
OpenShift Container Platform 4.18

Hardware accelerators

Hardware accelerators

Last Updated: 2026-01-15

OpenShift Container Platform 4.18 Hardware accelerators

Hardware accelerators

Legal Notice

Copyright © Red Hat.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity
logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other
countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related to
or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This document provides instructions for installing and configuring the GPU Operators supported by
Red Hat OpenShift AI for the provided hardware acceleration capabilities for creating artificial
intelligence and machine learning (AI/ML) applications.

. .

. .

. .

. .

. .

Table of Contents

CHAPTER 1. ABOUT HARDWARE ACCELERATORS
1.1. HARDWARE ACCELERATORS

CHAPTER 2. NVIDIA GPU ARCHITECTURE
2.1. NVIDIA GPU PREREQUISITES
2.2. NVIDIA GPU ENABLEMENT

2.2.1. GPUs and bare metal
2.2.2. GPUs and virtualization
2.2.3. GPUs and vSphere
2.2.4. GPUs and Red Hat KVM
2.2.5. GPUs and CSPs
2.2.6. GPUs and Red Hat Device Edge

2.3. GPU SHARING METHODS
2.3.1. CUDA streams
2.3.2. Time-slicing
2.3.3. CUDA Multi-Process Service
2.3.4. Multi-instance GPU
2.3.5. Virtualization with vGPU

2.4. NVIDIA GPU FEATURES FOR OPENSHIFT CONTAINER PLATFORM

CHAPTER 3. AMD GPU OPERATOR
3.1. ABOUT THE AMD GPU OPERATOR
3.2. INSTALLING THE AMD GPU OPERATOR
3.3. TESTING THE AMD GPU OPERATOR

CHAPTER 4. INTEL GAUDI AI ACCELERATORS
4.1. INTEL GAUDI AI ACCELERATORS PREREQUISITES

CHAPTER 5. NVIDIA GPUDIRECT REMOTE DIRECT MEMORY ACCESS (RDMA)
5.1. NVIDIA GPUDIRECT RDMA PREREQUISITES
5.2. DISABLING THE IRDMA KERNEL MODULE
5.3. CREATING PERSISTENT NAMING RULES
5.4. CONFIGURING THE NFD OPERATOR
5.5. CONFIGURING THE SR-IOV OPERATOR
5.6. CONFIGURING THE NVIDIA NETWORK OPERATOR
5.7. CONFIGURING THE GPU OPERATOR
5.8. CREATING THE MACHINE CONFIGURATION
5.9. CREATING THE WORKLOAD PODS

5.9.1. Creating a shared device RDMA on RoCE
5.9.2. Creating a host device RDMA on RoCE
5.9.3. Creating a SR-IOV legacy mode RDMA on RoCE
5.9.4. Creating a shared device RDMA on Infiniband

5.10. VERIFYING RDMA CONNECTIVITY

3
4

5
5
5
6
7
7
7
8
8
9
9

10
10
10
11
11

13
13
13
13

15
15

16
16
16
17
19
23
24
28
33
34
34
35
39
43
45

Table of Contents

1

OpenShift Container Platform 4.18 Hardware accelerators

2

CHAPTER 1. ABOUT HARDWARE ACCELERATORS
Specialized hardware accelerators play a key role in the emerging generative artificial intelligence and
machine learning (AI/ML) industry. Specifically, hardware accelerators are essential to the training and
serving of large language and other foundational models that power this new technology. Data
scientists, data engineers, ML engineers, and developers can take advantage of the specialized
hardware acceleration for data-intensive transformations and model development and serving. Much of
that ecosystem is open source, with several contributing partners and open source foundations.

Red Hat OpenShift Container Platform provides support for cards and peripheral hardware that add
processing units that comprise hardware accelerators:

Graphical processing units (GPUs)

Neural processing units (NPUs)

Application-specific integrated circuits (ASICs)

Data processing units (DPUs)

Specialized hardware accelerators provide a rich set of benefits for AI/ML development:

One platform for all

A collaborative environment for developers, data engineers, data scientists, and DevOps

Extended capabilities with Operators

Operators allow for bringing AI/ML capabilities to OpenShift Container Platform

Hybrid-cloud support

On-premise support for model development, delivery, and deployment

Support for AI/ML workloads

Model testing, iteration, integration, promotion, and serving into production as services

Red Hat provides an optimized platform to enable these specialized hardware accelerators in Red Hat
Enterprise Linux (RHEL) and OpenShift Container Platform platforms at the Linux (kernel and
userspace) and Kubernetes layers. To do this, Red Hat combines the proven capabilities of Red Hat
OpenShift AI and Red Hat OpenShift Container Platform in a single enterprise-ready AI application
platform.

Hardware Operators use the operating framework of a Kubernetes cluster to enable the required
accelerator resources. You can also deploy the provided device plugin manually or as a daemon set. This
plugin registers the GPU in the cluster.

Certain specialized hardware accelerators are designed to work within disconnected environments where
a secure environment must be maintained for development and testing.

CHAPTER 1. ABOUT HARDWARE ACCELERATORS

3

1.1. HARDWARE ACCELERATORS

Red Hat OpenShift Container Platform enables the following hardware accelerators:

NVIDIA GPU

AMD Instinct® GPU

Intel® Gaudi®

Additional resources

Introduction to Red Hat OpenShift AI

NVIDIA GPU Operator on Red Hat OpenShift Container Platform

AMD Instinct Accelerators

Intel Gaudi Al Accelerators

OpenShift Container Platform 4.18 Hardware accelerators

4

https://docs.redhat.com/en/documentation/red_hat_openshift_ai_self-managed/2-latest/html/introduction_to_red_hat_openshift_ai/index
https://docs.nvidia.com/datacenter/cloud-native/openshift/latest/index.html
https://www.amd.com/en/products/accelerators/instinct.html
https://www.intel.com/content/www/us/en/products/details/processors/ai-accelerators/gaudi-overview.html

CHAPTER 2. NVIDIA GPU ARCHITECTURE
NVIDIA supports the use of graphics processing unit (GPU) resources on OpenShift Container Platform.
OpenShift Container Platform is a security-focused and hardened Kubernetes platform developed and
supported by Red Hat for deploying and managing Kubernetes clusters at scale. OpenShift Container
Platform includes enhancements to Kubernetes so that users can easily configure and use NVIDIA GPU
resources to accelerate workloads.

The NVIDIA GPU Operator uses the Operator framework within OpenShift Container Platform to
manage the full lifecycle of NVIDIA software components required to run GPU-accelerated workloads.

These components include the NVIDIA drivers (to enable CUDA), the Kubernetes device plugin for
GPUs, the NVIDIA Container Toolkit, automatic node tagging using GPU feature discovery (GFD),
DCGM-based monitoring, and others.

NOTE

The NVIDIA GPU Operator is only supported by NVIDIA. For more information about
obtaining support from NVIDIA, see Obtaining Support from NVIDIA .

2.1. NVIDIA GPU PREREQUISITES

A working OpenShift cluster with at least one GPU worker node.

Access to the OpenShift cluster as a cluster-admin to perform the required steps.

OpenShift CLI (oc) is installed.

The node feature discovery (NFD) Operator is installed and a nodefeaturediscovery instance
is created.

2.2. NVIDIA GPU ENABLEMENT

The following diagram shows how the GPU architecture is enabled for OpenShift:

Figure 2.1. NVIDIA GPU enablement

CHAPTER 2. NVIDIA GPU ARCHITECTURE

5

https://access.redhat.com/solutions/5174941

Figure 2.1. NVIDIA GPU enablement

NOTE

MIG is supported on GPUs starting with the NVIDIA Ampere generation. For a list of
GPUs that support MIG, see the NVIDIA MIG User Guide .

2.2.1. GPUs and bare metal

You can deploy OpenShift Container Platform on an NVIDIA-certified bare metal server but with some
limitations:

Control plane nodes can be CPU nodes.

Worker nodes must be GPU nodes, provided that AI/ML workloads are executed on these
worker nodes.
In addition, the worker nodes can host one or more GPUs, but they must be of the same type.
For example, a node can have two NVIDIA A100 GPUs, but a node with one A100 GPU and one
T4 GPU is not supported. The NVIDIA Device Plugin for Kubernetes does not support mixing
different GPU models on the same node.

When using OpenShift, note that one or three or more servers are required. Clusters with two
servers are not supported. The single server deployment is called single node openShift (SNO)
and using this configuration results in a non-high availability OpenShift environment.

You can choose one of the following methods to access the containerized GPUs:

GPU passthrough

Multi-Instance GPU (MIG)

Additional resources

Red Hat OpenShift on Bare Metal Stack

OpenShift Container Platform 4.18 Hardware accelerators

6

https://docs.nvidia.com/datacenter/tesla/mig-user-guide/#supported-gpus
https://docs.nvidia.com/ai-enterprise/deployment-guide-openshift-on-bare-metal/0.1.0/on-bare-metal.html

2.2.2. GPUs and virtualization

Many developers and enterprises are moving to containerized applications and serverless
infrastructures, but there is still a lot of interest in developing and maintaining applications that run on
virtual machines (VMs). Red Hat OpenShift Virtualization provides this capability, enabling enterprises
to incorporate VMs into containerized workflows within clusters.

You can choose one of the following methods to connect the worker nodes to the GPUs:

GPU passthrough to access and use GPU hardware within a virtual machine (VM).

GPU (vGPU) time-slicing, when GPU compute capacity is not saturated by workloads.

Additional resources

NVIDIA GPU Operator with OpenShift Virtualization

2.2.3. GPUs and vSphere

You can deploy OpenShift Container Platform on an NVIDIA-certified VMware vSphere server that can
host different GPU types.

An NVIDIA GPU driver must be installed in the hypervisor in case vGPU instances are used by the VMs.
For VMware vSphere, this host driver is provided in the form of a VIB file.

The maximum number of vGPUS that can be allocated to worker node VMs depends on the version of
vSphere:

vSphere 7.0: maximum 4 vGPU per VM

vSphere 8.0: maximum 8 vGPU per VM

NOTE

vSphere 8.0 introduced support for multiple full or fractional heterogenous
profiles associated with a VM.

You can choose one of the following methods to attach the worker nodes to the GPUs:

GPU passthrough for accessing and using GPU hardware within a virtual machine (VM)

GPU (vGPU) time-slicing, when not all of the GPU is needed

Similar to bare metal deployments, one or three or more servers are required. Clusters with two servers
are not supported.

Additional resources

OpenShift Container Platform on VMware vSphere with NVIDIA vGPUs

2.2.4. GPUs and Red Hat KVM

You can use OpenShift Container Platform on an NVIDIA-certified kernel-based virtual machine (KVM)
server.

Similar to bare-metal deployments, one or three or more servers are required. Clusters with two servers

CHAPTER 2. NVIDIA GPU ARCHITECTURE

7

https://docs.nvidia.com/datacenter/cloud-native/gpu-operator/latest/openshift/openshift-virtualization.html
https://docs.nvidia.com/datacenter/cloud-native/gpu-operator/latest/openshift/nvaie-with-ocp.html#openshift-container-platform-on-vmware-vsphere-with-nvidia-vgpus

Similar to bare-metal deployments, one or three or more servers are required. Clusters with two servers
are not supported.

However, unlike bare-metal deployments, you can use different types of GPUs in the server. This is
because you can assign these GPUs to different VMs that act as Kubernetes nodes. The only limitation is
that a Kubernetes node must have the same set of GPU types at its own level.

You can choose one of the following methods to access the containerized GPUs:

GPU passthrough for accessing and using GPU hardware within a virtual machine (VM)

GPU (vGPU) time-slicing when not all of the GPU is needed

To enable the vGPU capability, a special driver must be installed at the host level. This driver is delivered
as a RPM package. This host driver is not required at all for GPU passthrough allocation.

2.2.5. GPUs and CSPs

You can deploy OpenShift Container Platform to one of the major cloud service providers (CSPs):
Amazon Web Services (AWS), Google Cloud, or Microsoft Azure.

Two modes of operation are available: a fully managed deployment and a self-managed deployment.

In a fully managed deployment, everything is automated by Red Hat in collaboration with CSP.
You can request an OpenShift instance through the CSP web console, and the cluster is
automatically created and fully managed by Red Hat. You do not have to worry about node
failures or errors in the environment. Red Hat is fully responsible for maintaining the uptime of
the cluster. The fully managed services are available on AWS, Azure, and Google Cloud. For
AWS, the OpenShift service is called ROSA (Red Hat OpenShift Service on AWS). For Azure,
the service is called Azure Red Hat OpenShift. For Google Cloud, the service is called OpenShift
Dedicated on Google Cloud.

In a self-managed deployment, you are responsible for instantiating and maintaining the
OpenShift cluster. Red Hat provides the OpenShift-install utility to support the deployment of
the OpenShift cluster in this case. The self-managed services are available globally to all CSPs.

It is important that this compute instance is a GPU-accelerated compute instance and that the GPU
type matches the list of supported GPUs from NVIDIA AI Enterprise. For example, T4, V100, and A100
are part of this list.

You can choose one of the following methods to access the containerized GPUs:

GPU passthrough to access and use GPU hardware within a virtual machine (VM).

GPU (vGPU) time slicing when the entire GPU is not required.

Additional resources

Red Hat Openshift in the Cloud

2.2.6. GPUs and Red Hat Device Edge

Red Hat Device Edge provides access to MicroShift. MicroShift provides the simplicity of a single-node
deployment with the functionality and services you need for resource-constrained (edge) computing.
Red Hat Device Edge meets the needs of bare-metal, virtual, containerized, or Kubernetes workloads
deployed in resource-constrained environments.

OpenShift Container Platform 4.18 Hardware accelerators

8

https://docs.nvidia.com/ai-enterprise/deployment-guide-cloud/0.1.0/aws-redhat-openshift.html

You can enable NVIDIA GPUs on containers in a Red Hat Device Edge environment.

You use GPU passthrough to access the containerized GPUs.

Additional resources

How to accelerate workloads with NVIDIA GPUs on Red Hat Device Edge

2.3. GPU SHARING METHODS

Red Hat and NVIDIA have developed GPU concurrency and sharing mechanisms to simplify GPU-
accelerated computing on an enterprise-level OpenShift Container Platform cluster.

Applications typically have different compute requirements that can leave GPUs underutilized.
Providing the right amount of compute resources for each workload is critical to reduce deployment
cost and maximize GPU utilization.

Concurrency mechanisms for improving GPU utilization exist that range from programming model APIs
to system software and hardware partitioning, including virtualization. The following list shows the GPU
concurrency mechanisms:

Compute Unified Device Architecture (CUDA) streams

Time-slicing

CUDA Multi-Process Service (MPS)

Multi-instance GPU (MIG)

Virtualization with vGPU

Consider the following GPU sharing suggestions when using the GPU concurrency mechanisms for
different OpenShift Container Platform scenarios:

Bare metal

vGPU is not available. Consider using MIG-enabled cards.

VMs

vGPU is the best choice.

Older NVIDIA cards with no MIG on bare metal

Consider using time-slicing.

VMs with multiple GPUs and you want passthrough and vGPU

Consider using separate VMs.

Bare metal with OpenShift Virtualization and multiple GPUs

Consider using pass-through for hosted VMs and time-slicing for containers.

Additional resources

Improving GPU Utilization

2.3.1. CUDA streams

Compute Unified Device Architecture (CUDA) is a parallel computing platform and programming model

CHAPTER 2. NVIDIA GPU ARCHITECTURE

9

https://cloud.redhat.com/blog/how-to-accelerate-workloads-with-nvidia-gpus-on-red-hat-device-edge
https://developer.nvidia.com/blog/improving-gpu-utilization-in-kubernetes/

Compute Unified Device Architecture (CUDA) is a parallel computing platform and programming model
developed by NVIDIA for general computing on GPUs.

A stream is a sequence of operations that executes in issue-order on the GPU. CUDA commands are
typically executed sequentially in a default stream and a task does not start until a preceding task has
completed.

Asynchronous processing of operations across different streams allows for parallel execution of tasks. A
task issued in one stream runs before, during, or after another task is issued into another stream. This
allows the GPU to run multiple tasks simultaneously in no prescribed order, leading to improved
performance.

Additional resources

Asynchronous Concurrent Execution

2.3.2. Time-slicing

GPU time-slicing interleaves workloads scheduled on overloaded GPUs when you are running multiple
CUDA applications.

You can enable time-slicing of GPUs on Kubernetes by defining a set of replicas for a GPU, each of
which can be independently distributed to a pod to run workloads on. Unlike multi-instance GPU (MIG),
there is no memory or fault isolation between replicas, but for some workloads this is better than not
sharing at all. Internally, GPU time-slicing is used to multiplex workloads from replicas of the same
underlying GPU.

You can apply a cluster-wide default configuration for time-slicing. You can also apply node-specific
configurations. For example, you can apply a time-slicing configuration only to nodes with Tesla T4
GPUs and not modify nodes with other GPU models.

You can combine these two approaches by applying a cluster-wide default configuration and then
labeling nodes to give those nodes a node-specific configuration.

2.3.3. CUDA Multi-Process Service

CUDA Multi-Process Service (MPS) allows a single GPU to use multiple CUDA processes. The
processes run in parallel on the GPU, eliminating saturation of the GPU compute resources. MPS also
enables concurrent execution, or overlapping, of kernel operations and memory copying from different
processes to enhance utilization.

Additional resources

CUDA MPS

2.3.4. Multi-instance GPU

Using Multi-instance GPU (MIG), you can split GPU compute units and memory into multiple MIG
instances. Each of these instances represents a standalone GPU device from a system perspective and
can be connected to any application, container, or virtual machine running on the node. The software
that uses the GPU treats each of these MIG instances as an individual GPU.

MIG is useful when you have an application that does not require the full power of an entire GPU. The
MIG feature of the new NVIDIA Ampere architecture enables you to split your hardware resources into
multiple GPU instances, each of which is available to the operating system as an independent CUDA-

OpenShift Container Platform 4.18 Hardware accelerators

10

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#asynchronous-concurrent-execution
https://docs.nvidia.com/deploy/mps/index.html

enabled GPU.

NVIDIA GPU Operator version 1.7.0 and higher provides MIG support for the A100 and A30 Ampere
cards. These GPU instances are designed to support up to seven multiple independent CUDA
applications so that they operate completely isolated with dedicated hardware resources.

Additional resources

NVIDIA Multi-Instance GPU User Guide

2.3.5. Virtualization with vGPU

Virtual machines (VMs) can directly access a single physical GPU using NVIDIA vGPU. You can create
virtual GPUs that can be shared by VMs across the enterprise and accessed by other devices.

This capability combines the power of GPU performance with the management and security benefits
provided by vGPU. Additional benefits provided by vGPU includes proactive management and
monitoring for your VM environment, workload balancing for mixed VDI and compute workloads, and
resource sharing across multiple VMs.

Additional resources

Virtual GPUs

2.4. NVIDIA GPU FEATURES FOR OPENSHIFT CONTAINER PLATFORM

NVIDIA Container Toolkit

NVIDIA Container Toolkit enables you to create and run GPU-accelerated containers. The toolkit
includes a container runtime library and utilities to automatically configure containers to use NVIDIA
GPUs.

NVIDIA AI Enterprise

NVIDIA AI Enterprise is an end-to-end, cloud-native suite of AI and data analytics software
optimized, certified, and supported with NVIDIA-Certified systems.
NVIDIA AI Enterprise includes support for Red Hat OpenShift Container Platform. The following
installation methods are supported:

OpenShift Container Platform on bare metal or VMware vSphere with GPU Passthrough.

OpenShift Container Platform on VMware vSphere with NVIDIA vGPU.

GPU Feature Discovery

NVIDIA GPU Feature Discovery for Kubernetes is a software component that enables you to
automatically generate labels for the GPUs available on a node. GPU Feature Discovery uses node
feature discovery (NFD) to perform this labeling.
The Node Feature Discovery Operator (NFD) manages the discovery of hardware features and
configurations in an OpenShift Container Platform cluster by labeling nodes with hardware-specific
information. NFD labels the host with node-specific attributes, such as PCI cards, kernel, OS version,
and so on.

You can find the NFD Operator in the Operator Hub by searching for “Node Feature Discovery”.

NVIDIA GPU Operator with OpenShift Virtualization

Up until this point, the GPU Operator only provisioned worker nodes to run GPU-accelerated

CHAPTER 2. NVIDIA GPU ARCHITECTURE

11

https://docs.nvidia.com/datacenter/tesla/mig-user-guide/
https://www.nvidia.com/en-us/data-center/virtual-solutions/

Up until this point, the GPU Operator only provisioned worker nodes to run GPU-accelerated
containers. Now, the GPU Operator can also be used to provision worker nodes for running GPU-
accelerated virtual machines (VMs).
You can configure the GPU Operator to deploy different software components to worker nodes
depending on which GPU workload is configured to run on those nodes.

GPU Monitoring dashboard

You can install a monitoring dashboard to display GPU usage information on the cluster Observe
page in the OpenShift Container Platform web console. GPU utilization information includes the
number of available GPUs, power consumption (in watts), temperature (in degrees Celsius),
utilization (in percent), and other metrics for each GPU.

Additional resources

NVIDIA-Certified Systems

NVIDIA AI Enterprise

NVIDIA Container Toolkit

Enabling the GPU Monitoring Dashboard

MIG Support in OpenShift Container Platform

Time-slicing NVIDIA GPUs in OpenShift

Deploy GPU Operators in a disconnected or airgapped environment

Node Feature Discovery Operator

OpenShift Container Platform 4.18 Hardware accelerators

12

https://docs.nvidia.com/ngc/ngc-deploy-on-premises/nvidia-certified-systems/index.html
https://docs.nvidia.com/ai-enterprise/index.html#deployment-guides
https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/overview.html#
https://docs.nvidia.com/datacenter/cloud-native/openshift/latest/enable-gpu-monitoring-dashboard.html
https://docs.nvidia.com/datacenter/cloud-native/openshift/latest/mig-ocp.html
https://docs.nvidia.com/datacenter/cloud-native/openshift/latest/time-slicing-gpus-in-openshift.html
https://docs.nvidia.com/datacenter/cloud-native/openshift/latest/mirror-gpu-ocp-disconnected.html
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/specialized_hardware_and_driver_enablement/#node-feature-discovery-operator

CHAPTER 3. AMD GPU OPERATOR
AMD Instinct GPU accelerators combined with the AMD GPU Operator within your OpenShift Container
Platform cluster lets you seamlessly harness computing capabilities for machine learning, Generative AI,
and GPU-accelerated applications.

This documentation provides the information you need to enable, configure, and test the AMD GPU
Operator. For more information, see AMD Instinct™ Accelerators .

3.1. ABOUT THE AMD GPU OPERATOR

The hardware acceleration capabilities of the AMD GPU Operator provide enhanced performance and
cost efficiency for data scientists and developers using Red Hat OpenShift AI for creating artificial
intelligence and machine learning (AI/ML) applications. Accelerating specific areas of GPU functions
can minimize CPU processing and memory usage, improving overall application speed, memory
consumption, and bandwidth restrictions.

3.2. INSTALLING THE AMD GPU OPERATOR

As a cluster administrator, you can install the AMD GPU Operator by using the OpenShift CLI and the
web console. This is a multi-step procedure that requires the installation of the Node Feature Discovery
Operator, the Kernel Module Management Operator, and then the AMD GPU Operator. Use the
following steps in succession to install the AMD community release of the Operator.

Next steps

1. Install the Node Feature Discovery Operator.

2. Install the Kernel Module Management Operator.

3. Install and configure the AMD GPU Operator.

3.3. TESTING THE AMD GPU OPERATOR

Use the following procedure to test the ROCmInfo installation and view the logs for the AMD MI210
GPU.

Procedure

1. Create a YAML file that tests ROCmInfo:

$ cat << EOF > rocminfo.yaml

apiVersion: v1
kind: Pod
metadata:
 name: rocminfo
spec:
 containers:
 - image: docker.io/rocm/pytorch:latest
 name: rocminfo
 command: ["/bin/sh","-c"]
 args: ["rocminfo"]
 resources:

CHAPTER 3. AMD GPU OPERATOR

13

https://www.amd.com/en/products/accelerators/instinct.html
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/specialized_hardware_and_driver_enablement/#installing-the-node-feature-discovery-operator_node-feature-discovery-operator
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/specialized_hardware_and_driver_enablement/#kmm-install_kernel-module-management-operator
https://instinct.docs.amd.com/projects/gpu-operator/en/main/installation/openshift-olm.html#install-amd-gpu-operator

2. Create the rocminfo pod:

Example output

3. Check the rocmnfo log with one MI210 GPU:

Example output

4. Delete the pod:

Example output

 limits:
 amd.com/gpu: 1
 requests:
 amd.com/gpu: 1
 restartPolicy: Never
EOF

$ oc create -f rocminfo.yaml

apiVersion: v1
pod/rocminfo created

$ oc logs rocminfo | grep -A5 "Agent"

HSA Agents
==========

Agent 1

 Name: Intel(R) Xeon(R) Gold 6330 CPU @ 2.00GHz
 Uuid: CPU-XX
 Marketing Name: Intel(R) Xeon(R) Gold 6330 CPU @ 2.00GHz
 Vendor Name: CPU
--
Agent 2

 Name: Intel(R) Xeon(R) Gold 6330 CPU @ 2.00GHz
 Uuid: CPU-XX
 Marketing Name: Intel(R) Xeon(R) Gold 6330 CPU @ 2.00GHz
 Vendor Name: CPU
--
Agent 3

 Name: gfx90a
 Uuid: GPU-024b776f768a638b
 Marketing Name: AMD Instinct MI210
 Vendor Name: AMD

$ oc delete -f rocminfo.yaml

pod "rocminfo" deleted

OpenShift Container Platform 4.18 Hardware accelerators

14

CHAPTER 4. INTEL GAUDI AI ACCELERATORS
You can use Intel Gaudi AI accelerators for your OpenShift Container Platform generative AI and
machine learning (AI/ML) applications. Intel Gaudi AI accelerators offer a cost-efficient, flexible, and
scalable solution for optimized deep learning workloads.

Red Hat supports Intel Gaudi 2 and Intel Gaudi 3 devices. Intel Gaudi 3 devices provide significant
improvements in training speed and energy efficiency.

4.1. INTEL GAUDI AI ACCELERATORS PREREQUISITES

You have a working OpenShift Container Platform cluster with at least one GPU worker node.

You have access to the OpenShift Container Platform cluster as a cluster-admin to perform the
required steps.

You have installed OpenShift CLI (oc).

You have installed the Node Feature Discovery (NFD) Operator and created a
NodeFeatureDiscovery instance.

Additional resources

OpenShift Installation (Intel Gaudi documentation)

Intel Gaudi AI Accelerator integration

CHAPTER 4. INTEL GAUDI AI ACCELERATORS

15

https://docs.habana.ai/en/latest/Installation_Guide/Additional_Installation/OpenShift_Installation/index.html
https://docs.redhat.com/en/documentation/red_hat_openshift_ai_self-managed/2.20/html/working_with_accelerators/intel-gaudi-ai-accelerator-integration_accelerators#intel-gaudi-ai-accelerator-integration_accelerators

CHAPTER 5. NVIDIA GPUDIRECT REMOTE DIRECT MEMORY
ACCESS (RDMA)

NVIDIA GPUDirect Remote Direct Memory Access (RDMA) allows for an application in one computer to
directly access the memory of another computer without needing access through the operating system.
This provides the ability to bypass kernel intervention in the process, freeing up resources and greatly
reducing the CPU overhead normally needed to process network communications. This is useful for
distributing GPU-accelerated workloads across clusters. And because RDMA is so suited toward high
bandwidth and low latency applications, this makes it ideal for big data and machine learning
applications.

There are currently three configuration methods for NVIDIA GPUDirect RDMA:

Shared device

This method allows for an NVIDIA GPUDirect RDMA device to be shared among multiple pods on the
OpenShift Container Platform worker node where the device is exposed.

Host device

This method provides direct physical Ethernet access on the worker node by creating an additional
host network on a pod. A plugin allows the network device to be moved from the host network
namespace to the network namespace on the pod.

SR-IOV legacy device

The Single Root IO Virtualization (SR-IOV) method can share a single network device, such as an
Ethernet adapter, with multiple pods. SR-IOV segments the device, recognized on the host node as a
physical function (PF), into multiple virtual functions (VFs). The VF is used like any other network
device.

Each of these methods can be used across either the NVIDIA GPUDirect RDMA over Converged
Ethernet (RoCE) or Infiniband infrastructures, providing an aggregate total of six methods of
configuration.

5.1. NVIDIA GPUDIRECT RDMA PREREQUISITES

All methods of NVIDIA GPUDirect RDMA configuration require the installation of specific Operators.
Use the following steps to install the Operators:

Install the Node Feature Discovery Operator.

Install the SR-IOV Operator.

Install the NVIDIA Network Operator (NVIDIA documentation).

Install the NVIDIA GPU Operator (NVIDIA documentation).

5.2. DISABLING THE IRDMA KERNEL MODULE

On some systems, including the DellR750xa, the IRDMA kernel module creates problems for the NVIDIA
Network Operator when unloading and loading the DOCA drivers. Use the following procedure to
disable the module.

Procedure

1. Generate the following machine configuration file by running the following command:

OpenShift Container Platform 4.18 Hardware accelerators

16

https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/specialized_hardware_and_driver_enablement/#installing-the-node-feature-discovery-operator_node-feature-discovery-operator
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/networking_operators/#installing-sriov-operator
https://docs.nvidia.com/networking/display/kubernetes2501/getting-started-openshift.html#network-operator-installation-using-openshift-oc-cli
https://docs.nvidia.com/datacenter/cloud-native/openshift/24.9.2/install-gpu-ocp.html

Example output

2. Create the machine configuration on the cluster and wait for the nodes to reboot by running
the following command:

Example output

3. Validate in a debug pod on each node that the module has not loaded by running the following
command:

5.3. CREATING PERSISTENT NAMING RULES

In some cases, device names won’t persist following a reboot. For example, on R760xa systems Mellanox
devices might be renamed after a reboot. You can avoid this problem by using a MachineConfig to set
persistence.

Procedure

1. Gather the MAC address names from the worker nodes for the node into a file and provide
names for the interfaces that need to persist. This example uses the file 70-persistent-
net.rules and stashes the details in it.

$ cat <<EOF > 99-machine-config-blacklist-irdma.yaml

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
 labels:
 machineconfiguration.openshift.io/role: worker
 name: 99-worker-blacklist-irdma
spec:
 kernelArguments:
 - "module_blacklist=irdma"

$ oc create -f 99-machine-config-blacklist-irdma.yaml

machineconfig.machineconfiguration.openshift.io/99-worker-blacklist-irdma created

$ oc debug node/nvd-srv-32.nvidia.eng.rdu2.dc.redhat.com
Starting pod/nvd-srv-32nvidiaengrdu2dcredhatcom-debug-btfj2 ...
To use host binaries, run `chroot /host`
Pod IP: 10.6.135.11
If you don't see a command prompt, try pressing enter.
sh-5.1# chroot /host
sh-5.1# lsmod|grep irdma
sh-5.1#

$ cat <<EOF > 70-persistent-net.rules
SUBSYSTEM=="net",ACTION=="add",ATTR{address}=="b8:3f:d2:3b:51:28",ATTR{type}=="1"
,NAME="ibs2f0"
SUBSYSTEM=="net",ACTION=="add",ATTR{address}=="b8:3f:d2:3b:51:29",ATTR{type}=="1"
,NAME="ens8f0np0"
SUBSYSTEM=="net",ACTION=="add",ATTR{address}=="b8:3f:d2:f0:36:d0",ATTR{type}=="1",

CHAPTER 5. NVIDIA GPUDIRECT REMOTE DIRECT MEMORY ACCESS (RDMA)

17

2. Convert that file into a base64 string without line breaks and set the output to the variable
PERSIST:

3. Create a machine configuration and set the base64 encoding in the custom resource file by
running the following command:

4. Create the machine configuration on the cluster by running the following command. After
running the command, the expected output shows
machineconfig.machineconfiguration.openshift.io/99-machine-config-udev-network
created.

5. Use the get mcp command to view the machine configuration status:

NAME="ibs2f0"
SUBSYSTEM=="net",ACTION=="add",ATTR{address}=="b8:3f:d2:f0:36:d1",ATTR{type}=="1",
NAME="ens8f0np0"
EOF

$ PERSIST=`cat 70-persistent-net.rules| base64 -w 0`

$ echo $PERSIST

U1VCU1lTVEVNPT0ibmV0IixBQ1RJT049PSJhZGQiLEFUVFJ7YWRkcmVzc309PSJiODozZjp
kMjozYjo1MToyOCIsQVRUUnt0eXBlfT09IjEiLE5BTUU9ImliczJmMCIKU1VCU1lTVEVNPT0ibm
V0IixBQ1RJT049PSJhZGQiLEFUVFJ7YWRkcmVzc309PSJiODozZjpkMjozYjo1MToyOSIsQV
RUUnt0eXBlfT09IjEiLE5BTUU9ImVuczhmMG5wMCIKU1VCU1lTVEVNPT0ibmV0IixBQ1RJT0
49PSJhZGQiLEFUVFJ7YWRkcmVzc309PSJiODozZjpkMjpmMDozNjpkMCIsQVRUUnt0eXBlfT
09IjEiLE5BTUU9ImliczJmMCIKU1VCU1lTVEVNPT0ibmV0IixBQ1RJT049PSJhZGQiLEFUVFJ
7YWRkcmVzc309PSJiODozZjpkMjpmMDozNjpkMSIsQVRUUnt0eXBlfT09IjEiLE5BTUU9ImVuc
zhmMG5wMCIK

$ cat <<EOF > 99-machine-config-udev-network.yaml

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
 labels:
 machineconfiguration.openshift.io/role: worker
 name: 99-machine-config-udev-network
spec:
 config:
 ignition:
 version: 3.2.0
 storage:
 files:
 - contents:
 source: data:text/plain;base64,$PERSIST
 filesystem: root
 mode: 420
 path: /etc/udev/rules.d/70-persistent-net.rules

$ oc create -f 99-machine-config-udev-network.yaml

OpenShift Container Platform 4.18 Hardware accelerators

18

Example output

The nodes will reboot and when the updating field returns to false, you can validate on the nodes by
looking at the devices in a debug pod.

5.4. CONFIGURING THE NFD OPERATOR

The Node Feature Discovery (NFD) Operator manages the detection of hardware features and
configuration in an OpenShift Container Platform cluster by labeling the nodes with hardware-specific
information. NFD labels the host with node-specific attributes, such as PCI cards, kernel, operating
system version, and so on.

Prerequisites

You have installed the NFD Operator.

Procedure

1. Validate that the Operator is installed and running by looking at the pods in the openshift-nfd
namespace by running the following command:

Example output

2. With the NFD controller running, generate the NodeFeatureDiscovery instance and add it to
the cluster.
The ClusterServiceVersion specification for NFD Operator provides default values, including
the NFD operand image that is part of the Operator payload. Retrieve its value by running the
following command:

3. Optional: Add entries to the default deviceClassWhiteList field, to support more network
adapters, such as the NVIDIA BlueField DPUs.

$ oc get mcp

NAME CONFIG UPDATED UPDATING DEGRADED
MACHINECOUNT READYMACHINECOUNT UPDATEDMACHINECOUNT
DEGRADEDMACHINECOUNT AGE
master rendered-master-9adfe851c2c14d9598eea5ec3df6c187 True False False
1 1 1 0 6h21m
worker rendered-worker-4568f1b174066b4b1a4de794cf538fee False True False
2 0 0 0 6h21m

$ oc get pods -n openshift-nfd

NAME READY STATUS RESTARTS AGE
nfd-controller-manager-8698c88cdd-t8gbc 2/2 Running 0 2m

$ NFD_OPERAND_IMAGE=`echo $(oc get csv -n openshift-nfd -o json | jq -r
'.items[0].metadata.annotations["alm-examples"]') | jq -r '.[] | select(.kind ==
"NodeFeatureDiscovery") | .spec.operand.image'`

apiVersion: nfd.openshift.io/v1

CHAPTER 5. NVIDIA GPUDIRECT REMOTE DIRECT MEMORY ACCESS (RDMA)

19

4. Create the 'NodeFeatureDiscovery` instance by running the following command:

Example output

5. Validate that the instance is up and running by looking at the pods under the openshift-nfd
namespace by running the following command:

Example output

6. Wait a short period of time and then verify that NFD has added labels to the node. The NFD
labels are prefixed with feature.node.kubernetes.io, so you can easily filter them.

kind: NodeFeatureDiscovery
metadata:
 name: nfd-instance
 namespace: openshift-nfd
spec:
 instance: ''
 operand:
 image: '${NFD_OPERAND_IMAGE}'
 servicePort: 12000
 prunerOnDelete: false
 topologyUpdater: false
 workerConfig:
 configData: |
 core:
 sleepInterval: 60s
 sources:
 pci:
 deviceClassWhitelist:
 - "02"
 - "03"
 - "0200"
 - "0207"
 - "12"
 deviceLabelFields:
 - "vendor"

$ oc create -f nfd-instance.yaml

nodefeaturediscovery.nfd.openshift.io/nfd-instance created

$ oc get pods -n openshift-nfd

NAME READY STATUS RESTARTS AGE
nfd-controller-manager-7cb6d656-jcnqb 2/2 Running 0 4m
nfd-gc-7576d64889-s28k9 1/1 Running 0 21s
nfd-master-b7bcf5cfd-qnrmz 1/1 Running 0 21s
nfd-worker-96pfh 1/1 Running 0 21s
nfd-worker-b2gkg 1/1 Running 0 21s
nfd-worker-bd9bk 1/1 Running 0 21s
nfd-worker-cswf4 1/1 Running 0 21s
nfd-worker-kp6gg 1/1 Running 0 21s

OpenShift Container Platform 4.18 Hardware accelerators

20

$ oc get node -o json | jq '.items[0].metadata.labels | with_entries(select(.key |
startswith("feature.node.kubernetes.io")))'
{
 "feature.node.kubernetes.io/cpu-cpuid.ADX": "true",
 "feature.node.kubernetes.io/cpu-cpuid.AESNI": "true",
 "feature.node.kubernetes.io/cpu-cpuid.AVX": "true",
 "feature.node.kubernetes.io/cpu-cpuid.AVX2": "true",
 "feature.node.kubernetes.io/cpu-cpuid.CETSS": "true",
 "feature.node.kubernetes.io/cpu-cpuid.CLZERO": "true",
 "feature.node.kubernetes.io/cpu-cpuid.CMPXCHG8": "true",
 "feature.node.kubernetes.io/cpu-cpuid.CPBOOST": "true",
 "feature.node.kubernetes.io/cpu-cpuid.EFER_LMSLE_UNS": "true",
 "feature.node.kubernetes.io/cpu-cpuid.FMA3": "true",
 "feature.node.kubernetes.io/cpu-cpuid.FP256": "true",
 "feature.node.kubernetes.io/cpu-cpuid.FSRM": "true",
 "feature.node.kubernetes.io/cpu-cpuid.FXSR": "true",
 "feature.node.kubernetes.io/cpu-cpuid.FXSROPT": "true",
 "feature.node.kubernetes.io/cpu-cpuid.IBPB": "true",
 "feature.node.kubernetes.io/cpu-cpuid.IBRS": "true",
 "feature.node.kubernetes.io/cpu-cpuid.IBRS_PREFERRED": "true",
 "feature.node.kubernetes.io/cpu-cpuid.IBRS_PROVIDES_SMP": "true",
 "feature.node.kubernetes.io/cpu-cpuid.IBS": "true",
 "feature.node.kubernetes.io/cpu-cpuid.IBSBRNTRGT": "true",
 "feature.node.kubernetes.io/cpu-cpuid.IBSFETCHSAM": "true",
 "feature.node.kubernetes.io/cpu-cpuid.IBSFFV": "true",
 "feature.node.kubernetes.io/cpu-cpuid.IBSOPCNT": "true",
 "feature.node.kubernetes.io/cpu-cpuid.IBSOPCNTEXT": "true",
 "feature.node.kubernetes.io/cpu-cpuid.IBSOPSAM": "true",
 "feature.node.kubernetes.io/cpu-cpuid.IBSRDWROPCNT": "true",
 "feature.node.kubernetes.io/cpu-cpuid.IBSRIPINVALIDCHK": "true",
 "feature.node.kubernetes.io/cpu-cpuid.IBS_FETCH_CTLX": "true",
 "feature.node.kubernetes.io/cpu-cpuid.IBS_OPFUSE": "true",
 "feature.node.kubernetes.io/cpu-cpuid.IBS_PREVENTHOST": "true",
 "feature.node.kubernetes.io/cpu-cpuid.INT_WBINVD": "true",
 "feature.node.kubernetes.io/cpu-cpuid.INVLPGB": "true",
 "feature.node.kubernetes.io/cpu-cpuid.LAHF": "true",
 "feature.node.kubernetes.io/cpu-cpuid.LBRVIRT": "true",
 "feature.node.kubernetes.io/cpu-cpuid.MCAOVERFLOW": "true",
 "feature.node.kubernetes.io/cpu-cpuid.MCOMMIT": "true",
 "feature.node.kubernetes.io/cpu-cpuid.MOVBE": "true",
 "feature.node.kubernetes.io/cpu-cpuid.MOVU": "true",
 "feature.node.kubernetes.io/cpu-cpuid.MSRIRC": "true",
 "feature.node.kubernetes.io/cpu-cpuid.MSR_PAGEFLUSH": "true",
 "feature.node.kubernetes.io/cpu-cpuid.NRIPS": "true",
 "feature.node.kubernetes.io/cpu-cpuid.OSXSAVE": "true",
 "feature.node.kubernetes.io/cpu-cpuid.PPIN": "true",
 "feature.node.kubernetes.io/cpu-cpuid.PSFD": "true",
 "feature.node.kubernetes.io/cpu-cpuid.RDPRU": "true",
 "feature.node.kubernetes.io/cpu-cpuid.SEV": "true",
 "feature.node.kubernetes.io/cpu-cpuid.SEV_64BIT": "true",
 "feature.node.kubernetes.io/cpu-cpuid.SEV_ALTERNATIVE": "true",
 "feature.node.kubernetes.io/cpu-cpuid.SEV_DEBUGSWAP": "true",
 "feature.node.kubernetes.io/cpu-cpuid.SEV_ES": "true",
 "feature.node.kubernetes.io/cpu-cpuid.SEV_RESTRICTED": "true",
 "feature.node.kubernetes.io/cpu-cpuid.SEV_SNP": "true",
 "feature.node.kubernetes.io/cpu-cpuid.SHA": "true",

CHAPTER 5. NVIDIA GPUDIRECT REMOTE DIRECT MEMORY ACCESS (RDMA)

21

 "feature.node.kubernetes.io/cpu-cpuid.SME": "true",
 "feature.node.kubernetes.io/cpu-cpuid.SME_COHERENT": "true",
 "feature.node.kubernetes.io/cpu-cpuid.SPEC_CTRL_SSBD": "true",
 "feature.node.kubernetes.io/cpu-cpuid.SSE4A": "true",
 "feature.node.kubernetes.io/cpu-cpuid.STIBP": "true",
 "feature.node.kubernetes.io/cpu-cpuid.STIBP_ALWAYSON": "true",
 "feature.node.kubernetes.io/cpu-cpuid.SUCCOR": "true",
 "feature.node.kubernetes.io/cpu-cpuid.SVM": "true",
 "feature.node.kubernetes.io/cpu-cpuid.SVMDA": "true",
 "feature.node.kubernetes.io/cpu-cpuid.SVMFBASID": "true",
 "feature.node.kubernetes.io/cpu-cpuid.SVML": "true",
 "feature.node.kubernetes.io/cpu-cpuid.SVMNP": "true",
 "feature.node.kubernetes.io/cpu-cpuid.SVMPF": "true",
 "feature.node.kubernetes.io/cpu-cpuid.SVMPFT": "true",
 "feature.node.kubernetes.io/cpu-cpuid.SYSCALL": "true",
 "feature.node.kubernetes.io/cpu-cpuid.SYSEE": "true",
 "feature.node.kubernetes.io/cpu-cpuid.TLB_FLUSH_NESTED": "true",
 "feature.node.kubernetes.io/cpu-cpuid.TOPEXT": "true",
 "feature.node.kubernetes.io/cpu-cpuid.TSCRATEMSR": "true",
 "feature.node.kubernetes.io/cpu-cpuid.VAES": "true",
 "feature.node.kubernetes.io/cpu-cpuid.VMCBCLEAN": "true",
 "feature.node.kubernetes.io/cpu-cpuid.VMPL": "true",
 "feature.node.kubernetes.io/cpu-cpuid.VMSA_REGPROT": "true",
 "feature.node.kubernetes.io/cpu-cpuid.VPCLMULQDQ": "true",
 "feature.node.kubernetes.io/cpu-cpuid.VTE": "true",
 "feature.node.kubernetes.io/cpu-cpuid.WBNOINVD": "true",
 "feature.node.kubernetes.io/cpu-cpuid.X87": "true",
 "feature.node.kubernetes.io/cpu-cpuid.XGETBV1": "true",
 "feature.node.kubernetes.io/cpu-cpuid.XSAVE": "true",
 "feature.node.kubernetes.io/cpu-cpuid.XSAVEC": "true",
 "feature.node.kubernetes.io/cpu-cpuid.XSAVEOPT": "true",
 "feature.node.kubernetes.io/cpu-cpuid.XSAVES": "true",
 "feature.node.kubernetes.io/cpu-hardware_multithreading": "false",
 "feature.node.kubernetes.io/cpu-model.family": "25",
 "feature.node.kubernetes.io/cpu-model.id": "1",
 "feature.node.kubernetes.io/cpu-model.vendor_id": "AMD",
 "feature.node.kubernetes.io/kernel-config.NO_HZ": "true",
 "feature.node.kubernetes.io/kernel-config.NO_HZ_FULL": "true",
 "feature.node.kubernetes.io/kernel-selinux.enabled": "true",
 "feature.node.kubernetes.io/kernel-version.full": "5.14.0-427.35.1.el9_4.x86_64",
 "feature.node.kubernetes.io/kernel-version.major": "5",
 "feature.node.kubernetes.io/kernel-version.minor": "14",
 "feature.node.kubernetes.io/kernel-version.revision": "0",
 "feature.node.kubernetes.io/memory-numa": "true",
 "feature.node.kubernetes.io/network-sriov.capable": "true",
 "feature.node.kubernetes.io/pci-102b.present": "true",
 "feature.node.kubernetes.io/pci-10de.present": "true",
 "feature.node.kubernetes.io/pci-10de.sriov.capable": "true",
 "feature.node.kubernetes.io/pci-15b3.present": "true",
 "feature.node.kubernetes.io/pci-15b3.sriov.capable": "true",
 "feature.node.kubernetes.io/rdma.available": "true",
 "feature.node.kubernetes.io/rdma.capable": "true",
 "feature.node.kubernetes.io/storage-nonrotationaldisk": "true",
 "feature.node.kubernetes.io/system-os_release.ID": "rhcos",
 "feature.node.kubernetes.io/system-os_release.OPENSHIFT_VERSION": "4.17",
 "feature.node.kubernetes.io/system-os_release.OSTREE_VERSION":

OpenShift Container Platform 4.18 Hardware accelerators

22

7. Confirm there is a network device that is discovered:

5.5. CONFIGURING THE SR-IOV OPERATOR

Single root I/O virtualization (SR-IOV) enhances the performance of NVIDIA GPUDirect RDMA by
providing sharing across multiple pods from a single device.

Prerequisites

You have installed the SR-IOV Operator.

Procedure

1. Validate that the Operator is installed and running by looking at the pods in the openshift-
sriov-network-operator namespace by running the following command:

Example output

2. For the default SriovOperatorConfig CR to work with the MLNX_OFED container, run this
command to update the following values:

3. Create the resource on the cluster by running the following command:

"417.94.202409121747-0",
 "feature.node.kubernetes.io/system-os_release.RHEL_VERSION": "9.4",
 "feature.node.kubernetes.io/system-os_release.VERSION_ID": "4.17",
 "feature.node.kubernetes.io/system-os_release.VERSION_ID.major": "4",
 "feature.node.kubernetes.io/system-os_release.VERSION_ID.minor": "17"
}

$ oc describe node | grep -E 'Roles|pci' | grep pci-15b3
 feature.node.kubernetes.io/pci-15b3.present=true
 feature.node.kubernetes.io/pci-15b3.sriov.capable=true
 feature.node.kubernetes.io/pci-15b3.present=true
 feature.node.kubernetes.io/pci-15b3.sriov.capable=true

$ oc get pods -n openshift-sriov-network-operator

NAME READY STATUS RESTARTS AGE
sriov-network-operator-7cb6c49868-89486 1/1 Running 0 22s

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovOperatorConfig
metadata:
 name: default
 namespace: openshift-sriov-network-operator
spec:
 enableInjector: true
 enableOperatorWebhook: true
 logLevel: 2

$ oc create -f sriov-operator-config.yaml

CHAPTER 5. NVIDIA GPUDIRECT REMOTE DIRECT MEMORY ACCESS (RDMA)

23

Example output

4. Patch the sriov-operator so the MOFED container can work with it by running the following
command:

Example output

5.6. CONFIGURING THE NVIDIA NETWORK OPERATOR

The NVIDIA network Operator manages NVIDIA networking resources and networking related
components such as drivers and device plugins to enable NVIDIA GPUDirect RDMA workloads.

Prerequisites

You have installed the NVIDIA network Operator.

Procedure

1. Validate that the network Operator is installed and running by confirming the controller is
running in the nvidia-network-operator namespace by running the following command:

Example output

2. With the Operator running, create the NicClusterPolicy custom resource file. The device you
choose depends on your system configuration. In this example, the Infiniband interface ibs2f0 is
hard coded and is used as the shared NVIDIA GPUDirect RDMA device.

sriovoperatorconfig.sriovnetwork.openshift.io/default created

$ oc patch sriovoperatorconfig default --type=merge -n openshift-sriov-network-operator --
patch '{ "spec": { "configDaemonNodeSelector": { "network.nvidia.com/operator.mofed.wait":
"false", "node-role.kubernetes.io/worker": "", "feature.node.kubernetes.io/pci-
15b3.sriov.capable": "true" } } }'

sriovoperatorconfig.sriovnetwork.openshift.io/default patched

$ oc get pods -n nvidia-network-operator

NAME READY STATUS RESTARTS AGE
nvidia-network-operator-controller-manager-6f7d6956cd-fw5wg 1/1 Running 0
5m

apiVersion: mellanox.com/v1alpha1
kind: NicClusterPolicy
metadata:
 name: nic-cluster-policy
spec:
 nicFeatureDiscovery:
 image: nic-feature-discovery
 repository: ghcr.io/mellanox
 version: v0.0.1
 docaTelemetryService:

OpenShift Container Platform 4.18 Hardware accelerators

24

 image: doca_telemetry
 repository: nvcr.io/nvidia/doca
 version: 1.16.5-doca2.6.0-host
 rdmaSharedDevicePlugin:
 config: |
 {
 "configList": [
 {
 "resourceName": "rdma_shared_device_ib",
 "rdmaHcaMax": 63,
 "selectors": {
 "ifNames": ["ibs2f0"]
 }
 },
 {
 "resourceName": "rdma_shared_device_eth",
 "rdmaHcaMax": 63,
 "selectors": {
 "ifNames": ["ens8f0np0"]
 }
 }
]
 }
 image: k8s-rdma-shared-dev-plugin
 repository: ghcr.io/mellanox
 version: v1.5.1
 secondaryNetwork:
 ipoib:
 image: ipoib-cni
 repository: ghcr.io/mellanox
 version: v1.2.0
 nvIpam:
 enableWebhook: false
 image: nvidia-k8s-ipam
 repository: ghcr.io/mellanox
 version: v0.2.0
 ofedDriver:
 readinessProbe:
 initialDelaySeconds: 10
 periodSeconds: 30
 forcePrecompiled: false
 terminationGracePeriodSeconds: 300
 livenessProbe:
 initialDelaySeconds: 30
 periodSeconds: 30
 upgradePolicy:
 autoUpgrade: true
 drain:
 deleteEmptyDir: true
 enable: true
 force: true
 timeoutSeconds: 300
 podSelector: ''
 maxParallelUpgrades: 1
 safeLoad: false
 waitForCompletion:

CHAPTER 5. NVIDIA GPUDIRECT REMOTE DIRECT MEMORY ACCESS (RDMA)

25

3. Create the NicClusterPolicy custom resource on the cluster by running the following
command:

Example output

4. Validate the NicClusterPolicy by running the following command in the DOCA/MOFED
container:

Example output

5. rsh into the mofed container to check the status by running the following command:

Example output

 timeoutSeconds: 0
 startupProbe:
 initialDelaySeconds: 10
 periodSeconds: 20
 image: doca-driver
 repository: nvcr.io/nvidia/mellanox
 version: 24.10-0.7.0.0-0
 env:
 - name: UNLOAD_STORAGE_MODULES
 value: "true"
 - name: RESTORE_DRIVER_ON_POD_TERMINATION
 value: "true"
 - name: CREATE_IFNAMES_UDEV
 value: "true"

$ oc create -f network-sharedrdma-nic-cluster-policy.yaml

nicclusterpolicy.mellanox.com/nic-cluster-policy created

$ oc get pods -n nvidia-network-operator

NAME READY STATUS RESTARTS AGE
doca-telemetry-service-hwj65 1/1 Running 2 160m
kube-ipoib-cni-ds-fsn8g 1/1 Running 2 160m
mofed-rhcos4.16-9b5ddf4c6-ds-ct2h5 2/2 Running 4 160m
nic-feature-discovery-ds-dtksz 1/1 Running 2 160m
nv-ipam-controller-854585f594-c5jpp 1/1 Running 2 160m
nv-ipam-controller-854585f594-xrnp5 1/1 Running 2 160m
nv-ipam-node-xqttl 1/1 Running 2 160m
nvidia-network-operator-controller-manager-5798b564cd-5cq99 1/1 Running 2
5d23h
rdma-shared-dp-ds-p9vvg 1/1 Running 0 85m

$ MOFED_POD=$(oc get pods -n nvidia-network-operator -o name | grep mofed)
$ oc rsh -n nvidia-network-operator -c mofed-container ${MOFED_POD}
sh-5.1# ofed_info -s

OFED-internal-24.07-0.6.1:

OpenShift Container Platform 4.18 Hardware accelerators

26

Example output

6. Create a IPoIBNetwork custom resource file:

7. Create the IPoIBNetwork resource on the cluster by running the following command:

Example output

8. Create a MacvlanNetwork custom resource file for your other interface:

sh-5.1# ibdev2netdev -v

0000:0d:00.0 mlx5_0 (MT41692 - 900-9D3B4-00EN-EA0) BlueField-3 E-series SuperNIC
400GbE/NDR single port QSFP112, PCIe Gen5.0 x16 FHHL, Crypto Enabled, 16GB DDR5,
BMC, Tall Bracket fw 32.42.1000 port 1 (ACTIVE) ==>
ibs2f0 (Up)
0000:a0:00.0 mlx5_1 (MT41692 - 900-9D3B4-00EN-EA0) BlueField-3 E-series SuperNIC
400GbE/NDR single port QSFP112, PCIe Gen5.0 x16 FHHL, Crypto Enabled, 16GB DDR5,
BMC, Tall Bracket fw 32.42.1000 port 1 (ACTIVE) ==>
ens8f0np0 (Up)

apiVersion: mellanox.com/v1alpha1
kind: IPoIBNetwork
metadata:
 name: example-ipoibnetwork
spec:
 ipam: |
 {
 "type": "whereabouts",
 "range": "192.168.6.225/28",
 "exclude": [
 "192.168.6.229/30",
 "192.168.6.236/32"
]
 }
 master: ibs2f0
 networkNamespace: default

$ oc create -f ipoib-network.yaml

ipoibnetwork.mellanox.com/example-ipoibnetwork created

apiVersion: mellanox.com/v1alpha1
kind: MacvlanNetwork
metadata:
 name: rdmashared-net
spec:
 networkNamespace: default
 master: ens8f0np0
 mode: bridge
 mtu: 1500
 ipam: '{"type": "whereabouts", "range": "192.168.2.0/24", "gateway": "192.168.2.1"}'

CHAPTER 5. NVIDIA GPUDIRECT REMOTE DIRECT MEMORY ACCESS (RDMA)

27

9. Create the resource on the cluster by running the following command:

Example output

5.7. CONFIGURING THE GPU OPERATOR

The GPU Operator automates the management of the NVIDIA drivers, device plugins for GPUs, the
NVIDIA Container Toolkit, and other components required for GPU provisioning.

Prerequisites

You have installed the GPU Operator.

Procedure

1. Check that the Operator pod is running to look at the pods under the namespace by running
the following command:

Example output

2. Create a GPU cluster policy custom resource file similar to the following example:

$ oc create -f macvlan-network.yaml

macvlannetwork.mellanox.com/rdmashared-net created

$ oc get pods -n nvidia-gpu-operator

NAME READY STATUS RESTARTS AGE
gpu-operator-b4cb7d74-zxpwq 1/1 Running 0 32s

apiVersion: nvidia.com/v1
kind: ClusterPolicy
metadata:
 name: gpu-cluster-policy
spec:
 vgpuDeviceManager:
 config:
 default: default
 enabled: true
 migManager:
 config:
 default: all-disabled
 name: default-mig-parted-config
 enabled: true
 operator:
 defaultRuntime: crio
 initContainer: {}
 runtimeClass: nvidia
 use_ocp_driver_toolkit: true
 dcgm:
 enabled: true
 gfd:

OpenShift Container Platform 4.18 Hardware accelerators

28

 enabled: true
 dcgmExporter:
 config:
 name: ''
 serviceMonitor:
 enabled: true
 enabled: true
 cdi:
 default: false
 enabled: false
 driver:
 licensingConfig:
 nlsEnabled: true
 configMapName: ''
 certConfig:
 name: ''
 rdma:
 enabled: false
 kernelModuleConfig:
 name: ''
 upgradePolicy:
 autoUpgrade: true
 drain:
 deleteEmptyDir: false
 enable: false
 force: false
 timeoutSeconds: 300
 maxParallelUpgrades: 1
 maxUnavailable: 25%
 podDeletion:
 deleteEmptyDir: false
 force: false
 timeoutSeconds: 300
 waitForCompletion:
 timeoutSeconds: 0
 repoConfig:
 configMapName: ''
 virtualTopology:
 config: ''
 enabled: true
 useNvidiaDriverCRD: false
 useOpenKernelModules: true
 devicePlugin:
 config:
 name: ''
 default: ''
 mps:
 root: /run/nvidia/mps
 enabled: true
 gdrcopy:
 enabled: true
 kataManager:
 config:
 artifactsDir: /opt/nvidia-gpu-operator/artifacts/runtimeclasses
 mig:
 strategy: single

CHAPTER 5. NVIDIA GPUDIRECT REMOTE DIRECT MEMORY ACCESS (RDMA)

29

3. When the GPU ClusterPolicy custom resource has generated, create the resource on the
cluster by running the following command:

Example output

4. Validate that the Operator is installed and running by running the following command:

Example output

 sandboxDevicePlugin:
 enabled: true
 validator:
 plugin:
 env:
 - name: WITH_WORKLOAD
 value: 'false'
 nodeStatusExporter:
 enabled: true
 daemonsets:
 rollingUpdate:
 maxUnavailable: '1'
 updateStrategy: RollingUpdate
 sandboxWorkloads:
 defaultWorkload: container
 enabled: false
 gds:
 enabled: true
 image: nvidia-fs
 version: 2.20.5
 repository: nvcr.io/nvidia/cloud-native
 vgpuManager:
 enabled: false
 vfioManager:
 enabled: true
 toolkit:
 installDir: /usr/local/nvidia
 enabled: true

$ oc create -f gpu-cluster-policy.yaml

clusterpolicy.nvidia.com/gpu-cluster-policy created

$ oc get pods -n nvidia-gpu-operator

NAME READY STATUS RESTARTS AGE
gpu-feature-discovery-d5ngn 1/1 Running 0 3m20s
gpu-feature-discovery-z42rx 1/1 Running 0 3m23s
gpu-operator-6bb4d4b4c5-njh78 1/1 Running 0 4m35s
nvidia-container-toolkit-daemonset-bkh8l 1/1 Running 0 3m20s
nvidia-container-toolkit-daemonset-c4hzm 1/1 Running 0 3m23s
nvidia-cuda-validator-4blvg 0/1 Completed 0 106s
nvidia-cuda-validator-tw8sl 0/1 Completed 0 112s
nvidia-dcgm-exporter-rrw4g 1/1 Running 0 3m20s
nvidia-dcgm-exporter-xc78t 1/1 Running 0 3m23s

OpenShift Container Platform 4.18 Hardware accelerators

30

5. Optional: When you have verified the pods are running, remote shell into the NVIDIA driver
daemonset pod and confirm that the NVIDIA modules are loaded. Specifically, ensure the
nvidia_peermem is loaded.

Example output

6. Optional: Run the nvidia-smi utility to show the details about the driver and the hardware:

sh-4.4# nvidia-smi

+ .Example output

nvidia-dcgm-nvxpf 1/1 Running 0 3m20s
nvidia-dcgm-snj4j 1/1 Running 0 3m23s
nvidia-device-plugin-daemonset-fk2xz 1/1 Running 0 3m23s
nvidia-device-plugin-daemonset-wq87j 1/1 Running 0 3m20s
nvidia-driver-daemonset-416.94.202410211619-0-ngrjg 4/4 Running 0 3m58s
nvidia-driver-daemonset-416.94.202410211619-0-tm4x6 4/4 Running 0 3m58s
nvidia-node-status-exporter-jlzxh 1/1 Running 0 3m57s
nvidia-node-status-exporter-zjffs 1/1 Running 0 3m57s
nvidia-operator-validator-l49hx 1/1 Running 0 3m20s
nvidia-operator-validator-n44nn 1/1 Running 0 3m23s

$ oc rsh -n nvidia-gpu-operator $(oc -n nvidia-gpu-operator get pod -o name -l
app.kubernetes.io/component=nvidia-driver)
sh-4.4# lsmod|grep nvidia

nvidia_fs 327680 0
nvidia_peermem 24576 0
nvidia_modeset 1507328 0
video 73728 1 nvidia_modeset
nvidia_uvm 6889472 8
nvidia 8810496 43 nvidia_uvm,nvidia_peermem,nvidia_fs,gdrdrv,nvidia_modeset
ib_uverbs 217088 3 nvidia_peermem,rdma_ucm,mlx5_ib
drm 741376 5 drm_kms_helper,drm_shmem_helper,nvidia,mgag200

Wed Nov 6 22:03:53 2024
+---+
| NVIDIA-SMI 550.90.07 Driver Version: 550.90.07 CUDA Version: 12.4 |
|---+------------------------+----------------------+
GPU Name Persistence-M	Bus-Id Disp.A	Volatile Uncorr. ECC
Fan Temp Perf Pwr:Usage/Cap	Memory-Usage	GPU-Util Compute M.
		MIG M.
===+========================+==============		
========		
0 NVIDIA A40 On	00000000:61:00.0 Off	0
0% 37C P0 88W / 300W	1MiB / 46068MiB	0% Default
		N/A
+---+------------------------+----------------------+		
1 NVIDIA A40 On	00000000:E1:00.0 Off	0
0% 28C P8 29W / 300W	1MiB / 46068MiB	0% Default
		N/A
+---+------------------------+----------------------+

CHAPTER 5. NVIDIA GPUDIRECT REMOTE DIRECT MEMORY ACCESS (RDMA)

31

1. While you are still in the driver pod, set the GPU clock to maximum using the nvidia-smi
command:

Example output

Example output

2. Validate the resource is available from a node describe perspective by running the following
command:

Example output

+---+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|===
========|
| No running processes found |
+---+

$ oc rsh -n nvidia-gpu-operator nvidia-driver-daemonset-416.94.202410172137-0-ndhzc
sh-4.4# nvidia-smi -i 0 -lgc $(nvidia-smi -i 0 --query-supported-clocks=graphics --
format=csv,noheader,nounits | sort -h | tail -n 1)

GPU clocks set to "(gpuClkMin 1740, gpuClkMax 1740)" for GPU 00000000:61:00.0
All done.

sh-4.4# nvidia-smi -i 1 -lgc $(nvidia-smi -i 1 --query-supported-clocks=graphics --
format=csv,noheader,nounits | sort -h | tail -n 1)

GPU clocks set to "(gpuClkMin 1740, gpuClkMax 1740)" for GPU 00000000:E1:00.0
All done.

$ oc describe node -l node-role.kubernetes.io/worker=| grep -E 'Capacity:|Allocatable:' -A9

Capacity:
 cpu: 128
 ephemeral-storage: 1561525616Ki
 hugepages-1Gi: 0
 hugepages-2Mi: 0
 memory: 263596712Ki
 nvidia.com/gpu: 2
 pods: 250
 rdma/rdma_shared_device_eth: 63
 rdma/rdma_shared_device_ib: 63
Allocatable:
 cpu: 127500m
 ephemeral-storage: 1438028263499
 hugepages-1Gi: 0
 hugepages-2Mi: 0
 memory: 262445736Ki
 nvidia.com/gpu: 2

OpenShift Container Platform 4.18 Hardware accelerators

32

5.8. CREATING THE MACHINE CONFIGURATION

Before you create the resource pods, you need to create the machineconfig.yaml custom resource
(CR) that provides access to the GPU and networking resources without the need for user privileges.

Procedure

1. Generate a Machineconfig CR:

 pods: 250
 rdma/rdma_shared_device_eth: 63
 rdma/rdma_shared_device_ib: 63
--
Capacity:
 cpu: 128
 ephemeral-storage: 1561525616Ki
 hugepages-1Gi: 0
 hugepages-2Mi: 0
 memory: 263596672Ki
 nvidia.com/gpu: 2
 pods: 250
 rdma/rdma_shared_device_eth: 63
 rdma/rdma_shared_device_ib: 63
Allocatable:
 cpu: 127500m
 ephemeral-storage: 1438028263499
 hugepages-1Gi: 0
 hugepages-2Mi: 0
 memory: 262445696Ki
 nvidia.com/gpu: 2
 pods: 250
 rdma/rdma_shared_device_eth: 63
 rdma/rdma_shared_device_ib: 63

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
 labels:
 machineconfiguration.openshift.io/role: worker
 name: 02-worker-container-runtime
spec:
 config:
 ignition:
 version: 3.2.0
 storage:
 files:
 - contents:
 source: data:text/plain;charset=utf-
8;base64,W2NyaW8ucnVudGltZV0KZGVmYXVsdF91bGltaXRzID0gWwoibWVtbG9jaz0tMTot
MSIKXQo=
 mode: 420
 overwrite: true
 path: /etc/crio/crio.conf.d/10-custom

CHAPTER 5. NVIDIA GPUDIRECT REMOTE DIRECT MEMORY ACCESS (RDMA)

33

5.9. CREATING THE WORKLOAD PODS

Use the procedures in this section to create the workload pods for the shared and host devices.

5.9.1. Creating a shared device RDMA on RoCE

Create the workload pods for a shared device RDMA on RDMA over Converged Ethernet (RoCE) for the
NVIDIA Network Operator and test the pod configuration.

The NVIDIA GPUDirect RDMA device is shared among pods on the OpenShift Container Platform
worker node where the device is exposed.

Prerequisites

Ensure that the Operator is running.

Delete the NicClusterPolicy custom resource (CR), if it exists.

Procedure

1. Generate custom pod resources:

$ cat <<EOF > rdma-eth-32-workload.yaml
apiVersion: v1
kind: Pod
metadata:
 name: rdma-eth-32-workload
 namespace: default
 annotations:
 k8s.v1.cni.cncf.io/networks: rdmashared-net
spec:
 nodeSelector:
 kubernetes.io/hostname: nvd-srv-32.nvidia.eng.rdu2.dc.redhat.com
 containers:
 - image: quay.io/edge-infrastructure/nvidia-tools:0.1.5
 name: rdma-eth-32-workload
 resources:
 limits:
 nvidia.com/gpu: 1
 rdma/rdma_shared_device_eth: 1
 requests:
 nvidia.com/gpu: 1
 rdma/rdma_shared_device_eth: 1

EOF

$ cat <<EOF > rdma-eth-33-workload.yaml
apiVersion: v1
kind: Pod
metadata:
 name: rdma-eth-33-workload
 namespace: default
 annotations:
 k8s.v1.cni.cncf.io/networks: rdmashared-net
spec:

OpenShift Container Platform 4.18 Hardware accelerators

34

2. Create the pods on the cluster by using the following commands:

Example output

Example output

3. Verify that the pods are running by using the following command:

Example output

5.9.2. Creating a host device RDMA on RoCE

Create the workload pods for a host device Remote Direct Memory Access (RDMA) for the NVIDIA
Network Operator and test the pod configuration.

Prerequisites

Ensure that the Operator is running.

Delete the NicClusterPolicy custom resource (CR), if it exists.

 nodeSelector:
 kubernetes.io/hostname: nvd-srv-33.nvidia.eng.rdu2.dc.redhat.com
 containers:
 - image: quay.io/edge-infrastructure/nvidia-tools:0.1.5
 name: rdma-eth-33-workload
 securityContext:
 capabilities:
 add: ["IPC_LOCK"]
 resources:
 limits:
 nvidia.com/gpu: 1
 rdma/rdma_shared_device_eth: 1
 requests:
 nvidia.com/gpu: 1
 rdma/rdma_shared_device_eth: 1
EOF

$ oc create -f rdma-eth-32-workload.yaml

pod/rdma-eth-32-workload created

$ oc create -f rdma-eth-33-workload.yaml

pod/rdma-eth-33-workload created

$ oc get pods -n default

NAME READY STATUS RESTARTS AGE
rdma-eth-32-workload 1/1 Running 0 25s
rdma-eth-33-workload 1/1 Running 0 22s

CHAPTER 5. NVIDIA GPUDIRECT REMOTE DIRECT MEMORY ACCESS (RDMA)

35

Procedure

1. Generate a new host device NicClusterPolicy (CR), as shown below:

2. Create the NicClusterPolicy CR on the cluster by using the following command:

Example output

$ cat <<EOF > network-hostdev-nic-cluster-policy.yaml
apiVersion: mellanox.com/v1alpha1
kind: NicClusterPolicy
metadata:
 name: nic-cluster-policy
spec:
 ofedDriver:
 image: doca-driver
 repository: nvcr.io/nvidia/mellanox
 version: 24.10-0.7.0.0-0
 startupProbe:
 initialDelaySeconds: 10
 periodSeconds: 20
 livenessProbe:
 initialDelaySeconds: 30
 periodSeconds: 30
 readinessProbe:
 initialDelaySeconds: 10
 periodSeconds: 30
 env:
 - name: UNLOAD_STORAGE_MODULES
 value: "true"
 - name: RESTORE_DRIVER_ON_POD_TERMINATION
 value: "true"
 - name: CREATE_IFNAMES_UDEV
 value: "true"
 sriovDevicePlugin:
 image: sriov-network-device-plugin
 repository: ghcr.io/k8snetworkplumbingwg
 version: v3.7.0
 config: |
 {
 "resourceList": [
 {
 "resourcePrefix": "nvidia.com",
 "resourceName": "hostdev",
 "selectors": {
 "vendors": ["15b3"],
 "isRdma": true
 }
 }
]
 }
EOF

$ oc create -f network-hostdev-nic-cluster-policy.yaml

OpenShift Container Platform 4.18 Hardware accelerators

36

3. Verify that the host device NicClusterPolicy CR by using the following command in the
DOCA/MOFED container:

Example output

4. Confirm that the resources appear in the cluster oc describe node section by using the
following command:

Example output

nicclusterpolicy.mellanox.com/nic-cluster-policy created

$ oc get pods -n nvidia-network-operator

NAME READY STATUS RESTARTS AGE
mofed-rhcos4.16-696886fcb4-ds-9sgvd 2/2 Running 0 2m37s
mofed-rhcos4.16-696886fcb4-ds-lkjd4 2/2 Running 0 2m37s
nvidia-network-operator-controller-manager-68d547dbbd-qsdkf 1/1 Running 0
141m
sriov-device-plugin-6v2nz 1/1 Running 0 2m14s
sriov-device-plugin-hc4t8 1/1 Running 0 2m14s

$ oc describe node -l node-role.kubernetes.io/worker=| grep -E 'Capacity:|Allocatable:' -A7

Capacity:
 cpu: 128
 ephemeral-storage: 1561525616Ki
 hugepages-1Gi: 0
 hugepages-2Mi: 0
 memory: 263596708Ki
 nvidia.com/hostdev: 2
 pods: 250
Allocatable:
 cpu: 127500m
 ephemeral-storage: 1438028263499
 hugepages-1Gi: 0
 hugepages-2Mi: 0
 memory: 262445732Ki
 nvidia.com/hostdev: 2
 pods: 250
--
Capacity:
 cpu: 128
 ephemeral-storage: 1561525616Ki
 hugepages-1Gi: 0
 hugepages-2Mi: 0
 memory: 263596704Ki
 nvidia.com/hostdev: 2
 pods: 250
Allocatable:
 cpu: 127500m
 ephemeral-storage: 1438028263499
 hugepages-1Gi: 0
 hugepages-2Mi: 0

CHAPTER 5. NVIDIA GPUDIRECT REMOTE DIRECT MEMORY ACCESS (RDMA)

37

5. Create a HostDeviceNetwork CR file:

6. Create the HostDeviceNetwork resource on the cluster by using the following command:

Example output

7. Confirm that the resources appear in the cluster oc describe node section by using the
following command:

Example output

 memory: 262445728Ki
 nvidia.com/hostdev: 2
 pods: 250

$ cat <<EOF > hostdev-network.yaml
apiVersion: mellanox.com/v1alpha1
kind: HostDeviceNetwork
metadata:
 name: hostdev-net
spec:
 networkNamespace: "default"
 resourceName: "hostdev"
 ipam: |
 {
 "type": "whereabouts",
 "range": "192.168.3.225/28",
 "exclude": [
 "192.168.3.229/30",
 "192.168.3.236/32"
]
 }
EOF

$ oc create -f hostdev-network.yaml

hostdevicenetwork.mellanox.com/hostdev-net created

$ oc describe node -l node-role.kubernetes.io/worker=| grep -E 'Capacity:|Allocatable:' -A8

Capacity:
 cpu: 128
 ephemeral-storage: 1561525616Ki
 hugepages-1Gi: 0
 hugepages-2Mi: 0
 memory: 263596708Ki
 nvidia.com/gpu: 2
 nvidia.com/hostdev: 2
 pods: 250
Allocatable:
 cpu: 127500m
 ephemeral-storage: 1438028263499
 hugepages-1Gi: 0
 hugepages-2Mi: 0

OpenShift Container Platform 4.18 Hardware accelerators

38

5.9.3. Creating a SR-IOV legacy mode RDMA on RoCE

Configure a Single Root I/O Virtualization (SR-IOV) legacy mode host device RDMA on RoCE.

Procedure

1. Generate a new host device NicClusterPolicy custom resource (CR):

 memory: 262445732Ki
 nvidia.com/gpu: 2
 nvidia.com/hostdev: 2
 pods: 250
--
Capacity:
 cpu: 128
 ephemeral-storage: 1561525616Ki
 hugepages-1Gi: 0
 hugepages-2Mi: 0
 memory: 263596680Ki
 nvidia.com/gpu: 2
 nvidia.com/hostdev: 2
 pods: 250
Allocatable:
 cpu: 127500m
 ephemeral-storage: 1438028263499
 hugepages-1Gi: 0
 hugepages-2Mi: 0
 memory: 262445704Ki
 nvidia.com/gpu: 2
 nvidia.com/hostdev: 2
 pods: 250

$ cat <<EOF > network-sriovleg-nic-cluster-policy.yaml
apiVersion: mellanox.com/v1alpha1
kind: NicClusterPolicy
metadata:
 name: nic-cluster-policy
spec:
 ofedDriver:
 image: doca-driver
 repository: nvcr.io/nvidia/mellanox
 version: 24.10-0.7.0.0-0
 startupProbe:
 initialDelaySeconds: 10
 periodSeconds: 20
 livenessProbe:
 initialDelaySeconds: 30
 periodSeconds: 30
 readinessProbe:
 initialDelaySeconds: 10
 periodSeconds: 30
 env:
 - name: UNLOAD_STORAGE_MODULES
 value: "true"
 - name: RESTORE_DRIVER_ON_POD_TERMINATION

CHAPTER 5. NVIDIA GPUDIRECT REMOTE DIRECT MEMORY ACCESS (RDMA)

39

2. Create the policy on the cluster by using the following command:

Example output

3. Verify the pods by using the following command in the DOCA/MOFED container:

Example output

4. Create an SriovNetworkNodePolicy CR that generates the Virtual Functions (VFs) for the
device you want to operate in SR-IOV legacy mode. See the following example:

5. Create the CR on the cluster by using the following command:

NOTE

 value: "true"
 - name: CREATE_IFNAMES_UDEV
 value: "true"
EOF

$ oc create -f network-sriovleg-nic-cluster-policy.yaml

nicclusterpolicy.mellanox.com/nic-cluster-policy created

$ oc get pods -n nvidia-network-operator

NAME READY STATUS RESTARTS AGE
mofed-rhcos4.16-696886fcb4-ds-4mb42 2/2 Running 0 40s
mofed-rhcos4.16-696886fcb4-ds-8knwq 2/2 Running 0 40s
nvidia-network-operator-controller-manager-68d547dbbd-qsdkf 1/1 Running 13 (4d ago)
4d21h

$ cat <<EOF > sriov-network-node-policy.yaml
apiVersion: sriovnetwork.openshift.io/v1
kind: SriovNetworkNodePolicy
metadata:
 name: sriov-legacy-policy
 namespace: openshift-sriov-network-operator
spec:
 deviceType: netdevice
 mtu: 1500
 nicSelector:
 vendor: "15b3"
 pfNames: ["ens8f0np0#0-7"]
 nodeSelector:
 feature.node.kubernetes.io/pci-15b3.present: "true"
 numVfs: 8
 priority: 90
 isRdma: true
 resourceName: sriovlegacy
EOF

OpenShift Container Platform 4.18 Hardware accelerators

40

NOTE

Ensure that SR-IOV Global Enable is enabled. For more information, see Unable
to enable SR-IOV and receiving the message "not enough MMIO resources for
SR-IOV" in Red Hat Enterprise Linux.

Example output

6. Each node has scheduling disabled. The nodes reboot to apply the configuration. You can view
the nodes by using the following command:

Example output

7. After the nodes have rebooted, verify that the VF interfaces exist by opening up a debug pod
on each node. Run the following command:

Example output

$ oc create -f sriov-network-node-policy.yaml

sriovnetworknodepolicy.sriovnetwork.openshift.io/sriov-legacy-policy created

$ oc get nodes

NAME STATUS ROLES AGE
VERSION
edge-19.edge.lab.eng.rdu2.redhat.com Ready control-
plane,master,worker 5d v1.29.8+632b078
nvd-srv-32.nvidia.eng.rdu2.dc.redhat.com Ready worker
4d22h v1.29.8+632b078
nvd-srv-33.nvidia.eng.rdu2.dc.redhat.com NotReady,SchedulingDisabled worker
4d22h v1.29.8+632b078

a$ oc debug node/nvd-srv-33.nvidia.eng.rdu2.dc.redhat.com

Starting pod/nvd-srv-33nvidiaengrdu2dcredhatcom-debug-cqfjz ...
To use host binaries, run `chroot /host`
Pod IP: 10.6.135.12
If you don't see a command prompt, try pressing enter.
sh-5.1# chroot /host
sh-5.1# ip link show | grep ens8
26: ens8f0np0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq state UP
mode DEFAULT group default qlen 1000
42: ens8f0v0: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN mode
DEFAULT group default qlen 1000
43: ens8f0v1: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN mode
DEFAULT group default qlen 1000
44: ens8f0v2: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN mode
DEFAULT group default qlen 1000
45: ens8f0v3: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN mode
DEFAULT group default qlen 1000
46: ens8f0v4: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN mode
DEFAULT group default qlen 1000

CHAPTER 5. NVIDIA GPUDIRECT REMOTE DIRECT MEMORY ACCESS (RDMA)

41

https://access.redhat.com/solutions/37376

8. Repeat the previous steps on the second node, if necessary.

9. Optional: Confirm that the resources appear in the cluster oc describe node section by using
the following command:

Example output

47: ens8f0v5: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN mode
DEFAULT group default qlen 1000
48: ens8f0v6: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN mode
DEFAULT group default qlen 1000
49: ens8f0v7: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN mode
DEFAULT group default qlen 1000

$ oc describe node -l node-role.kubernetes.io/worker=| grep -E 'Capacity:|Allocatable:' -A8

Capacity:
 cpu: 128
 ephemeral-storage: 1561525616Ki
 hugepages-1Gi: 0
 hugepages-2Mi: 0
 memory: 263596692Ki
 nvidia.com/gpu: 2
 nvidia.com/hostdev: 0
 openshift.io/sriovlegacy: 8
--
Allocatable:
 cpu: 127500m
 ephemeral-storage: 1438028263499
 hugepages-1Gi: 0
 hugepages-2Mi: 0
 memory: 262445716Ki
 nvidia.com/gpu: 2
 nvidia.com/hostdev: 0
 openshift.io/sriovlegacy: 8
--
Capacity:
 cpu: 128
 ephemeral-storage: 1561525616Ki
 hugepages-1Gi: 0
 hugepages-2Mi: 0
 memory: 263596688Ki
 nvidia.com/gpu: 2
 nvidia.com/hostdev: 0
 openshift.io/sriovlegacy: 8
--
Allocatable:
 cpu: 127500m
 ephemeral-storage: 1438028263499
 hugepages-1Gi: 0
 hugepages-2Mi: 0
 memory: 262445712Ki
 nvidia.com/gpu: 2
 nvidia.com/hostdev: 0
 openshift.io/sriovlegacy: 8

OpenShift Container Platform 4.18 Hardware accelerators

42

10. After the VFs for SR-IOV legacy mode are in place, generate the SriovNetwork CR file. See the
following example:

11. Create the custom resource on the cluster by using the following command:

Example output

5.9.4. Creating a shared device RDMA on Infiniband

Create the workload pods for a shared device Remote Direct Memory Access (RDMA) for an Infiniband
installation.

Procedure

1. Generate custom pod resources:

$ cat <<EOF > sriov-network.yaml
apiVersion: sriovnetwork.openshift.io/v1
kind: SriovNetwork
metadata:
 name: sriov-network
 namespace: openshift-sriov-network-operator
spec:
 vlan: 0
 networkNamespace: "default"
 resourceName: "sriovlegacy"
 ipam: |
 {
 "type": "whereabouts",
 "range": "192.168.3.225/28",
 "exclude": [
 "192.168.3.229/30",
 "192.168.3.236/32"
]
 }
EOF

$ oc create -f sriov-network.yaml

sriovnetwork.sriovnetwork.openshift.io/sriov-network created

$ cat <<EOF > rdma-ib-32-workload.yaml
apiVersion: v1
kind: Pod
metadata:
 name: rdma-ib-32-workload
 namespace: default
 annotations:
 k8s.v1.cni.cncf.io/networks: example-ipoibnetwork
spec:
 nodeSelector:
 kubernetes.io/hostname: nvd-srv-32.nvidia.eng.rdu2.dc.redhat.com
 containers:
 - image: quay.io/edge-infrastructure/nvidia-tools:0.1.5

CHAPTER 5. NVIDIA GPUDIRECT REMOTE DIRECT MEMORY ACCESS (RDMA)

43

2. Create the pods on the cluster by using the following commands:

Example output

Example output

3. Verify that the pods are running by using the following command:

 name: rdma-ib-32-workload
 resources:
 limits:
 nvidia.com/gpu: 1
 rdma/rdma_shared_device_ib: 1
 requests:
 nvidia.com/gpu: 1
 rdma/rdma_shared_device_ib: 1
EOF

$ cat <<EOF > rdma-ib-32-workload.yaml
apiVersion: v1
kind: Pod
metadata:
 name: rdma-ib-33-workload
 namespace: default
 annotations:
 k8s.v1.cni.cncf.io/networks: example-ipoibnetwork
spec:
 nodeSelector:
 kubernetes.io/hostname: nvd-srv-33.nvidia.eng.rdu2.dc.redhat.com
 containers:
 - image: quay.io/edge-infrastructure/nvidia-tools:0.1.5
 name: rdma-ib-33-workload
 securityContext:
 capabilities:
 add: ["IPC_LOCK"]
 resources:
 limits:
 nvidia.com/gpu: 1
 rdma/rdma_shared_device_ib: 1
 requests:
 nvidia.com/gpu: 1
 rdma/rdma_shared_device_ib: 1
EOF

$ oc create -f rdma-ib-32-workload.yaml

pod/rdma-ib-32-workload created

$ oc create -f rdma-ib-33-workload.yaml

pod/rdma-ib-33-workload created

$ oc get pods

OpenShift Container Platform 4.18 Hardware accelerators

44

Example output

5.10. VERIFYING RDMA CONNECTIVITY

Confirm Remote Direct Memory Access (RDMA) connectivity is working between the systems,
specifically for Legacy Single Root I/O Virtualization (SR-IOV) Ethernet.

Procedure

1. Connect to each rdma-workload-client pod by using the following command:

Example output

2. Check the IP address assigned to the first workload pod by using the following command. In this
example, the first workload pod is the RDMA test server.

Example output

The IP address of the RDMA server assigned to this pod is the net1 interface. In this example,

NAME READY STATUS RESTARTS AGE
rdma-ib-32-workload 1/1 Running 0 10s
rdma-ib-33-workload 1/1 Running 0 3s

$ oc rsh -n default rdma-sriov-32-workload

sh-5.1#

sh-5.1# ip a

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group
default qlen 1000
 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
 inet 127.0.0.1/8 scope host lo
 valid_lft forever preferred_lft forever
 inet6 ::1/128 scope host
 valid_lft forever preferred_lft forever
2: eth0@if3970: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1400 qdisc noqueue
state UP group default
 link/ether 0a:58:0a:80:02:a7 brd ff:ff:ff:ff:ff:ff link-netnsid 0
 inet 10.128.2.167/23 brd 10.128.3.255 scope global eth0
 valid_lft forever preferred_lft forever
 inet6 fe80::858:aff:fe80:2a7/64 scope link
 valid_lft forever preferred_lft forever
3843: net1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq state UP
group default qlen 1000
 link/ether 26:34:fd:53:a6:ec brd ff:ff:ff:ff:ff:ff
 altname enp55s0f0v5
 inet 192.168.4.225/28 brd 192.168.4.239 scope global net1
 valid_lft forever preferred_lft forever
 inet6 fe80::2434:fdff:fe53:a6ec/64 scope link
 valid_lft forever preferred_lft forever
sh-5.1#

CHAPTER 5. NVIDIA GPUDIRECT REMOTE DIRECT MEMORY ACCESS (RDMA)

45

The IP address of the RDMA server assigned to this pod is the net1 interface. In this example,
the IP address is 192.168.4.225.

3. Run the ibstatus command to get the link_layer type, Ethernet or Infiniband, associated with
each RDMA device mlx5_x. The output also shows the status of all of the RDMA devices by
checking the state field, which shows either ACTIVE or DOWN.

Example output

sh-5.1# ibstatus

Infiniband device 'mlx5_0' port 1 status:
 default gid: 0000:0000:0000:0000:0000:0000:0000:0000
 base lid: 0x0
 sm lid: 0x0
 state: 4: ACTIVE
 phys state: 5: LinkUp
 rate: 200 Gb/sec (4X HDR)
 link_layer: Ethernet

Infiniband device 'mlx5_1' port 1 status:
 default gid: fe80:0000:0000:0000:e8eb:d303:0072:1415
 base lid: 0xc
 sm lid: 0x1
 state: 4: ACTIVE
 phys state: 5: LinkUp
 rate: 200 Gb/sec (4X HDR)
 link_layer: InfiniBand

Infiniband device 'mlx5_2' port 1 status:
 default gid: 0000:0000:0000:0000:0000:0000:0000:0000
 base lid: 0x0
 sm lid: 0x0
 state: 1: DOWN
 phys state: 3: Disabled
 rate: 200 Gb/sec (4X HDR)
 link_layer: Ethernet

Infiniband device 'mlx5_3' port 1 status:
 default gid: 0000:0000:0000:0000:0000:0000:0000:0000
 base lid: 0x0
 sm lid: 0x0
 state: 1: DOWN
 phys state: 3: Disabled
 rate: 200 Gb/sec (4X HDR)
 link_layer: Ethernet

Infiniband device 'mlx5_4' port 1 status:
 default gid: 0000:0000:0000:0000:0000:0000:0000:0000
 base lid: 0x0
 sm lid: 0x0
 state: 1: DOWN
 phys state: 3: Disabled
 rate: 200 Gb/sec (4X HDR)
 link_layer: Ethernet

OpenShift Container Platform 4.18 Hardware accelerators

46

4. To get the link_layer for each RDMA mlx5 device on your worker node, run the ibstat
command:

Example output

Infiniband device 'mlx5_5' port 1 status:
 default gid: 0000:0000:0000:0000:0000:0000:0000:0000
 base lid: 0x0
 sm lid: 0x0
 state: 1: DOWN
 phys state: 3: Disabled
 rate: 200 Gb/sec (4X HDR)
 link_layer: Ethernet

Infiniband device 'mlx5_6' port 1 status:
 default gid: 0000:0000:0000:0000:0000:0000:0000:0000
 base lid: 0x0
 sm lid: 0x0
 state: 1: DOWN
 phys state: 3: Disabled
 rate: 200 Gb/sec (4X HDR)
 link_layer: Ethernet

Infiniband device 'mlx5_7' port 1 status:
 default gid: fe80:0000:0000:0000:2434:fdff:fe53:a6ec
 base lid: 0x0
 sm lid: 0x0
 state: 4: ACTIVE
 phys state: 5: LinkUp
 rate: 200 Gb/sec (4X HDR)
 link_layer: Ethernet

Infiniband device 'mlx5_8' port 1 status:
 default gid: 0000:0000:0000:0000:0000:0000:0000:0000
 base lid: 0x0
 sm lid: 0x0
 state: 1: DOWN
 phys state: 3: Disabled
 rate: 200 Gb/sec (4X HDR)
 link_layer: Ethernet

Infiniband device 'mlx5_9' port 1 status:
 default gid: 0000:0000:0000:0000:0000:0000:0000:0000
 base lid: 0x0
 sm lid: 0x0
 state: 1: DOWN
 phys state: 3: Disabled
 rate: 200 Gb/sec (4X HDR)
 link_layer: Ethernet

sh-5.1#

sh-5.1# ibstat | egrep "Port|Base|Link"

CHAPTER 5. NVIDIA GPUDIRECT REMOTE DIRECT MEMORY ACCESS (RDMA)

47

5. For RDMA Shared Device or Host Device workload pods, the RDMA device named mlx5_x is
already known and is typically mlx5_0 or mlx5_1. For RDMA Legacy SR-IOV workload pods, you
need to determine which RDMA device is associated with which Virtual Function (VF)
subinterface. Provide this information by using the following command:

Example output

Port 1:
 Physical state: LinkUp
 Base lid: 0
 Port GUID: 0x0000000000000000
 Link layer: Ethernet
 Port 1:
 Physical state: LinkUp
 Base lid: 12
 Port GUID: 0xe8ebd30300721415
 Link layer: InfiniBand
 Port 1:
 Base lid: 0
 Port GUID: 0x0000000000000000
 Link layer: Ethernet
 Port 1:
 Base lid: 0
 Port GUID: 0x0000000000000000
 Link layer: Ethernet
 Port 1:
 Base lid: 0
 Port GUID: 0x0000000000000000
 Link layer: Ethernet
 Port 1:
 Base lid: 0
 Port GUID: 0x0000000000000000
 Link layer: Ethernet
 Port 1:
 Base lid: 0
 Port GUID: 0x0000000000000000
 Link layer: Ethernet
 Port 1:
 Physical state: LinkUp
 Base lid: 0
 Port GUID: 0x2434fdfffe53a6ec
 Link layer: Ethernet
 Port 1:
 Base lid: 0
 Port GUID: 0x0000000000000000
 Link layer: Ethernet
 Port 1:
 Base lid: 0
 Port GUID: 0x0000000000000000
 Link layer: Ethernet
sh-5.1#

sh-5.1# rdma link show

link mlx5_0/1 state ACTIVE physical_state LINK_UP

OpenShift Container Platform 4.18 Hardware accelerators

48

In this example, the RDMA device names mlx5_7 is associated with the net1 interface. This
output is used in the next command to perform the RDMA bandwidth test, which also verifies
RDMA connectivity between worker nodes.

6. Run the following ib_write_bw RDMA bandwidth test command:

where:

The mlx5_7 RDMA device is passed in the -d switch.

The source IP address is 192.168.4.225 to start the RDMA server.

The --use_cuda=0, --use_cuda_dmabuf switches indicate that the use of GPUDirect
RDMA.

Example output

7. Open another terminal window and run oc rsh command on the second workload pod that acts
as the RDMA test client pod:

Example output

8. Obtain the RDMA test client pod IP address from the net1 interface by using the following
command:

Example output

link mlx5_1/1 subnet_prefix fe80:0000:0000:0000 lid 12 sm_lid 1 lmc 0 state ACTIVE
physical_state LINK_UP
link mlx5_2/1 state DOWN physical_state DISABLED
link mlx5_3/1 state DOWN physical_state DISABLED
link mlx5_4/1 state DOWN physical_state DISABLED
link mlx5_5/1 state DOWN physical_state DISABLED
link mlx5_6/1 state DOWN physical_state DISABLED
link mlx5_7/1 state ACTIVE physical_state LINK_UP netdev net1
link mlx5_8/1 state DOWN physical_state DISABLED
link mlx5_9/1 state DOWN physical_state DISABLED

sh-5.1# /root/perftest/ib_write_bw -R -T 41 -s 65536 -F -x 3 -m 4096 --report_gbits -q 16 -D
60 -d mlx5_7 -p 10000 --source_ip 192.168.4.225 --use_cuda=0 --use_cuda_dmabuf

WARNING: BW peak won't be measured in this run.
Perftest doesn't supports CUDA tests with inline messages: inline size set to 0

* Waiting for client to connect... *

$ oc rsh -n default rdma-sriov-33-workload

sh-5.1#

sh-5.1# ip a

CHAPTER 5. NVIDIA GPUDIRECT REMOTE DIRECT MEMORY ACCESS (RDMA)

49

9. Obtain the link_layer type associated with each RDMA device mlx5_x by using the following
command:

Example output

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group
default qlen 1000
 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
 inet 127.0.0.1/8 scope host lo
 valid_lft forever preferred_lft forever
 inet6 ::1/128 scope host
 valid_lft forever preferred_lft forever
2: eth0@if4139: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1400 qdisc noqueue
state UP group default
 link/ether 0a:58:0a:83:01:d5 brd ff:ff:ff:ff:ff:ff link-netnsid 0
 inet 10.131.1.213/23 brd 10.131.1.255 scope global eth0
 valid_lft forever preferred_lft forever
 inet6 fe80::858:aff:fe83:1d5/64 scope link
 valid_lft forever preferred_lft forever
4076: net1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq state UP
group default qlen 1000
 link/ether 56:6c:59:41:ae:4a brd ff:ff:ff:ff:ff:ff
 altname enp55s0f0v0
 inet 192.168.4.226/28 brd 192.168.4.239 scope global net1
 valid_lft forever preferred_lft forever
 inet6 fe80::546c:59ff:fe41:ae4a/64 scope link
 valid_lft forever preferred_lft forever
sh-5.1#

sh-5.1# ibstatus

Infiniband device 'mlx5_0' port 1 status:
 default gid: 0000:0000:0000:0000:0000:0000:0000:0000
 base lid: 0x0
 sm lid: 0x0
 state: 4: ACTIVE
 phys state: 5: LinkUp
 rate: 200 Gb/sec (4X HDR)
 link_layer: Ethernet

Infiniband device 'mlx5_1' port 1 status:
 default gid: fe80:0000:0000:0000:e8eb:d303:0072:09f5
 base lid: 0xd
 sm lid: 0x1
 state: 4: ACTIVE
 phys state: 5: LinkUp
 rate: 200 Gb/sec (4X HDR)
 link_layer: InfiniBand

Infiniband device 'mlx5_2' port 1 status:
 default gid: fe80:0000:0000:0000:546c:59ff:fe41:ae4a
 base lid: 0x0
 sm lid: 0x0
 state: 4: ACTIVE
 phys state: 5: LinkUp

OpenShift Container Platform 4.18 Hardware accelerators

50

 rate: 200 Gb/sec (4X HDR)
 link_layer: Ethernet

Infiniband device 'mlx5_3' port 1 status:
 default gid: 0000:0000:0000:0000:0000:0000:0000:0000
 base lid: 0x0
 sm lid: 0x0
 state: 1: DOWN
 phys state: 3: Disabled
 rate: 200 Gb/sec (4X HDR)
 link_layer: Ethernet

Infiniband device 'mlx5_4' port 1 status:
 default gid: 0000:0000:0000:0000:0000:0000:0000:0000
 base lid: 0x0
 sm lid: 0x0
 state: 1: DOWN
 phys state: 3: Disabled
 rate: 200 Gb/sec (4X HDR)
 link_layer: Ethernet

Infiniband device 'mlx5_5' port 1 status:
 default gid: 0000:0000:0000:0000:0000:0000:0000:0000
 base lid: 0x0
 sm lid: 0x0
 state: 1: DOWN
 phys state: 3: Disabled
 rate: 200 Gb/sec (4X HDR)
 link_layer: Ethernet

Infiniband device 'mlx5_6' port 1 status:
 default gid: 0000:0000:0000:0000:0000:0000:0000:0000
 base lid: 0x0
 sm lid: 0x0
 state: 1: DOWN
 phys state: 3: Disabled
 rate: 200 Gb/sec (4X HDR)
 link_layer: Ethernet

Infiniband device 'mlx5_7' port 1 status:
 default gid: 0000:0000:0000:0000:0000:0000:0000:0000
 base lid: 0x0
 sm lid: 0x0
 state: 1: DOWN
 phys state: 3: Disabled
 rate: 200 Gb/sec (4X HDR)
 link_layer: Ethernet

Infiniband device 'mlx5_8' port 1 status:
 default gid: 0000:0000:0000:0000:0000:0000:0000:0000
 base lid: 0x0
 sm lid: 0x0
 state: 1: DOWN
 phys state: 3: Disabled
 rate: 200 Gb/sec (4X HDR)
 link_layer: Ethernet

CHAPTER 5. NVIDIA GPUDIRECT REMOTE DIRECT MEMORY ACCESS (RDMA)

51

10. Optional: Obtain the firmware version of Mellanox cards by using the ibstat command:

Example output

Infiniband device 'mlx5_9' port 1 status:
 default gid: 0000:0000:0000:0000:0000:0000:0000:0000
 base lid: 0x0
 sm lid: 0x0
 state: 1: DOWN
 phys state: 3: Disabled
 rate: 200 Gb/sec (4X HDR)
 link_layer: Ethernet

sh-5.1# ibstat

CA 'mlx5_0'
 CA type: MT4123
 Number of ports: 1
 Firmware version: 20.43.1014
 Hardware version: 0
 Node GUID: 0xe8ebd303007209f4
 System image GUID: 0xe8ebd303007209f4
 Port 1:
 State: Active
 Physical state: LinkUp
 Rate: 200
 Base lid: 0
 LMC: 0
 SM lid: 0
 Capability mask: 0x00010000
 Port GUID: 0x0000000000000000
 Link layer: Ethernet
CA 'mlx5_1'
 CA type: MT4123
 Number of ports: 1
 Firmware version: 20.43.1014
 Hardware version: 0
 Node GUID: 0xe8ebd303007209f5
 System image GUID: 0xe8ebd303007209f4
 Port 1:
 State: Active
 Physical state: LinkUp
 Rate: 200
 Base lid: 13
 LMC: 0
 SM lid: 1
 Capability mask: 0xa651e848
 Port GUID: 0xe8ebd303007209f5
 Link layer: InfiniBand
CA 'mlx5_2'
 CA type: MT4124
 Number of ports: 1
 Firmware version: 20.43.1014
 Hardware version: 0

OpenShift Container Platform 4.18 Hardware accelerators

52

 Node GUID: 0x566c59fffe41ae4a
 System image GUID: 0xe8ebd303007209f4
 Port 1:
 State: Active
 Physical state: LinkUp
 Rate: 200
 Base lid: 0
 LMC: 0
 SM lid: 0
 Capability mask: 0x00010000
 Port GUID: 0x546c59fffe41ae4a
 Link layer: Ethernet
CA 'mlx5_3'
 CA type: MT4124
 Number of ports: 1
 Firmware version: 20.43.1014
 Hardware version: 0
 Node GUID: 0xb2ae4bfffe8f3d02
 System image GUID: 0xe8ebd303007209f4
 Port 1:
 State: Down
 Physical state: Disabled
 Rate: 200
 Base lid: 0
 LMC: 0
 SM lid: 0
 Capability mask: 0x00010000
 Port GUID: 0x0000000000000000
 Link layer: Ethernet
CA 'mlx5_4'
 CA type: MT4124
 Number of ports: 1
 Firmware version: 20.43.1014
 Hardware version: 0
 Node GUID: 0x2a9967fffe8bf272
 System image GUID: 0xe8ebd303007209f4
 Port 1:
 State: Down
 Physical state: Disabled
 Rate: 200
 Base lid: 0
 LMC: 0
 SM lid: 0
 Capability mask: 0x00010000
 Port GUID: 0x0000000000000000
 Link layer: Ethernet
CA 'mlx5_5'
 CA type: MT4124
 Number of ports: 1
 Firmware version: 20.43.1014
 Hardware version: 0
 Node GUID: 0x5aff2ffffe2e17e8
 System image GUID: 0xe8ebd303007209f4
 Port 1:
 State: Down
 Physical state: Disabled

CHAPTER 5. NVIDIA GPUDIRECT REMOTE DIRECT MEMORY ACCESS (RDMA)

53

 Rate: 200
 Base lid: 0
 LMC: 0
 SM lid: 0
 Capability mask: 0x00010000
 Port GUID: 0x0000000000000000
 Link layer: Ethernet
CA 'mlx5_6'
 CA type: MT4124
 Number of ports: 1
 Firmware version: 20.43.1014
 Hardware version: 0
 Node GUID: 0x121bf1fffe074419
 System image GUID: 0xe8ebd303007209f4
 Port 1:
 State: Down
 Physical state: Disabled
 Rate: 200
 Base lid: 0
 LMC: 0
 SM lid: 0
 Capability mask: 0x00010000
 Port GUID: 0x0000000000000000
 Link layer: Ethernet
CA 'mlx5_7'
 CA type: MT4124
 Number of ports: 1
 Firmware version: 20.43.1014
 Hardware version: 0
 Node GUID: 0xb22b16fffed03dd7
 System image GUID: 0xe8ebd303007209f4
 Port 1:
 State: Down
 Physical state: Disabled
 Rate: 200
 Base lid: 0
 LMC: 0
 SM lid: 0
 Capability mask: 0x00010000
 Port GUID: 0x0000000000000000
 Link layer: Ethernet
CA 'mlx5_8'
 CA type: MT4124
 Number of ports: 1
 Firmware version: 20.43.1014
 Hardware version: 0
 Node GUID: 0x523800fffe16d105
 System image GUID: 0xe8ebd303007209f4
 Port 1:
 State: Down
 Physical state: Disabled
 Rate: 200
 Base lid: 0
 LMC: 0
 SM lid: 0
 Capability mask: 0x00010000

OpenShift Container Platform 4.18 Hardware accelerators

54

11. To determine which RDMA device is associated with the Virtual Function subinterface that the
client workload pod uses, run the following command. In this example, the net1 interface is using
the RDMA device mlx5_2.

Example output

12. Run the following ib_write_bw RDMA bandwidth test command:

where:

The mlx5_2 RDMA device is passed in the -d switch.

The source IP address 192.168.4.226 and the destination IP address of the RDMA server
192.168.4.225.

 Port GUID: 0x0000000000000000
 Link layer: Ethernet
CA 'mlx5_9'
 CA type: MT4124
 Number of ports: 1
 Firmware version: 20.43.1014
 Hardware version: 0
 Node GUID: 0xd2b4a1fffebdc4a9
 System image GUID: 0xe8ebd303007209f4
 Port 1:
 State: Down
 Physical state: Disabled
 Rate: 200
 Base lid: 0
 LMC: 0
 SM lid: 0
 Capability mask: 0x00010000
 Port GUID: 0x0000000000000000
 Link layer: Ethernet
sh-5.1#

sh-5.1# rdma link show

link mlx5_0/1 state ACTIVE physical_state LINK_UP
link mlx5_1/1 subnet_prefix fe80:0000:0000:0000 lid 13 sm_lid 1 lmc 0 state ACTIVE
physical_state LINK_UP
link mlx5_2/1 state ACTIVE physical_state LINK_UP netdev net1
link mlx5_3/1 state DOWN physical_state DISABLED
link mlx5_4/1 state DOWN physical_state DISABLED
link mlx5_5/1 state DOWN physical_state DISABLED
link mlx5_6/1 state DOWN physical_state DISABLED
link mlx5_7/1 state DOWN physical_state DISABLED
link mlx5_8/1 state DOWN physical_state DISABLED
link mlx5_9/1 state DOWN physical_state DISABLED
sh-5.1#

sh-5.1# /root/perftest/ib_write_bw -R -T 41 -s 65536 -F -x 3 -m 4096 --report_gbits -q 16 -D
60 -d mlx5_2 -p 10000 --source_ip 192.168.4.226 --use_cuda=0 --use_cuda_dmabuf
192.168.4.225

CHAPTER 5. NVIDIA GPUDIRECT REMOTE DIRECT MEMORY ACCESS (RDMA)

55

The --use_cuda=0, --use_cuda_dmabuf switches indicate that the use of GPUDirect
RDMA.

Example output

WARNING: BW peak won't be measured in this run.
Perftest doesn't supports CUDA tests with inline messages: inline size set to 0
Requested mtu is higher than active mtu
Changing to active mtu - 3
initializing CUDA
Listing all CUDA devices in system:
CUDA device 0: PCIe address is 61:00

Picking device No. 0
[pid = 8909, dev = 0] device name = [NVIDIA A40]
creating CUDA Ctx
making it the current CUDA Ctx
CUDA device integrated: 0
using DMA-BUF for GPU buffer address at 0x7f8738600000 aligned at 0x7f8738600000
with aligned size 2097152
allocated GPU buffer of a 2097152 address at 0x23a7420 for type CUDA_MEM_DEVICE
Calling ibv_reg_dmabuf_mr(offset=0, size=2097152, addr=0x7f8738600000, fd=40) for
QP #0

 RDMA_Write BW Test
 Dual-port : OFF Device : mlx5_2
 Number of qps : 16 Transport type : IB
 Connection type : RC Using SRQ : OFF
 PCIe relax order: ON Lock-free : OFF
 ibv_wr* API : ON Using DDP : OFF
 TX depth : 128
 CQ Moderation : 1
 CQE Poll Batch : 16
 Mtu : 1024[B]
 Link type : Ethernet
 GID index : 3
 Max inline data : 0[B]
 rdma_cm QPs : ON
 Data ex. method : rdma_cm TOS : 41

 local address: LID 0000 QPN 0x012d PSN 0x3cb6d7
 GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:226
 local address: LID 0000 QPN 0x012e PSN 0x90e0ac
 GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:226
 local address: LID 0000 QPN 0x012f PSN 0x153f50
 GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:226
 local address: LID 0000 QPN 0x0130 PSN 0x5e0128
 GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:226
 local address: LID 0000 QPN 0x0131 PSN 0xd89752
 GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:226
 local address: LID 0000 QPN 0x0132 PSN 0xe5fc16
 GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:226
 local address: LID 0000 QPN 0x0133 PSN 0x236787
 GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:226
 local address: LID 0000 QPN 0x0134 PSN 0xd9273e
 GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:226

OpenShift Container Platform 4.18 Hardware accelerators

56

 local address: LID 0000 QPN 0x0135 PSN 0x37cfd4
 GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:226
 local address: LID 0000 QPN 0x0136 PSN 0x3bff8f
 GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:226
 local address: LID 0000 QPN 0x0137 PSN 0x81f2bd
 GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:226
 local address: LID 0000 QPN 0x0138 PSN 0x575c43
 GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:226
 local address: LID 0000 QPN 0x0139 PSN 0x6cf53d
 GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:226
 local address: LID 0000 QPN 0x013a PSN 0xcaaf6f
 GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:226
 local address: LID 0000 QPN 0x013b PSN 0x346437
 GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:226
 local address: LID 0000 QPN 0x013c PSN 0xcc5865
 GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:226
 remote address: LID 0000 QPN 0x026d PSN 0x359409
 GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:225
 remote address: LID 0000 QPN 0x026e PSN 0xe387bf
 GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:225
 remote address: LID 0000 QPN 0x026f PSN 0x5be79d
 GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:225
 remote address: LID 0000 QPN 0x0270 PSN 0x1b4b28
 GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:225
 remote address: LID 0000 QPN 0x0271 PSN 0x76a61b
 GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:225
 remote address: LID 0000 QPN 0x0272 PSN 0x3d50e1
 GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:225
 remote address: LID 0000 QPN 0x0273 PSN 0x1b572c
 GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:225
 remote address: LID 0000 QPN 0x0274 PSN 0x4ae1b5
 GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:225
 remote address: LID 0000 QPN 0x0275 PSN 0x5591b5
 GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:225
 remote address: LID 0000 QPN 0x0276 PSN 0xfa2593
 GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:225
 remote address: LID 0000 QPN 0x0277 PSN 0xd9473b
 GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:225
 remote address: LID 0000 QPN 0x0278 PSN 0x2116b2
 GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:225
 remote address: LID 0000 QPN 0x0279 PSN 0x9b83b6
 GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:225
 remote address: LID 0000 QPN 0x027a PSN 0xa0822b
 GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:225
 remote address: LID 0000 QPN 0x027b PSN 0x6d930d
 GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:225
 remote address: LID 0000 QPN 0x027c PSN 0xb1a4d
 GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:225

 #bytes #iterations BW peak[Gb/sec] BW average[Gb/sec] MsgRate[Mpps]
 65536 10329004 0.00 180.47 0.344228

deallocating GPU buffer 00007f8738600000
destroying current CUDA Ctx
sh-5.1#

CHAPTER 5. NVIDIA GPUDIRECT REMOTE DIRECT MEMORY ACCESS (RDMA)

57

A positive test is seeing an expected BW average and MsgRate in Mpps.

Upon completion of the ib_write_bw command, the server side output also appears on the
server pod. See the following example:

Example output

WARNING: BW peak won't be measured in this run.
Perftest doesn't supports CUDA tests with inline messages: inline size set to 0

* Waiting for client to connect... *

Requested mtu is higher than active mtu
Changing to active mtu - 3
initializing CUDA
Listing all CUDA devices in system:
CUDA device 0: PCIe address is 61:00

Picking device No. 0
[pid = 9226, dev = 0] device name = [NVIDIA A40]
creating CUDA Ctx
making it the current CUDA Ctx
CUDA device integrated: 0
using DMA-BUF for GPU buffer address at 0x7f447a600000 aligned at 0x7f447a600000
with aligned size 2097152
allocated GPU buffer of a 2097152 address at 0x2406400 for type CUDA_MEM_DEVICE
Calling ibv_reg_dmabuf_mr(offset=0, size=2097152, addr=0x7f447a600000, fd=40) for
QP #0

 RDMA_Write BW Test
 Dual-port : OFF Device : mlx5_7
 Number of qps : 16 Transport type : IB
 Connection type : RC Using SRQ : OFF
 PCIe relax order: ON Lock-free : OFF
 ibv_wr* API : ON Using DDP : OFF
 CQ Moderation : 1
 CQE Poll Batch : 16
 Mtu : 1024[B]
 Link type : Ethernet
 GID index : 3
 Max inline data : 0[B]
 rdma_cm QPs : ON
 Data ex. method : rdma_cm TOS : 41

 Waiting for client rdma_cm QP to connect
 Please run the same command with the IB/RoCE interface IP

 local address: LID 0000 QPN 0x026d PSN 0x359409
 GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:225
 local address: LID 0000 QPN 0x026e PSN 0xe387bf
 GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:225
 local address: LID 0000 QPN 0x026f PSN 0x5be79d
 GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:225
 local address: LID 0000 QPN 0x0270 PSN 0x1b4b28
 GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:225

OpenShift Container Platform 4.18 Hardware accelerators

58

 local address: LID 0000 QPN 0x0271 PSN 0x76a61b
 GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:225
 local address: LID 0000 QPN 0x0272 PSN 0x3d50e1
 GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:225
 local address: LID 0000 QPN 0x0273 PSN 0x1b572c
 GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:225
 local address: LID 0000 QPN 0x0274 PSN 0x4ae1b5
 GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:225
 local address: LID 0000 QPN 0x0275 PSN 0x5591b5
 GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:225
 local address: LID 0000 QPN 0x0276 PSN 0xfa2593
 GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:225
 local address: LID 0000 QPN 0x0277 PSN 0xd9473b
 GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:225
 local address: LID 0000 QPN 0x0278 PSN 0x2116b2
 GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:225
 local address: LID 0000 QPN 0x0279 PSN 0x9b83b6
 GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:225
 local address: LID 0000 QPN 0x027a PSN 0xa0822b
 GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:225
 local address: LID 0000 QPN 0x027b PSN 0x6d930d
 GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:225
 local address: LID 0000 QPN 0x027c PSN 0xb1a4d
 GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:225
 remote address: LID 0000 QPN 0x012d PSN 0x3cb6d7
 GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:226
 remote address: LID 0000 QPN 0x012e PSN 0x90e0ac
 GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:226
 remote address: LID 0000 QPN 0x012f PSN 0x153f50
 GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:226
 remote address: LID 0000 QPN 0x0130 PSN 0x5e0128
 GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:226
 remote address: LID 0000 QPN 0x0131 PSN 0xd89752
 GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:226
 remote address: LID 0000 QPN 0x0132 PSN 0xe5fc16
 GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:226
 remote address: LID 0000 QPN 0x0133 PSN 0x236787
 GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:226
 remote address: LID 0000 QPN 0x0134 PSN 0xd9273e
 GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:226
 remote address: LID 0000 QPN 0x0135 PSN 0x37cfd4
 GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:226
 remote address: LID 0000 QPN 0x0136 PSN 0x3bff8f
 GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:226
 remote address: LID 0000 QPN 0x0137 PSN 0x81f2bd
 GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:226
 remote address: LID 0000 QPN 0x0138 PSN 0x575c43
 GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:226
 remote address: LID 0000 QPN 0x0139 PSN 0x6cf53d
 GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:226
 remote address: LID 0000 QPN 0x013a PSN 0xcaaf6f
 GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:226
 remote address: LID 0000 QPN 0x013b PSN 0x346437
 GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:226
 remote address: LID 0000 QPN 0x013c PSN 0xcc5865
 GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:226

CHAPTER 5. NVIDIA GPUDIRECT REMOTE DIRECT MEMORY ACCESS (RDMA)

59

 #bytes #iterations BW peak[Gb/sec] BW average[Gb/sec] MsgRate[Mpps]
 65536 10329004 0.00 180.47 0.344228

deallocating GPU buffer 00007f447a600000
destroying current CUDA Ctx

OpenShift Container Platform 4.18 Hardware accelerators

60

	Table of Contents
	CHAPTER 1. ABOUT HARDWARE ACCELERATORS
	1.1. HARDWARE ACCELERATORS

	CHAPTER 2. NVIDIA GPU ARCHITECTURE
	2.1. NVIDIA GPU PREREQUISITES
	2.2. NVIDIA GPU ENABLEMENT
	2.2.1. GPUs and bare metal
	2.2.2. GPUs and virtualization
	2.2.3. GPUs and vSphere
	2.2.4. GPUs and Red Hat KVM
	2.2.5. GPUs and CSPs
	2.2.6. GPUs and Red Hat Device Edge

	2.3. GPU SHARING METHODS
	2.3.1. CUDA streams
	2.3.2. Time-slicing
	2.3.3. CUDA Multi-Process Service
	2.3.4. Multi-instance GPU
	2.3.5. Virtualization with vGPU

	2.4. NVIDIA GPU FEATURES FOR OPENSHIFT CONTAINER PLATFORM

	CHAPTER 3. AMD GPU OPERATOR
	3.1. ABOUT THE AMD GPU OPERATOR
	3.2. INSTALLING THE AMD GPU OPERATOR
	3.3. TESTING THE AMD GPU OPERATOR

	CHAPTER 4. INTEL GAUDI AI ACCELERATORS
	4.1. INTEL GAUDI AI ACCELERATORS PREREQUISITES

	CHAPTER 5. NVIDIA GPUDIRECT REMOTE DIRECT MEMORY ACCESS (RDMA)
	5.1. NVIDIA GPUDIRECT RDMA PREREQUISITES
	5.2. DISABLING THE IRDMA KERNEL MODULE
	5.3. CREATING PERSISTENT NAMING RULES
	5.4. CONFIGURING THE NFD OPERATOR
	5.5. CONFIGURING THE SR-IOV OPERATOR
	5.6. CONFIGURING THE NVIDIA NETWORK OPERATOR
	5.7. CONFIGURING THE GPU OPERATOR
	5.8. CREATING THE MACHINE CONFIGURATION
	5.9. CREATING THE WORKLOAD PODS
	5.9.1. Creating a shared device RDMA on RoCE
	5.9.2. Creating a host device RDMA on RoCE
	5.9.3. Creating a SR-IOV legacy mode RDMA on RoCE
	5.9.4. Creating a shared device RDMA on Infiniband

	5.10. VERIFYING RDMA CONNECTIVITY

