Installing on vSphere
Installing OpenShift Container Platform vSphere clusters
Abstract
Chapter 1. Installing on vSphere
1.1. Installing a cluster on vSphere
In OpenShift Container Platform version 4.5, you can install a cluster on your VMware vSphere instance by using installer-provisioned infrastructure.
1.1.1. Prerequisites
-
Provision persistent storage for your cluster. To deploy a private image registry, your storage must provide
ReadWriteMany
access modes. - Review details about the OpenShift Container Platform installation and update processes.
If you use a firewall, you must configure it to allow the sites that your cluster requires access to.
NoteBe sure to also review this site list if you are configuring a proxy.
1.1.2. Internet and Telemetry access for OpenShift Container Platform
In OpenShift Container Platform 4.5, you require access to the Internet to install your cluster. The Telemetry service, which runs by default to provide metrics about cluster health and the success of updates, also requires Internet access. If your cluster is connected to the Internet, Telemetry runs automatically, and your cluster is registered to the Red Hat OpenShift Cluster Manager (OCM).
Once you confirm that your Red Hat OpenShift Cluster Manager inventory is correct, either maintained automatically by Telemetry or manually using OCM, use subscription watch to track your OpenShift Container Platform subscriptions at the account or multi-cluster level.
You must have Internet access to:
- Access the Red Hat OpenShift Cluster Manager page to download the installation program and perform subscription management. If the cluster has Internet access and you do not disable Telemetry, that service automatically entitles your cluster.
- Access Quay.io to obtain the packages that are required to install your cluster.
- Obtain the packages that are required to perform cluster updates.
If your cluster cannot have direct Internet access, you can perform a restricted network installation on some types of infrastructure that you provision. During that process, you download the content that is required and use it to populate a mirror registry with the packages that you need to install a cluster and generate the installation program. With some installation types, the environment that you install your cluster in will not require Internet access. Before you update the cluster, you update the content of the mirror registry.
1.1.3. VMware vSphere infrastructure requirements
You must install the OpenShift Container Platform cluster on a VMware vSphere version 6 instance that meets the requirements for the components that you use.
Component | Minimum supported versions | Description |
---|---|---|
Hypervisor | vSphere 6.5 with HW version 13 | This version is the minimum version that Red Hat Enterprise Linux CoreOS (RHCOS) supports. See the Red Hat Enterprise Linux 8 supported hypervisors list. |
Networking (NSX-T) | vSphere 6.5U3 or vSphere 6.7U2 and later | vSphere 6.5U3 or vSphere 6.7U2+ are required for OpenShift Container Platform. VMware’s NSX Container Plug-in (NCP) 3.0.2 is certified with OpenShift Container Platform 4.5 and NSX-T 3.x+. |
Storage with in-tree drivers | vSphere 6.5 and later | This plug-in creates vSphere storage by using the in-tree storage drivers for vSphere included in OpenShift Container Platform. |
If you use a vSphere version 6.5 instance, consider upgrading to 6.7U2 before you install OpenShift Container Platform.
You must ensure that the time on your ESXi hosts is synchronized before you install OpenShift Container Platform. See Edit Time Configuration for a Host in the VMware documentation.
A limitation of using VPC is that the Storage Distributed Resource Scheduler (SDRS) is not supported. See vSphere Storage for Kubernetes FAQs in the VMware documentation.
1.1.4. vCenter requirements
Before you install an OpenShift Container Platform cluster on your vCenter that uses infrastructure that the installer provisions, you must prepare your environment.
Required vCenter account privileges
To install an OpenShift Container Platform cluster in a vCenter, the installation program requires access to an account with privileges to read and create the required resources. Using an account that has global administrative privileges is the simplest way to access all of the necessary permissions.
If you cannot use an account with global adminstrative privileges, you must create roles to grant the privileges necessary for OpenShift Container Platform cluster installation. While most of the privileges are always required, some are required only if you plan for the installation program to provision a folder to contain the OpenShift Container Platform cluster on your vCenter instance, which is the default behavior. You must create or amend vSphere roles for the specified objects to grant the required privileges.
An additional role is required if the installation program is to create a vSphere virtual machine folder.
Example 1.1. Roles and privileges required for installation
vSphere object for role | When required | Required privileges |
---|---|---|
vSphere vCenter | Always |
|
vSphere vCenter Cluster | Always |
|
vSphere Datastore | Always |
|
vSphere Port Group | Always |
|
Virtual Machine Folder | Always |
|
vSphere vCenter Datacenter | If the installation program creates the virtual machine folder |
|
Additionally, the user requires some ReadOnly
permissions, and some of the roles require permission to propogate the permissions to child objects. These settings vary depending on whether or not you install the cluster into an existing folder.
Example 1.2. Required permissions and propagation settings
vSphere object | Folder type | Propagate to children | Permissions required |
---|---|---|---|
vSphere vCenter | Always | False | Listed required privileges |
vSphere vCenter Datacenter | Existing folder | False |
|
Installation program creates the folder | True | Listed required privileges | |
vSphere vCenter Cluster | Always | True | Listed required privileges |
vSphere vCenter Datastore | Always | False | Listed required privileges |
vSphere Switch | Always | False |
|
vSphere Port Group | Always | False | Listed required privileges |
vSphere vCenter Virtual Machine Folder | Existing folder | True | Listed required privileges |
For more information about creating an account with only the required privileges, see vSphere Permissions and User Management Tasks in the vSphere documentation.
Using OpenShift Container Platform with vMotion
OpenShift Container Platform generally supports compute-only vMotion. Using Storage vMotion can cause issues and is not supported.
If you are using vSphere volumes in your pods, migrating a VM across datastores either manually or through Storage vMotion causes invalid references within OpenShift Container Platform persistent volume (PV) objects. These references prevent affected pods from starting up and can result in data loss.
Similarly, OpenShift Container Platform does not support selective migration of VMDKs across datastores, using datastore clusters for VM provisioning or for dynamic or static provisioning of PVs, or using a datastore that is part of a datastore cluster for dynamic or static provisioning of PVs.
Cluster resources
When you deploy an OpenShift Container Platform cluster that uses installer-provisioned infrastructure, the installation program must be able to create several resources in your vCenter instance.
A standard OpenShift Container Platform installation creates the following vCenter resources:
- 1 Folder
- 1 Tag category
- 1 Tag
Virtual machines:
- 1 template
- 1 temporary bootstrap node
- 3 control plane nodes
- 3 compute machines
Although these resources use 856 GB of storage, the bootstrap node is destroyed during the cluster installation process. A minimum of 800 GB of storage is required to use a standard cluster.
If you deploy more compute machines, the OpenShift Container Platform cluster will use more storage.
Cluster limits
Available resources vary between clusters. The number of possible clusters within a vCenter is limited primarily by available storage space and any limitations on the number of required resources. Be sure to consider both limitations to the vCenter resources that the cluster creates and the resources that you require to deploy a cluster, such as IP addresses and networks.
Networking requirements
You must use DHCP for the network and ensure that the DHCP server is configured to provide persistent IP addresses and host names to the cluster machines. Additionally, you must create the following networking resources before you install the OpenShift Container Platform cluster:
Required IP addresses
An installer-provisioned vSphere installation requires two static IP addresses:
- The API address is used to access the cluster API.
- The Ingress address is used for cluster ingress traffic.
You must provide these IP addresses to the installation program when you install the OpenShift Container Platform cluster.
DNS records
You must create DNS records for two static IP addresses in the appropriate DNS server for the vCenter instance that hosts your OpenShift Container Platform cluster. In each record, <cluster_name>
is the cluster name and <base_domain>
is the cluster base domain that you specify when you install the cluster. A complete DNS record takes the form: <component>.<cluster_name>.<base_domain>.
.
Component | Record | Description |
---|---|---|
API VIP |
| This DNS A/AAAA or CNAME record must point to the load balancer for the control plane machines. This record must be resolvable by both clients external to the cluster and from all the nodes within the cluster. |
Ingress VIP |
| A wildcard DNS A/AAAA or CNAME record that points to the load balancer that targets the machines that run the Ingress router pods, which are the worker nodes by default. This record must be resolvable by both clients external to the cluster and from all the nodes within the cluster. |
1.1.5. Generating an SSH private key and adding it to the agent
If you want to perform installation debugging or disaster recovery on your cluster, you must provide an SSH key to both your ssh-agent
and the installation program. You can use this key to access the bootstrap machine in a public cluster to troubleshoot installation issues.
In a production environment, you require disaster recovery and debugging.
You can use this key to SSH into the master nodes as the user core
. When you deploy the cluster, the key is added to the core
user’s ~/.ssh/authorized_keys
list.
You must use a local key, not one that you configured with platform-specific approaches such as AWS key pairs.
Procedure
If you do not have an SSH key that is configured for password-less authentication on your computer, create one. For example, on a computer that uses a Linux operating system, run the following command:
$ ssh-keygen -t ed25519 -N '' \ -f <path>/<file_name> 1
- 1
- Specify the path and file name, such as
~/.ssh/id_rsa
, of the new SSH key. If you have an existing key pair, ensure your public key is in the your~/.ssh
directory.
Running this command generates an SSH key that does not require a password in the location that you specified.
NoteIf you plan to install an OpenShift Container Platform cluster that uses FIPS Validated / Modules in Process cryptographic libraries on the
x86_64
architecture, do not create a key that uses theed25519
algorithm. Instead, create a key that uses thersa
orecdsa
algorithm.Start the
ssh-agent
process as a background task:$ eval "$(ssh-agent -s)"
Example output
Agent pid 31874
If your cluster is in FIPS mode, only use FIPS-compliant algorithms to generate the SSH key. The key must be either RSA or ECDSA.
Add your SSH private key to the
ssh-agent
:$ ssh-add <path>/<file_name> 1
Example output
Identity added: /home/<you>/<path>/<file_name> (<computer_name>)
- 1
- Specify the path and file name for your SSH private key, such as
~/.ssh/id_rsa
Next steps
- When you install OpenShift Container Platform, provide the SSH public key to the installation program.
1.1.6. Obtaining the installation program
Before you install OpenShift Container Platform, download the installation file on a local computer.
Prerequisites
- You must install the cluster from a computer that uses Linux or macOS.
- You need 500 MB of local disk space to download the installation program.
Procedure
- Access the Infrastructure Provider page on the Red Hat OpenShift Cluster Manager site. If you have a Red Hat account, log in with your credentials. If you do not, create an account.
Navigate to the page for your installation type, download the installation program for your operating system, and place the file in the directory where you will store the installation configuration files.
ImportantThe installation program creates several files on the computer that you use to install your cluster. You must keep both the installation program and the files that the installation program creates after you finish installing the cluster.
ImportantDeleting the files created by the installation program does not remove your cluster, even if the cluster failed during installation. You must complete the OpenShift Container Platform uninstallation procedures outlined for your specific cloud provider to remove your cluster entirely.
Extract the installation program. For example, on a computer that uses a Linux operating system, run the following command:
$ tar xvf <installation_program>.tar.gz
-
From the Pull Secret page on the Red Hat OpenShift Cluster Manager site, download your installation pull secret as a
.txt
file. This pull secret allows you to authenticate with the services that are provided by the included authorities, including Quay.io, which serves the container images for OpenShift Container Platform components.
1.1.7. Adding vCenter root CA certificates to your system trust
Because the installation program requires access to your vCenter’s API, you must add your vCenter’s trusted root CA certificates to your system trust before you install an OpenShift Container Platform cluster.
Procedure
-
From the vCenter home page, download the vCenter’s root CA certificates. Click Download trusted root CA certificates in the vSphere Web Services SDK section. The
<vCenter>/certs/download.zip
file downloads. Extract the compressed file that contains the vCenter root CA certificates. The contents of the compressed file resemble the following file structure:
certs ├── lin │ ├── 108f4d17.0 │ ├── 108f4d17.r1 │ ├── 7e757f6a.0 │ ├── 8e4f8471.0 │ └── 8e4f8471.r0 ├── mac │ ├── 108f4d17.0 │ ├── 108f4d17.r1 │ ├── 7e757f6a.0 │ ├── 8e4f8471.0 │ └── 8e4f8471.r0 └── win ├── 108f4d17.0.crt ├── 108f4d17.r1.crl ├── 7e757f6a.0.crt ├── 8e4f8471.0.crt └── 8e4f8471.r0.crl 3 directories, 15 files
Add the files for your operating system to the system trust. For example, on a Fedora operating system, run the following command:
# cp certs/lin/* /etc/pki/ca-trust/source/anchors
Update your system trust. For example, on a Fedora operating system, run the following command:
# update-ca-trust extract
1.1.8. Deploying the cluster
You can install OpenShift Container Platform on a compatible cloud platform.
You can run the create cluster
command of the installation program only once, during initial installation.
Prerequisites
- Obtain the OpenShift Container Platform installation program and the pull secret for your cluster.
Procedure
Run the installation program:
$ ./openshift-install create cluster --dir=<installation_directory> \ 1 --log-level=info 2
ImportantSpecify an empty directory. Some installation assets, like bootstrap X.509 certificates have short expiration intervals, so you must not reuse an installation directory. If you want to reuse individual files from another cluster installation, you can copy them into your directory. However, the file names for the installation assets might change between releases. Use caution when copying installation files from an earlier OpenShift Container Platform version.
Provide values at the prompts:
Optional: Select an SSH key to use to access your cluster machines.
NoteFor production OpenShift Container Platform clusters on which you want to perform installation debugging or disaster recovery, specify an SSH key that your
ssh-agent
process uses.- Select vsphere as the platform to target.
- Specify the name of your vCenter instance.
Specify the user name and password for the vCenter account that has the required permissions to create the cluster.
The installation program connects to your vCenter instance.
- Select the datacenter in your vCenter instance to connect to.
- Select the default vCenter datastore to use.
- Select the vCenter cluster to install the OpenShift Container Platform cluster in.
- Select the network in the vCenter instance that contains the virtual IP addresses and DNS records that you configured.
- Enter the virtual IP address that you configured for control plane API access.
- Enter the virtual IP address that you configured for cluster ingress.
- Enter the base domain. This base domain must be the same one that you used in the DNS records that you configured.
- Enter a descriptive name for your cluster. The cluster name must be the same one that you used in the DNS records that you configured.
- Paste the pull secret that you obtained from the Pull Secret page on the Red Hat OpenShift Cluster Manager site.
NoteIf the cloud provider account that you configured on your host does not have sufficient permissions to deploy the cluster, the installation process stops, and the missing permissions are displayed.
When the cluster deployment completes, directions for accessing your cluster, including a link to its web console and credentials for the
kubeadmin
user, display in your terminal.ImportantThe Ignition config files that the installation program generates contain certificates that expire after 24 hours, which are then renewed at that time. If the cluster is shut down before renewing the certificates and the cluster is later restarted after the 24 hours have elapsed, the cluster automatically recovers the expired certificates. The exception is that you must manually approve the pending
node-bootstrapper
certificate signing requests (CSRs) to recover kubelet certificates. See the documentation for Recovering from expired control plane certificates for more information.ImportantYou must not delete the installation program or the files that the installation program creates. Both are required to delete the cluster.
1.1.9. Installing the CLI by downloading the binary
You can install the OpenShift CLI (oc
) in order to interact with OpenShift Container Platform from a command-line interface. You can install oc
on Linux, Windows, or macOS.
If you installed an earlier version of oc
, you cannot use it to complete all of the commands in OpenShift Container Platform 4.5. Download and install the new version of oc
.
1.1.9.1. Installing the CLI on Linux
You can install the OpenShift CLI (oc
) binary on Linux by using the following procedure.
Procedure
- Navigate to the Infrastructure Provider page on the Red Hat OpenShift Cluster Manager site.
- Select your infrastructure provider, and, if applicable, your installation type.
- In the Command line interface section, select Linux from the drop-down menu and click Download command-line tools.
Unpack the archive:
$ tar xvzf <file>
Place the
oc
binary in a directory that is on yourPATH
.To check your
PATH
, execute the following command:$ echo $PATH
After you install the CLI, it is available using the oc
command:
$ oc <command>
1.1.9.2. Installing the CLI on Windows
You can install the OpenShift CLI (oc
) binary on Windows by using the following procedure.
Procedure
- Navigate to the Infrastructure Provider page on the Red Hat OpenShift Cluster Manager site.
- Select your infrastructure provider, and, if applicable, your installation type.
- In the Command line interface section, select Windows from the drop-down menu and click Download command-line tools.
- Unzip the archive with a ZIP program.
Move the
oc
binary to a directory that is on yourPATH
.To check your
PATH
, open the command prompt and execute the following command:C:\> path
After you install the CLI, it is available using the oc
command:
C:\> oc <command>
1.1.9.3. Installing the CLI on macOS
You can install the OpenShift CLI (oc
) binary on macOS by using the following procedure.
Procedure
- Navigate to the Infrastructure Provider page on the Red Hat OpenShift Cluster Manager site.
- Select your infrastructure provider, and, if applicable, your installation type.
- In the Command line interface section, select MacOS from the drop-down menu and click Download command-line tools.
- Unpack and unzip the archive.
Move the
oc
binary to a directory on your PATH.To check your
PATH
, open a terminal and execute the following command:$ echo $PATH
After you install the CLI, it is available using the oc
command:
$ oc <command>
1.1.10. Logging in to the cluster
You can log in to your cluster as a default system user by exporting the cluster kubeconfig
file. The kubeconfig
file contains information about the cluster that is used by the CLI to connect a client to the correct cluster and API server. The file is specific to a cluster and is created during OpenShift Container Platform installation.
Prerequisites
- Deploy an OpenShift Container Platform cluster.
-
Install the
oc
CLI.
Procedure
Export the
kubeadmin
credentials:$ export KUBECONFIG=<installation_directory>/auth/kubeconfig 1
- 1
- For
<installation_directory>
, specify the path to the directory that you stored the installation files in.
Verify you can run
oc
commands successfully using the exported configuration:$ oc whoami
Example output
system:admin
1.1.11. Creating registry storage
After you install the cluster, you must create storage for the registry Operator.
1.1.11.1. Image registry removed during installation
On platforms that do not provide shareable object storage, the OpenShift Image Registry Operator bootstraps itself as Removed
. This allows openshift-installer
to complete installations on these platform types.
After installation, you must edit the Image Registry Operator configuration to switch the managementState
from Removed
to Managed
.
The Prometheus console provides an ImageRegistryRemoved
alert, for example:
"Image Registry has been removed. ImageStreamTags
, BuildConfigs
and DeploymentConfigs
which reference ImageStreamTags
may not work as expected. Please configure storage and update the config to Managed
state by editing configs.imageregistry.operator.openshift.io."
1.1.11.2. Image registry storage configuration
The Image Registry Operator is not initially available for platforms that do not provide default storage. After installation, you must configure your registry to use storage so that the Registry Operator is made available.
Instructions are shown for configuring a persistent volume, which is required for production clusters. Where applicable, instructions are shown for configuring an empty directory as the storage location, which is available for only non-production clusters.
Additional instructions are provided for allowing the image registry to use block storage types by using the Recreate
rollout strategy during upgrades.
1.1.11.2.1. Configuring registry storage for VMware vSphere
As a cluster administrator, following installation you must configure your registry to use storage.
Prerequisites
- Cluster administrator permissions.
- A cluster on VMware vSphere.
Persistent storage provisioned for your cluster, such as Red Hat OpenShift Container Storage.
ImportantOpenShift Container Platform supports
ReadWriteOnce
access for image registry storage when you have only one replica. To deploy an image registry that supports high availability with two or more replicas,ReadWriteMany
access is required.- Must have "100Gi" capacity.
Testing shows issues with using the NFS server on RHEL as storage backend for core services. This includes the OpenShift Container Registry and Quay, Prometheus for monitoring storage, and Elasticsearch for logging storage. Therefore, using RHEL NFS to back PVs used by core services is not recommended.
Other NFS implementations on the marketplace might not have these issues. Contact the individual NFS implementation vendor for more information on any testing that was possibly completed against these OpenShift Container Platform core components.
Procedure
To configure your registry to use storage, change the
spec.storage.pvc
in theconfigs.imageregistry/cluster
resource.NoteWhen using shared storage, review your security settings to prevent outside access.
Verify that you do not have a registry pod:
$ oc get pod -n openshift-image-registry
NoteIf the storage type is
emptyDIR
, the replica number cannot be greater than1
.Check the registry configuration:
$ oc edit configs.imageregistry.operator.openshift.io
Example output
storage: pvc: claim: 1
- 1
- Leave the
claim
field blank to allow the automatic creation of animage-registry-storage
PVC.
Check the
clusteroperator
status:$ oc get clusteroperator image-registry
1.1.11.2.2. Configuring block registry storage for VMware vSphere
To allow the image registry to use block storage types such as vSphere Virtual Machine Disk (VMDK) during upgrades as a cluster administrator, you can use the Recreate
rollout strategy.
Block storage volumes are supported but not recommended for use with image registry on production clusters. An installation where the registry is configured on block storage is not highly available because the registry cannot have more than one replica.
Procedure
To set the image registry storage as a block storage type, patch the registry so that it uses the
Recreate
rollout strategy and runs with only1
replica:$ oc patch config.imageregistry.operator.openshift.io/cluster --type=merge -p '{"spec":{"rolloutStrategy":"Recreate","replicas":1}}'
Provision the PV for the block storage device, and create a PVC for that volume. The requested block volume uses the ReadWriteOnce (RWO) access mode.
Create a
pvc.yaml
file with the following contents to define a VMware vSpherePersistentVolumeClaim
object:kind: PersistentVolumeClaim apiVersion: v1 metadata: name: image-registry-storage 1 spec: accessModes: - ReadWriteOnce 2 resources: requests: storage: 100Gi 3
Create the
PersistentVolumeClaim
object from the file:$ oc create -f pvc.yaml -n openshift-image-registry
Edit the registry configuration so that it references the correct PVC:
$ oc edit config.imageregistry.operator.openshift.io -o yaml
Example output
storage: pvc: claim: 1
- 1
- Creating a custom PVC allows you to leave the
claim
field blank for the default automatic creation of animage-registry-storage
PVC.
For instructions about configuring registry storage so that it references the correct PVC, see Configuring the registry for vSphere.
1.1.12. Backing up VMware vSphere volumes
OpenShift Container Platform provisions new volumes as independent persistent disks to freely attach and detach the volume on any node in the cluster. As a consequence, it is not possible to back up volumes that use snapshots, or to restore volumes from snapshots. See Snapshot Limitations for more information.
Procedure
To create a backup of persistent volumes:
- Stop the application that is using the persistent volume.
- Clone the persistent volume.
- Restart the application.
- Create a backup of the cloned volume.
- Delete the cloned volume.
1.1.13. Next steps
- Customize your cluster.
- If necessary, you can opt out of remote health reporting.
- Set up your registry and configure registry storage.
1.2. Installing a cluster on vSphere with customizations
In OpenShift Container Platform version 4.5, you can install a cluster on your VMware vSphere instance by using installer-provisioned infrastructure. To customize the installation, you modify parameters in the install-config.yaml
file before you install the cluster.
1.2.1. Prerequisites
-
Provision persistent storage for your cluster. To deploy a private image registry, your storage must provide
ReadWriteMany
access modes. - Review details about the OpenShift Container Platform installation and update processes.
If you use a firewall, you must configure it to allow the sites that your cluster requires access to.
NoteBe sure to also review this site list if you are configuring a proxy.
1.2.2. Internet and Telemetry access for OpenShift Container Platform
In OpenShift Container Platform 4.5, you require access to the Internet to install your cluster. The Telemetry service, which runs by default to provide metrics about cluster health and the success of updates, also requires Internet access. If your cluster is connected to the Internet, Telemetry runs automatically, and your cluster is registered to the Red Hat OpenShift Cluster Manager (OCM).
Once you confirm that your Red Hat OpenShift Cluster Manager inventory is correct, either maintained automatically by Telemetry or manually using OCM, use subscription watch to track your OpenShift Container Platform subscriptions at the account or multi-cluster level.
You must have Internet access to:
- Access the Red Hat OpenShift Cluster Manager page to download the installation program and perform subscription management. If the cluster has Internet access and you do not disable Telemetry, that service automatically entitles your cluster.
- Access Quay.io to obtain the packages that are required to install your cluster.
- Obtain the packages that are required to perform cluster updates.
If your cluster cannot have direct Internet access, you can perform a restricted network installation on some types of infrastructure that you provision. During that process, you download the content that is required and use it to populate a mirror registry with the packages that you need to install a cluster and generate the installation program. With some installation types, the environment that you install your cluster in will not require Internet access. Before you update the cluster, you update the content of the mirror registry.
1.2.3. VMware vSphere infrastructure requirements
You must install the OpenShift Container Platform cluster on a VMware vSphere version 6 instance that meets the requirements for the components that you use.
Component | Minimum supported versions | Description |
---|---|---|
Hypervisor | vSphere 6.5 with HW version 13 | This version is the minimum version that Red Hat Enterprise Linux CoreOS (RHCOS) supports. See the Red Hat Enterprise Linux 8 supported hypervisors list. |
Networking (NSX-T) | vSphere 6.5U3 or vSphere 6.7U2 and later | vSphere 6.5U3 or vSphere 6.7U2+ are required for OpenShift Container Platform. VMware’s NSX Container Plug-in (NCP) 3.0.2 is certified with OpenShift Container Platform 4.5 and NSX-T 3.x+. |
Storage with in-tree drivers | vSphere 6.5 and later | This plug-in creates vSphere storage by using the in-tree storage drivers for vSphere included in OpenShift Container Platform. |
If you use a vSphere version 6.5 instance, consider upgrading to 6.7U2 before you install OpenShift Container Platform.
You must ensure that the time on your ESXi hosts is synchronized before you install OpenShift Container Platform. See Edit Time Configuration for a Host in the VMware documentation.
A limitation of using VPC is that the Storage Distributed Resource Scheduler (SDRS) is not supported. See vSphere Storage for Kubernetes FAQs in the VMware documentation.
1.2.4. vCenter requirements
Before you install an OpenShift Container Platform cluster on your vCenter that uses infrastructure that the installer provisions, you must prepare your environment.
Required vCenter account privileges
To install an OpenShift Container Platform cluster in a vCenter, the installation program requires access to an account with privileges to read and create the required resources. Using an account that has global administrative privileges is the simplest way to access all of the necessary permissions.
If you cannot use an account with global adminstrative privileges, you must create roles to grant the privileges necessary for OpenShift Container Platform cluster installation. While most of the privileges are always required, some are required only if you plan for the installation program to provision a folder to contain the OpenShift Container Platform cluster on your vCenter instance, which is the default behavior. You must create or amend vSphere roles for the specified objects to grant the required privileges.
An additional role is required if the installation program is to create a vSphere virtual machine folder.
Example 1.3. Roles and privileges required for installation
vSphere object for role | When required | Required privileges |
---|---|---|
vSphere vCenter | Always |
|
vSphere vCenter Cluster | Always |
|
vSphere Datastore | Always |
|
vSphere Port Group | Always |
|
Virtual Machine Folder | Always |
|
vSphere vCenter Datacenter | If the installation program creates the virtual machine folder |
|
Additionally, the user requires some ReadOnly
permissions, and some of the roles require permission to propogate the permissions to child objects. These settings vary depending on whether or not you install the cluster into an existing folder.
Example 1.4. Required permissions and propagation settings
vSphere object | Folder type | Propagate to children | Permissions required |
---|---|---|---|
vSphere vCenter | Always | False | Listed required privileges |
vSphere vCenter Datacenter | Existing folder | False |
|
Installation program creates the folder | True | Listed required privileges | |
vSphere vCenter Cluster | Always | True | Listed required privileges |
vSphere vCenter Datastore | Always | False | Listed required privileges |
vSphere Switch | Always | False |
|
vSphere Port Group | Always | False | Listed required privileges |
vSphere vCenter Virtual Machine Folder | Existing folder | True | Listed required privileges |
For more information about creating an account with only the required privileges, see vSphere Permissions and User Management Tasks in the vSphere documentation.
Using OpenShift Container Platform with vMotion
OpenShift Container Platform generally supports compute-only vMotion. Using Storage vMotion can cause issues and is not supported.
If you are using vSphere volumes in your pods, migrating a VM across datastores either manually or through Storage vMotion causes invalid references within OpenShift Container Platform persistent volume (PV) objects. These references prevent affected pods from starting up and can result in data loss.
Similarly, OpenShift Container Platform does not support selective migration of VMDKs across datastores, using datastore clusters for VM provisioning or for dynamic or static provisioning of PVs, or using a datastore that is part of a datastore cluster for dynamic or static provisioning of PVs.
Cluster resources
When you deploy an OpenShift Container Platform cluster that uses installer-provisioned infrastructure, the installation program must be able to create several resources in your vCenter instance.
A standard OpenShift Container Platform installation creates the following vCenter resources:
- 1 Folder
- 1 Tag category
- 1 Tag
Virtual machines:
- 1 template
- 1 temporary bootstrap node
- 3 control plane nodes
- 3 compute machines
Although these resources use 856 GB of storage, the bootstrap node is destroyed during the cluster installation process. A minimum of 800 GB of storage is required to use a standard cluster.
If you deploy more compute machines, the OpenShift Container Platform cluster will use more storage.
Cluster limits
Available resources vary between clusters. The number of possible clusters within a vCenter is limited primarily by available storage space and any limitations on the number of required resources. Be sure to consider both limitations to the vCenter resources that the cluster creates and the resources that you require to deploy a cluster, such as IP addresses and networks.
Networking requirements
You must use DHCP for the network and ensure that the DHCP server is configured to provide persistent IP addresses and host names to the cluster machines. Additionally, you must create the following networking resources before you install the OpenShift Container Platform cluster:
Required IP addresses
An installer-provisioned vSphere installation requires two static IP addresses:
- The API address is used to access the cluster API.
- The Ingress address is used for cluster ingress traffic.
You must provide these IP addresses to the installation program when you install the OpenShift Container Platform cluster.
DNS records
You must create DNS records for two static IP addresses in the appropriate DNS server for the vCenter instance that hosts your OpenShift Container Platform cluster. In each record, <cluster_name>
is the cluster name and <base_domain>
is the cluster base domain that you specify when you install the cluster. A complete DNS record takes the form: <component>.<cluster_name>.<base_domain>.
.
Component | Record | Description |
---|---|---|
API VIP |
| This DNS A/AAAA or CNAME record must point to the load balancer for the control plane machines. This record must be resolvable by both clients external to the cluster and from all the nodes within the cluster. |
Ingress VIP |
| A wildcard DNS A/AAAA or CNAME record that points to the load balancer that targets the machines that run the Ingress router pods, which are the worker nodes by default. This record must be resolvable by both clients external to the cluster and from all the nodes within the cluster. |
1.2.5. Generating an SSH private key and adding it to the agent
If you want to perform installation debugging or disaster recovery on your cluster, you must provide an SSH key to both your ssh-agent
and the installation program. You can use this key to access the bootstrap machine in a public cluster to troubleshoot installation issues.
In a production environment, you require disaster recovery and debugging.
You can use this key to SSH into the master nodes as the user core
. When you deploy the cluster, the key is added to the core
user’s ~/.ssh/authorized_keys
list.
You must use a local key, not one that you configured with platform-specific approaches such as AWS key pairs.
Procedure
If you do not have an SSH key that is configured for password-less authentication on your computer, create one. For example, on a computer that uses a Linux operating system, run the following command:
$ ssh-keygen -t ed25519 -N '' \ -f <path>/<file_name> 1
- 1
- Specify the path and file name, such as
~/.ssh/id_rsa
, of the new SSH key. If you have an existing key pair, ensure your public key is in the your~/.ssh
directory.
Running this command generates an SSH key that does not require a password in the location that you specified.
NoteIf you plan to install an OpenShift Container Platform cluster that uses FIPS Validated / Modules in Process cryptographic libraries on the
x86_64
architecture, do not create a key that uses theed25519
algorithm. Instead, create a key that uses thersa
orecdsa
algorithm.Start the
ssh-agent
process as a background task:$ eval "$(ssh-agent -s)"
Example output
Agent pid 31874
If your cluster is in FIPS mode, only use FIPS-compliant algorithms to generate the SSH key. The key must be either RSA or ECDSA.
Add your SSH private key to the
ssh-agent
:$ ssh-add <path>/<file_name> 1
Example output
Identity added: /home/<you>/<path>/<file_name> (<computer_name>)
- 1
- Specify the path and file name for your SSH private key, such as
~/.ssh/id_rsa
Next steps
- When you install OpenShift Container Platform, provide the SSH public key to the installation program.
1.2.6. Obtaining the installation program
Before you install OpenShift Container Platform, download the installation file on a local computer.
Prerequisites
- You must install the cluster from a computer that uses Linux or macOS.
- You need 500 MB of local disk space to download the installation program.
Procedure
- Access the Infrastructure Provider page on the Red Hat OpenShift Cluster Manager site. If you have a Red Hat account, log in with your credentials. If you do not, create an account.
Navigate to the page for your installation type, download the installation program for your operating system, and place the file in the directory where you will store the installation configuration files.
ImportantThe installation program creates several files on the computer that you use to install your cluster. You must keep both the installation program and the files that the installation program creates after you finish installing the cluster.
ImportantDeleting the files created by the installation program does not remove your cluster, even if the cluster failed during installation. You must complete the OpenShift Container Platform uninstallation procedures outlined for your specific cloud provider to remove your cluster entirely.
Extract the installation program. For example, on a computer that uses a Linux operating system, run the following command:
$ tar xvf <installation_program>.tar.gz
-
From the Pull Secret page on the Red Hat OpenShift Cluster Manager site, download your installation pull secret as a
.txt
file. This pull secret allows you to authenticate with the services that are provided by the included authorities, including Quay.io, which serves the container images for OpenShift Container Platform components.
1.2.7. Adding vCenter root CA certificates to your system trust
Because the installation program requires access to your vCenter’s API, you must add your vCenter’s trusted root CA certificates to your system trust before you install an OpenShift Container Platform cluster.
Procedure
-
From the vCenter home page, download the vCenter’s root CA certificates. Click Download trusted root CA certificates in the vSphere Web Services SDK section. The
<vCenter>/certs/download.zip
file downloads. Extract the compressed file that contains the vCenter root CA certificates. The contents of the compressed file resemble the following file structure:
certs ├── lin │ ├── 108f4d17.0 │ ├── 108f4d17.r1 │ ├── 7e757f6a.0 │ ├── 8e4f8471.0 │ └── 8e4f8471.r0 ├── mac │ ├── 108f4d17.0 │ ├── 108f4d17.r1 │ ├── 7e757f6a.0 │ ├── 8e4f8471.0 │ └── 8e4f8471.r0 └── win ├── 108f4d17.0.crt ├── 108f4d17.r1.crl ├── 7e757f6a.0.crt ├── 8e4f8471.0.crt └── 8e4f8471.r0.crl 3 directories, 15 files
Add the files for your operating system to the system trust. For example, on a Fedora operating system, run the following command:
# cp certs/lin/* /etc/pki/ca-trust/source/anchors
Update your system trust. For example, on a Fedora operating system, run the following command:
# update-ca-trust extract
1.2.8. Creating the installation configuration file
You can customize the OpenShift Container Platform cluster you install on VMware vSphere.
Prerequisites
- Obtain the OpenShift Container Platform installation program and the pull secret for your cluster.
Procedure
Create the
install-config.yaml
file.Run the following command:
$ ./openshift-install create install-config --dir=<installation_directory> 1
- 1
- For
<installation_directory>
, specify the directory name to store the files that the installation program creates.
ImportantSpecify an empty directory. Some installation assets, like bootstrap X.509 certificates have short expiration intervals, so you must not reuse an installation directory. If you want to reuse individual files from another cluster installation, you can copy them into your directory. However, the file names for the installation assets might change between releases. Use caution when copying installation files from an earlier OpenShift Container Platform version.
At the prompts, provide the configuration details for your cloud:
Optional: Select an SSH key to use to access your cluster machines.
NoteFor production OpenShift Container Platform clusters on which you want to perform installation debugging or disaster recovery, specify an SSH key that your
ssh-agent
process uses.- Select vsphere as the platform to target.
- Specify the name of your vCenter instance.
Specify the user name and password for the vCenter account that has the required permissions to create the cluster.
The installation program connects to your vCenter instance.
- Select the datacenter in your vCenter instance to connect to.
- Select the default vCenter datastore to use.
- Select the vCenter cluster to install the OpenShift Container Platform cluster in.
- Select the network in the vCenter instance that contains the virtual IP addresses and DNS records that you configured.
- Enter the virtual IP address that you configured for control plane API access.
- Enter the virtual IP address that you configured for cluster ingress.
- Enter the base domain. This base domain must be the same one that you used in the DNS records that you configured.
- Enter a descriptive name for your cluster. The cluster name must be the same one that you used in the DNS records that you configured.
- Paste the pull secret that you obtained from the Pull Secret page on the Red Hat OpenShift Cluster Manager site.
-
Modify the
install-config.yaml
file. You can find more information about the available parameters in the Installation configuration parameters section. Back up the
install-config.yaml
file so that you can use it to install multiple clusters.ImportantThe
install-config.yaml
file is consumed during the installation process. If you want to reuse the file, you must back it up now.
1.2.8.1. Installation configuration parameters
Before you deploy an OpenShift Container Platform cluster, you provide parameter values to describe your account on the cloud platform that hosts your cluster and optionally customize your cluster’s platform. When you create the install-config.yaml
installation configuration file, you provide values for the required parameters through the command line. If you customize your cluster, you can modify the install-config.yaml
file to provide more details about the platform.
After installation, you cannot modify these parameters in the install-config.yaml
file.
The openshift-install
command does not validate field names for parameters. If an incorrect name is specified, the related file or object is not created, and no error is reported. Ensure that the field names for any parameters that are specified are correct.
1.2.8.1.1. Required configuration parameters
Required installation configuration parameters are described in the following table:
Parameter | Description | Values |
---|---|---|
|
The API version for the | String |
|
The base domain of your cloud provider. The base domain is used to create routes to your OpenShift Container Platform cluster components. The full DNS name for your cluster is a combination of the |
A fully-qualified domain or subdomain name, such as |
|
Kubernetes resource | Object |
|
The name of the cluster. DNS records for the cluster are all subdomains of |
String of lowercase letters, hyphens ( |
|
The configuration for the specific platform upon which to perform the installation: | Object |
| Get a pull secret from https://cloud.redhat.com/openshift/install/pull-secret to authenticate downloading container images for OpenShift Container Platform components from services such as Quay.io. |
{ "auths":{ "cloud.openshift.com":{ "auth":"b3Blb=", "email":"you@example.com" }, "quay.io":{ "auth":"b3Blb=", "email":"you@example.com" } } } |
1.2.8.1.2. Network configuration parameters
You can customize your installation configuration based on the requirements of your existing network infrastructure. For example, you can expand the IP address block for the cluster network or provide different IP address blocks than the defaults.
Only IPv4 addresses are supported.
Parameter | Description | Values |
---|---|---|
| The configuration for the cluster network. | Object Note
You cannot modify parameters specified by the |
| The cluster network provider Container Network Interface (CNI) plug-in to install. |
Either |
| The IP address blocks for pods.
The default value is If you specify multiple IP address blocks, the blocks must not overlap. | An array of objects. For example: networking: clusterNetwork: - cidr: 10.128.0.0/14 hostPrefix: 23 |
|
Required if you use An IPv4 network. |
An IP address block in Classless Inter-Domain Routing (CIDR) notation. The prefix length for an IPv4 block is between |
|
The subnet prefix length to assign to each individual node. For example, if | A subnet prefix.
The default value is |
|
The IP address block for services. The default value is The OpenShift SDN and OVN-Kubernetes network providers support only a single IP address block for the service network. | An array with an IP address block in CIDR format. For example: networking: serviceNetwork: - 172.30.0.0/16 |
| The IP address blocks for machines. If you specify multiple IP address blocks, the blocks must not overlap. | An array of objects. For example: networking: machineNetwork: - cidr: 10.0.0.0/16 |
|
Required if you use | An IP network block in CIDR notation.
For example, Note
Set the |
1.2.8.1.3. Optional configuration parameters
Optional installation configuration parameters are described in the following table:
Parameter | Description | Values |
---|---|---|
| A PEM-encoded X.509 certificate bundle that is added to the nodes' trusted certificate store. This trust bundle may also be used when a proxy has been configured. | String |
| The configuration for the machines that comprise the compute nodes. | Array of machine-pool objects. For details, see the following "Machine-pool" table. |
|
Determines the instruction set architecture of the machines in the pool. Currently, heteregeneous clusters are not supported, so all pools must specify the same architecture. Valid values are | String |
|
Whether to enable or disable simultaneous multithreading, or Important If you disable simultaneous multithreading, ensure that your capacity planning accounts for the dramatically decreased machine performance. |
|
|
Required if you use |
|
|
Required if you use |
|
| The number of compute machines, which are also known as worker machines, to provision. |
A positive integer greater than or equal to |
| The configuration for the machines that comprise the control plane. |
Array of |
|
Determines the instruction set architecture of the machines in the pool. Currently, heterogeneous clusters are not supported, so all pools must specify the same architecture. Valid values are | String |
|
Whether to enable or disable simultaneous multithreading, or Important If you disable simultaneous multithreading, ensure that your capacity planning accounts for the dramatically decreased machine performance. |
|
|
Required if you use |
|
|
Required if you use |
|
| The number of control plane machines to provision. |
The only supported value is |
|
Enable or disable FIPS mode. The default is Note If you are using Azure File storage, you cannot enable FIPS mode. |
|
| Sources and repositories for the release-image content. |
Array of objects. Includes a |
|
Required if you use | String |
| Specify one or more repositories that may also contain the same images. | Array of strings |
| How to publish or expose the user-facing endpoints of your cluster, such as the Kubernetes API, OpenShift routes. |
Setting this field to Important
If the value of the field is set to |
| The SSH key to authenticate access to your cluster machines. Note
For production OpenShift Container Platform clusters on which you want to perform installation debugging or disaster recovery, specify an SSH key that your |
For example, |
Parameter | Description | Values |
---|---|---|
| The fully-qualified hostname or IP address of the vCenter server. | String |
| The user name to use to connect to the vCenter instance with. This user must have at least the roles and privileges that are required for static or dynamic persistent volume provisioning in vSphere. | String |
| The password for the vCenter user name. | String |
| The name of the datacenter to use in the vCenter instance. | String |
| The name of the default datastore to use for provisioning volumes. | String |
| Optional. The absolute path of an existing folder where the installation program creates the virtual machines. If you do not provide this value, the installation program creates a folder that is named with the infrastructure ID in the datacenter virtual machine folder. |
String, for example, |
| The network in the vCenter instance that contains the virtual IP addresses and DNS records that you configured. | String |
| The vCenter cluster to install the OpenShift Container Platform cluster in. | String |
| The virtual IP (VIP) address that you configured for control plane API access. |
An IP address, for example |
| The virtual IP (VIP) address that you configured for cluster ingress. |
An IP address, for example |
1.2.8.1.4. Optional VMware vSphere machine pool configuration parameters
Optional VMware vSphere machine pool configuration parameters are described in the following table:
Parameter | Description | Values |
---|---|---|
| The location from which the installer downloads the RHCOS image. You must set this parameter to perform an installation in a restricted network. |
An HTTP or HTTPS URL, optionally with a SHA-256 checksum. For example, |
| The size of the disk in gigabytes. | Integer |
| The total number of virtual processor cores to assign a virtual machine. | Integer |
|
The number of cores per socket in a virtual machine. The number of virtual CPUs (vCPUs) on the virtual machine is | Integer |
| The size of a virtual machine’s memory in megabytes. | Integer |
1.2.8.2. Sample install-config.yaml file for an installer-provisioned VMware vSphere cluster
You can customize the install-config.yaml
file to specify more details about your OpenShift Container Platform cluster’s platform or modify the values of the required parameters.
apiVersion: v1 baseDomain: example.com 1 compute: 2 - hyperthreading: Enabled 3 name: worker replicas: 3 platform: vsphere: 4 cpus: 2 coresPerSocket: 2 memoryMB: 8196 osDisk: diskSizeGB: 120 controlPlane: 5 hyperthreading: Enabled 6 name: master replicas: 3 platform: vsphere: 7 cpus: 4 coresPerSocket: 2 memoryMB: 16384 osDisk: diskSizeGB: 120 metadata: name: cluster 8 platform: vsphere: vcenter: your.vcenter.server username: username password: password datacenter: datacenter defaultDatastore: datastore folder: folder network: VM_Network cluster: vsphere_cluster_name apiVIP: api_vip ingressVIP: ingress_vip fips: false pullSecret: '{"auths": ...}' sshKey: 'ssh-ed25519 AAAA...'
- 1
- The base domain of the cluster. All DNS records must be sub-domains of this base and include the cluster name.
- 2 5
- The
controlPlane
section is a single mapping, but the compute section is a sequence of mappings. To meet the requirements of the different data structures, the first line of thecompute
section must begin with a hyphen,-
, and the first line of thecontrolPlane
section must not. Although both sections currently define a single machine pool, it is possible that future versions of OpenShift Container Platform will support defining multiple compute pools during installation. Only one control plane pool is used. - 3 6
- Whether to enable or disable simultaneous multithreading, or
hyperthreading
. By default, simultaneous multithreading is enabled to increase the performance of your machines' cores. You can disable it by setting the parameter value toDisabled
. If you disable simultaneous multithreading in some cluster machines, you must disable it in all cluster machines.ImportantIf you disable simultaneous multithreading, ensure that your capacity planning accounts for the dramatically decreased machine performance. Your machines must use at least 8 CPUs and 32 GB of RAM if you disable simultaneous multithreading.
- 4 7
- Optional: Provide additional configuration for the machine pool parameters for the compute and control plane machines.
- 8
- The cluster name that you specified in your DNS records.
1.2.9. Deploying the cluster
You can install OpenShift Container Platform on a compatible cloud platform.
You can run the create cluster
command of the installation program only once, during initial installation.
Prerequisites
- Obtain the OpenShift Container Platform installation program and the pull secret for your cluster.
Procedure
Run the installation program:
$ ./openshift-install create cluster --dir=<installation_directory> \ 1 --log-level=info 2
NoteIf the cloud provider account that you configured on your host does not have sufficient permissions to deploy the cluster, the installation process stops, and the missing permissions are displayed.
When the cluster deployment completes, directions for accessing your cluster, including a link to its web console and credentials for the
kubeadmin
user, display in your terminal.ImportantThe Ignition config files that the installation program generates contain certificates that expire after 24 hours, which are then renewed at that time. If the cluster is shut down before renewing the certificates and the cluster is later restarted after the 24 hours have elapsed, the cluster automatically recovers the expired certificates. The exception is that you must manually approve the pending
node-bootstrapper
certificate signing requests (CSRs) to recover kubelet certificates. See the documentation for Recovering from expired control plane certificates for more information.ImportantYou must not delete the installation program or the files that the installation program creates. Both are required to delete the cluster.
1.2.10. Installing the CLI by downloading the binary
You can install the OpenShift CLI (oc
) in order to interact with OpenShift Container Platform from a command-line interface. You can install oc
on Linux, Windows, or macOS.
If you installed an earlier version of oc
, you cannot use it to complete all of the commands in OpenShift Container Platform 4.5. Download and install the new version of oc
.
1.2.10.1. Installing the CLI on Linux
You can install the OpenShift CLI (oc
) binary on Linux by using the following procedure.
Procedure
- Navigate to the Infrastructure Provider page on the Red Hat OpenShift Cluster Manager site.
- Select your infrastructure provider, and, if applicable, your installation type.
- In the Command line interface section, select Linux from the drop-down menu and click Download command-line tools.
Unpack the archive:
$ tar xvzf <file>
Place the
oc
binary in a directory that is on yourPATH
.To check your
PATH
, execute the following command:$ echo $PATH
After you install the CLI, it is available using the oc
command:
$ oc <command>
1.2.10.2. Installing the CLI on Windows
You can install the OpenShift CLI (oc
) binary on Windows by using the following procedure.
Procedure
- Navigate to the Infrastructure Provider page on the Red Hat OpenShift Cluster Manager site.
- Select your infrastructure provider, and, if applicable, your installation type.
- In the Command line interface section, select Windows from the drop-down menu and click Download command-line tools.
- Unzip the archive with a ZIP program.
Move the
oc
binary to a directory that is on yourPATH
.To check your
PATH
, open the command prompt and execute the following command:C:\> path
After you install the CLI, it is available using the oc
command:
C:\> oc <command>
1.2.10.3. Installing the CLI on macOS
You can install the OpenShift CLI (oc
) binary on macOS by using the following procedure.
Procedure
- Navigate to the Infrastructure Provider page on the Red Hat OpenShift Cluster Manager site.
- Select your infrastructure provider, and, if applicable, your installation type.
- In the Command line interface section, select MacOS from the drop-down menu and click Download command-line tools.
- Unpack and unzip the archive.
Move the
oc
binary to a directory on your PATH.To check your
PATH
, open a terminal and execute the following command:$ echo $PATH
After you install the CLI, it is available using the oc
command:
$ oc <command>
1.2.11. Logging in to the cluster
You can log in to your cluster as a default system user by exporting the cluster kubeconfig
file. The kubeconfig
file contains information about the cluster that is used by the CLI to connect a client to the correct cluster and API server. The file is specific to a cluster and is created during OpenShift Container Platform installation.
Prerequisites
- Deploy an OpenShift Container Platform cluster.
-
Install the
oc
CLI.
Procedure
Export the
kubeadmin
credentials:$ export KUBECONFIG=<installation_directory>/auth/kubeconfig 1
- 1
- For
<installation_directory>
, specify the path to the directory that you stored the installation files in.
Verify you can run
oc
commands successfully using the exported configuration:$ oc whoami
Example output
system:admin
1.2.12. Creating registry storage
After you install the cluster, you must create storage for the registry Operator.
1.2.12.1. Image registry removed during installation
On platforms that do not provide shareable object storage, the OpenShift Image Registry Operator bootstraps itself as Removed
. This allows openshift-installer
to complete installations on these platform types.
After installation, you must edit the Image Registry Operator configuration to switch the managementState
from Removed
to Managed
.
The Prometheus console provides an ImageRegistryRemoved
alert, for example:
"Image Registry has been removed. ImageStreamTags
, BuildConfigs
and DeploymentConfigs
which reference ImageStreamTags
may not work as expected. Please configure storage and update the config to Managed
state by editing configs.imageregistry.operator.openshift.io."
1.2.12.2. Image registry storage configuration
The Image Registry Operator is not initially available for platforms that do not provide default storage. After installation, you must configure your registry to use storage so that the Registry Operator is made available.
Instructions are shown for configuring a persistent volume, which is required for production clusters. Where applicable, instructions are shown for configuring an empty directory as the storage location, which is available for only non-production clusters.
Additional instructions are provided for allowing the image registry to use block storage types by using the Recreate
rollout strategy during upgrades.
1.2.12.2.1. Configuring registry storage for VMware vSphere
As a cluster administrator, following installation you must configure your registry to use storage.
Prerequisites
- Cluster administrator permissions.
- A cluster on VMware vSphere.
Persistent storage provisioned for your cluster, such as Red Hat OpenShift Container Storage.
ImportantOpenShift Container Platform supports
ReadWriteOnce
access for image registry storage when you have only one replica. To deploy an image registry that supports high availability with two or more replicas,ReadWriteMany
access is required.- Must have "100Gi" capacity.
Testing shows issues with using the NFS server on RHEL as storage backend for core services. This includes the OpenShift Container Registry and Quay, Prometheus for monitoring storage, and Elasticsearch for logging storage. Therefore, using RHEL NFS to back PVs used by core services is not recommended.
Other NFS implementations on the marketplace might not have these issues. Contact the individual NFS implementation vendor for more information on any testing that was possibly completed against these OpenShift Container Platform core components.
Procedure
To configure your registry to use storage, change the
spec.storage.pvc
in theconfigs.imageregistry/cluster
resource.NoteWhen using shared storage, review your security settings to prevent outside access.
Verify that you do not have a registry pod:
$ oc get pod -n openshift-image-registry
NoteIf the storage type is
emptyDIR
, the replica number cannot be greater than1
.Check the registry configuration:
$ oc edit configs.imageregistry.operator.openshift.io
Example output
storage: pvc: claim: 1
- 1
- Leave the
claim
field blank to allow the automatic creation of animage-registry-storage
PVC.
Check the
clusteroperator
status:$ oc get clusteroperator image-registry
1.2.12.2.2. Configuring block registry storage for VMware vSphere
To allow the image registry to use block storage types such as vSphere Virtual Machine Disk (VMDK) during upgrades as a cluster administrator, you can use the Recreate
rollout strategy.
Block storage volumes are supported but not recommended for use with image registry on production clusters. An installation where the registry is configured on block storage is not highly available because the registry cannot have more than one replica.
Procedure
To set the image registry storage as a block storage type, patch the registry so that it uses the
Recreate
rollout strategy and runs with only1
replica:$ oc patch config.imageregistry.operator.openshift.io/cluster --type=merge -p '{"spec":{"rolloutStrategy":"Recreate","replicas":1}}'
Provision the PV for the block storage device, and create a PVC for that volume. The requested block volume uses the ReadWriteOnce (RWO) access mode.
Create a
pvc.yaml
file with the following contents to define a VMware vSpherePersistentVolumeClaim
object:kind: PersistentVolumeClaim apiVersion: v1 metadata: name: image-registry-storage 1 spec: accessModes: - ReadWriteOnce 2 resources: requests: storage: 100Gi 3
Create the
PersistentVolumeClaim
object from the file:$ oc create -f pvc.yaml -n openshift-image-registry
Edit the registry configuration so that it references the correct PVC:
$ oc edit config.imageregistry.operator.openshift.io -o yaml
Example output
storage: pvc: claim: 1
- 1
- Creating a custom PVC allows you to leave the
claim
field blank for the default automatic creation of animage-registry-storage
PVC.
For instructions about configuring registry storage so that it references the correct PVC, see Configuring the registry for vSphere.
1.2.13. Backing up VMware vSphere volumes
OpenShift Container Platform provisions new volumes as independent persistent disks to freely attach and detach the volume on any node in the cluster. As a consequence, it is not possible to back up volumes that use snapshots, or to restore volumes from snapshots. See Snapshot Limitations for more information.
Procedure
To create a backup of persistent volumes:
- Stop the application that is using the persistent volume.
- Clone the persistent volume.
- Restart the application.
- Create a backup of the cloned volume.
- Delete the cloned volume.
1.2.14. Next steps
- Customize your cluster.
- If necessary, you can opt out of remote health reporting.
- Set up your registry and configure registry storage.
1.3. Installing a cluster on vSphere with user-provisioned infrastructure
In OpenShift Container Platform version 4.5, you can install a cluster on VMware vSphere infrastructure that you provision.
The steps for performing a user-provisioned infrastructure installation are provided as an example only. Installing a cluster with infrastructure you provide requires knowledge of the vSphere platform and the installation process of OpenShift Container Platform. Use the user-provisioned infrastructure installation instructions as a guide; you are free to create the required resources through other methods.
1.3.1. Prerequisites
-
Provision persistent storage for your cluster. To deploy a private image registry, your storage must provide
ReadWriteMany
access modes. - Review details about the OpenShift Container Platform installation and update processes.
If you use a firewall, you must configure it to allow the sites that your cluster requires access to.
NoteBe sure to also review this site list if you are configuring a proxy.
1.3.2. Internet and Telemetry access for OpenShift Container Platform
In OpenShift Container Platform 4.5, you require access to the Internet to install your cluster. The Telemetry service, which runs by default to provide metrics about cluster health and the success of updates, also requires Internet access. If your cluster is connected to the Internet, Telemetry runs automatically, and your cluster is registered to the Red Hat OpenShift Cluster Manager (OCM).
Once you confirm that your Red Hat OpenShift Cluster Manager inventory is correct, either maintained automatically by Telemetry or manually using OCM, use subscription watch to track your OpenShift Container Platform subscriptions at the account or multi-cluster level.
You must have Internet access to:
- Access the Red Hat OpenShift Cluster Manager page to download the installation program and perform subscription management. If the cluster has Internet access and you do not disable Telemetry, that service automatically entitles your cluster.
- Access Quay.io to obtain the packages that are required to install your cluster.
- Obtain the packages that are required to perform cluster updates.
If your cluster cannot have direct Internet access, you can perform a restricted network installation on some types of infrastructure that you provision. During that process, you download the content that is required and use it to populate a mirror registry with the packages that you need to install a cluster and generate the installation program. With some installation types, the environment that you install your cluster in will not require Internet access. Before you update the cluster, you update the content of the mirror registry.
1.3.3. VMware vSphere infrastructure requirements
You must install the OpenShift Container Platform cluster on a VMware vSphere version 6 instance that meets the requirements for the components that you use.
Component | Minimum supported versions | Description |
---|---|---|
Hypervisor | vSphere 6.5 with HW version 13 | This version is the minimum version that Red Hat Enterprise Linux CoreOS (RHCOS) supports. See the Red Hat Enterprise Linux 8 supported hypervisors list. |
Networking (NSX-T) | vSphere 6.5U3 or vSphere 6.7U2 and later | vSphere 6.5U3 or vSphere 6.7U2+ are required for OpenShift Container Platform. VMware’s NSX Container Plug-in (NCP) 3.0.2 is certified with OpenShift Container Platform 4.5 and NSX-T 3.x+. |
Storage with in-tree drivers | vSphere 6.5 and later | This plug-in creates vSphere storage by using the in-tree storage drivers for vSphere included in OpenShift Container Platform. |
If you use a vSphere version 6.5 instance, consider upgrading to 6.7U2 before you install OpenShift Container Platform.
You must ensure that the time on your ESXi hosts is synchronized before you install OpenShift Container Platform. See Edit Time Configuration for a Host in the VMware documentation.
A limitation of using VPC is that the Storage Distributed Resource Scheduler (SDRS) is not supported. See vSphere Storage for Kubernetes FAQs in the VMware documentation.
1.3.4. Machine requirements for a cluster with user-provisioned infrastructure
For a cluster that contains user-provisioned infrastructure, you must deploy all of the required machines.
1.3.4.1. Required machines
The smallest OpenShift Container Platform clusters require the following hosts:
- One temporary bootstrap machine
- Three control plane, or master, machines
- At least two compute machines, which are also known as worker machines.
The cluster requires the bootstrap machine to deploy the OpenShift Container Platform cluster on the three control plane machines. You can remove the bootstrap machine after you install the cluster.
To maintain high availability of your cluster, use separate physical hosts for these cluster machines.
The bootstrap and control plane machines must use Red Hat Enterprise Linux CoreOS (RHCOS) as the operating system.
Note that RHCOS is based on Red Hat Enterprise Linux (RHEL) 8 and inherits all of its hardware certifications and requirements. See Red Hat Enterprise Linux technology capabilities and limits.
All virtual machines must reside in the same datastore and in the same folder as the installer.
1.3.4.2. Network connectivity requirements
All the Red Hat Enterprise Linux CoreOS (RHCOS) machines require network in initramfs
during boot to fetch Ignition config files from the Machine Config Server. During the initial boot, the machines require either a DHCP server or that static IP addresses be set in order to establish a network connection to download their Ignition config files. Additionally, each OpenShift Container Platform node in the cluster must have access to a Network Time Protocol (NTP) server. If a DHCP server provides NTP servers information, the chrony time service on the Red Hat Enterprise Linux CoreOS (RHCOS) machines read the information and can sync the clock with the NTP servers.
1.3.4.3. Minimum resource requirements
Each cluster machine must meet the following minimum requirements:
Machine | Operating System | vCPU [1] | Virtual RAM | Storage |
---|---|---|---|---|
Bootstrap | RHCOS | 4 | 16 GB | 120 GB |
Control plane | RHCOS | 4 | 16 GB | 120 GB |
Compute | RHCOS or RHEL 7.8 - 7.9 | 2 | 8 GB | 120 GB |
- 1 vCPU is equivalent to 1 physical core when simultaneous multithreading (SMT), or hyperthreading, is not enabled. When enabled, use the following formula to calculate the corresponding ratio: (threads per core × cores) × sockets = vCPUs.
1.3.4.4. Certificate signing requests management
Because your cluster has limited access to automatic machine management when you use infrastructure that you provision, you must provide a mechanism for approving cluster certificate signing requests (CSRs) after installation. The kube-controller-manager
only approves the kubelet client CSRs. The machine-approver
cannot guarantee the validity of a serving certificate that is requested by using kubelet credentials because it cannot confirm that the correct machine issued the request. You must determine and implement a method of verifying the validity of the kubelet serving certificate requests and approving them.
1.3.5. Creating the user-provisioned infrastructure
Before you deploy an OpenShift Container Platform cluster that uses user-provisioned infrastructure, you must create the underlying infrastructure.
Prerequisites
- Review the OpenShift Container Platform 4.x Tested Integrations page before you create the supporting infrastructure for your cluster.
Procedure
- Configure DHCP or set static IP addresses on each node.
- Provision the required load balancers.
- Configure the ports for your machines.
- Configure DNS.
- Ensure network connectivity.
1.3.5.1. Networking requirements for user-provisioned infrastructure
All the Red Hat Enterprise Linux CoreOS (RHCOS) machines require network in initramfs
during boot to fetch Ignition config from the machine config server.
During the initial boot, the machines require either a DHCP server or that static IP addresses be set on each host in the cluster in order to establish a network connection, which allows them to download their Ignition config files.
It is recommended to use the DHCP server to manage the machines for the cluster long-term. Ensure that the DHCP server is configured to provide persistent IP addresses and host names to the cluster machines.
The Kubernetes API server, which runs on each master node after a successful cluster installation, must be able to resolve the node names of the cluster machines. If the API servers and worker nodes are in different zones, you can configure a default DNS search zone to allow the API server to resolve the node names. Another supported approach is to always refer to hosts by their fully-qualified domain names in both the node objects and all DNS requests.
You must configure the network connectivity between machines to allow cluster components to communicate. Each machine must be able to resolve the host names of all other machines in the cluster.
Protocol | Port | Description |
---|---|---|
ICMP | N/A | Network reachability tests |
TCP |
| Metrics |
|
Host level services, including the node exporter on ports | |
| The default ports that Kubernetes reserves | |
| openshift-sdn | |
UDP |
| VXLAN and Geneve |
| VXLAN and Geneve | |
|
Host level services, including the node exporter on ports | |
TCP/UDP |
| Kubernetes node port |
Protocol | Port | Description |
---|---|---|
TCP |
| Kubernetes API |
Protocol | Port | Description |
---|---|---|
TCP |
| etcd server and peer ports |
Network topology requirements
The infrastructure that you provision for your cluster must meet the following network topology requirements.
OpenShift Container Platform requires all nodes to have internet access to pull images for platform containers and provide telemetry data to Red Hat.
Load balancers
Before you install OpenShift Container Platform, you must provision two load balancers that meet the following requirements:
API load balancer: Provides a common endpoint for users, both human and machine, to interact with and configure the platform. Configure the following conditions:
- Layer 4 load balancing only. This can be referred to as Raw TCP, SSL Passthrough, or SSL Bridge mode. If you use SSL Bridge mode, you must enable Server Name Indication (SNI) for the API routes.
- A stateless load balancing algorithm. The options vary based on the load balancer implementation.
NoteSession persistence is not required for the API load balancer to function properly.
Configure the following ports on both the front and back of the load balancers:
Table 1.14. API load balancer Port Back-end machines (pool members) Internal External Description 6443
Bootstrap and control plane. You remove the bootstrap machine from the load balancer after the bootstrap machine initializes the cluster control plane. You must configure the
/readyz
endpoint for the API server health check probe.X
X
Kubernetes API server
22623
Bootstrap and control plane. You remove the bootstrap machine from the load balancer after the bootstrap machine initializes the cluster control plane.
X
Machine config server
NoteThe load balancer must be configured to take a maximum of 30 seconds from the time the API server turns off the
/readyz
endpoint to the removal of the API server instance from the pool. Within the time frame after/readyz
returns an error or becomes healthy, the endpoint must have been removed or added. Probing every 5 or 10 seconds, with two successful requests to become healthy and three to become unhealthy, are well-tested values.Application Ingress load balancer: Provides an Ingress point for application traffic flowing in from outside the cluster. Configure the following conditions:
- Layer 4 load balancing only. This can be referred to as Raw TCP, SSL Passthrough, or SSL Bridge mode. If you use SSL Bridge mode, you must enable Server Name Indication (SNI) for the Ingress routes.
- A connection-based or session-based persistence is recommended, based on the options available and types of applications that will be hosted on the platform.
Configure the following ports on both the front and back of the load balancers:
Table 1.15. Application Ingress load balancer Port Back-end machines (pool members) Internal External Description 443
The machines that run the Ingress router pods, compute, or worker, by default.
X
X
HTTPS traffic
80
The machines that run the Ingress router pods, compute, or worker, by default.
X
X
HTTP traffic
If the true IP address of the client can be seen by the load balancer, enabling source IP-based session persistence can improve performance for applications that use end-to-end TLS encryption.
A working configuration for the Ingress router is required for an OpenShift Container Platform cluster. You must configure the Ingress router after the control plane initializes.
Ethernet adaptor hardware address requirements
When provisioning VMs for the cluster, the ethernet interfaces configured for each VM must use a MAC address from the VMware Organizationally Unique Identifier (OUI) allocation ranges:
-
00:05:69:00:00:00
to00:05:69:FF:FF:FF
-
00:0c:29:00:00:00
to00:0c:29:FF:FF:FF
-
00:1c:14:00:00:00
to00:1c:14:FF:FF:FF
-
00:50:56:00:00:00
to00:50:56:FF:FF:FF
If a MAC address outside the VMware OUI is used, the cluster installation will not succeed.
NTP configuration
OpenShift Container Platform clusters are configured to use a public Network Time Protocol (NTP) server by default. If you want to use a local enterprise NTP server, or if your cluster is being deployed in a disconnected network, you can configure the cluster to use a specific time server. For more information, see the documentation for Configuring chrony time service.
If a DHCP server provides NTP server information, the chrony time service on the Red Hat Enterprise Linux CoreOS (RHCOS) machines read the information and can sync the clock with the NTP servers.
Additional resources
1.3.5.2. User-provisioned DNS requirements
DNS is used for name resolution and reverse name resolution. DNS A/AAAA or CNAME records are used for name resolution and PTR records are used for reverse name resolution. The reverse records are important because Red Hat Enterprise Linux CoreOS (RHCOS) uses the reverse records to set the host name for all the nodes. Additionally, the reverse records are used to generate the certificate signing requests (CSR) that OpenShift Container Platform needs to operate.
The following DNS records are required for an OpenShift Container Platform cluster that uses user-provisioned infrastructure. In each record, <cluster_name>
is the cluster name and <base_domain>
is the cluster base domain that you specify in the install-config.yaml
file. A complete DNS record takes the form: <component>.<cluster_name>.<base_domain>.
.
Component | Record | Description |
---|---|---|
Kubernetes API |
| Add a DNS A/AAAA or CNAME record, and a DNS PTR record, to identify the load balancer for the control plane machines. These records must be resolvable by both clients external to the cluster and from all the nodes within the cluster. |
| Add a DNS A/AAAA or CNAME record, and a DNS PTR record, to identify the load balancer for the control plane machines. These records must be resolvable from all the nodes within the cluster. Important The API server must be able to resolve the worker nodes by the host names that are recorded in Kubernetes. If the API server cannot resolve the node names, then proxied API calls can fail, and you cannot retrieve logs from pods. | |
Routes |
| Add a wildcard DNS A/AAAA or CNAME record that refers to the load balancer that targets the machines that run the Ingress router pods, which are the worker nodes by default. These records must be resolvable by both clients external to the cluster and from all the nodes within the cluster. |
Bootstrap |
| Add a DNS A/AAAA or CNAME record, and a DNS PTR record, to identify the bootstrap machine. These records must be resolvable by the nodes within the cluster. |
Master hosts |
| Add DNS A/AAAA or CNAME records and DNS PTR records to identify each machine for the master nodes. These records must be resolvable by the nodes within the cluster. |
Worker hosts |
| Add DNS A/AAAA or CNAME records and DNS PTR records to identify each machine for the worker nodes. These records must be resolvable by the nodes within the cluster. |
You can use the nslookup <hostname>
command to verify name resolution. You can use the dig -x <ip_address>
command to verify reverse name resolution for the PTR records.
The following example of a BIND zone file shows sample A records for name resolution. The purpose of the example is to show the records that are needed. The example is not meant to provide advice for choosing one name resolution service over another.
Example 1.5. Sample DNS zone database
$TTL 1W @ IN SOA ns1.example.com. root ( 2019070700 ; serial 3H ; refresh (3 hours) 30M ; retry (30 minutes) 2W ; expiry (2 weeks) 1W ) ; minimum (1 week) IN NS ns1.example.com. IN MX 10 smtp.example.com. ; ; ns1 IN A 192.168.1.5 smtp IN A 192.168.1.5 ; helper IN A 192.168.1.5 helper.ocp4 IN A 192.168.1.5 ; ; The api identifies the IP of your load balancer. api.ocp4 IN A 192.168.1.5 api-int.ocp4 IN A 192.168.1.5 ; ; The wildcard also identifies the load balancer. *.apps.ocp4 IN A 192.168.1.5 ; ; Create an entry for the bootstrap host. bootstrap.ocp4 IN A 192.168.1.96 ; ; Create entries for the master hosts. master0.ocp4 IN A 192.168.1.97 master1.ocp4 IN A 192.168.1.98 master2.ocp4 IN A 192.168.1.99 ; ; Create entries for the worker hosts. worker0.ocp4 IN A 192.168.1.11 worker1.ocp4 IN A 192.168.1.7 ; ;EOF
The following example BIND zone file shows sample PTR records for reverse name resolution.
Example 1.6. Sample DNS zone database for reverse records
$TTL 1W @ IN SOA ns1.example.com. root ( 2019070700 ; serial 3H ; refresh (3 hours) 30M ; retry (30 minutes) 2W ; expiry (2 weeks) 1W ) ; minimum (1 week) IN NS ns1.example.com. ; ; The syntax is "last octet" and the host must have an FQDN ; with a trailing dot. 97 IN PTR master0.ocp4.example.com. 98 IN PTR master1.ocp4.example.com. 99 IN PTR master2.ocp4.example.com. ; 96 IN PTR bootstrap.ocp4.example.com. ; 5 IN PTR api.ocp4.example.com. 5 IN PTR api-int.ocp4.example.com. ; 11 IN PTR worker0.ocp4.example.com. 7 IN PTR worker1.ocp4.example.com. ; ;EOF
1.3.6. Generating an SSH private key and adding it to the agent
If you want to perform installation debugging or disaster recovery on your cluster, you must provide an SSH key to both your ssh-agent
and the installation program. You can use this key to access the bootstrap machine in a public cluster to troubleshoot installation issues.
In a production environment, you require disaster recovery and debugging.
You can use this key to SSH into the master nodes as the user core
. When you deploy the cluster, the key is added to the core
user’s ~/.ssh/authorized_keys
list.
You must use a local key, not one that you configured with platform-specific approaches such as AWS key pairs.
Procedure
If you do not have an SSH key that is configured for password-less authentication on your computer, create one. For example, on a computer that uses a Linux operating system, run the following command:
$ ssh-keygen -t ed25519 -N '' \ -f <path>/<file_name> 1
- 1
- Specify the path and file name, such as
~/.ssh/id_rsa
, of the new SSH key. If you have an existing key pair, ensure your public key is in the your~/.ssh
directory.
Running this command generates an SSH key that does not require a password in the location that you specified.
NoteIf you plan to install an OpenShift Container Platform cluster that uses FIPS Validated / Modules in Process cryptographic libraries on the
x86_64
architecture, do not create a key that uses theed25519
algorithm. Instead, create a key that uses thersa
orecdsa
algorithm.Start the
ssh-agent
process as a background task:$ eval "$(ssh-agent -s)"
Example output
Agent pid 31874
If your cluster is in FIPS mode, only use FIPS-compliant algorithms to generate the SSH key. The key must be either RSA or ECDSA.
Add your SSH private key to the
ssh-agent
:$ ssh-add <path>/<file_name> 1
Example output
Identity added: /home/<you>/<path>/<file_name> (<computer_name>)
- 1
- Specify the path and file name for your SSH private key, such as
~/.ssh/id_rsa
Next steps
- When you install OpenShift Container Platform, provide the SSH public key to the installation program. If you install a cluster on infrastructure that you provision, you must provide this key to your cluster’s machines.
1.3.7. Obtaining the installation program
Before you install OpenShift Container Platform, download the installation file on a local computer.
Prerequisites
- You must install the cluster from a computer that uses Linux or macOS.
- You need 500 MB of local disk space to download the installation program.
Procedure
- Access the Infrastructure Provider page on the Red Hat OpenShift Cluster Manager site. If you have a Red Hat account, log in with your credentials. If you do not, create an account.
Navigate to the page for your installation type, download the installation program for your operating system, and place the file in the directory where you will store the installation configuration files.
ImportantThe installation program creates several files on the computer that you use to install your cluster. You must keep both the installation program and the files that the installation program creates after you finish installing the cluster.
ImportantDeleting the files created by the installation program does not remove your cluster, even if the cluster failed during installation. You must complete the OpenShift Container Platform uninstallation procedures outlined for your specific cloud provider to remove your cluster entirely.
Extract the installation program. For example, on a computer that uses a Linux operating system, run the following command:
$ tar xvf <installation_program>.tar.gz
-
From the Pull Secret page on the Red Hat OpenShift Cluster Manager site, download your installation pull secret as a
.txt
file. This pull secret allows you to authenticate with the services that are provided by the included authorities, including Quay.io, which serves the container images for OpenShift Container Platform components.
1.3.8. Manually creating the installation configuration file
For installations of OpenShift Container Platform that use user-provisioned infrastructure, you manually generate your installation configuration file.
Prerequisites
- Obtain the OpenShift Container Platform installation program and the access token for your cluster.
Procedure
Create an installation directory to store your required installation assets in:
$ mkdir <installation_directory>
ImportantYou must create a directory. Some installation assets, like bootstrap X.509 certificates have short expiration intervals, so you must not reuse an installation directory. If you want to reuse individual files from another cluster installation, you can copy them into your directory. However, the file names for the installation assets might change between releases. Use caution when copying installation files from an earlier OpenShift Container Platform version.
Customize the following
install-config.yaml
file template and save it in the<installation_directory>
.NoteYou must name this configuration file
install-config.yaml
.Back up the
install-config.yaml
file so that you can use it to install multiple clusters.ImportantThe
install-config.yaml
file is consumed during the next step of the installation process. You must back it up now.
1.3.8.1. Sample install-config.yaml
file for VMware vSphere
You can customize the install-config.yaml
file to specify more details about your OpenShift Container Platform cluster’s platform or modify the values of the required parameters.
apiVersion: v1 baseDomain: example.com 1 compute: - hyperthreading: Enabled 2 3 name: worker replicas: 0 4 controlPlane: hyperthreading: Enabled 5 6 name: master replicas: 3 7 metadata: name: test 8 platform: vsphere: vcenter: your.vcenter.server 9 username: username 10 password: password 11 datacenter: datacenter 12 defaultDatastore: datastore 13 folder: "/<datacenter_name>/vm/<folder_name>/<subfolder_name>" 14 fips: false 15 pullSecret: '{"auths": ...}' 16 sshKey: 'ssh-ed25519 AAAA...' 17
- 1
- The base domain of the cluster. All DNS records must be sub-domains of this base and include the cluster name.
- 2 5
- The
controlPlane
section is a single mapping, but the compute section is a sequence of mappings. To meet the requirements of the different data structures, the first line of thecompute
section must begin with a hyphen,-
, and the first line of thecontrolPlane
section must not. Although both sections currently define a single machine pool, it is possible that future versions of OpenShift Container Platform will support defining multiple compute pools during installation. Only one control plane pool is used. - 3 6
- Whether to enable or disable simultaneous multithreading, or
hyperthreading
. By default, simultaneous multithreading is enabled to increase the performance of your machines' cores. You can disable it by setting the parameter value toDisabled
. If you disable simultaneous multithreading in some cluster machines, you must disable it in all cluster machines.ImportantIf you disable simultaneous multithreading, ensure that your capacity planning accounts for the dramatically decreased machine performance. Your machines must use at least 8 CPUs and 32 GB of RAM if you disable simultaneous multithreading.
- 4
- You must set the value of the
replicas
parameter to0
. This parameter controls the number of workers that the cluster creates and manages for you, which are functions that the cluster does not perform when you use user-provisioned infrastructure. You must manually deploy worker machines for the cluster to use before you finish installing OpenShift Container Platform. - 7
- The number of control plane machines that you add to the cluster. Because the cluster uses this values as the number of etcd endpoints in the cluster, the value must match the number of control plane machines that you deploy.
- 8
- The cluster name that you specified in your DNS records.
- 9
- The fully-qualified host name or IP address of the vCenter server.
- 10
- The name of the user for accessing the server. This user must have at least the roles and privileges that are required for static or dynamic persistent volume provisioning in vSphere.
- 11
- The password associated with the vSphere user.
- 12
- The vSphere datacenter.
- 13
- The default vSphere datastore to use.
- 14
- Optional: For installer-provisioned infrastructure, the absolute path of an existing folder where the installation program creates the virtual machines, for example,
/<datacenter_name>/vm/<folder_name>/<subfolder_name>
. If you do not provide this value, the installation program creates a top-level folder in the datacenter virtual machine folder that is named with the infrastructure ID. If you are providing the infrastructure for the cluster, omit this parameter. - 15
- Whether to enable or disable FIPS mode. By default, FIPS mode is not enabled. If FIPS mode is enabled, the Red Hat Enterprise Linux CoreOS (RHCOS) machines that OpenShift Container Platform runs on bypass the default Kubernetes cryptography suite and use the cryptography modules that are provided with RHCOS instead.
- 16
- The pull secret that you obtained from the Pull Secret page on the Red Hat OpenShift Cluster Manager site. This pull secret allows you to authenticate with the services that are provided by the included authorities, including Quay.io, which serves the container images for OpenShift Container Platform components.
- 17
- The public portion of the default SSH key for the
core
user in Red Hat Enterprise Linux CoreOS (RHCOS).NoteFor production OpenShift Container Platform clusters on which you want to perform installation debugging or disaster recovery, specify an SSH key that your
ssh-agent
process uses.
1.3.8.2. Configuring the cluster-wide proxy during installation
Production environments can deny direct access to the Internet and instead have an HTTP or HTTPS proxy available. You can configure a new OpenShift Container Platform cluster to use a proxy by configuring the proxy settings in the install-config.yaml
file.
Prerequisites
-
An existing
install-config.yaml
file. Review the sites that your cluster requires access to and determine whether any need to bypass the proxy. By default, all cluster egress traffic is proxied, including calls to hosting cloud provider APIs. Add sites to the
Proxy
object’sspec.noProxy
field to bypass the proxy if necessary.NoteThe
Proxy
objectstatus.noProxy
field is populated with the values of thenetworking.machineNetwork[].cidr
,networking.clusterNetwork[].cidr
, andnetworking.serviceNetwork[]
fields from your installation configuration.For installations on Amazon Web Services (AWS), Google Cloud Platform (GCP), Microsoft Azure, and Red Hat OpenStack Platform (RHOSP), the
Proxy
objectstatus.noProxy
field is also populated with the instance metadata endpoint (169.254.169.254
).
Procedure
Edit your
install-config.yaml
file and add the proxy settings. For example:apiVersion: v1 baseDomain: my.domain.com proxy: httpProxy: http://<username>:<pswd>@<ip>:<port> 1 httpsProxy: http://<username>:<pswd>@<ip>:<port> 2 noProxy: example.com 3 additionalTrustBundle: | 4 -----BEGIN CERTIFICATE----- <MY_TRUSTED_CA_CERT> -----END CERTIFICATE----- ...
- 1
- A proxy URL to use for creating HTTP connections outside the cluster. The URL scheme must be
http
. If you use an MITM transparent proxy network that does not require additional proxy configuration but requires additional CAs, you must not specify anhttpProxy
value. - 2
- A proxy URL to use for creating HTTPS connections outside the cluster. If this field is not specified, then
httpProxy
is used for both HTTP and HTTPS connections. If you use an MITM transparent proxy network that does not require additional proxy configuration but requires additional CAs, you must not specify anhttpsProxy
value. - 3
- A comma-separated list of destination domain names, domains, IP addresses, or other network CIDRs to exclude proxying. Preface a domain with
.
to match subdomains only. For example,.y.com
matchesx.y.com
, but noty.com
. Use*
to bypass proxy for all destinations. You must include vCenter’s IP address and the IP range that you use for its machines. - 4
- If provided, the installation program generates a config map that is named
user-ca-bundle
in theopenshift-config
namespace that contains one or more additional CA certificates that are required for proxying HTTPS connections. The Cluster Network Operator then creates atrusted-ca-bundle
config map that merges these contents with the Red Hat Enterprise Linux CoreOS (RHCOS) trust bundle, and this config map is referenced in theProxy
object’strustedCA
field. TheadditionalTrustBundle
field is required unless the proxy’s identity certificate is signed by an authority from the RHCOS trust bundle. If you use an MITM transparent proxy network that does not require additional proxy configuration but requires additional CAs, you must provide the MITM CA certificate.
NoteThe installation program does not support the proxy
readinessEndpoints
field.- Save the file and reference it when installing OpenShift Container Platform.
The installation program creates a cluster-wide proxy that is named cluster
that uses the proxy settings in the provided install-config.yaml
file. If no proxy settings are provided, a cluster
Proxy
object is still created, but it will have a nil spec
.
Only the Proxy
object named cluster
is supported, and no additional proxies can be created.
1.3.9. Creating the Kubernetes manifest and Ignition config files
Because you must modify some cluster definition files and manually start the cluster machines, you must generate the Kubernetes manifest and Ignition config files that the cluster needs to make its machines.
The Ignition config files that the installation program generates contain certificates that expire after 24 hours, which are then renewed at that time. If the cluster is shut down before renewing the certificates and the cluster is later restarted after the 24 hours have elapsed, the cluster automatically recovers the expired certificates. The exception is that you must manually approve the pending node-bootstrapper
certificate signing requests (CSRs) to recover kubelet certificates. See the documentation for Recovering from expired control plane certificates for more information.
Prerequisites
- Obtain the OpenShift Container Platform installation program.
-
Create the
install-config.yaml
installation configuration file.
Procedure
Generate the Kubernetes manifests for the cluster:
$ ./openshift-install create manifests --dir=<installation_directory> 1
Example output
INFO Consuming Install Config from target directory WARNING Making control-plane schedulable by setting MastersSchedulable to true for Scheduler cluster settings
- 1
- For
<installation_directory>
, specify the installation directory that contains theinstall-config.yaml
file you created.
Because you create your own compute machines later in the installation process, you can safely ignore this warning.
Remove the Kubernetes manifest files that define the control plane machines and compute machine sets:
$ rm -f openshift/99_openshift-cluster-api_master-machines-*.yaml openshift/99_openshift-cluster-api_worker-machineset-*.yaml
Because you create and manage these resources yourself, you do not have to initialize them.
- You can preserve the machine set files to create compute machines by using the machine API, but you must update references to them to match your environment.
Modify the
<installation_directory>/manifests/cluster-scheduler-02-config.yml
Kubernetes manifest file to prevent pods from being scheduled on the control plane machines:-
Open the
<installation_directory>/manifests/cluster-scheduler-02-config.yml
file. -
Locate the
mastersSchedulable
parameter and set its value toFalse
. - Save and exit the file.
-
Open the
Obtain the Ignition config files:
$ ./openshift-install create ignition-configs --dir=<installation_directory> 1
- 1
- For
<installation_directory>
, specify the same installation directory.
The following files are generated in the directory:
. ├── auth │ ├── kubeadmin-password │ └── kubeconfig ├── bootstrap.ign ├── master.ign ├── metadata.json └── worker.ign
1.3.10. Extracting the infrastructure name
The Ignition config files contain a unique cluster identifier that you can use to uniquely identify your cluster in VMware vSphere. If you plan to use the cluster identifier as the name of your virtual machine folder, you must extract it.
Prerequisites
- Obtain the OpenShift Container Platform installation program and the pull secret for your cluster.
- Generate the Ignition config files for your cluster.
-
Install the
jq
package.
Procedure
To extract and view the infrastructure name from the Ignition config file metadata, run the following command:
$ jq -r .infraID <installation_directory>/metadata.json 1
- 1
- For
<installation_directory>
, specify the path to the directory that you stored the installation files in.
Example output
openshift-vw9j6 1
- 1
- The output of this command is your cluster name and a random string.
1.3.11. Creating Red Hat Enterprise Linux CoreOS (RHCOS) machines in vSphere
Before you install a cluster that contains user-provisioned infrastructure on VMware vSphere, you must create RHCOS machines on vSphere hosts for it to use.
Prerequisites
- Obtain the Ignition config files for your cluster.
- Have access to an HTTP server that you can access from your computer and that the machines that you create can access.
- Create a vSphere cluster.
Procedure
Upload the bootstrap Ignition config file, which is named
<installation_directory>/bootstrap.ign
, that the installation program created to your HTTP server. Note the URL of this file.You must host the bootstrap Ignition config file because it is too large to fit in a vApp property.
Save the following secondary Ignition config file for your bootstrap node to your computer as
<installation_directory>/append-bootstrap.ign
.{ "ignition": { "config": { "append": [ { "source": "<bootstrap_ignition_config_url>", 1 "verification": {} } ] }, "timeouts": {}, "version": "2.2.0" }, "networkd": {}, "passwd": {}, "storage": {}, "systemd": {} }
- 1
- Specify the URL of the bootstrap Ignition config file that you hosted.
When you create the virtual machine (VM) for the bootstrap machine, you use this Ignition config file.
Convert the master, worker, and secondary bootstrap Ignition config files to base64 encoding.
For example, if you use a Linux operating system, you can use the
base64
command to encode the files.$ base64 -w0 <installation_directory>/master.ign > <installation_directory>/master.64
$ base64 -w0 <installation_directory>/worker.ign > <installation_directory>/worker.64
$ base64 -w0 <installation_directory>/append-bootstrap.ign > <installation_directory>/append-bootstrap.64
ImportantIf you plan to add more compute machines to your cluster after you finish installation, do not delete these files.
Obtain the RHCOS OVA image. Images are available from the RHCOS image mirror page.
ImportantThe RHCOS images might not change with every release of OpenShift Container Platform. You must download an image with the highest version that is less than or equal to the OpenShift Container Platform version that you install. Use the image version that matches your OpenShift Container Platform version if it is available.
The filename contains the OpenShift Container Platform version number in the format
rhcos-vmware.<architecture>.ova
.In the vSphere Client, create a folder in your datacenter to store your VMs.
- Click the VMs and Templates view.
- Right-click the name of your datacenter.
- Click New Folder → New VM and Template Folder.
-
In the window that is displayed, enter the folder name. If you did not specify an existing folder in the
install-config.yaml
file, create a folder with the same name as the infrastructure ID.
In the vSphere Client, create a template for the OVA image and then clone the template as needed.
NoteIn the following steps, you create a template and then clone the template for all of your cluster machines. You then provide the location for the Ignition config file for that cloned machine type when you provision the VMs.
- From the Hosts and Clusters tab, right-click your cluster name and select Deploy OVF Template.
- On the Select an OVF tab, specify the name of the RHCOS OVA file that you downloaded.
-
On the Select a name and folder tab, set a Virtual machine name for your template, such as
Template-RHCOS
. Click the name of your vSphere cluster and select the folder you created in the previous step. - On the Select a compute resource tab, click the name of your vSphere cluster.
On the Select storage tab, configure the storage options for your VM.
- Select Thin Provision or Thick Provision, based on your storage preferences.
-
Select the datastore that you specified in your
install-config.yaml
file.
- On the Select network tab, specify the network that you configured for the cluster, if available.
When creating the OVF template, do not specify values on the Customize template tab or configure the template any further.
ImportantDo not start the original VM template. The VM template must remain off and must be cloned for new RHCOS machines. Starting the VM template configures the VM template as a VM on the platform, which prevents it from being used as a template that machine sets can apply configurations to.
After the template deploys, deploy a VM for a machine in the cluster.
- Right-click the template’s name and click Clone → Clone to Virtual Machine.
-
On the Select a name and folder tab, specify a name for the VM. You might include the machine type in the name, such as
control-plane-0
orcompute-1
. - On the Select a name and folder tab, select the name of the folder that you created for the cluster.
- On the Select a compute resource tab, select the name of a host in your datacenter.
- Optional: On the Select storage tab, customize the storage options.
- On the Select clone options, select Customize this virtual machine’s hardware.
On the Customize hardware tab, click VM Options → Advanced.
- Optional: In the event of cluster performance issues, from the Latency Sensitivity list, select High.
Click Edit Configuration, and on the Configuration Parameters window, click Add Configuration Params. Define the following parameter names and values:
-
guestinfo.ignition.config.data
: Paste the contents of the base64-encoded Ignition config file for this machine type. -
guestinfo.ignition.config.data.encoding
: Specifybase64
. -
disk.EnableUUID
: SpecifyTRUE
.
-
Alternatively, prior to powering on the virtual machine add via vApp properties:
- Navigate to a virtual machine from the vCenter Server inventory.
- On the Configure tab, expand Settings and select vApp options.
- Scroll down and under Properties apply the configurations from above.
- In the Virtual Hardware panel of the Customize hardware tab, modify the specified values as required. Ensure that the amount of RAM, CPU, and disk storage meets the minimum requirements for the machine type.
- Complete the configuration and power on the VM.
Create the rest of the machines for your cluster by following the preceding steps for each machine.
ImportantYou must create the bootstrap and control plane machines at this time. Because some pods are deployed on compute machines by default, also create at least two compute machines before you install the cluster.
1.3.12. Creating more Red Hat Enterprise Linux CoreOS (RHCOS) machines in vSphere
You can create more compute machines for your cluster that uses user-provisioned infrastructure on VMware vSphere.
Prerequisites
- Obtain the base64-encoded Ignition file for your compute machines.
- You have access to the vSphere template that you created for your cluster.
Procedure
After the template deploys, deploy a VM for a machine in the cluster.
- Right-click the template’s name and click Clone → Clone to Virtual Machine.
-
On the Select a name and folder tab, specify a name for the VM. You might include the machine type in the name, such as
compute-1
. - On the Select a name and folder tab, select the name of the folder that you created for the cluster.
- On the Select a compute resource tab, select the name of a host in your datacenter.
- Optional: On the Select storage tab, customize the storage options.
- On the Select clone options, select Customize this virtual machine’s hardware.
On the Customize hardware tab, click VM Options → Advanced.
- From the Latency Sensitivity list, select High.
Click Edit Configuration, and on the Configuration Parameters window, click Add Configuration Params. Define the following parameter names and values:
-
guestinfo.ignition.config.data
: Paste the contents of the base64-encoded compute Ignition config file for this machine type. -
guestinfo.ignition.config.data.encoding
: Specifybase64
. -
disk.EnableUUID
: SpecifyTRUE
.
-
- In the Virtual Hardware panel of the Customize hardware tab, modify the specified values as required. Ensure that the amount of RAM, CPU, and disk storage meets the minimum requirements for the machine type. Also, make sure to select the correct network under Add network adapter if there are multiple networks available.
- Complete the configuration and power on the VM.
- Continue to create more compute machines for your cluster.
1.3.13. Installing the CLI by downloading the binary
You can install the OpenShift CLI (oc
) in order to interact with OpenShift Container Platform from a command-line interface. You can install oc
on Linux, Windows, or macOS.
If you installed an earlier version of oc
, you cannot use it to complete all of the commands in OpenShift Container Platform 4.5. Download and install the new version of oc
.
1.3.13.1. Installing the CLI on Linux
You can install the OpenShift CLI (oc
) binary on Linux by using the following procedure.
Procedure
- Navigate to the Infrastructure Provider page on the Red Hat OpenShift Cluster Manager site.
- Select your infrastructure provider, and, if applicable, your installation type.
- In the Command line interface section, select Linux from the drop-down menu and click Download command-line tools.
Unpack the archive:
$ tar xvzf <file>
Place the
oc
binary in a directory that is on yourPATH
.To check your
PATH
, execute the following command:$ echo $PATH
After you install the CLI, it is available using the oc
command:
$ oc <command>
1.3.13.2. Installing the CLI on Windows
You can install the OpenShift CLI (oc
) binary on Windows by using the following procedure.
Procedure
- Navigate to the Infrastructure Provider page on the Red Hat OpenShift Cluster Manager site.
- Select your infrastructure provider, and, if applicable, your installation type.
- In the Command line interface section, select Windows from the drop-down menu and click Download command-line tools.
- Unzip the archive with a ZIP program.
Move the
oc
binary to a directory that is on yourPATH
.To check your
PATH
, open the command prompt and execute the following command:C:\> path
After you install the CLI, it is available using the oc
command:
C:\> oc <command>
1.3.13.3. Installing the CLI on macOS
You can install the OpenShift CLI (oc
) binary on macOS by using the following procedure.
Procedure
- Navigate to the Infrastructure Provider page on the Red Hat OpenShift Cluster Manager site.
- Select your infrastructure provider, and, if applicable, your installation type.
- In the Command line interface section, select MacOS from the drop-down menu and click Download command-line tools.
- Unpack and unzip the archive.
Move the
oc
binary to a directory on your PATH.To check your
PATH
, open a terminal and execute the following command:$ echo $PATH
After you install the CLI, it is available using the oc
command:
$ oc <command>
1.3.14. Creating the cluster
To create the OpenShift Container Platform cluster, you wait for the bootstrap process to complete on the machines that you provisioned by using the Ignition config files that you generated with the installation program.
Prerequisites
- Create the required infrastructure for the cluster.
- You obtained the installation program and generated the Ignition config files for your cluster.
- You used the Ignition config files to create RHCOS machines for your cluster.
- Your machines have direct Internet access or have an HTTP or HTTPS proxy available.
Procedure
Monitor the bootstrap process:
$ ./openshift-install --dir=<installation_directory> wait-for bootstrap-complete \ 1 --log-level=info 2
Example output
INFO Waiting up to 30m0s for the Kubernetes API at https://api.test.example.com:6443... INFO API v1.18.3 up INFO Waiting up to 30m0s for bootstrapping to complete... INFO It is now safe to remove the bootstrap resources
The command succeeds when the Kubernetes API server signals that it has been bootstrapped on the control plane machines.
After bootstrap process is complete, remove the bootstrap machine from the load balancer.
ImportantYou must remove the bootstrap machine from the load balancer at this point. You can also remove or reformat the machine itself.
1.3.15. Logging in to the cluster
You can log in to your cluster as a default system user by exporting the cluster kubeconfig
file. The kubeconfig
file contains information about the cluster that is used by the CLI to connect a client to the correct cluster and API server. The file is specific to a cluster and is created during OpenShift Container Platform installation.
Prerequisites
- Deploy an OpenShift Container Platform cluster.
-
Install the
oc
CLI.
Procedure
Export the
kubeadmin
credentials:$ export KUBECONFIG=<installation_directory>/auth/kubeconfig 1
- 1
- For
<installation_directory>
, specify the path to the directory that you stored the installation files in.
Verify you can run
oc
commands successfully using the exported configuration:$ oc whoami
Example output
system:admin
1.3.16. Approving the certificate signing requests for your machines
When you add machines to a cluster, two pending certificate signing requests (CSRs) are generated for each machine that you added. You must confirm that these CSRs are approved or, if necessary, approve them yourself. The client requests must be approved first, followed by the server requests.
Prerequisites
- You added machines to your cluster.
Procedure
Confirm that the cluster recognizes the machines:
$ oc get nodes
Example output
NAME STATUS ROLES AGE VERSION master-0 Ready master 63m v1.18.3 master-1 Ready master 63m v1.18.3 master-2 Ready master 64m v1.18.3 worker-0 NotReady worker 76s v1.18.3 worker-1 NotReady worker 70s v1.18.3
The output lists all of the machines that you created.
Review the pending CSRs and ensure that you see the client requests with the
Pending
orApproved
status for each machine that you added to the cluster:$ oc get csr
Example output
NAME AGE REQUESTOR CONDITION csr-8b2br 15m system:serviceaccount:openshift-machine-config-operator:node-bootstrapper Pending csr-8vnps 15m system:serviceaccount:openshift-machine-config-operator:node-bootstrapper Pending ...
In this example, two machines are joining the cluster. You might see more approved CSRs in the list.
If the CSRs were not approved, after all of the pending CSRs for the machines you added are in
Pending
status, approve the CSRs for your cluster machines:NoteBecause the CSRs rotate automatically, approve your CSRs within an hour of adding the machines to the cluster. If you do not approve them within an hour, the certificates will rotate, and more than two certificates will be present for each node. You must approve all of these certificates. Once the client CSR is approved, the Kubelet creates a secondary CSR for the serving certificate, which requires manual approval. Then, subsequent serving certificate renewal requests are automatically approved by the
machine-approver
if the Kubelet requests a new certificate with identical parameters.To approve them individually, run the following command for each valid CSR:
$ oc adm certificate approve <csr_name> 1
- 1
<csr_name>
is the name of a CSR from the list of current CSRs.
To approve all pending CSRs, run the following command:
$ oc get csr -o go-template='{{range .items}}{{if not .status}}{{.metadata.name}}{{"\n"}}{{end}}{{end}}' | xargs --no-run-if-empty oc adm certificate approve
Now that your client requests are approved, you must review the server requests for each machine that you added to the cluster:
$ oc get csr
Example output
NAME AGE REQUESTOR CONDITION csr-bfd72 5m26s system:node:ip-10-0-50-126.us-east-2.compute.internal Pending csr-c57lv 5m26s system:node:ip-10-0-95-157.us-east-2.compute.internal Pending ...
If the remaining CSRs are not approved, and are in the
Pending
status, approve the CSRs for your cluster machines:To approve them individually, run the following command for each valid CSR:
$ oc adm certificate approve <csr_name> 1
- 1
<csr_name>
is the name of a CSR from the list of current CSRs.
To approve all pending CSRs, run the following command:
$ oc get csr -o go-template='{{range .items}}{{if not .status}}{{.metadata.name}}{{"\n"}}{{end}}{{end}}' | xargs oc adm certificate approve
After all client and server CSRs have been approved, the machines have the
Ready
status. Verify this by running the following command:$ oc get nodes
Example output
NAME STATUS ROLES AGE VERSION master-0 Ready master 73m v1.20.0 master-1 Ready master 73m v1.20.0 master-2 Ready master 74m v1.20.0 worker-0 Ready worker 11m v1.20.0 worker-1 Ready worker 11m v1.20.0
NoteIt can take a few minutes after approval of the server CSRs for the machines to transition to the
Ready
status.
Additional information
- For more information on CSRs, see Certificate Signing Requests.
1.3.17. Initial Operator configuration
After the control plane initializes, you must immediately configure some Operators so that they all become available.
Prerequisites
- Your control plane has initialized.
Procedure
Watch the cluster components come online:
$ watch -n5 oc get clusteroperators
Example output
NAME VERSION AVAILABLE PROGRESSING DEGRADED SINCE authentication 4.5.4 True False False 69s cloud-credential 4.5.4 True False False 12m cluster-autoscaler 4.5.4 True False False 11m console 4.5.4 True False False 46s dns 4.5.4 True False False 11m image-registry 4.5.4 True False False 5m26s ingress 4.5.4 True False False 5m36s kube-apiserver 4.5.4 True False False 8m53s kube-controller-manager 4.5.4 True False False 7m24s kube-scheduler 4.5.4 True False False 12m machine-api 4.5.4 True False False 12m machine-config 4.5.4 True False False 7m36s marketplace 4.5.4 True False False 7m54m monitoring 4.5.4 True False False 7h54s network 4.5.4 True False False 5m9s node-tuning 4.5.4 True False False 11m openshift-apiserver 4.5.4 True False False 11m openshift-controller-manager 4.5.4 True False False 5m943s openshift-samples 4.5.4 True False False 3m55s operator-lifecycle-manager 4.5.4 True False False 11m operator-lifecycle-manager-catalog 4.5.4 True False False 11m service-ca 4.5.4 True False False 11m service-catalog-apiserver 4.5.4 True False False 5m26s service-catalog-controller-manager 4.5.4 True False False 5m25s storage 4.5.4 True False False 5m30s
- Configure the Operators that are not available.
1.3.17.1. Image registry removed during installation
On platforms that do not provide shareable object storage, the OpenShift Image Registry Operator bootstraps itself as Removed
. This allows openshift-installer
to complete installations on these platform types.
After installation, you must edit the Image Registry Operator configuration to switch the managementState
from Removed
to Managed
.
The Prometheus console provides an ImageRegistryRemoved
alert, for example:
"Image Registry has been removed. ImageStreamTags
, BuildConfigs
and DeploymentConfigs
which reference ImageStreamTags
may not work as expected. Please configure storage and update the config to Managed
state by editing configs.imageregistry.operator.openshift.io."
1.3.17.2. Image registry storage configuration
The Image Registry Operator is not initially available for platforms that do not provide default storage. After installation, you must configure your registry to use storage so that the Registry Operator is made available.
Instructions are shown for configuring a persistent volume, which is required for production clusters. Where applicable, instructions are shown for configuring an empty directory as the storage location, which is available for only non-production clusters.
Additional instructions are provided for allowing the image registry to use block storage types by using the Recreate
rollout strategy during upgrades.
1.3.17.2.1. Configuring registry storage for VMware vSphere
As a cluster administrator, following installation you must configure your registry to use storage.
Prerequisites
- Cluster administrator permissions.
- A cluster on VMware vSphere.
Persistent storage provisioned for your cluster, such as Red Hat OpenShift Container Storage.
ImportantOpenShift Container Platform supports
ReadWriteOnce
access for image registry storage when you have only one replica. To deploy an image registry that supports high availability with two or more replicas,ReadWriteMany
access is required.- Must have "100Gi" capacity.
Testing shows issues with using the NFS server on RHEL as storage backend for core services. This includes the OpenShift Container Registry and Quay, Prometheus for monitoring storage, and Elasticsearch for logging storage. Therefore, using RHEL NFS to back PVs used by core services is not recommended.
Other NFS implementations on the marketplace might not have these issues. Contact the individual NFS implementation vendor for more information on any testing that was possibly completed against these OpenShift Container Platform core components.
Procedure
To configure your registry to use storage, change the
spec.storage.pvc
in theconfigs.imageregistry/cluster
resource.NoteWhen using shared storage, review your security settings to prevent outside access.
Verify that you do not have a registry pod:
$ oc get pod -n openshift-image-registry
NoteIf the storage type is
emptyDIR
, the replica number cannot be greater than1
.Check the registry configuration:
$ oc edit configs.imageregistry.operator.openshift.io
Example output
storage: pvc: claim: 1
- 1
- Leave the
claim
field blank to allow the automatic creation of animage-registry-storage
PVC.
Check the
clusteroperator
status:$ oc get clusteroperator image-registry
1.3.17.2.2. Configuring storage for the image registry in non-production clusters
You must configure storage for the Image Registry Operator. For non-production clusters, you can set the image registry to an empty directory. If you do so, all images are lost if you restart the registry.
Procedure
To set the image registry storage to an empty directory:
$ oc patch configs.imageregistry.operator.openshift.io cluster --type merge --patch '{"spec":{"storage":{"emptyDir":{}}}}'
WarningConfigure this option for only non-production clusters.
If you run this command before the Image Registry Operator initializes its components, the
oc patch
command fails with the following error:Error from server (NotFound): configs.imageregistry.operator.openshift.io "cluster" not found
Wait a few minutes and run the command again.
Ensure that your registry is set to managed to enable building and pushing of images.
Run:
$ oc edit configs.imageregistry/cluster
Then, change the line
managementState: Removed
to
managementState: Managed
1.3.17.2.3. Configuring block registry storage for VMware vSphere
To allow the image registry to use block storage types such as vSphere Virtual Machine Disk (VMDK) during upgrades as a cluster administrator, you can use the Recreate
rollout strategy.
Block storage volumes are supported but not recommended for use with image registry on production clusters. An installation where the registry is configured on block storage is not highly available because the registry cannot have more than one replica.
Procedure
To set the image registry storage as a block storage type, patch the registry so that it uses the
Recreate
rollout strategy and runs with only1
replica:$ oc patch config.imageregistry.operator.openshift.io/cluster --type=merge -p '{"spec":{"rolloutStrategy":"Recreate","replicas":1}}'
Provision the PV for the block storage device, and create a PVC for that volume. The requested block volume uses the ReadWriteOnce (RWO) access mode.
Create a
pvc.yaml
file with the following contents to define a VMware vSpherePersistentVolumeClaim
object:kind: PersistentVolumeClaim apiVersion: v1 metadata: name: image-registry-storage 1 spec: accessModes: - ReadWriteOnce 2 resources: requests: storage: 100Gi 3
Create the
PersistentVolumeClaim
object from the file:$ oc create -f pvc.yaml -n openshift-image-registry
Edit the registry configuration so that it references the correct PVC:
$ oc edit config.imageregistry.operator.openshift.io -o yaml
Example output
storage: pvc: claim: 1
- 1
- Creating a custom PVC allows you to leave the
claim
field blank for the default automatic creation of animage-registry-storage
PVC.
For instructions about configuring registry storage so that it references the correct PVC, see Configuring the registry for vSphere.
1.3.18. Completing installation on user-provisioned infrastructure
After you complete the Operator configuration, you can finish installing the cluster on infrastructure that you provide.
Prerequisites
- Your control plane has initialized.
- You have completed the initial Operator configuration.
Procedure
Confirm that all the cluster components are online with the following command:
$ watch -n5 oc get clusteroperators
Example output
NAME VERSION AVAILABLE PROGRESSING DEGRADED SINCE authentication 4.5.4 True False False 7m56s cloud-credential 4.5.4 True False False 31m cluster-autoscaler 4.5.4 True False False 16m console 4.5.4 True False False 10m csi-snapshot-controller 4.5.4 True False False 16m dns 4.5.4 True False False 22m etcd 4.5.4 False False False 25s image-registry 4.5.4 True False False 16m ingress 4.5.4 True False False 16m insights 4.5.4 True False False 17m kube-apiserver 4.5.4 True False False 19m kube-controller-manager 4.5.4 True False False 20m kube-scheduler 4.5.4 True False False 20m kube-storage-version-migrator 4.5.4 True False False 16m machine-api 4.5.4 True False False 22m machine-config 4.5.4 True False False 22m marketplace 4.5.4 True False False 16m monitoring 4.5.4 True False False 10m network 4.5.4 True False False 23m node-tuning 4.5.4 True False False 23m openshift-apiserver 4.5.4 True False False 17m openshift-controller-manager 4.5.4 True False False 15m openshift-samples 4.5.4 True False False 16m operator-lifecycle-manager 4.5.4 True False False 22m operator-lifecycle-manager-catalog 4.5.4 True False False 22m operator-lifecycle-manager-packageserver 4.5.4 True False False 18m service-ca 4.5.4 True False False 23m service-catalog-apiserver 4.5.4 True False False 23m service-catalog-controller-manager 4.5.4 True False False 23m storage 4.5.4 True False False 17m
Alternatively, the following command notifies you when all of the clusters are available. It also retrieves and displays credentials:
$ ./openshift-install --dir=<installation_directory> wait-for install-complete 1
- 1
- For
<installation_directory>
, specify the path to the directory that you stored the installation files in.
Example output
INFO Waiting up to 30m0s for the cluster to initialize...
The command succeeds when the Cluster Version Operator finishes deploying the OpenShift Container Platform cluster from Kubernetes API server.
ImportantThe Ignition config files that the installation program generates contain certificates that expire after 24 hours, which are then renewed at that time. If the cluster is shut down before renewing the certificates and the cluster is later restarted after the 24 hours have elapsed, the cluster automatically recovers the expired certificates. The exception is that you must manually approve the pending
node-bootstrapper
certificate signing requests (CSRs) to recover kubelet certificates. See the documentation for Recovering from expired control plane certificates for more information.Confirm that the Kubernetes API server is communicating with the pods.
To view a list of all pods, use the following command:
$ oc get pods --all-namespaces
Example output
NAMESPACE NAME READY STATUS RESTARTS AGE openshift-apiserver-operator openshift-apiserver-operator-85cb746d55-zqhs8 1/1 Running 1 9m openshift-apiserver apiserver-67b9g 1/1 Running 0 3m openshift-apiserver apiserver-ljcmx 1/1 Running 0 1m openshift-apiserver apiserver-z25h4 1/1 Running 0 2m openshift-authentication-operator authentication-operator-69d5d8bf84-vh2n8 1/1 Running 0 5m ...
View the logs for a pod that is listed in the output of the previous command by using the following command:
$ oc logs <pod_name> -n <namespace> 1
- 1
- Specify the pod name and namespace, as shown in the output of the previous command.
If the pod logs display, the Kubernetes API server can communicate with the cluster machines.
You can add extra compute machines after the cluster installation is completed by following Adding compute machines to vSphere.
1.3.19. Backing up VMware vSphere volumes
OpenShift Container Platform provisions new volumes as independent persistent disks to freely attach and detach the volume on any node in the cluster. As a consequence, it is not possible to back up volumes that use snapshots, or to restore volumes from snapshots. See Snapshot Limitations for more information.
Procedure
To create a backup of persistent volumes:
- Stop the application that is using the persistent volume.
- Clone the persistent volume.
- Restart the application.
- Create a backup of the cloned volume.
- Delete the cloned volume.
1.3.20. Next steps
- Customize your cluster.
- If necessary, you can opt out of remote health reporting.
- Set up your registry and configure registry storage.
1.4. Installing a cluster on vSphere with network customizations
In OpenShift Container Platform version 4.5, you can install a cluster on VMware vSphere infrastructure that you provision with customized network configuration options. By customizing your network configuration, your cluster can coexist with existing IP address allocations in your environment and integrate with existing MTU and VXLAN configurations.
You must set most of the network configuration parameters during installation, and you can modify only kubeProxy
configuration parameters in a running cluster.
The steps for performing a user-provisioned infrastructure installation are provided as an example only. Installing a cluster with infrastructure you provide requires knowledge of the vSphere platform and the installation process of OpenShift Container Platform. Use the user-provisioned infrastructure installation instructions as a guide; you are free to create the required resources through other methods.
1.4.1. Prerequisites
- Review details about the OpenShift Container Platform installation and update processes.
- If you use a firewall, you must configure it to access Red Hat Insights.
1.4.2. Internet and Telemetry access for OpenShift Container Platform
In OpenShift Container Platform 4.5, you require access to the Internet to install your cluster. The Telemetry service, which runs by default to provide metrics about cluster health and the success of updates, also requires Internet access. If your cluster is connected to the Internet, Telemetry runs automatically, and your cluster is registered to the Red Hat OpenShift Cluster Manager (OCM).
Once you confirm that your Red Hat OpenShift Cluster Manager inventory is correct, either maintained automatically by Telemetry or manually using OCM, use subscription watch to track your OpenShift Container Platform subscriptions at the account or multi-cluster level.
You must have Internet access to:
- Access the Red Hat OpenShift Cluster Manager page to download the installation program and perform subscription management. If the cluster has Internet access and you do not disable Telemetry, that service automatically entitles your cluster.
- Access Quay.io to obtain the packages that are required to install your cluster.
- Obtain the packages that are required to perform cluster updates.
If your cluster cannot have direct Internet access, you can perform a restricted network installation on some types of infrastructure that you provision. During that process, you download the content that is required and use it to populate a mirror registry with the packages that you need to install a cluster and generate the installation program. With some installation types, the environment that you install your cluster in will not require Internet access. Before you update the cluster, you update the content of the mirror registry.
1.4.3. VMware vSphere infrastructure requirements
You must install the OpenShift Container Platform cluster on a VMware vSphere version 6 instance that meets the requirements for the components that you use.
Component | Minimum supported versions | Description |
---|---|---|
Hypervisor | vSphere 6.5 with HW version 13 | This version is the minimum version that Red Hat Enterprise Linux CoreOS (RHCOS) supports. See the Red Hat Enterprise Linux 8 supported hypervisors list. |
Networking (NSX-T) | vSphere 6.5U3 or vSphere 6.7U2 and later | vSphere 6.5U3 or vSphere 6.7U2+ are required for OpenShift Container Platform. VMware’s NSX Container Plug-in (NCP) 3.0.2 is certified with OpenShift Container Platform 4.5 and NSX-T 3.x+. |
Storage with in-tree drivers | vSphere 6.5 and later | This plug-in creates vSphere storage by using the in-tree storage drivers for vSphere included in OpenShift Container Platform. |
If you use a vSphere version 6.5 instance, consider upgrading to 6.7U2 before you install OpenShift Container Platform.
You must ensure that the time on your ESXi hosts is synchronized before you install OpenShift Container Platform. See Edit Time Configuration for a Host in the VMware documentation.
A limitation of using VPC is that the Storage Distributed Resource Scheduler (SDRS) is not supported. See vSphere Storage for Kubernetes FAQs in the VMware documentation.
1.4.4. Machine requirements for a cluster with user-provisioned infrastructure
For a cluster that contains user-provisioned infrastructure, you must deploy all of the required machines.
1.4.4.1. Required machines
The smallest OpenShift Container Platform clusters require the following hosts:
- One temporary bootstrap machine
- Three control plane, or master, machines
- At least two compute machines, which are also known as worker machines.
The cluster requires the bootstrap machine to deploy the OpenShift Container Platform cluster on the three control plane machines. You can remove the bootstrap machine after you install the cluster.
To maintain high availability of your cluster, use separate physical hosts for these cluster machines.
The bootstrap and control plane machines must use Red Hat Enterprise Linux CoreOS (RHCOS) as the operating system.
Note that RHCOS is based on Red Hat Enterprise Linux (RHEL) 8 and inherits all of its hardware certifications and requirements. See Red Hat Enterprise Linux technology capabilities and limits.
All virtual machines must reside in the same datastore and in the same folder as the installer.
1.4.4.2. Network connectivity requirements
All the Red Hat Enterprise Linux CoreOS (RHCOS) machines require network in initramfs
during boot to fetch Ignition config files from the Machine Config Server. During the initial boot, the machines require either a DHCP server or that static IP addresses be set in order to establish a network connection to download their Ignition config files. Additionally, each OpenShift Container Platform node in the cluster must have access to a Network Time Protocol (NTP) server. If a DHCP server provides NTP servers information, the chrony time service on the Red Hat Enterprise Linux CoreOS (RHCOS) machines read the information and can sync the clock with the NTP servers.
1.4.4.3. Minimum resource requirements
Each cluster machine must meet the following minimum requirements:
Machine | Operating System | vCPU [1] | Virtual RAM | Storage |
---|---|---|---|---|
Bootstrap | RHCOS | 4 | 16 GB | 120 GB |
Control plane | RHCOS | 4 | 16 GB | 120 GB |
Compute | RHCOS or RHEL 7.8 - 7.9 | 2 | 8 GB | 120 GB |
- 1 vCPU is equivalent to 1 physical core when simultaneous multithreading (SMT), or hyperthreading, is not enabled. When enabled, use the following formula to calculate the corresponding ratio: (threads per core × cores) × sockets = vCPUs.
1.4.4.4. Certificate signing requests management
Because your cluster has limited access to automatic machine management when you use infrastructure that you provision, you must provide a mechanism for approving cluster certificate signing requests (CSRs) after installation. The kube-controller-manager
only approves the kubelet client CSRs. The machine-approver
cannot guarantee the validity of a serving certificate that is requested by using kubelet credentials because it cannot confirm that the correct machine issued the request. You must determine and implement a method of verifying the validity of the kubelet serving certificate requests and approving them.
1.4.5. Creating the user-provisioned infrastructure
Before you deploy an OpenShift Container Platform cluster that uses user-provisioned infrastructure, you must create the underlying infrastructure.
Prerequisites
- Review the OpenShift Container Platform 4.x Tested Integrations page before you create the supporting infrastructure for your cluster.
Procedure
- Configure DHCP or set static IP addresses on each node.
- Provision the required load balancers.
- Configure the ports for your machines.
- Configure DNS.
- Ensure network connectivity.
1.4.5.1. Networking requirements for user-provisioned infrastructure
All the Red Hat Enterprise Linux CoreOS (RHCOS) machines require network in initramfs
during boot to fetch Ignition config from the machine config server.
During the initial boot, the machines require either a DHCP server or that static IP addresses be set on each host in the cluster in order to establish a network connection, which allows them to download their Ignition config files.
It is recommended to use the DHCP server to manage the machines for the cluster long-term. Ensure that the DHCP server is configured to provide persistent IP addresses and host names to the cluster machines.
The Kubernetes API server, which runs on each master node after a successful cluster installation, must be able to resolve the node names of the cluster machines. If the API servers and worker nodes are in different zones, you can configure a default DNS search zone to allow the API server to resolve the node names. Another supported approach is to always refer to hosts by their fully-qualified domain names in both the node objects and all DNS requests.
You must configure the network connectivity between machines to allow cluster components to communicate. Each machine must be able to resolve the host names of all other machines in the cluster.
Protocol | Port | Description |
---|---|---|
ICMP | N/A | Network reachability tests |
TCP |
| Metrics |
|
Host level services, including the node exporter on ports | |
| The default ports that Kubernetes reserves | |
| openshift-sdn | |
UDP |
| VXLAN and Geneve |
| VXLAN and Geneve | |
|
Host level services, including the node exporter on ports | |
TCP/UDP |
| Kubernetes node port |
Protocol | Port | Description |
---|---|---|
TCP |
| Kubernetes API |
Protocol | Port | Description |
---|---|---|
TCP |
| etcd server and peer ports |
Network topology requirements
The infrastructure that you provision for your cluster must meet the following network topology requirements.
OpenShift Container Platform requires all nodes to have internet access to pull images for platform containers and provide telemetry data to Red Hat.
Load balancers
Before you install OpenShift Container Platform, you must provision two load balancers that meet the following requirements:
API load balancer: Provides a common endpoint for users, both human and machine, to interact with and configure the platform. Configure the following conditions:
- Layer 4 load balancing only. This can be referred to as Raw TCP, SSL Passthrough, or SSL Bridge mode. If you use SSL Bridge mode, you must enable Server Name Indication (SNI) for the API routes.
- A stateless load balancing algorithm. The options vary based on the load balancer implementation.
NoteSession persistence is not required for the API load balancer to function properly.
Configure the following ports on both the front and back of the load balancers:
Table 1.21. API load balancer Port Back-end machines (pool members) Internal External Description 6443
Bootstrap and control plane. You remove the bootstrap machine from the load balancer after the bootstrap machine initializes the cluster control plane. You must configure the
/readyz
endpoint for the API server health check probe.X
X
Kubernetes API server
22623
Bootstrap and control plane. You remove the bootstrap machine from the load balancer after the bootstrap machine initializes the cluster control plane.
X
Machine config server
NoteThe load balancer must be configured to take a maximum of 30 seconds from the time the API server turns off the
/readyz
endpoint to the removal of the API server instance from the pool. Within the time frame after/readyz
returns an error or becomes healthy, the endpoint must have been removed or added. Probing every 5 or 10 seconds, with two successful requests to become healthy and three to become unhealthy, are well-tested values.Application Ingress load balancer: Provides an Ingress point for application traffic flowing in from outside the cluster. Configure the following conditions:
- Layer 4 load balancing only. This can be referred to as Raw TCP, SSL Passthrough, or SSL Bridge mode. If you use SSL Bridge mode, you must enable Server Name Indication (SNI) for the Ingress routes.
- A connection-based or session-based persistence is recommended, based on the options available and types of applications that will be hosted on the platform.
Configure the following ports on both the front and back of the load balancers:
Table 1.22. Application Ingress load balancer Port Back-end machines (pool members) Internal External Description 443
The machines that run the Ingress router pods, compute, or worker, by default.
X
X
HTTPS traffic
80
The machines that run the Ingress router pods, compute, or worker, by default.
X
X
HTTP traffic
If the true IP address of the client can be seen by the load balancer, enabling source IP-based session persistence can improve performance for applications that use end-to-end TLS encryption.
A working configuration for the Ingress router is required for an OpenShift Container Platform cluster. You must configure the Ingress router after the control plane initializes.
Ethernet adaptor hardware address requirements
When provisioning VMs for the cluster, the ethernet interfaces configured for each VM must use a MAC address from the VMware Organizationally Unique Identifier (OUI) allocation ranges:
-
00:05:69:00:00:00
to00:05:69:FF:FF:FF
-
00:0c:29:00:00:00
to00:0c:29:FF:FF:FF
-
00:1c:14:00:00:00
to00:1c:14:FF:FF:FF
-
00:50:56:00:00:00
to00:50:56:FF:FF:FF
If a MAC address outside the VMware OUI is used, the cluster installation will not succeed.
NTP configuration
OpenShift Container Platform clusters are configured to use a public Network Time Protocol (NTP) server by default. If you want to use a local enterprise NTP server, or if your cluster is being deployed in a disconnected network, you can configure the cluster to use a specific time server. For more information, see the documentation for Configuring chrony time service.
If a DHCP server provides NTP server information, the chrony time service on the Red Hat Enterprise Linux CoreOS (RHCOS) machines read the information and can sync the clock with the NTP servers.
Additional resources
1.4.5.2. User-provisioned DNS requirements
DNS is used for name resolution and reverse name resolution. DNS A/AAAA or CNAME records are used for name resolution and PTR records are used for reverse name resolution. The reverse records are important because Red Hat Enterprise Linux CoreOS (RHCOS) uses the reverse records to set the host name for all the nodes. Additionally, the reverse records are used to generate the certificate signing requests (CSR) that OpenShift Container Platform needs to operate.
The following DNS records are required for an OpenShift Container Platform cluster that uses user-provisioned infrastructure. In each record, <cluster_name>
is the cluster name and <base_domain>
is the cluster base domain that you specify in the install-config.yaml
file. A complete DNS record takes the form: <component>.<cluster_name>.<base_domain>.
.
Component | Record | Description |
---|---|---|
Kubernetes API |
| Add a DNS A/AAAA or CNAME record, and a DNS PTR record, to identify the load balancer for the control plane machines. These records must be resolvable by both clients external to the cluster and from all the nodes within the cluster. |
| Add a DNS A/AAAA or CNAME record, and a DNS PTR record, to identify the load balancer for the control plane machines. These records must be resolvable from all the nodes within the cluster. Important The API server must be able to resolve the worker nodes by the host names that are recorded in Kubernetes. If the API server cannot resolve the node names, then proxied API calls can fail, and you cannot retrieve logs from pods. | |
Routes |
| Add a wildcard DNS A/AAAA or CNAME record that refers to the load balancer that targets the machines that run the Ingress router pods, which are the worker nodes by default. These records must be resolvable by both clients external to the cluster and from all the nodes within the cluster. |
Bootstrap |
| Add a DNS A/AAAA or CNAME record, and a DNS PTR record, to identify the bootstrap machine. These records must be resolvable by the nodes within the cluster. |
Master hosts |
| Add DNS A/AAAA or CNAME records and DNS PTR records to identify each machine for the master nodes. These records must be resolvable by the nodes within the cluster. |
Worker hosts |
| Add DNS A/AAAA or CNAME records and DNS PTR records to identify each machine for the worker nodes. These records must be resolvable by the nodes within the cluster. |
You can use the nslookup <hostname>
command to verify name resolution. You can use the dig -x <ip_address>
command to verify reverse name resolution for the PTR records.
The following example of a BIND zone file shows sample A records for name resolution. The purpose of the example is to show the records that are needed. The example is not meant to provide advice for choosing one name resolution service over another.
Example 1.7. Sample DNS zone database
$TTL 1W @ IN SOA ns1.example.com. root ( 2019070700 ; serial 3H ; refresh (3 hours) 30M ; retry (30 minutes) 2W ; expiry (2 weeks) 1W ) ; minimum (1 week) IN NS ns1.example.com. IN MX 10 smtp.example.com. ; ; ns1 IN A 192.168.1.5 smtp IN A 192.168.1.5 ; helper IN A 192.168.1.5 helper.ocp4 IN A 192.168.1.5 ; ; The api identifies the IP of your load balancer. api.ocp4 IN A 192.168.1.5 api-int.ocp4 IN A 192.168.1.5 ; ; The wildcard also identifies the load balancer. *.apps.ocp4 IN A 192.168.1.5 ; ; Create an entry for the bootstrap host. bootstrap.ocp4 IN A 192.168.1.96 ; ; Create entries for the master hosts. master0.ocp4 IN A 192.168.1.97 master1.ocp4 IN A 192.168.1.98 master2.ocp4 IN A 192.168.1.99 ; ; Create entries for the worker hosts. worker0.ocp4 IN A 192.168.1.11 worker1.ocp4 IN A 192.168.1.7 ; ;EOF
The following example BIND zone file shows sample PTR records for reverse name resolution.
Example 1.8. Sample DNS zone database for reverse records
$TTL 1W @ IN SOA ns1.example.com. root ( 2019070700 ; serial 3H ; refresh (3 hours) 30M ; retry (30 minutes) 2W ; expiry (2 weeks) 1W ) ; minimum (1 week) IN NS ns1.example.com. ; ; The syntax is "last octet" and the host must have an FQDN ; with a trailing dot. 97 IN PTR master0.ocp4.example.com. 98 IN PTR master1.ocp4.example.com. 99 IN PTR master2.ocp4.example.com. ; 96 IN PTR bootstrap.ocp4.example.com. ; 5 IN PTR api.ocp4.example.com. 5 IN PTR api-int.ocp4.example.com. ; 11 IN PTR worker0.ocp4.example.com. 7 IN PTR worker1.ocp4.example.com. ; ;EOF
1.4.6. Generating an SSH private key and adding it to the agent
If you want to perform installation debugging or disaster recovery on your cluster, you must provide an SSH key to both your ssh-agent
and the installation program. You can use this key to access the bootstrap machine in a public cluster to troubleshoot installation issues.
In a production environment, you require disaster recovery and debugging.
You can use this key to SSH into the master nodes as the user core
. When you deploy the cluster, the key is added to the core
user’s ~/.ssh/authorized_keys
list.
You must use a local key, not one that you configured with platform-specific approaches such as AWS key pairs.
Procedure
If you do not have an SSH key that is configured for password-less authentication on your computer, create one. For example, on a computer that uses a Linux operating system, run the following command:
$ ssh-keygen -t ed25519 -N '' \ -f <path>/<file_name> 1
- 1
- Specify the path and file name, such as
~/.ssh/id_rsa
, of the new SSH key. If you have an existing key pair, ensure your public key is in the your~/.ssh
directory.
Running this command generates an SSH key that does not require a password in the location that you specified.
NoteIf you plan to install an OpenShift Container Platform cluster that uses FIPS Validated / Modules in Process cryptographic libraries on the
x86_64
architecture, do not create a key that uses theed25519
algorithm. Instead, create a key that uses thersa
orecdsa
algorithm.Start the
ssh-agent
process as a background task:$ eval "$(ssh-agent -s)"
Example output
Agent pid 31874
If your cluster is in FIPS mode, only use FIPS-compliant algorithms to generate the SSH key. The key must be either RSA or ECDSA.
Add your SSH private key to the
ssh-agent
:$ ssh-add <path>/<file_name> 1
Example output
Identity added: /home/<you>/<path>/<file_name> (<computer_name>)
- 1
- Specify the path and file name for your SSH private key, such as
~/.ssh/id_rsa
Next steps
- When you install OpenShift Container Platform, provide the SSH public key to the installation program.
1.4.7. Obtaining the installation program
Before you install OpenShift Container Platform, download the installation file on a local computer.
Prerequisites
- You must install the cluster from a computer that uses Linux or macOS.
- You need 500 MB of local disk space to download the installation program.
Procedure
- Access the Infrastructure Provider page on the Red Hat OpenShift Cluster Manager site. If you have a Red Hat account, log in with your credentials. If you do not, create an account.
Navigate to the page for your installation type, download the installation program for your operating system, and place the file in the directory where you will store the installation configuration files.
ImportantThe installation program creates several files on the computer that you use to install your cluster. You must keep both the installation program and the files that the installation program creates after you finish installing the cluster.
ImportantDeleting the files created by the installation program does not remove your cluster, even if the cluster failed during installation. You must complete the OpenShift Container Platform uninstallation procedures outlined for your specific cloud provider to remove your cluster entirely.
Extract the installation program. For example, on a computer that uses a Linux operating system, run the following command:
$ tar xvf <installation_program>.tar.gz
-
From the Pull Secret page on the Red Hat OpenShift Cluster Manager site, download your installation pull secret as a
.txt
file. This pull secret allows you to authenticate with the services that are provided by the included authorities, including Quay.io, which serves the container images for OpenShift Container Platform components.
1.4.8. Manually creating the installation configuration file
For installations of OpenShift Container Platform that use user-provisioned infrastructure, you manually generate your installation configuration file.
Prerequisites
- Obtain the OpenShift Container Platform installation program and the access token for your cluster.
Procedure
Create an installation directory to store your required installation assets in:
$ mkdir <installation_directory>
ImportantYou must create a directory. Some installation assets, like bootstrap X.509 certificates have short expiration intervals, so you must not reuse an installation directory. If you want to reuse individual files from another cluster installation, you can copy them into your directory. However, the file names for the installation assets might change between releases. Use caution when copying installation files from an earlier OpenShift Container Platform version.
Customize the following
install-config.yaml
file template and save it in the<installation_directory>
.NoteYou must name this configuration file
install-config.yaml
.Back up the
install-config.yaml
file so that you can use it to install multiple clusters.ImportantThe
install-config.yaml
file is consumed during the next step of the installation process. You must back it up now.
1.4.8.1. Sample install-config.yaml
file for VMware vSphere
You can customize the install-config.yaml
file to specify more details about your OpenShift Container Platform cluster’s platform or modify the values of the required parameters.
apiVersion: v1 baseDomain: example.com 1 compute: - hyperthreading: Enabled 2 3 name: worker replicas: 0 4 controlPlane: hyperthreading: Enabled 5 6 name: master replicas: 3 7 metadata: name: test 8 platform: vsphere: vcenter: your.vcenter.server 9 username: username 10 password: password 11 datacenter: datacenter 12 defaultDatastore: datastore 13 folder: "/<datacenter_name>/vm/<folder_name>/<subfolder_name>" 14 fips: false 15 pullSecret: '{"auths": ...}' 16 sshKey: 'ssh-ed25519 AAAA...' 17
- 1
- The base domain of the cluster. All DNS records must be sub-domains of this base and include the cluster name.
- 2 5
- The
controlPlane
section is a single mapping, but the compute section is a sequence of mappings. To meet the requirements of the different data structures, the first line of thecompute
section must begin with a hyphen,-
, and the first line of thecontrolPlane
section must not. Although both sections currently define a single machine pool, it is possible that future versions of OpenShift Container Platform will support defining multiple compute pools during installation. Only one control plane pool is used. - 3 6
- Whether to enable or disable simultaneous multithreading, or
hyperthreading
. By default, simultaneous multithreading is enabled to increase the performance of your machines' cores. You can disable it by setting the parameter value toDisabled
. If you disable simultaneous multithreading in some cluster machines, you must disable it in all cluster machines.ImportantIf you disable simultaneous multithreading, ensure that your capacity planning accounts for the dramatically decreased machine performance. Your machines must use at least 8 CPUs and 32 GB of RAM if you disable simultaneous multithreading.
- 4
- You must set the value of the
replicas
parameter to0
. This parameter controls the number of workers that the cluster creates and manages for you, which are functions that the cluster does not perform when you use user-provisioned infrastructure. You must manually deploy worker machines for the cluster to use before you finish installing OpenShift Container Platform. - 7
- The number of control plane machines that you add to the cluster. Because the cluster uses this values as the number of etcd endpoints in the cluster, the value must match the number of control plane machines that you deploy.
- 8
- The cluster name that you specified in your DNS records.
- 9
- The fully-qualified host name or IP address of the vCenter server.
- 10
- The name of the user for accessing the server. This user must have at least the roles and privileges that are required for static or dynamic persistent volume provisioning in vSphere.
- 11
- The password associated with the vSphere user.
- 12
- The vSphere datacenter.
- 13
- The default vSphere datastore to use.
- 14
- Optional: For installer-provisioned infrastructure, the absolute path of an existing folder where the installation program creates the virtual machines, for example,
/<datacenter_name>/vm/<folder_name>/<subfolder_name>
. If you do not provide this value, the installation program creates a top-level folder in the datacenter virtual machine folder that is named with the infrastructure ID. If you are providing the infrastructure for the cluster, omit this parameter. - 15
- Whether to enable or disable FIPS mode. By default, FIPS mode is not enabled. If FIPS mode is enabled, the Red Hat Enterprise Linux CoreOS (RHCOS) machines that OpenShift Container Platform runs on bypass the default Kubernetes cryptography suite and use the cryptography modules that are provided with RHCOS instead.
- 16
- The pull secret that you obtained from the Pull Secret page on the Red Hat OpenShift Cluster Manager site. This pull secret allows you to authenticate with the services that are provided by the included authorities, including Quay.io, which serves the container images for OpenShift Container Platform components.
- 17
- The public portion of the default SSH key for the
core
user in Red Hat Enterprise Linux CoreOS (RHCOS).NoteFor production OpenShift Container Platform clusters on which you want to perform installation debugging or disaster recovery, specify an SSH key that your
ssh-agent
process uses.
1.4.8.2. Network configuration parameters
You can modify your cluster network configuration parameters in the install-config.yaml
configuration file. The following table describes the parameters.
You cannot modify these parameters in the install-config.yaml
file after installation.
Parameter | Description | Value |
---|---|---|
|
The default Container Network Interface (CNI) network provider plug-in to deploy. The |
The default value is |
|
A block of IP addresses from which pod IP addresses are allocated. The |
An IP address allocation in CIDR format. The default value is |
|
The subnet prefix length to assign to each individual node. For example, if |
A subnet prefix. The default value is |
|
A block of IP addresses for services. |
An IP address allocation in CIDR format. The default value is |
| A block of IP addresses assigned to nodes created by the OpenShift Container Platform installation program while installing the cluster. The address block must not overlap with any other network block. Multiple CIDR ranges may be specified. |
An IP address allocation in CIDR format. The default value is |
1.4.9. Modifying advanced network configuration parameters
You can modify the advanced network configuration parameters only before you install the cluster. Advanced configuration customization lets you integrate your cluster into your existing network environment by specifying an MTU or VXLAN port, by allowing customization of kube-proxy settings, and by specifying a different mode
for the openshiftSDNConfig
parameter.
Modifying the OpenShift Container Platform manifest files created by the installation program is not supported. Applying a manifest file that you create, as in the following procedure, is supported.
Prerequisites
-
Create the
install-config.yaml
file and complete any modifications to it. - Create the Ignition config files for your cluster.
Procedure
Use the following command to create manifests:
$ ./openshift-install create manifests --dir=<installation_directory> 1
- 1
- For
<installation_directory>
, specify the name of the directory that contains theinstall-config.yaml
file for your cluster.
Create a file that is named
cluster-network-03-config.yml
in the<installation_directory>/manifests/
directory:$ touch <installation_directory>/manifests/cluster-network-03-config.yml 1
- 1
- For
<installation_directory>
, specify the directory name that contains themanifests/
directory for your cluster.
After creating the file, several network configuration files are in the
manifests/
directory, as shown:$ ls <installation_directory>/manifests/cluster-network-*
Example output
cluster-network-01-crd.yml cluster-network-02-config.yml cluster-network-03-config.yml
Open the
cluster-network-03-config.yml
file in an editor and enter a CR that describes the Operator configuration you want:apiVersion: operator.openshift.io/v1 kind: Network metadata: name: cluster spec: 1 clusterNetwork: - cidr: 10.128.0.0/14 hostPrefix: 23 serviceNetwork: - 172.30.0.0/16 defaultNetwork: type: OpenShiftSDN openshiftSDNConfig: mode: NetworkPolicy mtu: 1450 vxlanPort: 4789
- 1
- The parameters for the
spec
parameter are only an example. Specify your configuration for the Cluster Network Operator in the CR.
The CNO provides default values for the parameters in the CR, so you must specify only the parameters that you want to change.
-
Save the
cluster-network-03-config.yml
file and quit the text editor. -
Optional: Back up the
manifests/cluster-network-03-config.yml
file. The installation program deletes themanifests/
directory when creating the cluster. Remove the Kubernetes manifest files that define the control plane machines and compute machineSets:
$ rm -f openshift/99_openshift-cluster-api_master-machines-*.yaml openshift/99_openshift-cluster-api_worker-machineset-*.yaml
Because you create and manage these resources yourself, you do not have to initialize them.
- You can preserve the MachineSet files to create compute machines by using the machine API, but you must update references to them to match your environment.
1.4.10. Cluster Network Operator configuration
The configuration for the cluster network is specified as part of the Cluster Network Operator (CNO) configuration and stored in a CR object that is named cluster
. The CR specifies the parameters for the Network
API in the operator.openshift.io
API group.
You can specify the cluster network configuration for your OpenShift Container Platform cluster by setting the parameter values for the defaultNetwork
parameter in the CNO CR. The following CR displays the default configuration for the CNO and explains both the parameters you can configure and the valid parameter values:
Cluster Network Operator CR
apiVersion: operator.openshift.io/v1 kind: Network metadata: name: cluster spec: clusterNetwork: 1 - cidr: 10.128.0.0/14 hostPrefix: 23 serviceNetwork: 2 - 172.30.0.0/16 defaultNetwork: 3 ... kubeProxyConfig: 4 iptablesSyncPeriod: 30s 5 proxyArguments: iptables-min-sync-period: 6 - 0s
- 1 2
- Specified in the
install-config.yaml
file. - 3
- Configures the default Container Network Interface (CNI) network provider for the cluster network.
- 4
- The parameters for this object specify the
kube-proxy
configuration. If you do not specify the parameter values, the Cluster Network Operator applies the displayed default parameter values. If you are using the OVN-Kubernetes default CNI network provider, the kube-proxy configuration has no effect. - 5
- The refresh period for
iptables
rules. The default value is30s
. Valid suffixes includes
,m
, andh
and are described in the Go time package documentation.NoteBecause of performance improvements introduced in OpenShift Container Platform 4.3 and greater, adjusting the
iptablesSyncPeriod
parameter is no longer necessary. - 6
- The minimum duration before refreshing
iptables
rules. This parameter ensures that the refresh does not happen too frequently. Valid suffixes includes
,m
, andh
and are described in the Go time package.
1.4.10.1. Configuration parameters for the OpenShift SDN default CNI network provider
The following YAML object describes the configuration parameters for the OpenShift SDN default Container Network Interface (CNI) network provider.
defaultNetwork: type: OpenShiftSDN 1 openshiftSDNConfig: 2 mode: NetworkPolicy 3 mtu: 1450 4 vxlanPort: 4789 5
- 1
- Specified in the
install-config.yaml
file. - 2
- Specify only if you want to override part of the OpenShift SDN configuration.
- 3
- Configures the network isolation mode for OpenShift SDN. The allowed values are
Multitenant
,Subnet
, orNetworkPolicy
. The default value isNetworkPolicy
. - 4
- The maximum transmission unit (MTU) for the VXLAN overlay network. This is detected automatically based on the MTU of the primary network interface. You do not normally need to override the detected MTU.
If the auto-detected value is not what you expected it to be, confirm that the MTU on the primary network interface on your nodes is correct. You cannot use this option to change the MTU value of the primary network interface on the nodes.
If your cluster requires different MTU values for different nodes, you must set this value to
50
less than the lowest MTU value in your cluster. For example, if some nodes in your cluster have an MTU of9001
, and some have an MTU of1500
, you must set this value to1450
. - 5
- The port to use for all VXLAN packets. The default value is
4789
. If you are running in a virtualized environment with existing nodes that are part of another VXLAN network, then you might be required to change this. For example, when running an OpenShift SDN overlay on top of VMware NSX-T, you must select an alternate port for VXLAN, since both SDNs use the same default VXLAN port number.On Amazon Web Services (AWS), you can select an alternate port for the VXLAN between port
9000
and port9999
.
1.4.10.2. Cluster Network Operator example configuration
A complete CR object for the CNO is displayed in the following example:
Cluster Network Operator example CR
apiVersion: operator.openshift.io/v1 kind: Network metadata: name: cluster spec: clusterNetwork: - cidr: 10.128.0.0/14 hostPrefix: 23 serviceNetwork: - 172.30.0.0/16 defaultNetwork: type: OpenShiftSDN openshiftSDNConfig: mode: NetworkPolicy mtu: 1450 vxlanPort: 4789 kubeProxyConfig: iptablesSyncPeriod: 30s proxyArguments: iptables-min-sync-period: - 0s
1.4.11. Creating the Ignition config files
Because you must manually start the cluster machines, you must generate the Ignition config files that the cluster needs to make its machines.
The Ignition config files that the installation program generates contain certificates that expire after 24 hours, which are then renewed at that time. If the cluster is shut down before renewing the certificates and the cluster is later restarted after the 24 hours have elapsed, the cluster automatically recovers the expired certificates. The exception is that you must manually approve the pending node-bootstrapper
certificate signing requests (CSRs) to recover kubelet certificates. See the documentation for Recovering from expired control plane certificates for more information.
Prerequisites
- Obtain the OpenShift Container Platform installation program and the pull secret for your cluster.
Procedure
Obtain the Ignition config files:
$ ./openshift-install create ignition-configs --dir=<installation_directory> 1
- 1
- For
<installation_directory>
, specify the directory name to store the files that the installation program creates.
ImportantIf you created an
install-config.yaml
file, specify the directory that contains it. Otherwise, specify an empty directory. Some installation assets, like bootstrap X.509 certificates have short expiration intervals, so you must not reuse an installation directory. If you want to reuse individual files from another cluster installation, you can copy them into your directory. However, the file names for the installation assets might change between releases. Use caution when copying installation files from an earlier OpenShift Container Platform version.The following files are generated in the directory:
. ├── auth │ ├── kubeadmin-password │ └── kubeconfig ├── bootstrap.ign ├── master.ign ├── metadata.json └── worker.ign
1.4.12. Extracting the infrastructure name
Prerequisites
- Obtain the OpenShift Container Platform installation program and the pull secret for your cluster.
- Generate the Ignition config files for your cluster.
-
Install the
jq
package.
Procedure
To extract and view the infrastructure name from the Ignition config file metadata, run the following command:
$ jq -r .infraID <installation_directory>/metadata.json 1
- 1
- For
<installation_directory>
, specify the path to the directory that you stored the installation files in.
Example output
openshift-vw9j6 1
- 1
- The output of this command is your cluster name and a random string.
1.4.13. Creating Red Hat Enterprise Linux CoreOS (RHCOS) machines in vSphere
Before you install a cluster that contains user-provisioned infrastructure on VMware vSphere, you must create RHCOS machines on vSphere hosts for it to use.
Prerequisites
- Obtain the Ignition config files for your cluster.
- Have access to an HTTP server that you can access from your computer and that the machines that you create can access.
- Create a vSphere cluster.
Procedure
Upload the bootstrap Ignition config file, which is named
<installation_directory>/bootstrap.ign
, that the installation program created to your HTTP server. Note the URL of this file.You must host the bootstrap Ignition config file because it is too large to fit in a vApp property.
Save the following secondary Ignition config file for your bootstrap node to your computer as
<installation_directory>/append-bootstrap.ign
.{ "ignition": { "config": { "append": [ { "source": "<bootstrap_ignition_config_url>", 1 "verification": {} } ] }, "timeouts": {}, "version": "2.2.0" }, "networkd": {}, "passwd": {}, "storage": {}, "systemd": {} }
- 1
- Specify the URL of the bootstrap Ignition config file that you hosted.
When you create the virtual machine (VM) for the bootstrap machine, you use this Ignition config file.
Convert the master, worker, and secondary bootstrap Ignition config files to base64 encoding.
For example, if you use a Linux operating system, you can use the
base64
command to encode the files.$ base64 -w0 <installation_directory>/master.ign > <installation_directory>/master.64
$ base64 -w0 <installation_directory>/worker.ign > <installation_directory>/worker.64
$ base64 -w0 <installation_directory>/append-bootstrap.ign > <installation_directory>/append-bootstrap.64
ImportantIf you plan to add more compute machines to your cluster after you finish installation, do not delete these files.
Obtain the RHCOS OVA image. Images are available from the RHCOS image mirror page.
ImportantThe RHCOS images might not change with every release of OpenShift Container Platform. You must download an image with the highest version that is less than or equal to the OpenShift Container Platform version that you install. Use the image version that matches your OpenShift Container Platform version if it is available.
The filename contains the OpenShift Container Platform version number in the format
rhcos-vmware.<architecture>.ova
.In the vSphere Client, create a folder in your datacenter to store your VMs.
- Click the VMs and Templates view.
- Right-click the name of your datacenter.
- Click New Folder → New VM and Template Folder.
-
In the window that is displayed, enter the folder name. If you did not specify an existing folder in the
install-config.yaml
file, create a folder with the same name as the infrastructure ID.
In the vSphere Client, create a template for the OVA image and then clone the template as needed.
NoteIn the following steps, you create a template and then clone the template for all of your cluster machines. You then provide the location for the Ignition config file for that cloned machine type when you provision the VMs.
- From the Hosts and Clusters tab, right-click your cluster name and select Deploy OVF Template.
- On the Select an OVF tab, specify the name of the RHCOS OVA file that you downloaded.
-
On the Select a name and folder tab, set a Virtual machine name for your template, such as
Template-RHCOS
. Click the name of your vSphere cluster and select the folder you created in the previous step. - On the Select a compute resource tab, click the name of your vSphere cluster.
On the Select storage tab, configure the storage options for your VM.
- Select Thin Provision or Thick Provision, based on your storage preferences.
-
Select the datastore that you specified in your
install-config.yaml
file.
- On the Select network tab, specify the network that you configured for the cluster, if available.
When creating the OVF template, do not specify values on the Customize template tab or configure the template any further.
ImportantDo not start the original VM template. The VM template must remain off and must be cloned for new RHCOS machines. Starting the VM template configures the VM template as a VM on the platform, which prevents it from being used as a template that machine sets can apply configurations to.
After the template deploys, deploy a VM for a machine in the cluster.
- Right-click the template’s name and click Clone → Clone to Virtual Machine.
-
On the Select a name and folder tab, specify a name for the VM. You might include the machine type in the name, such as
control-plane-0
orcompute-1
. - On the Select a name and folder tab, select the name of the folder that you created for the cluster.
- On the Select a compute resource tab, select the name of a host in your datacenter.
- Optional: On the Select storage tab, customize the storage options.
- On the Select clone options, select Customize this virtual machine’s hardware.
On the Customize hardware tab, click VM Options → Advanced.
- Optional: In the event of cluster performance issues, from the Latency Sensitivity list, select High.
Click Edit Configuration, and on the Configuration Parameters window, click Add Configuration Params. Define the following parameter names and values:
-
guestinfo.ignition.config.data
: Paste the contents of the base64-encoded Ignition config file for this machine type. -
guestinfo.ignition.config.data.encoding
: Specifybase64
. -
disk.EnableUUID
: SpecifyTRUE
.
-
Alternatively, prior to powering on the virtual machine add via vApp properties:
- Navigate to a virtual machine from the vCenter Server inventory.
- On the Configure tab, expand Settings and select vApp options.
- Scroll down and under Properties apply the configurations from above.
- In the Virtual Hardware panel of the Customize hardware tab, modify the specified values as required. Ensure that the amount of RAM, CPU, and disk storage meets the minimum requirements for the machine type.
- Complete the configuration and power on the VM.
Create the rest of the machines for your cluster by following the preceding steps for each machine.
ImportantYou must create the bootstrap and control plane machines at this time. Because some pods are deployed on compute machines by default, also create at least two compute machines before you install the cluster.
1.4.14. Creating more Red Hat Enterprise Linux CoreOS (RHCOS) machines in vSphere
You can create more compute machines for your cluster that uses user-provisioned infrastructure on VMware vSphere.
Prerequisites
- Obtain the base64-encoded Ignition file for your compute machines.
- You have access to the vSphere template that you created for your cluster.
Procedure
After the template deploys, deploy a VM for a machine in the cluster.
- Right-click the template’s name and click Clone → Clone to Virtual Machine.
-
On the Select a name and folder tab, specify a name for the VM. You might include the machine type in the name, such as
compute-1
. - On the Select a name and folder tab, select the name of the folder that you created for the cluster.
- On the Select a compute resource tab, select the name of a host in your datacenter.
- Optional: On the Select storage tab, customize the storage options.
- On the Select clone options, select Customize this virtual machine’s hardware.
On the Customize hardware tab, click VM Options → Advanced.
- From the Latency Sensitivity list, select High.
Click Edit Configuration, and on the Configuration Parameters window, click Add Configuration Params. Define the following parameter names and values:
-
guestinfo.ignition.config.data
: Paste the contents of the base64-encoded compute Ignition config file for this machine type. -
guestinfo.ignition.config.data.encoding
: Specifybase64
. -
disk.EnableUUID
: SpecifyTRUE
.
-
- In the Virtual Hardware panel of the Customize hardware tab, modify the specified values as required. Ensure that the amount of RAM, CPU, and disk storage meets the minimum requirements for the machine type. Also, make sure to select the correct network under Add network adapter if there are multiple networks available.
- Complete the configuration and power on the VM.
- Continue to create more compute machines for your cluster.
1.4.15. Installing the CLI by downloading the binary
You can install the OpenShift CLI (oc
) in order to interact with OpenShift Container Platform from a command-line interface. You can install oc
on Linux, Windows, or macOS.
If you installed an earlier version of oc
, you cannot use it to complete all of the commands in OpenShift Container Platform 4.5. Download and install the new version of oc
.
1.4.15.1. Installing the CLI on Linux
You can install the OpenShift CLI (oc
) binary on Linux by using the following procedure.
Procedure
- Navigate to the Infrastructure Provider page on the Red Hat OpenShift Cluster Manager site.
- Select your infrastructure provider, and, if applicable, your installation type.
- In the Command line interface section, select Linux from the drop-down menu and click Download command-line tools.
Unpack the archive:
$ tar xvzf <file>
Place the
oc
binary in a directory that is on yourPATH
.To check your
PATH
, execute the following command:$ echo $PATH
After you install the CLI, it is available using the oc
command:
$ oc <command>
1.4.15.2. Installing the CLI on Windows
You can install the OpenShift CLI (oc
) binary on Windows by using the following procedure.
Procedure
- Navigate to the Infrastructure Provider page on the Red Hat OpenShift Cluster Manager site.
- Select your infrastructure provider, and, if applicable, your installation type.
- In the Command line interface section, select Windows from the drop-down menu and click Download command-line tools.
- Unzip the archive with a ZIP program.
Move the
oc
binary to a directory that is on yourPATH
.To check your
PATH
, open the command prompt and execute the following command:C:\> path
After you install the CLI, it is available using the oc
command:
C:\> oc <command>
1.4.15.3. Installing the CLI on macOS
You can install the OpenShift CLI (oc
) binary on macOS by using the following procedure.
Procedure
- Navigate to the Infrastructure Provider page on the Red Hat OpenShift Cluster Manager site.
- Select your infrastructure provider, and, if applicable, your installation type.
- In the Command line interface section, select MacOS from the drop-down menu and click Download command-line tools.
- Unpack and unzip the archive.
Move the
oc
binary to a directory on your PATH.To check your
PATH
, open a terminal and execute the following command:$ echo $PATH
After you install the CLI, it is available using the oc
command:
$ oc <command>
1.4.16. Creating the cluster
To create the OpenShift Container Platform cluster, you wait for the bootstrap process to complete on the machines that you provisioned by using the Ignition config files that you generated with the installation program.
Prerequisites
- Create the required infrastructure for the cluster.
- You obtained the installation program and generated the Ignition config files for your cluster.
- You used the Ignition config files to create RHCOS machines for your cluster.
- Your machines have direct Internet access or have an HTTP or HTTPS proxy available.
Procedure
Monitor the bootstrap process:
$ ./openshift-install --dir=<installation_directory> wait-for bootstrap-complete \ 1 --log-level=info 2
Example output
INFO Waiting up to 30m0s for the Kubernetes API at https://api.test.example.com:6443... INFO API v1.18.3 up INFO Waiting up to 30m0s for bootstrapping to complete... INFO It is now safe to remove the bootstrap resources
The command succeeds when the Kubernetes API server signals that it has been bootstrapped on the control plane machines.
After bootstrap process is complete, remove the bootstrap machine from the load balancer.
ImportantYou must remove the bootstrap machine from the load balancer at this point. You can also remove or reformat the machine itself.
1.4.17. Logging in to the cluster
You can log in to your cluster as a default system user by exporting the cluster kubeconfig
file. The kubeconfig
file contains information about the cluster that is used by the CLI to connect a client to the correct cluster and API server. The file is specific to a cluster and is created during OpenShift Container Platform installation.
Prerequisites
- Deploy an OpenShift Container Platform cluster.
-
Install the
oc
CLI.
Procedure
Export the
kubeadmin
credentials:$ export KUBECONFIG=<installation_directory>/auth/kubeconfig 1
- 1
- For
<installation_directory>
, specify the path to the directory that you stored the installation files in.
Verify you can run
oc
commands successfully using the exported configuration:$ oc whoami
Example output
system:admin
1.4.18. Approving the certificate signing requests for your machines
When you add machines to a cluster, two pending certificate signing requests (CSRs) are generated for each machine that you added. You must confirm that these CSRs are approved or, if necessary, approve them yourself. The client requests must be approved first, followed by the server requests.
Prerequisites
- You added machines to your cluster.
Procedure
Confirm that the cluster recognizes the machines:
$ oc get nodes
Example output
NAME STATUS ROLES AGE VERSION master-0 Ready master 63m v1.18.3 master-1 Ready master 63m v1.18.3 master-2 Ready master 64m v1.18.3 worker-0 NotReady worker 76s v1.18.3 worker-1 NotReady worker 70s v1.18.3
The output lists all of the machines that you created.
Review the pending CSRs and ensure that you see the client requests with the
Pending
orApproved
status for each machine that you added to the cluster:$ oc get csr
Example output
NAME AGE REQUESTOR CONDITION csr-8b2br 15m system:serviceaccount:openshift-machine-config-operator:node-bootstrapper Pending csr-8vnps 15m system:serviceaccount:openshift-machine-config-operator:node-bootstrapper Pending ...
In this example, two machines are joining the cluster. You might see more approved CSRs in the list.
If the CSRs were not approved, after all of the pending CSRs for the machines you added are in
Pending
status, approve the CSRs for your cluster machines:NoteBecause the CSRs rotate automatically, approve your CSRs within an hour of adding the machines to the cluster. If you do not approve them within an hour, the certificates will rotate, and more than two certificates will be present for each node. You must approve all of these certificates. Once the client CSR is approved, the Kubelet creates a secondary CSR for the serving certificate, which requires manual approval. Then, subsequent serving certificate renewal requests are automatically approved by the
machine-approver
if the Kubelet requests a new certificate with identical parameters.To approve them individually, run the following command for each valid CSR:
$ oc adm certificate approve <csr_name> 1
- 1
<csr_name>
is the name of a CSR from the list of current CSRs.
To approve all pending CSRs, run the following command:
$ oc get csr -o go-template='{{range .items}}{{if not .status}}{{.metadata.name}}{{"\n"}}{{end}}{{end}}' | xargs --no-run-if-empty oc adm certificate approve
Now that your client requests are approved, you must review the server requests for each machine that you added to the cluster:
$ oc get csr
Example output
NAME AGE REQUESTOR CONDITION csr-bfd72 5m26s system:node:ip-10-0-50-126.us-east-2.compute.internal Pending csr-c57lv 5m26s system:node:ip-10-0-95-157.us-east-2.compute.internal Pending ...
If the remaining CSRs are not approved, and are in the
Pending
status, approve the CSRs for your cluster machines:To approve them individually, run the following command for each valid CSR:
$ oc adm certificate approve <csr_name> 1
- 1
<csr_name>
is the name of a CSR from the list of current CSRs.
To approve all pending CSRs, run the following command:
$ oc get csr -o go-template='{{range .items}}{{if not .status}}{{.metadata.name}}{{"\n"}}{{end}}{{end}}' | xargs oc adm certificate approve
After all client and server CSRs have been approved, the machines have the
Ready
status. Verify this by running the following command:$ oc get nodes
Example output
NAME STATUS ROLES AGE VERSION master-0 Ready master 73m v1.20.0 master-1 Ready master 73m v1.20.0 master-2 Ready master 74m v1.20.0 worker-0 Ready worker 11m v1.20.0 worker-1 Ready worker 11m v1.20.0
NoteIt can take a few minutes after approval of the server CSRs for the machines to transition to the
Ready
status.
Additional information
- For more information on CSRs, see Certificate Signing Requests.
1.4.19. Initial Operator configuration
After the control plane initializes, you must immediately configure some Operators so that they all become available.
Prerequisites
- Your control plane has initialized.
Procedure
Watch the cluster components come online:
$ watch -n5 oc get clusteroperators
Example output
NAME VERSION AVAILABLE PROGRESSING DEGRADED SINCE authentication 4.5.4 True False False 69s cloud-credential 4.5.4 True False False 12m cluster-autoscaler 4.5.4 True False False 11m console 4.5.4 True False False 46s dns 4.5.4 True False False 11m image-registry 4.5.4 True False False 5m26s ingress 4.5.4 True False False 5m36s kube-apiserver 4.5.4 True False False 8m53s kube-controller-manager 4.5.4 True False False 7m24s kube-scheduler 4.5.4 True False False 12m machine-api 4.5.4 True False False 12m machine-config 4.5.4 True False False 7m36s marketplace 4.5.4 True False False 7m54m monitoring 4.5.4 True False False 7h54s network 4.5.4 True False False 5m9s node-tuning 4.5.4 True False False 11m openshift-apiserver 4.5.4 True False False 11m openshift-controller-manager 4.5.4 True False False 5m943s openshift-samples 4.5.4 True False False 3m55s operator-lifecycle-manager 4.5.4 True False False 11m operator-lifecycle-manager-catalog 4.5.4 True False False 11m service-ca 4.5.4 True False False 11m service-catalog-apiserver 4.5.4 True False False 5m26s service-catalog-controller-manager 4.5.4 True False False 5m25s storage 4.5.4 True False False 5m30s
- Configure the Operators that are not available.
1.4.19.1. Image registry removed during installation
On platforms that do not provide shareable object storage, the OpenShift Image Registry Operator bootstraps itself as Removed
. This allows openshift-installer
to complete installations on these platform types.
After installation, you must edit the Image Registry Operator configuration to switch the managementState
from Removed
to Managed
.
The Prometheus console provides an ImageRegistryRemoved
alert, for example:
"Image Registry has been removed. ImageStreamTags
, BuildConfigs
and DeploymentConfigs
which reference ImageStreamTags
may not work as expected. Please configure storage and update the config to Managed
state by editing configs.imageregistry.operator.openshift.io."
1.4.19.2. Image registry storage configuration
The Image Registry Operator is not initially available for platforms that do not provide default storage. After installation, you must configure your registry to use storage so that the Registry Operator is made available.
Instructions are shown for configuring a persistent volume, which is required for production clusters. Where applicable, instructions are shown for configuring an empty directory as the storage location, which is available for only non-production clusters.
Additional instructions are provided for allowing the image registry to use block storage types by using the Recreate
rollout strategy during upgrades.
1.4.19.2.1. Configuring block registry storage for VMware vSphere
To allow the image registry to use block storage types such as vSphere Virtual Machine Disk (VMDK) during upgrades as a cluster administrator, you can use the Recreate
rollout strategy.
Block storage volumes are supported but not recommended for use with image registry on production clusters. An installation where the registry is configured on block storage is not highly available because the registry cannot have more than one replica.
Procedure
To set the image registry storage as a block storage type, patch the registry so that it uses the
Recreate
rollout strategy and runs with only1
replica:$ oc patch config.imageregistry.operator.openshift.io/cluster --type=merge -p '{"spec":{"rolloutStrategy":"Recreate","replicas":1}}'
Provision the PV for the block storage device, and create a PVC for that volume. The requested block volume uses the ReadWriteOnce (RWO) access mode.
Create a
pvc.yaml
file with the following contents to define a VMware vSpherePersistentVolumeClaim
object:kind: PersistentVolumeClaim apiVersion: v1 metadata: name: image-registry-storage 1 spec: accessModes: - ReadWriteOnce 2 resources: requests: storage: 100Gi 3
Create the
PersistentVolumeClaim
object from the file:$ oc create -f pvc.yaml -n openshift-image-registry
Edit the registry configuration so that it references the correct PVC:
$ oc edit config.imageregistry.operator.openshift.io -o yaml
Example output
storage: pvc: claim: 1
- 1
- Creating a custom PVC allows you to leave the
claim
field blank for the default automatic creation of animage-registry-storage
PVC.
For instructions about configuring registry storage so that it references the correct PVC, see Configuring the registry for vSphere.
1.4.20. Completing installation on user-provisioned infrastructure
After you complete the Operator configuration, you can finish installing the cluster on infrastructure that you provide.
Prerequisites
- Your control plane has initialized.
- You have completed the initial Operator configuration.
Procedure
Confirm that all the cluster components are online with the following command:
$ watch -n5 oc get clusteroperators
Example output
NAME VERSION AVAILABLE PROGRESSING DEGRADED SINCE authentication 4.5.4 True False False 7m56s cloud-credential 4.5.4 True False False 31m cluster-autoscaler 4.5.4 True False False 16m console 4.5.4 True False False 10m csi-snapshot-controller 4.5.4 True False False 16m dns 4.5.4 True False False 22m etcd 4.5.4 False False False 25s image-registry 4.5.4 True False False 16m ingress 4.5.4 True False False 16m insights 4.5.4 True False False 17m kube-apiserver 4.5.4 True False False 19m kube-controller-manager 4.5.4 True False False 20m kube-scheduler 4.5.4 True False False 20m kube-storage-version-migrator 4.5.4 True False False 16m machine-api 4.5.4 True False False 22m machine-config 4.5.4 True False False 22m marketplace 4.5.4 True False False 16m monitoring 4.5.4 True False False 10m network 4.5.4 True False False 23m node-tuning 4.5.4 True False False 23m openshift-apiserver 4.5.4 True False False 17m openshift-controller-manager 4.5.4 True False False 15m openshift-samples 4.5.4 True False False 16m operator-lifecycle-manager 4.5.4 True False False 22m operator-lifecycle-manager-catalog 4.5.4 True False False 22m operator-lifecycle-manager-packageserver 4.5.4 True False False 18m service-ca 4.5.4 True False False 23m service-catalog-apiserver 4.5.4 True False False 23m service-catalog-controller-manager 4.5.4 True False False 23m storage 4.5.4 True False False 17m
Alternatively, the following command notifies you when all of the clusters are available. It also retrieves and displays credentials:
$ ./openshift-install --dir=<installation_directory> wait-for install-complete 1
- 1
- For
<installation_directory>
, specify the path to the directory that you stored the installation files in.
Example output
INFO Waiting up to 30m0s for the cluster to initialize...
The command succeeds when the Cluster Version Operator finishes deploying the OpenShift Container Platform cluster from Kubernetes API server.
ImportantThe Ignition config files that the installation program generates contain certificates that expire after 24 hours, which are then renewed at that time. If the cluster is shut down before renewing the certificates and the cluster is later restarted after the 24 hours have elapsed, the cluster automatically recovers the expired certificates. The exception is that you must manually approve the pending
node-bootstrapper
certificate signing requests (CSRs) to recover kubelet certificates. See the documentation for Recovering from expired control plane certificates for more information.Confirm that the Kubernetes API server is communicating with the pods.
To view a list of all pods, use the following command:
$ oc get pods --all-namespaces
Example output
NAMESPACE NAME READY STATUS RESTARTS AGE openshift-apiserver-operator openshift-apiserver-operator-85cb746d55-zqhs8 1/1 Running 1 9m openshift-apiserver apiserver-67b9g 1/1 Running 0 3m openshift-apiserver apiserver-ljcmx 1/1 Running 0 1m openshift-apiserver apiserver-z25h4 1/1 Running 0 2m openshift-authentication-operator authentication-operator-69d5d8bf84-vh2n8 1/1 Running 0 5m ...
View the logs for a pod that is listed in the output of the previous command by using the following command:
$ oc logs <pod_name> -n <namespace> 1
- 1
- Specify the pod name and namespace, as shown in the output of the previous command.
If the pod logs display, the Kubernetes API server can communicate with the cluster machines.
You can add extra compute machines after the cluster installation is completed by following Adding compute machines to vSphere.
1.4.21. Backing up VMware vSphere volumes
OpenShift Container Platform provisions new volumes as independent persistent disks to freely attach and detach the volume on any node in the cluster. As a consequence, it is not possible to back up volumes that use snapshots, or to restore volumes from snapshots. See Snapshot Limitations for more information.
Procedure
To create a backup of persistent volumes:
- Stop the application that is using the persistent volume.
- Clone the persistent volume.
- Restart the application.
- Create a backup of the cloned volume.
- Delete the cloned volume.
1.4.22. Next steps
- Customize your cluster.
- If necessary, you can opt out of remote health reporting.
- Set up your registry and configure registry storage.
1.5. Installing a cluster on vSphere in a restricted network with user-provisioned infrastructure
In OpenShift Container Platform version 4.5, you can install a cluster on VMware vSphere infrastructure that you provision in a restricted network.
The steps for performing a user-provisioned infrastructure installation are provided as an example only. Installing a cluster with infrastructure you provide requires knowledge of the vSphere platform and the installation process of OpenShift Container Platform. Use the user-provisioned infrastructure installation instructions as a guide; you are free to create the required resources through other methods.
1.5.1. Prerequisites
Create a registry on your mirror host and obtain the
imageContentSources
data for your version of OpenShift Container Platform.ImportantBecause the installation media is on the mirror host, you can use that computer to complete all installation steps.
-
Provision persistent storage for your cluster. To deploy a private image registry, your storage must provide
ReadWriteMany
access modes. - Review details about the OpenShift Container Platform installation and update processes.
If you use a firewall and plan to use telemetry, you must configure the firewall to allow the sites that your cluster requires access to.
NoteBe sure to also review this site list if you are configuring a proxy.
1.5.2. About installations in restricted networks
In OpenShift Container Platform 4.5, you can perform an installation that does not require an active connection to the Internet to obtain software components. Restricted network installations can be completed using installer-provisioned infrastructure or user-provisioned infrastructure, depending on the cloud platform to which you are installing the cluster.
If you choose to perform a restricted network installation on a cloud platform, you still require access to its cloud APIs. Some cloud functions, like Amazon Web Service’s IAM service, require Internet access, so you might still require Internet access. Depending on your network, you might require less Internet access for an installation on bare metal hardware or on VMware vSphere.
To complete a restricted network installation, you must create a registry that mirrors the contents of the OpenShift Container Platform registry and contains the installation media. You can create this registry on a mirror host, which can access both the Internet and your closed network, or by using other methods that meet your restrictions.
Because of the complexity of the configuration for user-provisioned installations, consider completing a standard user-provisioned infrastructure installation before you attempt a restricted network installation using user-provisioned infrastructure. Completing this test installation might make it easier to isolate and troubleshoot any issues that might arise during your installation in a restricted network.
1.5.2.1. Additional limits
Clusters in restricted networks have the following additional limitations and restrictions:
-
The
ClusterVersion
status includes anUnable to retrieve available updates
error. - By default, you cannot use the contents of the Developer Catalog because you cannot access the required image stream tags.
1.5.3. Internet and Telemetry access for OpenShift Container Platform
In OpenShift Container Platform 4.5, you require access to the Internet to obtain the images that are necessary to install your cluster. The Telemetry service, which runs by default to provide metrics about cluster health and the success of updates, also requires Internet access. If your cluster is connected to the Internet, Telemetry runs automatically, and your cluster is registered to the Red Hat OpenShift Cluster Manager (OCM).
Once you confirm that your Red Hat OpenShift Cluster Manager inventory is correct, either maintained automatically by Telemetry or manually using OCM, use subscription watch to track your OpenShift Container Platform subscriptions at the account or multi-cluster level.
You must have Internet access to:
- Access the Red Hat OpenShift Cluster Manager page to download the installation program and perform subscription management. If the cluster has Internet access and you do not disable Telemetry, that service automatically entitles your cluster.
- Access Quay.io to obtain the packages that are required to install your cluster.
- Obtain the packages that are required to perform cluster updates.
If your cluster cannot have direct Internet access, you can perform a restricted network installation on some types of infrastructure that you provision. During that process, you download the content that is required and use it to populate a mirror registry with the packages that you need to install a cluster and generate the installation program. With some installation types, the environment that you install your cluster in will not require Internet access. Before you update the cluster, you update the content of the mirror registry.
1.5.4. VMware vSphere infrastructure requirements
You must install the OpenShift Container Platform cluster on a VMware vSphere version 6 instance that meets the requirements for the components that you use.
Component | Minimum supported versions | Description |
---|---|---|
Hypervisor | vSphere 6.5 with HW version 13 | This version is the minimum version that Red Hat Enterprise Linux CoreOS (RHCOS) supports. See the Red Hat Enterprise Linux 8 supported hypervisors list. |
Networking (NSX-T) | vSphere 6.5U3 or vSphere 6.7U2 and later | vSphere 6.5U3 or vSphere 6.7U2+ are required for OpenShift Container Platform. VMware’s NSX Container Plug-in (NCP) 3.0.2 is certified with OpenShift Container Platform 4.5 and NSX-T 3.x+. |
Storage with in-tree drivers | vSphere 6.5 and later | This plug-in creates vSphere storage by using the in-tree storage drivers for vSphere included in OpenShift Container Platform. |
If you use a vSphere version 6.5 instance, consider upgrading to 6.7U2 before you install OpenShift Container Platform.
You must ensure that the time on your ESXi hosts is synchronized before you install OpenShift Container Platform. See Edit Time Configuration for a Host in the VMware documentation.
A limitation of using VPC is that the Storage Distributed Resource Scheduler (SDRS) is not supported. See vSphere Storage for Kubernetes FAQs in the VMware documentation.
1.5.5. Machine requirements for a cluster with user-provisioned infrastructure
For a cluster that contains user-provisioned infrastructure, you must deploy all of the required machines.
1.5.5.1. Required machines
The smallest OpenShift Container Platform clusters require the following hosts:
- One temporary bootstrap machine
- Three control plane, or master, machines
- At least two compute machines, which are also known as worker machines.
The cluster requires the bootstrap machine to deploy the OpenShift Container Platform cluster on the three control plane machines. You can remove the bootstrap machine after you install the cluster.
To maintain high availability of your cluster, use separate physical hosts for these cluster machines.
The bootstrap and control plane machines must use Red Hat Enterprise Linux CoreOS (RHCOS) as the operating system.
Note that RHCOS is based on Red Hat Enterprise Linux (RHEL) 8 and inherits all of its hardware certifications and requirements. See Red Hat Enterprise Linux technology capabilities and limits.
All virtual machines must reside in the same datastore and in the same folder as the installer.
1.5.5.2. Network connectivity requirements
All the Red Hat Enterprise Linux CoreOS (RHCOS) machines require network in initramfs
during boot to fetch Ignition config files from the Machine Config Server. During the initial boot, the machines require either a DHCP server or that static IP addresses be set in order to establish a network connection to download their Ignition config files. Additionally, each OpenShift Container Platform node in the cluster must have access to a Network Time Protocol (NTP) server. If a DHCP server provides NTP servers information, the chrony time service on the Red Hat Enterprise Linux CoreOS (RHCOS) machines read the information and can sync the clock with the NTP servers.
1.5.5.3. Minimum resource requirements
Each cluster machine must meet the following minimum requirements:
Machine | Operating System | vCPU [1] | Virtual RAM | Storage |
---|---|---|---|---|
Bootstrap | RHCOS | 4 | 16 GB | 120 GB |
Control plane | RHCOS | 4 | 16 GB | 120 GB |
Compute | RHCOS or RHEL 7.8 - 7.9 | 2 | 8 GB | 120 GB |
- 1 vCPU is equivalent to 1 physical core when simultaneous multithreading (SMT), or hyperthreading, is not enabled. When enabled, use the following formula to calculate the corresponding ratio: (threads per core × cores) × sockets = vCPUs.
1.5.5.4. Certificate signing requests management
Because your cluster has limited access to automatic machine management when you use infrastructure that you provision, you must provide a mechanism for approving cluster certificate signing requests (CSRs) after installation. The kube-controller-manager
only approves the kubelet client CSRs. The machine-approver
cannot guarantee the validity of a serving certificate that is requested by using kubelet credentials because it cannot confirm that the correct machine issued the request. You must determine and implement a method of verifying the validity of the kubelet serving certificate requests and approving them.
1.5.6. Creating the user-provisioned infrastructure
Before you deploy an OpenShift Container Platform cluster that uses user-provisioned infrastructure, you must create the underlying infrastructure.
Prerequisites
- Review the OpenShift Container Platform 4.x Tested Integrations page before you create the supporting infrastructure for your cluster.
Procedure
- Configure DHCP or set static IP addresses on each node.
- Provision the required load balancers.
- Configure the ports for your machines.
- Configure DNS.
- Ensure network connectivity.
1.5.6.1. Networking requirements for user-provisioned infrastructure
All the Red Hat Enterprise Linux CoreOS (RHCOS) machines require network in initramfs
during boot to fetch Ignition config from the machine config server.
During the initial boot, the machines require either a DHCP server or that static IP addresses be set on each host in the cluster in order to establish a network connection, which allows them to download their Ignition config files.
It is recommended to use the DHCP server to manage the machines for the cluster long-term. Ensure that the DHCP server is configured to provide persistent IP addresses and host names to the cluster machines.
The Kubernetes API server, which runs on each master node after a successful cluster installation, must be able to resolve the node names of the cluster machines. If the API servers and worker nodes are in different zones, you can configure a default DNS search zone to allow the API server to resolve the node names. Another supported approach is to always refer to hosts by their fully-qualified domain names in both the node objects and all DNS requests.
You must configure the network connectivity between machines to allow cluster components to communicate. Each machine must be able to resolve the host names of all other machines in the cluster.
Protocol | Port | Description |
---|---|---|
ICMP | N/A | Network reachability tests |
TCP |
| Metrics |
|
Host level services, including the node exporter on ports | |
| The default ports that Kubernetes reserves | |
| openshift-sdn | |
UDP |
| VXLAN and Geneve |
| VXLAN and Geneve | |
|
Host level services, including the node exporter on ports | |
TCP/UDP |
| Kubernetes node port |
Protocol | Port | Description |
---|---|---|
TCP |
| Kubernetes API |
Protocol | Port | Description |
---|---|---|
TCP |
| etcd server and peer ports |
Network topology requirements
The infrastructure that you provision for your cluster must meet the following network topology requirements.
OpenShift Container Platform requires all nodes to have internet access to pull images for platform containers and provide telemetry data to Red Hat.
Load balancers
Before you install OpenShift Container Platform, you must provision two load balancers that meet the following requirements:
API load balancer: Provides a common endpoint for users, both human and machine, to interact with and configure the platform. Configure the following conditions:
- Layer 4 load balancing only. This can be referred to as Raw TCP, SSL Passthrough, or SSL Bridge mode. If you use SSL Bridge mode, you must enable Server Name Indication (SNI) for the API routes.
- A stateless load balancing algorithm. The options vary based on the load balancer implementation.
NoteSession persistence is not required for the API load balancer to function properly.
Configure the following ports on both the front and back of the load balancers:
Table 1.29. API load balancer Port Back-end machines (pool members) Internal External Description 6443
Bootstrap and control plane. You remove the bootstrap machine from the load balancer after the bootstrap machine initializes the cluster control plane. You must configure the
/readyz
endpoint for the API server health check probe.X
X
Kubernetes API server
22623
Bootstrap and control plane. You remove the bootstrap machine from the load balancer after the bootstrap machine initializes the cluster control plane.
X
Machine config server
NoteThe load balancer must be configured to take a maximum of 30 seconds from the time the API server turns off the
/readyz
endpoint to the removal of the API server instance from the pool. Within the time frame after/readyz
returns an error or becomes healthy, the endpoint must have been removed or added. Probing every 5 or 10 seconds, with two successful requests to become healthy and three to become unhealthy, are well-tested values.Application Ingress load balancer: Provides an Ingress point for application traffic flowing in from outside the cluster. Configure the following conditions:
- Layer 4 load balancing only. This can be referred to as Raw TCP, SSL Passthrough, or SSL Bridge mode. If you use SSL Bridge mode, you must enable Server Name Indication (SNI) for the Ingress routes.
- A connection-based or session-based persistence is recommended, based on the options available and types of applications that will be hosted on the platform.
Configure the following ports on both the front and back of the load balancers:
Table 1.30. Application Ingress load balancer Port Back-end machines (pool members) Internal External Description 443
The machines that run the Ingress router pods, compute, or worker, by default.
X
X
HTTPS traffic
80
The machines that run the Ingress router pods, compute, or worker, by default.
X
X
HTTP traffic
If the true IP address of the client can be seen by the load balancer, enabling source IP-based session persistence can improve performance for applications that use end-to-end TLS encryption.
A working configuration for the Ingress router is required for an OpenShift Container Platform cluster. You must configure the Ingress router after the control plane initializes.
Ethernet adaptor hardware address requirements
When provisioning VMs for the cluster, the ethernet interfaces configured for each VM must use a MAC address from the VMware Organizationally Unique Identifier (OUI) allocation ranges:
-
00:05:69:00:00:00
to00:05:69:FF:FF:FF
-
00:0c:29:00:00:00
to00:0c:29:FF:FF:FF
-
00:1c:14:00:00:00
to00:1c:14:FF:FF:FF
-
00:50:56:00:00:00
to00:50:56:FF:FF:FF
If a MAC address outside the VMware OUI is used, the cluster installation will not succeed.
NTP configuration
OpenShift Container Platform clusters are configured to use a public Network Time Protocol (NTP) server by default. If you want to use a local enterprise NTP server, or if your cluster is being deployed in a disconnected network, you can configure the cluster to use a specific time server. For more information, see the documentation for Configuring chrony time service.
If a DHCP server provides NTP server information, the chrony time service on the Red Hat Enterprise Linux CoreOS (RHCOS) machines read the information and can sync the clock with the NTP servers.
Additional resources
1.5.6.2. User-provisioned DNS requirements
DNS is used for name resolution and reverse name resolution. DNS A/AAAA or CNAME records are used for name resolution and PTR records are used for reverse name resolution. The reverse records are important because Red Hat Enterprise Linux CoreOS (RHCOS) uses the reverse records to set the host name for all the nodes. Additionally, the reverse records are used to generate the certificate signing requests (CSR) that OpenShift Container Platform needs to operate.
The following DNS records are required for an OpenShift Container Platform cluster that uses user-provisioned infrastructure. In each record, <cluster_name>
is the cluster name and <base_domain>
is the cluster base domain that you specify in the install-config.yaml
file. A complete DNS record takes the form: <component>.<cluster_name>.<base_domain>.
.
Component | Record | Description |
---|---|---|
Kubernetes API |
| Add a DNS A/AAAA or CNAME record, and a DNS PTR record, to identify the load balancer for the control plane machines. These records must be resolvable by both clients external to the cluster and from all the nodes within the cluster. |
| Add a DNS A/AAAA or CNAME record, and a DNS PTR record, to identify the load balancer for the control plane machines. These records must be resolvable from all the nodes within the cluster. Important The API server must be able to resolve the worker nodes by the host names that are recorded in Kubernetes. If the API server cannot resolve the node names, then proxied API calls can fail, and you cannot retrieve logs from pods. | |
Routes |
| Add a wildcard DNS A/AAAA or CNAME record that refers to the load balancer that targets the machines that run the Ingress router pods, which are the worker nodes by default. These records must be resolvable by both clients external to the cluster and from all the nodes within the cluster. |
Bootstrap |
| Add a DNS A/AAAA or CNAME record, and a DNS PTR record, to identify the bootstrap machine. These records must be resolvable by the nodes within the cluster. |
Master hosts |
| Add DNS A/AAAA or CNAME records and DNS PTR records to identify each machine for the master nodes. These records must be resolvable by the nodes within the cluster. |
Worker hosts |
| Add DNS A/AAAA or CNAME records and DNS PTR records to identify each machine for the worker nodes. These records must be resolvable by the nodes within the cluster. |
You can use the nslookup <hostname>
command to verify name resolution. You can use the dig -x <ip_address>
command to verify reverse name resolution for the PTR records.
The following example of a BIND zone file shows sample A records for name resolution. The purpose of the example is to show the records that are needed. The example is not meant to provide advice for choosing one name resolution service over another.
Example 1.9. Sample DNS zone database
$TTL 1W @ IN SOA ns1.example.com. root ( 2019070700 ; serial 3H ; refresh (3 hours) 30M ; retry (30 minutes) 2W ; expiry (2 weeks) 1W ) ; minimum (1 week) IN NS ns1.example.com. IN MX 10 smtp.example.com. ; ; ns1 IN A 192.168.1.5 smtp IN A 192.168.1.5 ; helper IN A 192.168.1.5 helper.ocp4 IN A 192.168.1.5 ; ; The api identifies the IP of your load balancer. api.ocp4 IN A 192.168.1.5 api-int.ocp4 IN A 192.168.1.5 ; ; The wildcard also identifies the load balancer. *.apps.ocp4 IN A 192.168.1.5 ; ; Create an entry for the bootstrap host. bootstrap.ocp4 IN A 192.168.1.96 ; ; Create entries for the master hosts. master0.ocp4 IN A 192.168.1.97 master1.ocp4 IN A 192.168.1.98 master2.ocp4 IN A 192.168.1.99 ; ; Create entries for the worker hosts. worker0.ocp4 IN A 192.168.1.11 worker1.ocp4 IN A 192.168.1.7 ; ;EOF
The following example BIND zone file shows sample PTR records for reverse name resolution.
Example 1.10. Sample DNS zone database for reverse records
$TTL 1W @ IN SOA ns1.example.com. root ( 2019070700 ; serial 3H ; refresh (3 hours) 30M ; retry (30 minutes) 2W ; expiry (2 weeks) 1W ) ; minimum (1 week) IN NS ns1.example.com. ; ; The syntax is "last octet" and the host must have an FQDN ; with a trailing dot. 97 IN PTR master0.ocp4.example.com. 98 IN PTR master1.ocp4.example.com. 99 IN PTR master2.ocp4.example.com. ; 96 IN PTR bootstrap.ocp4.example.com. ; 5 IN PTR api.ocp4.example.com. 5 IN PTR api-int.ocp4.example.com. ; 11 IN PTR worker0.ocp4.example.com. 7 IN PTR worker1.ocp4.example.com. ; ;EOF
1.5.7. Generating an SSH private key and adding it to the agent
If you want to perform installation debugging or disaster recovery on your cluster, you must provide an SSH key to both your ssh-agent
and the installation program. You can use this key to access the bootstrap machine in a public cluster to troubleshoot installation issues.
In a production environment, you require disaster recovery and debugging.
You can use this key to SSH into the master nodes as the user core
. When you deploy the cluster, the key is added to the core
user’s ~/.ssh/authorized_keys
list.
You must use a local key, not one that you configured with platform-specific approaches such as AWS key pairs.
Procedure
If you do not have an SSH key that is configured for password-less authentication on your computer, create one. For example, on a computer that uses a Linux operating system, run the following command:
$ ssh-keygen -t ed25519 -N '' \ -f <path>/<file_name> 1
- 1
- Specify the path and file name, such as
~/.ssh/id_rsa
, of the new SSH key. If you have an existing key pair, ensure your public key is in the your~/.ssh
directory.
Running this command generates an SSH key that does not require a password in the location that you specified.
NoteIf you plan to install an OpenShift Container Platform cluster that uses FIPS Validated / Modules in Process cryptographic libraries on the
x86_64
architecture, do not create a key that uses theed25519
algorithm. Instead, create a key that uses thersa
orecdsa
algorithm.Start the
ssh-agent
process as a background task:$ eval "$(ssh-agent -s)"
Example output
Agent pid 31874
If your cluster is in FIPS mode, only use FIPS-compliant algorithms to generate the SSH key. The key must be either RSA or ECDSA.
Add your SSH private key to the
ssh-agent
:$ ssh-add <path>/<file_name> 1
Example output
Identity added: /home/<you>/<path>/<file_name> (<computer_name>)
- 1
- Specify the path and file name for your SSH private key, such as
~/.ssh/id_rsa
Next steps
- When you install OpenShift Container Platform, provide the SSH public key to the installation program. If you install a cluster on infrastructure that you provision, you must provide this key to your cluster’s machines.
1.5.8. Manually creating the installation configuration file
For installations of OpenShift Container Platform that use user-provisioned infrastructure, you manually generate your installation configuration file.
Prerequisites
- Obtain the OpenShift Container Platform installation program and the access token for your cluster.
-
Obtain the
imageContentSources
section from the output of the command to mirror the repository. - Obtain the contents of the certificate for your mirror registry.
Procedure
Create an installation directory to store your required installation assets in:
$ mkdir <installation_directory>
ImportantYou must create a directory. Some installation assets, like bootstrap X.509 certificates have short expiration intervals, so you must not reuse an installation directory. If you want to reuse individual files from another cluster installation, you can copy them into your directory. However, the file names for the installation assets might change between releases. Use caution when copying installation files from an earlier OpenShift Container Platform version.
Customize the following
install-config.yaml
file template and save it in the<installation_directory>
.NoteYou must name this configuration file
install-config.yaml
.-
Unless you use a registry that RHCOS trusts by default, such as
docker.io
, you must provide the contents of the certificate for your mirror repository in theadditionalTrustBundle
section. In most cases, you must provide the certificate for your mirror. -
You must include the
imageContentSources
section from the output of the command to mirror the repository.
-
Unless you use a registry that RHCOS trusts by default, such as
Back up the
install-config.yaml
file so that you can use it to install multiple clusters.ImportantThe
install-config.yaml
file is consumed during the next step of the installation process. You must back it up now.
1.5.8.1. Sample install-config.yaml
file for VMware vSphere
You can customize the install-config.yaml
file to specify more details about your OpenShift Container Platform cluster’s platform or modify the values of the required parameters.
apiVersion: v1 baseDomain: example.com 1 compute: - hyperthreading: Enabled 2 3 name: worker replicas: 0 4 controlPlane: hyperthreading: Enabled 5 6 name: master replicas: 3 7 metadata: name: test 8 platform: vsphere: vcenter: your.vcenter.server 9 username: username 10 password: password 11 datacenter: datacenter 12 defaultDatastore: datastore 13 folder: "/<datacenter_name>/vm/<folder_name>/<subfolder_name>" 14 fips: false 15 pullSecret: '{"auths":{"<local_registry>": {"auth": "<credentials>","email": "you@example.com"}}}' 16 sshKey: 'ssh-ed25519 AAAA...' 17 additionalTrustBundle: | 18 -----BEGIN CERTIFICATE----- ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ -----END CERTIFICATE----- imageContentSources: 19 - mirrors: - <local_registry>/<local_repository_name>/release source: quay.io/openshift-release-dev/ocp-release - mirrors: - <local_registry>/<local_repository_name>/release source: registry.svc.ci.openshift.org/ocp/release
- 1
- The base domain of the cluster. All DNS records must be sub-domains of this base and include the cluster name.
- 2 5
- The
controlPlane
section is a single mapping, but the compute section is a sequence of mappings. To meet the requirements of the different data structures, the first line of thecompute
section must begin with a hyphen,-
, and the first line of thecontrolPlane
section must not. Although both sections currently define a single machine pool, it is possible that future versions of OpenShift Container Platform will support defining multiple compute pools during installation. Only one control plane pool is used. - 3 6
- Whether to enable or disable simultaneous multithreading, or
hyperthreading
. By default, simultaneous multithreading is enabled to increase the performance of your machines' cores. You can disable it by setting the parameter value toDisabled
. If you disable simultaneous multithreading in some cluster machines, you must disable it in all cluster machines.ImportantIf you disable simultaneous multithreading, ensure that your capacity planning accounts for the dramatically decreased machine performance. Your machines must use at least 8 CPUs and 32 GB of RAM if you disable simultaneous multithreading.
- 4
- You must set the value of the
replicas
parameter to0
. This parameter controls the number of workers that the cluster creates and manages for you, which are functions that the cluster does not perform when you use user-provisioned infrastructure. You must manually deploy worker machines for the cluster to use before you finish installing OpenShift Container Platform. - 7
- The number of control plane machines that you add to the cluster. Because the cluster uses this values as the number of etcd endpoints in the cluster, the value must match the number of control plane machines that you deploy.
- 8
- The cluster name that you specified in your DNS records.
- 9
- The fully-qualified host name or IP address of the vCenter server.
- 10
- The name of the user for accessing the server. This user must have at least the roles and privileges that are required for static or dynamic persistent volume provisioning in vSphere.
- 11
- The password associated with the vSphere user.
- 12
- The vSphere datacenter.
- 13
- The default vSphere datastore to use.
- 14
- Optional: For installer-provisioned infrastructure, the absolute path of an existing folder where the installation program creates the virtual machines, for example,
/<datacenter_name>/vm/<folder_name>/<subfolder_name>
. If you do not provide this value, the installation program creates a top-level folder in the datacenter virtual machine folder that is named with the infrastructure ID. If you are providing the infrastructure for the cluster, omit this parameter. - 15
- Whether to enable or disable FIPS mode. By default, FIPS mode is not enabled. If FIPS mode is enabled, the Red Hat Enterprise Linux CoreOS (RHCOS) machines that OpenShift Container Platform runs on bypass the default Kubernetes cryptography suite and use the cryptography modules that are provided with RHCOS instead.
- 16
- The public portion of the default SSH key for the
core
user in Red Hat Enterprise Linux CoreOS (RHCOS).NoteFor production OpenShift Container Platform clusters on which you want to perform installation debugging or disaster recovery, specify an SSH key that your
ssh-agent
process uses. - 17
- Provide the contents of the certificate file that you used for your mirror registry.
- 18
- Provide the
imageContentSources
section from the output of the command to mirror the repository.
1.5.8.2. Configuring the cluster-wide proxy during installation
Production environments can deny direct access to the Internet and instead have an HTTP or HTTPS proxy available. You can configure a new OpenShift Container Platform cluster to use a proxy by configuring the proxy settings in the install-config.yaml
file.
Prerequisites
-
An existing
install-config.yaml
file. Review the sites that your cluster requires access to and determine whether any need to bypass the proxy. By default, all cluster egress traffic is proxied, including calls to hosting cloud provider APIs. Add sites to the
Proxy
object’sspec.noProxy
field to bypass the proxy if necessary.NoteThe
Proxy
objectstatus.noProxy
field is populated with the values of thenetworking.machineNetwork[].cidr
,networking.clusterNetwork[].cidr
, andnetworking.serviceNetwork[]
fields from your installation configuration.For installations on Amazon Web Services (AWS), Google Cloud Platform (GCP), Microsoft Azure, and Red Hat OpenStack Platform (RHOSP), the
Proxy
objectstatus.noProxy
field is also populated with the instance metadata endpoint (169.254.169.254
).
Procedure
Edit your
install-config.yaml
file and add the proxy settings. For example:apiVersion: v1 baseDomain: my.domain.com proxy: httpProxy: http://<username>:<pswd>@<ip>:<port> 1 httpsProxy: http://<username>:<pswd>@<ip>:<port> 2 noProxy: example.com 3 additionalTrustBundle: | 4 -----BEGIN CERTIFICATE----- <MY_TRUSTED_CA_CERT> -----END CERTIFICATE----- ...
- 1
- A proxy URL to use for creating HTTP connections outside the cluster. The URL scheme must be
http
. If you use an MITM transparent proxy network that does not require additional proxy configuration but requires additional CAs, you must not specify anhttpProxy
value. - 2
- A proxy URL to use for creating HTTPS connections outside the cluster. If this field is not specified, then
httpProxy
is used for both HTTP and HTTPS connections. If you use an MITM transparent proxy network that does not require additional proxy configuration but requires additional CAs, you must not specify anhttpsProxy
value. - 3
- A comma-separated list of destination domain names, domains, IP addresses, or other network CIDRs to exclude proxying. Preface a domain with
.
to match subdomains only. For example,.y.com
matchesx.y.com
, but noty.com
. Use*
to bypass proxy for all destinations. - 4
- If provided, the installation program generates a config map that is named
user-ca-bundle
in theopenshift-config
namespace that contains one or more additional CA certificates that are required for proxying HTTPS connections. The Cluster Network Operator then creates atrusted-ca-bundle
config map that merges these contents with the Red Hat Enterprise Linux CoreOS (RHCOS) trust bundle, and this config map is referenced in theProxy
object’strustedCA
field. TheadditionalTrustBundle
field is required unless the proxy’s identity certificate is signed by an authority from the RHCOS trust bundle. If you use an MITM transparent proxy network that does not require additional proxy configuration but requires additional CAs, you must provide the MITM CA certificate.
NoteThe installation program does not support the proxy
readinessEndpoints
field.- Save the file and reference it when installing OpenShift Container Platform.
The installation program creates a cluster-wide proxy that is named cluster
that uses the proxy settings in the provided install-config.yaml
file. If no proxy settings are provided, a cluster
Proxy
object is still created, but it will have a nil spec
.
Only the Proxy
object named cluster
is supported, and no additional proxies can be created.
1.5.9. Creating the Kubernetes manifest and Ignition config files
Because you must modify some cluster definition files and manually start the cluster machines, you must generate the Kubernetes manifest and Ignition config files that the cluster needs to make its machines.
The Ignition config files that the installation program generates contain certificates that expire after 24 hours, which are then renewed at that time. If the cluster is shut down before renewing the certificates and the cluster is later restarted after the 24 hours have elapsed, the cluster automatically recovers the expired certificates. The exception is that you must manually approve the pending node-bootstrapper
certificate signing requests (CSRs) to recover kubelet certificates. See the documentation for Recovering from expired control plane certificates for more information.
Prerequisites
- Obtain the OpenShift Container Platform installation program. For a restricted network installation, these files are on your mirror host.
-
Create the
install-config.yaml
installation configuration file.
Procedure
Generate the Kubernetes manifests for the cluster:
$ ./openshift-install create manifests --dir=<installation_directory> 1
Example output
INFO Consuming Install Config from target directory WARNING Making control-plane schedulable by setting MastersSchedulable to true for Scheduler cluster settings
- 1
- For
<installation_directory>
, specify the installation directory that contains theinstall-config.yaml
file you created.
Because you create your own compute machines later in the installation process, you can safely ignore this warning.
Remove the Kubernetes manifest files that define the control plane machines and compute machine sets:
$ rm -f openshift/99_openshift-cluster-api_master-machines-*.yaml openshift/99_openshift-cluster-api_worker-machineset-*.yaml
Because you create and manage these resources yourself, you do not have to initialize them.
- You can preserve the machine set files to create compute machines by using the machine API, but you must update references to them to match your environment.
Modify the
<installation_directory>/manifests/cluster-scheduler-02-config.yml
Kubernetes manifest file to prevent pods from being scheduled on the control plane machines:-
Open the
<installation_directory>/manifests/cluster-scheduler-02-config.yml
file. -
Locate the
mastersSchedulable
parameter and set its value toFalse
. - Save and exit the file.
-
Open the
Obtain the Ignition config files:
$ ./openshift-install create ignition-configs --dir=<installation_directory> 1
- 1
- For
<installation_directory>
, specify the same installation directory.
The following files are generated in the directory:
. ├── auth │ ├── kubeadmin-password │ └── kubeconfig ├── bootstrap.ign ├── master.ign ├── metadata.json └── worker.ign
1.5.10. Configuring chrony time service
You must set the time server and related settings used by the chrony time service (chronyd
) by modifying the contents of the chrony.conf
file and passing those contents to your nodes as a machine config.
Procedure
Create the contents of the
chrony.conf
file and encode it as base64. For example:$ cat << EOF | base64 pool 0.rhel.pool.ntp.org iburst 1 driftfile /var/lib/chrony/drift makestep 1.0 3 rtcsync logdir /var/log/chrony EOF
- 1
- Specify any valid, reachable time source, such as the one provided by your DHCP server.
Example output
ICAgIHNlcnZlciBjbG9jay5yZWRoYXQuY29tIGlidXJzdAogICAgZHJpZnRmaWxlIC92YXIvbGli L2Nocm9ueS9kcmlmdAogICAgbWFrZXN0ZXAgMS4wIDMKICAgIHJ0Y3N5bmMKICAgIGxvZ2RpciAv dmFyL2xvZy9jaHJvbnkK
Create the
MachineConfig
object file, replacing the base64 string with the one you just created. This example adds the file tomaster
nodes. You can change it toworker
or make an additional MachineConfig for theworker
role. Create MachineConfig files for each type of machine that your cluster uses:$ cat << EOF > ./99-masters-chrony-configuration.yaml apiVersion: machineconfiguration.openshift.io/v1 kind: MachineConfig metadata: labels: machineconfiguration.openshift.io/role: master name: 99-masters-chrony-configuration spec: config: ignition: config: {} security: tls: {} timeouts: {} version: 2.2.0 networkd: {} passwd: {} storage: files: - contents: source: data:text/plain;charset=utf-8;base64,ICAgIHNlcnZlciBjbG9jay5yZWRoYXQuY29tIGlidXJzdAogICAgZHJpZnRmaWxlIC92YXIvbGliL2Nocm9ueS9kcmlmdAogICAgbWFrZXN0ZXAgMS4wIDMKICAgIHJ0Y3N5bmMKICAgIGxvZ2RpciAvdmFyL2xvZy9jaHJvbnkK verification: {} filesystem: root mode: 420 path: /etc/chrony.conf osImageURL: "" EOF
- Make a backup copy of the configuration files.
Apply the configurations in one of two ways:
-
If the cluster is not up yet, after you generate manifest files, add this file to the
<installation_directory>/openshift
directory, and then continue to create the cluster. If the cluster is already running, apply the file:
$ oc apply -f ./99-masters-chrony-configuration.yaml
-
If the cluster is not up yet, after you generate manifest files, add this file to the
1.5.11. Extracting the infrastructure name
The Ignition config files contain a unique cluster identifier that you can use to uniquely identify your cluster in VMware vSphere. If you plan to use the cluster identifier as the name of your virtual machine folder, you must extract it.
Prerequisites
- Obtain the OpenShift Container Platform installation program and the pull secret for your cluster.
- Generate the Ignition config files for your cluster.
-
Install the
jq
package.
Procedure
To extract and view the infrastructure name from the Ignition config file metadata, run the following command:
$ jq -r .infraID <installation_directory>/metadata.json 1
- 1
- For
<installation_directory>
, specify the path to the directory that you stored the installation files in.
Example output
openshift-vw9j6 1
- 1
- The output of this command is your cluster name and a random string.
1.5.12. Creating Red Hat Enterprise Linux CoreOS (RHCOS) machines in vSphere
Before you install a cluster that contains user-provisioned infrastructure on VMware vSphere, you must create RHCOS machines on vSphere hosts for it to use.
Prerequisites
- Obtain the Ignition config files for your cluster.
- Have access to an HTTP server that you can access from your computer and that the machines that you create can access.
- Create a vSphere cluster.
Procedure
Upload the bootstrap Ignition config file, which is named
<installation_directory>/bootstrap.ign
, that the installation program created to your HTTP server. Note the URL of this file.You must host the bootstrap Ignition config file because it is too large to fit in a vApp property.
Save the following secondary Ignition config file for your bootstrap node to your computer as
<installation_directory>/append-bootstrap.ign
.{ "ignition": { "config": { "append": [ { "source": "<bootstrap_ignition_config_url>", 1 "verification": {} } ] }, "timeouts": {}, "version": "2.2.0" }, "networkd": {}, "passwd": {}, "storage": {}, "systemd": {} }
- 1
- Specify the URL of the bootstrap Ignition config file that you hosted.
When you create the virtual machine (VM) for the bootstrap machine, you use this Ignition config file.
Convert the master, worker, and secondary bootstrap Ignition config files to base64 encoding.
For example, if you use a Linux operating system, you can use the
base64
command to encode the files.$ base64 -w0 <installation_directory>/master.ign > <installation_directory>/master.64
$ base64 -w0 <installation_directory>/worker.ign > <installation_directory>/worker.64
$ base64 -w0 <installation_directory>/append-bootstrap.ign > <installation_directory>/append-bootstrap.64
ImportantIf you plan to add more compute machines to your cluster after you finish installation, do not delete these files.
Obtain the RHCOS OVA image. Images are available from the RHCOS image mirror page.
ImportantThe RHCOS images might not change with every release of OpenShift Container Platform. You must download an image with the highest version that is less than or equal to the OpenShift Container Platform version that you install. Use the image version that matches your OpenShift Container Platform version if it is available.
The filename contains the OpenShift Container Platform version number in the format
rhcos-vmware.<architecture>.ova
.In the vSphere Client, create a folder in your datacenter to store your VMs.
- Click the VMs and Templates view.
- Right-click the name of your datacenter.
- Click New Folder → New VM and Template Folder.
-
In the window that is displayed, enter the folder name. If you did not specify an existing folder in the
install-config.yaml
file, create a folder with the same name as the infrastructure ID.
In the vSphere Client, create a template for the OVA image and then clone the template as needed.
NoteIn the following steps, you create a template and then clone the template for all of your cluster machines. You then provide the location for the Ignition config file for that cloned machine type when you provision the VMs.
- From the Hosts and Clusters tab, right-click your cluster name and select Deploy OVF Template.
- On the Select an OVF tab, specify the name of the RHCOS OVA file that you downloaded.
-
On the Select a name and folder tab, set a Virtual machine name for your template, such as
Template-RHCOS
. Click the name of your vSphere cluster and select the folder you created in the previous step. - On the Select a compute resource tab, click the name of your vSphere cluster.
On the Select storage tab, configure the storage options for your VM.
- Select Thin Provision or Thick Provision, based on your storage preferences.
-
Select the datastore that you specified in your
install-config.yaml
file.
- On the Select network tab, specify the network that you configured for the cluster, if available.
When creating the OVF template, do not specify values on the Customize template tab or configure the template any further.
ImportantDo not start the original VM template. The VM template must remain off and must be cloned for new RHCOS machines. Starting the VM template configures the VM template as a VM on the platform, which prevents it from being used as a template that machine sets can apply configurations to.
After the template deploys, deploy a VM for a machine in the cluster.
- Right-click the template’s name and click Clone → Clone to Virtual Machine.
-
On the Select a name and folder tab, specify a name for the VM. You might include the machine type in the name, such as
control-plane-0
orcompute-1
. - On the Select a name and folder tab, select the name of the folder that you created for the cluster.
- On the Select a compute resource tab, select the name of a host in your datacenter.
- Optional: On the Select storage tab, customize the storage options.
- On the Select clone options, select Customize this virtual machine’s hardware.
On the Customize hardware tab, click VM Options → Advanced.
- Optional: In the event of cluster performance issues, from the Latency Sensitivity list, select High.
Click Edit Configuration, and on the Configuration Parameters window, click Add Configuration Params. Define the following parameter names and values:
-
guestinfo.ignition.config.data
: Paste the contents of the base64-encoded Ignition config file for this machine type. -
guestinfo.ignition.config.data.encoding
: Specifybase64
. -
disk.EnableUUID
: SpecifyTRUE
.
-
Alternatively, prior to powering on the virtual machine add via vApp properties:
- Navigate to a virtual machine from the vCenter Server inventory.
- On the Configure tab, expand Settings and select vApp options.
- Scroll down and under Properties apply the configurations from above.
- In the Virtual Hardware panel of the Customize hardware tab, modify the specified values as required. Ensure that the amount of RAM, CPU, and disk storage meets the minimum requirements for the machine type.
- Complete the configuration and power on the VM.
Create the rest of the machines for your cluster by following the preceding steps for each machine.
ImportantYou must create the bootstrap and control plane machines at this time. Because some pods are deployed on compute machines by default, also create at least two compute machines before you install the cluster.
1.5.13. Creating more Red Hat Enterprise Linux CoreOS (RHCOS) machines in vSphere
You can create more compute machines for your cluster that uses user-provisioned infrastructure on VMware vSphere.
Prerequisites
- Obtain the base64-encoded Ignition file for your compute machines.
- You have access to the vSphere template that you created for your cluster.
Procedure
After the template deploys, deploy a VM for a machine in the cluster.
- Right-click the template’s name and click Clone → Clone to Virtual Machine.
-
On the Select a name and folder tab, specify a name for the VM. You might include the machine type in the name, such as
compute-1
. - On the Select a name and folder tab, select the name of the folder that you created for the cluster.
- On the Select a compute resource tab, select the name of a host in your datacenter.
- Optional: On the Select storage tab, customize the storage options.
- On the Select clone options, select Customize this virtual machine’s hardware.
On the Customize hardware tab, click VM Options → Advanced.
- From the Latency Sensitivity list, select High.
Click Edit Configuration, and on the Configuration Parameters window, click Add Configuration Params. Define the following parameter names and values:
-
guestinfo.ignition.config.data
: Paste the contents of the base64-encoded compute Ignition config file for this machine type. -
guestinfo.ignition.config.data.encoding
: Specifybase64
. -
disk.EnableUUID
: SpecifyTRUE
.
-
- In the Virtual Hardware panel of the Customize hardware tab, modify the specified values as required. Ensure that the amount of RAM, CPU, and disk storage meets the minimum requirements for the machine type. Also, make sure to select the correct network under Add network adapter if there are multiple networks available.
- Complete the configuration and power on the VM.
- Continue to create more compute machines for your cluster.
1.5.14. Creating the cluster
To create the OpenShift Container Platform cluster, you wait for the bootstrap process to complete on the machines that you provisioned by using the Ignition config files that you generated with the installation program.
Prerequisites
- Create the required infrastructure for the cluster.
- You obtained the installation program and generated the Ignition config files for your cluster.
- You used the Ignition config files to create RHCOS machines for your cluster.
Procedure
Monitor the bootstrap process:
$ ./openshift-install --dir=<installation_directory> wait-for bootstrap-complete \ 1 --log-level=info 2
Example output
INFO Waiting up to 30m0s for the Kubernetes API at https://api.test.example.com:6443... INFO API v1.18.3 up INFO Waiting up to 30m0s for bootstrapping to complete... INFO It is now safe to remove the bootstrap resources
The command succeeds when the Kubernetes API server signals that it has been bootstrapped on the control plane machines.
After bootstrap process is complete, remove the bootstrap machine from the load balancer.
ImportantYou must remove the bootstrap machine from the load balancer at this point. You can also remove or reformat the machine itself.
1.5.15. Logging in to the cluster
You can log in to your cluster as a default system user by exporting the cluster kubeconfig
file. The kubeconfig
file contains information about the cluster that is used by the CLI to connect a client to the correct cluster and API server. The file is specific to a cluster and is created during OpenShift Container Platform installation.
Prerequisites
- Deploy an OpenShift Container Platform cluster.
-
Install the
oc
CLI.
Procedure
Export the
kubeadmin
credentials:$ export KUBECONFIG=<installation_directory>/auth/kubeconfig 1
- 1
- For
<installation_directory>
, specify the path to the directory that you stored the installation files in.
Verify you can run
oc
commands successfully using the exported configuration:$ oc whoami
Example output
system:admin
1.5.16. Approving the certificate signing requests for your machines
When you add machines to a cluster, two pending certificate signing requests (CSRs) are generated for each machine that you added. You must confirm that these CSRs are approved or, if necessary, approve them yourself. The client requests must be approved first, followed by the server requests.
Prerequisites
- You added machines to your cluster.
Procedure
Confirm that the cluster recognizes the machines:
$ oc get nodes
Example output
NAME STATUS ROLES AGE VERSION master-0 Ready master 63m v1.18.3 master-1 Ready master 63m v1.18.3 master-2 Ready master 64m v1.18.3 worker-0 NotReady worker 76s v1.18.3 worker-1 NotReady worker 70s v1.18.3
The output lists all of the machines that you created.
Review the pending CSRs and ensure that you see the client requests with the
Pending
orApproved
status for each machine that you added to the cluster:$ oc get csr
Example output
NAME AGE REQUESTOR CONDITION csr-8b2br 15m system:serviceaccount:openshift-machine-config-operator:node-bootstrapper Pending csr-8vnps 15m system:serviceaccount:openshift-machine-config-operator:node-bootstrapper Pending ...
In this example, two machines are joining the cluster. You might see more approved CSRs in the list.
If the CSRs were not approved, after all of the pending CSRs for the machines you added are in
Pending
status, approve the CSRs for your cluster machines:NoteBecause the CSRs rotate automatically, approve your CSRs within an hour of adding the machines to the cluster. If you do not approve them within an hour, the certificates will rotate, and more than two certificates will be present for each node. You must approve all of these certificates. Once the client CSR is approved, the Kubelet creates a secondary CSR for the serving certificate, which requires manual approval. Then, subsequent serving certificate renewal requests are automatically approved by the
machine-approver
if the Kubelet requests a new certificate with identical parameters.To approve them individually, run the following command for each valid CSR:
$ oc adm certificate approve <csr_name> 1
- 1
<csr_name>
is the name of a CSR from the list of current CSRs.
To approve all pending CSRs, run the following command:
$ oc get csr -o go-template='{{range .items}}{{if not .status}}{{.metadata.name}}{{"\n"}}{{end}}{{end}}' | xargs --no-run-if-empty oc adm certificate approve
Now that your client requests are approved, you must review the server requests for each machine that you added to the cluster:
$ oc get csr
Example output
NAME AGE REQUESTOR CONDITION csr-bfd72 5m26s system:node:ip-10-0-50-126.us-east-2.compute.internal Pending csr-c57lv 5m26s system:node:ip-10-0-95-157.us-east-2.compute.internal Pending ...
If the remaining CSRs are not approved, and are in the
Pending
status, approve the CSRs for your cluster machines:To approve them individually, run the following command for each valid CSR:
$ oc adm certificate approve <csr_name> 1
- 1
<csr_name>
is the name of a CSR from the list of current CSRs.
To approve all pending CSRs, run the following command:
$ oc get csr -o go-template='{{range .items}}{{if not .status}}{{.metadata.name}}{{"\n"}}{{end}}{{end}}' | xargs oc adm certificate approve
After all client and server CSRs have been approved, the machines have the
Ready
status. Verify this by running the following command:$ oc get nodes
Example output
NAME STATUS ROLES AGE VERSION master-0 Ready master 73m v1.20.0 master-1 Ready master 73m v1.20.0 master-2 Ready master 74m v1.20.0 worker-0 Ready worker 11m v1.20.0 worker-1 Ready worker 11m v1.20.0
NoteIt can take a few minutes after approval of the server CSRs for the machines to transition to the
Ready
status.
Additional information
- For more information on CSRs, see Certificate Signing Requests.
1.5.17. Initial Operator configuration
After the control plane initializes, you must immediately configure some Operators so that they all become available.
Prerequisites
- Your control plane has initialized.
Procedure
Watch the cluster components come online:
$ watch -n5 oc get clusteroperators
Example output
NAME VERSION AVAILABLE PROGRESSING DEGRADED SINCE authentication 4.5.4 True False False 69s cloud-credential 4.5.4 True False False 12m cluster-autoscaler 4.5.4 True False False 11m console 4.5.4 True False False 46s dns 4.5.4 True False False 11m image-registry 4.5.4 True False False 5m26s ingress 4.5.4 True False False 5m36s kube-apiserver 4.5.4 True False False 8m53s kube-controller-manager 4.5.4 True False False 7m24s kube-scheduler 4.5.4 True False False 12m machine-api 4.5.4 True False False 12m machine-config 4.5.4 True False False 7m36s marketplace 4.5.4 True False False 7m54m monitoring 4.5.4 True False False 7h54s network 4.5.4 True False False 5m9s node-tuning 4.5.4 True False False 11m openshift-apiserver 4.5.4 True False False 11m openshift-controller-manager 4.5.4 True False False 5m943s openshift-samples 4.5.4 True False False 3m55s operator-lifecycle-manager 4.5.4 True False False 11m operator-lifecycle-manager-catalog 4.5.4 True False False 11m service-ca 4.5.4 True False False 11m service-catalog-apiserver 4.5.4 True False False 5m26s service-catalog-controller-manager 4.5.4 True False False 5m25s storage 4.5.4 True False False 5m30s
- Configure the Operators that are not available.
1.5.17.1. Image registry storage configuration
The Image Registry Operator is not initially available for platforms that do not provide default storage. After installation, you must configure your registry to use storage so that the Registry Operator is made available.
Instructions are shown for configuring a persistent volume, which is required for production clusters. Where applicable, instructions are shown for configuring an empty directory as the storage location, which is available for only non-production clusters.
Additional instructions are provided for allowing the image registry to use block storage types by using the Recreate
rollout strategy during upgrades.
1.5.17.1.1. Configuring registry storage for VMware vSphere
As a cluster administrator, following installation you must configure your registry to use storage.
Prerequisites
- Cluster administrator permissions.
- A cluster on VMware vSphere.
Persistent storage provisioned for your cluster, such as Red Hat OpenShift Container Storage.
ImportantOpenShift Container Platform supports
ReadWriteOnce
access for image registry storage when you have only one replica. To deploy an image registry that supports high availability with two or more replicas,ReadWriteMany
access is required.- Must have "100Gi" capacity.
Testing shows issues with using the NFS server on RHEL as storage backend for core services. This includes the OpenShift Container Registry and Quay, Prometheus for monitoring storage, and Elasticsearch for logging storage. Therefore, using RHEL NFS to back PVs used by core services is not recommended.
Other NFS implementations on the marketplace might not have these issues. Contact the individual NFS implementation vendor for more information on any testing that was possibly completed against these OpenShift Container Platform core components.
Procedure
To configure your registry to use storage, change the
spec.storage.pvc
in theconfigs.imageregistry/cluster
resource.NoteWhen using shared storage, review your security settings to prevent outside access.
Verify that you do not have a registry pod:
$ oc get pod -n openshift-image-registry
NoteIf the storage type is
emptyDIR
, the replica number cannot be greater than1
.Check the registry configuration:
$ oc edit configs.imageregistry.operator.openshift.io
Example output
storage: pvc: claim: 1
- 1
- Leave the
claim
field blank to allow the automatic creation of animage-registry-storage
PVC.
Check the
clusteroperator
status:$ oc get clusteroperator image-registry
1.5.17.1.2. Configuring storage for the image registry in non-production clusters
You must configure storage for the Image Registry Operator. For non-production clusters, you can set the image registry to an empty directory. If you do so, all images are lost if you restart the registry.
Procedure
To set the image registry storage to an empty directory:
$ oc patch configs.imageregistry.operator.openshift.io cluster --type merge --patch '{"spec":{"storage":{"emptyDir":{}}}}'
WarningConfigure this option for only non-production clusters.
If you run this command before the Image Registry Operator initializes its components, the
oc patch
command fails with the following error:Error from server (NotFound): configs.imageregistry.operator.openshift.io "cluster" not found
Wait a few minutes and run the command again.
Ensure that your registry is set to managed to enable building and pushing of images.
Run:
$ oc edit configs.imageregistry/cluster
Then, change the line
managementState: Removed
to
managementState: Managed
1.5.17.1.3. Configuring block registry storage for VMware vSphere
To allow the image registry to use block storage types such as vSphere Virtual Machine Disk (VMDK) during upgrades as a cluster administrator, you can use the Recreate
rollout strategy.
Block storage volumes are supported but not recommended for use with image registry on production clusters. An installation where the registry is configured on block storage is not highly available because the registry cannot have more than one replica.
Procedure
To set the image registry storage as a block storage type, patch the registry so that it uses the
Recreate
rollout strategy and runs with only1
replica:$ oc patch config.imageregistry.operator.openshift.io/cluster --type=merge -p '{"spec":{"rolloutStrategy":"Recreate","replicas":1}}'
Provision the PV for the block storage device, and create a PVC for that volume. The requested block volume uses the ReadWriteOnce (RWO) access mode.
Create a
pvc.yaml
file with the following contents to define a VMware vSpherePersistentVolumeClaim
object:kind: PersistentVolumeClaim apiVersion: v1 metadata: name: image-registry-storage 1 spec: accessModes: - ReadWriteOnce 2 resources: requests: storage: 100Gi 3
Create the
PersistentVolumeClaim
object from the file:$ oc create -f pvc.yaml -n openshift-image-registry
Edit the registry configuration so that it references the correct PVC:
$ oc edit config.imageregistry.operator.openshift.io -o yaml
Example output
storage: pvc: claim: 1
- 1
- Creating a custom PVC allows you to leave the
claim
field blank for the default automatic creation of animage-registry-storage
PVC.
For instructions about configuring registry storage so that it references the correct PVC, see Configuring the registry for vSphere.
1.5.18. Completing installation on user-provisioned infrastructure
After you complete the Operator configuration, you can finish installing the cluster on infrastructure that you provide.
Prerequisites
- Your control plane has initialized.
- You have completed the initial Operator configuration.
Procedure
Confirm that all the cluster components are online with the following command:
$ watch -n5 oc get clusteroperators
Example output
NAME VERSION AVAILABLE PROGRESSING DEGRADED SINCE authentication 4.5.4 True False False 7m56s cloud-credential 4.5.4 True False False 31m cluster-autoscaler 4.5.4 True False False 16m console 4.5.4 True False False 10m csi-snapshot-controller 4.5.4 True False False 16m dns 4.5.4 True False False 22m etcd 4.5.4 False False False 25s image-registry 4.5.4 True False False 16m ingress 4.5.4 True False False 16m insights 4.5.4 True False False 17m kube-apiserver 4.5.4 True False False 19m kube-controller-manager 4.5.4 True False False 20m kube-scheduler 4.5.4 True False False 20m kube-storage-version-migrator 4.5.4 True False False 16m machine-api 4.5.4 True False False 22m machine-config 4.5.4 True False False 22m marketplace 4.5.4 True False False 16m monitoring 4.5.4 True False False 10m network 4.5.4 True False False 23m node-tuning 4.5.4 True False False 23m openshift-apiserver 4.5.4 True False False 17m openshift-controller-manager 4.5.4 True False False 15m openshift-samples 4.5.4 True False False 16m operator-lifecycle-manager 4.5.4 True False False 22m operator-lifecycle-manager-catalog 4.5.4 True False False 22m operator-lifecycle-manager-packageserver 4.5.4 True False False 18m service-ca 4.5.4 True False False 23m service-catalog-apiserver 4.5.4 True False False 23m service-catalog-controller-manager 4.5.4 True False False 23m storage 4.5.4 True False False 17m
Alternatively, the following command notifies you when all of the clusters are available. It also retrieves and displays credentials:
$ ./openshift-install --dir=<installation_directory> wait-for install-complete 1
- 1
- For
<installation_directory>
, specify the path to the directory that you stored the installation files in.
Example output
INFO Waiting up to 30m0s for the cluster to initialize...
The command succeeds when the Cluster Version Operator finishes deploying the OpenShift Container Platform cluster from Kubernetes API server.
ImportantThe Ignition config files that the installation program generates contain certificates that expire after 24 hours, which are then renewed at that time. If the cluster is shut down before renewing the certificates and the cluster is later restarted after the 24 hours have elapsed, the cluster automatically recovers the expired certificates. The exception is that you must manually approve the pending
node-bootstrapper
certificate signing requests (CSRs) to recover kubelet certificates. See the documentation for Recovering from expired control plane certificates for more information.Confirm that the Kubernetes API server is communicating with the pods.
To view a list of all pods, use the following command:
$ oc get pods --all-namespaces
Example output
NAMESPACE NAME READY STATUS RESTARTS AGE openshift-apiserver-operator openshift-apiserver-operator-85cb746d55-zqhs8 1/1 Running 1 9m openshift-apiserver apiserver-67b9g 1/1 Running 0 3m openshift-apiserver apiserver-ljcmx 1/1 Running 0 1m openshift-apiserver apiserver-z25h4 1/1 Running 0 2m openshift-authentication-operator authentication-operator-69d5d8bf84-vh2n8 1/1 Running 0 5m ...
View the logs for a pod that is listed in the output of the previous command by using the following command:
$ oc logs <pod_name> -n <namespace> 1
- 1
- Specify the pod name and namespace, as shown in the output of the previous command.
If the pod logs display, the Kubernetes API server can communicate with the cluster machines.
- Register your cluster on the Cluster registration page.
You can add extra compute machines after the cluster installation is completed by following Adding compute machines to vSphere.
1.5.19. Backing up VMware vSphere volumes
OpenShift Container Platform provisions new volumes as independent persistent disks to freely attach and detach the volume on any node in the cluster. As a consequence, it is not possible to back up volumes that use snapshots, or to restore volumes from snapshots. See Snapshot Limitations for more information.
Procedure
To create a backup of persistent volumes:
- Stop the application that is using the persistent volume.
- Clone the persistent volume.
- Restart the application.
- Create a backup of the cloned volume.
- Delete the cloned volume.
1.5.20. Next steps
- Customize your cluster.
- If the mirror registry that you used to install your cluster has a trusted CA, add it to the cluster by configuring additional trust stores.
- If necessary, you can opt out of remote health reporting.
1.6. Uninstalling a cluster on vSphere that uses installer-provisioned infrastructure
You can remove a cluster that you deployed in your VMware vSphere instance by using installer-provisioned infrastructure.
1.6.1. Removing a cluster that uses installer-provisioned infrastructure
You can remove a cluster that uses installer-provisioned infrastructure from your cloud.
After uninstallation, check your cloud provider for any resources not removed properly, especially with User Provisioned Infrastructure (UPI) clusters. There might be resources that the installer did not create or that the installer is unable to access.
Prerequisites
- Have a copy of the installation program that you used to deploy the cluster.
- Have the files that the installation program generated when you created your cluster.
Procedure
From the computer that you used to install the cluster, run the following command:
$ ./openshift-install destroy cluster \ --dir=<installation_directory> --log-level=info 1 2
NoteYou must specify the directory that contains the cluster definition files for your cluster. The installation program requires the
metadata.json
file in this directory to delete the cluster.-
Optional: Delete the
<installation_directory>
directory and the OpenShift Container Platform installation program.
Legal Notice
Copyright © 2024 Red Hat, Inc.
OpenShift documentation is licensed under the Apache License 2.0 (https://www.apache.org/licenses/LICENSE-2.0).
Modified versions must remove all Red Hat trademarks.
Portions adapted from https://github.com/kubernetes-incubator/service-catalog/ with modifications by Red Hat.
Red Hat, Red Hat Enterprise Linux, the Red Hat logo, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other countries.
Linux® is the registered trademark of Linus Torvalds in the United States and other countries.
Java® is a registered trademark of Oracle and/or its affiliates.
XFS® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States and/or other countries.
MySQL® is a registered trademark of MySQL AB in the United States, the European Union and other countries.
Node.js® is an official trademark of Joyent. Red Hat Software Collections is not formally related to or endorsed by the official Joyent Node.js open source or commercial project.
The OpenStack® Word Mark and OpenStack logo are either registered trademarks/service marks or trademarks/service marks of the OpenStack Foundation, in the United States and other countries and are used with the OpenStack Foundation’s permission. We are not affiliated with, endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.
All other trademarks are the property of their respective owners.