& RedHat

OpenShift Container Platform 4.18

Hardware accelerators

Hardware accelerators

Last Updated: 2026-01-15

OpenShift Container Platform 4.18 Hardware accelerators

Hardware accelerators

Legal Notice

Copyright © Red Hat.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution-Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at

http://creativecommons.org/licenses/by-sa/3.0/

. In'accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity
logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other
countries.

Linux @ is the registered trademark of Linus Torvalds in the United States and other countries.
Java @ is a registered trademark of Oracle and/or its affiliates.

XFS @ is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL @ is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related to
or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This document provides instructions for installing and configuring the GPU Operators supported by
Red Hat OpenShift Al for the provided hardware acceleration capabilities for creating artificial
intelligence and machine learning (Al/ML) applications.

Table of Contents

Table of Contents

CHAPTER 1. ABOUT HARDWARE ACCELERATORS ... i e i e 3
11. HARDWARE ACCELERATORS

N

CHAPTER 2. NVIDIA GPU ARCHITECTURE ...ttt ittt ettt et e et eanneeaneeeaneennneenns
2.1.NVIDIA GPU PREREQUISITES
2.2.NVIDIA GPU ENABLEMENT
2.2.1. GPUs and bare metal
2.2.2. GPUs and virtualization
2.2.3. GPUs and vSphere
2.2.4. GPUs and Red Hat KVM
2.2.5. GPUs and CSPs
2.2.6. GPUs and Red Hat Device Edge
2.3. GPU SHARING METHODS
2.3.1. CUDA streams
2.3.2. Time-slicing
2.3.3. CUDA Multi-Process Service
2.3.4. Multi-instance GPU 10
2.3.5. Virtualization with vGPU 1
2.4.NVIDIA GPU FEATURES FOR OPENSHIFT CONTAINER PLATFORM 1

O O 0 0 N N N o oo !

S o

CHAPTER 3. AMD GPU OPERAT O R ..ttt iittiitee ettt anteeaeeaneeeanaenaneennneenneenns 13
3.1. ABOUT THE AMD GPU OPERATOR 13
3.2. INSTALLING THE AMD GPU OPERATOR 13
3.3. TESTING THE AMD GPU OPERATOR 13

CHAPTER 4. INTEL GAUDI Al ACCELERATORS ..ttt et ettt ieieeitenaeennneenneenns 15
4.1.INTEL GAUDI Al ACCELERATORS PREREQUISITES 15

CHAPTER 5. NVIDIA GPUDIRECT REMOTE DIRECT MEMORY ACCESS(RDMA) .. it 16
5.1. NVIDIA GPUDIRECT RDMA PREREQUISITES 16
5.2. DISABLING THE IRDMA KERNEL MODULE 16
5.3. CREATING PERSISTENT NAMING RULES 17
5.4. CONFIGURING THE NFD OPERATOR 19
5.5. CONFIGURING THE SR-IOV OPERATOR 23
5.6. CONFIGURING THE NVIDIA NETWORK OPERATOR 24
5.7. CONFIGURING THE GPU OPERATOR 28
5.8. CREATING THE MACHINE CONFIGURATION 33
5.9. CREATING THE WORKLOAD PODS 34

5.9.1. Creating a shared device RDMA on RoCE 34
5.9.2. Creating a host device RDMA on RoCE 35
5.9.3. Creating a SR-IOV legacy mode RDMA on RoCE 39
5.9.4. Creating a shared device RDMA on Infiniband 43
5.10. VERIFYING RDMA CONNECTIVITY 45

OpenShift Container Platform 4.18 Hardware accelerators

CHAPTER 1. ABOUT HARDWARE ACCELERATORS

CHAPTER 1. ABOUT HARDWARE ACCELERATORS

Specialized hardware accelerators play a key role in the emerging generative artificial intelligence and
machine learning (Al/ML) industry. Specifically, hardware accelerators are essential to the training and
serving of large language and other foundational models that power this new technology. Data
scientists, data engineers, ML engineers, and developers can take advantage of the specialized
hardware acceleration for data-intensive transformations and model development and serving. Much of
that ecosystem is open source, with several contributing partners and open source foundations.

Red Hat OpenShift Container Platform provides support for cards and peripheral hardware that add
processing units that comprise hardware accelerators:

® Graphical processing units (GPUs)
® Neural processing units (NPUs)
® Application-specific integrated circuits (ASICs)

® Data processing units (DPUs)

Red Hat Software — el s

OpenShift
Hardware
Accelerators B GPUs NPUs ASICs DPUs Others
Supported : Private / '
Platforms B e Virtual Red Hat OpenStack Public cloud Edge

Specialized hardware accelerators provide a rich set of benefits for Al/ML development:

One platform for all

A collaborative environment for developers, data engineers, data scientists, and DevOps
Extended capabilities with Operators

Operators allow for bringing Al/ML capabilities to OpenShift Container Platform
Hybrid-cloud support

On-premise support for model development, delivery, and deployment
Support for Al/ML workloads

Model testing, iteration, integration, promotion, and serving into production as services

Red Hat provides an optimized platform to enable these specialized hardware accelerators in Red Hat
Enterprise Linux (RHEL) and OpenShift Container Platform platforms at the Linux (kernel and
userspace) and Kubernetes layers. To do this, Red Hat combines the proven capabilities of Red Hat
OpenShift Al and Red Hat OpenShift Container Platform in a single enterprise-ready Al application
platform.

Hardware Operators use the operating framework of a Kubernetes cluster to enable the required
accelerator resources. You can also deploy the provided device plugin manually or as a daemon set. This
plugin registers the GPU in the cluster.

Certain specialized hardware accelerators are designed to work within disconnected environments where
a secure environment must be maintained for development and testing.

OpenShift Container Platform 4.18 Hardware accelerators

1.1. HARDWARE ACCELERATORS

Red Hat OpenShift Container Platform enables the following hardware accelerators:
e NVIDIA GPU
® AMD Instinct® GPU

® |ntel® Gaudi®

Additional resources

® |ntroduction to Red Hat OpenShift Al
® NVIDIA GPU Operator on Red Hat OpenShift Container Platform
® AMD Instinct Accelerators

® |ntel Gaudi Al Accelerators

https://docs.redhat.com/en/documentation/red_hat_openshift_ai_self-managed/2-latest/html/introduction_to_red_hat_openshift_ai/index
https://docs.nvidia.com/datacenter/cloud-native/openshift/latest/index.html
https://www.amd.com/en/products/accelerators/instinct.html
https://www.intel.com/content/www/us/en/products/details/processors/ai-accelerators/gaudi-overview.html

CHAPTER 2. NVIDIA GPU ARCHITECTURE

CHAPTER 2. NVIDIA GPU ARCHITECTURE

NVIDIA supports the use of graphics processing unit (GPU) resources on OpenShift Container Platform.
OpenShift Container Platform is a security-focused and hardened Kubernetes platform developed and
supported by Red Hat for deploying and managing Kubernetes clusters at scale. OpenShift Container
Platform includes enhancements to Kubernetes so that users can easily configure and use NVIDIA GPU
resources to accelerate workloads.

The NVIDIA GPU Operator uses the Operator framework within OpenShift Container Platform to
manage the full lifecycle of NVIDIA software components required to run GPU-accelerated workloads.

These components include the NVIDIA drivers (to enable CUDA), the Kubernetes device plugin for

GPUs, the NVIDIA Container Toolkit, automatic node tagging using GPU feature discovery (GFD),
DCGM-based monitoring, and others.

9’ NOTE

The NVIDIA GPU Operator is only supported by NVIDIA. For more information about
obtaining support from NVIDIA, see Obtaining Support from NVIDIA.

2.1. NVIDIA GPU PREREQUISITES
® A working OpenShift cluster with at least one GPU worker node.
® Access to the OpenShift cluster as a cluster-admin to perform the required steps.
® OpenShift CLI (oc¢) is installed.

® The node feature discovery (NFD) Operator is installed and a nodefeaturediscovery instance
is created.

2.2. NVIDIA GPU ENABLEMENT

The following diagram shows how the GPU architecture is enabled for OpenShift:

https://access.redhat.com/solutions/5174941

OpenShift Container Platform 4.18 Hardware accelerators

Figure 2.1. NVIDIA GPU enablement

OpenShift OpenShift OpenShift OpenShift OpenShift Red Hat
on bare metal Virtualization on VMware on Red Hat KVM on AWS, GCP, Device Edge
vSphere (RHOSP) Azure, OCI
Containers VMs Containers Containers Containers Containers
Physical GPU Passthrough Passthrough Passthrough Passthrough Physical GPU
or or or or or
MIG vGPU time slice vGPU vGPU time slice MIG

VGEUItime slice vGPU time slice

or MIG
AWS, GCP, NVIDIA Orin
VMware vSphere RHOSP Azure, OCI IGX, AGX
Physical Private cloud Public cloud Edge

NOTE

MIG is supported on GPUs starting with the NVIDIA Ampere generation. For a list of
GPUs that support MIG, see the NVIDIA MIG User Guide.

2.2.1. GPUs and bare metal

You can deploy OpenShift Container Platform on an NVIDIA-certified bare metal server but with some
limitations:

® Control plane nodes can be CPU nodes.

® Worker nodes must be GPU nodes, provided that Al/ML workloads are executed on these
worker nodes.

In addition, the worker nodes can host one or more GPUs, but they must be of the same type.
For example, a node can have two NVIDIA A100 GPUs, but a node with one A100 GPU and one
T4 GPU is not supported. The NVIDIA Device Plugin for Kubernetes does not support mixing
different GPU models on the same node.

® When using OpenShift, note that one or three or more servers are required. Clusters with two
servers are not supported. The single server deployment is called single node openShift (SNO)
and using this configuration results in a non-high availability OpenShift environment.
You can choose one of the following methods to access the containerized GPUs:

® GPU passthrough

® Multi-Instance GPU (MIG)

Additional resources

® Red Hat OpenShift on Bare Metal Stack

https://docs.nvidia.com/datacenter/tesla/mig-user-guide/#supported-gpus
https://docs.nvidia.com/ai-enterprise/deployment-guide-openshift-on-bare-metal/0.1.0/on-bare-metal.html

CHAPTER 2. NVIDIA GPU ARCHITECTURE

2.2.2. GPUs and virtualization

Many developers and enterprises are moving to containerized applications and serverless
infrastructures, but there is still a lot of interest in developing and maintaining applications that run on
virtual machines (VMs). Red Hat OpenShift Virtualization provides this capability, enabling enterprises
to incorporate VMs into containerized workflows within clusters.

You can choose one of the following methods to connect the worker nodes to the GPUs:

® GPU passthrough to access and use GPU hardware within a virtual machine (VM).

® GPU (vGPU) time-slicing, when GPU compute capacity is not saturated by workloads.

Additional resources

® NVIDIA GPU Operator with OpenShift Virtualization

2.2.3. GPUs and vSphere

You can deploy OpenShift Container Platform on an NVIDIA-certified VMware vSphere server that can
host different GPU types.

An NVIDIA GPU driver must be installed in the hypervisor in case vGPU instances are used by the VMs.
For VMware vSphere, this host driver is provided in the form of a VIB file.

The maximum number of vGPUS that can be allocated to worker node VMs depends on the version of
vSphere:

® vSphere 7.0: maximum 4 vGPU per VM

® vSphere 8.0: maximum 8 vGPU per VM

NOTE

vSphere 8.0 introduced support for multiple full or fractional heterogenous
profiles associated with a VM.

You can choose one of the following methods to attach the worker nodes to the GPUs:
® GPU passthrough for accessing and using GPU hardware within a virtual machine (VM)
e GPU (vGPU) time-slicing, when not all of the GPU is needed

Similar to bare metal deployments, one or three or more servers are required. Clusters with two servers
are not supported.

Additional resources

® OpenShift Container Platform on VMware vSphere with NVIDIA vGPUs

2.2.4. GPUs and Red Hat KVM

You can use OpenShift Container Platform on an NVIDIA-certified kernel-based virtual machine (KVM)
server.

https://docs.nvidia.com/datacenter/cloud-native/gpu-operator/latest/openshift/openshift-virtualization.html
https://docs.nvidia.com/datacenter/cloud-native/gpu-operator/latest/openshift/nvaie-with-ocp.html#openshift-container-platform-on-vmware-vsphere-with-nvidia-vgpus

OpenShift Container Platform 4.18 Hardware accelerators

Similar to bare-metal deployments, one or three or more servers are required. Clusters with two servers
are not supported.

However, unlike bare-metal deployments, you can use different types of GPUs in the server. This is
because you can assign these GPUs to different VMs that act as Kubernetes nodes. The only limitation is
that a Kubernetes node must have the same set of GPU types at its own level.

You can choose one of the following methods to access the containerized GPUs:
® GPU passthrough for accessing and using GPU hardware within a virtual machine (VM)
e GPU (vGPU) time-slicing when not all of the GPU is needed

To enable the vGPU capability, a special driver must be installed at the host level. This driver is delivered
as a RPM package. This host driver is not required at all for GPU passthrough allocation.

2.2.5. GPUs and CSPs

You can deploy OpenShift Container Platform to one of the major cloud service providers (CSPs):
Amazon Web Services (AWS), Google Cloud, or Microsoft Azure.

Two modes of operation are available: a fully managed deployment and a self-managed deployment.

® |n a fully managed deployment, everything is automated by Red Hat in collaboration with CSP.
You can request an OpenShift instance through the CSP web console, and the cluster is
automatically created and fully managed by Red Hat. You do not have to worry about node
failures or errors in the environment. Red Hat is fully responsible for maintaining the uptime of
the cluster. The fully managed services are available on AWS, Azure, and Google Cloud. For
AWS, the OpenShift service is called ROSA (Red Hat OpenShift Service on AWS). For Azure,
the service is called Azure Red Hat OpenShift. For Google Cloud, the service is called OpenShift
Dedicated on Google Cloud.

® |n aself-managed deployment, you are responsible for instantiating and maintaining the
OpenShift cluster. Red Hat provides the OpenShift-install utility to support the deployment of
the OpenShift cluster in this case. The self-managed services are available globally to all CSPs.

It is important that this compute instance is a GPU-accelerated compute instance and that the GPU
type matches the list of supported GPUs from NVIDIA Al Enterprise. For example, T4, V100, and A100
are part of this list.

You can choose one of the following methods to access the containerized GPUs:
® GPU passthrough to access and use GPU hardware within a virtual machine (VM).

® GPU (vGPU) time slicing when the entire GPU is not required.

Additional resources

® Red Hat Openshift in the Cloud

2.2.6. GPUs and Red Hat Device Edge

Red Hat Device Edge provides access to MicroShift. MicroShift provides the simplicity of a single-node
deployment with the functionality and services you need for resource-constrained (edge) computing.
Red Hat Device Edge meets the needs of bare-metal, virtual, containerized, or Kubernetes workloads
deployed in resource-constrained environments.

https://docs.nvidia.com/ai-enterprise/deployment-guide-cloud/0.1.0/aws-redhat-openshift.html

CHAPTER 2. NVIDIA GPU ARCHITECTURE

You can enable NVIDIA GPUs on containers in a Red Hat Device Edge environment.

You use GPU passthrough to access the containerized GPUs.

Additional resources

® How to accelerate workloads with NVIDIA GPUs on Red Hat Device Edge

2.3. GPU SHARING METHODS

Red Hat and NVIDIA have developed GPU concurrency and sharing mechanisms to simplify GPU-
accelerated computing on an enterprise-level OpenShift Container Platform cluster.

Applications typically have different compute requirements that can leave GPUs underutilized.
Providing the right amount of compute resources for each workload is critical to reduce deployment
cost and maximize GPU utilization.

Concurrency mechanisms for improving GPU utilization exist that range from programming model APIs
to system software and hardware partitioning, including virtualization. The following list shows the GPU
concurrency mechanisms:

e Compute Unified Device Architecture (CUDA) streams
® Time-slicing

® CUDA Multi-Process Service (MPS)

® Multi-instance GPU (MIG)

® \Virtualization with vGPU

Consider the following GPU sharing suggestions when using the GPU concurrency mechanisms for
different OpenShift Container Platform scenarios:

Bare metal
vGPU is not available. Consider using MIG-enabled cards.
VMs
vGPU is the best choice.
Older NVIDIA cards with no MIG on bare metal
Consider using time-slicing.
VMs with multiple GPUs and you want passthrough and vGPU
Consider using separate VMs.
Bare metal with OpenShift Virtualization and multiple GPUs

Consider using pass-through for hosted VMs and time-slicing for containers.

Additional resources

® |mproving GPU Utilization

2.3.1. CUDA streams

https://cloud.redhat.com/blog/how-to-accelerate-workloads-with-nvidia-gpus-on-red-hat-device-edge
https://developer.nvidia.com/blog/improving-gpu-utilization-in-kubernetes/

OpenShift Container Platform 4.18 Hardware accelerators

Compute Unified Device Architecture (CUDA) is a parallel computing platform and programming model
developed by NVIDIA for general computing on GPUs.

A stream is a sequence of operations that executes in issue-order on the GPU. CUDA commands are
typically executed sequentially in a default stream and a task does not start until a preceding task has
completed.

Asynchronous processing of operations across different streams allows for parallel execution of tasks. A
task issued in one stream runs before, during, or after another task is issued into another stream. This
allows the GPU to run multiple tasks simultaneously in no prescribed order, leading to improved
performance.

Additional resources

® Asynchronous Concurrent Execution

2.3.2. Time-slicing

GPU time-slicing interleaves workloads scheduled on overloaded GPUs when you are running multiple
CUDA applications.

You can enable time-slicing of GPUs on Kubernetes by defining a set of replicas for a GPU, each of
which can be independently distributed to a pod to run workloads on. Unlike multi-instance GPU (MIG),
there is no memory or fault isolation between replicas, but for some workloads this is better than not
sharing at all. Internally, GPU time-slicing is used to multiplex workloads from replicas of the same
underlying GPU.

You can apply a cluster-wide default configuration for time-slicing. You can also apply node-specific
configurations. For example, you can apply a time-slicing configuration only to nodes with Tesla T4
GPUs and not modify nodes with other GPU models.

You can combine these two approaches by applying a cluster-wide default configuration and then
labeling nodes to give those nodes a node-specific configuration.

2.3.3. CUDA Multi-Process Service

CUDA Multi-Process Service (MPS) allows a single GPU to use multiple CUDA processes. The
processes run in parallel on the GPU, eliminating saturation of the GPU compute resources. MPS also
enables concurrent execution, or overlapping, of kernel operations and memory copying from different
processes to enhance utilization.

Additional resources

e CUDAMPS

2.3.4. Multi-instance GPU

Using Multi-instance GPU (MIG), you can split GPU compute units and memory into multiple MIG
instances. Each of these instances represents a standalone GPU device from a system perspective and
can be connected to any application, container, or virtual machine running on the node. The software
that uses the GPU treats each of these MIG instances as an individual GPU.

MIG is useful when you have an application that does not require the full power of an entire GPU. The

MIG feature of the new NVIDIA Ampere architecture enables you to split your hardware resources into
multiple GPU instances, each of which is available to the operating system as an independent CUDA-

10

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#asynchronous-concurrent-execution
https://docs.nvidia.com/deploy/mps/index.html

CHAPTER 2. NVIDIA GPU ARCHITECTURE

enabled GPU.

NVIDIA GPU Operator version 1.7.0 and higher provides MIG support for the A100 and A30 Ampere
cards. These GPU instances are designed to support up to seven multiple independent CUDA
applications so that they operate completely isolated with dedicated hardware resources.

Additional resources

o NVIDIA Multi-Instance GPU User Guide

2.3.5. Virtualization with vGPU

Virtual machines (VMs) can directly access a single physical GPU using NVIDIA vGPU. You can create
virtual GPUs that can be shared by VMs across the enterprise and accessed by other devices.

This capability combines the power of GPU performance with the management and security benefits
provided by vGPU. Additional benefits provided by vGPU includes proactive management and
monitoring for your VM environment, workload balancing for mixed VDI and compute workloads, and
resource sharing across multiple VMs.

Additional resources

e Virtual GPUs

2.4. NVIDIA GPU FEATURES FOR OPENSHIFT CONTAINER PLATFORM

NVIDIA Container Toolkit

NVIDIA Container Toolkit enables you to create and run GPU-accelerated containers. The toolkit
includes a container runtime library and utilities to automatically configure containers to use NVIDIA
GPUs.

NVIDIA Al Enterprise

NVIDIA Al Enterprise is an end-to-end, cloud-native suite of Al and data analytics software
optimized, certified, and supported with NVIDIA-Certified systems.

NVIDIA Al Enterprise includes support for Red Hat OpenShift Container Platform. The following
installation methods are supported:

® OpenShift Container Platform on bare metal or VMware vSphere with GPU Passthrough.

® OpenShift Container Platform on VMware vSphere with NVIDIA vGPU.

GPU Feature Discovery

NVIDIA GPU Feature Discovery for Kubernetes is a software component that enables you to
automatically generate labels for the GPUs available on a node. GPU Feature Discovery uses node
feature discovery (NFD) to perform this labeling.

The Node Feature Discovery Operator (NFD) manages the discovery of hardware features and
configurations in an OpenShift Container Platform cluster by labeling nodes with hardware-specific
information. NFD labels the host with node-specific attributes, such as PCl cards, kernel, OS version,
and so on.

You can find the NFD Operator in the Operator Hub by searching for “Node Feature Discovery”.

NVIDIA GPU Operator with OpenShift Virtualization

1

https://docs.nvidia.com/datacenter/tesla/mig-user-guide/
https://www.nvidia.com/en-us/data-center/virtual-solutions/

OpenShift Container Platform 4.18 Hardware accelerators

Up until this point, the GPU Operator only provisioned worker nodes to run GPU-accelerated
containers. Now, the GPU Operator can also be used to provision worker nodes for running GPU-
accelerated virtual machines (VMs).

You can configure the GPU Operator to deploy different software components to worker nodes
depending on which GPU workload is configured to run on those nodes.

GPU Monitoring dashboard

You can install a monitoring dashboard to display GPU usage information on the cluster Observe
page in the OpenShift Container Platform web console. GPU utilization information includes the
number of available GPUs, power consumption (in watts), temperature (in degrees Celsius),
utilization (in percent), and other metrics for each GPU.

Additional resources

12

® NVIDIA-Certified Systems

o NVIDIA Al Enterprise

® NVIDIA Container Toolkit

® Enabling the GPU Monitoring Dashboard

® MIG Support in OpenShift Container Platform

® Time-slicing NVIDIA GPUs in OpenShift

® Deploy GPU Operators in a disconnected or airgapped environment

® Node Feature Discovery Operator

https://docs.nvidia.com/ngc/ngc-deploy-on-premises/nvidia-certified-systems/index.html
https://docs.nvidia.com/ai-enterprise/index.html#deployment-guides
https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/overview.html#
https://docs.nvidia.com/datacenter/cloud-native/openshift/latest/enable-gpu-monitoring-dashboard.html
https://docs.nvidia.com/datacenter/cloud-native/openshift/latest/mig-ocp.html
https://docs.nvidia.com/datacenter/cloud-native/openshift/latest/time-slicing-gpus-in-openshift.html
https://docs.nvidia.com/datacenter/cloud-native/openshift/latest/mirror-gpu-ocp-disconnected.html
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/specialized_hardware_and_driver_enablement/#node-feature-discovery-operator

CHAPTER 3. AMD GPU OPERATOR

CHAPTER 3. AMD GPU OPERATOR

AMD Instinct GPU accelerators combined with the AMD GPU Operator within your OpenShift Container
Platform cluster lets you seamlessly harness computing capabilities for machine learning, Generative Al,
and GPU-accelerated applications.

This documentation provides the information you need to enable, configure, and test the AMD GPU
Operator. For more information, see AMD Instinct™ Accelerators.

3.1. ABOUT THE AMD GPU OPERATOR

The hardware acceleration capabilities of the AMD GPU Operator provide enhanced performance and
cost efficiency for data scientists and developers using Red Hat OpenShift Al for creating artificial
intelligence and machine learning (Al/ML) applications. Accelerating specific areas of GPU functions
can minimize CPU processing and memory usage, improving overall application speed, memory
consumption, and bandwidth restrictions.

3.2. INSTALLING THE AMD GPU OPERATOR

As a cluster administrator, you can install the AMD GPU Operator by using the OpenShift CLI and the
web console. This is a multi-step procedure that requires the installation of the Node Feature Discovery
Operator, the Kernel Module Management Operator, and then the AMD GPU Operator. Use the
following steps in succession to install the AMD community release of the Operator.

Next steps

1. Install the Node Feature Discovery Operator.
2. Install the Kernel Module Management Operator.

3. Install and configure the AMD GPU Operator.

3.3. TESTING THE AMD GPU OPERATOR

Use the following procedure to test the ROCmlInfo installation and view the logs for the AMD MI210
GPU.

Procedure

1. Create a YAML file that tests ROCmlInfo:
$ cat << EOF > rocminfo.yaml

apiVersion: v1

kind: Pod

metadata:

name: rocminfo

spec:

containers:

- image: docker.io/rocm/pytorch:latest
name: rocminfo
command: ["/bin/sh","-c"]
args: ["rocminfo”]
resources:

13

https://www.amd.com/en/products/accelerators/instinct.html
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/specialized_hardware_and_driver_enablement/#installing-the-node-feature-discovery-operator_node-feature-discovery-operator
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/specialized_hardware_and_driver_enablement/#kmm-install_kernel-module-management-operator
https://instinct.docs.amd.com/projects/gpu-operator/en/main/installation/openshift-olm.html#install-amd-gpu-operator

OpenShift Container Platform 4.18 Hardware accelerators

limits:
amd.com/gpu: 1
requests:
amd.com/gpu: 1
restartPolicy: Never
EOF

2. Create the rocminfo pod:
I $ oc create -f rocminfo.yaml

Example output

apiVersion: v1
pod/rocminfo created

3. Check the rocmnfo log with one MI210 GPU:

I $ oc logs rocminfo | grep -A5 "Agent"

Example output

HSA Agents

Agent 1
Name: Intel(R) Xeon(R) Gold 6330 CPU @ 2.00GHz
Uuid: CPU-XX
Marketing Name: Intel(R) Xeon(R) Gold 6330 CPU @ 2.00GHz
Vendor Name: CPU

Agent 2
Name: Intel(R) Xeon(R) Gold 6330 CPU @ 2.00GHz
Uuid: CPU-XX
Marketing Name: Intel(R) Xeon(R) Gold 6330 CPU @ 2.00GHz
Vendor Name: CPU

Agent 3
Name: gfx90a
Uuid: GPU-024b776f7682638b
Marketing Name: AMD Instinct MI210
Vendor Name: AMD

4. Delete the pod:

I $ oc delete -f rocminfo.yaml

Example output

I pod "rocminfo" deleted

14

CHAPTER 4. INTEL GAUDI Al ACCELERATORS

CHAPTER 4. INTEL GAUDI Al ACCELERATORS

You can use Intel Gaudi Al accelerators for your OpenShift Container Platform generative Al and
machine learning (Al/ML) applications. Intel Gaudi Al accelerators offer a cost-efficient, flexible, and
scalable solution for optimized deep learning workloads.

Red Hat supports Intel Gaudi 2 and Intel Gaudi 3 devices. Intel Gaudi 3 devices provide significant
improvements in training speed and energy efficiency.

4.1.INTEL GAUDI Al ACCELERATORS PREREQUISITES
® You have a working OpenShift Container Platform cluster with at least one GPU worker node.

® You have access to the OpenShift Container Platform cluster as a cluster-admin to perform the
required steps.

® You have installed OpenShift CLI (oc).

® You have installed the Node Feature Discovery (NFD) Operator and created a
NodeFeatureDiscovery instance.

Additional resources
® OpenShift Installation (Intel Gaudi documentation)

® Intel Gaudi Al Accelerator integration

15

https://docs.habana.ai/en/latest/Installation_Guide/Additional_Installation/OpenShift_Installation/index.html
https://docs.redhat.com/en/documentation/red_hat_openshift_ai_self-managed/2.20/html/working_with_accelerators/intel-gaudi-ai-accelerator-integration_accelerators#intel-gaudi-ai-accelerator-integration_accelerators

OpenShift Container Platform 4.18 Hardware accelerators

CHAPTER 5. NVIDIA GPUDIRECT REMOTE DIRECT MEMORY
ACCESS (RDMA)

NVIDIA GPUDirect Remote Direct Memory Access (RDMA) allows for an application in one computer to
directly access the memory of another computer without needing access through the operating system.
This provides the ability to bypass kernel intervention in the process, freeing up resources and greatly
reducing the CPU overhead normally needed to process network communications. This is useful for
distributing GPU-accelerated workloads across clusters. And because RDMA is so suited toward high
bandwidth and low latency applications, this makes it ideal for big data and machine learning
applications.

There are currently three configuration methods for NVIDIA GPUDirect RDMA:

Shared device

This method allows for an NVIDIA GPUDirect RDMA device to be shared among multiple pods on the
OpenShift Container Platform worker node where the device is exposed.

Host device

This method provides direct physical Ethernet access on the worker node by creating an additional
host network on a pod. A plugin allows the network device to be moved from the host network
namespace to the network namespace on the pod.

SR-10V legacy device

The Single Root IO Virtualization (SR-IOV) method can share a single network device, such as an
Ethernet adapter, with multiple pods. SR-IOV segments the device, recognized on the host node as a
physical function (PF), into multiple virtual functions (VFs). The VF is used like any other network
device.

Each of these methods can be used across either the NVIDIA GPUDirect RDMA over Converged
Ethernet (RoCE) or Infiniband infrastructures, providing an aggregate total of six methods of
configuration.

5.1. NVIDIA GPUDIRECT RDMA PREREQUISITES

All methods of NVIDIA GPUDirect RDMA configuration require the installation of specific Operators.
Use the following steps to install the Operators:

® |[nstall the Node Feature Discovery Operator.
® |nstall the SR-IOV Operator.
® |[nstall the NVIDIA Network Operator (NVIDIA documentation).

® |[nstall the NVIDIA GPU Operator (NVIDIA documentation).

5.2. DISABLING THE IRDMA KERNEL MODULE

On some systems, including the DellR750xa, the IRDMA kernel module creates problems for the NVIDIA
Network Operator when unloading and loading the DOCA drivers. Use the following procedure to
disable the module.

Procedure

1. Generate the following machine configuration file by running the following command:

16

https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/specialized_hardware_and_driver_enablement/#installing-the-node-feature-discovery-operator_node-feature-discovery-operator
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/networking_operators/#installing-sriov-operator
https://docs.nvidia.com/networking/display/kubernetes2501/getting-started-openshift.html#network-operator-installation-using-openshift-oc-cli
https://docs.nvidia.com/datacenter/cloud-native/openshift/24.9.2/install-gpu-ocp.html

CHAPTER 5. NVIDIA GPUDIRECT REMOTE DIRECT MEMORY ACCESS (RDMA)

I $ cat <<EOF > 99-machine-config-blacklist-irdma.yaml

Example output

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
labels:
machineconfiguration.openshift.io/role: worker
name: 99-worker-blacklist-irdma
spec:
kernelArguments:
- "module_blacklist=irdma"

2. Create the machine configuration on the cluster and wait for the nodes to reboot by running
the following command:

I $ oc create -f 99-machine-config-blacklist-irdma.yaml

Example output
I machineconfig.machineconfiguration.openshift.io/99-worker-blacklist-irdma created

3. Validate in a debug pod on each node that the module has not loaded by running the following
command:

$ oc debug node/nvd-srv-32.nvidia.eng.rdu2.dc.redhat.com
Starting pod/nvd-srv-32nvidiaengrdu2dcredhatcom-debug-btfj2 ...
To use host binaries, run “chroot /host

Pod IP: 10.6.135.11

If you don't see a command prompt, try pressing enter.

sh-5.1# chroot /host

sh-5.1# Ismod|grep irdma

sh-5.1#

5.3. CREATING PERSISTENT NAMING RULES

In some cases, device names won't persist following a reboot. For example, on R760xa systems Mellanox
devices might be renamed after a reboot. You can avoid this problem by using a MachineConfig to set
persistence.

Procedure

1. Gather the MAC address names from the worker nodes for the node into a file and provide
names for the interfaces that need to persist. This example uses the file 70-persistent-
net.rules and stashes the details in it.

$ cat <<EOF > 70-persistent-net.rules
SUBSYSTEM=="net",ACTION=="add",ATTR{address}=="b8:3f:d2:3b:51:28", ATTR{type}=="1"
,NAME="ibs2f0"

SUBSYSTEM=="net",ACTION=="add",ATTR{address}=="b8:3f:d2:3b:51:29", ATTR{type}=="1"
,NAME="ens8f0np0"

SUBSYSTEM=="net", ACTION=="add",ATTR{address}=="b8:3f:d2:f0:36:d0", ATTR{type}=="1",

17

OpenShift Container Platform 4.18 Hardware accelerators

18

NAME="ibs2f0"
SUBSYSTEM=="net",ACTION=="add",ATTR{address}=="b8:3f:d2:f0:36:d1",ATTR{type}=="1",
NAME="ens8f0np0"

EOF

2. Convert that file into a base64 string without line breaks and set the output to the variable
PERSIST:

I $ PERSIST="cat 70-persistent-net.rules| base64 -w 0
I $ echo $PERSIST

U1VCUI1ITVEVNPTOiIbmVOIixBQ1RJT049PSJhZGQILEFUVFJ7YWRkecmVzc309PSJiODozZjp
kMjozYjo1MToyOCIsQVRUUNt0eXBIfTO9IEILESBTUU9ImMliczdmMCIKU1VCU1ITVEVNPTOibm
VOIixBQ1RJT049PSJIhZGQILEFUVFJ7YWRkemVzc309PSJiODozZjpkMjozYjo1MToyOSIsQV
RUUNt0eXBIfTO9IjEILESBTUU9IMVuczhmMGSwMCIKU1VCU1ITVEVNPTOibmVOIixBQ1RJTO
49PSJhZGQILEFUVFJ7YWRkemVzc309PSJiODozZjpkMjpmMDozNjpkMClsQVRUUNt0eXBIfT
09IJEILESBTUUYIMIiczdmMCIKU1VCU1ITVEVNPTOibmVOIixBQ1RJT049PSJhZGQILEFUVFJ
7YWRkemVzc309PSJiODozZjpkMjpmMDozNjpkMSIsQVRUUNt0eXBIfTO9IJEILESBTUU9IMVuc
zhmMG5wMCIK

3. Create a machine configuration and set the base64 encoding in the custom resource file by
running the following command:

I $ cat <<EOF > 99-machine-config-udev-network.yaml

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
labels:
machineconfiguration.openshift.io/role: worker
name: 99-machine-config-udev-network
spec:
config:
ignition:
version: 3.2.0
storage:
files:
- contents:
source: data:text/plain;base64,$PERSIST
filesystem: root
mode: 420
path: /etc/udev/rules.d/70-persistent-net.rules

4. Create the machine configuration on the cluster by running the following command. After

running the command, the expected output shows
machineconfig.machineconfiguration.openshift.io/99-machine-config-udev-network
created.

I $ oc create -f 99-machine-config-udev-network.yaml

5. Use the get mep command to view the machine configuration status:

CHAPTER 5. NVIDIA GPUDIRECT REMOTE DIRECT MEMORY ACCESS (RDMA)

I $ oc get mep
Example output

NAME CONFIG UPDATED UPDATING DEGRADED
MACHINECOUNT READYMACHINECOUNT UPDATEDMACHINECOUNT
DEGRADEDMACHINECOUNT AGE

master rendered-master-9adfe851c2c14d9598eea5ec3df6c187 True False False

1 1 1 0 6h21m
worker rendered-worker-4568f1b174066b4b1a4de794cf538fee False True False
2 0 0 0 6h21m

The nodes will reboot and when the updating field returns to false, you can validate on the nodes by
looking at the devices in a debug pod.

5.4. CONFIGURING THE NFD OPERATOR

The Node Feature Discovery (NFD) Operator manages the detection of hardware features and
configuration in an OpenShift Container Platform cluster by labeling the nodes with hardware-specific
information. NFD labels the host with node-specific attributes, such as PCl cards, kernel, operating
system version, and so on.

Prerequisites

® You have installed the NFD Operator.

Procedure

1. Validate that the Operator is installed and running by looking at the pods in the openshift-nfd
namespace by running the following command:

I $ oc get pods -n openshift-nfd

Example output

NAME READY STATUS RESTARTS AGE
nfd-controller-manager-8698c88cdd-t8gbc 2/2 Running 0 2m

2. With the NFD controller running, generate the NodeFeatureDiscovery instance and add it to
the cluster.
The ClusterServiceVersion specification for NFD Operator provides default values, including
the NFD operand image that is part of the Operator payload. Retrieve its value by running the
following command:

$ NFD_OPERAND_IMAGE="echo $(oc get csv -n openshift-nfd -o json | jq -r

".items[0].metadata.annotations["alm-examples"’) | jq -r ".[] | select(.kind ==
"NodeFeatureDiscovery") | .spec.operand.image”

3. Optional: Add entries to the default deviceClassWhiteList field, to support more network
adapters, such as the NVIDIA BlueField DPUs.

I apiVersion: nfd.openshift.io/v1

19

OpenShift Container Platform 4.18 Hardware accelerators

kind: NodeFeatureDiscovery
metadata:
name: nfd-instance
namespace: openshift-nfd
spec:
instance: "
operand:
image: '${NFD_OPERAND_IMAGE}'
servicePort: 12000
prunerOnDelete: false
topologyUpdater: false
workerConfig:
configData: |
core:
sleeplinterval: 60s
sources:
pci:
deviceClassWhitelist:
-"02"
-"03"
- "0200"
-"0207"
-"12"
devicelLabelFields:
- "vendor"

4. Create the 'NodeFeatureDiscovery " instance by running the following command:
I $ oc create -f nfd-instance.yaml
Example output

I nodefeaturediscovery.nfd.openshift.io/nfd-instance created

5. Validate that the instance is up and running by looking at the pods under the openshift-nfd
namespace by running the following command:

I $ oc get pods -n openshift-nfd

Example output

NAME READY STATUS RESTARTS AGE
nfd-controller-manager-7cb6d656-jcngb 2/2 Running 0 4m
nfd-gc-7576d64889-s28k9 1/1 Running 0 21s
nfd-master-b7bcf5cfd-qnrmz 1/1 Running 0 21s
nfd-worker-96pfh 1/1 Running 0 21s
nfd-worker-b2gkg 1/1 Running 0 21s
nfd-worker-bd9bk 1/1 Running 0 21s
nfd-worker-cswf4 1/1 Running 0 21s
nfd-worker-kp6gg 1/1 Running 0 21s

6. Wait a short period of time and then verify that NFD has added labels to the node. The NFD
labels are prefixed with feature.node.kubernetes.io, so you can easily filter them.

20

CHAPTER 5. NVIDIA GPUDIRECT REMOTE DIRECT MEMORY ACCESS (RDMA)

$ oc get node -0 json | jq ".items[0].metadata.labels | with_entries(select(.key |

startswith("feature.node.kubernetes.io")))'

{
"feature.node.kubernetes.io/cpu-cpuid.ADX": "true",
"feature.node.kubernetes.io/cpu-cpuid. AESNI": "true",
"feature.node.kubernetes.io/cpu-cpuid.AVX": "true",
"feature.node.kubernetes.io/cpu-cpuid. AVX2": "true",
"feature.node.kubernetes.io/cpu-cpuid. CETSS": "true",
"feature.node.kubernetes.io/cpu-cpuid.CLZERQ": "true",
"feature.node.kubernetes.io/cpu-cpuid. CMPXCHG8": "true",
"feature.node.kubernetes.io/cpu-cpuid. CPBOOST": "true",
"feature.node.kubernetes.io/cpu-cpuid. EFER_LMSLE_UNS": "true",
"feature.node.kubernetes.io/cpu-cpuid.FMA3": "true",
"feature.node.kubernetes.io/cpu-cpuid.FP256": "true",
"feature.node.kubernetes.io/cpu-cpuid.FSRM": "true",
"feature.node.kubernetes.io/cpu-cpuid.FXSR": "true",
"feature.node.kubernetes.io/cpu-cpuid. FXSROPT": "true",
"feature.node.kubernetes.io/cpu-cpuid.IBPB": "true",
"feature.node.kubernetes.io/cpu-cpuid.IBRS": "true",
"feature.node.kubernetes.io/cpu-cpuid.IBRS_PREFERRED": "true",
"feature.node.kubernetes.io/cpu-cpuid.IBRS_PROVIDES_SMP": "true",
"feature.node.kubernetes.io/cpu-cpuid.IBS": "true",
"feature.node.kubernetes.io/cpu-cpuid.IBSBRNTRGT": "true",
"feature.node.kubernetes.io/cpu-cpuid.IBSFETCHSAM": "true",
"feature.node.kubernetes.io/cpu-cpuid.IBSFFV": "true",
"feature.node.kubernetes.io/cpu-cpuid.IBSOPCNT": "true",
"feature.node.kubernetes.io/cpu-cpuid.IBSOPCNTEXT": "true",
"feature.node.kubernetes.io/cpu-cpuid.IBSOPSAM": "true",
"feature.node.kubernetes.io/cpu-cpuid.IBSRDWROPCNT": "true",
"feature.node.kubernetes.io/cpu-cpuid.IBSRIPINVALIDCHK": "true",
"feature.node.kubernetes.io/cpu-cpuid.IBS_FETCH_CTLX": "true",
"feature.node.kubernetes.io/cpu-cpuid.IBS_OPFUSE": "true",
"feature.node.kubernetes.io/cpu-cpuid.IBS_PREVENTHOST": "true",
"feature.node.kubernetes.io/cpu-cpuid.INT_WBINVD": "true",
"feature.node.kubernetes.io/cpu-cpuid.INVLPGB": "true",
"feature.node.kubernetes.io/cpu-cpuid.LAHF": "true",
"feature.node.kubernetes.io/cpu-cpuid.LBRVIRT": "true",
"feature.node.kubernetes.io/cpu-cpuid. MCAOVERFLOW": "true",
"feature.node.kubernetes.io/cpu-cpuid.MCOMMIT": "true",
"feature.node.kubernetes.io/cpu-cpuid. MOVBE": "true",
"feature.node.kubernetes.io/cpu-cpuid.MOVU": "true",
"feature.node.kubernetes.io/cpu-cpuid. MSRIRC": "true",
"feature.node.kubernetes.io/cpu-cpuid.MSR_PAGEFLUSH": "true",
"feature.node.kubernetes.io/cpu-cpuid.NRIPS": "true",
"feature.node.kubernetes.io/cpu-cpuid. OSXSAVE": "true",
"feature.node.kubernetes.io/cpu-cpuid.PPIN": "true",
"feature.node.kubernetes.io/cpu-cpuid.PSFD": "true",
"feature.node.kubernetes.io/cpu-cpuid.RDPRU": "true",
"feature.node.kubernetes.io/cpu-cpuid.SEV": "true",
"feature.node.kubernetes.io/cpu-cpuid.SEV_64BIT": "true",
"feature.node.kubernetes.io/cpu-cpuid.SEV_ALTERNATIVE": "true",
"feature.node.kubernetes.io/cpu-cpuid.SEV_DEBUGSWAP": "true",
"feature.node.kubernetes.io/cpu-cpuid.SEV_ES": "true",
"feature.node.kubernetes.io/cpu-cpuid.SEV_RESTRICTED": "true",
"feature.node.kubernetes.io/cpu-cpuid.SEV_SNP": "true",
"feature.node.kubernetes.io/cpu-cpuid.SHA": "true",

21

OpenShift Container Platform 4.18 Hardware accelerators

"feature.node.kubernetes.io/cpu-cpuid.SME": "true",
"feature.node.kubernetes.io/cpu-cpuid. SME_COHERENT": "true",
"feature.node.kubernetes.io/cpu-cpuid.SPEC_CTRL_SSBD": "true",
"feature.node.kubernetes.io/cpu-cpuid. SSE4A™: "true",
"feature.node.kubernetes.io/cpu-cpuid. STIBP": "true",
"feature.node.kubernetes.io/cpu-cpuid.STIBP_ALWAYSON": "true",
"feature.node.kubernetes.io/cpu-cpuid.SUCCOR": "true",
"feature.node.kubernetes.io/cpu-cpuid.SVM": "true",
"feature.node.kubernetes.io/cpu-cpuid.SVMDA": "true",
"feature.node.kubernetes.io/cpu-cpuid.SVMFBASID": "true",
"feature.node.kubernetes.io/cpu-cpuid.SVML": "true",
"feature.node.kubernetes.io/cpu-cpuid.SVMNP": "true",
"feature.node.kubernetes.io/cpu-cpuid.SVMPF": "true",
"feature.node.kubernetes.io/cpu-cpuid.SVMPFT": "true",
"feature.node.kubernetes.io/cpu-cpuid. SYSCALL": "true",
"feature.node.kubernetes.io/cpu-cpuid.SYSEE": "true",
"feature.node.kubernetes.io/cpu-cpuid. TLB_FLUSH_NESTED": "true",
"feature.node.kubernetes.io/cpu-cpuid. TOPEXT": "true",
"feature.node.kubernetes.io/cpu-cpuid. TSCRATEMSR": "true",
"feature.node.kubernetes.io/cpu-cpuid.VAES": "true",
"feature.node.kubernetes.io/cpu-cpuid. VMCBCLEAN": "true",
"feature.node.kubernetes.io/cpu-cpuid.VMPL": "true",
"feature.node.kubernetes.io/cpu-cpuid. VMSA_REGPROT": "true",
"feature.node.kubernetes.io/cpu-cpuid. VPCLMULQDQ": "true",
"feature.node.kubernetes.io/cpu-cpuid.VTE": "true",
"feature.node.kubernetes.io/cpu-cpuid. WBNOINVD": "true",
"feature.node.kubernetes.io/cpu-cpuid.X87": "true",
"feature.node.kubernetes.io/cpu-cpuid. XGETBV1": "true",
"feature.node.kubernetes.io/cpu-cpuid. XSAVE": "true",
"feature.node.kubernetes.io/cpu-cpuid. XSAVEC": "true",
"feature.node.kubernetes.io/cpu-cpuid. XSAVEOPT": "true",
"feature.node.kubernetes.io/cpu-cpuid. XSAVES": "true",
"feature.node.kubernetes.io/cpu-hardware_multithreading": "false",
"feature.node.kubernetes.io/cpu-model.family": "25",
"feature.node.kubernetes.io/cpu-model.id": "1",
"feature.node.kubernetes.io/cpu-model.vendor_id": "AMD",
"feature.node.kubernetes.io’kernel-config.NO_HZ": "true",
"feature.node.kubernetes.io/kernel-config.NO_HZ_FULL": "true",
"feature.node.kubernetes.io/kernel-selinux.enabled": "true",
"feature.node.kubernetes.io/kernel-version.full": "5.14.0-427.35.1.el9_4.x86_64",
"feature.node.kubernetes.io/kernel-version.major": "5",
"feature.node.kubernetes.io/kernel-version.minor": "14",
"feature.node.kubernetes.io/kernel-version.revision™": "0",
"feature.node.kubernetes.io/memory-numa": "true",
"feature.node.kubernetes.io/network-sriov.capable": "true”,
"feature.node.kubernetes.io/pci-102b.present™: "true",
"feature.node.kubernetes.io/pci-10de.present™: "true",
"feature.node.kubernetes.io/pci-10de.sriov.capable": "true",
"feature.node.kubernetes.io/pci-15b3.present™: "true",
"feature.node.kubernetes.io/pci-15b3.sriov.capable": "true",
"feature.node.kubernetes.io/rdma.available": "true",
"feature.node.kubernetes.io/rdma.capable": "true",
"feature.node.kubernetes.io/storage-nonrotationaldisk™: "true",
"feature.node.kubernetes.io/system-os_release.ID": "rhcos",
"feature.node.kubernetes.io/system-os_release.OPENSHIFT_VERSION": "4.17",
"feature.node.kubernetes.io/system-os_release.OSTREE_VERSION":

22

CHAPTER 5. NVIDIA GPUDIRECT REMOTE DIRECT MEMORY ACCESS (RDMA)

"417.94.202409121747-0",
"feature.node.kubernetes.io/system-os_release.RHEL_VERSION": "9.4",
"feature.node.kubernetes.io/system-os_release.VERSION_ID": "4.17",
"feature.node.kubernetes.io/system-os_release.VERSION_ID.major": "4",
"feature.node.kubernetes.io/system-os_release.VERSION_ID.minor": "17"

7. Confirm there is a network device that is discovered:

$ oc describe node | grep -E 'Roles|pci' | grep pci-15b3
feature.node.kubernetes.io/pci-15b3.present=true
feature.node.kubernetes.io/pci-15b3.sriov.capable=true
feature.node.kubernetes.io/pci-15b3.present=true
feature.node.kubernetes.io/pci-15b3.sriov.capable=true

5.5. CONFIGURING THE SR-IOV OPERATOR

Single root I/O virtualization (SR-IOV) enhances the performance of NVIDIA GPUDirect RDMA by
providing sharing across multiple pods from a single device.

Prerequisites

® You have installed the SR-IOV Operator.

Procedure

1. Validate that the Operator is installed and running by looking at the pods in the openshift-
sriov-network-operator namespace by running the following command:

I $ oc get pods -n openshift-sriov-network-operator

Example output

NAME READY STATUS RESTARTS AGE
sriov-network-operator-7cb6c49868-89486 1/1 Running 0 22s

2. For the default SriovOperatorConfig CR to work with the MLNX_OFED container, run this
command to update the following values:

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovOperatorConfig
metadata:
name: default
namespace: openshift-sriov-network-operator
spec:
enablelnjector: true
enableOperatorWebhook: true
logLevel: 2

3. Create the resource on the cluster by running the following command:

I $ oc create -f sriov-operator-config.yaml

23

OpenShift Container Platform 4.18 Hardware accelerators

Example output

I sriovoperatorconfig.sriovnetwork.openshift.io/default created

4. Patch the sriov-operator so the MOFED container can work with it by running the following
command:

$ oc patch sriovoperatorconfig default --type=merge -n openshift-sriov-network-operator --
patch '{ "spec": { "configDaemonNodeSelector": { "network.nvidia.com/operator.mofed.wait":

"false", "node-role.kubernetes.io/worker": ", "feature.node.kubernetes.io/pci-
15b3.sriov.capable™: "true" } } }'

Example output

I sriovoperatorconfig.sriovnetwork.openshift.io/default patched

5.6. CONFIGURING THE NVIDIA NETWORK OPERATOR

The NVIDIA network Operator manages NVIDIA networking resources and networking related
components such as drivers and device plugins to enable NVIDIA GPUDirect RDMA workloads.

Prerequisites

® You have installed the NVIDIA network Operator.

Procedure

1. Validate that the network Operator is installed and running by confirming the controller is
running in the nvidia-network-operator namespace by running the following command:

I $ oc get pods -n nvidia-network-operator

Example output

NAME READY STATUS RESTARTS AGE
nvidia-network-operator-controller-manager-6f7d6956cd-fwswg 1/1 Running 0
5m

2. With the Operator running, create the NicClusterPolicy custom resource file. The device you
choose depends on your system configuration. In this example, the Infiniband interface ibs2f0 is
hard coded and is used as the shared NVIDIA GPUDirect RDMA device.

apiVersion: mellanox.com/vialphat
kind: NicClusterPolicy
metadata:
name: nic-cluster-policy
spec:
nicFeatureDiscovery:
image: nic-feature-discovery
repository: ghcr.io/mellanox
version: v0.0.1
docaTelemetryService:

24

CHAPTER 5. NVIDIA GPUDIRECT REMOTE DIRECT MEMORY ACCESS (RDMA)

image: doca_telemetry
repository: nvcr.io/nvidia/doca
version: 1.16.5-doca2.6.0-host
rdmaSharedDevicePlugin:
config: |
{
"configList": [
{
"resourceName": "rdma_shared_device ib",
"rdmaHcaMax": 63,
"selectors": {
"ifNames": ["ibs2f0"]
}
3
{

"resourceName": "rdma_shared_device eth",
"rdmaHcaMax": 63,
"selectors": {
"ifNames": ["ens8f0np0"]
}
}
]
}
image: k8s-rdma-shared-dev-plugin
repository: ghcr.io/mellanox
version: v1.5.1
secondaryNetwork:
ipoib:
image: ipoib-cni
repository: ghcr.io/mellanox
version: v1.2.0
nvipam:
enableWebhook: false
image: nvidia-k8s-ipam
repository: ghcr.io/mellanox
version: v0.2.0
ofedDriver:
readinessProbe:
initialDelaySeconds: 10
periodSeconds: 30
forcePrecompiled: false
terminationGracePeriodSeconds: 300
livenessProbe:
initialDelaySeconds: 30
periodSeconds: 30
upgradePolicy:
autoUpgrade: true
drain:
deleteEmptyDir: true
enable: true
force: true
timeoutSeconds: 300
podSelector: "
maxParallelUpgrades: 1
safeLoad: false
waitForCompletion:

25

OpenShift Container Platform 4.18 Hardware accelerators

timeoutSeconds: 0
startupProbe:
initialDelaySeconds: 10
periodSeconds: 20
image: doca-driver
repository: nvcr.io/nvidia/mellanox
version: 24.10-0.7.0.0-0
env:
- name: UNLOAD_STORAGE_MODULES
value: "true"
- name: RESTORE_DRIVER_ON_POD_TERMINATION
value: "true"
- name: CREATE_IFNAMES_UDEV
value: "true"

3. Create the NicClusterPolicy custom resource on the cluster by running the following
command:

I $ oc create -f network-sharedrdma-nic-cluster-policy.yami
Example output

I nicclusterpolicy.mellanox.com/nic-cluster-policy created

4. Validate the NicClusterPolicy by running the following command in the DOCA/MOFED
container:

I $ oc get pods -n nvidia-network-operator

Example output

NAME READY STATUS RESTARTS AGE
doca-telemetry-service-hwj65 1/1 Running 2 160m
kube-ipoib-cni-ds-fsn8g 1/1 Running 2 160m
mofed-rhcos4.16-9b5ddf4c6-ds-ct2h5 2/2 Running 4 160m
nic-feature-discovery-ds-dtksz 1/1 Running 2 160m
nv-ipam-controller-854585f594-c5jpp 1/1 Running 2 160m
nv-ipam-controller-854585f594-xrnp5 1/1 Running 2 160m
nv-ipam-node-xqttl 1/1 Running 2 160m
nvidia-network-operator-controller-manager-5798b564cd-5¢q99 1/1 Running 2
5d23h

rdma-shared-dp-ds-p9vvg 1/1 Running 0 85m

5. rshinto the mofed container to check the status by running the following command:
$ MOFED_POD=$(oc get pods -n nvidia-network-operator -0 name | grep mofed)

$ oc rsh -n nvidia-network-operator -¢c mofed-container ${MOFED_POD}
sh-5.1# ofed_info -s

Example output

I OFED-internal-24.07-0.6.1:

26

CHAPTER 5. NVIDIA GPUDIRECT REMOTE DIRECT MEMORY ACCESS (RDMA)

I sh-5.1# ibdev2netdev -v

Example output

0000:0d:00.0 mIx5_0 (MT41692 - 900-9D3B4-00EN-EAOQ) BlueField-3 E-series SuperNIC
400GbE/NDR single port QSFP112, PCle Gen5.0 x16 FHHL, Crypto Enabled, 16GB DDR5,
BMC, Tall Bracket fw 32.42.1000 port 1 (ACTIVE) ==>
ibs2f0 (Up)

0000:a20:00.0 mIx5_1 (MT41692 - 900-9D3B4-00EN-EAOQ) BlueField-3 E-series SuperNIC
400GbE/NDR single port QSFP112, PCle Gen5.0 x16 FHHL, Crypto Enabled, 16GB DDR5,
BMC, Tall Bracket fw 32.42.1000 port 1 (ACTIVE) ==>
ens8f0np0 (Up)

6. Create a IPolBNetwork custom resource file:

apiVersion: mellanox.com/vialphat
kind: IPolBNetwork
metadata:
name: example-ipoibnetwork
spec:
ipam: |
{
"type": "whereabouts",
"range": "192.168.6.225/28",
"exclude": |
"192.168.6.229/30",
"192.168.6.236/32"

]
}

master: ibs2f0
networkNamespace: default

7. Create the IPolBNetwork resource on the cluster by running the following command:

I $ oc create -f ipoib-network.yaml

Example output

I ipoibnetwork.mellanox.com/example-ipoibnetwork created

8. Create a MacvlanNetwork custom resource file for your other interface:

apiVersion: mellanox.com/vialphat
kind: MacvlanNetwork
metadata:
name: rdmashared-net
spec:
networkNamespace: default
master: ens8f0np0
mode: bridge
mtu: 1500
ipam: '{"type": "whereabouts", "range": "192.168.2.0/24", "gateway": "192.168.2.1"}'

27

OpenShift Container Platform 4.18 Hardware accelerators

9. Create the resource on the cluster by running the following command:

I $ oc create -f macvlan-network.yaml

Example output

I macvlannetwork.mellanox.com/rdmashared-net created

5.7. CONFIGURING THE GPU OPERATOR

The GPU Operator automates the management of the NVIDIA drivers, device plugins for GPUs, the
NVIDIA Container Toolkit, and other components required for GPU provisioning.

Prerequisites

® You have installed the GPU Operator.

Procedure

1. Check that the Operator pod is running to look at the pods under the namespace by running
the following command:

I $ oc get pods -n nvidia-gpu-operator

Example output

NAME READY STATUS RESTARTS AGE
gpu-operator-b4cb7d74-zxpwq 1/1 Running 0 32s

2. Create a GPU cluster policy custom resource file similar to the following example:

apiVersion: nvidia.com/v1
kind: ClusterPolicy
metadata:
name: gpu-cluster-policy
spec:
vgpuDeviceManager:
config:
default: default
enabled: true
migManager:
config:
default: all-disabled
name: default-mig-parted-config
enabled: true
operator:
defaultRuntime: crio
initContainer: {}
runtimeClass: nvidia
use_ocp_driver_toolkit: true
dcgm:
enabled: true
gfd:

28

CHAPTER 5. NVIDIA GPUDIRECT REMOTE DIRECT MEMORY ACCESS (RDMA)

enabled: true
dcgmExporter:
config:
name: "
serviceMonitor:
enabled: true
enabled: true
cdi:
default: false
enabled: false
driver:
licensingConfig:
nisEnabled: true
configMapName: "
certConfig:
name: "
rdma:
enabled: false
kernelModuleConfig:
name: "
upgradePolicy:
autoUpgrade: true
drain:
deleteEmptyDir: false
enable: false
force: false
timeoutSeconds: 300
maxParallelUpgrades: 1
maxUnavailable: 25%
podDeletion:
deleteEmptyDir: false
force: false
timeoutSeconds: 300
waitForCompletion:
timeoutSeconds: 0
repoConfig:
configMapName: "
virtualTopology:
config: "
enabled: true
useNvidiaDriverCRD: false
useOpenKernelModules: true
devicePlugin:
config:
name: "
default: "
mps:
root: /run/nvidia/mps
enabled: true
gdrcopy:
enabled: true
kataManager:
config:
artifactsDir: /opt/nvidia-gpu-operator/artifacts/runtimeclasses
mig:
strategy: single

29

OpenShift Container Platform 4.18 Hardware accelerators

sandboxDevicePlugin:
enabled: true
validator:
plugin:
env:
- name: WITH_WORKLOAD
value: 'false’
nodeStatusExporter:
enabled: true
daemonsets:
rollingUpdate:
maxUnavailable: '1'
updateStrategy: RollingUpdate
sandboxWorkloads:
defaultWorkload: container
enabled: false
gds:
enabled: true
image: nvidia-fs
version: 2.20.5
repository: nvcr.io/nvidia/cloud-native
vgpuManager:
enabled: false
vfioManager:
enabled: true
toolkit:
installDir: /usr/local/nvidia
enabled: true

3. When the GPU ClusterPolicy custom resource has generated, create the resource on the

cluster by running the following command:

I $ oc create -f gpu-cluster-policy.yaml

Example output

I clusterpolicy.nvidia.com/gpu-cluster-policy created

4. Validate that the Operator is installed and running by running the following command:

I $ oc get pods -n nvidia-gpu-operator

Example output

NAME READY STATUS RESTARTS AGE
gpu-feature-discovery-d5ngn 11 Running 0
gpu-feature-discovery-z42rx 11 Running 0
gpu-operator-6bb4d4b4c5-njh78 1/1 Running 0
nvidia-container-toolkit-daemonset-bkh8l 11 Running 0
nvidia-container-toolkit-daemonset-c4hzm 1/1 Running 0
nvidia-cuda-validator-4blvg 0/1 Completed 0
nvidia-cuda-validator-tw8sl 0/1 Completed 0
nvidia-dcgm-exporter-rrwg 1/1 Running 0
nvidia-dcgm-exporter-xc78t 1/1 Running 0

30

CHAPTER 5. NVIDIA GPUDIRECT REMOTE DIRECT MEMORY ACCESS (RDMA)

nvidia-dcgm-nvxpf 1/1 Running 0 3m20s
nvidia-dcgm-snj4j 1/1 Running 0 3m23s
nvidia-device-plugin-daemonset-fk2xz 1/1 Running 0 3m23s
nvidia-device-plugin-daemonset-wq87j 1/1 Running O 3m20s

nvidia-driver-daemonset-416.94.202410211619-0-ngrjg 4/4 Running 0 3m58s
nvidia-driver-daemonset-416.94.202410211619-0-tm4x6 4/4 Running O 3m58s

nvidia-node-status-exporter-jlzxh 1/1 Running O 3m57s
nvidia-node-status-exporter-zjffs 1/1 Running O 3m57s
nvidia-operator-validator-149hx 1/1 Running O 3m20s

nvidia-operator-validator-n44nn 1/1 Running 0 3m23s

5. Optional: When you have verified the pods are running, remote shell into the NVIDIA driver
daemonset pod and confirm that the NVIDIA modules are loaded. Specifically, ensure the
nvidia_peermem is loaded.

$ oc rsh -n nvidia-gpu-operator $(oc -n nvidia-gpu-operator get pod -o name -
app.kubernetes.io/component=nvidia-driver)
sh-4.4# |smod|grep nvidia

Example output

nvidia_fs 327680 0
nvidia_peermem 24576 0
nvidia_modeset 1507328 0

video 73728 1 nvidia_modeset

nvidia_uvm 6889472 8

nvidia 8810496 43 nvidia_uvm,nvidia_peermem,nvidia_fs,gdrdrv,nvidia_modeset
ib_uverbs 217088 3 nvidia_peermem,rdma_ucm,mlix5_ib

drm 741376 5 drm_kms_helper,drm_shmem_helper,nvidia,mgag200

6. Optional: Run the nvidia-smi utility to show the details about the driver and the hardware:
I sh-4.4# nvidia-smi
+ .Example output

Wed Nov 6 22:03:53 2024

+ +

| NVIDIA-SMI 550.90.07 Driver Version: 550.90.07 CUDA Version: 12.4 |

| + + +

| GPU Name Persistence-M | Bus-Id Disp.A | Volatile Uncorr. ECC |

| Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
|===+========================+===========
========|

| O NVIDIA A40 On | 00000000:61:00.0 Off | 0]

| 0% 37C PO 88W / 300W | 1MiB/ 46068MiB| 0% Default |

| | | N/A |

+ + + +

| 1 NVIDIA A40 On | 00000000:E1:00.0 Off | 0]

| 0% 28C P8 29W / 300W | 1MiB/ 46068MiB| 0% Default |

| | | N/A |

+ + + +

31

OpenShift Container Platform 4.18 Hardware accelerators

+ +

| Processes: |

| GPU Gl ClI PID Type Process name GPU Memory |
| ID ID Usage |

| No running processes found |
+ +

1. While you are still in the driver pod, set the GPU clock to maximum using the nvidia-smi
command:

$ oc rsh -n nvidia-gpu-operator nvidia-driver-daemonset-416.94.202410172137-0-ndhzc
sh-4.4# nvidia-smi -i 0 -lgc $(nvidia-smi -i 0 --query-supported-clocks=graphics --
format=csv,noheader,nounits | sort -h | tail -n 1)

Example output

I GPU clocks set to "(gpuClkMin 1740, gpuClkMax 1740)" for GPU 00000000:61:00.0
All done.

sh-4.4# nvidia-smi -i 1 -lgc $(nvidia-smi -i 1 --query-supported-clocks=graphics --
format=csv,noheader,nounits | sort -h | tail -n 1)

Example output

I GPU clocks set to "(gpuClkMin 1740, gpuClkMax 1740)" for GPU 00000000:E1:00.0
All done.

2. Validate the resource is available from a node describe perspective by running the following
command:

I $ oc describe node -I node-role.kubernetes.io/worker=| grep -E 'Capacity:|Allocatable:' -A9

Example output

Capacity:
cpu: 128
ephemeral-storage: 1561525616Ki
hugepages-1Gi: 0
hugepages-2Mi: 0
memory: 263596712Ki
nvidia.com/gpu: 2
pods: 250

rdma/rdma_shared_device eth: 63
rdma/rdma_shared_device ib: 63

Allocatable:
cpu: 127500m
ephemeral-storage: 1438028263499
hugepages-1Gi: 0
hugepages-2Mi: 0
memory: 262445736Ki
nvidia.com/gpu: 2

32

CHAPTER 5. NVIDIA GPUDIRECT REMOTE DIRECT MEMORY ACCESS (RDMA)

pods: 250
rdma/rdma_shared_device eth: 63
rdma/rdma_shared_device ib: 63

Capacity:
cpu: 128
ephemeral-storage: 1561525616Ki
hugepages-1Gi: 0
hugepages-2Mi: 0
memory: 263596672Ki
nvidia.com/gpu: 2
pods: 250

rdma/rdma_shared_device eth: 63
rdma/rdma_shared_device ib: 63

Allocatable:
cpu: 127500m
ephemeral-storage: 1438028263499
hugepages-1Gi: 0
hugepages-2Mi: 0
memory: 262445696Ki
nvidia.com/gpu: 2
pods: 250

rdma/rdma_shared_device eth: 63
rdma/rdma_shared_device ib: 63

5.8. CREATING THE MACHINE CONFIGURATION

Before you create the resource pods, you need to create the machineconfig.yaml custom resource
(CR) that provides access to the GPU and networking resources without the need for user privileges.

Procedure

1. Generate a Machineconfig CR:

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
labels:
machineconfiguration.openshift.io/role: worker
name: 02-worker-container-runtime
spec:
config:
ignition:
version: 3.2.0
storage:
files:
- contents:
source: data:text/plain;charset=utf-
8;base64,W2NyaW8ucnVudGItZVOKZGVmYXVsdF91bGltaXRzIDOgWwoibWVibG9jaz0tMTot
MSIKXQo=
mode: 420
overwrite: true
path: /etc/crio/crio.conf.d/10-custom

33

OpenShift Container Platform 4.18 Hardware accelerators

5.9. CREATING THE WORKLOAD PODS

Use the procedures in this section to create the workload pods for the shared and host devices.

5.9.1. Creating a shared device RDMA on RoCE

Create the workload pods for a shared device RDMA on RDMA over Converged Ethernet (RoCE) for the
NVIDIA Network Operator and test the pod configuration.

The NVIDIA GPUDirect RDMA device is shared among pods on the OpenShift Container Platform
worker node where the device is exposed.

Prerequisites

® Ensure that the Operator is running.

e Delete the NicClusterPolicy custom resource (CR), if it exists.

Procedure

1. Generate custom pod resources:

$ cat <<EOF > rdma-eth-32-workload.yaml
apiVersion: vi
kind: Pod
metadata:
name: rdma-eth-32-workload
namespace: default
annotations:
k8s.v1.cni.cncf.io/networks: rdmashared-net
spec:
nodeSelector:
kubernetes.io/hostname: nvd-srv-32.nvidia.eng.rdu2.dc.redhat.com
containers:
- image: quay.io/edge-infrastructure/nvidia-tools:0.1.5
name: rdma-eth-32-workload
resources:
limits:
nvidia.com/gpu: 1
rdma/rdma_shared device eth: 1
requests:
nvidia.com/gpu: 1
rdma/rdma_shared _device eth: 1

EOF

$ cat <<EOF > rdma-eth-33-workload.yaml
apiVersion: vi
kind: Pod
metadata:

name: rdma-eth-33-workload

namespace: default

annotations:

k8s.v1.cni.cncf.io/networks: rdmashared-net

spec:

34

CHAPTER 5. NVIDIA GPUDIRECT REMOTE DIRECT MEMORY ACCESS (RDMA)

nodeSelector:
kubernetes.io/hostname: nvd-srv-33.nvidia.eng.rdu2.dc.redhat.com
containers:
- image: quay.io/edge-infrastructure/nvidia-tools:0.1.5
name: rdma-eth-33-workload
securityContext:
capabilities:
add: ["IPC_LOCK"]
resources:
limits:
nvidia.com/gpu: 1
rdma/rdma_shared device eth: 1
requests:
nvidia.com/gpu: 1
rdma/rdma_shared device eth: 1
EOF

2. Create the pods on the cluster by using the following commands:
I $ oc create -f rdma-eth-32-workload.yaml
Example output

I pod/rdma-eth-32-workload created

I $ oc create -f rdma-eth-33-workload.yaml

Example output

I pod/rdma-eth-33-workload created

3. Verify that the pods are running by using the following command:

I $ oc get pods -n default

Example output

NAME READY STATUS RESTARTS AGE
rdma-eth-32-workload 1/1 Running 0 25s
rdma-eth-33-workload 1/1 Running 0 22s

5.9.2. Creating a host device RDMA on RoCE

Create the workload pods for a host device Remote Direct Memory Access (RDMA) for the NVIDIA
Network Operator and test the pod configuration.

Prerequisites

® Ensure that the Operator is running.

e Delete the NicClusterPolicy custom resource (CR), if it exists.

35

OpenShift Container Platform 4.18 Hardware accelerators

Procedure

1. Generate a new host device NicClusterPolicy (CR), as shown below:

$ cat <<EOF > network-hostdev-nic-cluster-policy.yaml
apiVersion: mellanox.com/vialphat
kind: NicClusterPolicy
metadata:
name: nic-cluster-policy
spec:
ofedDriver:
image: doca-driver
repository: nvcr.io/nvidia/mellanox
version: 24.10-0.7.0.0-0
startupProbe:
initialDelaySeconds: 10
periodSeconds: 20
livenessProbe:
initialDelaySeconds: 30
periodSeconds: 30
readinessProbe:
initialDelaySeconds: 10
periodSeconds: 30
env:
- name: UNLOAD_STORAGE_MODULES
value: "true"
- name: RESTORE_DRIVER_ON_POD_TERMINATION
value: "true"
- name: CREATE_IFNAMES_UDEV
value: "true"
sriovDevicePlugin:
image: sriov-network-device-plugin
repository: ghcr.io/k8snetworkplumbingwg
version: v3.7.0
config: |
{

"resourcelList": |

{

"resourcePrefix": "nvidia.com”,
"resourceName": "hostdev",
"selectors": {
"vendors": ["15b3"],
"isRdma": true

2. Create the NicClusterPolicy CR on the cluster by using the following command:

I $ oc create -f network-hostdev-nic-cluster-policy.yaml

Example output

36

CHAPTER 5. NVIDIA GPUDIRECT REMOTE DIRECT MEMORY ACCESS (RDMA)

I nicclusterpolicy.mellanox.com/nic-cluster-policy created

3. Verify that the host device NicClusterPolicy CR by using the following command in the
DOCA/MOFED container:

I $ oc get pods -n nvidia-network-operator

Example output

NAME READY STATUS RESTARTS AGE
mofed-rhcos4.16-696886fcb4-ds-9sgvd 2/2 Running 0 2m37s
mofed-rhcos4.16-696886fcb4-ds-lkjd4 2/2 Running 0 2m37s
nvidia-network-operator-controller-manager-68d547dbbd-gsdkf 1/1 Running 0
141m

sriov-device-plugin-6v2nz 1/1 Running 0 2mi4s
sriov-device-plugin-hc4t8 1/1 Running 0 2m1i4s

4. Confirm that the resources appear in the cluster oc describe node section by using the
following command:

I $ oc describe node -I node-role.kubernetes.io/worker=| grep -E 'Capacity:|Allocatable:' -A7

Example output

Capacity:
cpu: 128
ephemeral-storage: 1561525616Ki
hugepages-1Gi: 0
hugepages-2Mi: 0

memory: 263596708Ki

nvidia.com/hostdev: 2

pods: 250
Allocatable:

cpu: 127500m

ephemeral-storage: 1438028263499
hugepages-1Gi: 0
hugepages-2Mi: 0

memory: 262445732Ki
nvidia.com/hostdev: 2
pods: 250
Capacity:
cpu: 128

ephemeral-storage: 1561525616Ki
hugepages-1Gi: 0
hugepages-2Mi: 0

memory: 263596704Ki

nvidia.com/hostdev: 2

pods: 250
Allocatable:

cpu: 127500m

ephemeral-storage: 1438028263499
hugepages-1Gi: 0
hugepages-2Mi: 0

37

OpenShift Container Platform 4.18 Hardware accelerators

memory: 262445728Ki
nvidia.com/hostdev: 2
pods: 250

5. Create a HostDeviceNetwork CR file:

$ cat <<EOF > hostdev-network.yaml
apiVersion: mellanox.com/vialphat
kind: HostDeviceNetwork
metadata:
name: hostdev-net
spec:
networkNamespace: "default”
resourceName: "hostdev"
ipam: |
{
"type": "whereabouts",
"range": "192.168.3.225/28",
"exclude": |
"192.168.3.229/30",
"192.168.3.236/32"

]

}
EOF

6. Create the HostDeviceNetwork resource on the cluster by using the following command:

I $ oc create -f hostdev-network.yaml

Example output

I hostdevicenetwork.mellanox.com/hostdev-net created

7. Confirm that the resources appear in the cluster oc describe node section by using the
following command:

I $ oc describe node -I node-role.kubernetes.io/worker=| grep -E 'Capacity:|Allocatable:' -A8

Example output

Capacity:

cpu: 128
ephemeral-storage: 1561525616Ki
hugepages-1Gi: 0
hugepages-2Mi: 0

memory: 263596708Ki
nvidia.com/gpu: 2
nvidia.com/hostdev: 2

pods: 250
Allocatable:
cpu: 127500m

ephemeral-storage: 1438028263499
hugepages-1Gi: 0
hugepages-2Mi: 0

38

CHAPTER 5. NVIDIA GPUDIRECT REMOTE DIRECT MEMORY ACCESS (RDMA)

memory: 262445732Ki
nvidia.com/gpu: 2
nvidia.com/hostdev: 2

pods: 250
Capacity:
cpu: 128

ephemeral-storage: 1561525616Ki
hugepages-1Gi: 0
hugepages-2Mi: 0

memory: 263596680Ki
nvidia.com/gpu: 2
nvidia.com/hostdev: 2

pods: 250
Allocatable:
cpu: 127500m

ephemeral-storage: 1438028263499
hugepages-1Gi: 0
hugepages-2Mi: 0

memory: 262445704Ki
nvidia.com/gpu: 2
nvidia.com/hostdev: 2

pods: 250

5.9.3. Creating a SR-IOV legacy mode RDMA on RoCE

Configure a Single Root I/O Virtualization (SR-IOV) legacy mode host device RDMA on RoCE.

Procedure

1. Generate a new host device NicClusterPolicy custom resource (CR):

$ cat <<EOF > network-sriovleg-nic-cluster-policy.yaml
apiVersion: mellanox.com/vialphat
kind: NicClusterPolicy
metadata:
name: nic-cluster-policy
spec:
ofedDriver:
image: doca-driver
repository: nvcr.io/nvidia/mellanox
version: 24.10-0.7.0.0-0
startupProbe:
initialDelaySeconds: 10
periodSeconds: 20
livenessProbe:
initialDelaySeconds: 30
periodSeconds: 30
readinessProbe:
initialDelaySeconds: 10
periodSeconds: 30
env:
- name: UNLOAD_STORAGE_MODULES
value: "true"
- name: RESTORE_DRIVER_ON_POD_TERMINATION

39

OpenShift Container Platform 4.18 Hardware accelerators

value: "true"
- name: CREATE_IFNAMES_UDEV
value: "true"
EOF

2. Create the policy on the cluster by using the following command:

I $ oc create -f network-sriovleg-nic-cluster-policy.yaml

Example output

I nicclusterpolicy.mellanox.com/nic-cluster-policy created

3. Verify the pods by using the following command in the DOCA/MOFED container:

I $ oc get pods -n nvidia-network-operator

Example output

NAME READY STATUS RESTARTS AGE
mofed-rhcos4.16-696886fcb4-ds-4mb42 2/2 Running 0 40s
mofed-rhcos4.16-696886fcb4-ds-8knwq 2/2 Running 0 40s
nvidia-network-operator-controller-manager-68d547dbbd-gsdkf 1/1 Running 13 (4d ago)
4d21h

4. Create an SriovNetworkNodePolicy CR that generates the Virtual Functions (VFs) for the
device you want to operate in SR-IOV legacy mode. See the following example:

$ cat <<EOF > sriov-network-node-policy.yaml
apiVersion: sriovnetwork.openshift.io/v1
kind: SriovNetworkNodePolicy
metadata:
name: sriov-legacy-policy
namespace: openshift-sriov-network-operator
spec:
deviceType: netdevice
mtu: 1500
nicSelector:
vendor: "15b3"
pfNames: ["'ens8fOnp0#0-7"]
nodeSelector:
feature.node.kubernetes.io/pci-15b3.present: "true"
numVfs: 8
priority: 90
isRdma: true
resourceName: sriovlegacy
EOF

5. Create the CR on the cluster by using the following command:

40

CHAPTER 5. NVIDIA GPUDIRECT REMOTE DIRECT MEMORY ACCESS (RDMA)

NOTE

Ensure that SR-IOV Global Enable is enabled. For more information, see Unable
to enable SR-IOV and receiving the message "not enough MMIO resources for
SR-IOV" in Red Hat Enterprise Linux.

I $ oc create -f sriov-network-node-policy.yaml
Example output
I sriovnetworknodepolicy.sriovnetwork.openshift.io/sriov-legacy-policy created

6. Each node has scheduling disabled. The nodes reboot to apply the configuration. You can view
the nodes by using the following command:

I $ oc get nodes

Example output

NAME STATUS ROLES AGE
VERSION

edge-19.edge.lab.eng.rdu2.redhat.com Ready control-
plane,master,worker 5d v1.29.8+632b078
nvd-srv-32.nvidia.eng.rdu2.dc.redhat.com Ready worker

4d22h v1.29.8+632b078
nvd-srv-33.nvidia.eng.rdu2.dc.redhat.com NotReady,SchedulingDisabled worker
4d22h v1.29.8+632b078

7. After the nodes have rebooted, verify that the VF interfaces exist by opening up a debug pod
on each node. Run the following command:

I a$ oc debug node/nvd-srv-33.nvidia.eng.rdu2.dc.redhat.com

Example output

Starting pod/nvd-srv-33nvidiaengrdu2dcredhatcom-debug-cdfjz ...

To use host binaries, run “chroot /host

Pod IP: 10.6.135.12

If you don't see a command prompt, try pressing enter.

sh-5.1# chroot /host

sh-5.1# ip link show | grep ens8

26: ens8fOnp0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq state UP
mode DEFAULT group default glen 1000

42: ens8f0v0: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN mode
DEFAULT group default glen 1000

43: ens8f0v1: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN mode
DEFAULT group default glen 1000

44: ens8f0v2: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN mode
DEFAULT group default glen 1000

45: ens8f0v3: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN mode
DEFAULT group default glen 1000

46: ens8f0v4: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN mode
DEFAULT group default glen 1000

41

https://access.redhat.com/solutions/37376

OpenShift Container Platform 4.18 Hardware accelerators

42

47: ens8f0v5: <BROADCAST,MULTICAST> mtu 1500 gdisc noop state DOWN mode
DEFAULT group default glen 1000
48: ens8f0v6: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN mode
DEFAULT group default glen 1000
49: ens8f0v7: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN mode
DEFAULT group default glen 1000

8. Repeat the previous steps on the second node, if necessary.

9. Optional: Confirm that the resources appear in the cluster oc describe node section by using
the following command:

I $ oc describe node -I node-role.kubernetes.io/worker=| grep -E 'Capacity:|Allocatable:' -A8

Example output

Capacity:
cpu: 128
ephemeral-storage: 1561525616Ki
hugepages-1Gi: 0
hugepages-2Mi: 0
memory: 263596692Ki
nvidia.com/gpu: 2
nvidia.com/hostdev: 0

openshift.io/sriovlegacy: 8

Allocatable:
cpu: 127500m
ephemeral-storage: 1438028263499
hugepages-1Gi: 0
hugepages-2Mi: 0
memory: 262445716Ki
nvidia.com/gpu: 2
nvidia.com/hostdev: 0

openshift.io/sriovlegacy: 8

Capacity:
cpu: 128
ephemeral-storage: 1561525616Ki
hugepages-1Gi: 0
hugepages-2Mi: 0
memory: 263596688Ki
nvidia.com/gpu: 2
nvidia.com/hostdev: 0

openshift.io/sriovlegacy: 8

Allocatable:
cpu: 127500m
ephemeral-storage: 1438028263499
hugepages-1Gi: 0
hugepages-2Mi: 0
memory: 262445712Ki
nvidia.com/gpu: 2
nvidia.com/hostdev: 0

openshift.io/sriovlegacy: 8

CHAPTER 5. NVIDIA GPUDIRECT REMOTE DIRECT MEMORY ACCESS (RDMA)

10. After the VFs for SR-IOV legacy mode are in place, generate the SriovNetwork CR file. See the
following example:

$ cat <<EOF > sriov-network.yaml
apiVersion: sriovnetwork.openshift.io/v1
kind: SriovNetwork
metadata:
name: sriov-network
namespace: openshift-sriov-network-operator
spec:
vlan: 0
networkNamespace: "default”
resourceName: "sriovlegacy"
ipam: |
{
"type": "whereabouts",
"range": "192.168.3.225/28",
"exclude": [
"192.168.3.229/30",
"192.168.3.236/32"

]

}
EOF

11. Create the custom resource on the cluster by using the following command:

I $ oc create -f sriov-network.yaml

Example output

I sriovnetwork.sriovnetwork.openshift.io/sriov-network created

5.9.4. Creating a shared device RDMA on Infiniband

Create the workload pods for a shared device Remote Direct Memory Access (RDMA) for an Infiniband
installation.

Procedure

1. Generate custom pod resources:

$ cat <<EOF > rdma-ib-32-workload.yaml
apiVersion: vi
kind: Pod
metadata:
name: rdma-ib-32-workload
namespace: default
annotations:
k8s.v1.cni.cncf.io/networks: example-ipoibnetwork
spec:
nodeSelector:
kubernetes.io/hostname: nvd-srv-32.nvidia.eng.rdu2.dc.redhat.com
containers:
- image: quay.io/edge-infrastructure/nvidia-tools:0.1.5

43

OpenShift Container Platform 4.18 Hardware accelerators

name: rdma-ib-32-workload
resources:
limits:
nvidia.com/gpu: 1
rdma/rdma_shared_device_ib: 1
requests:
nvidia.com/gpu: 1
rdma/rdma_shared_device_ib: 1
EOF

$ cat <<EOF > rdma-ib-32-workload.yaml
apiVersion: vi
kind: Pod
metadata:
name: rdma-ib-33-workload
namespace: default
annotations:
k8s.v1.cni.cncf.io/networks: example-ipoibnetwork
spec:
nodeSelector:
kubernetes.io/hostname: nvd-srv-33.nvidia.eng.rdu2.dc.redhat.com
containers:
- image: quay.io/edge-infrastructure/nvidia-tools:0.1.5
name: rdma-ib-33-workload
securityContext:
capabilities:
add: ["IPC_LOCK"]
resources:
limits:
nvidia.com/gpu: 1
rdma/rdma_shared_device_ib: 1
requests:
nvidia.com/gpu: 1
rdma/rdma_shared_device_ib: 1
EOF

2. Create the pods on the cluster by using the following commands:

I $ oc create -f rdma-ib-32-workload.yaml
Example output

I pod/rdma-ib-32-workload created

I $ oc create -f rdma-ib-33-workload.yaml

Example output

I pod/rdma-ib-33-workload created

3. Verify that the pods are running by using the following command:

I $ oc get pods

44

CHAPTER 5. NVIDIA GPUDIRECT REMOTE DIRECT MEMORY ACCESS (RDMA)

Example output

NAME READY STATUS RESTARTS AGE
rdma-ib-32-workload 1/1 Running 0 10s
rdma-ib-33-workload 1/1 Running 0 3s

5.10. VERIFYING RDMA CONNECTIVITY

Confirm Remote Direct Memory Access (RDMA) connectivity is working between the systems,
specifically for Legacy Single Root I/O Virtualization (SR-IOV) Ethernet.

Procedure

1. Connect to each rdma-workload-client pod by using the following command:

I $ oc rsh -n default rdma-sriov-32-workload

Example output

I sh-5.1#

2. Check the IP address assigned to the first workload pod by using the following command. In this

example, the first workload pod is the RDMA test server.

I sh-5.1#ip a
Example output

1:10: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group
default glen 1000
link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
inet 127.0.0.1/8 scope host lo
valid_lIft forever preferred_lft forever
inet6 ::1/128 scope host
valid_lIft forever preferred_lft forever
2: eth0@if3970: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1400 qdisc noqueue
state UP group default
link/ether 0a:58:0a:80:02:a7 brd ff:ff:ff:ff:ff:ff link-netnsid 0
inet 10.128.2.167/23 brd 10.128.3.255 scope global eth0
valid_lIft forever preferred_lft forever
inet6 fe80::858:aff:fe80:2a7/64 scope link
valid_lIft forever preferred_lft forever
3843: net1: <BROADCAST ,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq state UP
group default glen 1000
link/ether 26:34:fd:53:a6:ec brd ff:ff:ff.ff:ff:ff
altname enp55s0f0v5
inet 192.168.4.225/28 brd 192.168.4.239 scope global net1
valid_lIft forever preferred_lft forever
inet6 fe80::2434:fdff:fe53:a6ec/64 scope link
valid_lIft forever preferred_lft forever
sh-5.1#

45

OpenShift Container Platform 4.18 Hardware accelerators

The IP address of the RDMA server assigned to this pod is the net1 interface. In this example,
the IP address is 192.168.4.225.

3. Run the ibstatus command to get the link_layer type, Ethernet or Infiniband, associated with
each RDMA device mIx5_x. The output also shows the status of all of the RDMA devices by
checking the state field, which shows either ACTIVE or DOWN.

I sh-5.1# ibstatus

Example output

Infiniband device 'mIx5_0' port 1 status:

default gid: 0000:0000:0000:0000:0000:0000:0000:0000
base lid: 0x0

sm lid: 0x0

state: 4: ACTIVE

phys state: 5: LinkUp

rate: 200 Gb/sec (4X HDR)

link_layer: Ethernet

Infiniband device 'mIx5_1' port 1 status:

default gid: fe80:0000:0000:0000:e8eb:d303:0072:1415
base lid: Oxc

sm lid: Ox1

state: 4: ACTIVE

phys state: 5: LinkUp

rate: 200 Gb/sec (4X HDR)

link_layer: InfiniBand

Infiniband device 'mIx5_2' port 1 status:

default gid: 0000:0000:0000:0000:0000:0000:0000:0000
base lid: 0x0

sm lid: 0x0

state: 1: DOWN

phys state: 3: Disabled

rate: 200 Gb/sec (4X HDR)

link_layer: Ethernet

Infiniband device 'mix5_3' port 1 status:

default gid: 0000:0000:0000:0000:0000:0000:0000:0000
base lid: 0x0

sm lid: 0x0

state: 1: DOWN

phys state: 3: Disabled

rate: 200 Gb/sec (4X HDR)

link_layer: Ethernet

Infiniband device 'mix5_4' port 1 status:

default gid: 0000:0000:0000:0000:0000:0000:0000:0000
base lid: 0x0

sm lid: 0x0

state: 1: DOWN

phys state: 3: Disabled

rate: 200 Gb/sec (4X HDR)

link_layer: Ethernet

46

CHAPTER 5. NVIDIA GPUDIRECT REMOTE DIRECT MEMORY ACCESS (RDMA)

Infiniband device 'mIx5_5' port 1 status:

default gid: 0000:0000:0000:0000:0000:0000:0000:0000
base lid: 0x0

sm lid: 0x0

state: 1: DOWN

phys state: 3: Disabled

rate: 200 Gb/sec (4X HDR)

link_layer: Ethernet

Infiniband device 'mIx5_6' port 1 status:

default gid: 0000:0000:0000:0000:0000:0000:0000:0000
base lid: 0x0

sm lid: 0x0

state: 1: DOWN

phys state: 3: Disabled

rate: 200 Gb/sec (4X HDR)

link_layer: Ethernet

Infiniband device 'mIx5_7' port 1 status:

default gid: fe80:0000:0000:0000:2434:fdff:fe53:a6ec
base lid: 0x0

sm lid: 0x0

state: 4: ACTIVE

phys state: 5: LinkUp

rate: 200 Gb/sec (4X HDR)

link_layer: Ethernet

Infiniband device 'mix5_8' port 1 status:

default gid: 0000:0000:0000:0000:0000:0000:0000:0000
base lid: 0x0

sm lid: 0x0

state: 1: DOWN

phys state: 3: Disabled

rate: 200 Gb/sec (4X HDR)

link_layer: Ethernet

Infiniband device 'mIx5_9' port 1 status:

default gid: 0000:0000:0000:0000:0000:0000:0000:0000
base lid: 0x0

sm lid: 0x0

state: 1: DOWN

phys state: 3: Disabled

rate: 200 Gb/sec (4X HDR)

link_layer: Ethernet

sh-5.1#

4. To get the link_layer for each RDMA mlx5 device on your worker node, run the ibstat
command:

I sh-5.1# ibstat | egrep "Port|Base|Link"

Example output

47

OpenShift Container Platform 4.18 Hardware accelerators

Port 1:

Physical state: LinkUp

Base lid: 0

Port GUID: 0x0000000000000000
Link layer: Ethernet

Port 1:

Physical state: LinkUp

Base lid: 12

Port GUID: Oxe8ebd30300721415
Link layer: InfiniBand

Port 1:

Base lid: 0

Port GUID: 0x0000000000000000
Link layer: Ethernet

Port 1:

Base lid: 0

Port GUID: 0x0000000000000000
Link layer: Ethernet

Port 1:

Base lid: 0

Port GUID: 0x0000000000000000
Link layer: Ethernet

Port 1:

Base lid: 0
Port GUID: 0x0000000000000000
Link layer: Ethernet

Port 1:

Base lid: 0
Port GUID: 0x0000000000000000
Link layer: Ethernet

Port 1:
Physical state: LinkUp

Base lid: 0
Port GUID: 0x2434fdfffe53a6ec
Link layer: Ethernet

Port 1:

Base lid: 0
Port GUID: 0x0000000000000000
Link layer: Ethernet

Port 1:
Base lid: 0
Port GUID: 0x0000000000000000
Link layer: Ethernet

sh-5.1#

5. For RDMA Shared Device or Host Device workload pods, the RDMA device named mix5_x is
already known and is typically mIx5_0 or mIx5_1. For RDMA Legacy SR-IOV workload pods, you
need to determine which RDMA device is associated with which Virtual Function (VF)
subinterface. Provide this information by using the following command:

I sh-5.1# rdma link show

Example output

I link mix5_0/1 state ACTIVE physical_state LINK_UP

48

CHAPTER 5. NVIDIA GPUDIRECT REMOTE DIRECT MEMORY ACCESS (RDMA)

link mIx5_1/1 subnet_prefix fe80:0000:0000:0000 lid 12 sm_lid 1 Imc 0 state ACTIVE
physical_state LINK_UP

link mIx5_2/1 state DOWN physical_state DISABLED

link mIx5_3/1 state DOWN physical_state DISABLED

link mIx5_4/1 state DOWN physical_state DISABLED

link mIx5_5/1 state DOWN physical_state DISABLED

link mIx5_6/1 state DOWN physical_state DISABLED

link mIx5_7/1 state ACTIVE physical_state LINK_UP netdev net1

link mIx5_8/1 state DOWN physical_state DISABLED

link mIx5_9/1 state DOWN physical_state DISABLED

In this example, the RDMA device names mIx5_7 is associated with the net1 interface. This
output is used in the next command to perform the RDMA bandwidth test, which also verifies
RDMA connectivity between worker nodes.

. Run the following ib_write_bw RDMA bandwidth test command:

sh-5.1# /root/perftest/ib_write_bw -R -T 41 -s 65536 -F -x 3 -m 4096 --report_gbits -q 16 -D
60 -d mIx5_7 -p 10000 --source_ip 192.168.4.225 --use_cuda=0 --use_cuda_dmabuf

where:
® The mIx5_7 RDMA device is passed in the -d switch.
® The source IP address is 192.168.4.225 to start the RDMA server.

e The --use_cuda=0, --use_cuda_dmabuf switches indicate that the use of GPUDirect
RDMA.

Example output

WARNING: BW peak won't be measured in this run.
Perftest doesn't supports CUDA tests with inline messages: inline size set to 0

kkhkkkkkkkkkkhkhhhkkkkhkhkhhhhkkkkkhkhhhkkkrxk

* Waiting for client to connect... *

hhkkkkkkkkkkhkkhhhkkkhhkhkhhhhkkkhkhhhhkkkhrkxk

. Open another terminal window and run oc rsh command on the second workload pod that acts
as the RDMA test client pod:

I $ oc rsh -n default rdma-sriov-33-workload

Example output

I sh-5.1#

. Obtain the RDMA test client pod IP address from the net1 interface by using the following
command:

I sh-5.1#ip a

Example output

49

OpenShift Container Platform 4.18 Hardware accelerators

50

1:10: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group
default glen 1000
link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
inet 127.0.0.1/8 scope host lo
valid_lIft forever preferred_lft forever
inet6 ::1/128 scope host
valid_lIft forever preferred_lft forever
2: eth0@if4139: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1400 qdisc noqueue
state UP group default
link/ether 0a:58:0a:83:01:d5 brd ff:ff:ff:ff:ff:ff link-netnsid 0
inet 10.131.1.213/23 brd 10.131.1.255 scope global eth0
valid_lIft forever preferred_lft forever
inet6 fe80::858:aff:fe83:1d5/64 scope link
valid_lIft forever preferred_lft forever
4076: net1: <cBROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq state UP
group default glen 1000
link/ether 56:6¢:59:41:ae:4a brd ff:ff:ff.ff.ff.ff
altname enp55s0f0v0
inet 192.168.4.226/28 brd 192.168.4.239 scope global net1
valid_lIft forever preferred_lft forever
inet6 fe80::546¢:59ff:fe41:aed4a/64 scope link
valid_lIft forever preferred_lft forever
sh-5.1#

9. Obtain the link_layer type associated with each RDMA device mlIx5_x by using the following
command:

I sh-5.1# ibstatus

Example output

Infiniband device 'mIx5_0' port 1 status:

default gid: 0000:0000:0000:0000:0000:0000:0000:0000
base lid: 0x0

sm lid: 0x0

state: 4: ACTIVE

phys state: 5: LinkUp

rate: 200 Gb/sec (4X HDR)

link_layer: Ethernet

Infiniband device 'mIx5_1' port 1 status:

default gid: fe80:0000:0000:0000:e8eb:d303:0072:09f5
base lid: 0xd

sm lid: Ox1

state: 4: ACTIVE

phys state: 5: LinkUp

rate: 200 Gb/sec (4X HDR)

link_layer: InfiniBand

Infiniband device 'mIx5_2' port 1 status:

default gid: fe80:0000:0000:0000:546¢:59ff:fe41:aeda
base lid: 0x0

sm lid: 0x0

state: 4: ACTIVE

phys state: 5: LinkUp

CHAPTER 5. NVIDIA GPUDIRECT REMOTE DIRECT MEMORY ACCESS (RDMA)

rate: 200 Gb/sec (4X HDR)
link_layer: Ethernet

Infiniband device 'mix5_3' port 1 status:

default gid: 0000:0000:0000:0000:0000:0000:0000:0000
base lid: 0x0

sm lid: 0x0

state: 1: DOWN

phys state: 3: Disabled

rate: 200 Gb/sec (4X HDR)

link_layer: Ethernet

Infiniband device 'mix5_4' port 1 status:

default gid: 0000:0000:0000:0000:0000:0000:0000:0000
base lid: 0x0

smlid: 0x0

state: 1: DOWN

phys state: 3: Disabled

rate: 200 Gb/sec (4X HDR)

link_layer: Ethernet

Infiniband device 'mIx5_5' port 1 status:

default gid: 0000:0000:0000:0000:0000:0000:0000:0000
base lid: 0x0

sm lid: 0x0

state: 1: DOWN

phys state: 3: Disabled

rate: 200 Gb/sec (4X HDR)

link_layer: Ethernet

Infiniband device 'mIx5_6' port 1 status:

default gid: 0000:0000:0000:0000:0000:0000:0000:0000
base lid: 0x0

sm lid: 0x0

state: 1: DOWN

phys state: 3: Disabled

rate: 200 Gb/sec (4X HDR)

link_layer: Ethernet

Infiniband device 'mIx5_7' port 1 status:

default gid: 0000:0000:0000:0000:0000:0000:0000:0000
base lid: 0x0

sm lid: 0x0

state: 1: DOWN

phys state: 3: Disabled

rate: 200 Gb/sec (4X HDR)

link_layer: Ethernet

Infiniband device 'mix5_8' port 1 status:

default gid: 0000:0000:0000:0000:0000:0000:0000:0000
base lid: 0x0

sm lid: 0x0

state: 1: DOWN

phys state: 3: Disabled

rate: 200 Gb/sec (4X HDR)

link_layer: Ethernet

51

OpenShift Container Platform 4.18 Hardware accelerators

Infiniband device 'mIx5_9' port 1 status:

default gid: 0000:0000:0000:0000:0000:0000:0000:0000
base lid: 0x0

sm lid: 0x0

state: 1: DOWN

phys state: 3: Disabled

rate: 200 Gb/sec (4X HDR)

link_layer: Ethernet

10. Optional: Obtain the firmware version of Mellanox cards by using the ibstat command:

I sh-5.1# ibstat

Example output

CA 'mix5_0'
CA type: MT4123
Number of ports: 1
Firmware version: 20.43.1014
Hardware version: 0
Node GUID: 0xe8ebd303007209f4
System image GUID: 0xe8ebd303007209f4
Port 1:
State: Active
Physical state: LinkUp
Rate: 200
Base lid: 0
LMC: 0
SMlid: 0
Capability mask: 0x00010000
Port GUID: 0x0000000000000000
Link layer: Ethernet
CA 'mix5_1'
CA type: MT4123
Number of ports: 1
Firmware version: 20.43.1014
Hardware version: 0
Node GUID: 0xe8ebd303007209f5
System image GUID: 0xe8ebd303007209f4
Port 1:
State: Active
Physical state: LinkUp
Rate: 200
Base lid: 13
LMC: 0
SM lid: 1
Capability mask: 0xa651e848
Port GUID: 0xe8ebd303007209f5
Link layer: InfiniBand
CA 'mix5_2'
CA type: MT4124
Number of ports: 1
Firmware version: 20.43.1014
Hardware version: 0

52

CHAPTER 5. NVIDIA GPUDIRECT REMOTE DIRECT MEMORY ACCESS (RDMA)

Node GUID: 0x566¢c59fffe41aeda
System image GUID: 0xe8ebd303007209f4
Port 1:
State: Active
Physical state: LinkUp
Rate: 200
Base lid: 0
LMC: 0
SM lid: 0
Capability mask: 0x00010000
Port GUID: 0x546¢c59fffe41aeda
Link layer: Ethernet
CA 'mix5_3'
CA type: MT4124
Number of ports: 1
Firmware version: 20.43.1014
Hardware version: 0
Node GUID: Oxb2ae4bfffe8f3d02
System image GUID: 0xe8ebd303007209f4
Port 1:
State: Down
Physical state: Disabled
Rate: 200
Base lid: 0
LMC: 0
SM lid: 0
Capability mask: 0x00010000
Port GUID: 0x0000000000000000
Link layer: Ethernet
CA 'mix5_4'
CA type: MT4124
Number of ports: 1
Firmware version: 20.43.1014
Hardware version: 0
Node GUID: 0x2a9967fffe8bf272
System image GUID: 0xe8ebd303007209f4
Port 1:
State: Down
Physical state: Disabled
Rate: 200
Base lid: 0
LMC: 0
SM lid: 0
Capability mask: 0x00010000
Port GUID: 0x0000000000000000
Link layer: Ethernet
CA 'mix5_5'
CA type: MT4124
Number of ports: 1
Firmware version: 20.43.1014
Hardware version: 0
Node GUID: Ox5aff2ffffe2e17e8
System image GUID: 0xe8ebd303007209f4
Port 1:
State: Down
Physical state: Disabled

53

OpenShift Container Platform 4.18 Hardware accelerators

54

Rate: 200
Base lid: 0
LMC: 0
SM lid: 0
Capability mask: 0x00010000
Port GUID: 0x0000000000000000
Link layer: Ethernet
CA 'mix5_6'
CA type: MT4124
Number of ports: 1
Firmware version: 20.43.1014
Hardware version: 0
Node GUID: 0x121bf1fffe074419
System image GUID: 0xe8ebd303007209f4
Port 1:
State: Down
Physical state: Disabled
Rate: 200
Base lid: 0
LMC: 0
SM lid: 0
Capability mask: 0x00010000
Port GUID: 0x0000000000000000
Link layer: Ethernet
CA 'mix5_7'
CA type: MT4124
Number of ports: 1
Firmware version: 20.43.1014
Hardware version: 0
Node GUID: 0xb22b16fffed03dd7
System image GUID: 0xe8ebd303007209f4
Port 1:
State: Down
Physical state: Disabled
Rate: 200
Base lid: 0
LMC: 0
SM lid: 0
Capability mask: 0x00010000
Port GUID: 0x0000000000000000
Link layer: Ethernet
CA 'mix5_8'
CA type: MT4124
Number of ports: 1
Firmware version: 20.43.1014
Hardware version: 0
Node GUID: 0x523800fffe16d105
System image GUID: 0xe8ebd303007209f4
Port 1:
State: Down
Physical state: Disabled
Rate: 200
Base lid: 0
LMC: 0
SM lid: 0
Capability mask: 0x00010000

CHAPTER 5. NVIDIA GPUDIRECT REMOTE DIRECT MEMORY ACCESS (RDMA)

Port GUID: 0x0000000000000000
Link layer: Ethernet
CA 'mix5_9'
CA type: MT4124
Number of ports: 1
Firmware version: 20.43.1014
Hardware version: 0
Node GUID: Oxd2b4a1ifffebdc4a9
System image GUID: 0xe8ebd303007209f4
Port 1:
State: Down
Physical state: Disabled
Rate: 200
Base lid: 0
LMC: 0
SM lid: 0
Capability mask: 0x00010000
Port GUID: 0x0000000000000000
Link layer: Ethernet
sh-5.1#

1. To determine which RDMA device is associated with the Virtual Function subinterface that the
client workload pod uses, run the following command. In this example, the net1 interface is using
the RDMA device mix5_2.

I sh-5.1# rdma link show

Example output

link mIx5_0/1 state ACTIVE physical_state LINK_UP

link mIx5_1/1 subnet_prefix fe80:0000:0000:0000 lid 13 sm_lid 1 Imc 0 state ACTIVE
physical_state LINK_UP

link mIx5_2/1 state ACTIVE physical_state LINK_UP netdev net1
link mIx5_3/1 state DOWN physical_state DISABLED

link mIx5_4/1 state DOWN physical_state DISABLED

link mIx5_5/1 state DOWN physical_state DISABLED

link mIx5_6/1 state DOWN physical_state DISABLED

link mIx5_7/1 state DOWN physical_state DISABLED

link mIx5_8/1 state DOWN physical_state DISABLED

link mIx5_9/1 state DOWN physical_state DISABLED

sh-5.1#

12. Run the following ib_write_bw RDMA bandwidth test command:

sh-5.1# /root/perftest/ib_write_bw -R -T 41 -s 65536 -F -x 3 -m 4096 --report_gbits -q 16 -D
60 -d mIx5_2 -p 10000 --source_ip 192.168.4.226 --use_cuda=0 --use_cuda_dmabuf
192.168.4.225

where:
® The mix5_2 RDMA device is passed in the -d switch.

® The source IP address 192.168.4.226 and the destination IP address of the RDMA server
192.168.4.225.

55

OpenShift Container Platform 4.18 Hardware accelerators

56

® The --use_cuda=0, --use_cuda_dmabuf switches indicate that the use of GPUDirect
RDMA.

Example output

WARNING: BW peak won't be measured in this run.

Perftest doesn't supports CUDA tests with inline messages: inline size set to 0
Requested mtu is higher than active mtu

Changing to active mtu - 3

initializing CUDA

Listing all CUDA devices in system:

CUDA device 0: PCle address is 61:00

Picking device No. 0

[pid = 8909, dev = 0] device name = [NVIDIA A40]

creating CUDA Ctx

making it the current CUDA Ctx

CUDA device integrated: 0

using DMA-BUF for GPU buffer address at 0x7f8738600000 aligned at 0x7f8738600000
with aligned size 2097152

allocated GPU buffer of a 2097152 address at 0x23a7420 for type CUDA_MEM_DEVICE
Calling ibv_reg_dmabuf_mr(offset=0, size=2097152, addr=0x7f8738600000, fd=40) for
QP #0

RDMA_Write BW Test
Dual-port : OFF Device :mix5_2
Number of qps : 16 Transport type : IB
Connection type : RC Using SRQ : OFF
PCle relax order: ON Lock-free : OFF
ibv_wr* API :ON Using DDP :OFF
TX depth 1128
CQ Moderation :1
CQE Poll Batch : 16

Mtu : 1024[B]
Link type : Ethernet
GID index 3

Max inline data : O[B]
rdma_cm QPs : ON
Data ex. method : rdma_cm TOS : 41

local address: LID 0000 QPN 0x012d PSN 0x3cb6d7

GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:226
local address: LID 0000 QPN 0x012e PSN 0x90e0ac

GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:226
local address: LID 0000 QPN 0x012f PSN 0x153f50

GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:226
local address: LID 0000 QPN 0x0130 PSN 0x5e0128

GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:226
local address: LID 0000 QPN 0x0131 PSN 0xd89752

GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:226
local address: LID 0000 QPN 0x0132 PSN 0xe5fc16

GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:226
local address: LID 0000 QPN 0x0133 PSN 0x236787

GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:226
local address: LID 0000 QPN 0x0134 PSN 0xd9273e

GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:226

CHAPTER 5. NVIDIA GPUDIRECT REMOTE DIRECT MEMORY ACCESS (RDMA)

local address: LID 0000 QPN 0x0135 PSN 0x37cfd4

GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:226
local address: LID 0000 QPN 0x0136 PSN 0x3bff8f

GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:226
local address: LID 0000 QPN 0x0137 PSN 0x81f2bd

GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:226
local address: LID 0000 QPN 0x0138 PSN 0x575c¢43

GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:226
local address: LID 0000 QPN 0x0139 PSN 0x6¢f53d

GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:226
local address: LID 0000 QPN 0x013a PSN Oxcaaf6f

GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:226
local address: LID 0000 QPN 0x013b PSN 0x346437

GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:226
local address: LID 0000 QPN 0x013c PSN 0xcc5865

GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:226
remote address: LID 0000 QPN 0x026d PSN 0x359409

GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:225
remote address: LID 0000 QPN 0x026e PSN 0xe387bf

GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:225
remote address: LID 0000 QPN 0x026f PSN 0x5be79d

GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:225
remote address: LID 0000 QPN 0x0270 PSN 0x1b4b28

GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:225
remote address: LID 0000 QPN 0x0271 PSN 0x76a61b

GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:225
remote address: LID 0000 QPN 0x0272 PSN 0x3d50e1

GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:225
remote address: LID 0000 QPN 0x0273 PSN 0x1b572c

GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:225
remote address: LID 0000 QPN 0x0274 PSN 0x4ae1b5

GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:225
remote address: LID 0000 QPN 0x0275 PSN 0x5591b5

GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:225
remote address: LID 0000 QPN 0x0276 PSN 0xfa2593

GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:225
remote address: LID 0000 QPN 0x0277 PSN 0xd9473b

GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:225
remote address: LID 0000 QPN 0x0278 PSN 0x2116b2

GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:225
remote address: LID 0000 QPN 0x0279 PSN 0x9b83b6

GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:225
remote address: LID 0000 QPN 0x027a PSN 0xa0822b

GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:225
remote address: LID 0000 QPN 0x027b PSN 0x6d930d

GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:225
remote address: LID 0000 QPN 0x027c PSN Oxb1a4d

GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:225

#bytes #iterations BW peak|Gb/sec] BW average[Gb/sec] MsgRate[Mpps]

65536 10329004 0.00 180.47 0.344228

deallocating GPU buffer 00007f8738600000
destroying current CUDA Cix
sh-5.1#

57

OpenShift Container Platform 4.18 Hardware accelerators

58

A positive test is seeing an expected BW average and MsgRate in Mpps.

Upon completion of the ib_write_bw command, the server side output also appears on the
server pod. See the following example:

Example output

WARNING: BW peak won't be measured in this run.
Perftest doesn't supports CUDA tests with inline messages: inline size set to 0

hhkkkkkkkkkkhkhhhkkkhhkhkhhhhkkhkhkhhhhkhkkkrkxk

* Waiting for client to connect... *
Requested mtu is higher than active mtu
Changing to active mtu - 3

initializing CUDA

Listing all CUDA devices in system:
CUDA device 0: PCle address is 61:00

Picking device No. 0

[pid = 9226, dev = 0] device name = [NVIDIA A40]

creating CUDA Ctx

making it the current CUDA Ctx

CUDA device integrated: 0

using DMA-BUF for GPU buffer address at 0x7f447a600000 aligned at 0x7f447a600000
with aligned size 2097152

allocated GPU buffer of a 2097152 address at 0x2406400 for type CUDA_MEM_DEVICE
Calling ibv_reg_dmabuf_mr(offset=0, size=2097152, addr=0x7f447a600000, fd=40) for
QP #0

RDMA_Write BW Test
Dual-port : OFF Device :mix5_7
Number of qps : 16 Transport type : IB
Connection type : RC Using SRQ : OFF
PCle relax order: ON Lock-free : OFF
ibv_wr* APl :ON Using DDP :OFF
CQ Moderation : 1
CQE Poll Batch : 16

Mtu : 1024[B]
Link type : Ethernet
GID index :3

Max inline data : O[B]
rdma_cm QPs : ON
Data ex. method : rdma_cm TOS : 41

Waiting for client rdma_cm QP to connect
Please run the same command with the IB/RoCE interface IP

local address: LID 0000 QPN 0x026d PSN 0x359409
GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:225
local address: LID 0000 QPN 0x026e PSN 0xe387bf
GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:225
local address: LID 0000 QPN 0x026f PSN 0x5be79d
GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:225
local address: LID 0000 QPN 0x0270 PSN 0x1b4b28
GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:225

CHAPTER 5. NVIDIA GPUDIRECT REMOTE DIRECT MEMORY ACCESS (RDMA)

local address: LID 0000 QPN 0x0271 PSN 0x76a61b

GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:225
local address: LID 0000 QPN 0x0272 PSN 0x3d50e1

GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:225
local address: LID 0000 QPN 0x0273 PSN 0x1b572c

GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:225
local address: LID 0000 QPN 0x0274 PSN 0x4ae1b5

GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:225
local address: LID 0000 QPN 0x0275 PSN 0x5591b5

GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:225
local address: LID 0000 QPN 0x0276 PSN 0xfa2593

GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:225
local address: LID 0000 QPN 0x0277 PSN 0xd9473b

GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:225
local address: LID 0000 QPN 0x0278 PSN 0x2116b2

GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:225
local address: LID 0000 QPN 0x0279 PSN 0x9b83b6

GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:225
local address: LID 0000 QPN 0x027a PSN 0xa0822b

GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:225
local address: LID 0000 QPN 0x027b PSN 0x6d930d

GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:225
local address: LID 0000 QPN 0x027c PSN 0Oxb1a4d

GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:225
remote address: LID 0000 QPN 0x012d PSN 0x3cb6d7

GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:226
remote address: LID 0000 QPN 0x012e PSN 0x90e0ac

GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:226
remote address: LID 0000 QPN 0x012f PSN 0x153f50

GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:226
remote address: LID 0000 QPN 0x0130 PSN 0x5e0128

GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:226
remote address: LID 0000 QPN 0x0131 PSN 0xd89752

GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:226
remote address: LID 0000 QPN 0x0132 PSN 0xe5fc16

GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:226
remote address: LID 0000 QPN 0x0133 PSN 0x236787

GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:226
remote address: LID 0000 QPN 0x0134 PSN 0xd9273e

GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:226
remote address: LID 0000 QPN 0x0135 PSN 0x37cfd4

GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:226
remote address: LID 0000 QPN 0x0136 PSN 0x3bff8f

GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:226
remote address: LID 0000 QPN 0x0137 PSN 0x81f2bd

GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:226
remote address: LID 0000 QPN 0x0138 PSN 0x575c43

GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:226
remote address: LID 0000 QPN 0x0139 PSN 0x6¢f53d

GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:226
remote address: LID 0000 QPN 0x013a PSN Oxcaaf6f

GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:226
remote address: LID 0000 QPN 0x013b PSN 0x346437

GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:226
remote address: LID 0000 QPN 0x013c PSN 0xcc5865

GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:226

59

OpenShift Container Platform 4.18 Hardware accelerators

#bytes #iterations BW peak[Gb/sec] BW average[Gb/sec] MsgRate[Mpps]
65536 10329004 0.00 180.47 0.344228

deallocating GPU buffer 00007f447a600000
destroying current CUDA Cix

60

	Table of Contents
	CHAPTER 1. ABOUT HARDWARE ACCELERATORS
	1.1. HARDWARE ACCELERATORS

	CHAPTER 2. NVIDIA GPU ARCHITECTURE
	2.1. NVIDIA GPU PREREQUISITES
	2.2. NVIDIA GPU ENABLEMENT
	2.2.1. GPUs and bare metal
	2.2.2. GPUs and virtualization
	2.2.3. GPUs and vSphere
	2.2.4. GPUs and Red Hat KVM
	2.2.5. GPUs and CSPs
	2.2.6. GPUs and Red Hat Device Edge

	2.3. GPU SHARING METHODS
	2.3.1. CUDA streams
	2.3.2. Time-slicing
	2.3.3. CUDA Multi-Process Service
	2.3.4. Multi-instance GPU
	2.3.5. Virtualization with vGPU

	2.4. NVIDIA GPU FEATURES FOR OPENSHIFT CONTAINER PLATFORM

	CHAPTER 3. AMD GPU OPERATOR
	3.1. ABOUT THE AMD GPU OPERATOR
	3.2. INSTALLING THE AMD GPU OPERATOR
	3.3. TESTING THE AMD GPU OPERATOR

	CHAPTER 4. INTEL GAUDI AI ACCELERATORS
	4.1. INTEL GAUDI AI ACCELERATORS PREREQUISITES

	CHAPTER 5. NVIDIA GPUDIRECT REMOTE DIRECT MEMORY ACCESS (RDMA)
	5.1. NVIDIA GPUDIRECT RDMA PREREQUISITES
	5.2. DISABLING THE IRDMA KERNEL MODULE
	5.3. CREATING PERSISTENT NAMING RULES
	5.4. CONFIGURING THE NFD OPERATOR
	5.5. CONFIGURING THE SR-IOV OPERATOR
	5.6. CONFIGURING THE NVIDIA NETWORK OPERATOR
	5.7. CONFIGURING THE GPU OPERATOR
	5.8. CREATING THE MACHINE CONFIGURATION
	5.9. CREATING THE WORKLOAD PODS
	5.9.1. Creating a shared device RDMA on RoCE
	5.9.2. Creating a host device RDMA on RoCE
	5.9.3. Creating a SR-IOV legacy mode RDMA on RoCE
	5.9.4. Creating a shared device RDMA on Infiniband

	5.10. VERIFYING RDMA CONNECTIVITY

