted loop device.

$ dd if=/dev/zero of=<loop10> bs=100M count=20

$ losetup </dev/loop10>d3 <loop10> 1  2

kind: PersistentVolume
apiVersion: v1
metadata:
  name: <local-block-pv10>
  annotations:
spec:
  local:
    path: </dev/loop10> 1
  capacity:
    storage: <2Gi>
  volumeMode: Block 2
  storageClassName: local 3
  accessModes:
    - ReadWriteOnce
  persistentVolumeReclaimPolicy: Delete
  nodeAffinity:
    required:
      nodeSelectorTerms:
      - matchExpressions:
        - key: kubernetes.io/hostname

OpenShift Container Platform 4.11 Virtualization

174



1

2

3

4

1

The path of the loop device on the node.

Specifies it is a block PV.

Optional: Set a storage class for the PV. If you omit it, the cluster default is used.

The node on which the block device was mounted.

5. Create the block PV.

The file name of the persistent volume created in the previous step.

9.18.4.5. Cloning the persistent volume claim of a virtual machine disk into a new data
volume

You can clone a persistent volume claim (PVC) of an existing virtual machine disk into a new data
volume. The new data volume can then be used for a new virtual machine.

NOTE

When a data volume is created independently of a virtual machine, the lifecycle of the
data volume is independent of the virtual machine. If the virtual machine is deleted,
neither the data volume nor its associated PVC is deleted.

Prerequisites

Determine the PVC of an existing virtual machine disk to use. You must power down the virtual
machine that is associated with the PVC before you can clone it.

Install the OpenShift CLI (oc).

At least one available block persistent volume (PV) that is the same size as or larger than the
source PVC.

Procedure

1. Examine the virtual machine disk you want to clone to identify the name and namespace of the
associated PVC.

2. Create a YAML file for a data volume that specifies the name of the new data volume, the name
and namespace of the source PVC, volumeMode: Block so that an available block PV is used,
and the size of the new data volume.
For example:

          operator: In
          values:
          - <node01> 4

# oc create -f <local-block-pv10.yaml> 1

apiVersion: cdi.kubevirt.io/v1beta1
kind: DataVolume
metadata:

CHAPTER 9. VIRTUAL MACHINES

175



1

2

3

4

5

The name of the new data volume.

The namespace where the source PVC exists.

The name of the source PVC.

The size of the new data volume. You must allocate enough space, or the cloning operation
fails. The size must be the same as or larger than the source PVC.

Specifies that the destination is a block PV

3. Start cloning the PVC by creating the data volume:

NOTE

Data volumes prevent a virtual machine from starting before the PVC is
prepared, so you can create a virtual machine that references the new data
volume while the PVC clones.

9.18.4.6. CDI supported operations matrix

This matrix shows the supported CDI operations for content types against endpoints, and which of these
operations requires scratch space.

Content types HTTP HTTPS HTTP basic
auth

Registry Upload

KubeVirt
(QCOW2)

✓ QCOW2
✓ GZ*
✓ XZ*

✓ QCOW2**
✓ GZ*
✓ XZ*

✓ QCOW2
✓ GZ*
✓ XZ*

✓ QCOW2*
□ GZ
□ XZ

✓ QCOW2*
✓ GZ*
✓ XZ*

KubeVirt
(RAW)

✓ RAW
✓ GZ
✓ XZ

✓ RAW
✓ GZ
✓ XZ

✓ RAW
✓ GZ
✓ XZ

✓ RAW*
□ GZ
□ XZ

✓ RAW*
✓ GZ*
✓ XZ*

  name: <cloner-datavolume> 1
spec:
  source:
    pvc:
      namespace: "<source-namespace>" 2
      name: "<my-favorite-vm-disk>" 3
  pvc:
    accessModes:
      - ReadWriteOnce
    resources:
      requests:
        storage: <2Gi> 4
    volumeMode: Block 5

$ oc create -f <cloner-datavolume>.yaml

OpenShift Container Platform 4.11 Virtualization

176



1

✓ Supported operation

□ Unsupported operation

* Requires scratch space

** Requires scratch space if a custom certificate authority is required

9.19. VIRTUAL MACHINE NETWORKING

9.19.1. Configuring the virtual machine for the default pod network

You can connect a virtual machine to the default internal pod network by configuring its network
interface to use the masquerade binding mode

NOTE

Traffic on the virtual Network Interface Cards (vNICs) that are attached to the default
pod network is interrupted during live migration.

9.19.1.1. Configuring masquerade mode from the command line

You can use masquerade mode to hide a virtual machine’s outgoing traffic behind the pod IP address.
Masquerade mode uses Network Address Translation (NAT) to connect virtual machines to the pod
network backend through a Linux bridge.

Enable masquerade mode and allow traffic to enter the virtual machine by editing your virtual machine
configuration file.

Prerequisites

The virtual machine must be configured to use DHCP to acquire IPv4 addresses. The examples
below are configured to use DHCP.

Procedure

1. Edit the interfaces spec of your virtual machine configuration file:

Connect using masquerade mode.

Optional: List the ports that you want to expose from the virtual machine, each specified by

kind: VirtualMachine
spec:
  domain:
    devices:
      interfaces:
        - name: default
          masquerade: {} 1
          ports: 2
            - port: 80
  networks:
  - name: default
    pod: {}

CHAPTER 9. VIRTUAL MACHINES

177



2 Optional: List the ports that you want to expose from the virtual machine, each specified by
the port field. The port value must be a number between 0 and 65536. When the ports
array is not used, all ports in the valid range are open to incoming traffic. In this example,
incoming traffic is allowed on port 80.

NOTE

Ports 49152 and 49153 are reserved for use by the libvirt platform and all other
incoming traffic to these ports is dropped.

2. Create the virtual machine:

9.19.1.2. Configuring masquerade mode with dual-stack (IPv4 and IPv6)

You can configure a new virtual machine (VM) to use both IPv6 and IPv4 on the default pod network by
using cloud-init.

The Network.pod.vmIPv6NetworkCIDR field in the virtual machine instance configuration determines
the static IPv6 address of the VM and the gateway IP address. These are used by the virt-launcher pod
to route IPv6 traffic to the virtual machine and are not used externally. The 
Network.pod.vmIPv6NetworkCIDR field specifies an IPv6 address block in Classless Inter-Domain
Routing (CIDR) notation. The default value is fd10:0:2::2/120. You can edit this value based on your
network requirements.

When the virtual machine is running, incoming and outgoing traffic for the virtual machine is routed to
both the IPv4 address and the unique IPv6 address of the virt-launcher pod. The virt-launcher pod then
routes the IPv4 traffic to the DHCP address of the virtual machine, and the IPv6 traffic to the statically
set IPv6 address of the virtual machine.

Prerequisites

The OpenShift Container Platform cluster must use the OVN-Kubernetes Container Network
Interface (CNI) network provider configured for dual-stack.

Procedure

1. In a new virtual machine configuration, include an interface with masquerade and configure the
IPv6 address and default gateway by using cloud-init.

$ oc create -f <vm-name>.yaml

apiVersion: kubevirt.io/v1
kind: VirtualMachine
metadata:
  name: example-vm-ipv6
...
          interfaces:
            - name: default
              masquerade: {} 1
              ports:
                - port: 80 2
      networks:
      - name: default

OpenShift Container Platform 4.11 Virtualization

178



1

2

3

4

Connect using masquerade mode.

Allows incoming traffic on port 80 to the virtual machine.

The static IPv6 address as determined by the Network.pod.vmIPv6NetworkCIDR field in
the virtual machine instance configuration. The default value is fd10:0:2::2/120.

The gateway IP address as determined by the Network.pod.vmIPv6NetworkCIDR field in
the virtual machine instance configuration. The default value is fd10:0:2::1.

2. Create the virtual machine in the namespace:

Verification

To verify that IPv6 has been configured, start the virtual machine and view the interface status
of the virtual machine instance to ensure it has an IPv6 address:

9.19.2. Creating a service to expose a virtual machine

You can expose a virtual machine within the cluster or outside the cluster by using a Service object.

9.19.2.1. About services

A Kubernetes service is an abstract way to expose an application running on a set of pods as a network
service. Services allow your applications to receive traffic. Services can be exposed in different ways by
specifying a spec.type in the Service object:

ClusterIP

Exposes the service on an internal IP address within the cluster. ClusterIP is the default service type.

NodePort

Exposes the service on the same port of each selected node in the cluster. NodePort makes a service
accessible from outside the cluster.

LoadBalancer

Creates an external load balancer in the current cloud (if supported) and assigns a fixed, external IP
address to the service.

        pod: {}
      volumes:
      - cloudInitNoCloud:
          networkData: |
            version: 2
            ethernets:
              eth0:
                dhcp4: true
                addresses: [ fd10:0:2::2/120 ] 3
                gateway6: fd10:0:2::1 4

$ oc create -f example-vm-ipv6.yaml

$ oc get vmi <vmi-name> -o jsonpath="{.status.interfaces[*].ipAddresses}"

CHAPTER 9. VIRTUAL MACHINES

179



1

9.19.2.1.1. Dual-stack support

If IPv4 and IPv6 dual-stack networking is enabled for your cluster, you can create a service that uses
IPv4, IPv6, or both, by defining the spec.ipFamilyPolicy and the spec.ipFamilies fields in the Service
object.

The spec.ipFamilyPolicy field can be set to one of the following values:

SingleStack

The control plane assigns a cluster IP address for the service based on the first configured service
cluster IP range.

PreferDualStack

The control plane assigns both IPv4 and IPv6 cluster IP addresses for the service on clusters that
have dual-stack configured.

RequireDualStack

This option fails for clusters that do not have dual-stack networking enabled. For clusters that have
dual-stack configured, the behavior is the same as when the value is set to PreferDualStack. The
control plane allocates cluster IP addresses from both IPv4 and IPv6 address ranges.

You can define which IP family to use for single-stack or define the order of IP families for dual-stack by
setting the spec.ipFamilies field to one of the following array values:

[IPv4]

[IPv6]

[IPv4, IPv6]

[IPv6, IPv4]

9.19.2.2. Exposing a virtual machine as a service

Create a ClusterIP, NodePort, or LoadBalancer service to connect to a running virtual machine (VM)
from within or outside the cluster.

Procedure

1. Edit the VirtualMachine manifest to add the label for service creation:

Add the label special: key in the spec.template.metadata.labels section.

NOTE

apiVersion: kubevirt.io/v1
kind: VirtualMachine
metadata:
  name: vm-ephemeral
  namespace: example-namespace
spec:
  running: false
  template:
    metadata:
      labels:
        special: key 1
# ...

OpenShift Container Platform 4.11 Virtualization

180



1

2

3

4

5

6

7

NOTE

Labels on a virtual machine are passed through to the pod. The special: key
label must match the label in the spec.selector attribute of the Service
manifest.

2. Save the VirtualMachine manifest file to apply your changes.

3. Create a Service manifest to expose the VM:

The name of the Service object.

The namespace where the Service object resides. This must match the 
metadata.namespace field of the VirtualMachine manifest.

Optional: Specifies how the nodes distribute service traffic that is received on external IP
addresses. This only applies to NodePort and LoadBalancer service types. The default
value is Cluster which routes traffic evenly to all cluster endpoints.

Optional: When set, the nodePort value must be unique across all services. If not specified,
a value in the range above 30000 is dynamically allocated.

Optional: The VM port to be exposed by the service. It must reference an open port if a
port list is defined in the VM manifest. If targetPort is not specified, it takes the same value
as port.

The reference to the label that you added in the spec.template.metadata.labels stanza of
the VirtualMachine manifest.

The type of service. Possible values are ClusterIP, NodePort and LoadBalancer.

4. Save the Service manifest file.

5. Create the service by running the following command:

6. Start the VM. If the VM is already running, restart it.

apiVersion: v1
kind: Service
metadata:
  name: vmservice 1
  namespace: example-namespace 2
spec:
  externalTrafficPolicy: Cluster 3
  ports:
  - nodePort: 30000 4
    port: 27017
    protocol: TCP
    targetPort: 22 5
  selector:
    special: key 6
  type: NodePort 7

$ oc create -f <service_name>.yaml

CHAPTER 9. VIRTUAL MACHINES

181



Verification

1. Query the Service object to verify that it is available:

Example output for ClusterIP service

Example output for NodePort service

Example output for LoadBalancer service

2. Choose the appropriate method to connect to the virtual machine:

For a ClusterIP service, connect to the VM from within the cluster by using the service IP
address and the service port. For example:

For a NodePort service, connect to the VM by specifying the node IP address and the node
port outside the cluster network. For example:

For a LoadBalancer service, use the vinagre client to connect to your virtual machine by
using the public IP address and port. External ports are dynamically allocated.

9.19.2.3. Additional resources

Configuring ingress cluster traffic using a NodePort

Configuring ingress cluster traffic using a load balancer

9.19.3. Connecting a virtual machine to a Linux bridge network

By default, OpenShift Virtualization is installed with a single, internal pod network.

You must create a Linux bridge network attachment definition (NAD) in order to connect to additional
networks.

To attach a virtual machine to an additional network:

1. Create a Linux bridge node network configuration policy.

$ oc get service -n example-namespace

NAME        TYPE        CLUSTER-IP     EXTERNAL-IP   PORT(S)     AGE
vmservice   ClusterIP   172.30.3.149   <none>        27017/TCP   2m

NAME        TYPE        CLUSTER-IP     EXTERNAL-IP   PORT(S)            AGE
vmservice   NodePort    172.30.232.73   <none>       27017:30000/TCP    5m

NAME        TYPE            CLUSTER-IP     EXTERNAL-IP                    PORT(S)           AGE
vmservice   LoadBalancer    172.30.27.5   172.29.10.235,172.29.10.235     27017:31829/TCP   
5s

$ ssh fedora@172.30.3.149 -p 27017

$ ssh fedora@$NODE_IP -p 30000

OpenShift Container Platform 4.11 Virtualization

182

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/networking/#configuring-ingress-cluster-traffic-nodeport
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/networking/#configuring-ingress-cluster-traffic-load-balancer


1

2

3

4

5

6

2. Create a Linux bridge network attachment definition.

3. Configure the virtual machine, enabling the virtual machine to recognize the network
attachment definition.

For more information about scheduling, interface types, and other node networking activities, see the
node networking section.

9.19.3.1. Connecting to the network through the network attachment definition

9.19.3.1.1. Creating a Linux bridge node network configuration policy

Use a NodeNetworkConfigurationPolicy manifest YAML file to create the Linux bridge.

Prerequisites

You have installed the Kubernetes NMState Operator.

Procedure

Create the NodeNetworkConfigurationPolicy manifest. This example includes sample values
that you must replace with your own information.

Name of the policy.

Name of the interface.

Optional: Human-readable description of the interface.

The type of interface. This example creates a bridge.

The requested state for the interface after creation.

Disables IPv4 in this example.

apiVersion: nmstate.io/v1
kind: NodeNetworkConfigurationPolicy
metadata:
  name: br1-eth1-policy 1
spec:
  desiredState:
    interfaces:
      - name: br1 2
        description: Linux bridge with eth1 as a port 3
        type: linux-bridge 4
        state: up 5
        ipv4:
          enabled: false 6
        bridge:
          options:
            stp:
              enabled: false 7
          port:
            - name: eth1 8

CHAPTER 9. VIRTUAL MACHINES

183

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/networking/#k8s-nmstate-updating-node-network-config


7

8

Disables STP in this example.

The node NIC to which the bridge is attached.

9.19.3.2. Creating a Linux bridge network attachment definition

WARNING

Configuring IP address management (IPAM) in a network attachment definition for
virtual machines is not supported.

9.19.3.2.1. Creating a Linux bridge network attachment definition in the web console

Network administrators can create network attachment definitions to provide layer-2 networking to
pods and virtual machines.

Procedure

1. In the web console, click Networking → Network Attachment Definitions.

2. Click Create Network Attachment Definition.

NOTE

The network attachment definition must be in the same namespace as the pod or
virtual machine.

3. Enter a unique Name and optional Description.

4. Click the Network Type list and select CNV Linux bridge.

5. Enter the name of the bridge in the Bridge Name field.

6. Optional: If the resource has VLAN IDs configured, enter the ID numbers in the VLAN Tag
Number field.

7. Optional: Select MAC Spoof Check to enable MAC spoof filtering. This feature provides
security against a MAC spoofing attack by allowing only a single MAC address to exit the pod.

8. Click Create.

NOTE

A Linux bridge network attachment definition is the most efficient method for
connecting a virtual machine to a VLAN.

9.19.3.2.2. Creating a Linux bridge network attachment definition in the CLI

As a network administrator, you can configure a network attachment definition of type cnv-bridge to



OpenShift Container Platform 4.11 Virtualization

184



1

2

3

4

5

6

7

As a network administrator, you can configure a network attachment definition of type cnv-bridge to
provide layer-2 networking to pods and virtual machines.

Prerequisites

The node must support nftables and the nft binary must be deployed to enable MAC spoof
check.

Procedure

1. Create a network attachment definition in the same namespace as the virtual machine.

2. Add the virtual machine to the network attachment definition, as in the following example:

The name for the NetworkAttachmentDefinition object.

Optional: Annotation key-value pair for node selection, where bridge-interface must
match the name of a bridge configured on some nodes. If you add this annotation to your
network attachment definition, your virtual machine instances will only run on the nodes
that have the bridge-interface bridge connected.

The name for the configuration. It is recommended to match the configuration name to the
name value of the network attachment definition.

The actual name of the Container Network Interface (CNI) plugin that provides the
network for this network attachment definition. Do not change this field unless you want to
use a different CNI.

The name of the Linux bridge configured on the node.

Optional: Flag to enable MAC spoof check. When set to true, you cannot change the MAC
address of the pod or guest interface. This attribute provides security against a MAC
spoofing attack by allowing only a single MAC address to exit the pod.

Optional: The VLAN tag. No additional VLAN configuration is required on the node
network configuration policy.

NOTE

apiVersion: "k8s.cni.cncf.io/v1"
kind: NetworkAttachmentDefinition
metadata:
  name: <bridge-network> 1
  annotations:
    k8s.v1.cni.cncf.io/resourceName: bridge.network.kubevirt.io/<bridge-interface> 2
spec:
  config: '{
    "cniVersion": "0.3.1",
    "name": "<bridge-network>", 3
    "type": "cnv-bridge", 4
    "bridge": "<bridge-interface>", 5
    "macspoofchk": true, 6
    "vlan": 1 7
  }'

CHAPTER 9. VIRTUAL MACHINES

185



1

NOTE

A Linux bridge network attachment definition is the most efficient method for
connecting a virtual machine to a VLAN.

3. Create the network attachment definition:

Where <network-attachment-definition.yaml> is the file name of the network attachment
definition manifest.

Verification

Verify that the network attachment definition was created by running the following command:

9.19.3.3. Configuring the virtual machine for a Linux bridge network

9.19.3.3.1. Creating a NIC for a virtual machine in the web console

Create and attach additional NICs to a virtual machine from the web console.

Prerequisites

A network attachment definition must be available.

Procedure

1. In the correct project in the OpenShift Container Platform console, click Virtualization →
VirtualMachines from the side menu.

2. Select a virtual machine to open the VirtualMachine details page.

3. Click the Network Interfaces tab to view the NICs already attached to the virtual machine.

4. Click Add Network Interface to create a new slot in the list.

5. Select a network attachment definition from the Network list for the additional network.

6. Fill in the Name, Model, Type, and MAC Address for the new NIC.

7. Click Save to save and attach the NIC to the virtual machine.

9.19.3.3.2. Networking fields

Name Description

Name Name for the network interface controller.

$ oc create -f <network-attachment-definition.yaml> 1

$ oc get network-attachment-definition <bridge-network>

OpenShift Container Platform 4.11 Virtualization

186



Model Indicates the model of the network interface
controller. Supported values are e1000e and virtio.

Network List of available network attachment definitions.

Type List of available binding methods. Select the binding
method suitable for the network interface:

Default pod network: masquerade

Linux bridge network: bridge

SR-IOV network: SR-IOV

MAC Address MAC address for the network interface controller. If a
MAC address is not specified, one is assigned
automatically.

Name Description

9.19.3.3.3. Attaching a virtual machine to an additional network in the CLI

Attach a virtual machine to an additional network by adding a bridge interface and specifying a network
attachment definition in the virtual machine configuration.

This procedure uses a YAML file to demonstrate editing the configuration and applying the updated file
to the cluster. You can alternatively use the oc edit <object> <name> command to edit an existing
virtual machine.

Prerequisites

Shut down the virtual machine before editing the configuration. If you edit a running virtual
machine, you must restart the virtual machine for the changes to take effect.

Procedure

1. Create or edit a configuration of a virtual machine that you want to connect to the bridge
network.

2. Add the bridge interface to the spec.template.spec.domain.devices.interfaces list and the
network attachment definition to the spec.template.spec.networks list. This example adds a
bridge interface called bridge-net that connects to the a-bridge-network network attachment
definition:

apiVersion: kubevirt.io/v1
kind: VirtualMachine
metadata:
    name: <example-vm>
spec:
  template:
    spec:

CHAPTER 9. VIRTUAL MACHINES

187



1

2

3

The name of the bridge interface.

The name of the network. This value must match the name value of the corresponding 
spec.template.spec.domain.devices.interfaces entry.

The name of the network attachment definition, prefixed by the namespace where it exists.
The namespace must be either the default namespace or the same namespace where the
VM is to be created. In this case, multus is used. Multus is a cloud network interface (CNI)
plugin that allows multiple CNIs to exist so that a pod or virtual machine can use the
interfaces it needs.

3. Apply the configuration:

4. Optional: If you edited a running virtual machine, you must restart it for the changes to take
effect.

9.19.4. Connecting a virtual machine to an SR-IOV network

You can connect a virtual machine (VM) to a Single Root I/O Virtualization (SR-IOV) network by
performing the following steps:

1. Configure an SR-IOV network device.

2. Configure an SR-IOV network.

3. Connect the VM to the SR-IOV network.

9.19.4.1. Prerequisites

You must have enabled global SR-IOV and VT-d settings in the firmware for the host .

You must have installed the SR-IOV Network Operator .

9.19.4.2. Configuring SR-IOV network devices

The SR-IOV Network Operator adds the SriovNetworkNodePolicy.sriovnetwork.openshift.io

      domain:
        devices:
          interfaces:
            - masquerade: {}
              name: <default>
            - bridge: {}
              name: <bridge-net> 1
...
      networks:
        - name: <default>
          pod: {}
        - name: <bridge-net> 2
          multus:
            networkName: <network-namespace>/<a-bridge-network> 3
...

$ oc apply -f <example-vm.yaml>

OpenShift Container Platform 4.11 Virtualization

188

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/scalability_and_performance/#ztp-du-configuring-host-firmware-requirements_sno-configure-for-vdu
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/networking/#installing-sriov-operator


1

2

3

The SR-IOV Network Operator adds the SriovNetworkNodePolicy.sriovnetwork.openshift.io
CustomResourceDefinition to OpenShift Container Platform. You can configure an SR-IOV network
device by creating a SriovNetworkNodePolicy custom resource (CR).

NOTE

When applying the configuration specified in a SriovNetworkNodePolicy object, the SR-
IOV Operator might drain the nodes, and in some cases, reboot nodes.

It might take several minutes for a configuration change to apply.

Prerequisites

You installed the OpenShift CLI (oc).

You have access to the cluster as a user with the cluster-admin role.

You have installed the SR-IOV Network Operator.

You have enough available nodes in your cluster to handle the evicted workload from drained
nodes.

You have not selected any control plane nodes for SR-IOV network device configuration.

Procedure

1. Create an SriovNetworkNodePolicy object, and then save the YAML in the <name>-sriov-
node-network.yaml file. Replace <name> with the name for this configuration.

Specify a name for the CR object.

Specify the namespace where the SR-IOV Operator is installed.

Specify the resource name of the SR-IOV device plugin. You can create multiple 

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovNetworkNodePolicy
metadata:
  name: <name> 1
  namespace: openshift-sriov-network-operator 2
spec:
  resourceName: <sriov_resource_name> 3
  nodeSelector:
    feature.node.kubernetes.io/network-sriov.capable: "true" 4
  priority: <priority> 5
  mtu: <mtu> 6
  numVfs: <num> 7
  nicSelector: 8
    vendor: "<vendor_code>" 9
    deviceID: "<device_id>" 10
    pfNames: ["<pf_name>", ...] 11
    rootDevices: ["<pci_bus_id>", "..."] 12
  deviceType: vfio-pci 13
  isRdma: false 14

CHAPTER 9. VIRTUAL MACHINES

189



4

5

6

7

8

9

10

11

12

13

14

Specify the node selector to select which nodes are configured. Only SR-IOV network
devices on selected nodes are configured. The SR-IOV Container Network Interface (CNI)

Optional: Specify an integer value between 0 and 99. A smaller number gets higher priority,
so a priority of 10 is higher than a priority of 99. The default value is 99.

Optional: Specify a value for the maximum transmission unit (MTU) of the virtual function.
The maximum MTU value can vary for different NIC models.

Specify the number of the virtual functions (VF) to create for the SR-IOV physical network
device. For an Intel network interface controller (NIC), the number of VFs cannot be larger
than the total VFs supported by the device. For a Mellanox NIC, the number of VFs cannot
be larger than 128.

The nicSelector mapping selects the Ethernet device for the Operator to configure. You
do not need to specify values for all the parameters. It is recommended to identify the
Ethernet adapter with enough precision to minimize the possibility of selecting an Ethernet
device unintentionally. If you specify rootDevices, you must also specify a value for 
vendor, deviceID, or pfNames. If you specify both pfNames and rootDevices at the same
time, ensure that they point to an identical device.

Optional: Specify the vendor hex code of the SR-IOV network device. The only allowed
values are either 8086 or 15b3.

Optional: Specify the device hex code of SR-IOV network device. The only allowed values
are 158b, 1015, 1017.

Optional: The parameter accepts an array of one or more physical function (PF) names for
the Ethernet device.

The parameter accepts an array of one or more PCI bus addresses for the physical function
of the Ethernet device. Provide the address in the following format: 0000:02:00.1.

The vfio-pci driver type is required for virtual functions in OpenShift Virtualization.

Optional: Specify whether to enable remote direct memory access (RDMA) mode. For a
Mellanox card, set isRdma to false. The default value is false.

NOTE

If isRDMA flag is set to true, you can continue to use the RDMA enabled VF as a
normal network device. A device can be used in either mode.

2. Optional: Label the SR-IOV capable cluster nodes with 
SriovNetworkNodePolicy.Spec.NodeSelector if they are not already labeled. For more
information about labeling nodes, see "Understanding how to update labels on nodes".

3. Create the SriovNetworkNodePolicy object:

where <name> specifies the name for this configuration.

After applying the configuration update, all the pods in sriov-network-operator namespace
transition to the Running status.

$ oc create -f <name>-sriov-node-network.yaml

OpenShift Container Platform 4.11 Virtualization

190



1

2

4. To verify that the SR-IOV network device is configured, enter the following command. Replace 
<node_name> with the name of a node with the SR-IOV network device that you just
configured.

9.19.4.3. Configuring SR-IOV additional network

You can configure an additional network that uses SR-IOV hardware by creating an SriovNetwork
object.

When you create an SriovNetwork object, the SR-IOV Network Operator automatically creates a 
NetworkAttachmentDefinition object.

NOTE

Do not modify or delete an SriovNetwork object if it is attached to pods or virtual
machines in a running state.

Prerequisites

Install the OpenShift CLI (oc).

Log in as a user with cluster-admin privileges.

Procedure

1. Create the following SriovNetwork object, and then save the YAML in the <name>-sriov-
network.yaml file. Replace <name> with a name for this additional network.

Replace <name> with a name for the object. The SR-IOV Network Operator creates a 
NetworkAttachmentDefinition object with same name.

Specify the namespace where the SR-IOV Network Operator is installed.

$ oc get sriovnetworknodestates -n openshift-sriov-network-operator <node_name> -o 
jsonpath='{.status.syncStatus}'

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovNetwork
metadata:
  name: <name> 1
  namespace: openshift-sriov-network-operator 2
spec:
  resourceName: <sriov_resource_name> 3
  networkNamespace: <target_namespace> 4
  vlan: <vlan> 5
  spoofChk: "<spoof_check>" 6
  linkState: <link_state> 7
  maxTxRate: <max_tx_rate> 8
  minTxRate: <min_rx_rate> 9
  vlanQoS: <vlan_qos> 10
  trust: "<trust_vf>" 11
  capabilities: <capabilities> 12

CHAPTER 9. VIRTUAL MACHINES

191



3

4

5

6

7

8

9

10

11

12

Replace <sriov_resource_name> with the value for the .spec.resourceName parameter from the
SriovNetworkNodePolicy object that defines the SR-IOV hardware for this additional network.

Replace <target_namespace> with the target namespace for the SriovNetwork. Only pods or
virtual machines in the target namespace can attach to the SriovNetwork.

Optional: Replace <vlan> with a Virtual LAN (VLAN) ID for the additional network. The integer
value must be from 0 to 4095. The default value is 0.

Optional: Replace <spoof_check> with the spoof check mode of the VF. The allowed values are
the strings "on" and "off".

IMPORTANT

You must enclose the value you specify in quotes or the CR is rejected by the SR-
IOV Network Operator.

Optional: Replace <link_state> with the link state of virtual function (VF). Allowed value are 
enable, disable and auto.

Optional: Replace <max_tx_rate> with a maximum transmission rate, in Mbps, for the VF.

Optional: Replace <min_tx_rate> with a minimum transmission rate, in Mbps, for the VF. This value
should always be less than or equal to Maximum transmission rate.

NOTE

Intel NICs do not support the minTxRate parameter. For more information, see
BZ#1772847.

Optional: Replace <vlan_qos> with an IEEE 802.1p priority level for the VF. The default value is 0.

Optional: Replace <trust_vf> with the trust mode of the VF. The allowed values are the strings 
"on" and "off".

IMPORTANT

You must enclose the value you specify in quotes or the CR is rejected by the SR-
IOV Network Operator.

Optional: Replace <capabilities> with the capabilities to configure for this network.

2. To create the object, enter the following command. Replace <name> with a name for this
additional network.

3. Optional: To confirm that the NetworkAttachmentDefinition object associated with the 
SriovNetwork object that you created in the previous step exists, enter the following command.
Replace <namespace> with the namespace you specified in the SriovNetwork object.

$ oc create -f <name>-sriov-network.yaml

$ oc get net-attach-def -n <namespace>

OpenShift Container Platform 4.11 Virtualization

192

https://bugzilla.redhat.com/show_bug.cgi?id=1772847


1

2

3

4

5

6

1

9.19.4.4. Connecting a virtual machine to an SR-IOV network

You can connect the virtual machine (VM) to the SR-IOV network by including the network details in the
VM configuration.

Procedure

1. Include the SR-IOV network details in the spec.domain.devices.interfaces and 
spec.networks of the VM configuration:

A unique name for the interface that is connected to the pod network.

The masquerade binding to the default pod network.

A unique name for the SR-IOV interface.

The name of the pod network interface. This must be the same as the interfaces.name
that you defined earlier.

The name of the SR-IOV interface. This must be the same as the interfaces.name that
you defined earlier.

The name of the SR-IOV network attachment definition.

2. Apply the virtual machine configuration:

The name of the virtual machine YAML file.

9.19.5. Connecting a virtual machine to a service mesh

OpenShift Virtualization is now integrated with OpenShift Service Mesh. You can monitor, visualize, and
control traffic between pods that run virtual machine workloads on the default pod network with IPv4.

kind: VirtualMachine
...
spec:
  domain:
    devices:
      interfaces:
      - name: <default> 1
        masquerade: {} 2
      - name: <nic1> 3
        sriov: {}
  networks:
  - name: <default> 4
    pod: {}
  - name: <nic1> 5
    multus:
        networkName: <sriov-network> 6
...

$ oc apply -f <vm-sriov.yaml> 1

CHAPTER 9. VIRTUAL MACHINES

193



9.19.5.1. Prerequisites

You must have installed the Service Mesh Operator and deployed the service mesh control
plane.

You must have added the namespace where the virtual machine is created to the service mesh
member roll.

You must use the masquerade binding method for the default pod network.

9.19.5.2. Configuring a virtual machine for the service mesh

To add a virtual machine (VM) workload to a service mesh, enable automatic sidecar injection in the VM
configuration file by setting the sidecar.istio.io/inject annotation to true. Then expose your VM as a
service to view your application in the mesh.

Prerequisites

To avoid port conflicts, do not use ports used by the Istio sidecar proxy. These include ports
15000, 15001, 15006, 15008, 15020, 15021, and 15090.

Procedure

1. Edit the VM configuration file to add the sidecar.istio.io/inject: "true" annotation.

Example configuration file

apiVersion: kubevirt.io/v1
kind: VirtualMachine
metadata:
  labels:
    kubevirt.io/vm: vm-istio
  name: vm-istio
spec:
  runStrategy: Always
  template:
    metadata:
      labels:
        kubevirt.io/vm: vm-istio
        app: vm-istio 1
      annotations:
        sidecar.istio.io/inject: "true" 2
    spec:
      domain:
        devices:
          interfaces:
          - name: default
            masquerade: {} 3
          disks:
          - disk:
              bus: virtio
            name: containerdisk
          - disk:
              bus: virtio
            name: cloudinitdisk

OpenShift Container Platform 4.11 Virtualization

194

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/service_mesh/#installing-ossm
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/service_mesh/#ossm-create-smcp
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/service_mesh/#ossm-create-mesh


1

2

3

1

1

1

The key/value pair (label) that must be matched to the service selector attribute.

The annotation to enable automatic sidecar injection.

The binding method (masquerade mode) for use with the default pod network.

2. Apply the VM configuration:

The name of the virtual machine YAML file.

3. Create a Service object to expose your VM to the service mesh.

The service selector that determines the set of pods targeted by a service. This attribute
corresponds to the spec.metadata.labels field in the VM configuration file. In the above
example, the Service object named vm-istio targets TCP port 8080 on any pod with the
label app=vm-istio.

4. Create the service:

The name of the service YAML file.

9.19.6. Configuring IP addresses for virtual machines

        resources:
          requests:
            memory: 1024M
      networks:
      - name: default
        pod: {}
      terminationGracePeriodSeconds: 180
      volumes:
      - containerDisk:
          image: registry:5000/kubevirt/fedora-cloud-container-disk-demo:devel
        name: containerdisk

$ oc apply -f <vm_name>.yaml 1

  apiVersion: v1
  kind: Service
  metadata:
    name: vm-istio
  spec:
    selector:
      app: vm-istio 1
    ports:
      - port: 8080
        name: http
        protocol: TCP

$ oc create -f <service_name>.yaml 1

CHAPTER 9. VIRTUAL MACHINES

195



1

2

1

2

You can configure either dynamically or statically provisioned IP addresses for virtual machines.

Prerequisites

The virtual machine must connect to an external network.

You must have a DHCP server available on the additional network to configure a dynamic IP for
the virtual machine.

9.19.6.1. Configuring an IP address for a new virtual machine using cloud-init

You can use cloud-init to configure an IP address when you create a virtual machine. The IP address can
be dynamically or statically provisioned.

Procedure

Create a virtual machine configuration and include the cloud-init network details in the 
spec.volumes.cloudInitNoCloud.networkData field of the virtual machine configuration:

a. To configure a dynamic IP, specify the interface name and the dhcp4 boolean:

The interface name.

Uses DHCP to provision an IPv4 address.

b. To configure a static IP, specify the interface name and the IP address:

The interface name.

The static IP address for the virtual machine.

kind: VirtualMachine
spec:
...
  volumes:
  - cloudInitNoCloud:
      networkData: |
        version: 2
        ethernets:
          eth1: 1
            dhcp4: true 2

kind: VirtualMachine
spec:
...
  volumes:
  - cloudInitNoCloud:
      networkData: |
        version: 2
        ethernets:
          eth1: 1
            addresses:
            - 10.10.10.14/24 2

OpenShift Container Platform 4.11 Virtualization

196

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/virtualization/#virt-attaching-vm-multiple-networks


9.19.7. Viewing the IP address of NICs on a virtual machine

You can view the IP address for a network interface controller (NIC) by using the web console or the oc
client. The QEMU guest agent  displays additional information about the virtual machine’s secondary
networks.

9.19.7.1. Prerequisites

Install the QEMU guest agent on the virtual machine.

9.19.7.2. Viewing the IP address of a virtual machine interface in the CLI

The network interface configuration is included in the oc describe vmi <vmi_name> command.

You can also view the IP address information by running ip addr on the virtual machine, or by running oc 
get vmi <vmi_name> -o yaml.

Procedure

Use the oc describe command to display the virtual machine interface configuration:

Example output

9.19.7.3. Viewing the IP address of a virtual machine interface in the web console

The IP information is displayed on the VirtualMachine details page for the virtual machine.

$ oc describe vmi <vmi_name>

...
Interfaces:
   Interface Name:  eth0
   Ip Address:      10.244.0.37/24
   Ip Addresses:
     10.244.0.37/24
     fe80::858:aff:fef4:25/64
   Mac:             0a:58:0a:f4:00:25
   Name:            default
   Interface Name:  v2
   Ip Address:      1.1.1.7/24
   Ip Addresses:
     1.1.1.7/24
     fe80::f4d9:70ff:fe13:9089/64
   Mac:             f6:d9:70:13:90:89
   Interface Name:  v1
   Ip Address:      1.1.1.1/24
   Ip Addresses:
     1.1.1.1/24
     1.1.1.2/24
     1.1.1.4/24
     2001:de7:0:f101::1/64
     2001:db8:0:f101::1/64
     fe80::1420:84ff:fe10:17aa/64
   Mac:             16:20:84:10:17:aa

CHAPTER 9. VIRTUAL MACHINES

197

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/virtualization/#virt-installing-qemu-guest-agent


Procedure

1. In the OpenShift Container Platform console, click Virtualization → VirtualMachines from the
side menu.

2. Select a virtual machine name to open the VirtualMachine details page.

The information for each attached NIC is displayed under IP Address on the Details tab.

9.19.8. Using a MAC address pool for virtual machines

The KubeMacPool component provides a MAC address pool service for virtual machine NICs in a
namespace.

9.19.8.1. About KubeMacPool

KubeMacPool provides a MAC address pool per namespace and allocates MAC addresses for virtual
machine NICs from the pool. This ensures that the NIC is assigned a unique MAC address that does not
conflict with the MAC address of another virtual machine.

Virtual machine instances created from that virtual machine retain the assigned MAC address across
reboots.

NOTE

KubeMacPool does not handle virtual machine instances created independently from a
virtual machine.

KubeMacPool is enabled by default when you install OpenShift Virtualization. You can disable a MAC
address pool for a namespace by adding the mutatevirtualmachines.kubemacpool.io=ignore label to
the namespace. Re-enable KubeMacPool for the namespace by removing the label.

9.19.8.2. Disabling a MAC address pool for a namespace in the CLI

Disable a MAC address pool for virtual machines in a namespace by adding the 
mutatevirtualmachines.kubemacpool.io=ignore label to the namespace.

Procedure

Add the mutatevirtualmachines.kubemacpool.io=ignore label to the namespace. The
following example disables KubeMacPool for two namespaces, <namespace1> and 
<namespace2>:

9.19.8.3. Re-enabling a MAC address pool for a namespace in the CLI

If you disabled KubeMacPool for a namespace and want to re-enable it, remove the 
mutatevirtualmachines.kubemacpool.io=ignore label from the namespace.

NOTE

$ oc label namespace <namespace1> <namespace2> 
mutatevirtualmachines.kubemacpool.io=ignore

OpenShift Container Platform 4.11 Virtualization

198



NOTE

Earlier versions of OpenShift Virtualization used the label 
mutatevirtualmachines.kubemacpool.io=allocate to enable KubeMacPool for a
namespace. This is still supported but redundant as KubeMacPool is now enabled by
default.

Procedure

Remove the KubeMacPool label from the namespace. The following example re-enables
KubeMacPool for two namespaces, <namespace1> and <namespace2>:

9.20. VIRTUAL MACHINE DISKS

9.20.1. Storage features

Use the following table to determine feature availability for local and shared persistent storage in
OpenShift Virtualization.

9.20.1.1. OpenShift Virtualization storage feature matrix

Table 9.6. OpenShift Virtualization storage feature matrix

 Virtual
machine live
migration

Host-
assisted
virtual
machine disk
cloning

Storage-
assisted
virtual
machine disk
cloning

Virtual
machine
snapshots

OpenShift Data Foundation: RBD block-
mode volumes

Yes Yes Yes Yes

OpenShift Virtualization hostpath
provisioner

No Yes No No

Other multi-node writable storage Yes [1] Yes Yes [2] Yes [2]

Other single-node writable storage No Yes Yes [2] Yes [2]

1. PVCs must request a ReadWriteMany access mode.

2. Storage provider must support both Kubernetes and CSI snapshot APIs

NOTE

$ oc label namespace <namespace1> <namespace2> 
mutatevirtualmachines.kubemacpool.io-

CHAPTER 9. VIRTUAL MACHINES

199



1

2

NOTE

You cannot live migrate virtual machines that use:

A storage class with ReadWriteOnce (RWO) access mode

Passthrough features such as GPUs

Do not set the evictionStrategy field to LiveMigrate for these virtual machines.

9.20.2. Configuring local storage for virtual machines

You can configure local storage for virtual machines by using the hostpath provisioner (HPP).

When you install the OpenShift Virtualization Operator, the Hostpath Provisioner (HPP) Operator is
automatically installed. The HPP is a local storage provisioner designed for OpenShift Virtualization that
is created by the Hostpath Provisioner Operator. To use the HPP, you must create an HPP custom
resource (CR).

9.20.2.1. Creating a hostpath provisioner with a basic storage pool

You configure a hostpath provisioner (HPP) with a basic storage pool by creating an HPP custom
resource (CR) with a storagePools stanza. The storage pool specifies the name and path used by the
CSI driver.

Prerequisites

The directories specified in spec.storagePools.path must have read/write access.

The storage pools must not be in the same partition as the operating system. Otherwise, the
operating system partition might become filled to capacity, which will impact performance or
cause the node to become unstable or unusable.

Procedure

1. Create an hpp_cr.yaml file with a storagePools stanza as in the following example:

The storagePools stanza is an array to which you can add multiple entries.

Specify the storage pool directories under this node path.

apiVersion: hostpathprovisioner.kubevirt.io/v1beta1
kind: HostPathProvisioner
metadata:
  name: hostpath-provisioner
spec:
  imagePullPolicy: IfNotPresent
  storagePools: 1
  - name: any_name
    path: "/var/myvolumes" 2
workload:
  nodeSelector:
    kubernetes.io/os: linux

OpenShift Container Platform 4.11 Virtualization

200



1

2

3

2. Save the file and exit.

3. Create the HPP by running the following command:

9.20.2.1.1. About creating storage classes

When you create a storage class, you set parameters that affect the dynamic provisioning of persistent
volumes (PVs) that belong to that storage class. You cannot update a StorageClass object’s
parameters after you create it.

In order to use the hostpath provisioner (HPP) you must create an associated storage class for the CSI
driver with the storagePools stanza.

NOTE

Virtual machines use data volumes that are based on local PVs. Local PVs are bound to
specific nodes. While the disk image is prepared for consumption by the virtual machine,
it is possible that the virtual machine cannot be scheduled to the node where the local
storage PV was previously pinned.

To solve this problem, use the Kubernetes pod scheduler to bind the persistent volume
claim (PVC) to a PV on the correct node. By using the StorageClass value with 
volumeBindingMode parameter set to WaitForFirstConsumer, the binding and
provisioning of the PV is delayed until a pod is created using the PVC.

9.20.2.1.2. Creating a storage class for the CSI driver with the storagePools stanza

You create a storage class custom resource (CR) for the hostpath provisioner (HPP) CSI driver.

Procedure

1. Create a storageclass_csi.yaml file to define the storage class:

The two possible reclaimPolicy values are Delete and Retain. If you do not specify a value, the
default value is Delete.

The volumeBindingMode parameter determines when dynamic provisioning and volume binding
occur. Specify WaitForFirstConsumer to delay the binding and provisioning of a persistent
volume (PV) until after a pod that uses the persistent volume claim (PVC) is created. This ensures
that the PV meets the pod’s scheduling requirements.

Specify the name of the storage pool defined in the HPP CR.

$ oc create -f hpp_cr.yaml

apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
  name: hostpath-csi
provisioner: kubevirt.io.hostpath-provisioner
reclaimPolicy: Delete 1
volumeBindingMode: WaitForFirstConsumer 2
parameters:
  storagePool: my-storage-pool 3

CHAPTER 9. VIRTUAL MACHINES

201



1

1. Save the file and exit.

2. Create the StorageClass object by running the following command:

9.20.2.2. About storage pools created with PVC templates

If you have a single, large persistent volume (PV), you can create a storage pool by defining a PVC
template in the hostpath provisioner (HPP) custom resource (CR).

A storage pool created with a PVC template can contain multiple HPP volumes. Splitting a PV into
smaller volumes provides greater flexibility for data allocation.

The PVC template is based on the spec stanza of the PersistentVolumeClaim object:

Example PersistentVolumeClaim object

This value is only required for block volume mode PVs.

You define a storage pool using a pvcTemplate specification in the HPP CR. The Operator creates a
PVC from the pvcTemplate specification for each node containing the HPP CSI driver. The PVC
created from the PVC template consumes the single large PV, allowing the HPP to create smaller
dynamic volumes.

You can combine basic storage pools with storage pools created from PVC templates.

9.20.2.2.1. Creating a storage pool with a PVC template

You can create a storage pool for multiple hostpath provisioner (HPP) volumes by specifying a PVC
template in the HPP custom resource (CR).

Prerequisites

The directories specified in spec.storagePools.path must have read/write access.

The storage pools must not be in the same partition as the operating system. Otherwise, the
operating system partition might become filled to capacity, which will impact performance or
cause the node to become unstable or unusable.

$ oc create -f storageclass_csi.yaml

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
  name: iso-pvc
spec:
  volumeMode: Block 1
  storageClassName: my-storage-class
  accessModes:
  - ReadWriteOnce
  resources:
    requests:
      storage: 5Gi

OpenShift Container Platform 4.11 Virtualization

202



1

2

3

4

5

Procedure

1. Create an hpp_pvc_template_pool.yaml file for the HPP CR that specifies a persistent volume
(PVC) template in the storagePools stanza according to the following example:

The storagePools stanza is an array that can contain both basic and PVC template
storage pools.

Specify the storage pool directories under this node path.

Optional: The volumeMode parameter can be either Block or Filesystem as long as it
matches the provisioned volume format. If no value is specified, the default is Filesystem.
If the volumeMode is Block, the mounting pod creates an XFS file system on the block
volume before mounting it.

If the storageClassName parameter is omitted, the default storage class is used to create
PVCs. If you omit storageClassName, ensure that the HPP storage class is not the default
storage class.

You can specify statically or dynamically provisioned storage. In either case, ensure the
requested storage size is appropriate for the volume you want to virtually divide or the PVC
cannot be bound to the large PV. If the storage class you are using uses dynamically
provisioned storage, pick an allocation size that matches the size of a typical request.

2. Save the file and exit.

3. Create the HPP with a storage pool by running the following command:

Additional resources

Customizing the storage profile

apiVersion: hostpathprovisioner.kubevirt.io/v1beta1
kind: HostPathProvisioner
metadata:
  name: hostpath-provisioner
spec:
  imagePullPolicy: IfNotPresent
  storagePools: 1
  - name: my-storage-pool
    path: "/var/myvolumes" 2
    pvcTemplate:
      volumeMode: Block 3
      storageClassName: my-storage-class 4
      accessModes:
      - ReadWriteOnce
      resources:
        requests:
          storage: 5Gi 5
  workload:
    nodeSelector:
      kubernetes.io/os: linux

$ oc create -f hpp_pvc_template_pool.yaml

CHAPTER 9. VIRTUAL MACHINES

203

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/virtualization/#virt-customizing-storage-profile_virt-creating-data-volumes


9.20.3. Creating data volumes

When you create a data volume, the Containerized Data Importer (CDI) creates a persistent volume
claim (PVC) and populates the PVC with your data. You can create a data volume as either a standalone
resource or by using a dataVolumeTemplate resource in a virtual machine specification. You create a
data volume by using either the PVC API or storage APIs.

IMPORTANT

When using OpenShift Virtualization with OpenShift Container Platform Container
Storage, specify RBD block mode persistent volume claims (PVCs) when creating virtual
machine disks. With virtual machine disks, RBD block mode volumes are more efficient
and provide better performance than Ceph FS or RBD filesystem-mode PVCs.

To specify RBD block mode PVCs, use the 'ocs-storagecluster-ceph-rbd' storage class
and VolumeMode: Block.

TIP

Whenever possible, use the storage API to optimize space allocation and maximize performance.

A storage profile is a custom resource that the CDI manages. It provides recommended storage settings
based on the associated storage class. A storage profile is allocated for each storage class.

Storage profiles enable you to create data volumes quickly while reducing coding and minimizing
potential errors.

For recognized storage types, the CDI provides values that optimize the creation of PVCs. However, you
can configure automatic settings for a storage class if you customize the storage profile.

9.20.3.1. Creating data volumes using the storage API

When you create a data volume using the storage API, the Containerized Data Interface (CDI) optimizes
your persistent volume claim (PVC) allocation based on the type of storage supported by your selected
storage class. You only have to specify the data volume name, namespace, and the amount of storage
that you want to allocate.

For example:

When using Ceph RBD, accessModes is automatically set to ReadWriteMany, which enables
live migration. volumeMode is set to Block to maximize performance.

When you are using volumeMode: Filesystem, more space will automatically be requested by
the CDI, if required to accommodate file system overhead.

In the following YAML, using the storage API requests a data volume with two gigabytes of usable space.
The user does not need to know the volumeMode in order to correctly estimate the required persistent
volume claim (PVC) size. The CDI chooses the optimal combination of accessModes and volumeMode
attributes automatically. These optimal values are based on the type of storage or the defaults that you
define in your storage profile. If you want to provide custom values, they override the system-calculated
values.

Example DataVolume definition

apiVersion: cdi.kubevirt.io/v1beta1

OpenShift Container Platform 4.11 Virtualization

204



1

2

3

4

5

6

7

The name of the new data volume.

Indicate that the source of the import is an existing persistent volume claim (PVC).

The namespace where the source PVC exists.

The name of the source PVC.

Indicates allocation using the storage API.

Specifies the amount of available space that you request for the PVC.

Optional: The name of the storage class. If the storage class is not specified, the system default
storage class is used.

9.20.3.2. Creating data volumes using the PVC API

When you create a data volume using the PVC API, the Containerized Data Interface (CDI) creates the
data volume based on what you specify for the following fields:

accessModes (ReadWriteOnce, ReadWriteMany, or ReadOnlyMany)

volumeMode (Filesystem or Block)

capacity of storage (5Gi, for example)

In the following YAML, using the PVC API allocates a data volume with a storage capacity of two
gigabytes. You specify an access mode of ReadWriteMany to enable live migration. Because you know
the values your system can support, you specify Block storage instead of the default, Filesystem.

Example DataVolume definition

kind: DataVolume
metadata:
  name: <datavolume> 1
spec:
  source:
    pvc: 2
      namespace: "<source_namespace>" 3
      name: "<my_vm_disk>" 4
  storage: 5
    resources:
      requests:
        storage: 2Gi 6
    storageClassName: <storage_class> 7

apiVersion: cdi.kubevirt.io/v1beta1
kind: DataVolume
metadata:
  name: <datavolume> 1
spec:
  source:
    pvc: 2
      namespace: "<source_namespace>" 3

CHAPTER 9. VIRTUAL MACHINES

205



1

2

3

4

5

6

7

8

9

The name of the new data volume.

In the source section, pvc indicates that the source of the import is an existing persistent volume
claim (PVC).

The namespace where the source PVC exists.

The name of the source PVC.

Indicates allocation using the PVC API.

accessModes is required when using the PVC API.

Specifies the amount of space you are requesting for your data volume.

Specifies that the destination is a block PVC.

Optionally, specify the storage class. If the storage class is not specified, the system default
storage class is used.

IMPORTANT

When you explicitly allocate a data volume by using the PVC API and you are not using 
volumeMode: Block, consider file system overhead.

File system overhead is the amount of space required by the file system to maintain its
metadata. The amount of space required for file system metadata is file system
dependent. Failing to account for file system overhead in your storage capacity request
can result in an underlying persistent volume claim (PVC) that is not large enough to
accommodate your virtual machine disk.

If you use the storage API, the CDI will factor in file system overhead and request a larger
persistent volume claim (PVC) to ensure that your allocation request is successful.

9.20.3.3. Customizing the storage profile

You can specify default parameters by editing the StorageProfile object for the provisioner’s storage
class. These default parameters only apply to the persistent volume claim (PVC) if they are not
configured in the DataVolume object.

Prerequisites

Ensure that your planned configuration is supported by the storage class and its provider.
Specifying an incompatible configuration in a storage profile causes volume provisioning to fail.

      name: "<my_vm_disk>" 4
  pvc: 5
    accessModes: 6
      - ReadWriteMany
    resources:
      requests:
        storage: 2Gi 7
    volumeMode: Block 8
    storageClassName: <storage_class> 9

OpenShift Container Platform 4.11 Virtualization

206



NOTE

An empty status section in a storage profile indicates that a storage provisioner is not
recognized by the Containerized Data Interface (CDI). Customizing a storage profile is
necessary if you have a storage provisioner that is not recognized by the CDI. In this case,
the administrator sets appropriate values in the storage profile to ensure successful
allocations.

WARNING

If you create a data volume and omit YAML attributes and these attributes are not
defined in the storage profile, then the requested storage will not be allocated and
the underlying persistent volume claim (PVC) will not be created.

Procedure

1. Edit the storage profile. In this example, the provisioner is not recognized by CDI:

Example storage profile

2. Provide the needed attribute values in the storage profile:

Example storage profile



$ oc edit -n openshift-cnv storageprofile <storage_class>

apiVersion: cdi.kubevirt.io/v1beta1
kind: StorageProfile
metadata:
  name: <unknown_provisioner_class>
#   ...
spec: {}
status:
  provisioner: <unknown_provisioner>
  storageClass: <unknown_provisioner_class>

apiVersion: cdi.kubevirt.io/v1beta1
kind: StorageProfile
metadata:
  name: <unknown_provisioner_class>
#   ...
spec:
  claimPropertySets:
  - accessModes:
    - ReadWriteOnce 1
    volumeMode:
      Filesystem 2

CHAPTER 9. VIRTUAL MACHINES

207



1

2

The accessModes that you select.

The volumeMode that you select.

After you save your changes, the selected values appear in the storage profile status element.

9.20.3.3.1. Setting a default cloning strategy using a storage profile

You can use storage profiles to set a default cloning method for a storage class, creating a cloning
strategy. Setting cloning strategies can be helpful, for example, if your storage vendor only supports
certain cloning methods. It also allows you to select a method that limits resource usage or maximizes
performance.

Cloning strategies can be specified by setting the cloneStrategy attribute in a storage profile to one of
these values:

snapshot - This method is used by default when snapshots are configured. This cloning strategy
uses a temporary volume snapshot to clone the volume. The storage provisioner must support
CSI snapshots.

copy - This method uses a source pod and a target pod to copy data from the source volume to
the target volume. Host-assisted cloning is the least efficient method of cloning.

csi-clone - This method uses the CSI clone API to efficiently clone an existing volume without
using an interim volume snapshot. Unlike snapshot or copy, which are used by default if no
storage profile is defined, CSI volume cloning is only used when you specify it in the 
StorageProfile object for the provisioner’s storage class.

NOTE

You can also set clone strategies using the CLI without modifying the default 
claimPropertySets in your YAML spec section.

Example storage profile

status:
  provisioner: <unknown_provisioner>
  storageClass: <unknown_provisioner_class>

apiVersion: cdi.kubevirt.io/v1beta1
kind: StorageProfile
metadata:
  name: <provisioner_class>
#   ...
spec:
  claimPropertySets:
  - accessModes:
    - ReadWriteOnce 1
    volumeMode:
      Filesystem 2
  cloneStrategy:
  csi-clone 3

OpenShift Container Platform 4.11 Virtualization

208



1

2

3

The accessModes that you select.

The volumeMode that you select.

The default cloning method of your choice. In this example, CSI volume cloning is specified.

9.20.3.4. Additional resources

About creating storage classes

Overriding the default file system overhead value

Cloning a data volume using smart cloning

9.20.4. Reserving PVC space for file system overhead

By default, the OpenShift Virtualization reserves space for file system overhead data in persistent
volume claims (PVCs) that use the Filesystem volume mode. You can set the percentage to reserve
space for this purpose globally and for specific storage classes.

9.20.4.1. How file system overhead affects space for virtual machine disks

When you add a virtual machine disk to a persistent volume claim (PVC) that uses the Filesystem
volume mode, you must ensure that there is enough space on the PVC for:

The virtual machine disk.

The space reserved for file system overhead, such as metadata

By default, OpenShift Virtualization reserves 5.5% of the PVC space for overhead, reducing the space
available for virtual machine disks by that amount.

You can configure a different overhead value by editing the HCO object. You can change the value
globally and you can specify values for specific storage classes.

9.20.4.2. Overriding the default file system overhead value

Change the amount of persistent volume claim (PVC) space that the OpenShift Virtualization reserves
for file system overhead by editing the spec.filesystemOverhead attribute of the HCO object.

Prerequisites

Install the OpenShift CLI (oc).

Procedure

1. Open the HCO object for editing by running the following command:

status:
  provisioner: <provisioner>
  storageClass: <provisioner_class>

$ oc edit hco -n openshift-cnv kubevirt-hyperconverged

CHAPTER 9. VIRTUAL MACHINES

209

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/virtualization/#virt-about-creating-storage-classes_virt-configuring-local-storage-for-vms
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/virtualization/#virt-overriding-default-fs-overhead-value_virt-reserving-pvc-space-fs-overhead
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/virtualization/#virt-cloning-a-datavolume-using-smart-cloning


1

2

2. Edit the spec.filesystemOverhead fields, populating them with your chosen values:

The default file system overhead percentage used for any storage classes that do not
already have a set value. For example, global: "0.07" reserves 7% of the PVC for file
system overhead.

The file system overhead percentage for the specified storage class. For example, 
mystorageclass: "0.04" changes the default overhead value for PVCs in the 
mystorageclass storage class to 4%.

3. Save and exit the editor to update the HCO object.

Verification

View the CDIConfig status and verify your changes by running one of the following commands:
To generally verify changes to CDIConfig:

To view your specific changes to CDIConfig:

9.20.5. Configuring CDI to work with namespaces that have a compute resource
quota

You can use the Containerized Data Importer (CDI) to import, upload, and clone virtual machine disks
into namespaces that are subject to CPU and memory resource restrictions.

9.20.5.1. About CPU and memory quotas in a namespace

A resource quota, defined by the ResourceQuota object, imposes restrictions on a namespace that limit
the total amount of compute resources that can be consumed by resources within that namespace.

The HyperConverged custom resource (CR) defines the user configuration for the Containerized Data
Importer (CDI). The CPU and memory request and limit values are set to a default value of 0. This
ensures that pods created by CDI that do not specify compute resource requirements are given the
default values and are allowed to run in a namespace that is restricted with a quota.

9.20.5.2. Overriding CPU and memory defaults

Modify the default settings for CPU and memory requests and limits for your use case by adding the 
spec.resourceRequirements.storageWorkloads stanza to the HyperConverged custom resource
(CR).

...
spec:
  filesystemOverhead:
    global: "<new_global_value>" 1
    storageClass:
      <storage_class_name>: "<new_value_for_this_storage_class>" 2

$ oc get cdiconfig -o yaml

$ oc get cdiconfig -o jsonpath='{.items..status.filesystemOverhead}'

OpenShift Container Platform 4.11 Virtualization

210



Prerequisites

Install the OpenShift CLI (oc).

Procedure

1. Edit the HyperConverged CR by running the following command:

2. Add the spec.resourceRequirements.storageWorkloads stanza to the CR, setting the values
based on your use case. For example:

3. Save and exit the editor to update the HyperConverged CR.

9.20.5.3. Additional resources

Resource quotas per project

9.20.6. Managing data volume annotations

Data volume (DV) annotations allow you to manage pod behavior. You can add one or more annotations
to a data volume, which then propagates to the created importer pods.

9.20.6.1. Example: Data volume annotations

This example shows how you can configure data volume (DV) annotations to control which network the
importer pod uses. The v1.multus-cni.io/default-network: bridge-network annotation causes the pod
to use the multus network named bridge-network as its default network. If you want the importer pod
to use both the default network from the cluster and the secondary multus network, use the 
k8s.v1.cni.cncf.io/networks: <network_name> annotation.

Multus network annotation example

$ oc edit hco -n openshift-cnv kubevirt-hyperconverged

apiVersion: hco.kubevirt.io/v1beta1
kind: HyperConverged
metadata:
  name: kubevirt-hyperconverged
spec:
  resourceRequirements:
    storageWorkloads:
      limits:
        cpu: "500m"
        memory: "2Gi"
      requests:
        cpu: "250m"
        memory: "1Gi"

apiVersion: cdi.kubevirt.io/v1beta1
kind: DataVolume
metadata:
  name: dv-ann
  annotations:
      v1.multus-cni.io/default-network: bridge-network 1

CHAPTER 9. VIRTUAL MACHINES

211

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/building_applications/#quotas-setting-per-project


1 Multus network annotation

9.20.7. Using preallocation for data volumes

The Containerized Data Importer can preallocate disk space to improve write performance when
creating data volumes.

You can enable preallocation for specific data volumes.

9.20.7.1. About preallocation

The Containerized Data Importer (CDI) can use the QEMU preallocate mode for data volumes to
improve write performance. You can use preallocation mode for importing and uploading operations
and when creating blank data volumes.

If preallocation is enabled, CDI uses the better preallocation method depending on the underlying file
system and device type:

fallocate

If the file system supports it, CDI uses the operating system’s fallocate call to preallocate space by
using the posix_fallocate function, which allocates blocks and marks them as uninitialized.

full

If fallocate mode cannot be used, full mode allocates space for the image by writing data to the
underlying storage. Depending on the storage location, all the empty allocated space might be
zeroed.

9.20.7.2. Enabling preallocation for a data volume

You can enable preallocation for specific data volumes by including the spec.preallocation field in the
data volume manifest. You can enable preallocation mode in either the web console or by using the
OpenShift CLI (oc).

Preallocation mode is supported for all CDI source types.

Procedure

Specify the spec.preallocation field in the data volume manifest:

spec:
  source:
      http:
         url: "example.exampleurl.com"
  pvc:
    accessModes:
      - ReadWriteOnce
    resources:
      requests:
        storage: 1Gi

apiVersion: cdi.kubevirt.io/v1beta1
kind: DataVolume
metadata:
  name: preallocated-datavolume

OpenShift Container Platform 4.11 Virtualization

212



1

2

All CDI source types support preallocation, however preallocation is ignored for cloning
operations.

The preallocation field is a boolean that defaults to false.

9.20.8. Uploading local disk images by using the web console

You can upload a locally stored disk image file by using the web console.

9.20.8.1. Prerequisites

You must have a virtual machine image file in IMG, ISO, or QCOW2 format.

If you require scratch space according to the CDI supported operations matrix , you must first
define a storage class or prepare CDI scratch space  for this operation to complete successfully.

9.20.8.2. CDI supported operations matrix

This matrix shows the supported CDI operations for content types against endpoints, and which of these
operations requires scratch space.

Content types HTTP HTTPS HTTP basic
auth

Registry Upload

KubeVirt
(QCOW2)

✓ QCOW2
✓ GZ*
✓ XZ*

✓ QCOW2**
✓ GZ*
✓ XZ*

✓ QCOW2
✓ GZ*
✓ XZ*

✓ QCOW2*
□ GZ
□ XZ

✓ QCOW2*
✓ GZ*
✓ XZ*

KubeVirt
(RAW)

✓ RAW
✓ GZ
✓ XZ

✓ RAW
✓ GZ
✓ XZ

✓ RAW
✓ GZ
✓ XZ

✓ RAW*
□ GZ
□ XZ

✓ RAW*
✓ GZ*
✓ XZ*

✓ Supported operation

□ Unsupported operation

* Requires scratch space

** Requires scratch space if a custom certificate authority is required

9.20.8.3. Uploading an image file using the web console

Use the web console to upload an image file to a new persistent volume claim (PVC). You can later use
this PVC to attach the image to new virtual machines.

Prerequisites

spec:
  source: 1
    ...
  pvc:
    ...
  preallocation: true 2

CHAPTER 9. VIRTUAL MACHINES

213

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/virtualization/#virt-cdi-supported-operations-matrix_virt-uploading-local-disk-images-web
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/virtualization/#virt-defining-storageclass_virt-preparing-cdi-scratch-space


Prerequisites

You must have one of the following:

A raw virtual machine image file in either ISO or IMG format.

A virtual machine image file in QCOW2 format.

For best results, compress your image file according to the following guidelines before you
upload it:

Compress a raw image file by using xz or gzip.

NOTE

Using a compressed raw image file results in the most efficient upload.

Compress a QCOW2 image file by using the method that is recommended for your client:

If you use a Linux client, sparsify the QCOW2 file by using the virt-sparsify tool.

If you use a Windows client, compress the QCOW2 file by using xz or gzip.

Procedure

1. From the side menu of the web console, click Storage → Persistent Volume Claims.

2. Click the Create Persistent Volume Claim drop-down list to expand it.

3. Click With Data Upload Form to open the Upload Data to Persistent Volume Claim page.

4. Click Browse to open the file manager and select the image that you want to upload, or drag
the file into the Drag a file here or browse to upload field.

5. Optional: Set this image as the default image for a specific operating system.

a. Select the Attach this data to a virtual machine operating system check box.

b. Select an operating system from the list.

6. The Persistent Volume Claim Name field is automatically filled with a unique name and cannot
be edited. Take note of the name assigned to the PVC so that you can identify it later, if
necessary.

7. Select a storage class from the Storage Class list.

8. In the Size field, enter the size value for the PVC. Select the corresponding unit of measurement
from the drop-down list.

WARNING

The PVC size must be larger than the size of the uncompressed virtual disk.

OpenShift Container Platform 4.11 Virtualization

214

https://libguestfs.org/virt-sparsify.1.html


1

2

9. Select an Access Mode that matches the storage class that you selected.

10. Click Upload.

9.20.8.4. Additional resources

Configure preallocation mode to improve write performance for data volume operations.

9.20.9. Uploading local disk images by using the virtctl tool

You can upload a locally stored disk image to a new or existing data volume by using the virtctl
command-line utility.

9.20.9.1. Prerequisites

Enable the kubevirt-virtctl package.

If you require scratch space according to the CDI supported operations matrix , you must first
define a storage class or prepare CDI scratch space  for this operation to complete successfully.

9.20.9.2. About data volumes

DataVolume objects are custom resources that are provided by the Containerized Data Importer (CDI)
project. Data volumes orchestrate import, clone, and upload operations that are associated with an
underlying persistent volume claim (PVC). Data volumes are integrated with OpenShift Virtualization,
and they prevent a virtual machine from being started before the PVC has been prepared.

9.20.9.3. Creating an upload data volume

You can manually create a data volume with an upload data source to use for uploading local disk
images.

Procedure

1. Create a data volume configuration that specifies spec: source: upload{}:

The name of the data volume.

The size of the data volume. Ensure that this value is greater than or equal to the size of
the disk that you upload.

apiVersion: cdi.kubevirt.io/v1beta1
kind: DataVolume
metadata:
  name: <upload-datavolume> 1
spec:
  source:
      upload: {}
  pvc:
    accessModes:
      - ReadWriteOnce
    resources:
      requests:
        storage: <2Gi> 2

CHAPTER 9. VIRTUAL MACHINES

215

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/virtualization/#virt-using-preallocation-for-datavolumes
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/virtualization/#virt-enabling-virtctl
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/virtualization/#virt-defining-storageclass_virt-preparing-cdi-scratch-space


2. Create the data volume by running the following command:

9.20.9.4. Uploading a local disk image to a data volume

You can use the virtctl CLI utility to upload a local disk image from a client machine to a data volume
(DV) in your cluster. You can use a DV that already exists in your cluster or create a new DV during this
procedure.

NOTE

After you upload a local disk image, you can add it to a virtual machine.

Prerequisites

You must have one of the following:

A raw virtual machine image file in either ISO or IMG format.

A virtual machine image file in QCOW2 format.

For best results, compress your image file according to the following guidelines before you
upload it:

Compress a raw image file by using xz or gzip.

NOTE

Using a compressed raw image file results in the most efficient upload.

Compress a QCOW2 image file by using the method that is recommended for your client:

If you use a Linux client, sparsify the QCOW2 file by using the virt-sparsify tool.

If you use a Windows client, compress the QCOW2 file by using xz or gzip.

The kubevirt-virtctl package must be installed on the client machine.

The client machine must be configured to trust the OpenShift Container Platform router’s
certificate.

Procedure

1. Identify the following items:

The name of the upload data volume that you want to use. If this data volume does not exist,
it is created automatically.

The size of the data volume, if you want it to be created during the upload procedure. The
size must be greater than or equal to the size of the disk image.

The file location of the virtual machine disk image that you want to upload.

2. Upload the disk image by running the virtctl image-upload command. Specify the parameters

$ oc create -f <upload-datavolume>.yaml

OpenShift Container Platform 4.11 Virtualization

216

https://libguestfs.org/virt-sparsify.1.html


1

2

3

2. Upload the disk image by running the virtctl image-upload command. Specify the parameters
that you identified in the previous step. For example:

The name of the data volume.

The size of the data volume. For example: --size=500Mi, --size=1G

The file path of the virtual machine disk image.

NOTE

If you do not want to create a new data volume, omit the --size parameter
and include the --no-create flag.

When uploading a disk image to a PVC, the PVC size must be larger than the
size of the uncompressed virtual disk.

To allow insecure server connections when using HTTPS, use the --insecure
parameter. Be aware that when you use the --insecure flag, the authenticity
of the upload endpoint is not verified.

3. Optional. To verify that a data volume was created, view all data volumes by running the
following command:

9.20.9.5. CDI supported operations matrix

This matrix shows the supported CDI operations for content types against endpoints, and which of these
operations requires scratch space.

Content types HTTP HTTPS HTTP basic
auth

Registry Upload

KubeVirt
(QCOW2)

✓ QCOW2
✓ GZ*
✓ XZ*

✓ QCOW2**
✓ GZ*
✓ XZ*

✓ QCOW2
✓ GZ*
✓ XZ*

✓ QCOW2*
□ GZ
□ XZ

✓ QCOW2*
✓ GZ*
✓ XZ*

KubeVirt
(RAW)

✓ RAW
✓ GZ
✓ XZ

✓ RAW
✓ GZ
✓ XZ

✓ RAW
✓ GZ
✓ XZ

✓ RAW*
□ GZ
□ XZ

✓ RAW*
✓ GZ*
✓ XZ*

✓ Supported operation

□ Unsupported operation

* Requires scratch space

$ virtctl image-upload dv <datavolume_name> \ 1
--size=<datavolume_size> \ 2
--image-path=</path/to/image> \ 3

$ oc get dvs

CHAPTER 9. VIRTUAL MACHINES

217



** Requires scratch space if a custom certificate authority is required

9.20.9.6. Additional resources

Configure preallocation mode to improve write performance for data volume operations.

9.20.10. Uploading a local disk image to a block storage data volume

You can upload a local disk image into a block data volume by using the virtctl command-line utility.

In this workflow, you create a local block device to use as a persistent volume, associate this block
volume with an upload data volume, and use virtctl to upload the local disk image into the data volume.

9.20.10.1. Prerequisites

Enable the kubevirt-virtctl package.

If you require scratch space according to the CDI supported operations matrix , you must first
define a storage class or prepare CDI scratch space  for this operation to complete successfully.

9.20.10.2. About data volumes

DataVolume objects are custom resources that are provided by the Containerized Data Importer (CDI)
project. Data volumes orchestrate import, clone, and upload operations that are associated with an
underlying persistent volume claim (PVC). Data volumes are integrated with OpenShift Virtualization,
and they prevent a virtual machine from being started before the PVC has been prepared.

9.20.10.3. About block persistent volumes

A block persistent volume (PV) is a PV that is backed by a raw block device. These volumes do not have
a file system and can provide performance benefits for virtual machines by reducing overhead.

Raw block volumes are provisioned by specifying volumeMode: Block in the PV and persistent volume
claim (PVC) specification.

9.20.10.4. Creating a local block persistent volume

Create a local block persistent volume (PV) on a node by populating a file and mounting it as a loop
device. You can then reference this loop device in a PV manifest as a Block volume and use it as a block
device for a virtual machine image.

Procedure

1. Log in as root to the node on which to create the local PV. This procedure uses node01 for its
examples.

2. Create a file and populate it with null characters so that it can be used as a block device. The
following example creates a file loop10 with a size of 2Gb (20 100Mb blocks):

3. Mount the loop10 file as a loop device.

$ dd if=/dev/zero of=<loop10> bs=100M count=20

$ losetup </dev/loop10>d3 <loop10> 1  2

OpenShift Container Platform 4.11 Virtualization

218

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/virtualization/#virt-using-preallocation-for-datavolumes
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/virtualization/#virt-enabling-virtctl
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/virtualization/#virt-defining-storageclass_virt-preparing-cdi-scratch-space


1

2

1

2

3

4

1

File path where the loop device is mounted.

The file created in the previous step to be mounted as the loop device.

4. Create a PersistentVolume manifest that references the mounted loop device.

The path of the loop device on the node.

Specifies it is a block PV.

Optional: Set a storage class for the PV. If you omit it, the cluster default is used.

The node on which the block device was mounted.

5. Create the block PV.

The file name of the persistent volume created in the previous step.

9.20.10.5. Creating an upload data volume

You can manually create a data volume with an upload data source to use for uploading local disk
images.

Procedure

kind: PersistentVolume
apiVersion: v1
metadata:
  name: <local-block-pv10>
  annotations:
spec:
  local:
    path: </dev/loop10> 1
  capacity:
    storage: <2Gi>
  volumeMode: Block 2
  storageClassName: local 3
  accessModes:
    - ReadWriteOnce
  persistentVolumeReclaimPolicy: Delete
  nodeAffinity:
    required:
      nodeSelectorTerms:
      - matchExpressions:
        - key: kubernetes.io/hostname
          operator: In
          values:
          - <node01> 4

# oc create -f <local-block-pv10.yaml> 1

CHAPTER 9. VIRTUAL MACHINES

219



1

2

1. Create a data volume configuration that specifies spec: source: upload{}:

The name of the data volume.

The size of the data volume. Ensure that this value is greater than or equal to the size of
the disk that you upload.

2. Create the data volume by running the following command:

9.20.10.6. Uploading a local disk image to a data volume

You can use the virtctl CLI utility to upload a local disk image from a client machine to a data volume
(DV) in your cluster. You can use a DV that already exists in your cluster or create a new DV during this
procedure.

NOTE

After you upload a local disk image, you can add it to a virtual machine.

Prerequisites

You must have one of the following:

A raw virtual machine image file in either ISO or IMG format.

A virtual machine image file in QCOW2 format.

For best results, compress your image file according to the following guidelines before you
upload it:

Compress a raw image file by using xz or gzip.

NOTE

Using a compressed raw image file results in the most efficient upload.

Compress a QCOW2 image file by using the method that is recommended for your client:

apiVersion: cdi.kubevirt.io/v1beta1
kind: DataVolume
metadata:
  name: <upload-datavolume> 1
spec:
  source:
      upload: {}
  pvc:
    accessModes:
      - ReadWriteOnce
    resources:
      requests:
        storage: <2Gi> 2

$ oc create -f <upload-datavolume>.yaml

OpenShift Container Platform 4.11 Virtualization

220



1

2

3

If you use a Linux client, sparsify the QCOW2 file by using the virt-sparsify tool.

If you use a Windows client, compress the QCOW2 file by using xz or gzip.

The kubevirt-virtctl package must be installed on the client machine.

The client machine must be configured to trust the OpenShift Container Platform router’s
certificate.

Procedure

1. Identify the following items:

The name of the upload data volume that you want to use. If this data volume does not exist,
it is created automatically.

The size of the data volume, if you want it to be created during the upload procedure. The
size must be greater than or equal to the size of the disk image.

The file location of the virtual machine disk image that you want to upload.

2. Upload the disk image by running the virtctl image-upload command. Specify the parameters
that you identified in the previous step. For example:

The name of the data volume.

The size of the data volume. For example: --size=500Mi, --size=1G

The file path of the virtual machine disk image.

NOTE

If you do not want to create a new data volume, omit the --size parameter
and include the --no-create flag.

When uploading a disk image to a PVC, the PVC size must be larger than the
size of the uncompressed virtual disk.

To allow insecure server connections when using HTTPS, use the --insecure
parameter. Be aware that when you use the --insecure flag, the authenticity
of the upload endpoint is not verified.

3. Optional. To verify that a data volume was created, view all data volumes by running the
following command:

9.20.10.7. CDI supported operations matrix

This matrix shows the supported CDI operations for content types against endpoints, and which of these

$ virtctl image-upload dv <datavolume_name> \ 1
--size=<datavolume_size> \ 2
--image-path=</path/to/image> \ 3

$ oc get dvs

CHAPTER 9. VIRTUAL MACHINES

221

https://libguestfs.org/virt-sparsify.1.html


This matrix shows the supported CDI operations for content types against endpoints, and which of these
operations requires scratch space.

Content types HTTP HTTPS HTTP basic
auth

Registry Upload

KubeVirt
(QCOW2)

✓ QCOW2
✓ GZ*
✓ XZ*

✓ QCOW2**
✓ GZ*
✓ XZ*

✓ QCOW2
✓ GZ*
✓ XZ*

✓ QCOW2*
□ GZ
□ XZ

✓ QCOW2*
✓ GZ*
✓ XZ*

KubeVirt
(RAW)

✓ RAW
✓ GZ
✓ XZ

✓ RAW
✓ GZ
✓ XZ

✓ RAW
✓ GZ
✓ XZ

✓ RAW*
□ GZ
□ XZ

✓ RAW*
✓ GZ*
✓ XZ*

✓ Supported operation

□ Unsupported operation

* Requires scratch space

** Requires scratch space if a custom certificate authority is required

9.20.10.8. Additional resources

Configure preallocation mode to improve write performance for data volume operations.

9.20.11. Managing virtual machine snapshots

You can create and delete virtual machine (VM) snapshots for VMs, whether the VMs are powered off
(offline) or on (online). You can only restore to a powered off (offline) VM. OpenShift Virtualization
supports VM snapshots on the following:

Red Hat OpenShift Data Foundation

Any other cloud storage provider with the Container Storage Interface (CSI) driver that
supports the Kubernetes Volume Snapshot API

Online snapshots have a default time deadline of five minutes (5m) that can be changed, if needed.

IMPORTANT

Online snapshots are supported for virtual machines that have hot-plugged virtual disks.
However, hot-plugged disks that are not in the virtual machine specification are not
included in the snapshot.

NOTE

OpenShift Container Platform 4.11 Virtualization

222

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/virtualization/#virt-using-preallocation-for-datavolumes


NOTE

To create snapshots of an online (Running state) VM with the highest integrity, install the
QEMU guest agent.

The QEMU guest agent takes a consistent snapshot by attempting to quiesce the VM file
system as much as possible, depending on the system workload. This ensures that in-
flight I/O is written to the disk before the snapshot is taken. If the guest agent is not
present, quiescing is not possible and a best-effort snapshot is taken. The conditions
under which the snapshot was taken are reflected in the snapshot indications that are
displayed in the web console or CLI.

9.20.11.1. About virtual machine snapshots

A snapshot represents the state and data of a virtual machine (VM) at a specific point in time. You can
use a snapshot to restore an existing VM to a previous state (represented by the snapshot) for backup
and disaster recovery or to rapidly roll back to a previous development version.

A VM snapshot is created from a VM that is powered off (Stopped state) or powered on (Running
state).

When taking a snapshot of a running VM, the controller checks that the QEMU guest agent is installed
and running. If so, it freezes the VM file system before taking the snapshot, and thaws the file system
after the snapshot is taken.

The snapshot stores a copy of each Container Storage Interface (CSI) volume attached to the VM and a
copy of the VM specification and metadata. Snapshots cannot be changed after creation.

With the VM snapshots feature, cluster administrators and application developers can:

Create a new snapshot

List all snapshots attached to a specific VM

Restore a VM from a snapshot

Delete an existing VM snapshot

9.20.11.1.1. Virtual machine snapshot controller and custom resource definitions (CRDs)

The VM snapshot feature introduces three new API objects defined as CRDs for managing snapshots:

VirtualMachineSnapshot: Represents a user request to create a snapshot. It contains
information about the current state of the VM.

VirtualMachineSnapshotContent: Represents a provisioned resource on the cluster (a
snapshot). It is created by the VM snapshot controller and contains references to all resources
required to restore the VM.

VirtualMachineRestore: Represents a user request to restore a VM from a snapshot.

The VM snapshot controller binds a VirtualMachineSnapshotContent object with the 
VirtualMachineSnapshot object for which it was created, with a one-to-one mapping.

9.20.11.2. Installing QEMU guest agent on a Linux virtual machine

The qemu-guest-agent is widely available and available by default in Red Hat virtual machines. Install

CHAPTER 9. VIRTUAL MACHINES

223



The qemu-guest-agent is widely available and available by default in Red Hat virtual machines. Install
the agent and start the service.

To check if your virtual machine (VM) has the QEMU guest agent installed and running, verify that 
AgentConnected is listed in the VM spec.

NOTE

To create snapshots of an online (Running state) VM with the highest integrity, install the
QEMU guest agent.

The QEMU guest agent takes a consistent snapshot by attempting to quiesce the VM’s
file system as much as possible, depending on the system workload. This ensures that in-
flight I/O is written to the disk before the snapshot is taken. If the guest agent is not
present, quiescing is not possible and a best-effort snapshot is taken. The conditions
under which the snapshot was taken are reflected in the snapshot indications that are
displayed in the web console or CLI.

Procedure

1. Access the virtual machine command line through one of the consoles or by SSH.

2. Install the QEMU guest agent on the virtual machine:

3. Ensure the service is persistent and start it:

9.20.11.3. Installing QEMU guest agent on a Windows virtual machine

For Windows virtual machines, the QEMU guest agent is included in the VirtIO drivers. Install the drivers
on an existing or a new Windows installation.

To check if your virtual machine (VM) has the QEMU guest agent installed and running, verify that 
AgentConnected is listed in the VM spec.

NOTE

To create snapshots of an online (Running state) VM with the highest integrity, install the
QEMU guest agent.

The QEMU guest agent takes a consistent snapshot by attempting to quiesce the VM’s
file system as much as possible, depending on the system workload. This ensures that in-
flight I/O is written to the disk before the snapshot is taken. If the guest agent is not
present, quiescing is not possible and a best-effort snapshot is taken. The conditions
under which the snapshot was taken are reflected in the snapshot indications that are
displayed in the web console or CLI.

9.20.11.3.1. Installing VirtIO drivers on an existing Windows virtual machine

Install the VirtIO drivers from the attached SATA CD drive to an existing Windows virtual machine.

NOTE

$ yum install -y qemu-guest-agent

$ systemctl enable --now qemu-guest-agent

OpenShift Container Platform 4.11 Virtualization

224



NOTE

This procedure uses a generic approach to adding drivers to Windows. The process might
differ slightly between versions of Windows. See the installation documentation for your
version of Windows for specific installation steps.

Procedure

1. Start the virtual machine and connect to a graphical console.

2. Log in to a Windows user session.

3. Open Device Manager and expand Other devices to list any Unknown device.

a. Open the Device Properties to identify the unknown device. Right-click the device and
select Properties.

b. Click the Details tab and select Hardware Ids in the Property list.

c. Compare the Value for the Hardware Ids with the supported VirtIO drivers.

4. Right-click the device and select Update Driver Software.

5. Click Browse my computer for driver software and browse to the attached SATA CD drive,
where the VirtIO drivers are located. The drivers are arranged hierarchically according to their
driver type, operating system, and CPU architecture.

6. Click Next to install the driver.

7. Repeat this process for all the necessary VirtIO drivers.

8. After the driver installs, click Close to close the window.

9. Reboot the virtual machine to complete the driver installation.

9.20.11.3.2. Installing VirtIO drivers during Windows installation

Install the VirtIO drivers from the attached SATA CD driver during Windows installation.

NOTE

This procedure uses a generic approach to the Windows installation and the installation
method might differ between versions of Windows. See the documentation for the
version of Windows that you are installing.

Procedure

1. Start the virtual machine and connect to a graphical console.

2. Begin the Windows installation process.

3. Select the Advanced installation.

4. The storage destination will not be recognized until the driver is loaded. Click Load driver.

5. The drivers are attached as a SATA CD drive. Click OK and browse the CD drive for the storage

CHAPTER 9. VIRTUAL MACHINES

225



5. The drivers are attached as a SATA CD drive. Click OK and browse the CD drive for the storage
driver to load. The drivers are arranged hierarchically according to their driver type, operating
system, and CPU architecture.

6. Repeat the previous two steps for all required drivers.

7. Complete the Windows installation.

9.20.11.4. Creating a virtual machine snapshot in the web console

You can create a virtual machine (VM) snapshot by using the web console.

NOTE

To create snapshots of an online (Running state) VM with the highest integrity, install the
QEMU guest agent.

The QEMU guest agent takes a consistent snapshot by attempting to quiesce the VM’s
file system as much as possible, depending on the system workload. This ensures that in-
flight I/O is written to the disk before the snapshot is taken. If the guest agent is not
present, quiescing is not possible and a best-effort snapshot is taken. The conditions
under which the snapshot was taken are reflected in the snapshot indications that are
displayed in the web console or CLI.

The VM snapshot only includes disks that meet the following requirements:

Must be either a data volume or persistent volume claim

Belong to a storage class that supports Container Storage Interface (CSI) volume snapshots

Procedure

1. Click Virtualization → VirtualMachines from the side menu.

2. Select a virtual machine to open the VirtualMachine details page.

3. If the virtual machine is running, click Actions → Stop to power it down.

4. Click the Snapshots tab and then click Take Snapshot.

5. Fill in the Snapshot Name and optional Description fields.

6. Expand Disks included in this Snapshot to see the storage volumes to be included in the
snapshot.

7. If your VM has disks that cannot be included in the snapshot and you still wish to proceed, select
the I am aware of this warning and wish to proceed checkbox.

8. Click Save.

9.20.11.5. Creating a virtual machine snapshot in the CLI

You can create a virtual machine (VM) snapshot for an offline or online VM by creating a 
VirtualMachineSnapshot object. Kubevirt will coordinate with the QEMU guest agent to create a
snapshot of the online VM.

NOTE

OpenShift Container Platform 4.11 Virtualization

226



1

2

NOTE

To create snapshots of an online (Running state) VM with the highest integrity, install the
QEMU guest agent.

The QEMU guest agent takes a consistent snapshot by attempting to quiesce the VM’s
file system as much as possible, depending on the system workload. This ensures that in-
flight I/O is written to the disk before the snapshot is taken. If the guest agent is not
present, quiescing is not possible and a best-effort snapshot is taken. The conditions
under which the snapshot was taken are reflected in the snapshot indications that are
displayed in the web console or CLI.

Prerequisites

Ensure that the persistent volume claims (PVCs) are in a storage class that supports Container
Storage Interface (CSI) volume snapshots.

Install the OpenShift CLI (oc).

Optional: Power down the VM for which you want to create a snapshot.

Procedure

1. Create a YAML file to define a VirtualMachineSnapshot object that specifies the name of the
new VirtualMachineSnapshot and the name of the source VM.
For example:

The name of the new VirtualMachineSnapshot object.

The name of the source VM.

2. Create the VirtualMachineSnapshot resource. The snapshot controller creates a 
VirtualMachineSnapshotContent object, binds it to the VirtualMachineSnapshot and
updates the status and readyToUse fields of the VirtualMachineSnapshot object.

3. Optional: If you are taking an online snapshot, you can use the wait command and monitor the
status of the snapshot:

a. Enter the following command:

apiVersion: snapshot.kubevirt.io/v1alpha1
kind: VirtualMachineSnapshot
metadata:
  name: my-vmsnapshot 1
spec:
  source:
    apiGroup: kubevirt.io
    kind: VirtualMachine
    name: my-vm 2

$ oc create -f <my-vmsnapshot>.yaml

$ oc wait my-vm my-vmsnapshot --for condition=Ready

CHAPTER 9. VIRTUAL MACHINES

227



b. Verify the status of the snapshot:

InProgress - The online snapshot operation is still in progress.

Succeeded - The online snapshot operation completed successfully.

Failed - The online snapshot operaton failed.

NOTE

Online snapshots have a default time deadline of five minutes (5m). If
the snapshot does not complete successfully in five minutes, the status is
set to failed. Afterwards, the file system will be thawed and the VM
unfrozen but the status remains failed until you delete the failed
snapshot image.

To change the default time deadline, add the FailureDeadline attribute
to the VM snapshot spec with the time designated in minutes (m) or in
seconds (s) that you want to specify before the snapshot operation
times out.

To set no deadline, you can specify 0, though this is generally not
recommended, as it can result in an unresponsive VM.

If you do not specify a unit of time such as m or s, the default is seconds
(s).

Verification

1. Verify that the VirtualMachineSnapshot object is created and bound with 
VirtualMachineSnapshotContent. The readyToUse flag must be set to true.

Example output

$ oc describe vmsnapshot <my-vmsnapshot>

apiVersion: snapshot.kubevirt.io/v1alpha1
kind: VirtualMachineSnapshot
metadata:
  creationTimestamp: "2020-09-30T14:41:51Z"
  finalizers:
  - snapshot.kubevirt.io/vmsnapshot-protection
  generation: 5
  name: mysnap
  namespace: default
  resourceVersion: "3897"
  selfLink: 
/apis/snapshot.kubevirt.io/v1alpha1/namespaces/default/virtualmachinesnapshots/my-
vmsnapshot
  uid: 28eedf08-5d6a-42c1-969c-2eda58e2a78d
spec:
  source:
    apiGroup: kubevirt.io
    kind: VirtualMachine
    name: my-vm

OpenShift Container Platform 4.11 Virtualization

228



1

2

3

4

The status field of the Progressing condition specifies if the snapshot is still being
created.

The status field of the Ready condition specifies if the snapshot creation process is
complete.

Specifies if the snapshot is ready to be used.

Specifies that the snapshot is bound to a VirtualMachineSnapshotContent object
created by the snapshot controller.

2. Check the spec:volumeBackups property of the VirtualMachineSnapshotContent resource
to verify that the expected PVCs are included in the snapshot.

9.20.11.6. Verifying online snapshot creation with snapshot indications

Snapshot indications are contextual information about online virtual machine (VM) snapshot operations.
Indications are not available for offline virtual machine (VM) snapshot operations. Indications are helpful
in describing details about the online snapshot creation.

Prerequisites

To view indications, you must have attempted to create an online VM snapshot using the CLI or
the web console.

Procedure

1. Display the output from the snapshot indications by doing one of the following:

For snapshots created with the CLI, view indicator output in the VirtualMachineSnapshot
object YAML, in the status field.

For snapshots created using the web console, click VirtualMachineSnapshot > Status in
the Snapshot details screen.

2. Verify the status of your online VM snapshot:

status:
  conditions:
  - lastProbeTime: null
    lastTransitionTime: "2020-09-30T14:42:03Z"
    reason: Operation complete
    status: "False" 1
    type: Progressing
  - lastProbeTime: null
    lastTransitionTime: "2020-09-30T14:42:03Z"
    reason: Operation complete
    status: "True" 2
    type: Ready
  creationTime: "2020-09-30T14:42:03Z"
  readyToUse: true 3
  sourceUID: 355897f3-73a0-4ec4-83d3-3c2df9486f4f
  virtualMachineSnapshotContentName: vmsnapshot-content-28eedf08-5d6a-42c1-969c-
2eda58e2a78d 4

CHAPTER 9. VIRTUAL MACHINES

229



Online indicates that the VM was running during online snapshot creation.

NoGuestAgent indicates that the QEMU guest agent was not running during online
snapshot creation. The QEMU guest agent could not be used to freeze and thaw the file
system, either because the QEMU guest agent was not installed or running or due to
another error.

9.20.11.7. Restoring a virtual machine from a snapshot in the web console

You can restore a virtual machine (VM) to a previous configuration represented by a snapshot in the web
console.

Procedure

1. Click Virtualization → VirtualMachines from the side menu.

2. Select a virtual machine to open the VirtualMachine details page.

3. If the virtual machine is running, click Actions → Stop to power it down.

4. Click the Snapshots tab. The page displays a list of snapshots associated with the virtual
machine.

5. Choose one of the following methods to restore a VM snapshot:

a. For the snapshot that you want to use as the source to restore the VM, click Restore.

b. Select a snapshot to open the Snapshot Details screen and click Actions → Restore
VirtualMachineSnapshot.

6. In the confirmation pop-up window, click Restore to restore the VM to its previous
configuration represented by the snapshot.

9.20.11.8. Restoring a virtual machine from a snapshot in the CLI

You can restore an existing virtual machine (VM) to a previous configuration by using a VM snapshot.
You can only restore from an offline VM snapshot.

Prerequisites

Install the OpenShift CLI (oc).

Power down the VM you want to restore to a previous state.

Procedure

1. Create a YAML file to define a VirtualMachineRestore object that specifies the name of the
VM you want to restore and the name of the snapshot to be used as the source.
For example:

apiVersion: snapshot.kubevirt.io/v1alpha1
kind: VirtualMachineRestore
metadata:
  name: my-vmrestore 1
spec:

OpenShift Container Platform 4.11 Virtualization

230



1

2

3

The name of the new VirtualMachineRestore object.

The name of the target VM you want to restore.

The name of the VirtualMachineSnapshot object to be used as the source.

2. Create the VirtualMachineRestore resource. The snapshot controller updates the status fields
of the VirtualMachineRestore object and replaces the existing VM configuration with the
snapshot content.

Verification

Verify that the VM is restored to the previous state represented by the snapshot. The complete
flag must be set to true.

Example output

  target:
    apiGroup: kubevirt.io
    kind: VirtualMachine
    name: my-vm 2
  virtualMachineSnapshotName: my-vmsnapshot 3

$ oc create -f <my-vmrestore>.yaml

$ oc get vmrestore <my-vmrestore>

apiVersion: snapshot.kubevirt.io/v1alpha1
kind: VirtualMachineRestore
metadata:
creationTimestamp: "2020-09-30T14:46:27Z"
generation: 5
name: my-vmrestore
namespace: default
ownerReferences:
- apiVersion: kubevirt.io/v1
  blockOwnerDeletion: true
  controller: true
  kind: VirtualMachine
  name: my-vm
  uid: 355897f3-73a0-4ec4-83d3-3c2df9486f4f
  resourceVersion: "5512"
  selfLink: 
/apis/snapshot.kubevirt.io/v1alpha1/namespaces/default/virtualmachinerestores/my-
vmrestore
  uid: 71c679a8-136e-46b0-b9b5-f57175a6a041
  spec:
    target:
      apiGroup: kubevirt.io
      kind: VirtualMachine
      name: my-vm
  virtualMachineSnapshotName: my-vmsnapshot
  status:

CHAPTER 9. VIRTUAL MACHINES

231



1

2

3

Specifies if the process of restoring the VM to the state represented by the snapshot is
complete.

The status field of the Progressing condition specifies if the VM is still being restored.

The status field of the Ready condition specifies if the VM restoration process is
complete.

9.20.11.9. Deleting a virtual machine snapshot in the web console

You can delete an existing virtual machine snapshot by using the web console.

Procedure

1. Click Virtualization → VirtualMachines from the side menu.

2. Select a virtual machine to open the VirtualMachine details page.

3. Click the Snapshots tab. The page displays a list of snapshots associated with the virtual
machine.

4. Click the Options menu  of the virtual machine snapshot that you want to delete and
select Delete VirtualMachineSnapshot.

5. In the confirmation pop-up window, click Delete to delete the snapshot.

9.20.11.10. Deleting a virtual machine snapshot in the CLI

You can delete an existing virtual machine (VM) snapshot by deleting the appropriate 

  complete: true 1
  conditions:
  - lastProbeTime: null
  lastTransitionTime: "2020-09-30T14:46:28Z"
  reason: Operation complete
  status: "False" 2
  type: Progressing
  - lastProbeTime: null
  lastTransitionTime: "2020-09-30T14:46:28Z"
  reason: Operation complete
  status: "True" 3
  type: Ready
  deletedDataVolumes:
  - test-dv1
  restoreTime: "2020-09-30T14:46:28Z"
  restores:
  - dataVolumeName: restore-71c679a8-136e-46b0-b9b5-f57175a6a041-datavolumedisk1
  persistentVolumeClaim: restore-71c679a8-136e-46b0-b9b5-f57175a6a041-
datavolumedisk1
  volumeName: datavolumedisk1
  volumeSnapshotName: vmsnapshot-28eedf08-5d6a-42c1-969c-2eda58e2a78d-volume-
datavolumedisk1

OpenShift Container Platform 4.11 Virtualization

232



You can delete an existing virtual machine (VM) snapshot by deleting the appropriate 
VirtualMachineSnapshot object.

Prerequisites

Install the OpenShift CLI (oc).

Procedure

Delete the VirtualMachineSnapshot object. The snapshot controller deletes the 
VirtualMachineSnapshot along with the associated VirtualMachineSnapshotContent object.

Verification

Verify that the snapshot is deleted and no longer attached to this VM:

9.20.11.11. Additional resources

CSI Volume Snapshots

9.20.12. Moving a local virtual machine disk to a different node

Virtual machines that use local volume storage can be moved so that they run on a specific node.

You might want to move the virtual machine to a specific node for the following reasons:

The current node has limitations to the local storage configuration.

The new node is better optimized for the workload of that virtual machine.

To move a virtual machine that uses local storage, you must clone the underlying volume by using a data
volume. After the cloning operation is complete, you can edit the virtual machine configuration so that it
uses the new data volume, or add the new data volume to another virtual machine .

TIP

When you enable preallocation globally, or for a single data volume, the Containerized Data Importer
(CDI) preallocates disk space during cloning. Preallocation enhances write performance. For more
information, see Using preallocation for data volumes .

NOTE

Users without the cluster-admin role require additional user permissions to clone
volumes across namespaces.

9.20.12.1. Cloning a local volume to another node

You can move a virtual machine disk so that it runs on a specific node by cloning the underlying
persistent volume claim (PVC).

$ oc delete vmsnapshot <my-vmsnapshot>

$ oc get vmsnapshot

CHAPTER 9. VIRTUAL MACHINES

233

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/storage/#persistent-storage-csi-snapshots
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/virtualization/#virt-edit-vms
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/virtualization/#virt-add-disk-to-vm_virt-edit-vms
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/virtualization/#virt-using-preallocation-for-datavolumes
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/virtualization/#virt-enabling-user-permissions-to-clone-datavolumes


1

2

3

4

To ensure the virtual machine disk is cloned to the correct node, you must either create a new persistent
volume (PV) or identify one on the correct node. Apply a unique label to the PV so that it can be
referenced by the data volume.

NOTE

The destination PV must be the same size or larger than the source PVC. If the
destination PV is smaller than the source PVC, the cloning operation fails.

Prerequisites

The virtual machine must not be running. Power down the virtual machine before cloning the
virtual machine disk.

Procedure

1. Either create a new local PV on the node, or identify a local PV already on the node:

Create a local PV that includes the nodeAffinity.nodeSelectorTerms parameters. The
following manifest creates a 10Gi local PV on node01.

The name of the PV.

The size of the PV. You must allocate enough space, or the cloning operation fails. The
size must be the same as or larger than the source PVC.

The mount path on the node.

The name of the node where you want to create the PV.

Identify a PV that already exists on the target node. You can identify the node where a PV is

kind: PersistentVolume
apiVersion: v1
metadata:
  name: <destination-pv> 1
  annotations:
spec:
  accessModes:
  - ReadWriteOnce
  capacity:
    storage: 10Gi 2
  local:
    path: /mnt/local-storage/local/disk1 3
  nodeAffinity:
    required:
      nodeSelectorTerms:
      - matchExpressions:
        - key: kubernetes.io/hostname
          operator: In
          values:
          - node01 4
  persistentVolumeReclaimPolicy: Delete
  storageClassName: local
  volumeMode: Filesystem

OpenShift Container Platform 4.11 Virtualization

234



1

2

Identify a PV that already exists on the target node. You can identify the node where a PV is
provisioned by viewing the nodeAffinity field in its configuration:

The following snippet shows that the PV is on node01:

Example output

The kubernetes.io/hostname key uses the node hostname to select a node.

The hostname of the node.

2. Add a unique label to the PV:

3. Create a data volume manifest that references the following:

The PVC name and namespace of the virtual machine.

The label you applied to the PV in the previous step.

The size of the destination PV.

$ oc get pv <destination-pv> -o yaml

...
spec:
  nodeAffinity:
    required:
      nodeSelectorTerms:
      - matchExpressions:
        - key: kubernetes.io/hostname 1
          operator: In
          values:
          - node01 2
...

$ oc label pv <destination-pv> node=node01

apiVersion: cdi.kubevirt.io/v1beta1
kind: DataVolume
metadata:
  name: <clone-datavolume> 1
spec:
  source:
    pvc:
      name: "<source-vm-disk>" 2
      namespace: "<source-namespace>" 3
  pvc:
    accessModes:
      - ReadWriteOnce
    selector:
      matchLabels:
        node: node01 4

CHAPTER 9. VIRTUAL MACHINES

235



1

2

3

4

5

The name of the new data volume.

The name of the source PVC. If you do not know the PVC name, you can find it in the
virtual machine configuration: spec.volumes.persistentVolumeClaim.claimName.

The namespace where the source PVC exists.

The label that you applied to the PV in the previous step.

The size of the destination PV.

4. Start the cloning operation by applying the data volume manifest to your cluster:

The data volume clones the PVC of the virtual machine into the PV on the specific node.

9.20.13. Expanding virtual storage by adding blank disk images

You can increase your storage capacity or create new data partitions by adding blank disk images to
OpenShift Virtualization.

9.20.13.1. About data volumes

DataVolume objects are custom resources that are provided by the Containerized Data Importer (CDI)
project. Data volumes orchestrate import, clone, and upload operations that are associated with an
underlying persistent volume claim (PVC). Data volumes are integrated with OpenShift Virtualization,
and they prevent a virtual machine from being started before the PVC has been prepared.

9.20.13.2. Creating a blank disk image with data volumes

You can create a new blank disk image in a persistent volume claim by customizing and deploying a data
volume configuration file.

Prerequisites

At least one available persistent volume.

Install the OpenShift CLI (oc).

Procedure

1. Edit the DataVolume manifest:

    resources:
      requests:
        storage: <10Gi> 5

$ oc apply -f <clone-datavolume.yaml>

apiVersion: cdi.kubevirt.io/v1beta1
kind: DataVolume
metadata:
  name: blank-image-datavolume
spec:

OpenShift Container Platform 4.11 Virtualization

236



2. Create the blank disk image by running the following command:

9.20.13.3. Additional resources

Configure preallocation mode to improve write performance for data volume operations.

9.20.14. Cloning a data volume using smart-cloning

Smart-cloning is a built-in feature of Red Hat OpenShift Data Foundation. Smart-cloning is faster and
more efficient than host-assisted cloning.

You do not need to perform any action to enable smart-cloning, but you need to ensure your storage
environment is compatible with smart-cloning to use this feature.

When you create a data volume with a persistent volume claim (PVC) source, you automatically initiate
the cloning process. You always receive a clone of the data volume if your environment supports smart-
cloning or not. However, you will only receive the performance benefits of smart cloning if your storage
provider supports smart-cloning.

9.20.14.1. About smart-cloning

When a data volume is smart-cloned, the following occurs:

1. A snapshot of the source persistent volume claim (PVC) is created.

2. A PVC is created from the snapshot.

3. The snapshot is deleted.

9.20.14.2. Cloning a data volume

Prerequisites

For smart-cloning to occur, the following conditions are required:

Your storage provider must support snapshots.

The source and target PVCs must be defined to the same storage class.

The source and target PVCs share the same volumeMode.

The VolumeSnapshotClass object must reference the storage class defined to both the

  source:
      blank: {}
  pvc:
    # Optional: Set the storage class or omit to accept the default
    # storageClassName: "hostpath"
    accessModes:
      - ReadWriteOnce
    resources:
      requests:
        storage: 500Mi

$ oc create -f <blank-image-datavolume>.yaml

CHAPTER 9. VIRTUAL MACHINES

237

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/virtualization/#virt-using-preallocation-for-datavolumes


1

2

3

4

5

The VolumeSnapshotClass object must reference the storage class defined to both the
source and target PVCs.

Procedure

To initiate cloning of a data volume:

1. Create a YAML file for a DataVolume object that specifies the name of the new data volume
and the name and namespace of the source PVC. In this example, because you specify the
storage API, there is no need to specify accessModes or volumeMode. The optimal values will
be calculated for you automatically.

The name of the new data volume.

The namespace where the source PVC exists.

The name of the source PVC.

Specifies allocation with the storage API

The size of the new data volume.

2. Start cloning the PVC by creating the data volume:

NOTE

Data volumes prevent a virtual machine from starting before the PVC is
prepared, so you can create a virtual machine that references the new data
volume while the PVC clones.

9.20.14.3. Additional resources

Cloning the persistent volume claim of a virtual machine disk into a new data volume

Configure preallocation mode to improve write performance for data volume operations.

Customizing the storage profile

apiVersion: cdi.kubevirt.io/v1beta1
kind: DataVolume
metadata:
  name: <cloner-datavolume> 1
spec:
  source:
    pvc:
      namespace: "<source-namespace>" 2
      name: "<my-favorite-vm-disk>" 3
  storage: 4
    resources:
      requests:
        storage: <2Gi> 5

$ oc create -f <cloner-datavolume>.yaml

OpenShift Container Platform 4.11 Virtualization

238

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/virtualization/#virt-cloning-pvc-of-vm-disk-into-new-datavolume_virt-cloning-vm-disk-into-new-datavolume
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/virtualization/#virt-using-preallocation-for-datavolumes
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/virtualization/#virt-customizing-storage-profile_virt-creating-data-volumes


9.20.15. Creating and using boot sources

A boot source contains a bootable operating system (OS) and all of the configuration settings for the
OS, such as drivers.

You use a boot source to create virtual machine templates with specific configurations. These
templates can be used to create any number of available virtual machines.

Quick Start tours are available in the OpenShift Container Platform web console to assist you in creating
a custom boot source, uploading a boot source, and other tasks. Select Quick Starts from the Help
menu to view the Quick Start tours.

9.20.15.1. About virtual machines and boot sources

Virtual machines consist of a virtual machine definition and one or more disks that are backed by data
volumes. Virtual machine templates enable you to create virtual machines using predefined virtual
machine specifications.

Every virtual machine template requires a boot source, which is a fully configured virtual machine disk
image including configured drivers. Each virtual machine template contains a virtual machine definition
with a pointer to the boot source. Each boot source has a predefined name and namespace. For some
operating systems, a boot source is automatically provided. If it is not provided, then an administrator
must prepare a custom boot source.

Provided boot sources are updated automatically to the latest version of the operating system. For
auto-updated boot sources, persistent volume claims (PVCs) are created with the cluster’s default
storage class. If you select a different default storage class after configuration, you must delete the
existing data volumes in the cluster namespace that are configured with the previous default storage
class.

To use the boot sources feature, install the latest release of OpenShift Virtualization. The namespace 
openshift-virtualization-os-images enables the feature and is installed with the OpenShift
Virtualization Operator. Once the boot source feature is installed, you can create boot sources, attach
them to templates, and create virtual machines from the templates.

Define a boot source by using a persistent volume claim (PVC) that is populated by uploading a local file,
cloning an existing PVC, importing from a registry, or by URL. Attach a boot source to a virtual machine
template by using the web console. After the boot source is attached to a virtual machine template, you
create any number of fully configured ready-to-use virtual machines from the template.

9.20.15.2. Importing a RHEL image as a boot source

You can import a Red Hat Enterprise Linux (RHEL) image as a boot source by specifying a URL for the
image.

Prerequisites

You must have access to a web page with the operating system image. For example: Download
Red Hat Enterprise Linux web page with images.

Procedure

1. In the OpenShift Container Platform console, click Virtualization → Templates from the side
menu.

2. Identify the RHEL template for which you want to configure a boot source and click Add source.

CHAPTER 9. VIRTUAL MACHINES

239



3. In the Add boot source to template window, select URL (creates PVC) from the Boot source
type list.

4. Click RHEL download page to access the Red Hat Customer Portal. A list of available installers
and images is displayed on the Download Red Hat Enterprise Linux page.

5. Identify the Red Hat Enterprise Linux KVM guest image that you want to download. Right-click
Download Now, and copy the URL for the image.

6. In the Add boot source to template window, paste the URL into the Import URL field, and click
Save and import.

Verification

1. Verify that the template displays a green checkmark in the Boot source column on the
Templates page.

You can now use this template to create RHEL virtual machines.

9.20.15.3. Adding a boot source for a virtual machine template

A boot source can be configured for any virtual machine template that you want to use for creating
virtual machines or custom templates. When virtual machine templates are configured with a boot
source, they are labeled Source available on the Templates page. After you add a boot source to a
template, you can create a new virtual machine from the template.

There are four methods for selecting and adding a boot source in the web console:

Upload local file (creates PVC)

URL (creates PVC)

Clone (creates PVC)

Registry (creates PVC)

Prerequisites

To add a boot source, you must be logged in as a user with the os-images.kubevirt.io:edit
RBAC role or as an administrator. You do not need special privileges to create a virtual machine
from a template with a boot source added.

To upload a local file, the operating system image file must exist on your local machine.

To import via URL, access to the web server with the operating system image is required. For
example: the Red Hat Enterprise Linux web page with images.

To clone an existing PVC, access to the project with a PVC is required.

To import via registry, access to the container registry is required.

Procedure

1. In the OpenShift Container Platform console, click Virtualization → Templates from the side
menu.

OpenShift Container Platform 4.11 Virtualization

240



2. Click the options menu beside a template and select Edit boot source.

3. Click Add disk.

4. In the Add disk window, select Use this disk as a boot source.

5. Enter the disk name and select a Source, for example, Blank (creates PVC) or Use an existing
PVC.

6. Enter a value for Persistent Volume Claim size to specify the PVC size that is adequate for the
uncompressed image and any additional space that is required.

7. Select a Type, for example, Disk or CD-ROM.

8. Optional: Click Storage class and select the storage class that is used to create the disk.
Typically, this storage class is the default storage class that is created for use by all PVCs.

NOTE

Provided boot sources are updated automatically to the latest version of the
operating system. For auto-updated boot sources, persistent volume claims
(PVCs) are created with the cluster’s default storage class. If you select a
different default storage class after configuration, you must delete the existing
data volumes in the cluster namespace that are configured with the previous
default storage class.

9. Optional: Clear Apply optimized StorageProfile settings to edit the access mode or volume
mode.

10. Select the appropriate method to save your boot source:

a. Click Save and upload if you uploaded a local file.

b. Click Save and import if you imported content from a URL or the registry.

c. Click Save and clone if you cloned an existing PVC.

Your custom virtual machine template with a boot source is listed on the Catalog page. You can use this
template to create a virtual machine.

9.20.15.4. Creating a virtual machine from a template with an attached boot source

After you add a boot source to a template, you can create a virtual machine from the template.

Procedure

1. In the OpenShift Container Platform web console, click Virtualization → Catalog in the side
menu.

2. Select the updated template and click Quick create VirtualMachine.

The VirtualMachine details is displayed with the status Starting.

9.20.15.5. Additional resources

Creating virtual machine templates

CHAPTER 9. VIRTUAL MACHINES

241

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/virtualization/#virt-create-vms


Automatic importing and updating of pre-defined boot sources

9.20.16. Hot plugging virtual disks

You can add or remove virtual disks without stopping your virtual machine (VM) or virtual machine
instance (VMI).

9.20.16.1. About hot plugging virtual disks

When you hot plug a virtual disk, you attach a virtual disk to a virtual machine instance while the virtual
machine is running.

When you hot unplug a virtual disk, you detach a virtual disk from a virtual machine instance while the
virtual machine is running.

Only data volumes and persistent volume claims (PVCs) can be hot plugged and hot unplugged. You
cannot hot plug or hot unplug container disks.

After you hot plug a virtual disk, it remains attached until you detach it, even if you restart the virtual
machine.

9.20.16.2. About virtio-scsi

In OpenShift Virtualization, each virtual machine (VM) has a virtio-scsi controller so that hot plugged
disks can use a scsi bus. The virtio-scsi controller overcomes the limitations of virtio while retaining its
performance advantages. It is highly scalable and supports hot plugging over 4 million disks.

Regular virtio is not available for hot plugged disks because it is not scalable: each virtio disk uses one
of the limited PCI Express (PCIe) slots in the VM. PCIe slots are also used by other devices and must be
reserved in advance, therefore slots might not be available on demand.

9.20.16.3. Hot plugging a virtual disk using the CLI

Hot plug virtual disks that you want to attach to a virtual machine instance (VMI) while a virtual machine
is running.

Prerequisites

You must have a running virtual machine to hot plug a virtual disk.

You must have at least one data volume or persistent volume claim (PVC) available for hot
plugging.

Procedure

Hot plug a virtual disk by running the following command:

Use the optional --persist flag to add the hot plugged disk to the virtual machine
specification as a permanently mounted virtual disk. Stop, restart, or reboot the virtual
machine to permanently mount the virtual disk. After specifying the --persist flag, you can

$ virtctl addvolume <virtual-machine|virtual-machine-instance> --volume-name=
<datavolume|PVC> \
[--persist] [--serial=<label-name>]

OpenShift Container Platform 4.11 Virtualization

242

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/virtualization/#virt-automatic-bootsource-updates


no longer hot plug or hot unplug the virtual disk. The --persist flag applies to virtual
machines, not virtual machine instances.

The optional --serial flag allows you to add an alphanumeric string label of your choice. This
helps you to identify the hot plugged disk in a guest virtual machine. If you do not specify
this option, the label defaults to the name of the hot plugged data volume or PVC.

9.20.16.4. Hot unplugging a virtual disk using the CLI

Hot unplug virtual disks that you want to detach from a virtual machine instance (VMI) while a virtual
machine is running.

Prerequisites

Your virtual machine must be running.

You must have at least one data volume or persistent volume claim (PVC) available and hot
plugged.

Procedure

Hot unplug a virtual disk by running the following command:

9.20.16.5. Hot plugging a virtual disk using the web console

Hot plug virtual disks that you want to attach to a virtual machine instance (VMI) while a virtual machine
is running. When you hot plug a virtual disk, it remains attached to the VMI until you unplug it.

Prerequisites

You must have a running virtual machine to hot plug a virtual disk.

Procedure

1. Click Virtualization → VirtualMachines from the side menu.

2. Select the running virtual machine to which you want to hot plug a virtual disk.

3. On the VirtualMachine details page, click the Disks tab.

4. Click Add disk.

5. In the Add disk (hot plugged) window, fill in the information for the virtual disk that you want to
hot plug.

6. Click Save.

9.20.16.6. Hot unplugging a virtual disk using the web console

Hot unplug virtual disks that you want to detach from a virtual machine instance (VMI) while a virtual
machine is running.

$ virtctl removevolume <virtual-machine|virtual-machine-instance> --volume-name=
<datavolume|PVC>

CHAPTER 9. VIRTUAL MACHINES

243



Prerequisites

Your virtual machine must be running with a hot plugged disk attached.

Procedure

1. Click Virtualization → VirtualMachines from the side menu.

2. Select the running virtual machine with the disk you want to hot unplug to open the
VirtualMachine details page.

3. On the Disks tab, click the Options menu  of the virtual disk that you want to hot unplug.

4. Click Detach.

9.20.17. Using container disks with virtual machines

You can build a virtual machine image into a container disk and store it in your container registry. You
can then import the container disk into persistent storage for a virtual machine or attach it directly to
the virtual machine for ephemeral storage.

IMPORTANT

If you use large container disks, I/O traffic might increase, impacting worker nodes. This
can lead to unavailable nodes. You can resolve this by:

Pruning DeploymentConfig objects

Configuring garbage collection

9.20.17.1. About container disks

A container disk is a virtual machine image that is stored as a container image in a container image
registry. You can use container disks to deliver the same disk images to multiple virtual machines and to
create large numbers of virtual machine clones.

A container disk can either be imported into a persistent volume claim (PVC) by using a data volume
that is attached to a virtual machine, or attached directly to a virtual machine as an ephemeral 
containerDisk volume.

9.20.17.1.1. Importing a container disk into a PVC by using a data volume

Use the Containerized Data Importer (CDI) to import the container disk into a PVC by using a data
volume. You can then attach the data volume to a virtual machine for persistent storage.

9.20.17.1.2. Attaching a container disk to a virtual machine as a containerDisk volume

A containerDisk volume is ephemeral. It is discarded when the virtual machine is stopped, restarted, or
deleted. When a virtual machine with a containerDisk volume starts, the container image is pulled from
the registry and hosted on the node that is hosting the virtual machine.

Use containerDisk volumes for read-only file systems such as CD-ROMs or for disposable virtual
machines.

IMPORTANT

OpenShift Container Platform 4.11 Virtualization

244

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/building_applications/#pruning-deployments_pruning-objects
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/nodes/#nodes-nodes-garbage-collection-configuring_nodes-nodes-configuring


1

IMPORTANT

Using containerDisk volumes for read-write file systems is not recommended because
the data is temporarily written to local storage on the hosting node. This slows live
migration of the virtual machine, such as in the case of node maintenance, because the
data must be migrated to the destination node. Additionally, all data is lost if the node
loses power or otherwise shuts down unexpectedly.

9.20.17.2. Preparing a container disk for virtual machines

You must build a container disk with a virtual machine image and push it to a container registry before it
can used with a virtual machine. You can then either import the container disk into a PVC using a data
volume and attach it to a virtual machine, or you can attach the container disk directly to a virtual
machine as an ephemeral containerDisk volume.

The size of a disk image inside a container disk is limited by the maximum layer size of the registry where
the container disk is hosted.

NOTE

For Red Hat Quay, you can change the maximum layer size by editing the YAML
configuration file that is created when Red Hat Quay is first deployed.

Prerequisites

Install podman if it is not already installed.

The virtual machine image must be either QCOW2 or RAW format.

Procedure

1. Create a Dockerfile to build the virtual machine image into a container image. The virtual
machine image must be owned by QEMU, which has a UID of 107, and placed in the /disk/
directory inside the container. Permissions for the /disk/ directory must then be set to 0440.
The following example uses the Red Hat Universal Base Image (UBI) to handle these
configuration changes in the first stage, and uses the minimal scratch image in the second
stage to store the result:

Where <vm_image> is the virtual machine image in either QCOW2 or RAW format.
To use a remote virtual machine image, replace <vm_image>.qcow2 with the complete url
for the remote image.

2. Build and tag the container:

$ cat > Dockerfile << EOF
FROM registry.access.redhat.com/ubi8/ubi:latest AS builder
ADD --chown=107:107 <vm_image>.qcow2 /disk/ 1
RUN chmod 0440 /disk/*

FROM scratch
COPY --from=builder /disk/* /disk/
EOF

$ podman build -t <registry>/<container_disk_name>:latest .

CHAPTER 9. VIRTUAL MACHINES

245

https://access.redhat.com/documentation/en-us/red_hat_quay/


1

3. Push the container image to the registry:

If your container registry does not have TLS you must add it as an insecure registry before you can
import container disks into persistent storage.

9.20.17.3. Disabling TLS for a container registry to use as insecure registry

You can disable TLS (transport layer security) for one or more container registries by editing the 
insecureRegistries field of the HyperConverged custom resource.

Prerequisites

Log in to the cluster as a user with the cluster-admin role.

Procedure

Edit the HyperConverged custom resource and add a list of insecure registries to the 
spec.storageImport.insecureRegistries field.

Replace the examples in this list with valid registry hostnames.

9.20.17.4. Next steps

Import the container disk into persistent storage for a virtual machine .

Create a virtual machine that uses a containerDisk volume for ephemeral storage.

9.20.18. Preparing CDI scratch space

9.20.18.1. About data volumes

DataVolume objects are custom resources that are provided by the Containerized Data Importer (CDI)
project. Data volumes orchestrate import, clone, and upload operations that are associated with an
underlying persistent volume claim (PVC). Data volumes are integrated with OpenShift Virtualization,
and they prevent a virtual machine from being started before the PVC has been prepared.

9.20.18.2. About scratch space

$ podman push <registry>/<container_disk_name>:latest

apiVersion: hco.kubevirt.io/v1beta1
kind: HyperConverged
metadata:
  name: kubevirt-hyperconverged
  namespace: openshift-cnv
spec:
  storageImport:
    insecureRegistries: 1
      - "private-registry-example-1:5000"
      - "private-registry-example-2:5000"

OpenShift Container Platform 4.11 Virtualization

246

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/virtualization/#virt-importing-virtual-machine-images-datavolumes
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/virtualization/#virt-create-vms


The Containerized Data Importer (CDI) requires scratch space (temporary storage) to complete some
operations, such as importing and uploading virtual machine images. During this process, CDI provisions
a scratch space PVC equal to the size of the PVC backing the destination data volume (DV). The
scratch space PVC is deleted after the operation completes or aborts.

You can define the storage class that is used to bind the scratch space PVC in the 
spec.scratchSpaceStorageClass field of the HyperConverged custom resource.

If the defined storage class does not match a storage class in the cluster, then the default storage class
defined for the cluster is used. If there is no default storage class defined in the cluster, the storage class
used to provision the original DV or PVC is used.

NOTE

CDI requires requesting scratch space with a file volume mode, regardless of the PVC
backing the origin data volume. If the origin PVC is backed by block volume mode, you
must define a storage class capable of provisioning file volume mode PVCs.

Manual provisioning
If there are no storage classes, CDI uses any PVCs in the project that match the size requirements for
the image. If there are no PVCs that match these requirements, the CDI import pod remains in a
Pending state until an appropriate PVC is made available or until a timeout function kills the pod.

9.20.18.3. CDI operations that require scratch space

Type Reason

Registry imports CDI must download the image to a scratch space
and extract the layers to find the image file. The
image file is then passed to QEMU-IMG for
conversion to a raw disk.

Upload image QEMU-IMG does not accept input from STDIN.
Instead, the image to upload is saved in scratch
space before it can be passed to QEMU-IMG for
conversion.

HTTP imports of archived images QEMU-IMG does not know how to handle the archive
formats CDI supports. Instead, the image is
unarchived and saved into scratch space before it is
passed to QEMU-IMG.

HTTP imports of authenticated images QEMU-IMG inadequately handles authentication.
Instead, the image is saved to scratch space and
authenticated before it is passed to QEMU-IMG.

HTTP imports of custom certificates QEMU-IMG inadequately handles custom
certificates of HTTPS endpoints. Instead, CDI
downloads the image to scratch space before
passing the file to QEMU-IMG.

CHAPTER 9. VIRTUAL MACHINES

247



1

9.20.18.4. Defining a storage class

You can define the storage class that the Containerized Data Importer (CDI) uses when allocating
scratch space by adding the spec.scratchSpaceStorageClass field to the HyperConverged custom
resource (CR).

Prerequisites

Install the OpenShift CLI (oc).

Procedure

1. Edit the HyperConverged CR by running the following command:

2. Add the spec.scratchSpaceStorageClass field to the CR, setting the value to the name of a
storage class that exists in the cluster:

If you do not specify a storage class, CDI uses the storage class of the persistent volume
claim that is being populated.

3. Save and exit your default editor to update the HyperConverged CR.

9.20.18.5. CDI supported operations matrix

This matrix shows the supported CDI operations for content types against endpoints, and which of these
operations requires scratch space.

Content types HTTP HTTPS HTTP basic
auth

Registry Upload

KubeVirt
(QCOW2)

✓ QCOW2
✓ GZ*
✓ XZ*

✓ QCOW2**
✓ GZ*
✓ XZ*

✓ QCOW2
✓ GZ*
✓ XZ*

✓ QCOW2*
□ GZ
□ XZ

✓ QCOW2*
✓ GZ*
✓ XZ*

KubeVirt
(RAW)

✓ RAW
✓ GZ
✓ XZ

✓ RAW
✓ GZ
✓ XZ

✓ RAW
✓ GZ
✓ XZ

✓ RAW*
□ GZ
□ XZ

✓ RAW*
✓ GZ*
✓ XZ*

✓ Supported operation

□ Unsupported operation

* Requires scratch space

$ oc edit hco -n openshift-cnv kubevirt-hyperconverged

apiVersion: hco.kubevirt.io/v1beta1
kind: HyperConverged
metadata:
  name: kubevirt-hyperconverged
spec:
  scratchSpaceStorageClass: "<storage_class>" 1

OpenShift Container Platform 4.11 Virtualization

248



** Requires scratch space if a custom certificate authority is required

9.20.18.6. Additional resources

Dynamic provisioning

9.20.19. Re-using persistent volumes

To re-use a statically provisioned persistent volume (PV), you must first reclaim the volume. This
involves deleting the PV so that the storage configuration can be re-used.

9.20.19.1. About reclaiming statically provisioned persistent volumes

When you reclaim a persistent volume (PV), you unbind the PV from a persistent volume claim (PVC)
and delete the PV. Depending on the underlying storage, you might need to manually delete the shared
storage.

You can then re-use the PV configuration to create a PV with a different name.

Statically provisioned PVs must have a reclaim policy of Retain to be reclaimed. If they do not, the PV
enters a failed state when the PVC is unbound from the PV.

IMPORTANT

The Recycle reclaim policy is deprecated in OpenShift Container Platform 4.

9.20.19.2. Reclaiming statically provisioned persistent volumes

Reclaim a statically provisioned persistent volume (PV) by unbinding the persistent volume claim (PVC)
and deleting the PV. You might also need to manually delete the shared storage.

Reclaiming a statically provisioned PV is dependent on the underlying storage. This procedure provides
a general approach that might need to be customized depending on your storage.

Procedure

1. Ensure that the reclaim policy of the PV is set to Retain:

a. Check the reclaim policy of the PV:

b. If the persistentVolumeReclaimPolicy is not set to Retain, edit the reclaim policy with the
following command:

2. Ensure that no resources are using the PV:

Remove any resources that use the PVC before continuing.

3. Delete the PVC to release the PV:

$ oc get pv <pv_name> -o yaml | grep 'persistentVolumeReclaimPolicy'

$ oc patch pv <pv_name> -p '{"spec":{"persistentVolumeReclaimPolicy":"Retain"}}'

$ oc describe pvc <pvc_name> | grep 'Mounted By:'

CHAPTER 9. VIRTUAL MACHINES

249

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/storage/#about_dynamic-provisioning


4. Optional: Export the PV configuration to a YAML file. If you manually remove the shared storage
later in this procedure, you can refer to this configuration. You can also use spec parameters in
this file as the basis to create a new PV with the same storage configuration after you reclaim
the PV:

5. Delete the PV:

6. Optional: Depending on the storage type, you might need to remove the contents of the shared
storage folder:

7. Optional: Create a PV that uses the same storage configuration as the deleted PV. If you
exported the reclaimed PV configuration earlier, you can use the spec parameters of that file as
the basis for a new PV manifest:

NOTE

To avoid possible conflict, it is good practice to give the new PV object a
different name than the one that you deleted.

Additional resources

Configuring local storage for virtual machines

The OpenShift Container Platform Storage documentation has more information on Persistent
Storage.

9.20.20. Expanding a virtual machine disk

You can enlarge the size of a virtual machine’s (VM) disk to provide a greater storage capacity by
resizing the disk’s persistent volume claim (PVC).

However, you cannot reduce the size of a VM disk.

9.20.20.1. Enlarging a virtual machine disk

VM disk enlargement makes extra space available to the virtual machine. However, it is the responsibility
of the VM owner to decide how to consume the storage.

If the disk is a Filesystem PVC, the matching file expands to the remaining size while reserving some
space for file system overhead.

Procedure

$ oc delete pvc <pvc_name>

$ oc get pv <pv_name> -o yaml > <file_name>.yaml

$ oc delete pv <pv_name>

$ rm -rf <path_to_share_storage>

$ oc create -f <new_pv_name>.yaml

OpenShift Container Platform 4.11 Virtualization

250

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/virtualization/#virt-configuring-local-storage-for-vms
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/storage/#understanding-persistent-storage


1

1. Edit the PersistentVolumeClaim manifest of the VM disk that you want to expand:

2. Change the value of spec.resource.requests.storage attribute to a larger size.

The VM disk size that can be increased

9.20.20.2. Additional resources

Extending a basic volume in Windows .

Extending an existing file system partition without destroying data in Red Hat Enterprise Linux .

Extending a logical volume and its file system online in Red Hat Enterprise Linux .

9.20.21. Deleting data volumes

You can manually delete a data volume by using the oc command-line interface.

NOTE

When you delete a virtual machine, the data volume it uses is automatically deleted.

9.20.21.1. About data volumes

DataVolume objects are custom resources that are provided by the Containerized Data Importer (CDI)
project. Data volumes orchestrate import, clone, and upload operations that are associated with an
underlying persistent volume claim (PVC). Data volumes are integrated with OpenShift Virtualization,
and they prevent a virtual machine from being started before the PVC has been prepared.

9.20.21.2. Listing all data volumes

You can list the data volumes in your cluster by using the oc command-line interface.

Procedure

List all data volumes by running the following command:

$ oc edit pvc <pvc_name>

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
   name: vm-disk-expand
spec:
  accessModes:
     - ReadWriteMany
  resources:
    requests:
       storage: 3Gi 1
...

$ oc get dvs

CHAPTER 9. VIRTUAL MACHINES

251

https://docs.microsoft.com/en-us/windows-server/storage/disk-management/extend-a-basic-volume
https://access.redhat.com/solutions/29095
https://access.redhat.com/solutions/24770


9.20.21.3. Deleting a data volume

You can delete a data volume by using the oc command-line interface (CLI).

Prerequisites

Identify the name of the data volume that you want to delete.

Procedure

Delete the data volume by running the following command:

NOTE

This command only deletes objects that exist in the current project. Specify the -
n <project_name> option if the object you want to delete is in a different project
or namespace.

$ oc delete dv <datavolume_name>

OpenShift Container Platform 4.11 Virtualization

252



CHAPTER 10. VIRTUAL MACHINE TEMPLATES

10.1. CREATING VIRTUAL MACHINE TEMPLATES

10.1.1. About virtual machine templates

Preconfigured Red Hat virtual machine templates are listed in the Virtualization → Templates page.
These templates are available for different versions of Red Hat Enterprise Linux, Fedora, Microsoft
Windows 10, and Microsoft Windows Servers. Each Red Hat virtual machine template is preconfigured
with the operating system image, default settings for the operating system, flavor (CPU and memory),
and workload type (server).

The Templates page displays four types of virtual machine templates:

Red Hat Supported templates are fully supported by Red Hat.

User Supported templates are Red Hat Supported templates that were cloned and created by
users.

Red Hat Provided templates have limited support from Red Hat.

User Provided templates are Red Hat Provided templates that were cloned and created by
users.

You can use the filters in the template Catalog to sort the templates by attributes such as boot source
availability, operating system, and workload.

You cannot edit or delete a Red Hat Supported or Red Hat Provided template. You can clone the
template, save it as a custom virtual machine template, and then edit it.

You can also create a custom virtual machine template by editing a YAML file example.

IMPORTANT

Due to differences in storage behavior, some virtual machine templates are incompatible
with single-node OpenShift. To ensure compatibility, do not set the evictionStrategy
field for any templates or virtual machines that use data volumes or storage profiles.

10.1.2. About virtual machines and boot sources

Virtual machines consist of a virtual machine definition and one or more disks that are backed by data
volumes. Virtual machine templates enable you to create virtual machines using predefined virtual
machine specifications.

Every virtual machine template requires a boot source, which is a fully configured virtual machine disk
image including configured drivers. Each virtual machine template contains a virtual machine definition
with a pointer to the boot source. Each boot source has a predefined name and namespace. For some
operating systems, a boot source is automatically provided. If it is not provided, then an administrator
must prepare a custom boot source.

Provided boot sources are updated automatically to the latest version of the operating system. For
auto-updated boot sources, persistent volume claims (PVCs) are created with the cluster’s default
storage class. If you select a different default storage class after configuration, you must delete the

CHAPTER 10. VIRTUAL MACHINE TEMPLATES

253



existing data volumes in the cluster namespace that are configured with the previous default storage
class.

To use the boot sources feature, install the latest release of OpenShift Virtualization. The namespace 
openshift-virtualization-os-images enables the feature and is installed with the OpenShift
Virtualization Operator. Once the boot source feature is installed, you can create boot sources, attach
them to templates, and create virtual machines from the templates.

Define a boot source by using a persistent volume claim (PVC) that is populated by uploading a local file,
cloning an existing PVC, importing from a registry, or by URL. Attach a boot source to a virtual machine
template by using the web console. After the boot source is attached to a virtual machine template, you
create any number of fully configured ready-to-use virtual machines from the template.

10.1.3. Creating a virtual machine template in the web console

You create a virtual machine template by editing a YAML file example in the OpenShift Container
Platform web console.

Procedure

1. In the web console, click Virtualization → Templates in the side menu.

2. Click Create Template.

3. Specify the template parameters by editing the YAML file.

4. Click Create.
The template is displayed on the Templates page.

5. Optional: Click Download to download and save the YAML file.

10.1.4. Adding a boot source for a virtual machine template

A boot source can be configured for any virtual machine template that you want to use for creating
virtual machines or custom templates. When virtual machine templates are configured with a boot
source, they are labeled Source available on the Templates page. After you add a boot source to a
template, you can create a new virtual machine from the template.

There are four methods for selecting and adding a boot source in the web console:

Upload local file (creates PVC)

URL (creates PVC)

Clone (creates PVC)

Registry (creates PVC)

Prerequisites

To add a boot source, you must be logged in as a user with the os-images.kubevirt.io:edit
RBAC role or as an administrator. You do not need special privileges to create a virtual machine
from a template with a boot source added.

To upload a local file, the operating system image file must exist on your local machine.

OpenShift Container Platform 4.11 Virtualization

254



To import via URL, access to the web server with the operating system image is required. For
example: the Red Hat Enterprise Linux web page with images.

To clone an existing PVC, access to the project with a PVC is required.

To import via registry, access to the container registry is required.

Procedure

1. In the OpenShift Container Platform console, click Virtualization → Templates from the side
menu.

2. Click the options menu beside a template and select Edit boot source.

3. Click Add disk.

4. In the Add disk window, select Use this disk as a boot source.

5. Enter the disk name and select a Source, for example, Blank (creates PVC) or Use an existing
PVC.

6. Enter a value for Persistent Volume Claim size to specify the PVC size that is adequate for the
uncompressed image and any additional space that is required.

7. Select a Type, for example, Disk or CD-ROM.

8. Optional: Click Storage class and select the storage class that is used to create the disk.
Typically, this storage class is the default storage class that is created for use by all PVCs.

NOTE

Provided boot sources are updated automatically to the latest version of the
operating system. For auto-updated boot sources, persistent volume claims
(PVCs) are created with the cluster’s default storage class. If you select a
different default storage class after configuration, you must delete the existing
data volumes in the cluster namespace that are configured with the previous
default storage class.

9. Optional: Clear Apply optimized StorageProfile settings to edit the access mode or volume
mode.

10. Select the appropriate method to save your boot source:

a. Click Save and upload if you uploaded a local file.

b. Click Save and import if you imported content from a URL or the registry.

c. Click Save and clone if you cloned an existing PVC.

Your custom virtual machine template with a boot source is listed on the Catalog page. You can use this
template to create a virtual machine.

10.1.4.1. Virtual machine template fields for adding a boot source

The following table describes the fields for Add boot source to template window. This window displays
when you click Add source for a virtual machine template on the Virtualization → Templates page.

CHAPTER 10. VIRTUAL MACHINE TEMPLATES

255



Name Parameter Description

Boot source type Upload local file (creates
PVC)

Upload a file from your local device. Supported file
types include gz, xz, tar, and qcow2.

URL (creates PVC) Import content from an image available from an
HTTP or HTTPS endpoint. Obtain the download link
URL from the web page where the image download
is available and enter that URL link in the Import URL
field. Example: For a Red Hat Enterprise Linux
image, log on to the Red Hat Customer Portal,
access the image download page, and copy the
download link URL for the KVM guest image.

PVC (creates PVC) Use a PVC that is already available in the cluster and
clone it.

Registry (creates PVC) Specify the bootable operating system container
that is located in a registry and accessible from the
cluster. Example: kubevirt/cirros-registry-dis-demo.

Source provider  Optional field. Add descriptive text about the source
for the template or the name of the user who created
the template. Example: Red Hat.

Advanced Storage
settings

StorageClass The storage class that is used to create the disk.

Access mode Access mode of the persistent volume. Supported
access modes are Single User (RWO), Shared
Access (RWX), Read Only (ROX). If Single User
(RWO) is selected, the disk can be mounted as
read/write by a single node. If Shared Access (RWX)
is selected, the disk can be mounted as read-write by
many nodes. The kubevirt-storage-class-
defaults config map provides access mode defaults
for data volumes. The default value is set according
to the best option for each storage class in the
cluster.

NOTE

Shared Access (RWX) is required for
some features, such as live migration
of virtual machines between nodes.

OpenShift Container Platform 4.11 Virtualization

256



Volume mode Defines whether the persistent volume uses a
formatted file system or raw block state. Supported
modes are Block and Filesystem. The kubevirt-
storage-class-defaults config map provides
volume mode defaults for data volumes. The default
value is set according to the best option for each
storage class in the cluster.

Name Parameter Description

10.1.5. Additional resources

Creating and using boot sources

Customizing the storage profile

10.2. EDITING VIRTUAL MACHINE TEMPLATES

You can edit a virtual machine template in the web console.

NOTE

You cannot edit a template provided by the Red Hat Virtualization Operator. If you clone
the template, you can edit it.

10.2.1. Editing a virtual machine template in the web console

Edit select values of a virtual machine template in the web console by clicking the pencil icon next to the
relevant field. Other values can be edited using the CLI.

You can edit labels and annotations for any templates, including those provided by Red Hat. Other fields
are editable for user-customized templates only.

Procedure

1. Click Virtualization → Templates from the side menu.

2. Optional: Use the Filter drop-down menu to sort the list of virtual machine templates by
attributes such as status, template, node, or operating system (OS).

3. Select a virtual machine template to open the Template details page.

4. Click any field that has the pencil icon, which indicates that the field is editable. For example,
click the current Boot mode setting, such as BIOS or UEFI, to open the Boot mode window and
select an option from the list.

5. Make the relevant changes and click Save.

Editing a virtual machine template will not affect virtual machines already created from that template.

10.2.1.1. Virtual machine template fields

The following table lists the virtual machine template fields that you can edit in the OpenShift Container

CHAPTER 10. VIRTUAL MACHINE TEMPLATES

257

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/virtualization/#virt-creating-and-using-boot-sources
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/virtualization/#virt-customizing-storage-profile_virt-creating-data-volumes


The following table lists the virtual machine template fields that you can edit in the OpenShift Container
Platform web console:

Table 10.1. Virtual machine template fields

Tab Fields or functionality

Details
Labels

Annotations

Display name

Description

Workload profile

CPU/Memory

Boot mode

GPU devices

Host devices

YAML
View, edit, or download the custom
resource.

Scheduling
Node selector

Tolerations

Affinity rules

Dedicated resources

Eviction strategy

Descheduler setting

Network Interfaces
Add, edit, or delete a network interface.

Disks
Add, edit, or delete a disk.

Scripts
cloud-init settings

OpenShift Container Platform 4.11 Virtualization

258



Parameters (optional)
Virtual machine name

cloud-user password

Tab Fields or functionality

10.2.1.2. Adding a network interface to a virtual machine template

Use this procedure to add a network interface to a virtual machine template.

Procedure

1. Click Virtualization → Templates from the side menu.

2. Select a virtual machine template to open the Template details screen.

3. Click the Network Interfaces tab.

4. Click Add Network Interface.

5. In the Add Network Interface window, specify the Name, Model, Network, Type, and MAC
Address of the network interface.

6. Click Add.

10.2.1.3. Adding a virtual disk to a virtual machine template

Use this procedure to add a virtual disk to a virtual machine template.

Procedure

1. Click Virtualization → Templates from the side menu.

2. Select a virtual machine template to open the Template details screen.

3. Click the Disks tab and then click Add disk.

4. In the Add disk window, specify the Source, Name, Size, Type, Interface, and Storage Class.

a. Optional: You can enable preallocation if you use a blank disk source and require maximum
write performance when creating data volumes. To do so, select the Enable preallocation
checkbox.

b. Optional: You can clear Apply optimized StorageProfile settings to change the Volume
Mode and Access Mode for the virtual disk. If you do not specify these parameters, the
system uses the default values from the kubevirt-storage-class-defaults config map.

5. Click Add.

10.2.1.4. Editing CD-ROMs for Templates

Use the following procedure to edit CD-ROMs for virtual machine templates.

Procedure

CHAPTER 10. VIRTUAL MACHINE TEMPLATES

259



Procedure

1. Click Virtualization → Templates from the side menu.

2. Select a virtual machine template to open the Template details screen.

3. Click the Disks tab.

4. Click the Options menu  for the CD-ROM that you want to edit and select Edit.

5. In the Edit CD-ROM window, edit the fields: Source, Persistent Volume Claim, Name, Type,
and Interface.

6. Click Save.

10.3. ENABLING DEDICATED RESOURCES FOR VIRTUAL MACHINE
TEMPLATES

Virtual machines can have resources of a node, such as CPU, dedicated to them to improve
performance.

10.3.1. About dedicated resources

When you enable dedicated resources for your virtual machine, your virtual machine’s workload is
scheduled on CPUs that will not be used by other processes. By using dedicated resources, you can
improve the performance of the virtual machine and the accuracy of latency predictions.

10.3.2. Prerequisites

The CPU Manager must be configured on the node. Verify that the node has the cpumanager =
true label before scheduling virtual machine workloads.

10.3.3. Enabling dedicated resources for a virtual machine template

You enable dedicated resources for a virtual machine template in the Details tab. Virtual machines that
were created from a Red Hat template can be configured with dedicated resources.

Procedure

1. In the OpenShift Container Platform console, click Virtualization → Templates from the side
menu.

2. Select a virtual machine template to open the Template details page.

3. On the Scheduling tab, click the pencil icon beside Dedicated Resources.

4. Select Schedule this workload with dedicated resources (guaranteed policy).

5. Click Save.

10.4. DEPLOYING A VIRTUAL MACHINE TEMPLATE TO A CUSTOM
NAMESPACE

OpenShift Container Platform 4.11 Virtualization

260

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/scalability_and_performance/#using-cpu-manager-and-topology-manager


Red Hat provides preconfigured virtual machine templates that are installed in the openshift
namespace. The ssp-operator deploys virtual machine templates to the openshift namespace by
default. Templates in the openshift namespace are publicly available to all users. These templates are
listed on the Virtualization → Templates page for different operating systems.

10.4.1. Creating a custom namespace for templates

You can create a custom namespace that is used to deploy virtual machine templates for use by anyone
who has permissions to access those templates. To add templates to a custom namespace, edit the 
HyperConverged custom resource (CR), add commonTemplatesNamespace to the spec, and specify
the custom namespace for the virtual machine templates. After the HyperConverged CR is modified,
the ssp-operator populates the templates in the custom namespace.

Prerequisites

Install the OpenShift Container Platform CLI oc.

Log in as a user with cluster-admin privileges.

Procedure

Use the following command to create your custom namespace:

$ oc create namespace <mycustomnamespace>

10.4.2. Adding templates to a custom namespace

The ssp-operator deploys virtual machine templates to the openshift namespace by default.
Templates in the openshift namespace are publicly availably to all users. When a custom namespace is
created and templates are added to that namespace, you can modify or delete virtual machine
templates in the openshift namespace. To add templates to a custom namespace, edit the 
HyperConverged custom resource (CR) which contains the ssp-operator.

Procedure

1. View the list of virtual machine templates that are available in the openshift namespace.

2. Edit the HyperConverged CR in your default editor by running the following command:

3. View the list of virtual machine templates that are available in the custom namespace.

4. Add the commonTemplatesNamespace attribute and specify the custom namespace.
Example:

$ oc get templates -n openshift

$ oc edit hco -n openshift-cnv kubevirt-hyperconverged

$ oc get templates -n customnamespace

apiVersion: hco.kubevirt.io/v1beta1
kind: HyperConverged
metadata:

CHAPTER 10. VIRTUAL MACHINE TEMPLATES

261



1

1

The custom namespace for deploying templates.

5. Save your changes and exit the editor. The ssp-operator adds virtual machine templates that
exist in the default openshift namespace to the custom namespace.

10.4.2.1. Deleting templates from a custom namespace

To delete virtual machine templates from a custom namespace, remove the 
commonTemplateNamespace attribute from the HyperConverged custom resource (CR) and delete
each template from that custom namespace.

Procedure

1. Edit the HyperConverged CR in your default editor by running the following command:

2. Remove the commonTemplateNamespace attribute.

The commonTemplatesNamespace attribute to be deleted.

3. Delete a specific template from the custom namespace that was removed.

Verification

Verify that the template was deleted from the custom namespace.

10.4.2.2. Additional resources

Creating virtual machine templates

10.5. DELETING VIRTUAL MACHINE TEMPLATES

You can delete customized virtual machine templates based on Red Hat templates by using the web
console.

  name: kubevirt-hyperconverged
spec:
  commonTemplatesNamespace: customnamespace 1

$ oc edit hco -n openshift-cnv kubevirt-hyperconverged

apiVersion: hco.kubevirt.io/v1beta1
kind: HyperConverged
metadata:
  name: kubevirt-hyperconverged
spec:
  commonTemplatesNamespace: customnamespace 1

$ oc delete templates -n customnamespace <template_name>

$ oc get templates -n customnamespace

OpenShift Container Platform 4.11 Virtualization

262

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/virtualization/#virt-creating-vm-template


You cannot delete Red Hat templates.

10.5.1. Deleting a virtual machine template in the web console

Deleting a virtual machine template permanently removes it from the cluster.

NOTE

You can delete customized virtual machine templates. You cannot delete Red Hat-
supplied templates.

Procedure

1. In the OpenShift Container Platform console, click Virtualization → Templates from the side
menu.

2. Click the Options menu  of a template and select Delete template.

3. Click Delete.

CHAPTER 10. VIRTUAL MACHINE TEMPLATES

263



CHAPTER 11. LIVE MIGRATION

11.1. VIRTUAL MACHINE LIVE MIGRATION

11.1.1. About live migration

Live migration is the process of moving a running virtual machine instance (VMI) to another node in the
cluster without interrupting the virtual workload or access. If a VMI uses the LiveMigrate eviction
strategy, it automatically migrates when the node that the VMI runs on is placed into maintenance
mode. You can also manually start live migration by selecting a VMI to migrate.

You can use live migration if the following conditions are met:

Shared storage with ReadWriteMany (RWX) access mode.

Sufficient RAM and network bandwidth.

If the virtual machine uses a host model CPU, the nodes must support the virtual machine’s host
model CPU.

By default, live migration traffic is encrypted using Transport Layer Security (TLS).

11.1.2. Additional resources

Migrating a virtual machine instance to another node

Live migration limiting

Customizing the storage profile

11.2. LIVE MIGRATION LIMITS AND TIMEOUTS

Apply live migration limits and timeouts so that migration processes do not overwhelm the cluster.
Configure these settings by editing the HyperConverged custom resource (CR).

11.2.1. Configuring live migration limits and timeouts

Configure live migration limits and timeouts for the cluster by updating the HyperConverged custom
resource (CR), which is located in the openshift-cnv namespace.

Procedure

Edit the HyperConverged CR and add the necessary live migration parameters.

Example configuration file

$ oc edit hco -n openshift-cnv kubevirt-hyperconverged

apiVersion: hco.kubevirt.io/v1beta1
kind: HyperConverged
metadata:
  name: kubevirt-hyperconverged
  namespace: openshift-cnv

OpenShift Container Platform 4.11 Virtualization

264

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/virtualization/#virt-migrate-vmi
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/virtualization/#virt-live-migration-limits
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/virtualization/#virt-customizing-storage-profile_virt-creating-data-volumes


1 In this example, the spec.liveMigrationConfig array contains the default values for each
field.

NOTE

You can restore the default value for any spec.liveMigrationConfig field by
deleting that key/value pair and saving the file. For example, delete 
progressTimeout: <value> to restore the default progressTimeout: 150.

11.2.2. Cluster-wide live migration limits and timeouts

Table 11.1. Migration parameters

Parameter Description Default

parallelMigrationsPerCluster Number of migrations running in parallel in the
cluster.

5

parallelOutboundMigrations
PerNode

Maximum number of outbound migrations per node. 2

bandwidthPerMigration Bandwidth limit of each migration, where the value is
the quantity of bytes per second. For example, a
value of 2048Mi means 2048 MiB/s.

0 [1]

completionTimeoutPerGiB The migration is canceled if it has not completed in
this time, in seconds per GiB of memory. For
example, a virtual machine instance with 6GiB
memory times out if it has not completed migration in
4800 seconds. If the Migration Method is 
BlockMigration, the size of the migrating disks is
included in the calculation.

800

progressTimeout The migration is canceled if memory copy fails to
make progress in this time, in seconds.

150

1. The default value of 0 is unlimited.

11.3. MIGRATING A VIRTUAL MACHINE INSTANCE TO ANOTHER NODE

Manually initiate a live migration of a virtual machine instance to another node using either the web
console or the CLI.

NOTE

spec:
  liveMigrationConfig: 1
    bandwidthPerMigration: 64Mi
    completionTimeoutPerGiB: 800
    parallelMigrationsPerCluster: 5
    parallelOutboundMigrationsPerNode: 2
    progressTimeout: 150

CHAPTER 11. LIVE MIGRATION

265



NOTE

If a virtual machine uses a host model CPU, you can perform live migration of that virtual
machine only between nodes that support its host CPU model.

11.3.1. Initiating live migration of a virtual machine instance in the web console

Migrate a running virtual machine instance to a different node in the cluster.

NOTE

The Migrate action is visible to all users but only admin users can initiate a virtual
machine migration.

Procedure

1. In the OpenShift Container Platform console, click Virtualization → VirtualMachines from the
side menu.

2. You can initiate the migration from this page, which makes it easier to perform actions on
multiple virtual machines on the same page, or from the VirtualMachine details page where you
can view comprehensive details of the selected virtual machine:

Click the Options menu  next to the virtual machine and select Migrate.

Click the virtual machine name to open the VirtualMachine details page and click Actions
→ Migrate.

3. Click Migrate to migrate the virtual machine to another node.

11.3.2. Initiating live migration of a virtual machine instance in the CLI

Initiate a live migration of a running virtual machine instance by creating a 
VirtualMachineInstanceMigration object in the cluster and referencing the name of the virtual
machine instance.

Procedure

1. Create a VirtualMachineInstanceMigration configuration file for the virtual machine instance
to migrate. For example, vmi-migrate.yaml:

2. Create the object in the cluster by running the following command:

The VirtualMachineInstanceMigration object triggers a live migration of the virtual machine instance.

apiVersion: kubevirt.io/v1
kind: VirtualMachineInstanceMigration
metadata:
  name: migration-job
spec:
  vmiName: vmi-fedora

$ oc create -f vmi-migrate.yaml

OpenShift Container Platform 4.11 Virtualization

266



The VirtualMachineInstanceMigration object triggers a live migration of the virtual machine instance.
This object exists in the cluster for as long as the virtual machine instance is running, unless manually
deleted.

Additional resources:

Monitoring live migration of a virtual machine instance

Cancelling the live migration of a virtual machine instance

11.4. MIGRATING A VIRTUAL MACHINE OVER A DEDICATED
ADDITIONAL NETWORK

You can configure a dedicated Multus network for live migration. A dedicated network minimizes the
effects of network saturation on tenant workloads during live migration.

11.4.1. Configuring a dedicated secondary network for virtual machine live migration

To configure a dedicated secondary network for live migration, you must first create a bridge network
attachment definition for the openshift-cnv namespace by using the CLI. Then, add the name of the 
NetworkAttachmentDefinition object to the HyperConverged custom resource (CR).

Prerequisites

You installed the OpenShift CLI (oc).

You logged in to the cluster as a user with the cluster-admin role.

The Multus Container Network Interface (CNI) plugin is installed on the cluster.

Every node on the cluster has at least two Network Interface Cards (NICs), and the NICs to be
used for live migration are connected to the same VLAN.

The virtual machine (VM) is running with the LiveMigrate eviction strategy.

Procedure

1. Create a NetworkAttachmentDefinition manifest.

Example configuration file

apiVersion: "k8s.cni.cncf.io/v1"
kind: NetworkAttachmentDefinition
metadata:
  name: my-secondary-network 1
  namespace: openshift-cnv 2
spec:
  config: '{
    "cniVersion": "0.3.1",
    "name": "migration-bridge",
    "type": "macvlan",
    "master": "eth1", 3
    "mode": "bridge",
    "ipam": {

CHAPTER 11. LIVE MIGRATION

267

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/virtualization/#virt-monitor-vmi-migration
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/virtualization/#virt-cancel-vmi-migration
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/virtualization/#virt-attaching-vm-multiple-networks


1

2

3

4

5

1

The name of the NetworkAttachmentDefinition object.

The namespace where the NetworkAttachmentDefinition object resides. This must be 
openshift-cnv.

The name of the NIC to be used for live migration.

The name of the CNI plugin that provides the network for this network attachment
definition.

The IP address range for the secondary network. This range must not have any overlap
with the IP addresses of the main network.

2. Open the HyperConverged CR in your default editor by running the following command:

3. Add the name of the NetworkAttachmentDefinition object to the spec.liveMigrationConfig
stanza of the HyperConverged CR. For example:

Example configuration file

The name of the Multus NetworkAttachmentDefinition object to be used for live
migrations.

4. Save your changes and exit the editor. The virt-handler pods restart and connect to the
secondary network.

Verification

When the node that the virtual machine runs on is placed into maintenance mode, the VM
automatically migrates to another node in the cluster. You can verify that the migration
occurred over the secondary network and not the default pod network by checking the target IP
address in the virtual machine instance (VMI) metadata.

      "type": "whereabouts", 4
      "range": "10.200.5.0/24" 5
    }
  }'

oc edit hyperconverged kubevirt-hyperconverged -n openshift-cnv

apiVersion: hco.kubevirt.io/v1beta1
kind: HyperConverged
metadata:
  name: kubevirt-hyperconverged
spec:
  liveMigrationConfig:
    completionTimeoutPerGiB: 800
    network: my-secondary-network  1
    parallelMigrationsPerCluster: 5
    parallelOutboundMigrationsPerNode: 2
    progressTimeout: 150
...

OpenShift Container Platform 4.11 Virtualization

268



11.4.2. Additional resources

Live migration limits and timeouts

11.5. MONITORING LIVE MIGRATION OF A VIRTUAL MACHINE
INSTANCE

You can monitor the progress of a live migration of a virtual machine instance from either the web
console or the CLI.

11.5.1. Monitoring live migration of a virtual machine instance in the web console

For the duration of the migration, the virtual machine has a status of Migrating. This status is displayed
on the VirtualMachines page or on the VirtualMachine details page of the migrating virtual machine.

Procedure

1. In the OpenShift Container Platform console, click Virtualization → VirtualMachines from the
side menu.

2. Select a virtual machine to open the VirtualMachine details page.

11.5.2. Monitoring live migration of a virtual machine instance in the CLI

The status of the virtual machine migration is stored in the Status component of the 
VirtualMachineInstance configuration.

Procedure

Use the oc describe command on the migrating virtual machine instance:

Example output

oc get vmi <vmi_name> -o jsonpath='{.status.migrationState.targetNodeAddress}'

$ oc describe vmi vmi-fedora

...
Status:
  Conditions:
    Last Probe Time:       <nil>
    Last Transition Time:  <nil>
    Status:                True
    Type:                  LiveMigratable
  Migration Method:  LiveMigration
  Migration State:
    Completed:                    true
    End Timestamp:                2018-12-24T06:19:42Z
    Migration UID:                d78c8962-0743-11e9-a540-fa163e0c69f1
    Source Node:                  node2.example.com
    Start Timestamp:              2018-12-24T06:19:35Z

CHAPTER 11. LIVE MIGRATION

269

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/virtualization/#virt-live-migration-limits


11.6. CANCELLING THE LIVE MIGRATION OF A VIRTUAL MACHINE
INSTANCE

Cancel the live migration so that the virtual machine instance remains on the original node.

You can cancel a live migration from either the web console or the CLI.

11.6.1. Cancelling live migration of a virtual machine instance in the web console

You can cancel the live migration of a virtual machine instance in the web console.

Procedure

1. In the OpenShift Container Platform console, click Virtualization → VirtualMachines from the
side menu.

2. Click the Options menu  beside a virtual machine and select Cancel Migration.

11.6.2. Cancelling live migration of a virtual machine instance in the CLI

Cancel the live migration of a virtual machine instance by deleting the 
VirtualMachineInstanceMigration object associated with the migration.

Procedure

Delete the VirtualMachineInstanceMigration object that triggered the live migration, 
migration-job in this example:

11.7. CONFIGURING VIRTUAL MACHINE EVICTION STRATEGY

The LiveMigrate eviction strategy ensures that a virtual machine instance is not interrupted if the node
is placed into maintenance or drained. Virtual machines instances with this eviction strategy will be live
migrated to another node.

11.7.1. Configuring custom virtual machines with the LiveMigration eviction strategy

You only need to configure the LiveMigration eviction strategy on custom virtual machines. Common
templates have this eviction strategy configured by default.

Procedure

1. Add the evictionStrategy: LiveMigrate option to the spec.template.spec section in the virtual
machine configuration file. This example uses oc edit to update the relevant snippet of the 
VirtualMachine configuration file:

    Target Node:                  node1.example.com
    Target Node Address:          10.9.0.18:43891
    Target Node Domain Detected:  true

$ oc delete vmim migration-job

OpenShift Container Platform 4.11 Virtualization

270



2. Restart the virtual machine for the update to take effect:

11.8. CONFIGURING LIVE MIGRATION POLICIES

You can define different migration configurations for specified groups of virtual machine instances
(VMIs) by using a live migration policy.

IMPORTANT

Live migration policy is a Technology Preview feature only. Technology Preview features
are not supported with Red Hat production service level agreements (SLAs) and might
not be functionally complete. Red Hat does not recommend using them in production.
These features provide early access to upcoming product features, enabling customers
to test functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

11.8.1. Configuring a live migration policy

Use the MigrationPolicy custom resource definition (CRD) to define migration policies for one or more
groups of selected virtual machine instances (VMIs).

You can specify groups of VMIs by using any combination of the following:

Virtual machine instance labels such as size, os, gpu, and other VMI labels.

Namespace labels such as priority, bandwidth, hpc-workload, and other namespace labels.

For the policy to apply to a specific group of VMIs, all labels on the group of VMIs must match the labels
in the policy.

NOTE

If multiple live migration policies apply to a VMI, the policy with the highest number of
matching labels takes precedence. If multiple policies meet this criteria, the policies are
sorted by lexicographic order of the matching labels keys, and the first one in that order
takes precedence.

$ oc edit vm <custom-vm> -n <my-namespace>

apiVersion: kubevirt.io/v1
kind: VirtualMachine
metadata:
  name: custom-vm
spec:
  template:
    spec:
      evictionStrategy: LiveMigrate
...

$ virtctl restart <custom-vm> -n <my-namespace>

CHAPTER 11. LIVE MIGRATION

271

https://access.redhat.com/support/offerings/techpreview/


1

2

Procedure

1. Create a MigrationPolicy CRD for your specified group of VMIs. The following example YAML
configures a group with the labels hpc-workloads:true, xyz-workloads-type: "", workload-
type: db, and operating-system: "":

Use namespaceSelector to define a group of VMIs by using namespace labels.

Use virtualMachineInstanceSelector to define a group of VMIs by using VMI labels.

apiVersion: migrations.kubevirt.io/v1alpha1
kind: MigrationPolicy
metadata:
  name: my-awesome-policy
spec:
  # Migration Configuration
  allowAutoConverge: true
  bandwidthPerMigration: 217Ki
  completionTimeoutPerGiB: 23
  allowPostCopy: false

  # Matching to VMIs
  selectors:
    namespaceSelector: 1
      matchLabels:
        hpc-workloads: "True"
        xyz-workloads-type: ""
    virtualMachineInstanceSelector: 2
      matchLabels:
        workload-type: "db"
        operating-system: ""

OpenShift Container Platform 4.11 Virtualization

272



CHAPTER 12. NODE MAINTENANCE

12.1. ABOUT NODE MAINTENANCE

12.1.1. About node maintenance mode

Nodes can be placed into maintenance mode using the oc adm utility, or using NodeMaintenance
custom resources (CRs).

NOTE

The node-maintenance-operator (NMO) is no longer shipped with OpenShift
Virtualization. It is now available to deploy as a standalone Operator from the
OperatorHub in the OpenShift Container Platform web console, or by using the
OpenShift CLI (oc).

Placing a node into maintenance marks the node as unschedulable and drains all the virtual machines
and pods from it. Virtual machine instances that have a LiveMigrate eviction strategy are live migrated
to another node without loss of service. This eviction strategy is configured by default in virtual machine
created from common templates but must be configured manually for custom virtual machines.

Virtual machine instances without an eviction strategy are shut down. Virtual machines with a 
RunStrategy of Running or RerunOnFailure are recreated on another node. Virtual machines with a 
RunStrategy of Manual are not automatically restarted.

IMPORTANT

Virtual machines must have a persistent volume claim (PVC) with a shared 
ReadWriteMany (RWX) access mode to be live migrated.

The Node Maintenance Operator watches for new or deleted NodeMaintenance CRs. When a new 
NodeMaintenance CR is detected, no new workloads are scheduled and the node is cordoned off from
the rest of the cluster. All pods that can be evicted are evicted from the node. When a 
NodeMaintenance CR is deleted, the node that is referenced in the CR is made available for new
workloads.

NOTE

Using a NodeMaintenance CR for node maintenance tasks achieves the same results as
the oc adm cordon and oc adm drain commands using standard OpenShift Container
Platform custom resource processing.

12.1.2. Maintaining bare metal nodes

When you deploy OpenShift Container Platform on bare metal infrastructure, there are additional
considerations that must be taken into account compared to deploying on cloud infrastructure. Unlike in
cloud environments where the cluster nodes are considered ephemeral, re-provisioning a bare metal
node requires significantly more time and effort for maintenance tasks.

When a bare metal node fails, for example, if a fatal kernel error happens or a NIC card hardware failure
occurs, workloads on the failed node need to be restarted elsewhere else on the cluster while the
problem node is repaired or replaced. Node maintenance mode allows cluster administrators to

CHAPTER 12. NODE MAINTENANCE

273



gracefully power down nodes, moving workloads to other parts of the cluster and ensuring workloads do
not get interrupted. Detailed progress and node status details are provided during maintenance.

12.1.3. Additional resources

Installing the Node Maintenance Operator by using the CLI

Setting a node to maintenance mode

Resuming a node from maintenance mode

About RunStrategies for virtual machines

Virtual machine live migration

Configuring virtual machine eviction strategy

12.2. AUTOMATIC RENEWAL OF TLS CERTIFICATES

All TLS certificates for OpenShift Virtualization components are renewed and rotated automatically.
You are not required to refresh them manually.

12.2.1. TLS certificates automatic renewal schedules

TLS certificates are automatically deleted and replaced according to the following schedule:

KubeVirt certificates are renewed daily.

Containerized Data Importer controller (CDI) certificates are renewed every 15 days.

MAC pool certificates are renewed every year.

Automatic TLS certificate rotation does not disrupt any operations. For example, the following
operations continue to function without any disruption:

Migrations

Image uploads

VNC and console connections

12.3. MANAGING NODE LABELING FOR OBSOLETE CPU MODELS

You can schedule a virtual machine (VM) on a node as long as the VM CPU model and policy are
supported by the node.

12.3.1. About node labeling for obsolete CPU models

The OpenShift Virtualization Operator uses a predefined list of obsolete CPU models to ensure that a
node supports only valid CPU models for scheduled VMs.

By default, the following CPU models are eliminated from the list of labels generated for the node:

Example 12.1. Obsolete CPU models

OpenShift Container Platform 4.11 Virtualization

274

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/nodes/#installing-maintenance-operator-using-cli_node-maintenance-operator
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/nodes/#setting-node-in-maintenance-mode
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/nodes/#resuming-node-from-maintenance-mode
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/virtualization/#virt-about-runstrategies-vms_virt-create-vms
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/virtualization/#virt-live-migration
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/virtualization/#virt-configuring-vmi-eviction-strategy


"486"
Conroe
athlon
core2duo
coreduo
kvm32
kvm64
n270
pentium
pentium2
pentium3
pentiumpro
phenom
qemu32
qemu64

This predefined list is not visible in the HyperConverged CR. You cannot remove CPU models from this
list, but you can add to the list by editing the spec.obsoleteCPUs.cpuModels field of the 
HyperConverged CR.

12.3.2. About node labeling for CPU features

Through the process of iteration, the base CPU features in the minimum CPU model are eliminated
from the list of labels generated for the node.

For example:

An environment might have two supported CPU models: Penryn and Haswell.

If Penryn is specified as the CPU model for minCPU, each base CPU feature for Penryn is
compared to the list of CPU features supported by Haswell.

Example 12.2. CPU features supported by Penryn

apic
clflush
cmov
cx16
cx8
de
fpu
fxsr
lahf_lm
lm
mca
mce
mmx
msr
mtrr
nx
pae
pat
pge
pni
pse

CHAPTER 12. NODE MAINTENANCE

275



pse36
sep
sse
sse2
sse4.1
ssse3
syscall
tsc

Example 12.3. CPU features supported by Haswell

aes
apic
avx
avx2
bmi1
bmi2
clflush
cmov
cx16
cx8
de
erms
fma
fpu
fsgsbase
fxsr
hle
invpcid
lahf_lm
lm
mca
mce
mmx
movbe
msr
mtrr
nx
pae
pat
pcid
pclmuldq
pge
pni
popcnt
pse
pse36
rdtscp
rtm
sep
smep
sse
sse2
sse4.1

OpenShift Container Platform 4.11 Virtualization

276



sse4.2
ssse3
syscall
tsc
tsc-deadline
x2apic
xsave

If both Penryn and Haswell support a specific CPU feature, a label is not created for that
feature. Labels are generated for CPU features that are supported only by Haswell and not by 
Penryn.

Example 12.4. Node labels created for CPU features after iteration

aes
avx
avx2
bmi1
bmi2
erms
fma
fsgsbase
hle
invpcid
movbe
pcid
pclmuldq
popcnt
rdtscp
rtm
sse4.2
tsc-deadline
x2apic
xsave

12.3.3. Configuring obsolete CPU models

You can configure a list of obsolete CPU models by editing the HyperConverged custom resource
(CR).

Procedure

Edit the HyperConverged custom resource, specifying the obsolete CPU models in the 
obsoleteCPUs array. For example:

apiVersion: hco.kubevirt.io/v1beta1
kind: HyperConverged
metadata:
  name: kubevirt-hyperconverged
  namespace: openshift-cnv
spec:
  obsoleteCPUs:
    cpuModels: 1

CHAPTER 12. NODE MAINTENANCE

277



1

2

1

Replace the example values in the cpuModels array with obsolete CPU models. Any value
that you specify is added to a predefined list of obsolete CPU models. The predefined list
is not visible in the CR.

Replace this value with the minimum CPU model that you want to use for basic CPU
features. If you do not specify a value, Penryn is used by default.

12.4. PREVENTING NODE RECONCILIATION

Use skip-node annotation to prevent the node-labeller from reconciling a node.

12.4.1. Using skip-node annotation

If you want the node-labeller to skip a node, annotate that node by using the oc CLI.

Prerequisites

You have installed the OpenShift CLI (oc).

Procedure

Annotate the node that you want to skip by running the following command:

Replace <node_name> with the name of the relevant node to skip.

Reconciliation resumes on the next cycle after the node annotation is removed or set to false.

12.4.2. Additional resources

Managing node labeling for obsolete CPU models

      - "<obsolete_cpu_1>"
      - "<obsolete_cpu_2>"
    minCPUModel: "<minimum_cpu_model>" 2

$ oc annotate node <node_name> node-labeller.kubevirt.io/skip-node=true 1

OpenShift Container Platform 4.11 Virtualization

278

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/virtualization/#virt-managing-node-labeling-obsolete-cpu-models


CHAPTER 13. LOGGING, EVENTS, AND MONITORING

13.1. REVIEWING VIRTUALIZATION OVERVIEW

The Virtualization Overview page provides a comprehensive view of virtualization resources, details,
status, and top consumers. By gaining an insight into the overall health of OpenShift Virtualization, you
can determine if intervention is required to resolve specific issues identified by examining the data.

Use the Getting Started resources to access quick starts, read the latest blogs on virtualization, and
learn how to use operators. Obtain complete information about alerts, events, inventory, and status of
virtual machines. Customize the Top Consumer cards to obtain data on high utilization of a specific
resource by projects, virtual machines, or nodes. Click View virtualization dashboard for quick access to
the Dashboards page.

13.1.1. Prerequisites

To use the vCPU wait metric in the Top Consumers card, the schedstats=enable kernel argument
must be applied to the MachineConfig object. This kernel argument enables scheduler statistics used
for debugging and performance tuning and adds a minor additional load to the scheduler. See the
OpenShift Container Platform machine configuration tasks  documentation for more information on
applying a kernel argument.

13.1.2. Resources monitored actively in the Virtualization Overview page

The following table shows actively monitored resources, metrics, and fields in the Virtualization
Overview page. This information is useful when you need to obtain relevant data and intervene to
resolve a problem.

Monitored resources, fields, and metrics Description

Details A brief overview of service and version information
for OpenShift Virtualization.

Status Alerts for virtualization and networking.

Activity Ongoing events for virtual machines. Messages are
related to recent activity in the cluster, such as pod
creation or virtual machine migration to another host.

Running VMs by Template The donut chart displays a unique color for each
virtual machine template and shows the number of
running virtual machines that use each template.

Inventory Total number of active virtual machines, templates,
nodes, and networks.

Status of VMs Current status of virtual machines: running,
provisioning, starting, migrating, paused, stopping,
terminating, and unknown.

CHAPTER 13. LOGGING, EVENTS, AND MONITORING

279

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/virtualization/#virt-reviewing-vm-dashboard
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/post-installation_configuration/#nodes-nodes-kernel-arguments_post-install-machine-configuration-tasks


Permissions Tasks for which capabilities are enabled through
permissions: Access to public templates, Access to
public boot sources, Clone a VM, Attach VM to
multiple networks, Upload a base image from local
disk, and Share templates.

13.1.3. Resources monitored for top consumption

The Top Consumers cards in Virtualization Overview page display projects, virtual machines or nodes
with maximum consumption of a resource. You can select a project, a virtual machine, or a node and view
the top five or top ten consumers of a specific resource.

NOTE

Viewing the maximum resource consumption is limited to the top five or top ten
consumers within each Top Consumers card.

The following table shows resources monitored for top consumers.

Resources monitored for top consumption Description

CPU Projects, virtual machines, or nodes consuming the
most CPU.

Memory Projects, virtual machines, or nodes consuming the
most memory (in bytes). The unit of display (for
example, MiB or GiB) is determined by the size of the
resource consumption.

Used filesystem Projects, virtual machines, or nodes with the highest
consumption of filesystems (in bytes). The unit of
display (for example, MiB or GiB) is determined by
the size of the resource consumption.

Memory swap Projects, virtual machines, or nodes consuming the
most memory pressure when memory is swapped .

vCPU wait Projects, virtual machines, or nodes experiencing the
maximum wait time (in seconds) for the vCPUs.

Storage throughput Projects, virtual machines, or nodes with the highest
data transfer rate to and from the storage media (in
mbps).

Storage IOPS Projects, virtual machines, or nodes with the highest
amount of storage IOPS (input/output operations
per second) over a time period.

OpenShift Container Platform 4.11 Virtualization

280



13.1.4. Reviewing top consumers for projects, virtual machines, and nodes

You can view the top consumers of resources for a selected project, virtual machine, or node in the
Virtualization Overview page.

Prerequisites

You have access to the cluster as a user with the cluster-admin role.

Procedure

1. In the Administrator perspective in the OpenShift Virtualization web console, navigate to
Virtualization → Overview.

2. Navigate to the Top Consumers cards.

3. From the drop-down menu, select Show top 5 or Show top 10.

4. For a Top Consumer card, select the type of resource from the drop-down menu: CPU,
Memory, Used Filesystem, Memory Swap, vCPU Wait, or Storage Throughput.

5. Select By Project, By VM, or By Node. A list of the top five or top ten consumers of the
selected resource is displayed.

13.1.5. Additional resources

Monitoring overview

Reviewing monitoring dashboards

Dashboards

13.2. VIEWING OPENSHIFT VIRTUALIZATION LOGS

You can view logs for OpenShift Virtualization components and virtual machines by using the web
console or the oc CLI. You can retrieve virtual machine logs from the virt-launcher pod. To control log
verbosity, edit the HyperConverged custom resource.

13.2.1. Viewing OpenShift Virtualization logs with the CLI

Configure log verbosity for OpenShift Virtualization components by editing the HyperConverged
custom resource (CR). Then, view logs for the component pods by using the oc CLI tool.

Procedure

1. To set log verbosity for specific components, open the HyperConverged CR in your default
text editor by running the following command:

2. Set the log level for one or more components by editing the spec.logVerbosityConfig stanza.
For example:

$ oc edit hyperconverged kubevirt-hyperconverged -n openshift-cnv

apiVersion: hco.kubevirt.io/v1beta1

CHAPTER 13. LOGGING, EVENTS, AND MONITORING

281

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/monitoring/#monitoring-overview
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/monitoring/#reviewing-monitoring-dashboards
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/virtualization/#virt-reviewing-vm-dashboard


1 The log verbosity value must be an integer in the range 1–9, where a higher number
indicates a more detailed log. In this example, the virtAPI component logs are exposed if
their priority level is 5 or higher.

3. Apply your changes by saving and exiting the editor.

4. View a list of pods in the OpenShift Virtualization namespace by running the following
command:

Example 13.1. Example output

5. To view logs for a component pod, run the following command:

For example:

NOTE

If a pod fails to start, you can use the --previous option to view logs from the last
attempt.

To monitor log output in real time, use the -f option.

kind: HyperConverged
metadata:
  name: kubevirt-hyperconverged
spec:
  logVerbosityConfig:
    kubevirt:
      virtAPI: 5 1
      virtController: 4
      virtHandler: 3
      virtLauncher: 2
      virtOperator: 6

$ oc get pods -n openshift-cnv

NAME                               READY   STATUS    RESTARTS   AGE
disks-images-provider-7gqbc        1/1     Running   0          32m
disks-images-provider-vg4kx        1/1     Running   0          32m
virt-api-57fcc4497b-7qfmc          1/1     Running   0          31m
virt-api-57fcc4497b-tx9nc          1/1     Running   0          31m
virt-controller-76c784655f-7fp6m   1/1     Running   0          30m
virt-controller-76c784655f-f4pbd   1/1     Running   0          30m
virt-handler-2m86x                 1/1     Running   0          30m
virt-handler-9qs6z                 1/1     Running   0          30m
virt-operator-7ccfdbf65f-q5snk     1/1     Running   0          32m
virt-operator-7ccfdbf65f-vllz8     1/1     Running   0          32m

$ oc logs -n openshift-cnv <pod_name>

$ oc logs -n openshift-cnv virt-handler-2m86x

OpenShift Container Platform 4.11 Virtualization

282



Example 13.2. Example output

13.2.2. Viewing virtual machine logs in the web console

Get virtual machine logs from the associated virtual machine launcher pod.

Procedure

1. In the OpenShift Container Platform console, click Virtualization → VirtualMachines from the
side menu.

2. Select a virtual machine to open the VirtualMachine details page.

3. Click the Details tab.

4. Click the virt-launcher-<name> pod in the Pod section to open the Pod details page.

5. Click the Logs tab to view the pod logs.

13.2.3. Common error messages

The following error messages might appear in OpenShift Virtualization logs:

ErrImagePull or ImagePullBackOff

Indicates an incorrect deployment configuration or problems with the images that are referenced.

13.3. VIEWING EVENTS

13.3.1. About virtual machine events

OpenShift Container Platform events are records of important life-cycle information in a namespace
and are useful for monitoring and troubleshooting resource scheduling, creation, and deletion issues.

OpenShift Virtualization adds events for virtual machines and virtual machine instances. These can be

{"component":"virt-handler","level":"info","msg":"set verbosity to 2","pos":"virt-
handler.go:453","timestamp":"2022-04-17T08:58:37.373695Z"}
{"component":"virt-handler","level":"info","msg":"set verbosity to 2","pos":"virt-
handler.go:453","timestamp":"2022-04-17T08:58:37.373726Z"}
{"component":"virt-handler","level":"info","msg":"setting rate limiter to 5 QPS and 10 
Burst","pos":"virt-handler.go:462","timestamp":"2022-04-17T08:58:37.373782Z"}
{"component":"virt-handler","level":"info","msg":"CPU features of a minimum baseline CPU 
model: map[apic:true clflush:true cmov:true cx16:true cx8:true de:true fpu:true fxsr:true 
lahf_lm:true lm:true mca:true mce:true mmx:true msr:true mtrr:true nx:true pae:true 
pat:true pge:true pni:true pse:true pse36:true sep:true sse:true sse2:true sse4.1:true 
ssse3:true syscall:true tsc:true]","pos":"cpu_plugin.go:96","timestamp":"2022-04-
17T08:58:37.390221Z"}
{"component":"virt-handler","level":"warning","msg":"host model mode is expected to 
contain only one model","pos":"cpu_plugin.go:103","timestamp":"2022-04-
17T08:58:37.390263Z"}
{"component":"virt-handler","level":"info","msg":"node-labeller is 
running","pos":"node_labeller.go:94","timestamp":"2022-04-17T08:58:37.391011Z"}

CHAPTER 13. LOGGING, EVENTS, AND MONITORING

283



OpenShift Virtualization adds events for virtual machines and virtual machine instances. These can be
viewed from either the web console or the CLI.

See also: Viewing system event information in an OpenShift Container Platform cluster .

13.3.2. Viewing the events for a virtual machine in the web console

You can view streaming events for a running virtual machine on the VirtualMachine details page of the
web console.

Procedure

1. Click Virtualization → VirtualMachines from the side menu.

2. Select a virtual machine to open the VirtualMachine details page.

3. Click the Events tab to view streaming events for the virtual machine.

The ▮▮ button pauses the events stream.

The ▶ button resumes a paused events stream.

13.3.3. Viewing namespace events in the CLI

Use the OpenShift Container Platform client to get the events for a namespace.

Procedure

In the namespace, use the oc get command:

13.3.4. Viewing resource events in the CLI

Events are included in the resource description, which you can get using the OpenShift Container
Platform client.

Procedure

In the namespace, use the oc describe command. The following example shows how to get the
events for a virtual machine, a virtual machine instance, and the virt-launcher pod for a virtual
machine:

13.4. DIAGNOSING DATA VOLUMES USING EVENTS AND CONDITIONS

Use the oc describe command to analyze and help resolve issues with data volumes.

$ oc get events

$ oc describe vm <vm>

$ oc describe vmi <vmi>

$ oc describe pod virt-launcher-<name>

OpenShift Container Platform 4.11 Virtualization

284

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/nodes/#nodes-containers-events


13.4.1. About conditions and events

Diagnose data volume issues by examining the output of the Conditions and Events sections
generated by the command:

There are three Types in the Conditions section that display:

Bound

Running

Ready

The Events section provides the following additional information:

Type of event

Reason for logging

Source of the event

Message containing additional diagnostic information.

The output from oc describe does not always contains Events.

An event is generated when either Status, Reason, or Message changes. Both conditions and events
react to changes in the state of the data volume.

For example, if you misspell the URL during an import operation, the import generates a 404 message.
That message change generates an event with a reason. The output in the Conditions section is
updated as well.

13.4.2. Analyzing data volumes using conditions and events

By inspecting the Conditions and Events sections generated by the describe command, you
determine the state of the data volume in relation to persistent volume claims (PVCs), and whether or
not an operation is actively running or completed. You might also receive messages that offer specific
details about the status of the data volume, and how it came to be in its current state.

There are many different combinations of conditions. Each must be evaluated in its unique context.

Examples of various combinations follow.

Bound – A successfully bound PVC displays in this example.
Note that the Type is Bound, so the Status is True. If the PVC is not bound, the Status is 
False.

When the PVC is bound, an event is generated stating that the PVC is bound. In this case, the 
Reason is Bound and Status is True. The Message indicates which PVC owns the data
volume.

Message, in the Events section, provides further details including how long the PVC has been
bound (Age) and by what resource ( From), in this case datavolume-controller:

$ oc describe dv <DataVolume>

CHAPTER 13. LOGGING, EVENTS, AND MONITORING

285



Example output

Running – In this case, note that Type is Running and Status is False, indicating that an event
has occurred that caused an attempted operation to fail, changing the Status from True to 
False.
However, note that Reason is Completed and the Message field indicates Import Complete.

In the Events section, the Reason and Message contain additional troubleshooting
information about the failed operation. In this example, the Message displays an inability to
connect due to a 404, listed in the Events section’s first Warning.

From this information, you conclude that an import operation was running, creating contention
for other operations that are attempting to access the data volume:

Example output

Ready – If Type is Ready and Status is True, then the data volume is ready to be used, as in
the following example. If the data volume is not ready to be used, the Status is False:

Example output

Status:
 Conditions:
  Last Heart Beat Time:  2020-07-15T03:58:24Z
  Last Transition Time:  2020-07-15T03:58:24Z
  Message:               PVC win10-rootdisk Bound
  Reason:                Bound
  Status:                True
  Type:                  Bound

 Events:
  Type     Reason     Age    From                   Message
  ----     ------     ----   ----                   -------
  Normal   Bound      24s    datavolume-controller  PVC example-dv Bound

Status:
  Conditions:
   Last Heart Beat Time:  2020-07-15T04:31:39Z
   Last Transition Time:  2020-07-15T04:31:39Z
   Message:               Import Complete
   Reason:                Completed
   Status:                False
   Type:                  Running

 Events:
  Type     Reason           Age                From                   Message
  ----     ------           ----               ----                   -------
  Warning  Error            12s (x2 over 14s)  datavolume-controller  Unable to connect
  to http data source: expected status code 200, got 404. Status: 404 Not Found

Status:
  Conditions:
   Last Heart Beat Time: 2020-07-15T04:31:39Z

OpenShift Container Platform 4.11 Virtualization

286



13.5. VIEWING INFORMATION ABOUT VIRTUAL MACHINE
WORKLOADS

You can view high-level information about your virtual machines by using the Virtual Machines
dashboard in the OpenShift Container Platform web console.

13.5.1. The Virtual Machines dashboard

Access virtual machines (VMs) from the OpenShift Container Platform web console by navigating to
the Virtualization → VirtualMachines page and clicking a virtual machine (VM) to view the
VirtualMachine details page.

The Overview tab displays the following cards:

Details provides identifying information about the virtual machine, including:

Name

Status

Date of creation

Operating system

CPU and memory

Hostname

Template

If the VM is running, there is an active VNC preview window and a link to open the VNC web

console. The Options menu  on the Details card provides options to stop or pause the
VM, and to copy the ssh over nodeport command for SSH tunneling.

Alerts lists VM alerts with three severity levels:

Critical

Warning

Info

Snapshots provides information about VM snapshots and the ability to take a snapshot. For
each snapshot listed, the Snapshots card includes:

A visual indicator of the status of the snapshot, if it is successfully created, is still in
progress, or has failed.

An Options menu  with options to restore or delete the snapshot

   Last Transition Time:  2020-07-15T04:31:39Z
   Status:                True
   Type:                  Ready

CHAPTER 13. LOGGING, EVENTS, AND MONITORING

287



Network interfaces provides information about the network interfaces of the VM, including:

Name (Network and Type)

IP address, with the ability to copy the IP address to the clipboard

Disks lists VM disks details, including:

Name

Drive

Size

Utilization includes charts that display usage data for:

CPU

Memory

Storage

Network transfer

NOTE

Use the drop-down list to choose a duration for the utilization data. The available
options are 5 minutes, 1 hour, 6 hours, and 24 hours.

Hardware Devices provides information about GPU and host devices, including:

Resource name

Hardware device name

13.6. MONITORING VIRTUAL MACHINE HEALTH

A virtual machine instance (VMI) can become unhealthy due to transient issues such as connectivity loss,
deadlocks, or problems with external dependencies. A health check periodically performs diagnostics on
a VMI by using any combination of the readiness and liveness probes.

13.6.1. About readiness and liveness probes

Use readiness and liveness probes to detect and handle unhealthy virtual machine instances (VMIs). You
can include one or more probes in the specification of the VMI to ensure that traffic does not reach a
VMI that is not ready for it and that a new instance is created when a VMI becomes unresponsive.

A readiness probe  determines whether a VMI is ready to accept service requests. If the probe fails, the
VMI is removed from the list of available endpoints until the VMI is ready.

A liveness probe  determines whether a VMI is responsive. If the probe fails, the VMI is deleted and a new
instance is created to restore responsiveness.

You can configure readiness and liveness probes by setting the spec.readinessProbe and the 
spec.livenessProbe fields of the VirtualMachineInstance object. These fields support the following
tests:

OpenShift Container Platform 4.11 Virtualization

288



1

2

3

4

5

6

HTTP GET

The probe determines the health of the VMI by using a web hook. The test is successful if the HTTP
response code is between 200 and 399. You can use an HTTP GET test with applications that return
HTTP status codes when they are completely initialized.

TCP socket

The probe attempts to open a socket to the VMI. The VMI is only considered healthy if the probe can
establish a connection. You can use a TCP socket test with applications that do not start listening
until initialization is complete.

13.6.2. Defining an HTTP readiness probe

Define an HTTP readiness probe by setting the spec.readinessProbe.httpGet field of the virtual
machine instance (VMI) configuration.

Procedure

1. Include details of the readiness probe in the VMI configuration file.

Sample readiness probe with an HTTP GET test

The HTTP GET request to perform to connect to the VMI.

The port of the VMI that the probe queries. In the above example, the probe queries port
1500.

The path to access on the HTTP server. In the above example, if the handler for the
server’s /healthz path returns a success code, the VMI is considered to be healthy. If the
handler returns a failure code, the VMI is removed from the list of available endpoints.

The time, in seconds, after the VMI starts before the readiness probe is initiated.

The delay, in seconds, between performing probes. The default delay is 10 seconds. This
value must be greater than timeoutSeconds.

The number of seconds of inactivity after which the probe times out and the VMI is
assumed to have failed. The default value is 1. This value must be lower than 
periodSeconds.

# ...
spec:
  readinessProbe:
    httpGet: 1
      port: 1500 2
      path: /healthz 3
      httpHeaders:
      - name: Custom-Header
        value: Awesome
    initialDelaySeconds: 120 4
    periodSeconds: 20 5
    timeoutSeconds: 10 6
    failureThreshold: 3 7
    successThreshold: 3 8
# ...

CHAPTER 13. LOGGING, EVENTS, AND MONITORING

289



7

8

1

2

3

4

5

The number of times that the probe is allowed to fail. The default is 3. After the specified
number of attempts, the pod is marked Unready.

The number of times that the probe must report success, after a failure, to be considered
successful. The default is 1.

2. Create the VMI by running the following command:

13.6.3. Defining a TCP readiness probe

Define a TCP readiness probe by setting the spec.readinessProbe.tcpSocket field of the virtual
machine instance (VMI) configuration.

Procedure

1. Include details of the TCP readiness probe in the VMI configuration file.

Sample readiness probe with a TCP socket test

The time, in seconds, after the VMI starts before the readiness probe is initiated.

The delay, in seconds, between performing probes. The default delay is 10 seconds. This
value must be greater than timeoutSeconds.

The TCP action to perform.

The port of the VMI that the probe queries.

The number of seconds of inactivity after which the probe times out and the VMI is
assumed to have failed. The default value is 1. This value must be lower than 
periodSeconds.

2. Create the VMI by running the following command:

13.6.4. Defining an HTTP liveness probe

Define an HTTP liveness probe by setting the spec.livenessProbe.httpGet field of the virtual machine

$ oc create -f <file_name>.yaml

...
spec:
  readinessProbe:
    initialDelaySeconds: 120 1
    periodSeconds: 20 2
    tcpSocket: 3
      port: 1500 4
    timeoutSeconds: 10 5
...

$ oc create -f <file_name>.yaml

OpenShift Container Platform 4.11 Virtualization

290



1

2

3

4

5

6

Define an HTTP liveness probe by setting the spec.livenessProbe.httpGet field of the virtual machine
instance (VMI) configuration. You can define both HTTP and TCP tests for liveness probes in the same
way as readiness probes. This procedure configures a sample liveness probe with an HTTP GET test.

Procedure

1. Include details of the HTTP liveness probe in the VMI configuration file.

Sample liveness probe with an HTTP GET test

The time, in seconds, after the VMI starts before the liveness probe is initiated.

The delay, in seconds, between performing probes. The default delay is 10 seconds. This
value must be greater than timeoutSeconds.

The HTTP GET request to perform to connect to the VMI.

The port of the VMI that the probe queries. In the above example, the probe queries port
1500. The VMI installs and runs a minimal HTTP server on port 1500 via cloud-init.

The path to access on the HTTP server. In the above example, if the handler for the
server’s /healthz path returns a success code, the VMI is considered to be healthy. If the
handler returns a failure code, the VMI is deleted and a new instance is created.

The number of seconds of inactivity after which the probe times out and the VMI is
assumed to have failed. The default value is 1. This value must be lower than 
periodSeconds.

2. Create the VMI by running the following command:

13.6.5. Template: Virtual machine configuration file for defining health checks

# ...
spec:
  livenessProbe:
    initialDelaySeconds: 120 1
    periodSeconds: 20 2
    httpGet: 3
      port: 1500 4
      path: /healthz 5
      httpHeaders:
      - name: Custom-Header
        value: Awesome
    timeoutSeconds: 10 6
# ...

$ oc create -f <file_name>.yaml

apiVersion: kubevirt.io/v1
kind: VirtualMachine
metadata:
  labels:
    special: vm-fedora

CHAPTER 13. LOGGING, EVENTS, AND MONITORING

291



13.6.6. Additional resources

Monitoring application health by using health checks

13.7. USING THE OPENSHIFT CONTAINER PLATFORM DASHBOARD
TO GET CLUSTER INFORMATION

Access the OpenShift Container Platform dashboard, which captures high-level information about the
cluster, by clicking Home > Dashboards > Overview from the OpenShift Container Platform web
console.

  name: vm-fedora
spec:
  template:
    metadata:
      labels:
        special: vm-fedora
    spec:
      domain:
        devices:
          disks:
          - disk:
              bus: virtio
            name: containerdisk
          - disk:
              bus: virtio
            name: cloudinitdisk
        resources:
          requests:
            memory: 1024M
      readinessProbe:
        httpGet:
          port: 1500
        initialDelaySeconds: 120
        periodSeconds: 20
        timeoutSeconds: 10
        failureThreshold: 3
        successThreshold: 3
      terminationGracePeriodSeconds: 180
      volumes:
      - name: containerdisk
        containerDisk:
          image: kubevirt/fedora-cloud-registry-disk-demo
      - cloudInitNoCloud:
          userData: |-
            #cloud-config
            password: fedora
            chpasswd: { expire: False }
            bootcmd:
              - setenforce 0
              - dnf install -y nmap-ncat
              - systemd-run --unit=httpserver nc -klp 1500 -e '/usr/bin/echo -e HTTP/1.1 200 OK\\n\\nHello 
World!'
        name: cloudinitdisk

OpenShift Container Platform 4.11 Virtualization

292

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/building_applications/#application-health


The OpenShift Container Platform dashboard provides various cluster information, captured in
individual dashboard cards.

13.7.1. About the OpenShift Container Platform dashboards page

Access the OpenShift Container Platform dashboard, which captures high-level information about the
cluster, by navigating to Home → Overview from the OpenShift Container Platform web console.

The OpenShift Container Platform dashboard provides various cluster information, captured in
individual dashboard cards.

The OpenShift Container Platform dashboard consists of the following cards:

Details provides a brief overview of informational cluster details.
Status include ok, error, warning, in progress, and unknown. Resources can add custom status
names.

Cluster ID

Provider

Version

Cluster Inventory details number of resources and associated statuses. It is helpful when
intervention is required to resolve problems, including information about:

Number of nodes

Number of pods

Persistent storage volume claims

Virtual machines (available if OpenShift Virtualization is installed)

Bare metal hosts in the cluster, listed according to their state (only available in metal3
environment).

Cluster Health summarizes the current health of the cluster as a whole, including relevant alerts
and descriptions. If OpenShift Virtualization is installed, the overall health of OpenShift
Virtualization is diagnosed as well. If more than one subsystem is present, click See All to view
the status of each subsystem.

Bare metal hosts in the cluster, listed according to their state (only available in metal3
environment)

Status helps administrators understand how cluster resources are consumed. Click on a
resource to jump to a detailed page listing pods and nodes that consume the largest amount of
the specified cluster resource (CPU, memory, or storage).

Cluster Utilization shows the capacity of various resources over a specified period of time, to
help administrators understand the scale and frequency of high resource consumption, including
information about:

CPU time

Memory allocation

CHAPTER 13. LOGGING, EVENTS, AND MONITORING

293



Storage consumed

Network resources consumed

Pod count

Activity lists messages related to recent activity in the cluster, such as pod creation or virtual
machine migration to another host.

13.8. REVIEWING RESOURCE USAGE BY VIRTUAL MACHINES

Dashboards in the OpenShift Container Platform web console provide visual representations of cluster
metrics to help you to quickly understand the state of your cluster. Dashboards belong to the Monitoring
overview that provides monitoring for core platform components.

The OpenShift Virtualization dashboard provides data on resource consumption for virtual machines
and associated pods. The visualization metrics displayed in the OpenShift Virtualization dashboard are
based on Prometheus Query Language (PromQL) queries.

A monitoring role is required to monitor user-defined namespaces in the OpenShift Virtualization
dashboard.

13.8.1. About reviewing top consumers

In the OpenShift Virtualization dashboard, you can select a specific time period and view the top
consumers of resources within that time period. Top consumers are virtual machines or virt-launcher
pods that are consuming the highest amount of resources.

The following table shows resources monitored in the dashboard and describes the metrics associated
with each resource for top consumers.

Monitored resources Description

Memory swap traffic Virtual machines consuming the most memory
pressure when swapping memory.

vCPU wait Virtual machines experiencing the maximum wait
time (in seconds) for their vCPUs.

CPU usage by pod The virt-launcher pods that are using the most
CPU.

Network traffic Virtual machines that are saturating the network by
receiving the most amount of network traffic (in
bytes).

Storage traffic Virtual machines with the highest amount (in bytes)
of storage-related traffic.

Storage IOPS Virtual machines with the highest amount of I/O
operations per second over a time period.

OpenShift Container Platform 4.11 Virtualization

294

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/monitoring/#monitoring-overview
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/virtualization/#virt-prometheus-queries
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/monitoring/#enabling-monitoring-for-user-defined-projects


Memory usage The virt-launcher pods that are using the most
memory (in bytes).

NOTE

Viewing the maximum resource consumption is limited to the top five consumers.

13.8.2. Reviewing top consumers

In the Administrator perspective, you can view the OpenShift Virtualization dashboard where top
consumers of resources are displayed.

Prerequisites

You have access to the cluster as a user with the cluster-admin role.

Procedure

1. In the Administrator perspective in the OpenShift Virtualization web console, navigate to
Observe → Dashboards.

2. Select the KubeVirt/Infrastructure Resources/Top Consumers dashboard from the
Dashboard list.

3. Select a predefined time period from the drop-down menu for Period. You can review the data
for top consumers in the tables.

4. Optional: Click Inspect to view or edit the Prometheus Query Language (PromQL) query
associated with the top consumers for a table.

13.8.3. Additional resources

Monitoring overview

Reviewing monitoring dashboards

13.9. OPENSHIFT CONTAINER PLATFORM CLUSTER MONITORING,
LOGGING, AND TELEMETRY

OpenShift Container Platform provides various resources for monitoring at the cluster level.

13.9.1. About OpenShift Container Platform monitoring

OpenShift Container Platform includes a preconfigured, preinstalled, and self-updating monitoring
stack that provides monitoring for core platform components. OpenShift Container Platform delivers
monitoring best practices out of the box. A set of alerts are included by default that immediately notify
cluster administrators about issues with a cluster. Default dashboards in the OpenShift Container
Platform web console include visual representations of cluster metrics to help you to quickly understand
the state of your cluster.

After installing OpenShift Container Platform 4.11, cluster administrators can optionally enable
monitoring for user-defined projects. By using this feature, cluster administrators, developers, and

CHAPTER 13. LOGGING, EVENTS, AND MONITORING

295

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/monitoring/#monitoring-overview
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/monitoring/#reviewing-monitoring-dashboards


other users can specify how services and pods are monitored in their own projects. You can then query
metrics, review dashboards, and manage alerting rules and silences for your own projects in the
OpenShift Container Platform web console.

NOTE

Cluster administrators can grant developers and other users permission to monitor their
own projects. Privileges are granted by assigning one of the predefined monitoring roles.

13.9.2. Logging architecture

The major components of the logging are:

Collector

The collector is a daemonset that deploys pods to each OpenShift Container Platform node. It
collects log data from each node, transforms the data, and forwards it to configured outputs. You
can use the Vector collector or the legacy Fluentd collector.

NOTE

Fluentd is deprecated and is planned to be removed in a future release. Red Hat
provides bug fixes and support for this feature during the current release lifecycle, but
this feature no longer receives enhancements. As an alternative to Fluentd, you can
use Vector instead.

Log store

The log store stores log data for analysis and is the default output for the log forwarder. You can use
the default LokiStack log store, the legacy Elasticsearch log store, or forward logs to additional
external log stores.

NOTE

The OpenShift Elasticsearch Operator is deprecated and is planned to be removed in
a future release. Red Hat provides bug fixes and support for this feature during the
current release lifecycle, but this feature no longer receives enhancements. As an
alternative to using the OpenShift Elasticsearch Operator to manage the default log
storage, you can use the Loki Operator.

Visualization

You can use a UI component to view a visual representation of your log data. The UI provides a
graphical interface to search, query, and view stored logs. The OpenShift Container Platform web
console UI is provided by enabling the OpenShift Container Platform console plugin.

NOTE

The Kibana web console is now deprecated is planned to be removed in a future
logging release.

Logging collects container logs and node logs. These are categorized into types:

OpenShift Container Platform 4.11 Virtualization

296



Application logs

Container logs generated by user applications running in the cluster, except infrastructure container
applications.

Infrastructure logs

Container logs generated by infrastructure namespaces: openshift*, kube*, or default, as well as
journald messages from nodes.

Audit logs

Logs generated by auditd, the node audit system, which are stored in the /var/log/audit/audit.log
file, and logs from the auditd, kube-apiserver, openshift-apiserver services, as well as the ovn
project if enabled.

For more information on OpenShift Logging, see the OpenShift Logging documentation.

13.9.3. About Telemetry

Telemetry sends a carefully chosen subset of the cluster monitoring metrics to Red Hat. The Telemeter
Client fetches the metrics values every four minutes and thirty seconds and uploads the data to Red
Hat. These metrics are described in this document.

This stream of data is used by Red Hat to monitor the clusters in real-time and to react as necessary to
problems that impact our customers. It also allows Red Hat to roll out OpenShift Container Platform
upgrades to customers to minimize service impact and continuously improve the upgrade experience.

This debugging information is available to Red Hat Support and Engineering teams with the same
restrictions as accessing data reported through support cases. All connected cluster information is used
by Red Hat to help make OpenShift Container Platform better and more intuitive to use.

13.9.3.1. Information collected by Telemetry

The following information is collected by Telemetry:

13.9.3.1.1. System information

Version information, including the OpenShift Container Platform cluster version and installed
update details that are used to determine update version availability

Update information, including the number of updates available per cluster, the channel and
image repository used for an update, update progress information, and the number of errors
that occur in an update

The unique random identifier that is generated during an installation

Configuration details that help Red Hat Support to provide beneficial support for customers,
including node configuration at the cloud infrastructure level, hostnames, IP addresses,
Kubernetes pod names, namespaces, and services

The OpenShift Container Platform framework components installed in a cluster and their
condition and status

Events for all namespaces listed as "related objects" for a degraded Operator

Information about degraded software

Information about the validity of certificates

The name of the provider platform that OpenShift Container Platform is deployed on and the

CHAPTER 13. LOGGING, EVENTS, AND MONITORING

297

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/logging/#cluster-logging


The name of the provider platform that OpenShift Container Platform is deployed on and the
data center location

13.9.3.1.2. Sizing Information

Sizing information about clusters, machine types, and machines, including the number of CPU
cores and the amount of RAM used for each

The number of running virtual machine instances in a cluster

The number of etcd members and the number of objects stored in the etcd cluster

Number of application builds by build strategy type

13.9.3.1.3. Usage information

Usage information about components, features, and extensions

Usage details about Technology Previews and unsupported configurations

Telemetry does not collect identifying information such as usernames or passwords. Red Hat does not
intend to collect personal information. If Red Hat discovers that personal information has been
inadvertently received, Red Hat will delete such information. To the extent that any telemetry data
constitutes personal data, please refer to the Red Hat Privacy Statement  for more information about
Red Hat’s privacy practices.

13.9.4. CLI troubleshooting and debugging commands

For a list of the oc client troubleshooting and debugging commands, see the OpenShift Container
Platform CLI tools documentation.

13.10. RUNNING CLUSTER CHECKUPS

OpenShift Virtualization 4.11 includes a diagnostic framework to run predefined checkups that can be
used for cluster maintenance and troubleshooting.

IMPORTANT

The OpenShift Container Platform cluster checkup framework is a Technology Preview
feature only. Technology Preview features are not supported with Red Hat production
service level agreements (SLAs) and might not be functionally complete. Red Hat does
not recommend using them in production. These features provide early access to
upcoming product features, enabling customers to test functionality and provide
feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

13.10.1. About the OpenShift Container Platform cluster checkup framework

A checkup is an automated test workload that allows you to verify if a specific cluster functionality works
as expected. The cluster checkup framework uses native Kubernetes resources to configure and
execute the checkup.

By using predefined checkups, cluster administrators can improve cluster maintainability, troubleshoot

OpenShift Container Platform 4.11 Virtualization

298

https://www.redhat.com/en/about/privacy-policy
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/cli_tools/#cli-developer-commands
https://access.redhat.com/support/offerings/techpreview/


unexpected behavior, minimize errors, and save time. They can also review the results of the checkup
and share them with experts for further analysis. Vendors can write and publish checkups for features or
services that they provide and verify that their customer environments are configured correctly.

Running a predefined checkup in the cluster involves setting up the namespace and service account for
the framework, creating the ClusterRole and ClusterRoleBinding objects for the service account,
enabling permissions for the checkup, and creating the input config map and the checkup job. You can
run a checkup multiple times.

IMPORTANT

You must always:

Verify that the checkup image is from a trustworthy source before applying it.

Review the checkup permissions before creating the ClusterRole objects.

Verify the names of the ClusterRole objects in the config map. This is because
the framework automatically binds these permissions to the checkup instance.

13.10.2. Checking network connectivity and latency for virtual machines on a
secondary network

As a cluster administrator, you use a predefined checkup to verify network connectivity and measure
latency between virtual machines (VMs) that are attached to a secondary network interface.

To run a checkup for the first time, follow the steps in the procedure.

If you have previously run a checkup, skip to step 5 of the procedure because the steps to install the
framework and enable permissions for the checkup are not required.

Prerequisites

You installed the OpenShift CLI (oc).

You logged in to the cluster as a user with the cluster-admin role.

The cluster has at least two worker nodes.

The Multus Container Network Interface (CNI) plugin is installed on the cluster.

You configured a network attachment definition for a namespace.

Procedure

1. Create a configuration file that contains the resources to set up the framework. This includes a
namespace and service account for the framework, and the ClusterRole and 
ClusterRoleBinding objects to define permissions for the service account.

Example 13.3. Example framework manifest file

---
apiVersion: v1
kind: Namespace
metadata:
  name: kiagnose

CHAPTER 13. LOGGING, EVENTS, AND MONITORING

299



---
apiVersion: v1
kind: ServiceAccount
metadata:
  name: kiagnose
  namespace: kiagnose
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
  name: kiagnose
rules:
  - apiGroups: [ "" ]
    resources: [ "configmaps" ]
    verbs:
      - get
      - list
      - create
      - update
      - patch
  - apiGroups: [ "" ]
    resources: [ "namespaces" ]
    verbs:
      - get
      - list
      - create
      - delete
      - watch
  - apiGroups: [ "" ]
    resources: [ "serviceaccounts" ]
    verbs:
      - get
      - list
      - create
  - apiGroups: [ "rbac.authorization.k8s.io" ]
    resources:
      - roles
      - rolebindings
      - clusterrolebindings
    verbs:
      - get
      - list
      - create
      - delete
  - apiGroups: [ "rbac.authorization.k8s.io" ]
    resources:
      - clusterroles
    verbs:
      - get
      - list
      - create
      - bind
  - apiGroups: [ "batch" ]
    resources: [ "jobs" ]
    verbs:
      - get

OpenShift Container Platform 4.11 Virtualization

300



2. Apply the framework manifest:

3. Create a configuration file that contains the ClusterRole and Role objects with permissions
that the checkup requires for cluster access:

Example cluster role manifest file

4. Apply the checkup roles manifest:

5. Create a ConfigMap manifest that contains the input parameters for the checkup. The config
map provides the input for the framework to run the checkup and also stores the results of the
checkup.

Example input config map

      - list
      - create
      - delete
      - watch
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
  name: kiagnose
roleRef:
  apiGroup: rbac.authorization.k8s.io
  kind: ClusterRole
  name: kiagnose
subjects:
  - kind: ServiceAccount
    name: kiagnose
    namespace: kiagnose
...

$ oc apply -f <framework_manifest>.yaml

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
  name: kubevirt-vm-latency-checker
rules:
- apiGroups: ["kubevirt.io"]
  resources: ["virtualmachineinstances"]
  verbs: ["get", "create", "delete"]
- apiGroups: ["subresources.kubevirt.io"]
  resources: ["virtualmachineinstances/console"]
  verbs: ["get"]
- apiGroups: ["k8s.cni.cncf.io"]
  resources: ["network-attachment-definitions"]
  verbs: ["get"]

$ oc apply -f <latency_roles>.yaml

CHAPTER 13. LOGGING, EVENTS, AND MONITORING

301



1

2

3

4

The namespace where the NetworkAttachmentDefinition object resides.

The name of the NetworkAttachmentDefinition object.

Optional: The maximum desired latency, in milliseconds, between the virtual machines. If
the measured latency exceeds this value, the check fails.

Optional: The duration of the latency check, in seconds.

6. Create the config map in the framework’s namespace:

7. Create a Job object to run the checkup:

Example job manifest

apiVersion: v1
kind: ConfigMap
metadata:
  name: kubevirt-vm-latency-checkup
  namespace: kiagnose
data:
  spec.image: registry.redhat.io/container-native-virtualization/vm-network-latency-
checkup:v4.11.0
  spec.timeout: 10m
  spec.clusterRoles: |
    kubevirt-vmis-manager
  spec.param.network_attachment_definition_namespace: "default" 1
  spec.param.network_attachment_definition_name: "bridge-network" 2
  spec.param.max_desired_latency_milliseconds: "10" 3
  spec.param.sample_duration_seconds: "5" 4

$ oc apply -f <latency_config_map>.yaml

apiVersion: batch/v1
kind: Job
metadata:
  name: kubevirt-vm-latency-checkup
  namespace: kiagnose
spec:
  backoffLimit: 0
  template:
    spec:
      serviceAccount: kiagnose
      restartPolicy: Never
      containers:
        - name: framework
          image: registry.redhat.io/container-native-virtualization/checkup-framework:v4.11.0
          env:
            - name: CONFIGMAP_NAMESPACE
              value: kiagnose
            - name: CONFIGMAP_NAME
              value: kubevirt-vm-latency-checkup

OpenShift Container Platform 4.11 Virtualization

302



8. Apply the Job manifest. The checkup uses the ping utility to verify connectivity and measure
latency.

9. Wait for the job to complete:

10. Review the results of the latency checkup by retrieving the status of the ConfigMap object. If
the measured latency is greater than the value of the 
spec.param.max_desired_latency_milliseconds attribute, the checkup fails and returns an
error.

Example output config map (success)

11. Delete the framework and checkup resources that you previously created. This includes the job,
config map, cluster role, and framework manifest files.

NOTE

Do not delete the framework and cluster role manifest files if you plan to run
another checkup.

13.10.3. Additional resources

Attaching a virtual machine to multiple networks

13.11. PROMETHEUS QUERIES FOR VIRTUAL RESOURCES

OpenShift Virtualization provides metrics for monitoring how infrastructure resources are consumed in
the cluster. The metrics cover the following resources:

$ oc apply -f <latency_job>.yaml

$ oc wait --for=condition=complete --timeout=10m job.batch/kubevirt-vm-latency-checkup -n 
kiagnose

$ oc get configmap kubevirt-vm-latency-checkup -n kiagnose -o yaml

apiVersion: v1
kind: ConfigMap
metadata:
  name: kubevirt-vm-latency-checkup
  namespace: kiagnose
...
  status.succeeded: "true"
  status.failureReason: ""
  status.result.minLatencyNanoSec: 2000
  status.result.maxLatencyNanoSec: 3000
  status.result.avgLatencyNanoSec: 2500
  status.results.measurementDurationSec: 300
...

$ oc delete -f <file_name>.yaml

CHAPTER 13. LOGGING, EVENTS, AND MONITORING

303

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/virtualization/#virt-attaching-vm-multiple-networks


vCPU

Network

Storage

Guest memory swapping

Use the OpenShift Container Platform monitoring dashboard to query virtualization metrics.

13.11.1. Prerequisites

To use the vCPU metric, the schedstats=enable kernel argument must be applied to the 
MachineConfig object. This kernel argument enables scheduler statistics used for debugging
and performance tuning and adds a minor additional load to the scheduler. See the OpenShift
Container Platform machine configuration tasks documentation for more information on
applying a kernel argument.

For guest memory swapping queries to return data, memory swapping must be enabled on the
virtual guests.

13.11.2. About querying metrics

The OpenShift Container Platform monitoring dashboard enables you to run Prometheus Query
Language (PromQL) queries to examine metrics visualized on a plot. This functionality provides
information about the state of a cluster and any user-defined workloads that you are monitoring.

As a cluster administrator, you can query metrics for all core OpenShift Container Platform and user-
defined projects.

As a developer, you must specify a project name when querying metrics. You must have the required
privileges to view metrics for the selected project.

13.11.2.1. Querying metrics for all projects as a cluster administrator

As a cluster administrator or as a user with view permissions for all projects, you can access metrics for all
default OpenShift Container Platform and user-defined projects in the Metrics UI.

Prerequisites

You have access to the cluster as a user with the cluster-admin cluster role or with view
permissions for all projects.

You have installed the OpenShift CLI (oc).

Procedure

1. Select the Administrator perspective in the OpenShift Container Platform web console.

2. Select Observe → Metrics.

3. Select Insert Metric at Cursor to view a list of predefined queries.

4. To create a custom query, add your Prometheus Query Language (PromQL) query to the
Expression field.

NOTE

OpenShift Container Platform 4.11 Virtualization

304

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/post-installation_configuration/#nodes-nodes-kernel-arguments_post-install-machine-configuration-tasks


NOTE

As you type a PromQL expression, autocomplete suggestions appear in a drop-
down list. These suggestions include functions, metrics, labels, and time tokens.
You can use the keyboard arrows to select one of these suggested items and
then press Enter to add the item to your expression. You can also move your
mouse pointer over a suggested item to view a brief description of that item.

5. To add multiple queries, select Add Query.

6. To duplicate an existing query, select  next to the query, then choose Duplicate query.

7. To delete a query, select  next to the query, then choose Delete query.

8. To disable a query from being run, select  next to the query and choose Disable query.

9. To run queries that you created, select Run Queries. The metrics from the queries are
visualized on the plot. If a query is invalid, the UI shows an error message.

NOTE

Queries that operate on large amounts of data might time out or overload the
browser when drawing time series graphs. To avoid this, select Hide graph and
calibrate your query using only the metrics table. Then, after finding a feasible
query, enable the plot to draw the graphs.

10. Optional: The page URL now contains the queries you ran. To use this set of queries again in the
future, save this URL.

13.11.2.2. Querying metrics for user-defined projects as a developer

You can access metrics for a user-defined project as a developer or as a user with view permissions for
the project.

In the Developer perspective, the Metrics UI includes some predefined CPU, memory, bandwidth, and
network packet queries for the selected project. You can also run custom Prometheus Query Language
(PromQL) queries for CPU, memory, bandwidth, network packet and application metrics for the project.

NOTE

Developers can only use the Developer perspective and not the Administrator
perspective. As a developer, you can only query metrics for one project at a time in the
Observe -→ Metrics page in the web console for your user-defined project.

Prerequisites

You have access to the cluster as a developer or as a user with view permissions for the project
that you are viewing metrics for.

CHAPTER 13. LOGGING, EVENTS, AND MONITORING

305



You have enabled monitoring for user-defined projects.

You have deployed a service in a user-defined project.

You have created a ServiceMonitor custom resource definition (CRD) for the service to define
how the service is monitored.

Procedure

1. Select the Developer perspective in the OpenShift Container Platform web console.

2. Select Observe → Metrics.

3. Select the project that you want to view metrics for in the Project: list.

4. Select a query from the Select query list, or create a custom PromQL query based on the
selected query by selecting Show PromQL.

5. Optional: Select Custom query from the Select query list to enter a new query. As you type,
autocomplete suggestions appear in a drop-down list. These suggestions include functions and
metrics. Click a suggested item to select it.

NOTE

In the Developer perspective, you can only run one query at a time.

13.11.3. Virtualization metrics

The following metric descriptions include example Prometheus Query Language (PromQL) queries.
These metrics are not an API and might change between versions.

NOTE

The following examples use topk queries that specify a time period. If virtual machines
are deleted during that time period, they can still appear in the query output.

13.11.3.1. vCPU metrics

The following query can identify virtual machines that are waiting for Input/Output (I/O):

kubevirt_vmi_vcpu_wait_seconds

Returns the wait time (in seconds) for a virtual machine’s vCPU.

A value above '0' means that the vCPU wants to run, but the host scheduler cannot run it yet. This
inability to run indicates that there is an issue with I/O.

NOTE

To query the vCPU metric, the schedstats=enable kernel argument must first be applied
to the MachineConfig object. This kernel argument enables scheduler statistics used for
debugging and performance tuning and adds a minor additional load to the scheduler.

Example vCPU wait time query

OpenShift Container Platform 4.11 Virtualization

306



1

1

1

This query returns the top 3 VMs waiting for I/O at every given moment over a six-minute time
period.

13.11.3.2. Network metrics

The following queries can identify virtual machines that are saturating the network:

kubevirt_vmi_network_receive_bytes_total

Returns the total amount of traffic received (in bytes) on the virtual machine’s network.

kubevirt_vmi_network_transmit_bytes_total

Returns the total amount of traffic transmitted (in bytes) on the virtual machine’s network.

Example network traffic query

This query returns the top 3 VMs transmitting the most network traffic at every given moment over
a six-minute time period.

13.11.3.3. Storage metrics

13.11.3.3.1. Storage-related traffic

The following queries can identify VMs that are writing large amounts of data:

kubevirt_vmi_storage_read_traffic_bytes_total

Returns the total amount (in bytes) of the virtual machine’s storage-related traffic.

kubevirt_vmi_storage_write_traffic_bytes_total

Returns the total amount of storage writes (in bytes) of the virtual machine’s storage-related traffic.

Example storage-related traffic query

This query returns the top 3 VMs performing the most storage traffic at every given moment over a
six-minute time period.

13.11.3.3.2. Storage snapshot data

kubevirt_vmsnapshot_disks_restored_from_source_total

Returns the total number of virtual machine disks restored from the source virtual machine.

kubevirt_vmsnapshot_disks_restored_from_source_bytes

Returns the amount of space in bytes restored from the source virtual machine.

topk(3, sum by (name, namespace) (rate(kubevirt_vmi_vcpu_wait_seconds[6m]))) > 0 1

topk(3, sum by (name, namespace) (rate(kubevirt_vmi_network_receive_bytes_total[6m])) + sum by 
(name, namespace) (rate(kubevirt_vmi_network_transmit_bytes_total[6m]))) > 0 1

topk(3, sum by (name, namespace) (rate(kubevirt_vmi_storage_read_traffic_bytes_total[6m])) + sum 
by (name, namespace) (rate(kubevirt_vmi_storage_write_traffic_bytes_total[6m]))) > 0 1

CHAPTER 13. LOGGING, EVENTS, AND MONITORING

307



1

1

1

1

Examples of storage snapshot data queries

This query returns the total number of virtual machine disks restored from the source virtual
machine.

This query returns the amount of space in bytes restored from the source virtual machine.

13.11.3.3.3. I/O performance

The following queries can determine the I/O performance of storage devices:

kubevirt_vmi_storage_iops_read_total

Returns the amount of write I/O operations the virtual machine is performing per second.

kubevirt_vmi_storage_iops_write_total

Returns the amount of read I/O operations the virtual machine is performing per second.

Example I/O performance query

This query returns the top 3 VMs performing the most I/O operations per second at every given
moment over a six-minute time period.

13.11.3.4. Guest memory swapping metrics

The following queries can identify which swap-enabled guests are performing the most memory
swapping:

kubevirt_vmi_memory_swap_in_traffic_bytes_total

Returns the total amount (in bytes) of memory the virtual guest is swapping in.

kubevirt_vmi_memory_swap_out_traffic_bytes_total

Returns the total amount (in bytes) of memory the virtual guest is swapping out.

Example memory swapping query

This query returns the top 3 VMs where the guest is performing the most memory swapping at
every given moment over a six-minute time period.

kubevirt_vmsnapshot_disks_restored_from_source_total{vm_name="simple-vm", 
vm_namespace="default"} 1

kubevirt_vmsnapshot_disks_restored_from_source_bytes{vm_name="simple-vm", 
vm_namespace="default"} 1

topk(3, sum by (name, namespace) (rate(kubevirt_vmi_storage_iops_read_total[6m])) + sum by 
(name, namespace) (rate(kubevirt_vmi_storage_iops_write_total[6m]))) > 0 1

topk(3, sum by (name, namespace) (rate(kubevirt_vmi_memory_swap_in_traffic_bytes_total[6m])) + 
sum by (name, namespace) (rate(kubevirt_vmi_memory_swap_out_traffic_bytes_total[6m]))) > 0 1

OpenShift Container Platform 4.11 Virtualization

308



NOTE

Memory swapping indicates that the virtual machine is under memory pressure.
Increasing the memory allocation of the virtual machine can mitigate this issue.

13.11.4. Additional resources

Monitoring overview

13.12. EXPOSING CUSTOM METRICS FOR VIRTUAL MACHINES

OpenShift Container Platform includes a preconfigured, preinstalled, and self-updating monitoring
stack that provides monitoring for core platform components. This monitoring stack is based on the
Prometheus monitoring system. Prometheus is a time-series database and a rule evaluation engine for
metrics.

In addition to using the OpenShift Container Platform monitoring stack, you can enable monitoring for
user-defined projects by using the CLI and query custom metrics that are exposed for virtual machines
through the node-exporter service.

13.12.1. Configuring the node exporter service

The node-exporter agent is deployed on every virtual machine in the cluster from which you want to
collect metrics. Configure the node-exporter agent as a service to expose internal metrics and
processes that are associated with virtual machines.

Prerequisites

Install the OpenShift Container Platform CLI oc.

Log in to the cluster as a user with cluster-admin privileges.

Create the cluster-monitoring-config ConfigMap object in the openshift-monitoring project.

Configure the user-workload-monitoring-config ConfigMap object in the openshift-user-
workload-monitoring project by setting enableUserWorkload to true.

Procedure

1. Create the Service YAML file. In the following example, the file is called node-exporter-
service.yaml.

kind: Service
apiVersion: v1
metadata:
  name: node-exporter-service 1
  namespace: dynamation 2
  labels:
    servicetype: metrics 3
spec:
  ports:
    - name: exmet 4
      protocol: TCP
      port: 9100 5

CHAPTER 13. LOGGING, EVENTS, AND MONITORING

309

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/monitoring/#monitoring-overview


1

2

3

4

5

6

7

The node-exporter service that exposes the metrics from the virtual machines.

The namespace where the service is created.

The label for the service. The ServiceMonitor uses this label to match this service.

The name given to the port that exposes metrics on port 9100 for the ClusterIP service.

The target port used by node-exporter-service to listen for requests.

The TCP port number of the virtual machine that is configured with the monitor label.

The label used to match the virtual machine’s pods. In this example, any virtual machine’s
pod with the label monitor and a value of metrics will be matched.

2. Create the node-exporter service:

13.12.2. Configuring a virtual machine with the node exporter service

Download the node-exporter file on to the virtual machine. Then, create a systemd service that runs
the node-exporter service when the virtual machine boots.

Prerequisites

The pods for the component are running in the openshift-user-workload-monitoring project.

Grant the monitoring-edit role to users who need to monitor this user-defined project.

Procedure

1. Log on to the virtual machine.

2. Download the node-exporter file on to the virtual machine by using the directory path that
applies to the version of node-exporter file.

3. Extract the executable and place it in the /usr/bin directory.

4. Create a node_exporter.service file in this directory path: /etc/systemd/system. This systemd
service file runs the node-exporter service when the virtual machine reboots.

      targetPort: 9100 6
  type: ClusterIP
  selector:
    monitor: metrics 7

$ oc create -f node-exporter-service.yaml

$ wget 
https://github.com/prometheus/node_exporter/releases/download/v1.3.1/node_exporter-
1.3.1.linux-amd64.tar.gz

$ sudo tar xvf node_exporter-1.3.1.linux-amd64.tar.gz \
    --directory /usr/bin --strip 1 "*/node_exporter"

OpenShift Container Platform 4.11 Virtualization

310



5. Enable and start the systemd service.

Verification

Verify that the node-exporter agent is reporting metrics from the virtual machine.

Example output

13.12.3. Creating a custom monitoring label for virtual machines

To enable queries to multiple virtual machines from a single service, add a custom label in the virtual
machine’s YAML file.

Prerequisites

Install the OpenShift Container Platform CLI oc.

Log in as a user with cluster-admin privileges.

Access to the web console for stop and restart a virtual machine.

Procedure

1. Edit the template spec of your virtual machine configuration file. In this example, the label 
monitor has the value metrics.

[Unit]
Description=Prometheus Metrics Exporter
After=network.target
StartLimitIntervalSec=0

[Service]
Type=simple
Restart=always
RestartSec=1
User=root
ExecStart=/usr/bin/node_exporter

[Install]
WantedBy=multi-user.target

$ sudo systemctl enable node_exporter.service
$ sudo systemctl start node_exporter.service

$ curl http://localhost:9100/metrics

go_gc_duration_seconds{quantile="0"} 1.5244e-05
go_gc_duration_seconds{quantile="0.25"} 3.0449e-05
go_gc_duration_seconds{quantile="0.5"} 3.7913e-05

spec:
  template:
    metadata:

CHAPTER 13. LOGGING, EVENTS, AND MONITORING

311



2. Stop and restart the virtual machine to create a new pod with the label name given to the 
monitor label.

13.12.3.1. Querying the node-exporter service for metrics

Metrics are exposed for virtual machines through an HTTP service endpoint under the /metrics
canonical name. When you query for metrics, Prometheus directly scrapes the metrics from the metrics
endpoint exposed by the virtual machines and presents these metrics for viewing.

Prerequisites

You have access to the cluster as a user with cluster-admin privileges or the monitoring-edit
role.

You have enabled monitoring for the user-defined project by configuring the node-exporter
service.

Procedure

1. Obtain the HTTP service endpoint by specifying the namespace for the service:

2. To list all available metrics for the node-exporter service, query the metrics resource.

Example output

      labels:
        monitor: metrics

$ oc get service -n <namespace> <node-exporter-service>

$ curl http://<172.30.226.162:9100>/metrics | grep -vE "^#|^$"

node_arp_entries{device="eth0"} 1
node_boot_time_seconds 1.643153218e+09
node_context_switches_total 4.4938158e+07
node_cooling_device_cur_state{name="0",type="Processor"} 0
node_cooling_device_max_state{name="0",type="Processor"} 0
node_cpu_guest_seconds_total{cpu="0",mode="nice"} 0
node_cpu_guest_seconds_total{cpu="0",mode="user"} 0
node_cpu_seconds_total{cpu="0",mode="idle"} 1.10586485e+06
node_cpu_seconds_total{cpu="0",mode="iowait"} 37.61
node_cpu_seconds_total{cpu="0",mode="irq"} 233.91
node_cpu_seconds_total{cpu="0",mode="nice"} 551.47
node_cpu_seconds_total{cpu="0",mode="softirq"} 87.3
node_cpu_seconds_total{cpu="0",mode="steal"} 86.12
node_cpu_seconds_total{cpu="0",mode="system"} 464.15
node_cpu_seconds_total{cpu="0",mode="user"} 1075.2
node_disk_discard_time_seconds_total{device="vda"} 0
node_disk_discard_time_seconds_total{device="vdb"} 0
node_disk_discarded_sectors_total{device="vda"} 0
node_disk_discarded_sectors_total{device="vdb"} 0
node_disk_discards_completed_total{device="vda"} 0
node_disk_discards_completed_total{device="vdb"} 0
node_disk_discards_merged_total{device="vda"} 0

OpenShift Container Platform 4.11 Virtualization

312



13.12.4. Creating a ServiceMonitor resource for the node exporter service

You can use a Prometheus client library and scrape metrics from the /metrics endpoint to access and
view the metrics exposed by the node-exporter service. Use a ServiceMonitor custom resource
definition (CRD) to monitor the node exporter service.

Prerequisites

You have access to the cluster as a user with cluster-admin privileges or the monitoring-edit
role.

You have enabled monitoring for the user-defined project by configuring the node-exporter
service.

Procedure

1. Create a YAML file for the ServiceMonitor resource configuration. In this example, the service
monitor matches any service with the label metrics and queries the exmet port every 30
seconds.

node_disk_discards_merged_total{device="vdb"} 0
node_disk_info{device="vda",major="252",minor="0"} 1
node_disk_info{device="vdb",major="252",minor="16"} 1
node_disk_io_now{device="vda"} 0
node_disk_io_now{device="vdb"} 0
node_disk_io_time_seconds_total{device="vda"} 174
node_disk_io_time_seconds_total{device="vdb"} 0.054
node_disk_io_time_weighted_seconds_total{device="vda"} 259.79200000000003
node_disk_io_time_weighted_seconds_total{device="vdb"} 0.039
node_disk_read_bytes_total{device="vda"} 3.71867136e+08
node_disk_read_bytes_total{device="vdb"} 366592
node_disk_read_time_seconds_total{device="vda"} 19.128
node_disk_read_time_seconds_total{device="vdb"} 0.039
node_disk_reads_completed_total{device="vda"} 5619
node_disk_reads_completed_total{device="vdb"} 96
node_disk_reads_merged_total{device="vda"} 5
node_disk_reads_merged_total{device="vdb"} 0
node_disk_write_time_seconds_total{device="vda"} 240.66400000000002
node_disk_write_time_seconds_total{device="vdb"} 0
node_disk_writes_completed_total{device="vda"} 71584
node_disk_writes_completed_total{device="vdb"} 0
node_disk_writes_merged_total{device="vda"} 19761
node_disk_writes_merged_total{device="vdb"} 0
node_disk_written_bytes_total{device="vda"} 2.007924224e+09
node_disk_written_bytes_total{device="vdb"} 0

apiVersion: monitoring.coreos.com/v1
kind: ServiceMonitor
metadata:
  labels:
    k8s-app: node-exporter-metrics-monitor
  name: node-exporter-metrics-monitor 1
  namespace: dynamation 2
spec:
  endpoints:

CHAPTER 13. LOGGING, EVENTS, AND MONITORING

313



1

2

3

4

The name of the ServiceMonitor.

The namespace where the ServiceMonitor is created.

The interval at which the port will be queried.

The name of the port that is queried every 30 seconds

2. Create the ServiceMonitor configuration for the node-exporter service.

13.12.4.1. Accessing the node exporter service outside the cluster

You can access the node-exporter service outside the cluster and view the exposed metrics.

Prerequisites

You have access to the cluster as a user with cluster-admin privileges or the monitoring-edit
role.

You have enabled monitoring for the user-defined project by configuring the node-exporter
service.

Procedure

1. Expose the node-exporter service.

2. Obtain the FQDN (Fully Qualified Domain Name) for the route.

Example output

3. Use the curl command to display metrics for the node-exporter service.

Example output

  - interval: 30s 3
    port: exmet 4
    scheme: http
  selector:
    matchLabels:
      servicetype: metrics

$ oc create -f node-exporter-metrics-monitor.yaml

$ oc expose service -n <namespace> <node_exporter_service_name>

$ oc get route -o=custom-columns=NAME:.metadata.name,DNS:.spec.host

NAME                    DNS
node-exporter-service   node-exporter-service-dynamation.apps.cluster.example.org

$ curl -s http://node-exporter-service-dynamation.apps.cluster.example.org/metrics

OpenShift Container Platform 4.11 Virtualization

314



13.12.5. Additional resources

Configuring the monitoring stack

Enabling monitoring for user-defined projects

Managing metrics

Reviewing monitoring dashboards

Monitoring application health by using health checks

Creating and using config maps

Controlling virtual machine states

13.13. OPENSHIFT VIRTUALIZATION CRITICAL ALERTS

OpenShift Virtualization has alerts that inform you when a problem occurs. Critical alerts require
immediate attention.

Each alert has a corresponding description of the problem, a reason for why the alert is occurring, a
troubleshooting process to diagnose the source of the problem, and steps for resolving the alert.

13.13.1. Network alerts

Network alerts provide information about problems for the OpenShift Virtualization Network Operator.

13.13.1.1. KubeMacPoolDown alert

Description

The KubeMacPool component allocates MAC addresses and prevents MAC address conflicts.

Reason

If the KubeMacPool-manager pod is down, then the creation of VirtualMachine objects fails.

Troubleshoot

1. Determine the Kubemacpool-manager pod namespace and name.

2. Check the Kubemacpool-manager pod description and logs to determine the source of the

go_gc_duration_seconds{quantile="0"} 1.5382e-05
go_gc_duration_seconds{quantile="0.25"} 3.1163e-05
go_gc_duration_seconds{quantile="0.5"} 3.8546e-05
go_gc_duration_seconds{quantile="0.75"} 4.9139e-05
go_gc_duration_seconds{quantile="1"} 0.000189423

$ export KMP_NAMESPACE="$(oc get pod -A --no-headers -l control-plane=mac-controller-
manager | awk '{print $1}')"

$ export KMP_NAME="$(oc get pod -A --no-headers -l control-plane=mac-controller-
manager | awk '{print $2}')"

CHAPTER 13. LOGGING, EVENTS, AND MONITORING

315

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/monitoring/#configuring-the-monitoring-stack
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/monitoring/#enabling-monitoring-for-user-defined-projects
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/monitoring/#managing-metrics
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/monitoring/#reviewing-monitoring-dashboards
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/building_applications/#application-health
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/nodes/#nodes-pods-configmaps
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/virtualization/#virt-controlling-vm-states


2. Check the Kubemacpool-manager pod description and logs to determine the source of the
problem.

Resolution

Open a support issue and provide the information gathered in the troubleshooting process.

13.13.2. SSP alerts

SSP alerts provide information about problems for the OpenShift Virtualization SSP Operator.

13.13.2.1. SSPFailingToReconcile alert

Description

The SSP Operator’s pod is up, but the pod’s reconcile cycle consistently fails. This failure includes failure
to update the resources for which it is responsible, failure to deploy the template validator, or failure to
deploy or update the common templates.

Reason

If the SSP Operator fails to reconcile, then the deployment of dependent components fails,
reconciliation of component changes fails, or both. Additionally, the updates to the common templates
and template validator reset and fail.

Troubleshoot

1. Check the ssp-operator pod’s logs for errors:

2. Verify that the template validator is up. If the template validator is not up, then check the pod’s
logs for errors.

Resolution

$ oc describe pod -n $KMP_NAMESPACE $KMP_NAME

$ oc logs -n $KMP_NAMESPACE $KMP_NAME

$ export NAMESPACE="$(oc get deployment -A | grep ssp-operator | awk '{print $1}')"

$ oc -n $NAMESPACE describe pods -l control-plane=ssp-operator

$ oc -n $NAMESPACE logs --tail=-1 -l control-plane=ssp-operator

$ export NAMESPACE="$($ oc get deployment -A | grep ssp-operator | awk '{print $1}')"

$ oc -n $NAMESPACE get pods -l name=virt-template-validator

$ oc -n $NAMESPACE describe pods -l name=virt-template-validator

$ oc -n $NAMESPACE logs --tail=-1 -l name=virt-template-validator

OpenShift Container Platform 4.11 Virtualization

316



Open a support issue and provide the information gathered in the troubleshooting process.

13.13.2.2. SSPOperatorDown alert

Description

The SSP Operator deploys and reconciles the common templates and the template validator.

Reason

If the SSP Operator is down, then the deployment of dependent components fails, reconciliation of
component changes fails, or both. Additionally, the updates to the common template and template
validator reset and fail.

Troubleshoot

1. Check ssp-operator’s pod namespace:

2. Verify that the ssp-operator’s pod is currently down.

3. Check the ssp-operator’s pod description and logs.

Resolution

Open a support issue and provide the information gathered in the troubleshooting process.

13.13.2.3. SSPTemplateValidatorDown alert

Description

The template validator validates that virtual machines (VMs) do not violate their assigned templates.

Reason

If every template validator pod is down, then the template validator fails to validate VMs against their
assigned templates.

Troubleshoot

1. Check the namespaces of the ssp-operator pods and the virt-template-validator pods.

$ export NAMESPACE="$(oc get deployment -A | grep ssp-operator | awk '{print $1}')"

$ oc -n $NAMESPACE get pods -l control-plane=ssp-operator

$ oc -n $NAMESPACE describe pods -l control-plane=ssp-operator

$ oc -n $NAMESPACE logs --tail=-1 -l control-plane=ssp-operator

$ export NAMESPACE_SSP="$(oc get deployment -A | grep ssp-operator | awk '{print $1}')"

$ export NAMESPACE="$(oc get deployment -A | grep virt-template-validator | awk '{print 
$1}')"

CHAPTER 13. LOGGING, EVENTS, AND MONITORING

317



2. Verify that the virt-template-validator’s pod is currently down.

3. Check the pod description and logs of the ssp-operator and the virt-template-validator.

Resolution

Open a support issue and provide the information gathered in the troubleshooting process.

13.13.3. Virt alerts

Virt alerts provide information about problems for the OpenShift Virtualization Virt Operator.

13.13.3.1. NoLeadingVirtOperator alert

Description

In the past 10 minutes, no virt-operator pod holds the leader lease, despite one or more virt-operator
pods being in Ready state. The alert suggests no operating virt-operator pod exists.

Reason

The virt-operator is the first Kubernetes Operator active in a OpenShift Container Platform cluster. Its
primary responsibilities are:

Installation

Live-update

Live-upgrade of a cluster

Monitoring the lifecycle of top-level controllers such as virt-controller, virt-handler, and virt-
launcher

Managing the reconciliation of top-level controllers

In addition, the virt-operator is responsible for cluster-wide tasks such as certificate rotation and some
infrastructure management.

The virt-operator deployment has a default replica of two pods with one leader pod holding a leader
lease, indicating an operating virt-operator pod.

This alert indicates a failure at the cluster level. Critical cluster-wide management functionalities such as
certification rotation, upgrade, and reconciliation of controllers may be temporarily unavailable.

Troubleshoot

$ oc -n $NAMESPACE get pods -l name=virt-template-validator

$ oc -n $NAMESPACE_SSP describe pods -l name=ssp-operator

$ oc -n $NAMESPACE_SSP logs --tail=-1 -l name=ssp-operator

$ oc -n $NAMESPACE describe pods -l name=virt-template-validator

$ oc -n $NAMESPACE logs --tail=-1 -l name=virt-template-validator

OpenShift Container Platform 4.11 Virtualization

318



Determine a virt-operator pod’s leader status from the pod logs. The log messages containing Started 
leading and acquire leader indicate the leader status of a given virt-operator pod.

Additionally, always check if there are any running virt-operator pods and the pods' statuses with these
commands:

Leader pod example:

Example output

Non-leader pod example:

Example output

Resolution

There are several reasons for no virt-operator pod holding the leader lease, despite one or more virt-
operator pods being in Ready state. Identify the root cause and take appropriate action.

Otherwise, open a support issue and provide the information gathered in the troubleshooting process.

13.13.3.2. NoReadyVirtController alert

Description

$ export NAMESPACE="$(oc get kubevirt -A -o custom-columns="":.metadata.namespace)"

$ oc -n $NAMESPACE get pods -l kubevirt.io=virt-operator

$ oc -n $NAMESPACE logs <pod-name>

$ oc -n $NAMESPACE describe pod <pod-name>

$ oc -n $NAMESPACE logs <pod-name> |grep lead

{"component":"virt-operator","level":"info","msg":"Attempting to acquire leader 
status","pos":"application.go:400","timestamp":"2021-11-30T12:15:18.635387Z"}
I1130 12:15:18.635452       1 leaderelection.go:243] attempting to acquire leader lease 
<namespace>/virt-operator...
I1130 12:15:19.216582       1 leaderelection.go:253] successfully acquired lease <namespace>/virt-
operator

{"component":"virt-operator","level":"info","msg":"Started 
leading","pos":"application.go:385","timestamp":"2021-11-30T12:15:19.216836Z"}

$ oc -n $NAMESPACE logs <pod-name> |grep lead

{"component":"virt-operator","level":"info","msg":"Attempting to acquire leader 
status","pos":"application.go:400","timestamp":"2021-11-30T12:15:20.533696Z"}
I1130 12:15:20.533792       1 leaderelection.go:243] attempting to acquire leader lease 
<namespace>/virt-operator...

CHAPTER 13. LOGGING, EVENTS, AND MONITORING

319



The virt-controller monitors virtual machine instances (VMIs). The virt-controller also manages the
associated pods by creating and managing the lifecycle of the pods associated with the VMI objects.

A VMI object always associates with a pod during its lifetime. However, the pod instance can change
over time because of VMI migration.

This alert occurs when detection of no ready virt-controllers occurs for five minutes.

Reason

If the virt-controller fails, then VM lifecycle management completely fails. Lifecycle management tasks
include launching a new VMI or shutting down an existing VMI.

Troubleshoot

1. Check the vdeployment status of the virt-controller for available replicas and conditions.

2. Check if the virt-controller pods exist and check their statuses.

3. Check the virt-controller pods' events.

4. Check the virt-controller pods' logs.

5. Check if there are issues with the nodes, such as if the nodes are in a NotReady state.

Resolution

There are several reasons for no virt-controller pods being in a Ready state. Identify the root cause and
take appropriate action.

Otherwise, open a support issue and provide the information gathered in the troubleshooting process.

13.13.3.3. NoReadyVirtOperator alert

Description

No detection of a virt-operator pod in the Ready state occurs in the past 10 minutes. The virt-operator
deployment has a default replica of two pods.

Reason

The virt-operator is the first Kubernetes Operator active in an OpenShift Container Platform cluster. Its
primary responsibilities are:

Installation

$ oc -n $NAMESPACE get deployment virt-controller -o yaml

get pods -n $NAMESPACE |grep virt-controller

$ oc -n $NAMESPACE describe pods <virt-controller pod>

$ oc -n $NAMESPACE logs <virt-controller pod>

$ oc get nodes

OpenShift Container Platform 4.11 Virtualization

320



Live-update

Live-upgrade of a cluster

Monitoring the lifecycle of top-level controllers such as virt-controller, virt-handler, and virt-
launcher

Managing the reconciliation of top-level controllers

In addition, the virt-operator is responsible for cluster-wide tasks such as certificate rotation and some
infrastructure management.

NOTE

Virt-operator is not directly responsible for virtual machines in the cluster. Virt-operator’s
unavailability does not affect the custom workloads.

This alert indicates a failure at the cluster level. Critical cluster-wide management functionalities such as
certification rotation, upgrade, and reconciliation of controllers are temporarily unavailable.

Troubleshoot

1. Check the deployment status of the virt-operator for available replicas and conditions.

2. Check the virt-controller pods' events.

3. Check the virt-operator pods' logs.

4. Check if there are issues with the nodes for the control plane and masters, such as if they are in a
NotReady state.

Resolution

There are several reasons for no virt-operator pods being in a Ready state. Identify the root cause and
take appropriate action.

Otherwise, open a support issue and provide the information gathered in the troubleshooting process.

13.13.3.4. VirtAPIDown alert

Description

All OpenShift Container Platform API servers are down.

Reason

If all OpenShift Container Platform API servers are down, then no API calls for OpenShift Container

$ oc -n $NAMESPACE get deployment virt-operator -o yaml

$ oc -n $NAMESPACE describe pods <virt-operator pod>

$ oc -n $NAMESPACE logs <virt-operator pod>

$ oc get nodes

CHAPTER 13. LOGGING, EVENTS, AND MONITORING

321



If all OpenShift Container Platform API servers are down, then no API calls for OpenShift Container
Platform entities occur.

Troubleshoot

1. Modify the environment variable NAMESPACE.

2. Verify if there are any running virt-api pods.

3. View the pods' logs using oc logs and the pods' statuses using oc describe.

4. Check the status of the virt-api deployment. Use these commands to learn about related events
and show if there are any issues with pulling an image, a crashing pod, or other similar problems.

5. Check if there are issues with the nodes, such as if the nodes are in a NotReady state.

Resolution

Virt-api pods can be down for several reasons. Identify the root cause and take appropriate action.

Otherwise, open a support issue and provide the information gathered in the troubleshooting process.

13.13.3.5. VirtApiRESTErrorsBurst alert

Description

More than 80% of the REST calls fail in virt-api in the last five minutes.

Reason

A very high rate of failed REST calls to virt-api causes slow response, slow execution of API calls, or even
complete dismissal of API calls.

Troubleshoot

1. Modify the environment variable NAMESPACE.

2. Check to see how many running virt-api pods exist.

3. View the pods' logs using oc logs and the pods' statuses using oc describe.

$ export NAMESPACE="$(oc get kubevirt -A -o custom-columns="":.metadata.namespace)"

$ oc -n $NAMESPACE get pods -l kubevirt.io=virt-api

$ oc -n $NAMESPACE get deployment virt-api -o yaml

$ oc -n $NAMESPACE describe deployment virt-api

$ oc get nodes

$ export NAMESPACE="$(oc get kubevirt -A -o custom-columns="":.metadata.namespace)"

$ oc -n $NAMESPACE get pods -l kubevirt.io=virt-api

OpenShift Container Platform 4.11 Virtualization

322



4. Check the status of the virt-api deployment to find out more information. These commands
provide the associated events and show if there are any issues with pulling an image or a
crashing pod.

5. Check if there are issues with the nodes, such as if the nodes are overloaded or not in a 
NotReady state.

Resolution

There are several reasons for a high rate of failed REST calls. Identify the root cause and take
appropriate action.

Node resource exhaustion

Not enough memory on the cluster

Nodes are down

The API server overloads, such as when the scheduler is not 100% available)

Networking issues

Otherwise, open a support issue and provide the information gathered in the troubleshooting process.

13.13.3.6. VirtControllerDown alert

Description

If no detection of virt-controllers occurs in the past five minutes, then virt-controller deployment has a
default replica of two pods.

Reason

If the virt-controller fails, then VM lifecycle management tasks, such as launching a new VMI or shutting
down an existing VMI, completely fail.

Troubleshoot

1. Modify the environment variable NAMESPACE.

2. Check the status of the virt-controller deployment.

3. Check the virt-controller pods' events.

$ oc -n $NAMESPACE get deployment virt-api -o yaml

$ oc -n $NAMESPACE describe deployment virt-api

$ oc get nodes

$ export NAMESPACE="$(oc get kubevirt -A -o custom-columns="":.metadata.namespace)"

$ oc get deployment -n $NAMESPACE virt-controller -o yaml

$ oc -n $NAMESPACE describe pods <virt-controller pod>

CHAPTER 13. LOGGING, EVENTS, AND MONITORING

323



4. Check the virt-controller pods' logs.

5. Check the manager pod’s logs to determine why creating the virt-controller pods fails.

An example of a virt-controller pod name in the logs is virt-controller-7888c64d66-dzc9p. However,
there may be several pods that run virt-controller.

Resolution

There are several known reasons why the detection of no running virt-controller occurs. Identify the root
cause from the list of possible reasons and take appropriate action.

Node resource exhaustion

Not enough memory on the cluster

Nodes are down

The API server overloads, such as when the scheduler is not 100% available)

Networking issues

Otherwise, open a support issue and provide the information gathered in the troubleshooting process.

13.13.3.7. VirtControllerRESTErrorsBurst alert

Description

More than 80% of the REST calls failed in virt-controller in the last five minutes.

Reason

Virt-controller has potentially fully lost connectivity to the API server. This loss does not affect running
workloads, but propagation of status updates and actions like migrations cannot occur.

Troubleshoot

There are two common error types associated with virt-controller REST call failure:

The API server overloads, causing timeouts. Check the API server metrics and details like
response times and overall calls.

The virt-controller pod cannot reach the API server. Common causes are:

DNS issues on the node

Networking connectivity issues

Resolution

Check the virt-controller logs to determine if the virt-controller pod cannot connect to the API server at
all. If so, delete the pod to force a restart.

$ oc -n $NAMESPACE logs <virt-controller pod>

$ oc get logs <virt-controller-pod>

OpenShift Container Platform 4.11 Virtualization

324



Additionally, verify if node resource exhaustion or not having enough memory on the cluster is causing
the connection failure.

The issue normally relates to DNS or CNI issues outside of the scope of this alert.

Otherwise, open a support issue and provide the information gathered in the troubleshooting process.

13.13.3.8. VirtHandlerRESTErrorsBurst alert

Description

More than 80% of the REST calls failed in virt-handler in the last five minutes.

Reason

Virt-handler lost the connection to the API server. Running workloads on the affected node still run, but
status updates cannot propagate and actions such as migrations cannot occur.

Troubleshoot

There are two common error types associated with virt-operator REST call failure:

The API server overloads, causing timeouts. Check the API server metrics and details like
response times and overall calls.

The virt-operator pod cannot reach the API server. Common causes are:

DNS issues on the node

Networking connectivity issues

Resolution

If the virt-handler cannot connect to the API server, delete the pod to force a restart. The issue
normally relates to DNS or CNI issues outside of the scope of this alert. Identify the root cause and take
appropriate action.

Otherwise, open a support issue and provide the information gathered in the troubleshooting process.

13.13.3.9. VirtOperatorDown alert

Description

This alert occurs when no virt-operator pod is in the Running state in the past 10 minutes. The virt-
operator deployment has a default replica of two pods.

Reason

The virt-operator is the first Kubernetes Operator active in an OpenShift Container Platform cluster. Its
primary responsibilities are:

Installation

Live-update

Live-upgrade of a cluster

Monitoring the lifecycle of top-level controllers such as virt-controller, virt-handler, and virt-
launcher

CHAPTER 13. LOGGING, EVENTS, AND MONITORING

325



Managing the reconciliation of top-level controllers

In addition, the virt-operator is responsible for cluster-wide tasks such as certificate rotation and some
infrastructure management.

NOTE

The virt-operator is not directly responsible for virtual machines in the cluster. The virt-
operator’s unavailability does not affect the custom workloads.

This alert indicates a failure at the cluster level. Critical cluster-wide management functionalities such as
certification rotation, upgrade, and reconciliation of controllers are temporarily unavailable.

Troubleshoot

1. Modify the environment variable NAMESPACE.

2. Check the status of the virt-operator deployment.

3. Check the virt-operator pods' events.

4. Check the virt-operator pods' logs.

5. Check the manager pod’s logs to determine why creating the virt-operator pods fails.

An example of a virt-operator pod name in the logs is virt-operator-7888c64d66-dzc9p. However, there
may be several pods that run virt-operator.

Resolution

There are several known reasons why the detection of no running virt-operator occurs. Identify the root
cause from the list of possible reasons and take appropriate action.

Node resource exhaustion

Not enough memory on the cluster

Nodes are down

The API server overloads, such as when the scheduler is not 100% available)

Networking issues

Otherwise, open a support issue and provide the information gathered in the troubleshooting process.

$ export NAMESPACE="$(oc get kubevirt -A -o custom-columns="":.metadata.namespace)"

$ oc get deployment -n $NAMESPACE virt-operator -o yaml

$ oc -n $NAMESPACE describe pods <virt-operator pod>

$ oc -n $NAMESPACE logs <virt-operator pod>

$ oc get logs <virt-operator-pod>

OpenShift Container Platform 4.11 Virtualization

326



13.13.3.10. VirtOperatorRESTErrorsBurst alert

Description

More than 80% of the REST calls failed in virt-operator in the last five minutes.

Reason

Virt-operator lost the connection to the API server. Cluster-level actions such as upgrading and
controller reconciliation do not function. There is no effect to customer workloads such as VMs and
VMIs.

Troubleshoot

There are two common error types associated with virt-operator REST call failure:

The API server overloads, causing timeouts. Check the API server metrics and details, such as
response times and overall calls.

The virt-operator pod cannot reach the API server. Common causes are network connectivity
problems and DNS issues on the node. Check the virt-operator logs to verify that the pod can
connect to the API server at all.

Resolution

If the virt-operator cannot connect to the API server, delete the pod to force a restart. The issue
normally relates to DNS or CNI issues outside of the scope of this alert. Identify the root cause and take
appropriate action.

Otherwise, open a support issue and provide the information gathered in the troubleshooting process.

13.13.4. Additional resources

Getting support

13.14. COLLECTING DATA FOR RED HAT SUPPORT

When you submit a support case to Red Hat Support, it is helpful to provide debugging information for
OpenShift Container Platform and OpenShift Virtualization by using the following tools:

must-gather tool

The must-gather tool collects diagnostic information, including resource definitions and service logs.

Prometheus

Prometheus is a time-series database and a rule evaluation engine for metrics. Prometheus sends
alerts to Alertmanager for processing.

Alertmanager

$ export NAMESPACE="$(oc get kubevirt -A -o custom-columns="":.metadata.namespace)"

$ oc -n $NAMESPACE get pods -l kubevirt.io=virt-operator

$ oc -n $NAMESPACE logs <pod-name>

$ oc -n $NAMESPACE describe pod <pod-name>

CHAPTER 13. LOGGING, EVENTS, AND MONITORING

327

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/support/#getting-support-1
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/support/#support-submitting-a-case_getting-support


The Alertmanager service handles alerts received from Prometheus. The Alertmanager is also
responsible for sending the alerts to external notification systems.

13.14.1. Collecting data about your environment

Collecting data about your environment minimizes the time required to analyze and determine the root
cause.

Prerequisites

Set the retention time for Prometheus metrics data to a minimum of seven days.

Configure the Alertmanager to capture relevant alerts and to send them to a dedicated mailbox
so that they can be viewed and persisted outside the cluster.

Record the exact number of affected nodes and virtual machines.

Procedure

1. Collect must-gather data for the cluster by using the default must-gather image.

2. Collect must-gather data for Red Hat OpenShift Data Foundation, if necessary.

3. Collect must-gather data for OpenShift Virtualization by using the OpenShift Virtualization 
must-gather image.

4. Collect Prometheus metrics for the cluster.

13.14.1.1. Additional resources

Configuring the retention time for Prometheus metrics data

Configuring the Alertmanager to send alert notifications to external systems

Collecting must-gather data for OpenShift Container Platform

Collecting must-gather data for Red Hat OpenShift Data Foundation

Collecting must-gather data for OpenShift Virtualization

Collecting Prometheus metrics for all projects as a cluster administrator

13.14.2. Collecting data about virtual machines

Collecting data about malfunctioning virtual machines (VMs) minimizes the time required to analyze and
determine the root cause.

Prerequisites

Windows VMs:

Record the Windows patch update details for Red Hat Support.

Install the latest version of the VirtIO drivers. The VirtIO drivers include the QEMU guest
agent.

If Remote Desktop Protocol (RDP) is enabled, try to connect to the VMs with RDP to

OpenShift Container Platform 4.11 Virtualization

328

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/monitoring/#modifying-retention-time-for-prometheus-metrics-data_configuring-the-monitoring-stack
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/monitoring/#sending-notifications-to-external-systems_managing-alerts
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/support/#support_gathering_data_gathering-cluster-data
https://access.redhat.com/documentation/en-us/red_hat_openshift_data_foundation/4.11/html-single/troubleshooting_openshift_data_foundation/index#downloading-log-files-and-diagnostic-information_rhodf
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/virtualization/#virt-using-virt-must-gather_virt-collecting-virt-data
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/monitoring/#querying-metrics-for-all-projects-as-an-administrator_managing-metrics


If Remote Desktop Protocol (RDP) is enabled, try to connect to the VMs with RDP to
determine whether there is a problem with the connection software.

Procedure

1. Collect detailed must-gather data about the malfunctioning VMs.

2. Collect screenshots of VMs that have crashed before you restart them.

3. Record factors that the malfunctioning VMs have in common. For example, the VMs have the
same host or network.

13.14.2.1. Additional resources

Installing VirtIO drivers on Windows VMs

Downloading and installing VirtIO drivers on Windows VMs without host access

Connecting to Windows VMs with RDP using the web console or the command line

Collecting must-gather data about virtual machines

13.14.3. Using the must-gather tool for OpenShift Virtualization

You can collect data about OpenShift Virtualization resources by running the must-gather command
with the OpenShift Virtualization image.

The default data collection includes information about the following resources:

OpenShift Virtualization Operator namespaces, including child objects

OpenShift Virtualization custom resource definitions

Namespaces that contain virtual machines

Basic virtual machine definitions

Procedure

Run the following command to collect data about OpenShift Virtualization:

13.14.3.1. must-gather tool options

You can specify a combination of scripts and environment variables for the following options:

Collecting detailed virtual machine (VM) information from a namespace

Collecting detailed information about specified VMs

Collecting image and image stream information

Limiting the maximum number of parallel processes used by the must-gather tool

$ oc adm must-gather --image-stream=openshift/must-gather \
  --image=registry.redhat.io/container-native-virtualization/cnv-must-gather-rhel8:v4.11.8

CHAPTER 13. LOGGING, EVENTS, AND MONITORING

329

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/virtualization/#virt-installing-virtio-drivers-existing-windows_virt-installing-qemu-guest-agent
https://access.redhat.com/solutions/6957701
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/virtualization/#virt-vm-rdp-console-web_virt-accessing-vm-consoles
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/virtualization/#virt-accessing-rdp-console_virt-accessing-vm-consoles
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/virtualization/#virt-must-gather-options_virt-collecting-virt-data


13.14.3.1.1. Parameters

Environment variables

You can specify environment variables for a compatible script.

NS=<namespace_name>

Collect virtual machine information, including virt-launcher pod details, from the namespace that
you specify. The VirtualMachine and VirtualMachineInstance CR data is collected for all
namespaces.

VM=<vm_name>

Collect details about a particular virtual machine. To use this option, you must also specify a
namespace by using the NS environment variable.

PROS=<number_of_processes>

Modify the maximum number of parallel processes that the must-gather tool uses. The default value
is 5.

IMPORTANT

Using too many parallel processes can cause performance issues. Increasing the
maximum number of parallel processes is not recommended.

Scripts

Each script is only compatible with certain environment variable combinations.

gather_vms_details

Collect VM log files, VM definitions, and namespaces (and their child objects) that belong to
OpenShift Virtualization resources. If you use this parameter without specifying a namespace or VM,
the must-gather tool collects this data for all VMs in the cluster. This script is compatible with all
environment variables, but you must specify a namespace if you use the VM variable.

gather

Use the default must-gather script, which collects cluster data from all namespaces and includes
only basic VM information. This script is only compatible with the PROS variable.

gather_images

Collect image and image stream custom resource information. This script is only compatible with the
PROS variable.

13.14.3.1.2. Usage and examples

Environment variables are optional. You can run a script by itself or with one or more compatible
environment variables.

Table 13.1. Compatible parameters

Script Compatible environment variable

OpenShift Container Platform 4.11 Virtualization

330



1

gather_vms_details
For a namespace: NS=
<namespace_name>

For a VM: VM=<vm_name> NS=
<namespace_name>

PROS=<number_of_processes>

gather
PROS=<number_of_processes>

gather_images
PROS=<number_of_processes>

Script Compatible environment variable

To customize the data that must-gather collects, you append a double dash ( --) to the command,
followed by a space and one or more compatible parameters.

Syntax

Detailed VM information

The following command collects detailed VM information for the my-vm VM in the mynamespace
namespace:

The NS environment variable is mandatory if you use the VM environment variable.

Default data collection limited to three parallel processes

The following command collects default must-gather information by using a maximum of three parallel
processes:

Image and image stream information

The following command collects image and image stream information from the cluster:

$ oc adm must-gather \
  --image=registry.redhat.io/container-native-virtualization/cnv-must-gather-rhel8:v4.11.8 \
  -- <environment_variable_1> <environment_variable_2> <script_name>

$ oc adm must-gather \
  --image=registry.redhat.io/container-native-virtualization/cnv-must-gather-rhel8:v4.11.8 \
  -- NS=mynamespace VM=my-vm gather_vms_details 1

$ oc adm must-gather \
  --image=registry.redhat.io/container-native-virtualization/cnv-must-gather-rhel8:v4.11.8 \
  -- PROS=3 gather

CHAPTER 13. LOGGING, EVENTS, AND MONITORING

331



13.14.3.2. Additional resources

About the must-gather tool

$ oc adm must-gather \
  --image=registry.redhat.io/container-native-virtualization/cnv-must-gather-rhel8:v4.11.8 \
  -- gather_images

OpenShift Container Platform 4.11 Virtualization

332

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/support/#about-must-gather_gathering-cluster-data


CHAPTER 14. BACKUP AND RESTORE

14.1. INSTALLING AND CONFIGURING OADP

As a cluster administrator, you install the OpenShift API for Data Protection (OADP) by installing the
OADP Operator. The Operator installs Velero 1.11.

You create a default Secret for your backup storage provider and then you install the Data Protection
Application.

14.1.1. Installing the OADP Operator

You install the OpenShift API for Data Protection (OADP) Operator on OpenShift Container Platform
4.11 by using Operator Lifecycle Manager (OLM).

The OADP Operator installs Velero 1.11.

Prerequisites

You must be logged in as a user with cluster-admin privileges.

Procedure

1. In the OpenShift Container Platform web console, click Operators → OperatorHub.

2. Use the Filter by keyword field to find the OADP Operator.

3. Select the OADP Operator and click Install.

4. Click Install to install the Operator in the openshift-adp project.

5. Click Operators → Installed Operators to verify the installation.

14.1.2. About backup and snapshot locations and their secrets

You specify backup and snapshot locations and their secrets in the DataProtectionApplication custom
resource (CR).

Backup locations
You specify S3-compatible object storage, such as Multicloud Object Gateway or MinIO, as a backup
location.

Velero backs up OpenShift Container Platform resources, Kubernetes objects, and internal images as an
archive file on object storage.

Snapshot locations
If you use your cloud provider’s native snapshot API to back up persistent volumes, you must specify the
cloud provider as the snapshot location.

If you use Container Storage Interface (CSI) snapshots, you do not need to specify a snapshot location
because you will create a VolumeSnapshotClass CR to register the CSI driver.

If you use Restic, you do not need to specify a snapshot location because Restic backs up the file system
on object storage.

CHAPTER 14. BACKUP AND RESTORE

333

https://velero.io/docs/v1.11/
https://velero.io/docs/v1.11/


Secrets
If the backup and snapshot locations use the same credentials or if you do not require a snapshot
location, you create a default Secret.

If the backup and snapshot locations use different credentials, you create two secret objects:

Custom Secret for the backup location, which you specify in the DataProtectionApplication
CR.

Default Secret for the snapshot location, which is not referenced in the 
DataProtectionApplication CR.

IMPORTANT

The Data Protection Application requires a default Secret. Otherwise, the installation will
fail.

If you do not want to specify backup or snapshot locations during the installation, you can
create a default Secret with an empty credentials-velero file.

14.1.2.1. Creating a default Secret

You create a default Secret if your backup and snapshot locations use the same credentials or if you do
not require a snapshot location.

NOTE

The DataProtectionApplication custom resource (CR) requires a default Secret.
Otherwise, the installation will fail. If the name of the backup location Secret is not
specified, the default name is used.

If you do not want to use the backup location credentials during the installation, you can
create a Secret with the default name by using an empty credentials-velero file.

Prerequisites

Your object storage and cloud storage, if any, must use the same credentials.

You must configure object storage for Velero.

You must create a credentials-velero file for the object storage in the appropriate format.

Procedure

Create a Secret with the default name:

The Secret is referenced in the spec.backupLocations.credential block of the 
DataProtectionApplication CR when you install the Data Protection Application.

14.1.3. Configuring the Data Protection Application

You can configure the Data Protection Application by setting Velero resource allocations or enabling

$ oc create secret generic cloud-credentials -n openshift-adp --from-file cloud=credentials-
velero

OpenShift Container Platform 4.11 Virtualization

334



1

2

You can configure the Data Protection Application by setting Velero resource allocations or enabling
self-signed CA certificates.

14.1.3.1. Setting Velero CPU and memory resource allocations

You set the CPU and memory resource allocations for the Velero pod by editing the 
DataProtectionApplication custom resource (CR) manifest.

Prerequisites

You must have the OpenShift API for Data Protection (OADP) Operator installed.

Procedure

Edit the values in the spec.configuration.velero.podConfig.ResourceAllocations block of
the DataProtectionApplication CR manifest, as in the following example:

Specify the node selector to be supplied to Velero podSpec.

The resourceAllocations listed are for average usage.

14.1.3.2. Enabling self-signed CA certificates

You must enable a self-signed CA certificate for object storage by editing the 
DataProtectionApplication custom resource (CR) manifest to prevent a certificate signed by 
unknown authority error.

Prerequisites

You must have the OpenShift API for Data Protection (OADP) Operator installed.

Procedure

Edit the spec.backupLocations.velero.objectStorage.caCert parameter and 

apiVersion: oadp.openshift.io/v1alpha1
kind: DataProtectionApplication
metadata:
  name: <dpa_sample>
spec:
...
  configuration:
    velero:
      podConfig:
        nodeSelector: <node selector> 1
        resourceAllocations: 2
          limits:
            cpu: "1"
            memory: 1024Mi
          requests:
            cpu: 200m
            memory: 256Mi

CHAPTER 14. BACKUP AND RESTORE

335



1

2

Edit the spec.backupLocations.velero.objectStorage.caCert parameter and 
spec.backupLocations.velero.config parameters of the DataProtectionApplication CR
manifest:

Specify the Base46-encoded CA certificate string.

The insecureSkipTLSVerify configuration can be set to either "true" or "false". If set to 
"true", SSL/TLS security is disabled. If set to "false", SSL/TLS security is enabled.

14.1.4. Installing the Data Protection Application

You install the Data Protection Application (DPA) by creating an instance of the 
DataProtectionApplication API.

Prerequisites

You must install the OADP Operator.

You must configure object storage as a backup location.

If you use snapshots to back up PVs, your cloud provider must support either a native snapshot
API or Container Storage Interface (CSI) snapshots.

If the backup and snapshot locations use the same credentials, you must create a Secret with
the default name, cloud-credentials.

If the backup and snapshot locations use different credentials, you must create two Secrets:

Secret with a custom name for the backup location. You add this Secret to the 
DataProtectionApplication CR.

Secret with the default name, cloud-credentials, for the snapshot location. This Secret is
not referenced in the DataProtectionApplication CR.

NOTE

apiVersion: oadp.openshift.io/v1alpha1
kind: DataProtectionApplication
metadata:
  name: <dpa_sample>
spec:
...
  backupLocations:
    - name: default
      velero:
        provider: aws
        default: true
        objectStorage:
          bucket: <bucket>
          prefix: <prefix>
          caCert: <base64_encoded_cert_string> 1
        config:
          insecureSkipTLSVerify: "false" 2
...

OpenShift Container Platform 4.11 Virtualization

336



NOTE

If you do not want to specify backup or snapshot locations during the
installation, you can create a default Secret with an empty credentials-
velero file. If there is no default Secret, the installation will fail.

NOTE

Velero creates a secret named velero-repo-credentials in the OADP
namespace, which contains a default backup repository password. You can
update the secret with your own password encoded as base64 before you
run your first backup targeted to the backup repository. The value of the key
to update is Data[repository-password].

After you create your DPA, the first time that you run a backup targeted to
the backup repository, Velero creates a backup repository whose secret is 
velero-repo-credentials, which contains either the default password or the
one you replaced it with. If you update the secret password after the first
backup, the new password will not match the password in velero-repo-
credentials, and therefore, Velero will not be able to connect with the older
backups.

Procedure

1. Click Operators → Installed Operators and select the OADP Operator.

2. Under Provided APIs, click Create instance in the DataProtectionApplication box.

3. Click YAML View and update the parameters of the DataProtectionApplication manifest:

apiVersion: oadp.openshift.io/v1alpha1
kind: DataProtectionApplication
metadata:
  name: <dpa_sample>
  namespace: openshift-adp
spec:
  configuration:
    velero:
      defaultPlugins:
        - kubevirt 1
        - gcp 2
        - csi 3
        - openshift 4
      resourceTimeout: 10m 5
    restic:
      enable: true 6
      podConfig:
        nodeSelector: <node_selector> 7
  backupLocations:
    - velero:
        provider: gcp 8
        default: true
        credential:
          key: cloud
          name: <default_secret> 9

CHAPTER 14. BACKUP AND RESTORE

337



1

2

3

4

5

6

7

8

9

10

11

The kubevirt plugin is mandatory for OpenShift Virtualization.

Specify the plugin for the backup provider, for example, gcp, if it exists.

The csi plugin is mandatory for backing up PVs with CSI snapshots. The csi plugin uses the
Velero CSI beta snapshot APIs . You do not need to configure a snapshot location.

The openshift plugin is mandatory.

Specify how many minutes to wait for several Velero resources before timeout occurs,
such as Velero CRD availability, volumeSnapshot deletion, and backup repository
availability. The default is 10m.

Set this value to false if you want to disable the Restic installation. Restic deploys a
daemon set, which means that Restic pods run on each working node. In OADP version 1.2
and later, you can configure Restic for backups by adding 
spec.defaultVolumesToFsBackup: true to the Backup CR. In OADP version 1.1, add 
spec.defaultVolumesToRestic: true to the Backup CR.

Specify on which nodes Restic is available. By default, Restic runs on all nodes.

Specify the backup provider.

Specify the correct default name for the Secret, for example, cloud-credentials-gcp, if
you use a default plugin for the backup provider. If specifying a custom name, then the
custom name is used for the backup location. If you do not specify a Secret name, the
default name is used.

Specify a bucket as the backup storage location. If the bucket is not a dedicated bucket for
Velero backups, you must specify a prefix.

Specify a prefix for Velero backups, for example, velero, if the bucket is used for multiple
purposes.

4. Click Create.

5. Verify the installation by viewing the OADP resources:

Example output

NAME                                                     READY   STATUS    RESTARTS   AGE
pod/oadp-operator-controller-manager-67d9494d47-6l8z8    2/2     Running   0          2m8s
pod/restic-9cq4q                                         1/1     Running   0          94s
pod/restic-m4lts                                         1/1     Running   0          94s
pod/restic-pv4kr                                         1/1     Running   0          95s
pod/velero-588db7f655-n842v                              1/1     Running   0          95s

NAME                                                       TYPE        CLUSTER-IP       EXTERNAL-IP   
PORT(S)    AGE

        objectStorage:
          bucket: <bucket_name> 10
          prefix: <prefix> 11

$ oc get all -n openshift-adp

OpenShift Container Platform 4.11 Virtualization

338

https://velero.io/docs/main/csi/


1

service/oadp-operator-controller-manager-metrics-service   ClusterIP   172.30.70.140    
<none>        8443/TCP   2m8s

NAME                    DESIRED   CURRENT   READY   UP-TO-DATE   AVAILABLE   NODE 
SELECTOR   AGE
daemonset.apps/restic   3         3         3       3            3           <none>          96s

NAME                                                READY   UP-TO-DATE   AVAILABLE   AGE
deployment.apps/oadp-operator-controller-manager    1/1     1            1           2m9s
deployment.apps/velero                              1/1     1            1           96s

NAME                                                           DESIRED   CURRENT   READY   AGE
replicaset.apps/oadp-operator-controller-manager-67d9494d47    1         1         1       2m9s
replicaset.apps/velero-588db7f655                              1         1         1       96s

14.1.4.1. Enabling CSI in the DataProtectionApplication CR

You enable the Container Storage Interface (CSI) in the DataProtectionApplication custom resource
(CR) in order to back up persistent volumes with CSI snapshots.

Prerequisites

The cloud provider must support CSI snapshots.

Procedure

Edit the DataProtectionApplication CR, as in the following example:

Add the csi default plugin.

14.1.5. Uninstalling OADP

You uninstall the OpenShift API for Data Protection (OADP) by deleting the OADP Operator. See
Deleting Operators from a cluster  for details.

14.2. BACKING UP AND RESTORING VIRTUAL MACHINES

IMPORTANT

apiVersion: oadp.openshift.io/v1alpha1
kind: DataProtectionApplication
...
spec:
  configuration:
    velero:
      defaultPlugins:
      - openshift
      - csi 1

CHAPTER 14. BACKUP AND RESTORE

339

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/operators/#olm-deleting-operators-from-cluster


IMPORTANT

OADP for OpenShift Virtualization is a Technology Preview feature only. Technology
Preview features are not supported with Red Hat production service level agreements
(SLAs) and might not be functionally complete. Red Hat does not recommend using
them in production. These features provide early access to upcoming product features,
enabling customers to test functionality and provide feedback during the development
process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

You back up and restore virtual machines by using the OpenShift API for Data Protection (OADP) .

Prerequisites

Access to the cluster as a user with the cluster-admin role.

Procedure

1. Install the OADP Operator according to the instructions for your storage provider.

2. Install the Data Protection Application with the kubevirt and openshift plugins.

3. Back up virtual machines by creating a Backup custom resource (CR).

4. Restore the Backup CR by creating a Restore CR.

14.2.1. Additional resources

OADP features and plugins

Troubleshooting

14.3. BACKING UP VIRTUAL MACHINES

You back up virtual machines (VMs) by creating an OpenShift API for Data Protection (OADP) Backup
custom resource (CR).

The Backup CR performs the following actions:

Backs up OpenShift Virtualization resources by creating an archive file on S3-compatible object
storage, such as Multicloud Object Gateway, Noobaa, or Minio.

Backs up VM disks by using one of the following options:

Container Storage Interface (CSI) snapshots  on CSI-enabled cloud storage, such as Ceph
RBD or Ceph FS.

Restic file system backups  on object storage.

NOTE

OpenShift Container Platform 4.11 Virtualization

340

https://access.redhat.com/support/offerings/techpreview/
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/backup_and_restore/#application-backup-restore-operations-overview
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/backup_and_restore/#about-installing-oadp
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/backup_and_restore/#oadp-installing-dpa_installing-oadp-ocs
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/backup_and_restore/#oadp-plugins_oadp-features-plugins
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/backup_and_restore/#backing-up-applications
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/backup_and_restore/#restoring-applications
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/backup_and_restore/#oadp-features-plugins
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/backup_and_restore/#troubleshooting
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/virtualization/#oadp-creating-backup-cr_virt-backing-up-vms
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/backup_and_restore/#installing-oadp-mcg
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/virtualization/#oadp-backing-up-pvs-csi_virt-backing-up-vms
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/virtualization/#oadp-backing-up-applications-restic_virt-backing-up-vms


NOTE

OADP provides backup hooks to freeze the VM file system before the backup operation
and unfreeze it when the backup is complete.

The kubevirt-controller creates the virt-launcher pods with annotations that enable
Velero to run the virt-freezer binary before and after the backup operation.

The freeze and unfreeze APIs are subresources of the VM snapshot API. See About
virtual machine snapshots for details.

You can add hooks to the Backup CR to run commands on specific VMs before or after the backup
operation.

You schedule a backup by creating a Schedule CR instead of a Backup CR.

14.3.1. Creating a Backup CR

You back up Kubernetes images, internal images, and persistent volumes (PVs) by creating a Backup
custom resource (CR).

Prerequisites

You must install the OpenShift API for Data Protection (OADP) Operator.

The DataProtectionApplication CR must be in a Ready state.

Backup location prerequisites:

You must have S3 object storage configured for Velero.

You must have a backup location configured in the DataProtectionApplication CR.

Snapshot location prerequisites:

Your cloud provider must have a native snapshot API or support Container Storage
Interface (CSI) snapshots.

For CSI snapshots, you must create a VolumeSnapshotClass CR to register the CSI driver.

You must have a volume location configured in the DataProtectionApplication CR.

Procedure

1. Retrieve the backupStorageLocations CRs by entering the following command:

Example output

2. Create a Backup CR, as in the following example:

$ oc get backupStorageLocations -n openshift-adp

NAMESPACE       NAME              PHASE       LAST VALIDATED   AGE   DEFAULT
openshift-adp   velero-sample-1   Available   11s              31m

CHAPTER 14. BACKUP AND RESTORE

341

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/virtualization/#virt-about-vm-snapshots_virt-managing-vm-snapshots
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/virtualization/#oadp-creating-backup-hooks_virt-backing-up-vms
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/virtualization/#oadp-scheduling-backups_virt-backing-up-vms


1

2

3

4

5

6

Specify an array of namespaces to back up.

Optional: Specify an array of resources to include in the backup. Resources might be
shortcuts (for example, 'po' for 'pods') or fully-qualified. If unspecified, all resources are
included.

Optional: Specify an array of resources to exclude from the backup. Resources might be
shortcuts (for example, 'po' for 'pods') or fully-qualified.

Specify the name of the backupStorageLocations CR.

Map of {key,value} pairs of backup resources that have all of the specified labels.

Map of {key,value} pairs of backup resources that have one or more of the specified
labels.

3. Verify that the status of the Backup CR is Completed:

14.3.1.1. Backing up persistent volumes with CSI snapshots

You back up persistent volumes with Container Storage Interface (CSI) snapshots by editing the 
VolumeSnapshotClass custom resource (CR) of the cloud storage before you create the Backup CR.

Prerequisites

apiVersion: velero.io/v1
kind: Backup
metadata:
  name: <backup>
  labels:
    velero.io/storage-location: default
  namespace: openshift-adp
spec:
  hooks: {}
  includedNamespaces:
  - <namespace> 1
  includedResources: [] 2
  excludedResources: [] 3
  storageLocation: <velero-sample-1> 4
  ttl: 720h0m0s
  labelSelector: 5
    matchLabels:
      app=<label_1>
      app=<label_2>
      app=<label_3>
  orLabelSelectors: 6
  - matchLabels:
      app=<label_1>
      app=<label_2>
      app=<label_3>

$ oc get backup -n openshift-adp <backup> -o jsonpath='{.status.phase}'

OpenShift Container Platform 4.11 Virtualization

342



The cloud provider must support CSI snapshots.

You must enable CSI in the DataProtectionApplication CR.

Procedure

Add the metadata.labels.velero.io/csi-volumesnapshot-class: "true" key-value pair to the 
VolumeSnapshotClass CR:

You can now create a Backup CR.

14.3.1.2. Backing up applications with Restic

You back up Kubernetes resources, internal images, and persistent volumes with Restic by editing the 
Backup custom resource (CR).

You do not need to specify a snapshot location in the DataProtectionApplication CR.

IMPORTANT

Restic does not support backing up hostPath volumes. For more information, see
additional Rustic limitations.

Prerequisites

You must install the OpenShift API for Data Protection (OADP) Operator.

You must not disable the default Restic installation by setting 
spec.configuration.restic.enable to false in the DataProtectionApplication CR.

The DataProtectionApplication CR must be in a Ready state.

Procedure

Edit the Backup CR, as in the following example:

apiVersion: snapshot.storage.k8s.io/v1
kind: VolumeSnapshotClass
metadata:
  name: <volume_snapshot_class_name>
  labels:
    velero.io/csi-volumesnapshot-class: "true"
driver: <csi_driver>
deletionPolicy: Retain

apiVersion: velero.io/v1
kind: Backup
metadata:
  name: <backup>
  labels:
    velero.io/storage-location: default
  namespace: openshift-adp

CHAPTER 14. BACKUP AND RESTORE

343

https://velero.io/docs/v1.11/restic/#limitations


1

1

2

In OADP version 1.2 and later, add the defaultVolumesToFsBackup: true setting within
the spec block. In OADP version 1.1, add defaultVolumesToRestic: true.

14.3.1.3. Creating backup hooks

You create backup hooks to run commands in a container in a pod by editing the Backup custom
resource (CR).

Pre hooks run before the pod is backed up. Post hooks run after the backup.

Procedure

Add a hook to the spec.hooks block of the Backup CR, as in the following example:

Optional: You can specify namespaces to which the hook applies. If this value is not
specified, the hook applies to all namespaces.

Optional: You can specify namespaces to which the hook does not apply.

spec:
  defaultVolumesToFsBackup: true 1
...

apiVersion: velero.io/v1
kind: Backup
metadata:
  name: <backup>
  namespace: openshift-adp
spec:
  hooks:
    resources:
      - name: <hook_name>
        includedNamespaces:
        - <namespace> 1
        excludedNamespaces: 2
        - <namespace>
        includedResources: []
        - pods 3
        excludedResources: [] 4
        labelSelector: 5
          matchLabels:
            app: velero
            component: server
        pre: 6
          - exec:
              container: <container> 7
              command:
              - /bin/uname 8
              - -a
              onError: Fail 9
              timeout: 30s 10
        post: 11
...

OpenShift Container Platform 4.11 Virtualization

344



3

4

5

6

7

8

9

10

11

Currently, pods are the only supported resource that hooks can apply to.

Optional: You can specify resources to which the hook does not apply.

Optional: This hook only applies to objects matching the label. If this value is not specified,
the hook applies to all namespaces.

Array of hooks to run before the backup.

Optional: If the container is not specified, the command runs in the first container in the
pod.

This is the entrypoint for the init container being added.

Allowed values for error handling are Fail and Continue. The default is Fail.

Optional: How long to wait for the commands to run. The default is 30s.

This block defines an array of hooks to run after the backup, with the same parameters as
the pre-backup hooks.

14.3.2. Scheduling backups

You schedule backups by creating a Schedule custom resource (CR) instead of a Backup CR.

WARNING

Leave enough time in your backup schedule for a backup to finish before another
backup is created.

For example, if a backup of a namespace typically takes 10 minutes, do not schedule
backups more frequently than every 15 minutes.

Prerequisites

You must install the OpenShift API for Data Protection (OADP) Operator.

The DataProtectionApplication CR must be in a Ready state.

Procedure

1. Retrieve the backupStorageLocations CRs:

Example output



$ oc get backupStorageLocations -n openshift-adp

NAMESPACE       NAME              PHASE       LAST VALIDATED   AGE   DEFAULT
openshift-adp   velero-sample-1   Available   11s              31m

CHAPTER 14. BACKUP AND RESTORE

345



1

2

3

4

2. Create a Schedule CR, as in the following example:

cron expression to schedule the backup, for example, 0 7 * * * to perform a backup every
day at 7:00.

Array of namespaces to back up.

Name of the backupStorageLocations CR.

Optional: In OADP version 1.2 and later, add the defaultVolumesToFsBackup: true key-
value pair to your configuration when performing backups of volumes with Restic. In OADP
version 1.1, add the defaultVolumesToRestic: true key-value pair when you back up
volumes with Restic.

3. Verify that the status of the Schedule CR is Completed after the scheduled backup runs:

14.3.3. Additional resources

Overview of CSI volume snapshots

14.4. RESTORING VIRTUAL MACHINES

You restore an OpenShift API for Data Protection (OADP) Backup custom resource (CR) by creating a 
Restore CR.

You can add hooks to the Restore CR to run commands in init containers, before the application
container starts, or in the application container itself.

14.4.1. Creating a Restore CR

You restore a Backup custom resource (CR) by creating a Restore CR.

Prerequisites

$ cat << EOF | oc apply -f -
apiVersion: velero.io/v1
kind: Schedule
metadata:
  name: <schedule>
  namespace: openshift-adp
spec:
  schedule: 0 7 * * * 1
  template:
    hooks: {}
    includedNamespaces:
    - <namespace> 2
    storageLocation: <velero-sample-1> 3
    defaultVolumesToFsBackup: true 4
    ttl: 720h0m0s
EOF

$ oc get schedule -n openshift-adp <schedule> -o jsonpath='{.status.phase}'

OpenShift Container Platform 4.11 Virtualization

346

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/storage/#persistent-storage-csi-snapshots-overview_persistent-storage-csi-snapshots
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/virtualization/#oadp-creating-restore-cr_virt-restoring-vms
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/virtualization/#oadp-creating-restore-hooks_virt-restoring-vms


1

2

3

1

You must install the OpenShift API for Data Protection (OADP) Operator.

The DataProtectionApplication CR must be in a Ready state.

You must have a Velero Backup CR.

Adjust the requested size so the persistent volume (PV) capacity matches the requested size at
backup time.

Procedure

1. Create a Restore CR, as in the following example:

Name of the Backup CR.

Optional: Specify an array of resources to include in the restore process. Resources might
be shortcuts (for example, po for pods) or fully-qualified. If unspecified, all resources are
included.

Optional: The restorePVs parameter can be set to false in order to turn off restore of 
PersistentVolumes from VolumeSnapshot of Container Storage Interface (CSI)
snapshots, or from native snapshots when VolumeSnapshotLocation is configured.

2. Verify that the status of the Restore CR is Completed by entering the following command:

3. Verify that the backup resources have been restored by entering the following command:

Namespace that you backed up.

4. If you use Restic to restore DeploymentConfig objects or if you use post-restore hooks, run the
dc-restic-post-restore.sh cleanup script by entering the following command:

apiVersion: velero.io/v1
kind: Restore
metadata:
  name: <restore>
  namespace: openshift-adp
spec:
  backupName: <backup> 1
  includedResources: [] 2
  excludedResources:
  - nodes
  - events
  - events.events.k8s.io
  - backups.velero.io
  - restores.velero.io
  - resticrepositories.velero.io
  restorePVs: true 3

$ oc get restore -n openshift-adp <restore> -o jsonpath='{.status.phase}'

$ oc get all -n <namespace> 1

CHAPTER 14. BACKUP AND RESTORE

347



NOTE

In the course of the restore process, the OADP Velero plug-ins scale down the 
DeploymentConfig objects and restore the pods as standalone pods to prevent
the cluster from deleting the restored DeploymentConfig pods immediately on
restore and to allow Restic and post-restore hooks to complete their actions on
the restored pods. The cleanup script removes these disconnected pods and
scale any DeploymentConfig objects back up to the appropriate number of
replicas.

Example 14.1. dc-restic-post-restore.sh cleanup script

$ bash dc-restic-post-restore.sh <restore-name>

#!/bin/bash
set -e

# if sha256sum exists, use it to check the integrity of the file
if command -v sha256sum >/dev/null 2>&1; then
  CHECKSUM_CMD="sha256sum"
else
  CHECKSUM_CMD="shasum -a 256"
fi

label_name () {
    if [ "${#1}" -le "63" ]; then
 echo $1
 return
    fi
    sha=$(echo -n $1|$CHECKSUM_CMD)
    echo "${1:0:57}${sha:0:6}"
}

OADP_NAMESPACE=${OADP_NAMESPACE:=openshift-adp}

if [[ $# -ne 1 ]]; then
    echo "usage: ${BASH_SOURCE} restore-name"
    exit 1
fi

echo using OADP Namespace $OADP_NAMESPACE
echo restore: $1

label=$(label_name $1)
echo label: $label

echo Deleting disconnected restore pods
oc delete pods -l oadp.openshift.io/disconnected-from-dc=$label

for dc in $(oc get dc --all-namespaces -l oadp.openshift.io/replicas-modified=$label -o 
jsonpath='{range .items[*]}{.metadata.namespace}{","}{.metadata.name}{","}
{.metadata.annotations.oadp\.openshift\.io/original-replicas}{","}
{.metadata.annotations.oadp\.openshift\.io/original-paused}{"\n"}')
do

OpenShift Container Platform 4.11 Virtualization

348



14.4.1.1. Creating restore hooks

You create restore hooks to run commands in a container in a pod while restoring your application by
editing the Restore custom resource (CR).

You can create two types of restore hooks:

An init hook adds an init container to a pod to perform setup tasks before the application
container starts.
If you restore a Restic backup, the restic-wait init container is added before the restore hook
init container.

An exec hook runs commands or scripts in a container of a restored pod.

Procedure

Add a hook to the spec.hooks block of the Restore CR, as in the following example:

    IFS=',' read -ra dc_arr <<< "$dc"
    if [ ${#dc_arr[0]} -gt 0 ]; then
 echo Found deployment ${dc_arr[0]}/${dc_arr[1]}, setting replicas: ${dc_arr[2]}, paused: 
${dc_arr[3]}
 cat <<EOF | oc patch dc  -n ${dc_arr[0]} ${dc_arr[1]} --patch-file /dev/stdin
spec:
  replicas: ${dc_arr[2]}
  paused: ${dc_arr[3]}
EOF
    fi
done

apiVersion: velero.io/v1
kind: Restore
metadata:
  name: <restore>
  namespace: openshift-adp
spec:
  hooks:
    resources:
      - name: <hook_name>
        includedNamespaces:
        - <namespace> 1
        excludedNamespaces:
        - <namespace>
        includedResources:
        - pods 2
        excludedResources: []
        labelSelector: 3
          matchLabels:
            app: velero
            component: server
        postHooks:
        - init:
            initContainers:
            - name: restore-hook-init

CHAPTER 14. BACKUP AND RESTORE

349



1

2

3

4

5

6

7

8

9

Optional: Array of namespaces to which the hook applies. If this value is not specified, the
hook applies to all namespaces.

Currently, pods are the only supported resource that hooks can apply to.

Optional: This hook only applies to objects matching the label selector.

Optional: Timeout specifies the maximum amount of time Velero waits for initContainers
to complete.

Optional: If the container is not specified, the command runs in the first container in the
pod.

This is the entrypoint for the init container being added.

Optional: How long to wait for a container to become ready. This should be long enough
for the container to start and for any preceding hooks in the same container to complete. If
not set, the restore process waits indefinitely.

Optional: How long to wait for the commands to run. The default is 30s.

Allowed values for error handling are Fail and Continue:

Continue: Only command failures are logged.

Fail: No more restore hooks run in any container in any pod. The status of the Restore
CR will be PartiallyFailed.

              image: alpine:latest
              volumeMounts:
              - mountPath: /restores/pvc1-vm
                name: pvc1-vm
              command:
              - /bin/ash
              - -c
            timeout: 4
        - exec:
            container: <container> 5
            command:
            - /bin/bash 6
            - -c
            - "psql < /backup/backup.sql"
            waitTimeout: 5m 7
            execTimeout: 1m 8
            onError: Continue 9

OpenShift Container Platform 4.11 Virtualization

350


	Table of Contents
	CHAPTER 1. ABOUT OPENSHIFT VIRTUALIZATION
	1.1. WHAT YOU CAN DO WITH OPENSHIFT VIRTUALIZATION
	1.1.1. OpenShift Virtualization supported cluster version


	CHAPTER 2. OPENSHIFT VIRTUALIZATION ARCHITECTURE
	2.1. HOW OPENSHIFT VIRTUALIZATION ARCHITECTURE WORKS
	2.2. ABOUT THE HCO-OPERATOR
	2.3. ABOUT THE CDI-OPERATOR
	2.4. ABOUT THE CLUSTER-NETWORK-ADDONS-OPERATOR
	2.5. ABOUT THE HOSTPATH-PROVISIONER-OPERATOR
	2.6. ABOUT THE SSP-OPERATOR
	2.7. ABOUT THE TEKTON-TASKS-OPERATOR
	2.8. ABOUT THE VIRT-OPERATOR

	CHAPTER 3. GETTING STARTED WITH OPENSHIFT VIRTUALIZATION
	3.1. BEFORE YOU BEGIN
	3.1.1. Additional resources

	3.2. GETTING STARTED
	3.3. NEXT STEPS
	3.3.1. Additional resources


	CHAPTER 4. OPENSHIFT VIRTUALIZATION RELEASE NOTES
	4.1. MAKING OPEN SOURCE MORE INCLUSIVE
	4.2. ABOUT RED HAT OPENSHIFT VIRTUALIZATION
	4.2.1. OpenShift Virtualization supported cluster version
	4.2.2. Supported guest operating systems

	4.3. NEW AND CHANGED FEATURES
	4.3.1. Quick starts
	4.3.2. Storage
	4.3.3. Web console

	4.4. DEPRECATED AND REMOVED FEATURES
	4.4.1. Deprecated features
	4.4.2. Removed features

	4.5. TECHNOLOGY PREVIEW FEATURES
	4.6. BUG FIXES
	4.7. KNOWN ISSUES

	CHAPTER 5. INSTALLING
	5.1. PREPARING YOUR CLUSTER FOR OPENSHIFT VIRTUALIZATION
	5.1.1. Hardware and operating system requirements
	5.1.2. Physical resource overhead requirements
	5.1.2.1. Memory overhead
	5.1.2.2. CPU overhead
	5.1.2.3. Storage overhead
	5.1.2.4. Example

	5.1.3. Object maximums
	5.1.4. Restricted network environments
	5.1.5. Live migration
	5.1.6. Snapshots and cloning
	5.1.7. Cluster high-availability options

	5.2. SPECIFYING NODES FOR OPENSHIFT VIRTUALIZATION COMPONENTS
	5.2.1. About node placement for virtualization components
	5.2.1.1. How to apply node placement rules to virtualization components
	5.2.1.2. Node placement in the OLM Subscription object
	5.2.1.3. Node placement in the HyperConverged object
	5.2.1.4. Node placement in the HostPathProvisioner object
	5.2.1.5. Additional resources

	5.2.2. Example manifests
	5.2.2.1. Operator Lifecycle Manager Subscription object
	5.2.2.2. HyperConverged object
	5.2.2.3. HostPathProvisioner object


	5.3. INSTALLING OPENSHIFT VIRTUALIZATION USING THE WEB CONSOLE
	5.3.1. Installing the OpenShift Virtualization Operator
	5.3.2. Next steps

	5.4. INSTALLING OPENSHIFT VIRTUALIZATION USING THE CLI
	5.4.1. Prerequisites
	5.4.2. Subscribing to the OpenShift Virtualization catalog by using the CLI
	5.4.3. Deploying the OpenShift Virtualization Operator by using the CLI
	5.4.4. Next steps

	5.5. ENABLING THE VIRTCTL CLIENT
	5.5.1. Downloading and installing the virtctl client
	5.5.1.1. Downloading the virtctl client
	5.5.1.2. Installing the virtctl client

	5.5.2. Installing the virtctl RPM package
	5.5.2.1. Enabling OpenShift Virtualization repositories
	5.5.2.2. Installing the virtctl client using the yum utility

	5.5.3. Additional resources

	5.6. UNINSTALLING OPENSHIFT VIRTUALIZATION
	5.6.1. Uninstalling OpenShift Virtualization by using the web console
	5.6.1.1. Deleting the HyperConverged custom resource
	5.6.1.2. Deleting Operators from a cluster using the web console
	5.6.1.3. Deleting a namespace using the web console
	5.6.1.4. Deleting OpenShift Virtualization custom resource definitions

	5.6.2. Uninstalling OpenShift Virtualization by using the CLI


	CHAPTER 6. UPDATING OPENSHIFT VIRTUALIZATION
	6.1. ABOUT UPDATING OPENSHIFT VIRTUALIZATION
	6.2. CONFIGURING AUTOMATIC WORKLOAD UPDATES
	6.2.1. About workload updates
	Migration attempts and timeouts

	6.2.2. Configuring workload update methods

	6.3. APPROVING PENDING OPERATOR UPDATES
	6.3.1. Manually approving a pending Operator update

	6.4. MONITORING UPDATE STATUS
	6.4.1. Monitoring OpenShift Virtualization upgrade status
	6.4.2. Viewing outdated OpenShift Virtualization workloads

	6.5. ADDITIONAL RESOURCES

	CHAPTER 7. SECURITY POLICIES
	7.1. ABOUT WORKLOAD SECURITY
	7.2. EXTENDED SELINUX POLICIES FOR VIRT-LAUNCHER PODS
	7.3. ADDITIONAL OPENSHIFT CONTAINER PLATFORM SECURITY CONTEXT CONSTRAINTS AND LINUX CAPABILITIES FOR THE KUBEVIRT-CONTROLLER SERVICE ACCOUNT
	7.3.1. Viewing the SCC and RBAC definitions for the kubevirt-controller

	7.4. ADDITIONAL RESOURCES

	CHAPTER 8. USING THE CLI TOOLS
	8.1. PREREQUISITES
	8.2. OPENSHIFT CONTAINER PLATFORM CLIENT COMMANDS
	8.3. VIRTCTL CLIENT COMMANDS
	8.4. CREATING A CONTAINER USING VIRTCTL GUESTFS
	8.5. LIBGUESTFS TOOLS AND VIRTCTL GUESTFS
	8.6. ADDITIONAL RESOURCES

	CHAPTER 9. VIRTUAL MACHINES
	9.1. CREATING VIRTUAL MACHINES
	9.1.1. Using a Quick Start to create a virtual machine
	9.1.2. Quick creating a virtual machine
	9.1.3. Creating a virtual machine from a customized template
	9.1.3.1. Virtual machine fields
	9.1.3.2. Storage fields
	9.1.3.3. Cloud-init fields
	9.1.3.4. Pasting in a pre-configured YAML file to create a virtual machine

	9.1.4. Using the CLI to create a virtual machine
	9.1.5. Virtual machine storage volume types
	9.1.6. About RunStrategies for virtual machines
	9.1.7. Additional resources

	9.2. EDITING VIRTUAL MACHINES
	9.2.1. Editing a virtual machine in the web console
	9.2.1.1. Virtual machine fields

	9.2.2. Editing a virtual machine YAML configuration using the web console
	9.2.3. Editing a virtual machine YAML configuration using the CLI
	9.2.4. Adding a virtual disk to a virtual machine
	9.2.4.1. Editing CD-ROMs for VirtualMachines
	9.2.4.2. Storage fields

	9.2.5. Adding a network interface to a virtual machine
	9.2.5.1. Networking fields

	9.2.6. Additional resources

	9.3. EDITING BOOT ORDER
	9.3.1. Adding items to a boot order list in the web console
	9.3.2. Editing a boot order list in the web console
	9.3.3. Editing a boot order list in the YAML configuration file
	9.3.4. Removing items from a boot order list in the web console

	9.4. DELETING VIRTUAL MACHINES
	9.4.1. Deleting a virtual machine using the web console
	9.4.2. Deleting a virtual machine by using the CLI

	9.5. MANAGING VIRTUAL MACHINE INSTANCES
	9.5.1. About virtual machine instances
	9.5.2. Listing all virtual machine instances using the CLI
	9.5.3. Listing standalone virtual machine instances using the web console
	9.5.4. Editing a standalone virtual machine instance using the web console
	9.5.5. Deleting a standalone virtual machine instance using the CLI
	9.5.6. Deleting a standalone virtual machine instance using the web console

	9.6. CONTROLLING VIRTUAL MACHINE STATES
	9.6.1. Starting a virtual machine
	9.6.2. Restarting a virtual machine
	9.6.3. Stopping a virtual machine
	9.6.4. Unpausing a virtual machine

	9.7. ACCESSING VIRTUAL MACHINE CONSOLES
	9.7.1. Accessing virtual machine consoles in the OpenShift Container Platform web console
	9.7.1.1. Connecting to the serial console
	9.7.1.2. Connecting to the VNC console
	9.7.1.3. Connecting to a Windows virtual machine with RDP
	9.7.1.4. Switching between virtual machine displays

	9.7.2. Accessing virtual machine consoles by using CLI commands
	9.7.2.1. Accessing a virtual machine via SSH by using virtctl
	9.7.2.2. Accessing the serial console of a virtual machine instance
	9.7.2.3. Accessing the graphical console of a virtual machine instances with VNC
	9.7.2.4. Connecting to a Windows virtual machine with an RDP console


	9.8. AUTOMATING WINDOWS INSTALLATION WITH SYSPREP
	9.8.1. Using a Windows DVD to create a VM disk image
	9.8.2. Using a disk image to install Windows
	9.8.3. Generalizing a Windows VM using sysprep
	9.8.4. Specializing a Windows virtual machine
	9.8.5. Additional resources

	9.9. TRIGGERING VIRTUAL MACHINE FAILOVER BY RESOLVING A FAILED NODE
	9.9.1. Prerequisites
	9.9.2. Deleting nodes from a bare metal cluster
	9.9.3. Verifying virtual machine failover
	9.9.3.1. Listing all virtual machine instances using the CLI


	9.10. INSTALLING THE QEMU GUEST AGENT ON VIRTUAL MACHINES
	9.10.1. Installing QEMU guest agent on a Linux virtual machine
	9.10.2. Installing QEMU guest agent on a Windows virtual machine
	9.10.2.1. Installing VirtIO drivers on an existing Windows virtual machine
	9.10.2.2. Installing VirtIO drivers during Windows installation


	9.11. VIEWING THE QEMU GUEST AGENT INFORMATION FOR VIRTUAL MACHINES
	9.11.1. Prerequisites
	9.11.2. About the QEMU guest agent information in the web console
	9.11.3. Viewing the QEMU guest agent information in the web console

	9.12. MANAGING CONFIG MAPS, SECRETS, AND SERVICE ACCOUNTS IN VIRTUAL MACHINES
	9.12.1. Adding a secret, config map, or service account to a virtual machine
	9.12.2. Removing a secret, config map, or service account from a virtual machine
	9.12.3. Additional resources

	9.13. INSTALLING VIRTIO DRIVER ON AN EXISTING WINDOWS VIRTUAL MACHINE
	9.13.1. About VirtIO drivers
	9.13.2. Supported VirtIO drivers for Microsoft Windows virtual machines
	9.13.3. Adding VirtIO drivers container disk to a virtual machine
	9.13.4. Installing VirtIO drivers on an existing Windows virtual machine
	9.13.5. Removing the VirtIO container disk from a virtual machine

	9.14. INSTALLING VIRTIO DRIVER ON A NEW WINDOWS VIRTUAL MACHINE
	9.14.1. Prerequisites
	9.14.2. About VirtIO drivers
	9.14.3. Supported VirtIO drivers for Microsoft Windows virtual machines
	9.14.4. Adding VirtIO drivers container disk to a virtual machine
	9.14.5. Installing VirtIO drivers during Windows installation
	9.14.6. Removing the VirtIO container disk from a virtual machine

	9.15. USING VIRTUAL TRUSTED PLATFORM MODULE DEVICES
	9.15.1. About vTPM devices
	9.15.2. Adding a vTPM device to a virtual machine

	9.16. ADVANCED VIRTUAL MACHINE MANAGEMENT
	9.16.1. Working with resource quotas for virtual machines
	9.16.1.1. Setting resource quota limits for virtual machines
	9.16.1.2. Additional resources

	9.16.2. Specifying nodes for virtual machines
	9.16.2.1. About node placement for virtual machines
	9.16.2.2. Node placement examples
	9.16.2.3. Additional resources

	9.16.3. Configuring certificate rotation
	9.16.3.1. Configuring certificate rotation
	9.16.3.2. Troubleshooting certificate rotation parameters

	9.16.4. Using UEFI mode for virtual machines
	9.16.4.1. About UEFI mode for virtual machines
	9.16.4.2. Booting virtual machines in UEFI mode

	9.16.5. Configuring PXE booting for virtual machines
	9.16.5.1. Prerequisites
	9.16.5.2. PXE booting with a specified MAC address
	9.16.5.3. OpenShift Virtualization networking glossary

	9.16.6. Using huge pages with virtual machines
	9.16.6.1. Prerequisites
	9.16.6.2. What huge pages do
	9.16.6.3. Configuring huge pages for virtual machines

	9.16.7. Enabling dedicated resources for virtual machines
	9.16.7.1. About dedicated resources
	9.16.7.2. Prerequisites
	9.16.7.3. Enabling dedicated resources for a virtual machine

	9.16.8. Scheduling virtual machines
	9.16.8.1. Policy attributes
	9.16.8.2. Setting a policy attribute and CPU feature
	9.16.8.3. Scheduling virtual machines with the supported CPU model
	9.16.8.4. Scheduling virtual machines with the host model

	9.16.9. Configuring PCI passthrough
	9.16.9.1. About preparing a host device for PCI passthrough
	9.16.9.2. Configuring virtual machines for PCI passthrough
	9.16.9.3. Additional resources

	9.16.10. Configuring vGPU passthrough
	9.16.10.1. Assigning vGPU passthrough devices to a virtual machine
	9.16.10.2. Additional resources

	9.16.11. Configuring mediated devices
	9.16.11.1. About using the NVIDIA GPU Operator
	9.16.11.2. About using virtual GPUs with OpenShift Virtualization
	9.16.11.3. Using mediated devices
	9.16.11.4. Additional resources

	9.16.12. Configuring a watchdog
	9.16.12.1. Prerequisites
	9.16.12.2. Defining a watchdog device
	9.16.12.3. Installing a watchdog device
	9.16.12.4. Additional resources

	9.16.13. Automatic importing and updating of pre-defined boot sources
	9.16.13.1. Enabling automatic boot source updates
	9.16.13.2. Disabling automatic boot source updates
	9.16.13.3. Re-enabling automatic boot source updates
	9.16.13.4. Configuring a storage class for user-defined boot source updates
	9.16.13.5. Enabling automatic updates for user-defined boot sources
	9.16.13.6. Disabling an automatic update for a system-defined or user-defined boot source
	9.16.13.7. Verifying the status of a boot source

	9.16.14. Enabling descheduler evictions on virtual machines
	9.16.14.1. Descheduler profiles
	9.16.14.2. Installing the descheduler
	9.16.14.3. Enabling descheduler evictions on a virtual machine (VM)
	9.16.14.4. Additional resources


	9.17. IMPORTING VIRTUAL MACHINES
	9.17.1. TLS certificates for data volume imports
	9.17.1.1. Adding TLS certificates for authenticating data volume imports
	9.17.1.2. Example: Config map created from a TLS certificate

	9.17.2. Importing virtual machine images with data volumes
	9.17.2.1. Prerequisites
	9.17.2.2. CDI supported operations matrix
	9.17.2.3. About data volumes
	9.17.2.4. Importing a virtual machine image into storage by using a data volume
	9.17.2.5. Additional resources

	9.17.3. Importing virtual machine images into block storage with data volumes
	9.17.3.1. Prerequisites
	9.17.3.2. About data volumes
	9.17.3.3. About block persistent volumes
	9.17.3.4. Creating a local block persistent volume
	9.17.3.5. Importing a virtual machine image into block storage by using a data volume
	9.17.3.6. CDI supported operations matrix
	9.17.3.7. Additional resources


	9.18. CLONING VIRTUAL MACHINES
	9.18.1. Enabling user permissions to clone data volumes across namespaces
	9.18.1.1. Prerequisites
	9.18.1.2. About data volumes
	9.18.1.3. Creating RBAC resources for cloning data volumes

	9.18.2. Cloning a virtual machine disk into a new data volume
	9.18.2.1. Prerequisites
	9.18.2.2. About data volumes
	9.18.2.3. Cloning the persistent volume claim of a virtual machine disk into a new data volume
	9.18.2.4. CDI supported operations matrix

	9.18.3. Cloning a virtual machine by using a data volume template
	9.18.3.1. Prerequisites
	9.18.3.2. About data volumes
	9.18.3.3. Creating a new virtual machine from a cloned persistent volume claim by using a data volume template
	9.18.3.4. CDI supported operations matrix

	9.18.4. Cloning a virtual machine disk into a new block storage data volume
	9.18.4.1. Prerequisites
	9.18.4.2. About data volumes
	9.18.4.3. About block persistent volumes
	9.18.4.4. Creating a local block persistent volume
	9.18.4.5. Cloning the persistent volume claim of a virtual machine disk into a new data volume
	9.18.4.6. CDI supported operations matrix


	9.19. VIRTUAL MACHINE NETWORKING
	9.19.1. Configuring the virtual machine for the default pod network
	9.19.1.1. Configuring masquerade mode from the command line
	9.19.1.2. Configuring masquerade mode with dual-stack (IPv4 and IPv6)

	9.19.2. Creating a service to expose a virtual machine
	9.19.2.1. About services
	9.19.2.2. Exposing a virtual machine as a service
	9.19.2.3. Additional resources

	9.19.3. Connecting a virtual machine to a Linux bridge network
	9.19.3.1. Connecting to the network through the network attachment definition
	9.19.3.2. Creating a Linux bridge network attachment definition
	9.19.3.3. Configuring the virtual machine for a Linux bridge network

	9.19.4. Connecting a virtual machine to an SR-IOV network
	9.19.4.1. Prerequisites
	9.19.4.2. Configuring SR-IOV network devices
	9.19.4.3. Configuring SR-IOV additional network
	9.19.4.4. Connecting a virtual machine to an SR-IOV network

	9.19.5. Connecting a virtual machine to a service mesh
	9.19.5.1. Prerequisites
	9.19.5.2. Configuring a virtual machine for the service mesh

	9.19.6. Configuring IP addresses for virtual machines
	9.19.6.1. Configuring an IP address for a new virtual machine using cloud-init

	9.19.7. Viewing the IP address of NICs on a virtual machine
	9.19.7.1. Prerequisites
	9.19.7.2. Viewing the IP address of a virtual machine interface in the CLI
	9.19.7.3. Viewing the IP address of a virtual machine interface in the web console

	9.19.8. Using a MAC address pool for virtual machines
	9.19.8.1. About KubeMacPool
	9.19.8.2. Disabling a MAC address pool for a namespace in the CLI
	9.19.8.3. Re-enabling a MAC address pool for a namespace in the CLI


	9.20. VIRTUAL MACHINE DISKS
	9.20.1. Storage features
	9.20.1.1. OpenShift Virtualization storage feature matrix

	9.20.2. Configuring local storage for virtual machines
	9.20.2.1. Creating a hostpath provisioner with a basic storage pool
	9.20.2.2. About storage pools created with PVC templates

	9.20.3. Creating data volumes
	9.20.3.1. Creating data volumes using the storage API
	9.20.3.2. Creating data volumes using the PVC API
	9.20.3.3. Customizing the storage profile
	9.20.3.4. Additional resources

	9.20.4. Reserving PVC space for file system overhead
	9.20.4.1. How file system overhead affects space for virtual machine disks
	9.20.4.2. Overriding the default file system overhead value

	9.20.5. Configuring CDI to work with namespaces that have a compute resource quota
	9.20.5.1. About CPU and memory quotas in a namespace
	9.20.5.2. Overriding CPU and memory defaults
	9.20.5.3. Additional resources

	9.20.6. Managing data volume annotations
	9.20.6.1. Example: Data volume annotations

	9.20.7. Using preallocation for data volumes
	9.20.7.1. About preallocation
	9.20.7.2. Enabling preallocation for a data volume

	9.20.8. Uploading local disk images by using the web console
	9.20.8.1. Prerequisites
	9.20.8.2. CDI supported operations matrix
	9.20.8.3. Uploading an image file using the web console
	9.20.8.4. Additional resources

	9.20.9. Uploading local disk images by using the virtctl tool
	9.20.9.1. Prerequisites
	9.20.9.2. About data volumes
	9.20.9.3. Creating an upload data volume
	9.20.9.4. Uploading a local disk image to a data volume
	9.20.9.5. CDI supported operations matrix
	9.20.9.6. Additional resources

	9.20.10. Uploading a local disk image to a block storage data volume
	9.20.10.1. Prerequisites
	9.20.10.2. About data volumes
	9.20.10.3. About block persistent volumes
	9.20.10.4. Creating a local block persistent volume
	9.20.10.5. Creating an upload data volume
	9.20.10.6. Uploading a local disk image to a data volume
	9.20.10.7. CDI supported operations matrix
	9.20.10.8. Additional resources

	9.20.11. Managing virtual machine snapshots
	9.20.11.1. About virtual machine snapshots
	9.20.11.2. Installing QEMU guest agent on a Linux virtual machine
	9.20.11.3. Installing QEMU guest agent on a Windows virtual machine
	9.20.11.4. Creating a virtual machine snapshot in the web console
	9.20.11.5. Creating a virtual machine snapshot in the CLI
	9.20.11.6. Verifying online snapshot creation with snapshot indications
	9.20.11.7. Restoring a virtual machine from a snapshot in the web console
	9.20.11.8. Restoring a virtual machine from a snapshot in the CLI
	9.20.11.9. Deleting a virtual machine snapshot in the web console
	9.20.11.10. Deleting a virtual machine snapshot in the CLI
	9.20.11.11. Additional resources

	9.20.12. Moving a local virtual machine disk to a different node
	9.20.12.1. Cloning a local volume to another node

	9.20.13. Expanding virtual storage by adding blank disk images
	9.20.13.1. About data volumes
	9.20.13.2. Creating a blank disk image with data volumes
	9.20.13.3. Additional resources

	9.20.14. Cloning a data volume using smart-cloning
	9.20.14.1. About smart-cloning
	9.20.14.2. Cloning a data volume
	9.20.14.3. Additional resources

	9.20.15. Creating and using boot sources
	9.20.15.1. About virtual machines and boot sources
	9.20.15.2. Importing a RHEL image as a boot source
	9.20.15.3. Adding a boot source for a virtual machine template
	9.20.15.4. Creating a virtual machine from a template with an attached boot source
	9.20.15.5. Additional resources

	9.20.16. Hot plugging virtual disks
	9.20.16.1. About hot plugging virtual disks
	9.20.16.2. About virtio-scsi
	9.20.16.3. Hot plugging a virtual disk using the CLI
	9.20.16.4. Hot unplugging a virtual disk using the CLI
	9.20.16.5. Hot plugging a virtual disk using the web console
	9.20.16.6. Hot unplugging a virtual disk using the web console

	9.20.17. Using container disks with virtual machines
	9.20.17.1. About container disks
	9.20.17.2. Preparing a container disk for virtual machines
	9.20.17.3. Disabling TLS for a container registry to use as insecure registry
	9.20.17.4. Next steps

	9.20.18. Preparing CDI scratch space
	9.20.18.1. About data volumes
	9.20.18.2. About scratch space
	9.20.18.3. CDI operations that require scratch space
	9.20.18.4. Defining a storage class
	9.20.18.5. CDI supported operations matrix
	9.20.18.6. Additional resources

	9.20.19. Re-using persistent volumes
	9.20.19.1. About reclaiming statically provisioned persistent volumes
	9.20.19.2. Reclaiming statically provisioned persistent volumes

	9.20.20. Expanding a virtual machine disk
	9.20.20.1. Enlarging a virtual machine disk
	9.20.20.2. Additional resources

	9.20.21. Deleting data volumes
	9.20.21.1. About data volumes
	9.20.21.2. Listing all data volumes
	9.20.21.3. Deleting a data volume



	CHAPTER 10. VIRTUAL MACHINE TEMPLATES
	10.1. CREATING VIRTUAL MACHINE TEMPLATES
	10.1.1. About virtual machine templates
	10.1.2. About virtual machines and boot sources
	10.1.3. Creating a virtual machine template in the web console
	10.1.4. Adding a boot source for a virtual machine template
	10.1.4.1. Virtual machine template fields for adding a boot source

	10.1.5. Additional resources

	10.2. EDITING VIRTUAL MACHINE TEMPLATES
	10.2.1. Editing a virtual machine template in the web console
	10.2.1.1. Virtual machine template fields
	10.2.1.2. Adding a network interface to a virtual machine template
	10.2.1.3. Adding a virtual disk to a virtual machine template
	10.2.1.4. Editing CD-ROMs for Templates


	10.3. ENABLING DEDICATED RESOURCES FOR VIRTUAL MACHINE TEMPLATES
	10.3.1. About dedicated resources
	10.3.2. Prerequisites
	10.3.3. Enabling dedicated resources for a virtual machine template

	10.4. DEPLOYING A VIRTUAL MACHINE TEMPLATE TO A CUSTOM NAMESPACE
	10.4.1. Creating a custom namespace for templates
	10.4.2. Adding templates to a custom namespace
	10.4.2.1. Deleting templates from a custom namespace
	10.4.2.2. Additional resources


	10.5. DELETING VIRTUAL MACHINE TEMPLATES
	10.5.1. Deleting a virtual machine template in the web console


	CHAPTER 11. LIVE MIGRATION
	11.1. VIRTUAL MACHINE LIVE MIGRATION
	11.1.1. About live migration
	11.1.2. Additional resources

	11.2. LIVE MIGRATION LIMITS AND TIMEOUTS
	11.2.1. Configuring live migration limits and timeouts
	11.2.2. Cluster-wide live migration limits and timeouts

	11.3. MIGRATING A VIRTUAL MACHINE INSTANCE TO ANOTHER NODE
	11.3.1. Initiating live migration of a virtual machine instance in the web console
	11.3.2. Initiating live migration of a virtual machine instance in the CLI

	11.4. MIGRATING A VIRTUAL MACHINE OVER A DEDICATED ADDITIONAL NETWORK
	11.4.1. Configuring a dedicated secondary network for virtual machine live migration
	11.4.2. Additional resources

	11.5. MONITORING LIVE MIGRATION OF A VIRTUAL MACHINE INSTANCE
	11.5.1. Monitoring live migration of a virtual machine instance in the web console
	11.5.2. Monitoring live migration of a virtual machine instance in the CLI

	11.6. CANCELLING THE LIVE MIGRATION OF A VIRTUAL MACHINE INSTANCE
	11.6.1. Cancelling live migration of a virtual machine instance in the web console
	11.6.2. Cancelling live migration of a virtual machine instance in the CLI

	11.7. CONFIGURING VIRTUAL MACHINE EVICTION STRATEGY
	11.7.1. Configuring custom virtual machines with the LiveMigration eviction strategy

	11.8. CONFIGURING LIVE MIGRATION POLICIES
	11.8.1. Configuring a live migration policy


	CHAPTER 12. NODE MAINTENANCE
	12.1. ABOUT NODE MAINTENANCE
	12.1.1. About node maintenance mode
	12.1.2. Maintaining bare metal nodes
	12.1.3. Additional resources

	12.2. AUTOMATIC RENEWAL OF TLS CERTIFICATES
	12.2.1. TLS certificates automatic renewal schedules

	12.3. MANAGING NODE LABELING FOR OBSOLETE CPU MODELS
	12.3.1. About node labeling for obsolete CPU models
	12.3.2. About node labeling for CPU features
	12.3.3. Configuring obsolete CPU models

	12.4. PREVENTING NODE RECONCILIATION
	12.4.1. Using skip-node annotation
	12.4.2. Additional resources


	CHAPTER 13. LOGGING, EVENTS, AND MONITORING
	13.1. REVIEWING VIRTUALIZATION OVERVIEW
	13.1.1. Prerequisites
	13.1.2. Resources monitored actively in the Virtualization Overview page
	13.1.3. Resources monitored for top consumption
	13.1.4. Reviewing top consumers for projects, virtual machines, and nodes
	13.1.5. Additional resources

	13.2. VIEWING OPENSHIFT VIRTUALIZATION LOGS
	13.2.1. Viewing OpenShift Virtualization logs with the CLI
	13.2.2. Viewing virtual machine logs in the web console
	13.2.3. Common error messages

	13.3. VIEWING EVENTS
	13.3.1. About virtual machine events
	13.3.2. Viewing the events for a virtual machine in the web console
	13.3.3. Viewing namespace events in the CLI
	13.3.4. Viewing resource events in the CLI

	13.4. DIAGNOSING DATA VOLUMES USING EVENTS AND CONDITIONS
	13.4.1. About conditions and events
	13.4.2. Analyzing data volumes using conditions and events

	13.5. VIEWING INFORMATION ABOUT VIRTUAL MACHINE WORKLOADS
	13.5.1. The Virtual Machines dashboard

	13.6. MONITORING VIRTUAL MACHINE HEALTH
	13.6.1. About readiness and liveness probes
	13.6.2. Defining an HTTP readiness probe
	13.6.3. Defining a TCP readiness probe
	13.6.4. Defining an HTTP liveness probe
	13.6.5. Template: Virtual machine configuration file for defining health checks
	13.6.6. Additional resources

	13.7. USING THE OPENSHIFT CONTAINER PLATFORM DASHBOARD TO GET CLUSTER INFORMATION
	13.7.1. About the OpenShift Container Platform dashboards page

	13.8. REVIEWING RESOURCE USAGE BY VIRTUAL MACHINES
	13.8.1. About reviewing top consumers
	13.8.2. Reviewing top consumers
	13.8.3. Additional resources

	13.9. OPENSHIFT CONTAINER PLATFORM CLUSTER MONITORING, LOGGING, AND TELEMETRY
	13.9.1. About OpenShift Container Platform monitoring
	13.9.2. Logging architecture
	13.9.3. About Telemetry
	13.9.3.1. Information collected by Telemetry

	13.9.4. CLI troubleshooting and debugging commands

	13.10. RUNNING CLUSTER CHECKUPS
	13.10.1. About the OpenShift Container Platform cluster checkup framework
	13.10.2. Checking network connectivity and latency for virtual machines on a secondary network
	13.10.3. Additional resources

	13.11. PROMETHEUS QUERIES FOR VIRTUAL RESOURCES
	13.11.1. Prerequisites
	13.11.2. About querying metrics
	13.11.2.1. Querying metrics for all projects as a cluster administrator
	13.11.2.2. Querying metrics for user-defined projects as a developer

	13.11.3. Virtualization metrics
	13.11.3.1. vCPU metrics
	13.11.3.2. Network metrics
	13.11.3.3. Storage metrics
	13.11.3.4. Guest memory swapping metrics

	13.11.4. Additional resources

	13.12. EXPOSING CUSTOM METRICS FOR VIRTUAL MACHINES
	13.12.1. Configuring the node exporter service
	13.12.2. Configuring a virtual machine with the node exporter service
	13.12.3. Creating a custom monitoring label for virtual machines
	13.12.3.1. Querying the node-exporter service for metrics

	13.12.4. Creating a ServiceMonitor resource for the node exporter service
	13.12.4.1. Accessing the node exporter service outside the cluster

	13.12.5. Additional resources

	13.13. OPENSHIFT VIRTUALIZATION CRITICAL ALERTS
	13.13.1. Network alerts
	13.13.1.1. KubeMacPoolDown alert

	13.13.2. SSP alerts
	13.13.2.1. SSPFailingToReconcile alert
	13.13.2.2. SSPOperatorDown alert
	13.13.2.3. SSPTemplateValidatorDown alert

	13.13.3. Virt alerts
	13.13.3.1. NoLeadingVirtOperator alert
	13.13.3.2. NoReadyVirtController alert
	13.13.3.3. NoReadyVirtOperator alert
	13.13.3.4. VirtAPIDown alert
	13.13.3.5. VirtApiRESTErrorsBurst alert
	13.13.3.6. VirtControllerDown alert
	13.13.3.7. VirtControllerRESTErrorsBurst alert
	13.13.3.8. VirtHandlerRESTErrorsBurst alert
	13.13.3.9. VirtOperatorDown alert
	13.13.3.10. VirtOperatorRESTErrorsBurst alert

	13.13.4. Additional resources

	13.14. COLLECTING DATA FOR RED HAT SUPPORT
	13.14.1. Collecting data about your environment
	13.14.1.1. Additional resources

	13.14.2. Collecting data about virtual machines
	13.14.2.1. Additional resources

	13.14.3. Using the must-gather tool for OpenShift Virtualization
	13.14.3.1. must-gather tool options
	13.14.3.2. Additional resources



	CHAPTER 14. BACKUP AND RESTORE
	14.1. INSTALLING AND CONFIGURING OADP
	14.1.1. Installing the OADP Operator
	14.1.2. About backup and snapshot locations and their secrets
	Backup locations
	Snapshot locations
	Secrets
	14.1.2.1. Creating a default Secret

	14.1.3. Configuring the Data Protection Application
	14.1.3.1. Setting Velero CPU and memory resource allocations
	14.1.3.2. Enabling self-signed CA certificates

	14.1.4. Installing the Data Protection Application
	14.1.4.1. Enabling CSI in the DataProtectionApplication CR

	14.1.5. Uninstalling OADP

	14.2. BACKING UP AND RESTORING VIRTUAL MACHINES
	14.2.1. Additional resources

	14.3. BACKING UP VIRTUAL MACHINES
	14.3.1. Creating a Backup CR
	14.3.1.1. Backing up persistent volumes with CSI snapshots
	14.3.1.2. Backing up applications with Restic
	14.3.1.3. Creating backup hooks

	14.3.2. Scheduling backups
	14.3.3. Additional resources

	14.4. RESTORING VIRTUAL MACHINES
	14.4.1. Creating a Restore CR
	14.4.1.1. Creating restore hooks




