Search

Disconnected installation mirroring

download PDF
OpenShift Container Platform 4.12

Mirroring the installation container images

Red Hat OpenShift Documentation Team

Abstract

This document describes how to mirror the installation container images for a disconnected OpenShift Container Platform installation.

Chapter 1. About disconnected installation mirroring

You can use a mirror registry to ensure that your clusters only use container images that satisfy your organizational controls on external content. Before you install a cluster on infrastructure that you provision in a restricted network, you must mirror the required container images into that environment. To mirror container images, you must have a registry for mirroring.

1.1. Creating a mirror registry

If you already have a container image registry, such as Red Hat Quay, you can use it as your mirror registry. If you do not already have a registry, you can create a mirror registry using the mirror registry for Red Hat OpenShift.

1.2. Mirroring images for a disconnected installation

You can use one of the following procedures to mirror your OpenShift Container Platform image repository to your mirror registry:

Chapter 2. Creating a mirror registry with mirror registry for Red Hat OpenShift

The mirror registry for Red Hat OpenShift is a small and streamlined container registry that you can use as a target for mirroring the required container images of OpenShift Container Platform for disconnected installations.

If you already have a container image registry, such as Red Hat Quay, you can skip this section and go straight to Mirroring the OpenShift Container Platform image repository.

2.1. Prerequisites

  • An OpenShift Container Platform subscription.
  • Red Hat Enterprise Linux (RHEL) 8 and 9 with Podman 3.4.2 or later and OpenSSL installed.
  • Fully qualified domain name for the Red Hat Quay service, which must resolve through a DNS server.
  • Key-based SSH connectivity on the target host. SSH keys are automatically generated for local installs. For remote hosts, you must generate your own SSH keys.
  • 2 or more vCPUs.
  • 8 GB of RAM.
  • About 12 GB for OpenShift Container Platform 4.12 release images, or about 358 GB for OpenShift Container Platform 4.12 release images and OpenShift Container Platform 4.12 Red Hat Operator images. Up to 1 TB per stream or more is suggested.

    Important

    These requirements are based on local testing results with only release images and Operator images. Storage requirements can vary based on your organization’s needs. You might require more space, for example, when you mirror multiple z-streams. You can use standard Red Hat Quay functionality or the proper API callout to remove unnecessary images and free up space.

2.2. Mirror registry for Red Hat OpenShift introduction

For disconnected deployments of OpenShift Container Platform, a container registry is required to carry out the installation of the clusters. To run a production-grade registry service on such a cluster, you must create a separate registry deployment to install the first cluster. The mirror registry for Red Hat OpenShift addresses this need and is included in every OpenShift subscription. It is available for download on the OpenShift console Downloads page.

The mirror registry for Red Hat OpenShift allows users to install a small-scale version of Red Hat Quay and its required components using the mirror-registry command line interface (CLI) tool. The mirror registry for Red Hat OpenShift is deployed automatically with preconfigured local storage and a local database. It also includes auto-generated user credentials and access permissions with a single set of inputs and no additional configuration choices to get started.

The mirror registry for Red Hat OpenShift provides a pre-determined network configuration and reports deployed component credentials and access URLs upon success. A limited set of optional configuration inputs like fully qualified domain name (FQDN) services, superuser name and password, and custom TLS certificates are also provided. This provides users with a container registry so that they can easily create an offline mirror of all OpenShift Container Platform release content when running OpenShift Container Platform in restricted network environments.

Use of the mirror registry for Red Hat OpenShift is optional if another container registry is already available in the install environment.

2.2.1. Mirror registry for Red Hat OpenShift limitations

The following limitations apply to the mirror registry for Red Hat OpenShift:

  • The mirror registry for Red Hat OpenShift is not a highly-available registry and only local file system storage is supported. It is not intended to replace Red Hat Quay or the internal image registry for OpenShift Container Platform.
  • The mirror registry for Red Hat OpenShift is not intended to be a substitute for a production deployment of Red Hat Quay.
  • The mirror registry for Red Hat OpenShift is only supported for hosting images that are required to install a disconnected OpenShift Container Platform cluster, such as Release images or Red Hat Operator images. It uses local storage on your Red Hat Enterprise Linux (RHEL) machine, and storage supported by RHEL is supported by the mirror registry for Red Hat OpenShift.

    Note

    Because the mirror registry for Red Hat OpenShift uses local storage, you should remain aware of the storage usage consumed when mirroring images and use Red Hat Quay’s garbage collection feature to mitigate potential issues. For more information about this feature, see "Red Hat Quay garbage collection".

  • Support for Red Hat product images that are pushed to the mirror registry for Red Hat OpenShift for bootstrapping purposes are covered by valid subscriptions for each respective product. A list of exceptions to further enable the bootstrap experience can be found on the Self-managed Red Hat OpenShift sizing and subscription guide.
  • Content built by customers should not be hosted by the mirror registry for Red Hat OpenShift.
  • Using the mirror registry for Red Hat OpenShift with more than one cluster is discouraged because multiple clusters can create a single point of failure when updating your cluster fleet. It is advised to leverage the mirror registry for Red Hat OpenShift to install a cluster that can host a production-grade, highly-available registry such as Red Hat Quay, which can serve OpenShift Container Platform content to other clusters.

2.3. Mirroring on a local host with mirror registry for Red Hat OpenShift

This procedure explains how to install the mirror registry for Red Hat OpenShift on a local host using the mirror-registry installer tool. By doing so, users can create a local host registry running on port 443 for the purpose of storing a mirror of OpenShift Container Platform images.

Note

Installing the mirror registry for Red Hat OpenShift using the mirror-registry CLI tool makes several changes to your machine. After installation, a $HOME/quay-install directory is created, which has installation files, local storage, and the configuration bundle. Trusted SSH keys are generated in case the deployment target is the local host, and systemd files on the host machine are set up to ensure that container runtimes are persistent. Additionally, an initial user named init is created with an automatically generated password. All access credentials are printed at the end of the install routine.

Procedure

  1. Download the mirror-registry.tar.gz package for the latest version of the mirror registry for Red Hat OpenShift found on the OpenShift console Downloads page.
  2. Install the mirror registry for Red Hat OpenShift on your local host with your current user account by using the mirror-registry tool. For a full list of available flags, see "mirror registry for Red Hat OpenShift flags".

    $ ./mirror-registry install \
      --quayHostname <host_example_com> \
      --quayRoot <example_directory_name>
  3. Use the user name and password generated during installation to log into the registry by running the following command:

    $ podman login -u init \
      -p <password> \
      <host_example_com>:8443> \
      --tls-verify=false 1
    1
    You can avoid running --tls-verify=false by configuring your system to trust the generated rootCA certificates. See "Using SSL to protect connections to Red Hat Quay" and "Configuring the system to trust the certificate authority" for more information.
    Note

    You can also log in by accessing the UI at https://<host.example.com>:8443 after installation.

  4. You can mirror OpenShift Container Platform images after logging in. Depending on your needs, see either the "Mirroring the OpenShift Container Platform image repository" or the "Mirroring Operator catalogs for use with disconnected clusters" sections of this document.

    Note

    If there are issues with images stored by the mirror registry for Red Hat OpenShift due to storage layer problems, you can remirror the OpenShift Container Platform images, or reinstall mirror registry on more stable storage.

2.4. Updating mirror registry for Red Hat OpenShift from a local host

This procedure explains how to update the mirror registry for Red Hat OpenShift from a local host using the upgrade command. Updating to the latest version ensures new features, bug fixes, and security vulnerability fixes.

Important

When upgrading from version 1 to version 2, be aware of the following constraints:

  • The worker count is set to 1 because multiple writes are not allowed in SQLite.
  • You must not use the mirror registry for Red Hat OpenShift user interface (UP).
  • Do not access the sqlite-storage Podman volume during the upgrade.
  • There is intermittent downtime of your mirror registry because it is restarted during the upgrade process.
  • PostgreSQL data is backed up under the /$HOME/quay-instal/quay-postgres-backup/ directory for recovery.

Prerequisites

  • You have installed the mirror registry for Red Hat OpenShift on a local host.

Procedure

  • If you are upgrading the mirror registry for Red Hat OpenShift from 1.3 → 2.y, and your installation directory is the default at /etc/quay-install, you can enter the following command:

    $ sudo ./mirror-registry upgrade -v
    Note
    • mirror registry for Red Hat OpenShift migrates Podman volumes for Quay storage, Postgres data, and /etc/quay-install data to the new $HOME/quay-install location. This allows you to use mirror registry for Red Hat OpenShift without the --quayRoot flag during future upgrades.
    • Users who upgrade mirror registry for Red Hat OpenShift with the ./mirror-registry upgrade -v flag must include the same credentials used when creating their mirror registry. For example, if you installed the mirror registry for Red Hat OpenShift with --quayHostname <host_example_com> and --quayRoot <example_directory_name>, you must include that string to properly upgrade the mirror registry.
  • If you are upgrading the mirror registry for Red Hat OpenShift from 1.3 → 2.y and you used a custom quay configuration and storage directory in your 1.y deployment, you must pass in the --quayRoot and --quayStorage flags. For example:

    $ sudo ./mirror-registry upgrade --quayHostname <host_example_com> --quayRoot <example_directory_name>  --quayStorage <example_directory_name>/quay-storage -v
  • If you are upgrading the mirror registry for Red Hat OpenShift from 1.3 → 2.y and want to specify a custom SQLite storage path, you must pass in the --sqliteStorage flag, for example:

    $ sudo ./mirror-registry upgrade --sqliteStorage <example_directory_name>/sqlite-storage -v

2.5. Mirroring on a remote host with mirror registry for Red Hat OpenShift

This procedure explains how to install the mirror registry for Red Hat OpenShift on a remote host using the mirror-registry tool. By doing so, users can create a registry to hold a mirror of OpenShift Container Platform images.

Note

Installing the mirror registry for Red Hat OpenShift using the mirror-registry CLI tool makes several changes to your machine. After installation, a $HOME/quay-install directory is created, which has installation files, local storage, and the configuration bundle. Trusted SSH keys are generated in case the deployment target is the local host, and systemd files on the host machine are set up to ensure that container runtimes are persistent. Additionally, an initial user named init is created with an automatically generated password. All access credentials are printed at the end of the install routine.

Procedure

  1. Download the mirror-registry.tar.gz package for the latest version of the mirror registry for Red Hat OpenShift found on the OpenShift console Downloads page.
  2. Install the mirror registry for Red Hat OpenShift on your local host with your current user account by using the mirror-registry tool. For a full list of available flags, see "mirror registry for Red Hat OpenShift flags".

    $ ./mirror-registry install -v \
      --targetHostname <host_example_com> \
      --targetUsername <example_user> \
      -k ~/.ssh/my_ssh_key \
      --quayHostname <host_example_com> \
      --quayRoot <example_directory_name>
  3. Use the user name and password generated during installation to log into the mirror registry by running the following command:

    $ podman login -u init \
      -p <password> \
      <host_example_com>:8443> \
      --tls-verify=false 1
    1
    You can avoid running --tls-verify=false by configuring your system to trust the generated rootCA certificates. See "Using SSL to protect connections to Red Hat Quay" and "Configuring the system to trust the certificate authority" for more information.
    Note

    You can also log in by accessing the UI at https://<host.example.com>:8443 after installation.

  4. You can mirror OpenShift Container Platform images after logging in. Depending on your needs, see either the "Mirroring the OpenShift Container Platform image repository" or the "Mirroring Operator catalogs for use with disconnected clusters" sections of this document.

    Note

    If there are issues with images stored by the mirror registry for Red Hat OpenShift due to storage layer problems, you can remirror the OpenShift Container Platform images, or reinstall mirror registry on more stable storage.

2.6. Updating mirror registry for Red Hat OpenShift from a remote host

This procedure explains how to update the mirror registry for Red Hat OpenShift from a remote host using the upgrade command. Updating to the latest version ensures bug fixes and security vulnerability fixes.

Important

When upgrading from version 1 to version 2, be aware of the following constraints:

  • The worker count is set to 1 because multiple writes are not allowed in SQLite.
  • You must not use the mirror registry for Red Hat OpenShift user interface (UP).
  • Do not access the sqlite-storage Podman volume during the upgrade.
  • There is intermittent downtime of your mirror registry because it is restarted during the upgrade process.
  • PostgreSQL data is backed up under the /$HOME/quay-instal/quay-postgres-backup/ directory for recovery.

Prerequisites

  • You have installed the mirror registry for Red Hat OpenShift on a remote host.

Procedure

  • To upgrade the mirror registry for Red Hat OpenShift from a remote host, enter the following command:

    $ ./mirror-registry upgrade -v --targetHostname <remote_host_url> --targetUsername <user_name> -k ~/.ssh/my_ssh_key
    Note

    Users who upgrade the mirror registry for Red Hat OpenShift with the ./mirror-registry upgrade -v flag must include the same credentials used when creating their mirror registry. For example, if you installed the mirror registry for Red Hat OpenShift with --quayHostname <host_example_com> and --quayRoot <example_directory_name>, you must include that string to properly upgrade the mirror registry.

  • If you are upgrading the mirror registry for Red Hat OpenShift from 1.3 → 2.y and want to specify a custom SQLite storage path, you must pass in the --sqliteStorage flag, for example:

    $ ./mirror-registry upgrade -v --targetHostname <remote_host_url> --targetUsername <user_name> -k ~/.ssh/my_ssh_key --sqliteStorage <example_directory_name>/quay-storage

2.7. Replacing mirror registry for Red Hat OpenShift SSL/TLS certificates

In some cases, you might want to update your SSL/TLS certificates for the mirror registry for Red Hat OpenShift. This is useful in the following scenarios:

  • If you are replacing the current mirror registry for Red Hat OpenShift certificate.
  • If you are using the same certificate as the previous mirror registry for Red Hat OpenShift installation.
  • If you are periodically updating the mirror registry for Red Hat OpenShift certificate.

Use the following procedure to replace mirror registry for Red Hat OpenShift SSL/TLS certificates.

Prerequisites

Procedure

  1. Enter the following command to install the mirror registry for Red Hat OpenShift:

    $ ./mirror-registry install \
    --quayHostname <host_example_com> \
    --quayRoot <example_directory_name>

    This installs the mirror registry for Red Hat OpenShift to the $HOME/quay-install directory.

  2. Prepare a new certificate authority (CA) bundle and generate new ssl.key and ssl.crt key files. For more information, see Using SSL/TLS to protect connections to Red Hat Quay.
  3. Assign /$HOME/quay-install an environment variable, for example, QUAY, by entering the following command:

    $ export QUAY=/$HOME/quay-install
  4. Copy the new ssl.crt file to the /$HOME/quay-install directory by entering the following command:

    $ cp ~/ssl.crt $QUAY/quay-config
  5. Copy the new ssl.key file to the /$HOME/quay-install directory by entering the following command:

    $ cp ~/ssl.key $QUAY/quay-config
  6. Restart the quay-app application pod by entering the following command:

    $ systemctl restart quay-app

2.8. Uninstalling the mirror registry for Red Hat OpenShift

  • You can uninstall the mirror registry for Red Hat OpenShift from your local host by running the following command:

    $ ./mirror-registry uninstall -v \
      --quayRoot <example_directory_name>
    Note
    • Deleting the mirror registry for Red Hat OpenShift will prompt the user before deletion. You can use --autoApprove to skip this prompt.
    • Users who install the mirror registry for Red Hat OpenShift with the --quayRoot flag must include the --quayRoot flag when uninstalling. For example, if you installed the mirror registry for Red Hat OpenShift with --quayRoot example_directory_name, you must include that string to properly uninstall the mirror registry.

2.9. Mirror registry for Red Hat OpenShift flags

The following flags are available for the mirror registry for Red Hat OpenShift:

FlagsDescription

--autoApprove

A boolean value that disables interactive prompts. If set to true, the quayRoot directory is automatically deleted when uninstalling the mirror registry. Defaults to false if left unspecified.

--initPassword

The password of the init user created during Quay installation. Must be at least eight characters and contain no whitespace.

--initUser string

Shows the username of the initial user. Defaults to init if left unspecified.

--no-color, -c

Allows users to disable color sequences and propagate that to Ansible when running install, uninstall, and upgrade commands.

--quayHostname

The fully-qualified domain name of the mirror registry that clients will use to contact the registry. Equivalent to SERVER_HOSTNAME in the Quay config.yaml. Must resolve by DNS. Defaults to <targetHostname>:8443 if left unspecified. [1]

--quayStorage

The folder where Quay persistent storage data is saved. Defaults to the quay-storage Podman volume. Root privileges are required to uninstall.

--quayRoot, -r

The directory where container image layer and configuration data is saved, including rootCA.key, rootCA.pem, and rootCA.srl certificates. Defaults to $HOME/quay-install if left unspecified.

--sqliteStorage

The folder where SQLite database data is saved. Defaults to sqlite-storage Podman volume if not specified. Root is required to uninstall.

--ssh-key, -k

The path of your SSH identity key. Defaults to ~/.ssh/quay_installer if left unspecified.

--sslCert

The path to the SSL/TLS public key / certificate. Defaults to {quayRoot}/quay-config and is auto-generated if left unspecified.

--sslCheckSkip

Skips the check for the certificate hostname against the SERVER_HOSTNAME in the config.yaml file. [2]

--sslKey

The path to the SSL/TLS private key used for HTTPS communication. Defaults to {quayRoot}/quay-config and is auto-generated if left unspecified.

--targetHostname, -H

The hostname of the target you want to install Quay to. Defaults to $HOST, for example, a local host, if left unspecified.

--targetUsername, -u

The user on the target host which will be used for SSH. Defaults to $USER, for example, the current user if left unspecified.

--verbose, -v

Shows debug logs and Ansible playbook outputs.

--version

Shows the version for the mirror registry for Red Hat OpenShift.

  1. --quayHostname must be modified if the public DNS name of your system is different from the local hostname. Additionally, the --quayHostname flag does not support installation with an IP address. Installation with a hostname is required.
  2. --sslCheckSkip is used in cases when the mirror registry is set behind a proxy and the exposed hostname is different from the internal Quay hostname. It can also be used when users do not want the certificates to be validated against the provided Quay hostname during installation.

2.10. Mirror registry for Red Hat OpenShift release notes

The mirror registry for Red Hat OpenShift is a small and streamlined container registry that you can use as a target for mirroring the required container images of OpenShift Container Platform for disconnected installations.

These release notes track the development of the mirror registry for Red Hat OpenShift in OpenShift Container Platform.

2.10.1. Mirror registry for Red Hat OpenShift 2.0 release notes

The following sections provide details for each 2.0 release of the mirror registry for Red Hat OpenShift

2.10.1.1. Mirror registry for Red Hat OpenShift 2.0.1

Issued: 26 September 2024

Mirror registry for Red Hat OpenShift is now available with Red Hat Quay 3.12.1.

The following advisory is available for the mirror registry for Red Hat OpenShift:

2.10.1.2. Mirror registry for Red Hat OpenShift 2.0.0

Issued: 03 September 2024

Mirror registry for Red Hat OpenShift is now available with Red Hat Quay 3.12.0.

The following advisory is available for the mirror registry for Red Hat OpenShift:

2.10.1.2.1. New features
  • With the release of mirror registry for Red Hat OpenShift, the internal database has been upgraded from PostgreSQL to SQLite. As a result, data is now stored on the sqlite-storage Podman volume by default, and the overall tarball size is reduced by 300 MB.

    New installations use SQLite by default. Before upgrading to version 2.0, see "Updating mirror registry for Red Hat OpenShift from a local host" or "Updating mirror registry for Red Hat OpenShift from a remote host" depending on your environment.

  • A new feature flag, --sqliteStorage has been added. With this flag, you can manually set the location where SQLite database data is saved.

For an overview of the mirror registry for Red Hat OpenShift, see Creating a mirror registry with mirror registry for Red Hat OpenShift.

2.10.2. Mirror registry for Red Hat OpenShift 1.3.11

Issued: 2024-04-23

Mirror registry for Red Hat OpenShift is now available with Red Hat Quay 3.8.15.

The following advisory is available for the mirror registry for Red Hat OpenShift:

2.10.3. Mirror registry for Red Hat OpenShift 1.3.10

Issued: 2023-12-07

Mirror registry for Red Hat OpenShift is now available with Red Hat Quay 3.8.14.

The following advisory is available for the mirror registry for Red Hat OpenShift:

2.10.4. Mirror registry for Red Hat OpenShift 1.3.9

Issued: 2023-09-19

Mirror registry for Red Hat OpenShift is now available with Red Hat Quay 3.8.12.

The following advisory is available for the mirror registry for Red Hat OpenShift:

2.10.5. Mirror registry for Red Hat OpenShift 1.3.8

Issued: 2023-08-16

Mirror registry for Red Hat OpenShift is now available with Red Hat Quay 3.8.11.

The following advisory is available for the mirror registry for Red Hat OpenShift:

2.10.6. Mirror registry for Red Hat OpenShift 1.3.7

Issued: 2023-07-19

Mirror registry for Red Hat OpenShift is now available with Red Hat Quay 3.8.10.

The following advisory is available for the mirror registry for Red Hat OpenShift:

2.10.7. Mirror registry for Red Hat OpenShift 1.3.6

Issued: 2023-05-30

Mirror registry for Red Hat OpenShift is now available with Red Hat Quay 3.8.8.

The following advisory is available for the mirror registry for Red Hat OpenShift:

2.10.8. Mirror registry for Red Hat OpenShift 1.3.5

Issued: 2023-05-18

Mirror registry for Red Hat OpenShift is now available with Red Hat Quay 3.8.7.

The following advisory is available for the mirror registry for Red Hat OpenShift:

2.10.9. Mirror registry for Red Hat OpenShift 1.3.4

Issued: 2023-04-25

Mirror registry for Red Hat OpenShift is now available with Red Hat Quay 3.8.6.

The following advisory is available for the mirror registry for Red Hat OpenShift:

2.10.10. Mirror registry for Red Hat OpenShift 1.3.3

Issued: 2023-04-05

Mirror registry for Red Hat OpenShift is now available with Red Hat Quay 3.8.5.

The following advisory is available for the mirror registry for Red Hat OpenShift:

2.10.11. Mirror registry for Red Hat OpenShift 1.3.2

Issued: 2023-03-21

Mirror registry for Red Hat OpenShift is now available with Red Hat Quay 3.8.4.

The following advisory is available for the mirror registry for Red Hat OpenShift:

2.10.12. Mirror registry for Red Hat OpenShift 1.3.1

Issued: 2023-03-7

Mirror registry for Red Hat OpenShift is now available with Red Hat Quay 3.8.3.

The following advisory is available for the mirror registry for Red Hat OpenShift:

2.10.13. Mirror registry for Red Hat OpenShift 1.3.0

Issued: 2023-02-20

Mirror registry for Red Hat OpenShift is now available with Red Hat Quay 3.8.1.

The following advisory is available for the mirror registry for Red Hat OpenShift:

2.10.13.1. New features
  • Mirror registry for Red Hat OpenShift is now supported on Red Hat Enterprise Linux (RHEL) 9 installations.
  • IPv6 support is now available on mirror registry for Red Hat OpenShift local host installations.

    IPv6 is currently unsupported on mirror registry for Red Hat OpenShift remote host installations.

  • A new feature flag, --quayStorage, has been added. By specifying this flag, you can manually set the location for the Quay persistent storage.
  • A new feature flag, --pgStorage, has been added. By specifying this flag, you can manually set the location for the Postgres persistent storage.
  • Previously, users were required to have root privileges (sudo) to install mirror registry for Red Hat OpenShift. With this update, sudo is no longer required to install mirror registry for Red Hat OpenShift.

    When mirror registry for Red Hat OpenShift was installed with sudo, an /etc/quay-install directory that contained installation files, local storage, and the configuration bundle was created. With the removal of the sudo requirement, installation files and the configuration bundle are now installed to $HOME/quay-install. Local storage, for example Postgres and Quay, are now stored in named volumes automatically created by Podman.

    To override the default directories that these files are stored in, you can use the command line arguments for mirror registry for Red Hat OpenShift. For more information about mirror registry for Red Hat OpenShift command line arguments, see "Mirror registry for Red Hat OpenShift flags".

2.10.13.2. Bug fixes
  • Previously, the following error could be returned when attempting to uninstall mirror registry for Red Hat OpenShift: ["Error: no container with name or ID \"quay-postgres\" found: no such container"], "stdout": "", "stdout_lines": []*. With this update, the order that mirror registry for Red Hat OpenShift services are stopped and uninstalled have been changed so that the error no longer occurs when uninstalling mirror registry for Red Hat OpenShift. For more information, see PROJQUAY-4629.

2.10.14. Mirror registry for Red Hat OpenShift 1.2.9

Mirror registry for Red Hat OpenShift is now available with Red Hat Quay 3.7.10.

The following advisory is available for the mirror registry for Red Hat OpenShift:

2.10.15. Mirror registry for Red Hat OpenShift 1.2.8

Mirror registry for Red Hat OpenShift is now available with Red Hat Quay 3.7.9.

The following advisory is available for the mirror registry for Red Hat OpenShift:

2.10.16. Mirror registry for Red Hat OpenShift 1.2.7

Mirror registry for Red Hat OpenShift is now available with Red Hat Quay 3.7.8.

The following advisory is available for the mirror registry for Red Hat OpenShift:

2.10.16.1. Bug fixes
  • Previously, getFQDN() relied on the fully-qualified domain name (FQDN) library to determine its FQDN, and the FQDN library tried to read the /etc/hosts folder directly. Consequently, on some Red Hat Enterprise Linux CoreOS (RHCOS) installations with uncommon DNS configurations, the FQDN library would fail to install and abort the installation. With this update, mirror registry for Red Hat OpenShift uses hostname to determine the FQDN. As a result, the FQDN library does not fail to install. (PROJQUAY-4139)

2.10.17. Mirror registry for Red Hat OpenShift 1.2.6

Mirror registry for Red Hat OpenShift is now available with Red Hat Quay 3.7.7.

The following advisory is available for the mirror registry for Red Hat OpenShift:

2.10.17.1. New features

A new feature flag, --no-color (-c) has been added. This feature flag allows users to disable color sequences and propagate that to Ansible when running install, uninstall, and upgrade commands.

2.10.18. Mirror registry for Red Hat OpenShift 1.2.5

Mirror registry for Red Hat OpenShift is now available with Red Hat Quay 3.7.6.

The following advisory is available for the mirror registry for Red Hat OpenShift:

2.10.19. Mirror registry for Red Hat OpenShift 1.2.4

Mirror registry for Red Hat OpenShift is now available with Red Hat Quay 3.7.5.

The following advisory is available for the mirror registry for Red Hat OpenShift:

2.10.20. Mirror registry for Red Hat OpenShift 1.2.3

Mirror registry for Red Hat OpenShift is now available with Red Hat Quay 3.7.4.

The following advisory is available for the mirror registry for Red Hat OpenShift:

2.10.21. Mirror registry for Red Hat OpenShift 1.2.2

Mirror registry for Red Hat OpenShift is now available with Red Hat Quay 3.7.3.

The following advisory is available for the mirror registry for Red Hat OpenShift:

2.10.22. Mirror registry for Red Hat OpenShift 1.2.1

Mirror registry for Red Hat OpenShift is now available with Red Hat Quay 3.7.2.

The following advisory is available for the mirror registry for Red Hat OpenShift:

2.10.23. Mirror registry for Red Hat OpenShift 1.2.0

Mirror registry for Red Hat OpenShift is now available with Red Hat Quay 3.7.1.

The following advisory is available for the mirror registry for Red Hat OpenShift:

2.10.23.1. Bug fixes
  • Previously, all components and workers running inside of the Quay pod Operator had log levels set to DEBUG. As a result, large traffic logs were created that consumed unnecessary space. With this update, log levels are set to WARN by default, which reduces traffic information while emphasizing problem scenarios. (PROJQUAY-3504)

2.10.24. Mirror registry for Red Hat OpenShift 1.1.0

The following advisory is available for the mirror registry for Red Hat OpenShift:

2.10.24.1. New features
  • A new command, mirror-registry upgrade has been added. This command upgrades all container images without interfering with configurations or data.

    Note

    If quayRoot was previously set to something other than default, it must be passed into the upgrade command.

2.10.24.2. Bug fixes
  • Previously, the absence of quayHostname or targetHostname did not default to the local hostname. With this update, quayHostname and targetHostname now default to the local hostname if they are missing. (PROJQUAY-3079)
  • Previously, the command ./mirror-registry --version returned an unknown flag error. Now, running ./mirror-registry --version returns the current version of the mirror registry for Red Hat OpenShift. (PROJQUAY-3086)
  • Previously, users could not set a password during installation, for example, when running ./mirror-registry install --initUser <user_name> --initPassword <password> --verbose. With this update, users can set a password during installation. (PROJQUAY-3149)
  • Previously, the mirror registry for Red Hat OpenShift did not recreate pods if they were destroyed. Now, pods are recreated if they are destroyed. (PROJQUAY-3261)

2.11. Troubleshooting mirror registry for Red Hat OpenShift

To assist in troubleshooting mirror registry for Red Hat OpenShift, you can gather logs of systemd services installed by the mirror registry. The following services are installed:

  • quay-app.service
  • quay-postgres.service
  • quay-redis.service
  • quay-pod.service

Prerequisites

  • You have installed mirror registry for Red Hat OpenShift.

Procedure

  • If you installed mirror registry for Red Hat OpenShift with root privileges, you can get the status information of its systemd services by entering the following command:

    $ sudo systemctl status <service>
  • If you installed mirror registry for Red Hat OpenShift as a standard user, you can get the status information of its systemd services by entering the following command:

    $ systemctl --user status <service>

2.12. Additional resources

Chapter 3. Mirroring images for a disconnected installation

You can ensure your clusters only use container images that satisfy your organizational controls on external content. Before you install a cluster on infrastructure that you provision in a restricted network, you must mirror the required container images into that environment. To mirror container images, you must have a registry for mirroring.

Important

You must have access to the internet to obtain the necessary container images. In this procedure, you place your mirror registry on a mirror host that has access to both your network and the internet. If you do not have access to a mirror host, use the Mirroring Operator catalogs for use with disconnected clusters procedure to copy images to a device you can move across network boundaries with.

3.1. Prerequisites

  • You must have a container image registry that supports Docker v2-2 in the location that will host the OpenShift Container Platform cluster, such as one of the following registries:

    If you have an entitlement to Red Hat Quay, see the documentation on deploying Red Hat Quay for proof-of-concept purposes or by using the Red Hat Quay Operator. If you need additional assistance selecting and installing a registry, contact your sales representative or Red Hat support.

  • If you do not already have an existing solution for a container image registry, subscribers of OpenShift Container Platform are provided a mirror registry for Red Hat OpenShift. The mirror registry for Red Hat OpenShift is included with your subscription and is a small-scale container registry that can be used to mirror the required container images of OpenShift Container Platform in disconnected installations.

3.2. About the mirror registry

You can mirror the images that are required for OpenShift Container Platform installation and subsequent product updates to a container mirror registry such as Red Hat Quay, JFrog Artifactory, Sonatype Nexus Repository, or Harbor. If you do not have access to a large-scale container registry, you can use the mirror registry for Red Hat OpenShift, a small-scale container registry included with OpenShift Container Platform subscriptions.

You can use any container registry that supports Docker v2-2, such as Red Hat Quay, the mirror registry for Red Hat OpenShift, Artifactory, Sonatype Nexus Repository, or Harbor. Regardless of your chosen registry, the procedure to mirror content from Red Hat hosted sites on the internet to an isolated image registry is the same. After you mirror the content, you configure each cluster to retrieve this content from your mirror registry.

Important

The OpenShift image registry cannot be used as the target registry because it does not support pushing without a tag, which is required during the mirroring process.

If choosing a container registry that is not the mirror registry for Red Hat OpenShift, it must be reachable by every machine in the clusters that you provision. If the registry is unreachable, installation, updating, or normal operations such as workload relocation might fail. For that reason, you must run mirror registries in a highly available way, and the mirror registries must at least match the production availability of your OpenShift Container Platform clusters.

When you populate your mirror registry with OpenShift Container Platform images, you can follow two scenarios. If you have a host that can access both the internet and your mirror registry, but not your cluster nodes, you can directly mirror the content from that machine. This process is referred to as connected mirroring. If you have no such host, you must mirror the images to a file system and then bring that host or removable media into your restricted environment. This process is referred to as disconnected mirroring.

For mirrored registries, to view the source of pulled images, you must review the Trying to access log entry in the CRI-O logs. Other methods to view the image pull source, such as using the crictl images command on a node, show the non-mirrored image name, even though the image is pulled from the mirrored location.

Note

Red Hat does not test third party registries with OpenShift Container Platform.

Additional information

For information about viewing the CRI-O logs to view the image source, see Viewing the image pull source.

3.3. Preparing your mirror host

Before you perform the mirror procedure, you must prepare the host to retrieve content and push it to the remote location.

3.3.1. Installing the OpenShift CLI by downloading the binary

You can install the OpenShift CLI (oc) to interact with OpenShift Container Platform from a command-line interface. You can install oc on Linux, Windows, or macOS.

Important

If you installed an earlier version of oc, you cannot use it to complete all of the commands in OpenShift Container Platform 4.12. Download and install the new version of oc.

Installing the OpenShift CLI on Linux

You can install the OpenShift CLI (oc) binary on Linux by using the following procedure.

Procedure

  1. Navigate to the OpenShift Container Platform downloads page on the Red Hat Customer Portal.
  2. Select the architecture from the Product Variant drop-down list.
  3. Select the appropriate version from the Version drop-down list.
  4. Click Download Now next to the OpenShift v4.12 Linux Client entry and save the file.
  5. Unpack the archive:

    $ tar xvf <file>
  6. Place the oc binary in a directory that is on your PATH.

    To check your PATH, execute the following command:

    $ echo $PATH

Verification

  • After you install the OpenShift CLI, it is available using the oc command:

    $ oc <command>
Installing the OpenShift CLI on Windows

You can install the OpenShift CLI (oc) binary on Windows by using the following procedure.

Procedure

  1. Navigate to the OpenShift Container Platform downloads page on the Red Hat Customer Portal.
  2. Select the appropriate version from the Version drop-down list.
  3. Click Download Now next to the OpenShift v4.12 Windows Client entry and save the file.
  4. Unzip the archive with a ZIP program.
  5. Move the oc binary to a directory that is on your PATH.

    To check your PATH, open the command prompt and execute the following command:

    C:\> path

Verification

  • After you install the OpenShift CLI, it is available using the oc command:

    C:\> oc <command>
Installing the OpenShift CLI on macOS

You can install the OpenShift CLI (oc) binary on macOS by using the following procedure.

Procedure

  1. Navigate to the OpenShift Container Platform downloads page on the Red Hat Customer Portal.
  2. Select the appropriate version from the Version drop-down list.
  3. Click Download Now next to the OpenShift v4.12 macOS Client entry and save the file.

    Note

    For macOS arm64, choose the OpenShift v4.12 macOS arm64 Client entry.

  4. Unpack and unzip the archive.
  5. Move the oc binary to a directory on your PATH.

    To check your PATH, open a terminal and execute the following command:

    $ echo $PATH

Verification

  • After you install the OpenShift CLI, it is available using the oc command:

    $ oc <command>

3.4. Configuring credentials that allow images to be mirrored

Create a container image registry credentials file that allows mirroring images from Red Hat to your mirror.

Warning

Do not use this image registry credentials file as the pull secret when you install a cluster. If you provide this file when you install cluster, all of the machines in the cluster will have write access to your mirror registry.

Warning

This process requires that you have write access to a container image registry on the mirror registry and adds the credentials to a registry pull secret.

Prerequisites

  • You configured a mirror registry to use in your disconnected environment.
  • You identified an image repository location on your mirror registry to mirror images into.
  • You provisioned a mirror registry account that allows images to be uploaded to that image repository.

Procedure

Complete the following steps on the installation host:

  1. Download your registry.redhat.io pull secret from the Red Hat OpenShift Cluster Manager.
  2. Make a copy of your pull secret in JSON format:

    $ cat ./pull-secret | jq . > <path>/<pull_secret_file_in_json> 1
    1
    Specify the path to the folder to store the pull secret in and a name for the JSON file that you create.

    The contents of the file resemble the following example:

    {
      "auths": {
        "cloud.openshift.com": {
          "auth": "b3BlbnNo...",
          "email": "you@example.com"
        },
        "quay.io": {
          "auth": "b3BlbnNo...",
          "email": "you@example.com"
        },
        "registry.connect.redhat.com": {
          "auth": "NTE3Njg5Nj...",
          "email": "you@example.com"
        },
        "registry.redhat.io": {
          "auth": "NTE3Njg5Nj...",
          "email": "you@example.com"
        }
      }
    }
  3. Generate the base64-encoded user name and password or token for your mirror registry:

    $ echo -n '<user_name>:<password>' | base64 -w0 1
    BGVtbYk3ZHAtqXs=
    1
    For <user_name> and <password>, specify the user name and password that you configured for your registry.
  4. Edit the JSON file and add a section that describes your registry to it:

      "auths": {
        "<mirror_registry>": { 1
          "auth": "<credentials>", 2
          "email": "you@example.com"
        }
      },
    1
    For <mirror_registry>, specify the registry domain name, and optionally the port, that your mirror registry uses to serve content. For example, registry.example.com or registry.example.com:8443
    2
    For <credentials>, specify the base64-encoded user name and password for the mirror registry.

    The file resembles the following example:

    {
      "auths": {
        "registry.example.com": {
          "auth": "BGVtbYk3ZHAtqXs=",
          "email": "you@example.com"
        },
        "cloud.openshift.com": {
          "auth": "b3BlbnNo...",
          "email": "you@example.com"
        },
        "quay.io": {
          "auth": "b3BlbnNo...",
          "email": "you@example.com"
        },
        "registry.connect.redhat.com": {
          "auth": "NTE3Njg5Nj...",
          "email": "you@example.com"
        },
        "registry.redhat.io": {
          "auth": "NTE3Njg5Nj...",
          "email": "you@example.com"
        }
      }
    }

3.5. Mirroring the OpenShift Container Platform image repository

Mirror the OpenShift Container Platform image repository to your registry to use during cluster installation or upgrade.

Prerequisites

  • Your mirror host has access to the internet.
  • You configured a mirror registry to use in your restricted network and can access the certificate and credentials that you configured.
  • You downloaded the pull secret from the Red Hat OpenShift Cluster Manager and modified it to include authentication to your mirror repository.
  • If you use self-signed certificates, you have specified a Subject Alternative Name in the certificates.

Procedure

Complete the following steps on the mirror host:

  1. Review the OpenShift Container Platform downloads page to determine the version of OpenShift Container Platform that you want to install and determine the corresponding tag on the Repository Tags page.
  2. Set the required environment variables:

    1. Export the release version:

      $ OCP_RELEASE=<release_version>

      For <release_version>, specify the tag that corresponds to the version of OpenShift Container Platform to install, such as 4.5.4.

    2. Export the local registry name and host port:

      $ LOCAL_REGISTRY='<local_registry_host_name>:<local_registry_host_port>'

      For <local_registry_host_name>, specify the registry domain name for your mirror repository, and for <local_registry_host_port>, specify the port that it serves content on.

    3. Export the local repository name:

      $ LOCAL_REPOSITORY='<local_repository_name>'

      For <local_repository_name>, specify the name of the repository to create in your registry, such as ocp4/openshift4.

    4. Export the name of the repository to mirror:

      $ PRODUCT_REPO='openshift-release-dev'

      For a production release, you must specify openshift-release-dev.

    5. Export the path to your registry pull secret:

      $ LOCAL_SECRET_JSON='<path_to_pull_secret>'

      For <path_to_pull_secret>, specify the absolute path to and file name of the pull secret for your mirror registry that you created.

    6. Export the release mirror:

      $ RELEASE_NAME="ocp-release"

      For a production release, you must specify ocp-release.

    7. Export the type of architecture for your server, such as x86_64 or aarch64:

      $ ARCHITECTURE=<server_architecture>
    8. Export the path to the directory to host the mirrored images:

      $ REMOVABLE_MEDIA_PATH=<path> 1
      1
      Specify the full path, including the initial forward slash (/) character.
  3. Mirror the version images to the mirror registry:

    • If your mirror host does not have internet access, take the following actions:

      1. Connect the removable media to a system that is connected to the internet.
      2. Review the images and configuration manifests to mirror:

        $ oc adm release mirror -a ${LOCAL_SECRET_JSON}  \
             --from=quay.io/${PRODUCT_REPO}/${RELEASE_NAME}:${OCP_RELEASE}-${ARCHITECTURE} \
             --to=${LOCAL_REGISTRY}/${LOCAL_REPOSITORY} \
             --to-release-image=${LOCAL_REGISTRY}/${LOCAL_REPOSITORY}:${OCP_RELEASE}-${ARCHITECTURE} --dry-run
      3. Record the entire imageContentSources section from the output of the previous command. The information about your mirrors is unique to your mirrored repository, and you must add the imageContentSources section to the install-config.yaml file during installation.
      4. Mirror the images to a directory on the removable media:

        $ oc adm release mirror -a ${LOCAL_SECRET_JSON} --to-dir=${REMOVABLE_MEDIA_PATH}/mirror quay.io/${PRODUCT_REPO}/${RELEASE_NAME}:${OCP_RELEASE}-${ARCHITECTURE}
      5. Take the media to the restricted network environment and upload the images to the local container registry.

        $ oc image mirror -a ${LOCAL_SECRET_JSON} --from-dir=${REMOVABLE_MEDIA_PATH}/mirror "file://openshift/release:${OCP_RELEASE}*" ${LOCAL_REGISTRY}/${LOCAL_REPOSITORY} 1
        1
        For REMOVABLE_MEDIA_PATH, you must use the same path that you specified when you mirrored the images.
        Important

        Running oc image mirror might result in the following error: error: unable to retrieve source image. This error occurs when image indexes include references to images that no longer exist on the image registry. Image indexes might retain older references to allow users running those images an upgrade path to newer points on the upgrade graph. As a temporary workaround, you can use the --skip-missing option to bypass the error and continue downloading the image index. For more information, see Service Mesh Operator mirroring failed.

    • If the local container registry is connected to the mirror host, take the following actions:

      1. Directly push the release images to the local registry by using following command:

        $ oc adm release mirror -a ${LOCAL_SECRET_JSON}  \
             --from=quay.io/${PRODUCT_REPO}/${RELEASE_NAME}:${OCP_RELEASE}-${ARCHITECTURE} \
             --to=${LOCAL_REGISTRY}/${LOCAL_REPOSITORY} \
             --to-release-image=${LOCAL_REGISTRY}/${LOCAL_REPOSITORY}:${OCP_RELEASE}-${ARCHITECTURE}

        This command pulls the release information as a digest, and its output includes the imageContentSources data that you require when you install your cluster.

      2. Record the entire imageContentSources section from the output of the previous command. The information about your mirrors is unique to your mirrored repository, and you must add the imageContentSources section to the install-config.yaml file during installation.

        Note

        The image name gets patched to Quay.io during the mirroring process, and the podman images will show Quay.io in the registry on the bootstrap virtual machine.

  4. To create the installation program that is based on the content that you mirrored, extract it and pin it to the release:

    • If your mirror host does not have internet access, run the following command:

      $ oc adm release extract -a ${LOCAL_SECRET_JSON} --icsp-file=<file> \ --command=openshift-install "${LOCAL_REGISTRY}/${LOCAL_REPOSITORY}:${OCP_RELEASE}"
    • If the local container registry is connected to the mirror host, run the following command:

      $ oc adm release extract -a ${LOCAL_SECRET_JSON} --command=openshift-install "${LOCAL_REGISTRY}/${LOCAL_REPOSITORY}:${OCP_RELEASE}-${ARCHITECTURE}"
      Important

      To ensure that you use the correct images for the version of OpenShift Container Platform that you selected, you must extract the installation program from the mirrored content.

      You must perform this step on a machine with an active internet connection.

  5. For clusters using installer-provisioned infrastructure, run the following command:

    $ openshift-install

3.6. The Cluster Samples Operator in a disconnected environment

In a disconnected environment, you must take additional steps after you install a cluster to configure the Cluster Samples Operator. Review the following information in preparation.

3.6.1. Cluster Samples Operator assistance for mirroring

During installation, OpenShift Container Platform creates a config map named imagestreamtag-to-image in the openshift-cluster-samples-operator namespace. The imagestreamtag-to-image config map contains an entry, the populating image, for each image stream tag.

The format of the key for each entry in the data field in the config map is <image_stream_name>_<image_stream_tag_name>.

During a disconnected installation of OpenShift Container Platform, the status of the Cluster Samples Operator is set to Removed. If you choose to change it to Managed, it installs samples.

Note

The use of samples in a network-restricted or discontinued environment may require access to services external to your network. Some example services include: Github, Maven Central, npm, RubyGems, PyPi and others. There might be additional steps to take that allow the cluster samples operators’s objects to reach the services they require.

You can use this config map as a reference for which images need to be mirrored for your image streams to import.

  • While the Cluster Samples Operator is set to Removed, you can create your mirrored registry, or determine which existing mirrored registry you want to use.
  • Mirror the samples you want to the mirrored registry using the new config map as your guide.
  • Add any of the image streams you did not mirror to the skippedImagestreams list of the Cluster Samples Operator configuration object.
  • Set samplesRegistry of the Cluster Samples Operator configuration object to the mirrored registry.
  • Then set the Cluster Samples Operator to Managed to install the image streams you have mirrored.

3.7. Mirroring Operator catalogs for use with disconnected clusters

You can mirror the Operator contents of a Red Hat-provided catalog, or a custom catalog, into a container image registry using the oc adm catalog mirror command. The target registry must support Docker v2-2. For a cluster on a restricted network, this registry can be one that the cluster has network access to, such as a mirror registry created during a restricted network cluster installation.

Important
  • The OpenShift image registry cannot be used as the target registry because it does not support pushing without a tag, which is required during the mirroring process.
  • Running oc adm catalog mirror might result in the following error: error: unable to retrieve source image. This error occurs when image indexes include references to images that no longer exist on the image registry. Image indexes might retain older references to allow users running those images an upgrade path to newer points on the upgrade graph. As a temporary workaround, you can use the --skip-missing option to bypass the error and continue downloading the image index. For more information, see Service Mesh Operator mirroring failed.

The oc adm catalog mirror command also automatically mirrors the index image that is specified during the mirroring process, whether it be a Red Hat-provided index image or your own custom-built index image, to the target registry. You can then use the mirrored index image to create a catalog source that allows Operator Lifecycle Manager (OLM) to load the mirrored catalog onto your OpenShift Container Platform cluster.

3.7.1. Prerequisites

Mirroring Operator catalogs for use with disconnected clusters has the following prerequisites:

  • Workstation with unrestricted network access.
  • podman version 1.9.3 or later.
  • If you want to filter, or prune, an existing catalog and selectively mirror only a subset of Operators, see the following sections:

  • If you want to mirror a Red Hat-provided catalog, run the following command on your workstation with unrestricted network access to authenticate with registry.redhat.io:

    $ podman login registry.redhat.io
  • Access to a mirror registry that supports Docker v2-2.
  • On your mirror registry, decide which repository, or namespace, to use for storing mirrored Operator content. For example, you might create an olm-mirror repository.
  • If your mirror registry does not have internet access, connect removable media to your workstation with unrestricted network access.
  • If you are working with private registries, including registry.redhat.io, set the REG_CREDS environment variable to the file path of your registry credentials for use in later steps. For example, for the podman CLI:

    $ REG_CREDS=${XDG_RUNTIME_DIR}/containers/auth.json

3.7.2. Extracting and mirroring catalog contents

The oc adm catalog mirror command extracts the contents of an index image to generate the manifests required for mirroring. The default behavior of the command generates manifests, then automatically mirrors all of the image content from the index image, as well as the index image itself, to your mirror registry.

Alternatively, if your mirror registry is on a completely disconnected, or airgapped, host, you can first mirror the content to removable media, move the media to the disconnected environment, then mirror the content from the media to the registry.

3.7.2.1. Mirroring catalog contents to registries on the same network

If your mirror registry is co-located on the same network as your workstation with unrestricted network access, take the following actions on your workstation.

Procedure

  1. If your mirror registry requires authentication, run the following command to log in to the registry:

    $ podman login <mirror_registry>
  2. Run the following command to extract and mirror the content to the mirror registry:

    $ oc adm catalog mirror \
        <index_image> \ 1
        <mirror_registry>:<port>[/<repository>] \ 2
        [-a ${REG_CREDS}] \ 3
        [--insecure] \ 4
        [--index-filter-by-os='<platform>/<arch>'] \ 5
        [--manifests-only] 6
    1
    Specify the index image for the catalog that you want to mirror.
    2
    Specify the fully qualified domain name (FQDN) for the target registry to mirror the Operator contents to. The mirror registry <repository> can be any existing repository, or namespace, on the registry, for example olm-mirror as outlined in the prerequisites. If there is an existing repository found during mirroring, the repository name is added to the resulting image name. If you do not want the image name to include the repository name, omit the <repository> value from this line, for example <mirror_registry>:<port>.
    3
    Optional: If required, specify the location of your registry credentials file. {REG_CREDS} is required for registry.redhat.io.
    4
    Optional: If you do not want to configure trust for the target registry, add the --insecure flag.
    5
    Optional: Specify which platform and architecture of the index image to select when multiple variants are available. Images are passed as '<platform>/<arch>[/<variant>]'. This does not apply to images referenced by the index. Valid values are linux/amd64, linux/ppc64le, linux/s390x, linux/arm64.
    6
    Optional: Generate only the manifests required for mirroring without actually mirroring the image content to a registry. This option can be useful for reviewing what will be mirrored, and lets you make any changes to the mapping list, if you require only a subset of packages. You can then use the mapping.txt file with the oc image mirror command to mirror the modified list of images in a later step. This flag is intended for only advanced selective mirroring of content from the catalog.

    Example output

    src image has index label for database path: /database/index.db
    using database path mapping: /database/index.db:/tmp/153048078
    wrote database to /tmp/153048078 1
    ...
    wrote mirroring manifests to manifests-redhat-operator-index-1614211642 2

    1
    Directory for the temporary index.db database generated by the command.
    2
    Record the manifests directory name that is generated. This directory is referenced in subsequent procedures.
    Note

    Red Hat Quay does not support nested repositories. As a result, running the oc adm catalog mirror command will fail with a 401 unauthorized error. As a workaround, you can use the --max-components=2 option when running the oc adm catalog mirror command to disable the creation of nested repositories. For more information on this workaround, see the Unauthorized error thrown while using catalog mirror command with Quay registry Knowledgebase Solution.

3.7.2.2. Mirroring catalog contents to airgapped registries

If your mirror registry is on a completely disconnected, or airgapped, host, take the following actions.

Procedure

  1. Run the following command on your workstation with unrestricted network access to mirror the content to local files:

    $ oc adm catalog mirror \
        <index_image> \ 1
        file:///local/index \ 2
        -a ${REG_CREDS} \ 3
        --insecure \ 4
        --index-filter-by-os='<platform>/<arch>' 5
    1
    Specify the index image for the catalog that you want to mirror.
    2
    Specify the content to mirror to local files in your current directory.
    3
    Optional: If required, specify the location of your registry credentials file.
    4
    Optional: If you do not want to configure trust for the target registry, add the --insecure flag.
    5
    Optional: Specify which platform and architecture of the index image to select when multiple variants are available. Images are specified as '<platform>/<arch>[/<variant>]'. This does not apply to images referenced by the index. Valid values are linux/amd64, linux/ppc64le, linux/s390x, linux/arm64, and .*

    Example output

    ...
    info: Mirroring completed in 5.93s (5.915MB/s)
    wrote mirroring manifests to manifests-my-index-1614985528 1
    
    To upload local images to a registry, run:
    
    	oc adm catalog mirror file://local/index/myrepo/my-index:v1 REGISTRY/REPOSITORY 2

    1
    Record the manifests directory name that is generated. This directory is referenced in subsequent procedures.
    2
    Record the expanded file:// path that is based on your provided index image. This path is referenced in a subsequent step.

    This command creates a v2/ directory in your current directory.

  2. Copy the v2/ directory to removable media.
  3. Physically remove the media and attach it to a host in the disconnected environment that has access to the mirror registry.
  4. If your mirror registry requires authentication, run the following command on your host in the disconnected environment to log in to the registry:

    $ podman login <mirror_registry>
  5. Run the following command from the parent directory containing the v2/ directory to upload the images from local files to the mirror registry:

    $ oc adm catalog mirror \
        file://local/index/<repository>/<index_image>:<tag> \ 1
        <mirror_registry>:<port>[/<repository>] \ 2
        -a ${REG_CREDS} \ 3
        --insecure \ 4
        --index-filter-by-os='<platform>/<arch>' 5
    1
    Specify the file:// path from the previous command output.
    2
    Specify the fully qualified domain name (FQDN) for the target registry to mirror the Operator contents to. The mirror registry <repository> can be any existing repository, or namespace, on the registry, for example olm-mirror as outlined in the prerequisites. If there is an existing repository found during mirroring, the repository name is added to the resulting image name. If you do not want the image name to include the repository name, omit the <repository> value from this line, for example <mirror_registry>:<port>.
    3
    Optional: If required, specify the location of your registry credentials file.
    4
    Optional: If you do not want to configure trust for the target registry, add the --insecure flag.
    5
    Optional: Specify which platform and architecture of the index image to select when multiple variants are available. Images are specified as '<platform>/<arch>[/<variant>]'. This does not apply to images referenced by the index. Valid values are linux/amd64, linux/ppc64le, linux/s390x, linux/arm64, and .*
    Note

    Red Hat Quay does not support nested repositories. As a result, running the oc adm catalog mirror command will fail with a 401 unauthorized error. As a workaround, you can use the --max-components=2 option when running the oc adm catalog mirror command to disable the creation of nested repositories. For more information on this workaround, see the Unauthorized error thrown while using catalog mirror command with Quay registry Knowledgebase Solution.

  6. Run the oc adm catalog mirror command again. Use the newly mirrored index image as the source and the same mirror registry target used in the previous step:

    $ oc adm catalog mirror \
        <mirror_registry>:<port>/<index_image> \
        <mirror_registry>:<port>[/<repository>] \
        --manifests-only \1
        [-a ${REG_CREDS}] \
        [--insecure]
    1
    The --manifests-only flag is required for this step so that the command does not copy all of the mirrored content again.
    Important

    This step is required because the image mappings in the imageContentSourcePolicy.yaml file generated during the previous step must be updated from local paths to valid mirror locations. Failure to do so will cause errors when you create the ImageContentSourcePolicy object in a later step.

After you mirror the catalog, you can continue with the remainder of your cluster installation. After your cluster installation has finished successfully, you must specify the manifests directory from this procedure to create the ImageContentSourcePolicy and CatalogSource objects. These objects are required to enable installation of Operators from OperatorHub.

3.7.3. Generated manifests

After mirroring Operator catalog content to your mirror registry, a manifests directory is generated in your current directory.

If you mirrored content to a registry on the same network, the directory name takes the following pattern:

manifests-<index_image_name>-<random_number>

If you mirrored content to a registry on a disconnected host in the previous section, the directory name takes the following pattern:

manifests-index/<repository>/<index_image_name>-<random_number>
Note

The manifests directory name is referenced in subsequent procedures.

The manifests directory contains the following files, some of which might require further modification:

  • The catalogSource.yaml file is a basic definition for a CatalogSource object that is pre-populated with your index image tag and other relevant metadata. This file can be used as is or modified to add the catalog source to your cluster.

    Important

    If you mirrored the content to local files, you must modify your catalogSource.yaml file to remove any backslash (/) characters from the metadata.name field. Otherwise, when you attempt to create the object, it fails with an "invalid resource name" error.

  • The imageContentSourcePolicy.yaml file defines an ImageContentSourcePolicy object that can configure nodes to translate between the image references stored in Operator manifests and the mirrored registry.

    Note

    If your cluster uses an ImageContentSourcePolicy object to configure repository mirroring, you can use only global pull secrets for mirrored registries. You cannot add a pull secret to a project.

  • The mapping.txt file contains all of the source images and where to map them in the target registry. This file is compatible with the oc image mirror command and can be used to further customize the mirroring configuration.

    Important

    If you used the --manifests-only flag during the mirroring process and want to further trim the subset of packages to mirror, see the steps in the Mirroring a package manifest format catalog image procedure of the OpenShift Container Platform 4.7 documentation about modifying your mapping.txt file and using the file with the oc image mirror command.

3.7.4. Postinstallation requirements

After you mirror the catalog, you can continue with the remainder of your cluster installation. After your cluster installation has finished successfully, you must specify the manifests directory from this procedure to create the ImageContentSourcePolicy and CatalogSource objects. These objects are required to populate and enable installation of Operators from OperatorHub.

3.8. Next steps

3.9. Additional resources

Chapter 4. Mirroring images for a disconnected installation using the oc-mirror plugin

Running your cluster in a restricted network without direct internet connectivity is possible by installing the cluster from a mirrored set of OpenShift Container Platform container images in a private registry. This registry must be running at all times as long as the cluster is running. See the Prerequisites section for more information.

You can use the oc-mirror OpenShift CLI (oc) plugin to mirror images to a mirror registry in your fully or partially disconnected environments. You must run oc-mirror from a system with internet connectivity in order to download the required images from the official Red Hat registries.

The following steps outline the high-level workflow on how to use the oc-mirror plugin to mirror images to a mirror registry:

  1. Create an image set configuration file.
  2. Mirror the image set to the mirror registry by using one of the following methods:

    • Mirror an image set directly to the mirror registry.
    • Mirror an image set to disk, transfer the image set to the target environment, then upload the image set to the target mirror registry.
  3. Configure your cluster to use the resources generated by the oc-mirror plugin.
  4. Repeat these steps to update your mirror registry as necessary.

4.1. About the oc-mirror plugin

You can use the oc-mirror OpenShift CLI (oc) plugin to mirror all required OpenShift Container Platform content and other images to your mirror registry by using a single tool. It provides the following features:

  • Provides a centralized method to mirror OpenShift Container Platform releases, Operators, helm charts, and other images.
  • Maintains update paths for OpenShift Container Platform and Operators.
  • Uses a declarative image set configuration file to include only the OpenShift Container Platform releases, Operators, and images that your cluster needs.
  • Performs incremental mirroring, which reduces the size of future image sets.
  • Prunes images from the target mirror registry that were excluded from the image set configuration since the previous execution.
  • Optionally generates supporting artifacts for OpenShift Update Service (OSUS) usage.

When using the oc-mirror plugin, you specify which content to mirror in an image set configuration file. In this YAML file, you can fine-tune the configuration to only include the OpenShift Container Platform releases and Operators that your cluster needs. This reduces the amount of data that you need to download and transfer. The oc-mirror plugin can also mirror arbitrary helm charts and additional container images to assist users in seamlessly synchronizing their workloads onto mirror registries.

The first time you run the oc-mirror plugin, it populates your mirror registry with the required content to perform your disconnected cluster installation or update. In order for your disconnected cluster to continue receiving updates, you must keep your mirror registry updated. To update your mirror registry, you run the oc-mirror plugin using the same configuration as the first time you ran it. The oc-mirror plugin references the metadata from the storage backend and only downloads what has been released since the last time you ran the tool. This provides update paths for OpenShift Container Platform and Operators and performs dependency resolution as required.

Important

When using the oc-mirror CLI plugin to populate a mirror registry, any further updates to the mirror registry must be made using the oc-mirror tool.

4.2. oc-mirror compatibility and support

The oc-mirror plugin supports mirroring OpenShift Container Platform payload images and Operator catalogs for OpenShift Container Platform versions 4.9 and later.

Use the latest available version of the oc-mirror plugin regardless of which versions of OpenShift Container Platform you need to mirror.

4.3. About the mirror registry

You can mirror the images that are required for OpenShift Container Platform installation and subsequent product updates to a container mirror registry that supports Docker v2-2, such as Red Hat Quay. If you do not have access to a large-scale container registry, you can use the mirror registry for Red Hat OpenShift, which is a small-scale container registry included with OpenShift Container Platform subscriptions.

Regardless of your chosen registry, the procedure to mirror content from Red Hat hosted sites on the internet to an isolated image registry is the same. After you mirror the content, you configure each cluster to retrieve this content from your mirror registry.

Important

The OpenShift image registry cannot be used as the target registry because it does not support pushing without a tag, which is required during the mirroring process.

If choosing a container registry that is not the mirror registry for Red Hat OpenShift, it must be reachable by every machine in the clusters that you provision. If the registry is unreachable, installation, updating, or normal operations such as workload relocation might fail. For that reason, you must run mirror registries in a highly available way, and the mirror registries must at least match the production availability of your OpenShift Container Platform clusters.

When you populate your mirror registry with OpenShift Container Platform images, you can follow two scenarios. If you have a host that can access both the internet and your mirror registry, but not your cluster nodes, you can directly mirror the content from that machine. This process is referred to as connected mirroring. If you have no such host, you must mirror the images to a file system and then bring that host or removable media into your restricted environment. This process is referred to as disconnected mirroring.

For mirrored registries, to view the source of pulled images, you must review the Trying to access log entry in the CRI-O logs. Other methods to view the image pull source, such as using the crictl images command on a node, show the non-mirrored image name, even though the image is pulled from the mirrored location.

Note

Red Hat does not test third party registries with OpenShift Container Platform.

Additional resources

4.4. Prerequisites

  • You must have a container image registry that supports Docker v2-2 in the location that will host the OpenShift Container Platform cluster, such as Red Hat Quay.

    Note

    If you use Red Hat Quay, you must use version 3.6 or later with the oc-mirror plugin. If you have an entitlement to Red Hat Quay, see the documentation on deploying Red Hat Quay for proof-of-concept purposes or by using the Red Hat Quay Operator. If you need additional assistance selecting and installing a registry, contact your sales representative or Red Hat Support.

    If you do not already have an existing solution for a container image registry, subscribers of OpenShift Container Platform are provided a mirror registry for Red Hat OpenShift. The mirror registry for Red Hat OpenShift is included with your subscription and is a small-scale container registry that can be used to mirror the required container images of OpenShift Container Platform in disconnected installations.

4.5. Preparing your mirror hosts

Before you can use the oc-mirror plugin to mirror images, you must install the plugin and create a container image registry credentials file to allow the mirroring from Red Hat to your mirror.

4.5.1. Installing the oc-mirror OpenShift CLI plugin

To use the oc-mirror OpenShift CLI plugin to mirror registry images, you must install the plugin. If you are mirroring image sets in a fully disconnected environment, ensure that you install the oc-mirror plugin on the host with internet access and the host in the disconnected environment with access to the mirror registry.

Prerequisites

  • You have installed the OpenShift CLI (oc).

Procedure

  1. Download the oc-mirror CLI plugin.

    1. Navigate to the Downloads page of the OpenShift Cluster Manager Hybrid Cloud Console.
    2. Under the OpenShift disconnected installation tools section, click Download for OpenShift Client (oc) mirror plugin and save the file.
  2. Extract the archive:

    $ tar xvzf oc-mirror.tar.gz
  3. If necessary, update the plugin file to be executable:

    $ chmod +x oc-mirror
    Note

    Do not rename the oc-mirror file.

  4. Install the oc-mirror CLI plugin by placing the file in your PATH, for example, /usr/local/bin:

    $ sudo mv oc-mirror /usr/local/bin/.

Verification

  • Run oc mirror help to verify that the plugin was successfully installed:

    $ oc mirror help

Additional resources

4.5.2. Configuring credentials that allow images to be mirrored

Create a container image registry credentials file that allows mirroring images from Red Hat to your mirror.

Warning

Do not use this image registry credentials file as the pull secret when you install a cluster. If you provide this file when you install cluster, all of the machines in the cluster will have write access to your mirror registry.

Warning

This process requires that you have write access to a container image registry on the mirror registry and adds the credentials to a registry pull secret.

Prerequisites

  • You configured a mirror registry to use in your disconnected environment.
  • You identified an image repository location on your mirror registry to mirror images into.
  • You provisioned a mirror registry account that allows images to be uploaded to that image repository.

Procedure

Complete the following steps on the installation host:

  1. Download your registry.redhat.io pull secret from the Red Hat OpenShift Cluster Manager.
  2. Make a copy of your pull secret in JSON format:

    $ cat ./pull-secret | jq . > <path>/<pull_secret_file_in_json> 1
    1
    Specify the path to the folder to store the pull secret in and a name for the JSON file that you create.

    The contents of the file resemble the following example:

    {
      "auths": {
        "cloud.openshift.com": {
          "auth": "b3BlbnNo...",
          "email": "you@example.com"
        },
        "quay.io": {
          "auth": "b3BlbnNo...",
          "email": "you@example.com"
        },
        "registry.connect.redhat.com": {
          "auth": "NTE3Njg5Nj...",
          "email": "you@example.com"
        },
        "registry.redhat.io": {
          "auth": "NTE3Njg5Nj...",
          "email": "you@example.com"
        }
      }
    }
  3. Save the file as either ~/.docker/config.json or $XDG_RUNTIME_DIR/containers/auth.json:

    1. If the .docker or $XDG_RUNTIME_DIR/containers directories do not exist, create one by entering the following command:

      $ mkdir -p <directory_name>

      Where <directory_name> is either ~/.docker or $XDG_RUNTIME_DIR/containers.

    2. Copy the pull secret to the appropriate directory by entering the following command:

      $ cp <path>/<pull_secret_file_in_json> <directory_name>/<auth_file>

      Where <directory_name> is either ~/.docker or $XDG_RUNTIME_DIR/containers, and <auth_file> is either config.json or auth.json.

  4. Generate the base64-encoded user name and password or token for your mirror registry:

    $ echo -n '<user_name>:<password>' | base64 -w0 1
    BGVtbYk3ZHAtqXs=
    1
    For <user_name> and <password>, specify the user name and password that you configured for your registry.
  5. Edit the JSON file and add a section that describes your registry to it:

      "auths": {
        "<mirror_registry>": { 1
          "auth": "<credentials>", 2
          "email": "you@example.com"
        }
      },
    1
    For <mirror_registry>, specify the registry domain name, and optionally the port, that your mirror registry uses to serve content. For example, registry.example.com or registry.example.com:8443
    2
    For <credentials>, specify the base64-encoded user name and password for the mirror registry.

    The file resembles the following example:

    {
      "auths": {
        "registry.example.com": {
          "auth": "BGVtbYk3ZHAtqXs=",
          "email": "you@example.com"
        },
        "cloud.openshift.com": {
          "auth": "b3BlbnNo...",
          "email": "you@example.com"
        },
        "quay.io": {
          "auth": "b3BlbnNo...",
          "email": "you@example.com"
        },
        "registry.connect.redhat.com": {
          "auth": "NTE3Njg5Nj...",
          "email": "you@example.com"
        },
        "registry.redhat.io": {
          "auth": "NTE3Njg5Nj...",
          "email": "you@example.com"
        }
      }
    }

4.6. Creating the image set configuration

Before you can use the oc-mirror plugin to mirror image sets, you must create an image set configuration file. This image set configuration file defines which OpenShift Container Platform releases, Operators, and other images to mirror, along with other configuration settings for the oc-mirror plugin.

You must specify a storage backend in the image set configuration file. This storage backend can be a local directory or a registry that supports Docker v2-2. The oc-mirror plugin stores metadata in this storage backend during image set creation.

Important

Do not delete or modify the metadata that is generated by the oc-mirror plugin. You must use the same storage backend every time you run the oc-mirror plugin for the same mirror registry.

Prerequisites

  • You have created a container image registry credentials file. For instructions, see Configuring credentials that allow images to be mirrored.

Procedure

  1. Use the oc mirror init command to create a template for the image set configuration and save it to a file called imageset-config.yaml:

    $ oc mirror init --registry example.com/mirror/oc-mirror-metadata > imageset-config.yaml 1
    1
    Replace example.com/mirror/oc-mirror-metadata with the location of your registry for the storage backend.
  2. Edit the file and adjust the settings as necessary:

    kind: ImageSetConfiguration
    apiVersion: mirror.openshift.io/v1alpha2
    archiveSize: 4                                                      1
    storageConfig:                                                      2
      registry:
        imageURL: example.com/mirror/oc-mirror-metadata                 3
        skipTLS: false
    mirror:
      platform:
        channels:
        - name: stable-4.12                                             4
          type: ocp
        graph: true                                                     5
      operators:
      - catalog: registry.redhat.io/redhat/redhat-operator-index:v4.12  6
        packages:
        - name: serverless-operator                                     7
          channels:
          - name: stable                                                8
      additionalImages:
      - name: registry.redhat.io/ubi8/ubi:latest                        9
      helm: {}
    1
    Add archiveSize to set the maximum size, in GiB, of each file within the image set.
    2
    Set the back-end location to save the image set metadata to. This location can be a registry or local directory. It is required to specify storageConfig values, unless you are using the Technology Preview OCI feature.
    3
    Set the registry URL for the storage backend.
    4
    Set the channel to retrieve the OpenShift Container Platform images from.
    5
    Add graph: true to build and push the graph-data image to the mirror registry. The graph-data image is required to create OpenShift Update Service (OSUS). The graph: true field also generates the UpdateService custom resource manifest. The oc command-line interface (CLI) can use the UpdateService custom resource manifest to create OSUS. For more information, see About the OpenShift Update Service.
    6
    Set the Operator catalog to retrieve the OpenShift Container Platform images from.
    7
    Specify only certain Operator packages to include in the image set. Remove this field to retrieve all packages in the catalog.
    8
    Specify only certain channels of the Operator packages to include in the image set. You must always include the default channel for the Operator package even if you do not use the bundles in that channel. You can find the default channel by running the following command: oc mirror list operators --catalog=<catalog_name> --package=<package_name>.
    9
    Specify any additional images to include in image set.
    Note

    The graph: true field also mirrors the ubi-micro image along with other mirrored images.

    See Image set configuration parameters for the full list of parameters and Image set configuration examples for various mirroring use cases.

  3. Save the updated file.

    This image set configuration file is required by the oc mirror command when mirroring content.

4.7. Mirroring an image set to a mirror registry

You can use the oc-mirror CLI plugin to mirror images to a mirror registry in a partially disconnected environment or in a fully disconnected environment.

These procedures assume that you already have your mirror registry set up.

4.7.1. Mirroring an image set in a partially disconnected environment

In a partially disconnected environment, you can mirror an image set directly to the target mirror registry.

4.7.1.1. Mirroring from mirror to mirror

You can use the oc-mirror plugin to mirror an image set directly to a target mirror registry that is accessible during image set creation.

You are required to specify a storage backend in the image set configuration file. This storage backend can be a local directory or a Docker v2 registry. The oc-mirror plugin stores metadata in this storage backend during image set creation.

Important

Do not delete or modify the metadata that is generated by the oc-mirror plugin. You must use the same storage backend every time you run the oc-mirror plugin for the same mirror registry.

Prerequisites

  • You have access to the internet to obtain the necessary container images.
  • You have installed the OpenShift CLI (oc).
  • You have installed the oc-mirror CLI plugin.
  • You have created the image set configuration file.

Procedure

  • Run the oc mirror command to mirror the images from the specified image set configuration to a specified registry:

    $ oc mirror --config=./imageset-config.yaml \1
      docker://registry.example:5000             2
    1
    Pass in the image set configuration file that was created. This procedure assumes that it is named imageset-config.yaml.
    2
    Specify the registry to mirror the image set file to. The registry must start with docker://. If you specify a top-level namespace for the mirror registry, you must also use this same namespace on subsequent executions.

Verification

  1. Navigate into the oc-mirror-workspace/ directory that was generated.
  2. Navigate into the results directory, for example, results-1639608409/.
  3. Verify that YAML files are present for the ImageContentSourcePolicy and CatalogSource resources.

Next steps

  • Configure your cluster to use the resources generated by oc-mirror.

4.7.2. Mirroring an image set in a fully disconnected environment

To mirror an image set in a fully disconnected environment, you must first mirror the image set to disk, then mirror the image set file on disk to a mirror.

4.7.2.1. Mirroring from mirror to disk

You can use the oc-mirror plugin to generate an image set and save the contents to disk. The generated image set can then be transferred to the disconnected environment and mirrored to the target registry.

Important

Depending on the configuration specified in the image set configuration file, using oc-mirror to mirror images might download several hundreds of gigabytes of data to disk.

The initial image set download when you populate the mirror registry is often the largest. Because you only download the images that changed since the last time you ran the command, when you run the oc-mirror plugin again, the generated image set is often smaller.

You are required to specify a storage backend in the image set configuration file. This storage backend can be a local directory or a docker v2 registry. The oc-mirror plugin stores metadata in this storage backend during image set creation.

Important

Do not delete or modify the metadata that is generated by the oc-mirror plugin. You must use the same storage backend every time you run the oc-mirror plugin for the same mirror registry.

Prerequisites

  • You have access to the internet to obtain the necessary container images.
  • You have installed the OpenShift CLI (oc).
  • You have installed the oc-mirror CLI plugin.
  • You have created the image set configuration file.

Procedure

  • Run the oc mirror command to mirror the images from the specified image set configuration to disk:

    $ oc mirror --config=./imageset-config.yaml \1
      file://<path_to_output_directory>          2
    1
    Pass in the image set configuration file that was created. This procedure assumes that it is named imageset-config.yaml.
    2
    Specify the target directory where you want to output the image set file. The target directory path must start with file://.

Verification

  1. Navigate to your output directory:

    $ cd <path_to_output_directory>
  2. Verify that an image set .tar file was created:

    $ ls

    Example output

    mirror_seq1_000000.tar

Next steps

  • Transfer the image set .tar file to the disconnected environment.
4.7.2.2. Mirroring from disk to mirror

You can use the oc-mirror plugin to mirror the contents of a generated image set to the target mirror registry.

Prerequisites

  • You have installed the OpenShift CLI (oc) in the disconnected environment.
  • You have installed the oc-mirror CLI plugin in the disconnected environment.
  • You have generated the image set file by using the oc mirror command.
  • You have transferred the image set file to the disconnected environment.

Procedure

  • Run the oc mirror command to process the image set file on disk and mirror the contents to a target mirror registry:

    $ oc mirror --from=./mirror_seq1_000000.tar \1
      docker://registry.example:5000             2
    1
    Pass in the image set .tar file to mirror, named mirror_seq1_000000.tar in this example. If an archiveSize value was specified in the image set configuration file, the image set might be broken up into multiple .tar files. In this situation, you can pass in a directory that contains the image set .tar files.
    2
    Specify the registry to mirror the image set file to. The registry must start with docker://. If you specify a top-level namespace for the mirror registry, you must also use this same namespace on subsequent executions.

    This command updates the mirror registry with the image set and generates the ImageContentSourcePolicy and CatalogSource resources.

Verification

  1. Navigate into the oc-mirror-workspace/ directory that was generated.
  2. Navigate into the results directory, for example, results-1639608409/.
  3. Verify that YAML files are present for the ImageContentSourcePolicy and CatalogSource resources.

Next steps

  • Configure your cluster to use the resources generated by oc-mirror.

4.8. Configuring your cluster to use the resources generated by oc-mirror

After you have mirrored your image set to the mirror registry, you must apply the generated ImageContentSourcePolicy, CatalogSource, and release image signature resources into the cluster.

The ImageContentSourcePolicy resource associates the mirror registry with the source registry and redirects image pull requests from the online registries to the mirror registry. The CatalogSource resource is used by Operator Lifecycle Manager (OLM) to retrieve information about the available Operators in the mirror registry. The release image signatures are used to verify the mirrored release images.

Prerequisites

  • You have mirrored the image set to the registry mirror in the disconnected environment.
  • You have access to the cluster as a user with the cluster-admin role.

Procedure

  1. Log in to the OpenShift CLI as a user with the cluster-admin role.
  2. Apply the YAML files from the results directory to the cluster by running the following command:

    $ oc apply -f ./oc-mirror-workspace/results-1639608409/
  3. If you mirrored release images, apply the release image signatures to the cluster by running the following command:

    $ oc apply -f ./oc-mirror-workspace/results-1639608409/release-signatures/
    Note

    If you are mirroring Operators instead of clusters, you do not need to run $ oc apply -f ./oc-mirror-workspace/results-1639608409/release-signatures/. Running that command will return an error, as there are no release image signatures to apply.

Verification

  1. Verify that the ImageContentSourcePolicy resources were successfully installed by running the following command:

    $ oc get imagecontentsourcepolicy
  2. Verify that the CatalogSource resources were successfully installed by running the following command:

    $ oc get catalogsource -n openshift-marketplace

4.9. Keeping your mirror registry content updated

After your target mirror registry is populated with the initial image set, be sure to update it regularly so that it has the latest content. You can optionally set up a cron job, if possible, so that the mirror registry is updated on a regular basis.

Ensure that you update your image set configuration to add or remove OpenShift Container Platform and Operator releases as necessary. Any images that are removed are pruned from the mirror registry.

4.9.1. About updating your mirror registry content

When you run the oc-mirror plugin again, it generates an image set that only contains new and updated images since the previous execution. Because it only pulls in the differences since the previous image set was created, the generated image set is often smaller and faster to process than the initial image set.

Important

Generated image sets are sequential and must be pushed to the target mirror registry in order. You can derive the sequence number from the file name of the generated image set archive file.

Adding new and updated images

Depending on the settings in your image set configuration, future executions of oc-mirror can mirror additional new and updated images. Review the settings in your image set configuration to ensure that you are retrieving new versions as necessary. For example, you can set the minimum and maximum versions of Operators to mirror if you want to restrict to specific versions. Alternatively, you can set the minimum version as a starting point to mirror, but keep the version range open so you keep receiving new Operator versions on future executions of oc-mirror. Omitting any minimum or maximum version gives you the full version history of an Operator in a channel. Omitting explicitly named channels gives you all releases in all channels of the specified Operator. Omitting any named Operator gives you the entire catalog of all Operators and all their versions ever released.

All these constraints and conditions are evaluated against the publicly released content by Red Hat on every invocation of oc-mirror. This way, it automatically picks up new releases and entirely new Operators. Constraints can be specified by only listing a desired set of Operators, which will not automatically add other newly released Operators into the mirror set. You can also specify a particular release channel, which limits mirroring to just this channel and not any new channels that have been added. This is important for Operator products, such as Red Hat Quay, that use different release channels for their minor releases. Lastly, you can specify a maximum version of a particular Operator, which causes the tool to only mirror the specified version range so that you do not automatically get any newer releases past the maximum version mirrored. In all these cases, you must update the image set configuration file to broaden the scope of the mirroring of Operators to get other Operators, new channels, and newer versions of Operators to be available in your target registry.

It is recommended to align constraints like channel specification or version ranges with the release strategy that a particular Operator has chosen. For example, when the Operator uses a stable channel, you should restrict mirroring to that channel and potentially a minimum version to find the right balance between download volume and getting stable updates regularly. If the Operator chooses a release version channel scheme, for example stable-3.7, you should mirror all releases in that channel. This allows you to keep receiving patch versions of the Operator, for example 3.7.1. You can also regularly adjust the image set configuration to add channels for new product releases, for example stable-3.8.

Pruning images

Images are pruned automatically from the target mirror registry if they are no longer included in the latest image set that was generated and mirrored. This allows you to easily manage and clean up unneeded content and reclaim storage resources.

If there are OpenShift Container Platform releases or Operator versions that you no longer need, you can modify your image set configuration to exclude them, and they will be pruned from the mirror registry upon mirroring. This can be done by adjusting a minimum or maximum version range setting per Operator in the image set configuration file or by deleting the Operator from the list of Operators to mirror from the catalog. You can also remove entire Operator catalogs or entire OpenShift Container Platform releases from the configuration file.

Important

Images are not automatically pruned from the target mirror registry in the following situations:

  • If there are no new or updated images to mirror
  • If you are using the Technology Preview OCI feature

Additionally, if an Operator publisher removes an Operator version from a channel, the removed versions are pruned from the target mirror registry.

To disable automatic pruning of images from the target mirror registry, pass the --skip-pruning flag to the oc mirror command.

4.9.2. Updating your mirror registry content

After you publish the initial image set to the mirror registry, you can use the oc-mirror plugin to keep your disconnected clusters updated.

Depending on your image set configuration, oc-mirror automatically detects newer releases of OpenShift Container Platform and your selected Operators that have been released after you completed the initial mirror. It is recommended to run oc-mirror at regular intervals, for example in a nightly cron job, to receive product and security updates on a timely basis.

Prerequisites

  • You have used the oc-mirror plugin to mirror the initial image set to your mirror registry.
  • You have access to the storage backend that was used for the initial execution of the oc-mirror plugin.

    Note

    You must use the same storage backend as the initial execution of oc-mirror for the same mirror registry. Do not delete or modify the metadata image that is generated by the oc-mirror plugin.

Procedure

  1. If necessary, update your image set configuration file to pick up new OpenShift Container Platform and Operator versions. See Image set configuration examples for example mirroring use cases.
  2. Follow the same steps that you used to mirror your initial image set to the mirror registry. For instructions, see Mirroring an image set in a partially disconnected environment or Mirroring an image set in a fully disconnected environment.

    Important
    • You must provide the same storage backend so that only a differential image set is created and mirrored.
    • If you specified a top-level namespace for the mirror registry during the initial image set creation, then you must use this same namespace every time you run the oc-mirror plugin for the same mirror registry.
  3. Configure your cluster to use the resources generated by oc-mirror.

4.10. Performing a dry run

You can use oc-mirror to perform a dry run, without actually mirroring any images. This allows you to review the list of images that would be mirrored, as well as any images that would be pruned from the mirror registry. It also allows you to catch any errors with your image set configuration early or use the generated list of images with other tools to carry out the mirroring operation.

Prerequisites

  • You have access to the internet to obtain the necessary container images.
  • You have installed the OpenShift CLI (oc).
  • You have installed the oc-mirror CLI plugin.
  • You have created the image set configuration file.

Procedure

  1. Run the oc mirror command with the --dry-run flag to perform a dry run:

    $ oc mirror --config=./imageset-config.yaml \1
      docker://registry.example:5000            \2
      --dry-run                                  3
    1
    Pass in the image set configuration file that was created. This procedure assumes that it is named imageset-config.yaml.
    2
    Specify the mirror registry. Nothing is mirrored to this registry as long as you use the --dry-run flag.
    3
    Use the --dry-run flag to generate the dry run artifacts and not an actual image set file.

    Example output

    Checking push permissions for registry.example:5000
    Creating directory: oc-mirror-workspace/src/publish
    Creating directory: oc-mirror-workspace/src/v2
    Creating directory: oc-mirror-workspace/src/charts
    Creating directory: oc-mirror-workspace/src/release-signatures
    No metadata detected, creating new workspace
    wrote mirroring manifests to oc-mirror-workspace/operators.1658342351/manifests-redhat-operator-index
    
    ...
    
    info: Planning completed in 31.48s
    info: Dry run complete
    Writing image mapping to oc-mirror-workspace/mapping.txt

  2. Navigate into the workspace directory that was generated:

    $ cd oc-mirror-workspace/
  3. Review the mapping.txt file that was generated.

    This file contains a list of all images that would be mirrored.

  4. Review the pruning-plan.json file that was generated.

    This file contains a list of all images that would be pruned from the mirror registry when the image set is published.

    Note

    The pruning-plan.json file is only generated if your oc-mirror command points to your mirror registry and there are images to be pruned.

4.11. Mirroring file-based catalog Operator images in OCI format

You can use the oc-mirror plugin to mirror Operators in the Open Container Initiative (OCI) image format, instead of Docker v2 format. You can copy Operator images to a file-based catalog on disk in OCI format. Then you can copy local OCI images to your target mirror registry.

Important

Using the oc-mirror plugin to mirror Operator images in OCI format is a Technology Preview feature only. Technology Preview features are not supported with Red Hat production service level agreements (SLAs) and might not be functionally complete. Red Hat does not recommend using them in production. These features provide early access to upcoming product features, enabling customers to test functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features, see Technology Preview Features Support Scope.

When using the OCI feature, images are not automatically pruned from the target mirror registry.

Prerequisites

  • You have access to the internet to obtain the necessary container images.
  • You have installed the OpenShift CLI (oc).
  • You have installed the oc-mirror CLI plugin.

Procedure

  1. Optional: Retrieve the catalogs and images that you require and save them to disk. If you already have the catalog image in OCI format on disk, you can skip this step.

    1. Create the image set configuration file:

      Example image set configuration file for copying to disk

      kind: ImageSetConfiguration
      apiVersion: mirror.openshift.io/v1alpha2
      mirror:
       operators:
       - catalog: registry.redhat.io/redhat/redhat-operator-index:v4.12
         packages:
         - name: aws-load-balancer-operator

      Note

      When using the OCI feature, only the mirror.operators.catalog setting is available for use.

      The storageConfig setting is ignored in favor of the location passed in to the oc mirror command.

    2. Run the oc mirror command to mirror the images from the specified image set configuration to disk:

      $ oc mirror --config=./imageset-config.yaml \ 1
        --use-oci-feature \                         2
        --oci-feature-action=copy \                 3
        oci://my-oci-catalog                        4
      1
      Pass in the image set configuration file. This procedure assumes that it is named imageset-config.yaml.
      2
      Use the --use-oci-feature flag to enable the OCI feature.
      3
      To copy the catalog to disk, set the --oci-feature-action flag to copy.
      4
      Specify a directory on disk where you want to output the catalog. This procedure assumes that it is named my-oci-catalog. The path must start with oci://. If the specified directory is not a full path, the directory is created in the current working directory where the oc mirror command is run.
      Note

      You can optionally use the --oci-registries-config flag to specify the path to a TOML-formatted registries.conf file. You can use this to mirror from a different registry, such as a pre-production location for testing, without having to change the image set configuration file.

      Example registries.conf file

      [[registry]]
       location = "registry.redhat.io:5000"
       insecure = false
       blocked = false
       mirror-by-digest-only = true
       prefix = ""
       [[registry.mirror]]
          location = "preprod-registry.example.com"
          insecure = false

      Set the location field in the registry.mirror section to an alternative registry location that you want to pull images from. The location field in the registry section must be the same registry location as the one you specify in the image set configuration file.

    3. List your directory contents and verify that the following directories were created:

      $ ls -l

      Example output

      my-oci-catalog      1
      oc-mirror-workspace 2
      olm_artifacts       3

      1
      Directory that contains the OCI catalog. This procedure assumes that it is named my-oci-catalog.
      2
      Directory that contains each image in the catalog in its original format.
      3
      Directory that contains the files that describe the Operator bundles that this catalog references.
  2. Update the image set configuration file to specify the location of the catalog on disk to mirror to the target mirror registry:

    Example image set configuration file for mirroring to mirror registry

    kind: ImageSetConfiguration
    apiVersion: mirror.openshift.io/v1alpha2
    mirror:
     operators:
     - catalog: oci:///home/user/oc-mirror/my-oci-catalog/redhat-operator-index 1
       packages:
       - name: aws-load-balancer-operator

    1
    Specify the absolute path to the location of the OCI catalog on disk. This procedure assumes that you used my-oci-catalog as the directory and mirrored the redhat-operator-index catalog. The path must start with oci://.
  3. Run the oc mirror command to process the image set file on disk and mirror the contents to a target mirror registry:

    $ oc mirror --config=./imageset-config.yaml \ 1
      --use-oci-feature \                         2
      --oci-feature-action=mirror \               3
      docker://registry.example:5000              4
    1
    Pass in the updated image set configuration file. This procedure assumes that it is named imageset-config.yaml.
    2
    Use the --use-oci-feature flag to enable the OCI feature.
    3
    To mirror the catalog to the target mirror registry, set the --oci-feature-action flag to mirror.
    4
    Specify the registry to mirror the image set file to. The registry must start with docker://. If you specify a top-level namespace for the mirror registry, you must also use this same namespace on subsequent executions.
    Note

    You can optionally use the --oci-insecure-signature-policy flag to not push signatures to the target mirror registry.

Next steps

  • Configure your cluster to use the resources generated by oc-mirror.

Additional resources

4.12. Image set configuration parameters

The oc-mirror plugin requires an image set configuration file that defines what images to mirror. The following table lists the available parameters for the ImageSetConfiguration resource.

Table 4.1. ImageSetConfiguration parameters
ParameterDescriptionValues

apiVersion

The API version for the ImageSetConfiguration content.

String. For example: mirror.openshift.io/v1alpha2.

archiveSize

The maximum size, in GiB, of each archive file within the image set.

Integer. For example: 4

mirror

The configuration of the image set.

Object

mirror.additionalImages

The additional images configuration of the image set.

Array of objects. For example:

additionalImages:
  - name: registry.redhat.io/ubi8/ubi:latest

mirror.additionalImages.name

The tag or digest of the image to mirror.

String. For example: registry.redhat.io/ubi8/ubi:latest

mirror.blockedImages

The full tag, digest, or pattern of images to block from mirroring.

Array of strings. For example: docker.io/library/alpine

mirror.helm

The helm configuration of the image set. Note that the oc-mirror plugin supports only helm charts that do not require user input when rendered.

Object

mirror.helm.local

The local helm charts to mirror.

Array of objects. For example:

local:
  - name: podinfo
    path: /test/podinfo-5.0.0.tar.gz

mirror.helm.local.name

The name of the local helm chart to mirror.

String. For example: podinfo.

mirror.helm.local.path

The path of the local helm chart to mirror.

String. For example: /test/podinfo-5.0.0.tar.gz.

mirror.helm.repositories

The remote helm repositories to mirror from.

Array of objects. For example:

repositories:
  - name: podinfo
    url: https://example.github.io/podinfo
    charts:
      - name: podinfo
        version: 5.0.0

mirror.helm.repositories.name

The name of the helm repository to mirror from.

String. For example: podinfo.

mirror.helm.repositories.url

The URL of the helm repository to mirror from.

String. For example: https://example.github.io/podinfo.

mirror.helm.repositories.charts

The remote helm charts to mirror.

Array of objects.

mirror.helm.repositories.charts.name

The name of the helm chart to mirror.

String. For example: podinfo.

mirror.helm.repositories.charts.version

The version of the named helm chart to mirror.

String. For example: 5.0.0.

mirror.operators

The Operators configuration of the image set.

Array of objects. For example:

operators:
  - catalog: registry.redhat.io/redhat/redhat-operator-index:v4.12
    packages:
      - name: elasticsearch-operator
        minVersion: '2.4.0'

mirror.operators.catalog

The Operator catalog to include in the image set.

String. For example: registry.redhat.io/redhat/redhat-operator-index:v4.12.

mirror.operators.full

When true, downloads the full catalog, Operator package, or Operator channel.

Boolean. The default value is false.

mirror.operators.packages

The Operator packages configuration.

Array of objects. For example:

operators:
  - catalog: registry.redhat.io/redhat/redhat-operator-index:v4.12
    packages:
      - name: elasticsearch-operator
        minVersion: '5.2.3-31'

mirror.operators.packages.name

The Operator package name to include in the image set

String. For example: elasticsearch-operator.

mirror.operators.packages.channels

The Operator package channel configuration.

Object

mirror.operators.packages.channels.name

The Operator channel name, unique within a package, to include in the image set.

String. For example: fast or stable-v4.12.

mirror.operators.packages.channels.maxVersion

The highest version of the Operator mirror across all channels in which it exists. See the following note for further information.

String. For example: 5.2.3-31

mirror.operators.packages.channels.minBundle

The name of the minimum bundle to include, plus all bundles in the upgrade graph to the channel head. Set this field only if the named bundle has no semantic version metadata.

String. For example: bundleName

mirror.operators.packages.channels.minVersion

The lowest version of the Operator to mirror across all channels in which it exists. See the following note for further information.

String. For example: 5.2.3-31

mirror.operators.packages.maxVersion

The highest version of the Operator to mirror across all channels in which it exists. See the following note for further information.

String. For example: 5.2.3-31.

mirror.operators.packages.minVersion

The lowest version of the Operator to mirror across all channels in which it exists. See the following note for further information.

String. For example: 5.2.3-31.

mirror.operators.skipDependencies

If true, dependencies of bundles are not included.

Boolean. The default value is false.

mirror.operators.targetName

Optional alternative name to mirror the referenced catalog as.

String. For example: my-operator-catalog

mirror.operators.targetTag

Optional alternative tag to append to the targetName.

String. For example: v1

mirror.platform

The platform configuration of the image set.

Object

mirror.platform.architectures

The architecture of the platform release payload to mirror.

Array of strings. For example:

architectures:
  - amd64
  - arm64

mirror.platform.channels

The platform channel configuration of the image set.

Array of objects. For example:

channels:
  - name: stable-4.10
  - name: stable-4.12

mirror.platform.channels.full

When true, sets the minVersion to the first release in the channel and the maxVersion to the last release in the channel.

Boolean. The default value is false.

mirror.platform.channels.name

The name of the release channel.

String. For example: stable-4.12

mirror.platform.channels.minVersion

The minimum version of the referenced platform to be mirrored.

String. For example: 4.9.6

mirror.platform.channels.maxVersion

The highest version of the referenced platform to be mirrored.

String. For example: 4.12.1

mirror.platform.channels.shortestPath

Toggles shortest path mirroring or full range mirroring.

Boolean. The default value is false.

mirror.platform.channels.type

The type of the platform to be mirrored.

String. For example: ocp or okd. The default is ocp.

mirror.platform.graph

Indicates whether the OSUS graph is added to the image set and subsequently published to the mirror.

Boolean. The default value is false.

storageConfig

The back-end configuration of the image set.

Object

storageConfig.local

The local back-end configuration of the image set.

Object

storageConfig.local.path

The path of the directory to contain the image set metadata.

String. For example: ./path/to/dir/.

storageConfig.registry

The registry back-end configuration of the image set.

Object

storageConfig.registry.imageURL

The back-end registry URI. Can optionally include a namespace reference in the URI.

String. For example: quay.io/myuser/imageset:metadata.

storageConfig.registry.skipTLS

Optionally skip TLS verification of the referenced back-end registry.

Boolean. The default value is false.

Note

Using the the minVersion and maxVersion properties to filter for a specific Operator version range can result in a multiple channel heads error. The error message will state that there are multiple channel heads. This is because when the filter is applied, the update graph of the operator is truncated.

The Operator Lifecycle Manager requires that every operator channel contains versions that form an update graph with exactly one end point, that is, the latest version of the operator. When applying the filter range that graph can turn into two or more separate graphs or a graph that has more than one end point.

To avoid this error, do not filter out the latest version of an operator. If you still run into the error, depending on the operator, either the maxVersion property needs to be increased or the minVersion property needs to be decreased. Because every operator graph can be different, you might need to adjust these values, according to the procedure, until the error is gone.

4.13. Image set configuration examples

The following ImageSetConfiguration file examples show the configuration for various mirroring use cases.

Use case: Including the shortest OpenShift Container Platform upgrade path

The following ImageSetConfiguration file uses a local storage backend and includes all OpenShift Container Platform versions along the shortest upgrade path from the minimum version of 4.11.37 to the maximum version of 4.12.15.

Example ImageSetConfiguration file

apiVersion: mirror.openshift.io/v1alpha2
kind: ImageSetConfiguration
storageConfig:
  local:
    path: /home/user/metadata
mirror:
  platform:
    channels:
      - name: stable-4.12
        minVersion: 4.11.37
        maxVersion: 4.12.15
        shortestPath: true

Use case: Including all versions of OpenShift Container Platform from a minimum to the latest

The following ImageSetConfiguration file uses a registry storage backend and includes all OpenShift Container Platform versions starting at a minimum version of 4.10.10 to the latest version in the channel.

On every invocation of oc-mirror with this image set configuration, the latest release of the stable-4.10 channel is evaluated, so running oc-mirror at regular intervals ensures that you automatically receive the latest releases of OpenShift Container Platform images.

Example ImageSetConfiguration file

apiVersion: mirror.openshift.io/v1alpha2
kind: ImageSetConfiguration
storageConfig:
  registry:
    imageURL: example.com/mirror/oc-mirror-metadata
    skipTLS: false
mirror:
  platform:
    channels:
      - name: stable-4.10
        minVersion: 4.10.10

Use case: Including Operator versions from a minimum to the latest

The following ImageSetConfiguration file uses a local storage backend and includes only the Red Hat Advanced Cluster Security for Kubernetes Operator, versions starting at 4.0.1 and later in the stable channel.

Note

When you specify a minimum or maximum version range, you might not receive all Operator versions in that range.

By default, oc-mirror excludes any versions that are skipped or replaced by a newer version in the Operator Lifecycle Manager (OLM) specification. Operator versions that are skipped might be affected by a CVE or contain bugs. Use a newer version instead. For more information on skipped and replaced versions, see Creating an update graph with OLM.

To receive all Operator versions in a specified range, you can set the mirror.operators.full field to true.

Example ImageSetConfiguration file

apiVersion: mirror.openshift.io/v1alpha2
kind: ImageSetConfiguration
storageConfig:
  local:
    path: /home/user/metadata
mirror:
  operators:
    - catalog: registry.redhat.io/redhat/redhat-operator-index:v4.12
      packages:
        - name: rhacs-operator
          channels:
          - name: stable
            minVersion: 4.0.1

Note

To specify a maximum version instead of the latest, set the mirror.operators.packages.channels.maxVersion field.

Use case: Including the Nutanix CSI Operator

The following ImageSetConfiguration file uses a local storage backend and includes the Nutanix CSI Operator, the OpenShift Update Service (OSUS) graph image, and an additional Red Hat Universal Base Image (UBI).

Example ImageSetConfiguration file

kind: ImageSetConfiguration
apiVersion: mirror.openshift.io/v1alpha2
storageConfig:
  registry:
    imageURL: mylocalregistry/ocp-mirror/openshift4
    skipTLS: false
mirror:
  platform:
    channels:
    - name: stable-4.12
      type: ocp
    graph: true
  operators:
  - catalog: registry.redhat.io/redhat/certified-operator-index:v4.12
    packages:
    - name: nutanixcsioperator
      channels:
      - name: stable
  additionalImages:
  - name: registry.redhat.io/ubi9/ubi:latest

Use case: Including the default Operator channel

The following ImageSetConfiguration file includes the stable-5.7 and stable channels for the OpenShift Elasticsearch Operator. Even if only the packages from the stable-5.7 channel are needed, the stable channel must also be included in the ImageSetConfiguration file, because it is the default channel for the Operator. You must always include the default channel for the Operator package even if you do not use the bundles in that channel.

Tip

You can find the default channel by running the following command: oc mirror list operators --catalog=<catalog_name> --package=<package_name>.

Example ImageSetConfiguration file

apiVersion: mirror.openshift.io/v1alpha2
kind: ImageSetConfiguration
storageConfig:
  registry:
    imageURL: example.com/mirror/oc-mirror-metadata
    skipTLS: false
mirror:
  operators:
  - catalog: registry.redhat.io/redhat/redhat-operator-index:v4.12
    packages:
    - name: elasticsearch-operator
      channels:
      - name: stable-5.7
      - name: stable

Use case: Including an entire catalog (all versions)

The following ImageSetConfiguration file sets the mirror.operators.full field to true to include all versions for an entire Operator catalog.

Example ImageSetConfiguration file

apiVersion: mirror.openshift.io/v1alpha2
kind: ImageSetConfiguration
storageConfig:
  registry:
    imageURL: example.com/mirror/oc-mirror-metadata
    skipTLS: false
mirror:
  operators:
    - catalog: registry.redhat.io/redhat/redhat-operator-index:v4.12
      full: true

Use case: Including an entire catalog (channel heads only)

The following ImageSetConfiguration file includes the channel heads for an entire Operator catalog.

By default, for each Operator in the catalog, oc-mirror includes the latest Operator version (channel head) from the default channel. If you want to mirror all Operator versions, and not just the channel heads, you must set the mirror.operators.full field to true.

Example ImageSetConfiguration file

apiVersion: mirror.openshift.io/v1alpha2
kind: ImageSetConfiguration
storageConfig:
  registry:
    imageURL: example.com/mirror/oc-mirror-metadata
    skipTLS: false
mirror:
  operators:
  - catalog: registry.redhat.io/redhat/redhat-operator-index:v4.12

Use case: Including arbitrary images and helm charts

The following ImageSetConfiguration file uses a registry storage backend and includes helm charts and an additional Red Hat Universal Base Image (UBI).

Example ImageSetConfiguration file

apiVersion: mirror.openshift.io/v1alpha2
kind: ImageSetConfiguration
archiveSize: 4
storageConfig:
  registry:
    imageURL: example.com/mirror/oc-mirror-metadata
    skipTLS: false
mirror:
 platform:
   architectures:
     - "s390x"
   channels:
     - name: stable-4.12
 operators:
   - catalog: registry.redhat.io/redhat/redhat-operator-index:v4.12
 helm:
   repositories:
     - name: redhat-helm-charts
       url: https://raw.githubusercontent.com/redhat-developer/redhat-helm-charts/master
       charts:
         - name: ibm-mongodb-enterprise-helm
           version: 0.2.0
 additionalImages:
   - name: registry.redhat.io/ubi9/ubi:latest

4.14. Command reference for oc-mirror

The following tables describe the oc mirror subcommands and flags:

Table 4.2. oc mirror subcommands
SubcommandDescription

completion

Generate the autocompletion script for the specified shell.

describe

Output the contents of an image set.

help

Show help about any subcommand.

init

Output an initial image set configuration template.

list

List available platform and Operator content and their version.

version

Output the oc-mirror version.

Table 4.3. oc mirror flags
FlagDescription

-c, --config <string>

Specify the path to an image set configuration file.

--continue-on-error

If any non image-pull related error occurs, continue and attempt to mirror as much as possible.

--dest-skip-tls

Disable TLS validation for the target registry.

--dest-use-http

Use plain HTTP for the target registry.

--dry-run

Print actions without mirroring images. Generates mapping.txt and pruning-plan.json files.

--from <string>

Specify the path to an image set archive that was generated by an execution of oc-mirror to load into a target registry.

-h, --help

Show the help.

--ignore-history

Ignore past mirrors when downloading images and packing layers. Disables incremental mirroring and might download more data.

--manifests-only

Generate manifests for ImageContentSourcePolicy objects to configure a cluster to use the mirror registry, but do not actually mirror any images. To use this flag, you must pass in an image set archive with the --from flag.

--max-nested-paths <int>

Specify the maximum number of nested paths for destination registries that limit nested paths. The default is 2.

--max-per-registry <int>

Specify the number of concurrent requests allowed per registry. The default is 6.

--oci-feature-action

The action to perform when using the Technology Preview OCI feature. The options are copy or mirror.

--oci-insecure-signature-policy

Do not push signatures when using the Technology Preview OCI feature.

--oci-registries-config

Provide a registries configuration file to specify an alternative registry location to copy from when using the Technology Preview OCI feature.

--skip-cleanup

Skip removal of artifact directories.

--skip-image-pin

Do not replace image tags with digest pins in Operator catalogs.

--skip-metadata-check

Skip metadata when publishing an image set. This is only recommended when the image set was created with --ignore-history.

--skip-missing

If an image is not found, skip it instead of reporting an error and aborting execution. Does not apply to custom images explicitly specified in the image set configuration.

--skip-pruning

Disable automatic pruning of images from the target mirror registry.

--skip-verification

Skip digest verification.

--source-skip-tls

Disable TLS validation for the source registry.

--source-use-http

Use plain HTTP for the source registry.

--use-oci-feature

Use the Technology Preview OCI feature for copying OCI-formatted images.

-v, --verbose <int>

Specify the number for the log level verbosity. Valid values are 0 - 9. The default is 0.

4.15. Additional resources

Legal Notice

Copyright © 2024 Red Hat, Inc.
The text of and illustrations in this document are licensed by Red Hat under a Creative Commons Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is available at http://creativecommons.org/licenses/by-sa/3.0/. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must provide the URL for the original version.
Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert, Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.
Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift, Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other countries.
Linux® is the registered trademark of Linus Torvalds in the United States and other countries.
Java® is a registered trademark of Oracle and/or its affiliates.
XFS® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States and/or other countries.
MySQL® is a registered trademark of MySQL AB in the United States, the European Union and other countries.
Node.js® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the official Joyent Node.js open source or commercial project.
The OpenStack® Word Mark and OpenStack logo are either registered trademarks/service marks or trademarks/service marks of the OpenStack Foundation, in the United States and other countries and are used with the OpenStack Foundation's permission. We are not affiliated with, endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.
All other trademarks are the property of their respective owners.
Red Hat logoGithubRedditYoutubeTwitter

Learn

Try, buy, & sell

Communities

About Red Hat Documentation

We help Red Hat users innovate and achieve their goals with our products and services with content they can trust.

Making open source more inclusive

Red Hat is committed to replacing problematic language in our code, documentation, and web properties. For more details, see the Red Hat Blog.

About Red Hat

We deliver hardened solutions that make it easier for enterprises to work across platforms and environments, from the core datacenter to the network edge.

© 2024 Red Hat, Inc.