Chapter 2. Configuration fields
This section describes the both required and optional configuration fields when deploying Red Hat Quay.
2.1. Required configuration fields
The fields required to configure Red Hat Quay are covered in the following sections:
2.2. Automation options
The following sections describe the available automation options for Red Hat Quay deployments:
2.3. Optional configuration fields
Optional fields for Red Hat Quay can be found in the following sections:
- Basic configuration
- SSL
- LDAP
- Repository mirroring
- Security scanner
- OCI and Helm
- Action log
- Build logs
- Dockerfile build
- OAuth
- Configuring nested repositories
- Adding other OCI media types to Quay
- User
- Recaptcha
- ACI
- JWT
- App tokens
- Miscellaneous
- Legacy options
- User interface v2
- IPv6 configuration field
2.4. General required fields
The following table describes the required configuration fields for a Red Hat Quay deployment:
Field | Type | Description |
---|---|---|
AUTHENTICATION_TYPE | String |
The authentication engine to use for credential authentication. |
PREFERRED_URL_SCHEME | String |
The URL scheme to use when accessing Red Hat Quay. |
SERVER_HOSTNAME | String |
The URL at which Red Hat Quay is accessible, without the scheme. |
DATABASE_SECRET_KEY | String | Key used to encrypt sensitive fields within the database. This value should never be changed once set, otherwise all reliant fields, for example, repository mirror username and password configurations, are invalidated. |
SECRET_KEY | String | Key used to encrypt sensitive fields within the database and at run time. This value should never be changed once set, otherwise all reliant fields, for example, encrypted password credentials, are invalidated. |
SETUP_COMPLETE | Boolean |
This is an artefact left over from earlier versions of the software and currently it must be specified with a value of |
2.5. Database configuration
This section describes the database configuration fields available for Red Hat Quay deployments.
2.5.1. Database URI
With Red Hat Quay, connection to the database is configured by using the required DB_URI
field.
The following table describes the DB_URI
configuration field:
Field | Type | Description |
---|---|---|
DB_URI | String | The URI for accessing the database, including any credentials.
Example postgresql://quayuser:quaypass@quay-server.example.com:5432/quay |
2.5.2. Database connection arguments
Optional connection arguments are configured by the DB_CONNECTION_ARGS
parameter. Some of the key-value pairs defined under DB_CONNECTION_ARGS
are generic, while others are database specific.
The following table describes database connection arguments:
Field | Type | Description |
---|---|---|
DB_CONNECTION_ARGS | Object | Optional connection arguments for the database, such as timeouts and SSL. |
.autorollback | Boolean |
Whether to use thread-local connections. |
.threadlocals | Boolean |
Whether to use auto-rollback connections. |
2.5.2.1. PostgreSQL SSL connection arguments
With SSL, configuration depends on the database you are deploying. The following example shows a PostgreSQL SSL configuration:
DB_CONNECTION_ARGS: sslmode: verify-ca sslrootcert: /path/to/cacert
The sslmode
option determines whether, or with, what priority a secure SSL TCP/IP connection will be negotiated with the server. There are six modes:
Mode | Description |
---|---|
disable | Your configuration only tries non-SSL connections. |
allow | Your configuration first tries a non-SSL connection. Upon failure, tries an SSL connection. |
prefer | Your configuration first tries an SSL connection. Upon failure, tries a non-SSL connection. |
require | Your configuration only tries an SSL connection. If a root CA file is present, it verifies the certificate in the same way as if verify-ca was specified. |
verify-ca | Your configuration only tries an SSL connection, and verifies that the server certificate is issued by a trusted certificate authority (CA). |
verify-full | Only tries an SSL connection, and verifies that the server certificate is issued by a trusted CA and that the requested server host name matches that in the certificate. |
For more information on the valid arguments for PostgreSQL, see Database Connection Control Functions.
2.5.2.2. MySQL SSL connection arguments
The following example shows a sample MySQL SSL configuration:
DB_CONNECTION_ARGS: ssl: ca: /path/to/cacert
Information on the valid connection arguments for MySQL is available at Connecting to the Server Using URI-Like Strings or Key-Value Pairs.
2.6. Image storage
This section details the image storage features and configuration fields that are available with Red Hat Quay.
2.6.1. Image storage features
The following table describes the image storage features for Red Hat Quay:
Field | Type | Description |
---|---|---|
FEATURE_REPO_MIRROR | Boolean |
If set to true, enables repository mirroring. |
FEATURE_PROXY_STORAGE | Boolean |
Whether to proxy all direct download URLs in storage through NGINX. |
FEATURE_STORAGE_REPLICATION | Boolean |
Whether to automatically replicate between storage engines. |
2.6.2. Image storage configuration fields
The following table describes the image storage configuration fields for Red Hat Quay:
Field | Type | Description |
---|---|---|
DISTRIBUTED_STORAGE_CONFIG | Object |
Configuration for storage engine(s) to use in Red Hat Quay. Each key represents an unique identifier for a storage engine. The value consists of a tuple of (key, value) forming an object describing the storage engine parameters. |
DISTRIBUTED_STORAGE_DEFAULT_LOCATIONS | Array of string |
The list of storage engine(s) (by ID in |
DISTRIBUTED_STORAGE_PREFERENCE | Array of string |
The preferred storage engine(s) (by ID in |
MAXIMUM_LAYER_SIZE | String |
Maximum allowed size of an image layer. |
2.6.3. Local storage
The following YAML shows a sample configuration using local storage:
DISTRIBUTED_STORAGE_CONFIG: default: - LocalStorage - storage_path: /datastorage/registry DISTRIBUTED_STORAGE_DEFAULT_LOCATIONS: [] DISTRIBUTED_STORAGE_PREFERENCE: - default
2.6.4. OCS/NooBaa
The following YAML shows a sample configuration using an Open Container Storage/NooBaa instance:
DISTRIBUTED_STORAGE_CONFIG: rhocsStorage: - RHOCSStorage - access_key: access_key_here secret_key: secret_key_here bucket_name: quay-datastore-9b2108a3-29f5-43f2-a9d5-2872174f9a56 hostname: s3.openshift-storage.svc.cluster.local is_secure: 'true' port: '443' storage_path: /datastorage/registry
2.6.5. Ceph / RadosGW Storage / Hitachi HCP
The following YAML shows a sample configuration using Ceph/RadosGW and Hitachi HCP storage:
DISTRIBUTED_STORAGE_CONFIG: radosGWStorage: - RadosGWStorage - access_key: access_key_here secret_key: secret_key_here bucket_name: bucket_name_here hostname: hostname_here is_secure: 'true' port: '443' storage_path: /datastorage/registry DISTRIBUTED_STORAGE_DEFAULT_LOCATIONS: [] DISTRIBUTED_STORAGE_PREFERENCE: - default
2.6.6. AWS S3 storage
The following YAML shows a sample configuration using AWS S3 storage:
DISTRIBUTED_STORAGE_CONFIG: s3Storage: - S3Storage - host: s3.us-east-2.amazonaws.com s3_access_key: ABCDEFGHIJKLMN s3_secret_key: OL3ABCDEFGHIJKLMN s3_bucket: quay_bucket storage_path: /datastorage/registry DISTRIBUTED_STORAGE_DEFAULT_LOCATIONS: [] DISTRIBUTED_STORAGE_PREFERENCE: - s3Storage
2.6.7. Google Cloud Storage
The following YAML shows a sample configuration using Google Cloud Storage:
DISTRIBUTED_STORAGE_CONFIG: googleCloudStorage: - GoogleCloudStorage - access_key: GOOGQIMFB3ABCDEFGHIJKLMN bucket_name: quay-bucket secret_key: FhDAYe2HeuAKfvZCAGyOioNaaRABCDEFGHIJKLMN storage_path: /datastorage/registry DISTRIBUTED_STORAGE_DEFAULT_LOCATIONS: [] DISTRIBUTED_STORAGE_PREFERENCE: - googleCloudStorage
2.6.8. Azure Storage
The following YAML shows a sample configuration using Azure Storage:
DISTRIBUTED_STORAGE_CONFIG:
azureStorage:
- AzureStorage
- azure_account_name: azure_account_name_here
azure_container: azure_container_here
storage_path: /datastorage/registry
azure_account_key: azure_account_key_here
sas_token: some/path/
endpoint_url: https://[account-name].blob.core.usgovcloudapi.net 1
DISTRIBUTED_STORAGE_DEFAULT_LOCATIONS: []
DISTRIBUTED_STORAGE_PREFERENCE:
- azureStorage
- 1
- The
endpoint_url
parameter for Azure storage is optional and can be used with Microsoft Azure Government (MAG) endpoints. If left blank, theendpoint_url
will connect to the normal Azure region.As of Red Hat Quay 3.7, you must use the Primary endpoint of your MAG Blob service. Using the Secondary endpoint of your MAG Blob service will result in the following error:
AuthenticationErrorDetail:Cannot find the claimed account when trying to GetProperties for the account whusc8-secondary
.
2.6.9. Swift storage
The following YAML shows a sample configuration using Swift storage:
DISTRIBUTED_STORAGE_CONFIG: swiftStorage: - SwiftStorage - swift_user: swift_user_here swift_password: swift_password_here swift_container: swift_container_here auth_url: https://example.org/swift/v1/quay auth_version: 1 ca_cert_path: /conf/stack/swift.cert" storage_path: /datastorage/registry DISTRIBUTED_STORAGE_DEFAULT_LOCATIONS: [] DISTRIBUTED_STORAGE_PREFERENCE: - swiftStorage
2.7. Redis configuration fields
This section details the configuration fields available for Redis deployments.
2.7.1. Build logs
The following build logs configuration fields are available for Redis deployments:
Field | Type | Description |
---|---|---|
BUILDLOGS_REDIS | Object | Redis connection details for build logs caching. |
.host | String |
The hostname at which Redis is accessible. |
.port | Number |
The port at which Redis is accessible. |
.password | String |
The password to connect to the Redis instance. |
.ssl | Boolean | Whether to enable TLS communication between Redis and Quay. Defaults to false. |
2.7.2. User events
The following user event fields are available for Redis deployments:
Field | Type | Description |
---|---|---|
USER_EVENTS_REDIS | Object | Redis connection details for user event handling. |
.host | String |
The hostname at which Redis is accessible. |
.port | Number |
The port at which Redis is accessible. |
.password | String |
The password to connect to the Redis instance. |
.ssl | Boolean | Whether to enable TLS communication between Redis and Quay. Defaults to false. |
.ssl_keyfile | String |
The name of the key database file, which houses the client certificate to be used. |
.ssl_certfile | String |
Used for specifying the file path of the SSL certificate. |
.ssl_cert_reqs | String |
Used to specify the level of certificate validation to be performed during the SSL/TLS handshake. |
.ssl_ca_certs | String |
Used to specify the path to a file containing a list of trusted Certificate Authority (CA) certificates. |
.ssl_ca_data | String |
Used to specify a string containing the trusted CA certificates in PEM format. |
.ssl_check_hostname | Boolean |
Used when setting up an SSL/TLS connection to a server. It specifies whether the client should check that the hostname in the server’s SSL/TLS certificate matches the hostname of the server it is connecting to. |
2.7.3. Example Redis configuration
The following YAML shows a sample configuration using Redis with optional SSL/TLS fields:
BUILDLOGS_REDIS: host: quay-server.example.com password: strongpassword port: 6379 ssl: true USER_EVENTS_REDIS: host: quay-server.example.com password: strongpassword port: 6379 ssl: true ssl_*: <path_location_or_certificate>
If your deployment uses Azure Cache for Redis and ssl
is set to true
, the port defaults to 6380
.
2.8. ModelCache configuration options
The following options are available on Red Hat Quay for configuring ModelCache.
2.8.1. Memcache configuration option
Memcache is the default ModelCache configuration option. With Memcache, no additional configuration is necessary.
2.8.2. Single Redis configuration option
The following configuration is for a single Redis instance with optional read-only replicas:
DATA_MODEL_CACHE_CONFIG: engine: redis redis_config: primary: host: <host> port: <port> password: <password if ssl is true> ssl: <true | false > replica: host: <host> port: <port> password: <password if ssl is true> ssl: <true | false >
2.8.3. Clustered Redis configuration option
Use the following configuration for a clustered Redis instance:
DATA_MODEL_CACHE_CONFIG: engine: rediscluster redis_config: startup_nodes: - host: <cluster-host> port: <port> password: <password if ssl: true> read_from_replicas: <true|false> skip_full_coverage_check: <true | false> ssl: <true | false >
2.9. Tag expiration configuration fields
The following tag expiration configuration fields are available with Red Hat Quay:
Field | Type | Description |
---|---|---|
FEATURE_GARBAGE_COLLECTION | Boolean |
Whether garbage collection of repositories is enabled. |
TAG_EXPIRATION_OPTIONS | Array of string |
If enabled, the options that users can select for expiration of tags in their namespace. |
DEFAULT_TAG_EXPIRATION | String |
The default, configurable tag expiration time for time machine. |
FEATURE_CHANGE_TAG_EXPIRATION | Boolean |
Whether users and organizations are allowed to change the tag expiration for tags in their namespace. |
2.9.1. Example tag expiration configuration
The following YAML shows a sample tag expiration configuration:
DEFAULT_TAG_EXPIRATION: 2w TAG_EXPIRATION_OPTIONS: - 0s - 1d - 1w - 2w - 4w
2.10. Pre-configuring Red Hat Quay for automation
Red Hat Quay has several configuration options that support automation. These options can be set before deployment to minimize the need to interact with the user interface.
2.10.1. Allowing the API to create the first user
To create the first user using the /api/v1/user/initialize
API, set the FEATURE_USER_INITIALIZE
parameter to true
. Unlike all other registry API calls which require an OAuth token that is generated by an OAuth application in an existing organization, the API endpoint does not require authentication.
After you have deployed Red Hat Quay, you can use the API to create a user, for example, quayadmin
, assuming that no other users have already been created. For more information see Using the API to create the first user.
2.10.2. Enabling general API access
Set the config option BROWSER_API_CALLS_XHR_ONLY
to false
to allow general access to the Red Hat Quay registry API.
2.10.3. Adding a superuser
After deploying Red Hat Quay, you can create a user. It is suggested that the first user be given administrator privileges with full permissions. Full permissions can be configured in advance by using the SUPER_USER
configuration object. For example:
... SERVER_HOSTNAME: quay-server.example.com SETUP_COMPLETE: true SUPER_USERS: - quayadmin ...
2.10.4. Restricting user creation
After you have configured a super user, you can restrict the ability to create new users to the super user group. Set the FEATURE_USER_CREATION
to false
to restrict user creation. For example:
... FEATURE_USER_INITIALIZE: true BROWSER_API_CALLS_XHR_ONLY: false SUPER_USERS: - quayadmin FEATURE_USER_CREATION: false ...
2.10.5. Enabling new functionality
To use new Red Hat Quay 3.8 functionality, enable some or all of the following features:
... FEATURE_UI_V2: true FEATURE_LISTEN_IP_VERSION: FEATURE_SUPERUSERS_FULL_ACCESS: true GLOBAL_READONLY_SUPER_USERS: - FEATURE_RESTRICTED_USERS: true RESTRICTED_USERS_WHITELIST: - ...
2.10.6. Enabling new functionality
To use new Red Hat Quay 3.7 functionality, enable some or all of the following features:
... FEATURE_QUOTA_MANAGEMENT: true FEATURE_BUILD_SUPPORT: true FEATURE_PROXY_CACHE: true FEATURE_STORAGE_REPLICATION: true DEFAULT_SYSTEM_REJECT_QUOTA_BYTES: 102400000 ...
2.10.7. Suggested configuration for automation
The following config.yaml
parameters are suggested for automation:
... FEATURE_USER_INITIALIZE: true BROWSER_API_CALLS_XHR_ONLY: false SUPER_USERS: - quayadmin FEATURE_USER_CREATION: false ...
2.10.8. Deploying the Red Hat Quay Operator using the initial configuration
Use the following procedure to deploy Red Hat Quay on OpenShift Container Platform using the initial configuration.
Prerequisites
-
You have installed the
oc
CLI.
Procedure
Create a secret using the configuration file:
$ oc create secret generic -n quay-enterprise --from-file config.yaml=./config.yaml init-config-bundle-secret
Create a
quayregistry.yaml
file. Identify the unmanaged components and reference the created secret, for example:apiVersion: quay.redhat.com/v1 kind: QuayRegistry metadata: name: example-registry namespace: quay-enterprise spec: configBundleSecret: init-config-bundle-secret
Deploy the Red Hat Quay registry:
$ oc create -n quay-enterprise -f quayregistry.yaml
Next Steps
- Using the API to create the first user
2.10.9. Using the API to deploy Red Hat Quay
This section introduces using the API to deploy Red Hat Quay.
Prerequisites
-
The config option
FEATURE_USER_INITIALIZE
must be set totrue
. - No users can already exist in the database.
For more information on pre-configuring your Red Hat Quay deployment, see the section Pre-configuring Red Hat Quay for automation
2.10.9.1. Using the API to create the first user
Use the following procedure to create the first user in your Red Hat Quay organization.
This procedure requests an OAuth token by specifying "access_token": true
.
As the root user, install
python39
by entering the following command:$ sudo yum install python39
Upgrade the
pip
package manager for Python 3.9:$ python3.9 -m pip install --upgrade pip
Use the
pip
package manager to install thebcrypt
package:$ pip install bcrypt
Generate a secure, hashed password using the
bcrypt
package in Python 3.9 by entering the following command:$ python3.9 -c 'import bcrypt; print(bcrypt.hashpw(b"subquay12345", bcrypt.gensalt(12)).decode("utf-8"))'
Open your Red Hat Quay configuration file and update the following configuration fields:
FEATURE_USER_INITIALIZE: true SUPER_USERS: - quayadmin
Stop the Red Hat Quay service by entering the following command:
$ sudo podman stop quay
Start the Red Hat Quay service by entering the following command:
$ sudo podman run -d -p 80:8080 -p 443:8443 --name=quay -v $QUAY/config:/conf/stack:Z -v $QUAY/storage:/datastorage:Z {productrepo}/{quayimage}:{productminv}
Run the following
CURL
command to generate a new user with a username, password, email, and access token:$ curl -X POST -k http://quay-server.example.com/api/v1/user/initialize --header 'Content-Type: application/json' --data '{ "username": "quayadmin", "password":"quaypass12345", "email": "quayadmin@example.com", "access_token": true}'
If successful, the command returns an object with the username, email, and encrypted password. For example:
{"access_token":"6B4QTRSTSD1HMIG915VPX7BMEZBVB9GPNY2FC2ED", "email":"quayadmin@example.com","encrypted_password":"1nZMLH57RIE5UGdL/yYpDOHLqiNCgimb6W9kfF8MjZ1xrfDpRyRs9NUnUuNuAitW","username":"quayadmin"} # gitleaks:allow
If a user already exists in the database, an error is returned:
{"message":"Cannot initialize user in a non-empty database"}
If your password is not at least eight characters or contains whitespace, an error is returned:
{"message":"Failed to initialize user: Invalid password, password must be at least 8 characters and contain no whitespace."}
Log in to your Red Hat Quay deployment by entering the following command:
$ sudo podman login -u quayadmin -p quaypass12345 http://quay-server.example.com --tls-verify=false
Example output
Login Succeeded!
2.10.9.2. Using the OAuth token
After invoking the API, you can call out the rest of the Red Hat Quay API by specifying the returned OAuth code.
Prerequisites
-
You have invoked the
/api/v1/user/initialize
API, and passed in the username, password, and email address.
Procedure
Obtain the list of current users by entering the following command:
$ curl -X GET -k -H "Authorization: Bearer 6B4QTRSTSD1HMIG915VPX7BMEZBVB9GPNY2FC2ED" https://example-registry-quay-quay-enterprise.apps.docs.quayteam.org/api/v1/superuser/users/
Example output:
{ "users": [ { "kind": "user", "name": "quayadmin", "username": "quayadmin", "email": "quayadmin@example.com", "verified": true, "avatar": { "name": "quayadmin", "hash": "3e82e9cbf62d25dec0ed1b4c66ca7c5d47ab9f1f271958298dea856fb26adc4c", "color": "#e7ba52", "kind": "user" }, "super_user": true, "enabled": true } ] }
In this instance, the details for the
quayadmin
user are returned as it is the only user that has been created so far.
2.10.9.3. Using the API to create an organization
The following procedure details how to use the API to create a Red Hat Quay organization.
Prerequisites
-
You have invoked the
/api/v1/user/initialize
API, and passed in the username, password, and email address. - You have called out the rest of the Red Hat Quay API by specifying the returned OAuth code.
Procedure
To create an organization, use a POST call to
api/v1/organization/
endpoint:$ curl -X POST -k --header 'Content-Type: application/json' -H "Authorization: Bearer 6B4QTRSTSD1HMIG915VPX7BMEZBVB9GPNY2FC2ED" https://example-registry-quay-quay-enterprise.apps.docs.quayteam.org/api/v1/organization/ --data '{"name": "testorg", "email": "testorg@example.com"}'
Example output:
"Created"
You can retrieve the details of the organization you created by entering the following command:
$ curl -X GET -k --header 'Content-Type: application/json' -H "Authorization: Bearer 6B4QTRSTSD1HMIG915VPX7BMEZBVB9GPNY2FC2ED" https://min-registry-quay-quay-enterprise.apps.docs.quayteam.org/api/v1/organization/testorg
Example output:
{ "name": "testorg", "email": "testorg@example.com", "avatar": { "name": "testorg", "hash": "5f113632ad532fc78215c9258a4fb60606d1fa386c91b141116a1317bf9c53c8", "color": "#a55194", "kind": "user" }, "is_admin": true, "is_member": true, "teams": { "owners": { "name": "owners", "description": "", "role": "admin", "avatar": { "name": "owners", "hash": "6f0e3a8c0eb46e8834b43b03374ece43a030621d92a7437beb48f871e90f8d90", "color": "#c7c7c7", "kind": "team" }, "can_view": true, "repo_count": 0, "member_count": 1, "is_synced": false } }, "ordered_teams": [ "owners" ], "invoice_email": false, "invoice_email_address": null, "tag_expiration_s": 1209600, "is_free_account": true }
2.11. Basic configuration fields
Field | Type | Description |
---|---|---|
REGISTRY_TITLE | String |
If specified, the long-form title for the registry. Displayed in frontend of your Red Hat Quay deployment, for example, at the sign in page of your organization. Should not exceed 35 characters. |
REGISTRY_TITLE_SHORT | String |
If specified, the short-form title for the registry. Title is displayed on various pages of your organization, for example, as the title of the tutorial on your organization’s Tutorial page. |
CONTACT_INFO | Array of String | If specified, contact information to display on the contact page. If only a single piece of contact information is specified, the contact footer will link directly. |
[0] | String |
Adds a link to send an e-mail. |
[1] | String |
Adds a link to visit an IRC chat room. |
[2] | String |
Adds a link to call a phone number.+ |
[3] | String |
Adds a link to a defined URL. |
2.12. SSL configuration fields
Field | Type | Description |
---|---|---|
PREFERRED_URL_SCHEME | String |
One of
+ Users must set their |
SERVER_HOSTNAME | String |
The URL at which Red Hat Quay is accessible, without the scheme |
SSL_CIPHERS | Array of String |
If specified, the nginx-defined list of SSL ciphers to enabled and disabled |
SSL_PROTOCOLS | Array of String |
If specified, nginx is configured to enabled a list of SSL protocols defined in the list. Removing an SSL protocol from the list disables the protocol during Red Hat Quay startup. |
SESSION_COOKIE_SECURE | Boolean |
Whether the |
2.12.1. Configuring SSL
Copy the certificate file and primary key file to your configuration directory, ensuring they are named
ssl.cert
andssl.key
respectively:$ cp ~/ssl.cert $QUAY/config $ cp ~/ssl.key $QUAY/config $ cd $QUAY/config
Edit the
config.yaml
file and specify that you want Quay to handle TLS:config.yaml
... SERVER_HOSTNAME: quay-server.example.com ... PREFERRED_URL_SCHEME: https ...
-
Stop the
Quay
container and restart the registry
2.13. Adding TLS Certificates to the Red Hat Quay Container
To add custom TLS certificates to Red Hat Quay, create a new directory named extra_ca_certs/
beneath the Red Hat Quay config directory. Copy any required site-specific TLS certificates to this new directory.
2.13.1. Add TLS certificates to Red Hat Quay
View certificate to be added to the container
$ cat storage.crt -----BEGIN CERTIFICATE----- MIIDTTCCAjWgAwIBAgIJAMVr9ngjJhzbMA0GCSqGSIb3DQEBCwUAMD0xCzAJBgNV [...] -----END CERTIFICATE-----
Create certs directory and copy certificate there
$ mkdir -p quay/config/extra_ca_certs $ cp storage.crt quay/config/extra_ca_certs/ $ tree quay/config/ ├── config.yaml ├── extra_ca_certs │ ├── storage.crt
Obtain the
Quay
container’sCONTAINER ID
withpodman ps
:$ sudo podman ps CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS 5a3e82c4a75f <registry>/<repo>/quay:v3.8.15 "/sbin/my_init" 24 hours ago Up 18 hours 0.0.0.0:80->80/tcp, 0.0.0.0:443->443/tcp, 443/tcp grave_keller
Restart the container with that ID:
$ sudo podman restart 5a3e82c4a75f
Examine the certificate copied into the container namespace:
$ sudo podman exec -it 5a3e82c4a75f cat /etc/ssl/certs/storage.pem -----BEGIN CERTIFICATE----- MIIDTTCCAjWgAwIBAgIJAMVr9ngjJhzbMA0GCSqGSIb3DQEBCwUAMD0xCzAJBgNV
2.14. LDAP configuration fields
Field | Type | Description |
---|---|---|
AUTHENTICATION_TYPE | String |
Must be set to |
FEATURE_TEAM_SYNCING | Boolean |
Whether to allow for team membership to be synced from a backing group in the authentication engine (LDAP or Keystone) |
FEATURE_NONSUPERUSER_TEAM_SYNCING_SETUP | Boolean |
If enabled, non-superusers can setup syncing on teams using LDAP |
LDAP_ADMIN_DN | String | The admin DN for LDAP authentication. |
LDAP_ADMIN_PASSWD | String | The admin password for LDAP authentication. |
LDAP_ALLOW_INSECURE_FALLBACK | Boolean | Whether or not to allow SSL insecure fallback for LDAP authentication. |
LDAP_BASE_DN | Array of String | The base DN for LDAP authentication. |
LDAP_EMAIL_ATTR | String | The email attribute for LDAP authentication. |
LDAP_UID_ATTR | String | The uid attribute for LDAP authentication. |
LDAP_URI | String | The LDAP URI. |
LDAP_USER_FILTER | String | The user filter for LDAP authentication. |
LDAP_USER_RDN | Array of String | The user RDN for LDAP authentication. |
TEAM_RESYNC_STALE_TIME | String |
If team syncing is enabled for a team, how often to check its membership and resync if necessary |
LDAP_SUPERUSER_FILTER | String |
Subset of the With this field, administrators can add or remove superusers without having to update the Red Hat Quay configuration file and restart their deployment.
This field requires that your |
LDAP_RESTRICTED_USER_FILTER | String |
Subset of the
This field requires that your |
2.14.1. LDAP configuration field references
Use the following references to update your config.yaml
file with the desired configuration field.
2.14.1.1. Basic LDAP user configuration
--- AUTHENTICATION_TYPE: LDAP --- LDAP_ADMIN_DN: uid=testuser,ou=Users,o=orgid,dc=jumpexamplecloud,dc=com LDAP_ADMIN_PASSWD: samplepassword LDAP_ALLOW_INSECURE_FALLBACK: false LDAP_BASE_DN: - o=orgid - dc=example - dc=com LDAP_EMAIL_ATTR: mail LDAP_UID_ATTR: uid LDAP_URI: ldap://ldap.example.com:389 LDAP_USER_RDN: - ou=Users
2.14.1.2. LDAP restricted user configuration
--- AUTHENTICATION_TYPE: LDAP --- LDAP_ADMIN_DN: uid=<name>,ou=Users,o=<organization_id>,dc=<example_domain_component>,dc=com LDAP_ADMIN_PASSWD: ABC123 LDAP_ALLOW_INSECURE_FALLBACK: false LDAP_BASE_DN: - o=<organization_id> - dc=<example_domain_component> - dc=com LDAP_EMAIL_ATTR: mail LDAP_UID_ATTR: uid LDAP_URI: ldap://<example_url>.com LDAP_USER_FILTER: (memberof=cn=developers,ou=Users,o=<example_organization_unit>,dc=<example_domain_component>,dc=com) LDAP_RESTRICTED_USER_FILTER: (<filterField>=<value>) LDAP_USER_RDN: - ou=<example_organization_unit> - o=<organization_id> - dc=<example_domain_component> - dc=com ---
2.14.1.3. LDAP superuser configuration reference
--- AUTHENTICATION_TYPE: LDAP --- LDAP_ADMIN_DN: uid=<name>,ou=Users,o=<organization_id>,dc=<example_domain_component>,dc=com LDAP_ADMIN_PASSWD: ABC123 LDAP_ALLOW_INSECURE_FALLBACK: false LDAP_BASE_DN: - o=<organization_id> - dc=<example_domain_component> - dc=com LDAP_EMAIL_ATTR: mail LDAP_UID_ATTR: uid LDAP_URI: ldap://<example_url>.com LDAP_USER_FILTER: (memberof=cn=developers,ou=Users,o=<example_organization_unit>,dc=<example_domain_component>,dc=com) LDAP_SUPERUSER_FILTER: (<filterField>=<value>) LDAP_USER_RDN: - ou=<example_organization_unit> - o=<organization_id> - dc=<example_domain_component> - dc=com
2.15. Mirroring configuration fields
Field | Type | Description |
---|---|---|
FEATURE_REPO_MIRROR | Boolean |
Enable or disable repository mirroring |
REPO_MIRROR_INTERVAL | Number |
The number of seconds between checking for repository mirror candidates |
REPO_MIRROR_SERVER_HOSTNAME | String |
Replaces the |
REPO_MIRROR_TLS_VERIFY | Boolean |
Require HTTPS and verify certificates of Quay registry during mirror. |
REPO_MIRROR_ROLLBACK | Boolean |
When set to
Default: |
2.16. Security scanner configuration fields
Field | Type | Description |
---|---|---|
FEATURE_SECURITY_SCANNER | Boolean |
Enable or disable the security scanner |
FEATURE_SECURITY_NOTIFICATIONS | Boolean |
If the security scanner is enabled, turn on or turn off security notifications |
SECURITY_SCANNER_V4_REINDEX_THRESHOLD | String |
This parameter is used to determine the minimum time, in seconds, to wait before re-indexing a manifest that has either previously failed or has changed states since the last indexing. The data is calculated from the |
SECURITY_SCANNER_V4_ENDPOINT | String |
The endpoint for the V4 security scanner |
SECURITY_SCANNER_V4_PSK | String | The generated pre-shared key (PSK) for Clair |
SECURITY_SCANNER_ENDPOINT | String |
The endpoint for the V2 security scanner |
SECURITY_SCANNER_INDEXING_INTERVAL | Number | This parameter is used to determine the number of seconds between indexing intervals in the security scanner. When indexing is triggered, Red Hat Quay will query its database for manifests that must be indexed by Clair. These include manifests that have not yet been indexed and manifests that previously failed indexing. Default: 30 |
The following is a special case for re-indexing:
When Clair v4 indexes a manifest, the result should be deterministic. For example, the same manifest should produce the same index report. This is true until the scanners are changed, as using different scanners will produce different information relating to a specific manifest to be returned in the report. Because of this, Clair v4 exposes a state representation of the indexing engine (/indexer/api/v1/index_state
) to determine whether the scanner configuration has been changed.
Red Hat Quay leverages this index state by saving it to the index report when parsing to Quay’s database. If this state has changed since the manifest was previously scanned, Quay will attempt to re-index that manifest during the periodic indexing process.
By default this parameter is set to 30 seconds. Users might decrease the time if they want the indexing process to run more frequently, for example, if they did not want to wait 30 seconds to see security scan results in the UI after pushing a new tag. Users can also change the parameter if they want more control over the request pattern to Clair and the pattern of database operations being performed on the Quay database.
2.17. OCI and Helm configuration fields
Support for Helm is now supported under the FEATURE_GENERAL_OCI_SUPPORT
property. If you need to explicitly enable the feature, for example, if it has previously been disabled or if you have upgraded from a version where it is not enabled by default, you need to add two properties in the Quay configuration to enable the use of OCI artifacts:
FEATURE_GENERAL_OCI_SUPPORT: true FEATURE_HELM_OCI_SUPPORT: true
Field | Type | Description |
---|---|---|
FEATURE_GENERAL_OCI_SUPPORT | Boolean |
Enable support for OCI artifacts |
FEATURE_HELM_OCI_SUPPORT | Boolean |
Enable support for Helm artifacts |
As of Red Hat Quay 3.6, FEATURE_HELM_OCI_SUPPORT
has been deprecated and will be removed in a future version of Red Hat Quay. In Red Hat Quay 3.6, Helm artifacts are supported by default and included under the FEATURE_GENERAL_OCI_SUPPORT
property. Users are no longer required to update their config.yaml files to enable support.
2.18. Action log configuration fields
2.18.1. Action log storage configuration
Field | Type | Description |
---|---|---|
FEATURE_LOG_EXPORT | Boolean |
Whether to allow exporting of action logs |
LOGS_MODEL | String |
Enable or disable the security scanner |
LOGS_MODEL_CONFIG | Object | Logs model config for action logs |
LOGS_MODEL_CONFIG [object]: Logs model config for action logs
elasticsearch_config [object]: Elasticsearch cluster configuration
access_key [string]: Elasticsearch user (or IAM key for AWS ES)
-
Example:
some_string
-
Example:
host [string]: Elasticsearch cluster endpoint
-
Example:
host.elasticsearch.example
-
Example:
index_prefix [string]: Elasticsearch’s index prefix
-
Example:
logentry_
-
Example:
- index_settings [object]: Elasticsearch’s index settings
use_ssl [boolean]: Use ssl for Elasticsearch. Defaults to True
-
Example:
True
-
Example:
secret_key [string]: Elasticsearch password (or IAM secret for AWS ES)
-
Example:
some_secret_string
-
Example:
aws_region [string]: Amazon web service region
-
Example:
us-east-1
-
Example:
port [number]: Elasticsearch cluster endpoint port
-
Example:
1234
-
Example:
kinesis_stream_config [object]: AWS Kinesis Stream configuration
aws_secret_key [string]: AWS secret key
-
Example:
some_secret_key
-
Example:
stream_name [string]: Kinesis stream to send action logs to
-
Example:
logentry-kinesis-stream
-
Example:
aws_access_key [string]: AWS access key
-
Example:
some_access_key
-
Example:
retries [number]: Max number of attempts made on a single request
-
Example:
5
-
Example:
read_timeout [number]: Number of seconds before timeout when reading from a connection
-
Example:
5
-
Example:
max_pool_connections [number]: The maximum number of connections to keep in a connection pool
-
Example:
10
-
Example:
aws_region [string]: AWS region
-
Example:
us-east-1
-
Example:
connect_timeout [number]: Number of seconds before timeout when attempting to make a connection
-
Example:
5
-
Example:
producer [string]: Logs producer if logging to Elasticsearch
- enum: kafka, elasticsearch, kinesis_stream
-
Example:
kafka
kafka_config [object]: Kafka cluster configuration
topic [string]: Kafka topic to publish log entries to
-
Example:
logentry
-
Example:
- bootstrap_servers [array]: List of Kafka brokers to bootstrap the client from
max_block_seconds [number]: Max number of seconds to block during a
send()
, either because the buffer is full or metadata unavailable-
Example:
10
-
Example:
2.18.2. Action log rotation and archiving configuration
Field | Type | Description |
---|---|---|
FEATURE_ACTION_LOG_ROTATION | Boolean |
Enabling log rotation and archival will move all logs older than 30 days to storage |
ACTION_LOG_ARCHIVE_LOCATION | String |
If action log archiving is enabled, the storage engine in which to place the archived data |
ACTION_LOG_ARCHIVE_PATH | String |
If action log archiving is enabled, the path in storage in which to place the archived data |
ACTION_LOG_ROTATION_THRESHOLD | String |
The time interval after which to rotate logs |
2.19. Build logs configuration fields
Field | Type | Description |
---|---|---|
FEATURE_READER_BUILD_LOGS | Boolean |
If set to true, build logs may be read by those with read access to the repo, rather than only write access or admin access. |
LOG_ARCHIVE_LOCATION | String |
The storage location, defined in DISTRIBUTED_STORAGE_CONFIG, in which to place the archived build logs |
LOG_ARCHIVE_PATH | String |
The path under the configured storage engine in which to place the archived build logs in JSON form |
2.20. Dockerfile build triggers fields
Field | Type | Description |
---|---|---|
FEATURE_BUILD_SUPPORT | Boolean |
Whether to support Dockerfile build. |
SUCCESSIVE_TRIGGER_FAILURE_DISABLE_THRESHOLD | Number |
If not None, the number of successive failures that can occur before a build trigger is automatically disabled |
SUCCESSIVE_TRIGGER_INTERNAL_ERROR_DISABLE_THRESHOLD | Number |
If not None, the number of successive internal errors that can occur before a build trigger is automatically disabled |
2.20.1. GitHub build triggers
Field | Type | Description |
---|---|---|
FEATURE_GITHUB_BUILD | Boolean |
Whether to support GitHub build triggers |
|
|
|
GITHUB_TRIGGER_CONFIG | Object | Configuration for using GitHub (Enterprise) for build triggers |
.GITHUB_ENDPOINT | String |
The endpoint for GitHub (Enterprise) |
.API_ENDPOINT | String |
The endpoint of the GitHub (Enterprise) API to use. Must be overridden for |
.CLIENT_ID | String | The registered client ID for this Red Hat Quay instance; this cannot be shared with GITHUB_LOGIN_CONFIG. |
.CLIENT_SECRET | String | The registered client secret for this Red Hat Quay instance. |
2.20.2. BitBucket build triggers
Field | Type | Description |
---|---|---|
FEATURE_BITBUCKET_BUILD | Boolean |
Whether to support Bitbucket build triggers |
|
|
|
BITBUCKET_TRIGGER_CONFIG | Object | Configuration for using BitBucket for build triggers |
.CONSUMER_KEY | String | The registered consumer key (client ID) for this Quay instance |
.CONSUMER_SECRET | String | The registered consumer secret (client secret) for this Quay instance |
2.20.3. GitLab build triggers
Field | Type | Description |
---|---|---|
FEATURE_GITLAB_BUILD | Boolean |
Whether to support GitLab build triggers |
|
|
|
GITLAB_TRIGGER_CONFIG | Object | Configuration for using Gitlab for build triggers |
.GITLAB_ENDPOINT | String | The endpoint at which Gitlab (Enterprise) is running |
.CLIENT_ID | String | The registered client ID for this Quay instance |
.CLIENT_SECRET | String | The registered client secret for this Quay instance |
2.21. OAuth configuration fields
Field | Type | Description |
---|---|---|
DIRECT_OAUTH_CLIENTID_WHITELIST | Array of String | A list of client IDs for Quay-managed applications that are allowed to perform direct OAuth approval without user approval. |
2.21.1. GitHub OAuth configuration fields
Field | Type | Description |
---|---|---|
FEATURE_GITHUB_LOGIN | Boolean |
Whether GitHub login is supported |
GITHUB_LOGIN_CONFIG | Object | Configuration for using GitHub (Enterprise) as an external login provider. |
.ALLOWED_ORGANIZATIONS | Array of String | The names of the GitHub (Enterprise) organizations whitelisted to work with the ORG_RESTRICT option. |
.API_ENDPOINT | String |
The endpoint of the GitHub (Enterprise) API to use. Must be overridden for github.com |
.CLIENT_ID | String |
The registered client ID for this Red Hat Quay instance; cannot be shared with |
.CLIENT_SECRET | String |
The registered client secret for this Red Hat Quay instance. |
.GITHUB_ENDPOINT | String |
The endpoint for GitHub (Enterprise). |
.ORG_RESTRICT | Boolean | If true, only users within the organization whitelist can login using this provider. |
2.21.2. Google OAuth configuration fields
Field | Type | Description |
---|---|---|
FEATURE_GOOGLE_LOGIN | Boolean |
Whether Google login is supported. |
GOOGLE_LOGIN_CONFIG | Object | Configuration for using Google for external authentication. |
.CLIENT_ID | String |
The registered client ID for this Red Hat Quay instance. |
.CLIENT_SECRET | String |
The registered client secret for this Red Hat Quay instance. |
2.22. OIDC configuration fields
Field | Type | Description |
<string>_LOGIN_CONFIG | String |
The parent key that holds the OIDC configuration settings. Typically the name of the OIDC provider, for example, |
.CLIENT_ID | String |
The registered client ID for this Red Hat Quay instance. |
.CLIENT_SECRET | String |
The registered client secret for this Red Hat Quay instance. |
.DEBUGLOG | Boolean | Whether to enable debugging. |
.LOGIN_BINDING_FIELD | String | Used when the internal authorization is set to LDAP. Red Hat Quay reads this parameter and tries to search through the LDAP tree for the user with this username. If it exists, it automatically creates a link to that LDAP account. |
.LOGIN_SCOPES | Object | Adds additional scopes that Red Hat Quay uses to communicate with the OIDC provider. |
.OIDC_ENDPOINT_CUSTOM_PARAMS | String |
Support for custom query parameters on OIDC endpoints. The following endpoints are supported: |
.OIDC_ISSUER | String |
Allows the user to define the issuer to verify. For example, JWT tokens container a parameter known as |
.OIDC_SERVER | String |
The address of the OIDC server that is being used for authentication. |
.PREFERRED_USERNAME_CLAIM_NAME | String | Sets the preferred username to a parameter from the token. |
.SERVICE_ICON | String | Changes the icon on the login screen. |
.SERVICE_NAME | String |
The name of the service that is being authenticated. |
.VERIFIED_EMAIL_CLAIM_NAME | String | The name of the claim that is used to verify the email address of the user. |
2.22.1. OIDC configuration
The following example shows a sample OIDC configuration.
Example OIDC configuration
AZURE_LOGIN_CONFIG: CLIENT_ID: <client_id> CLIENT_SECRET: <client_secret> OIDC_SERVER: <oidc_server_address_> DEBUGGING: true SERVICE_NAME: Azure AD VERIFIED_EMAIL_CLAIM_NAME: <verified_email> OIDC_ENDPOINT_CUSTOM_PARAMS": "authorization_endpoint": "some": "param",
2.23. Nested repositories configuration fields
With Red Hat Quay 3.6, support for nested repository path names has been added under the FEATURE_EXTENDED_REPOSITORY_NAMES
property. This optional configuration is added to the config.yaml by default. Enablement allows the use of /
in repository names.
FEATURE_EXTENDED_REPOSITORY_NAMES: true
Field | Type | Description |
---|---|---|
FEATURE_EXTENDED_REPOSITORY_NAMES | Boolean |
Enable support for nested repositories |
2.24. Adding other OCI media types to Quay
Helm, cosign, and ztsd compression scheme artifacts are built into Red Hat Quay 3.6 by default. For any other OCI media type that is not supported by default, you can add them to the ALLOWED_OCI_ARTIFACT_TYPES
configuration in Quay’s config.yaml using the following format:
ALLOWED_OCI_ARTIFACT_TYPES: <oci config type 1>: - <oci layer type 1> - <oci layer type 2> <oci config type 2>: - <oci layer type 3> - <oci layer type 4> ...
For example, you can add Singularity (SIF) support by adding the following to your config.yaml:
... ALLOWED_OCI_ARTIFACT_TYPES: application/vnd.oci.image.config.v1+json: - application/vnd.dev.cosign.simplesigning.v1+json application/vnd.cncf.helm.config.v1+json: - application/tar+gzip application/vnd.sylabs.sif.config.v1+json: - application/vnd.sylabs.sif.layer.v1+tar ...
When adding OCI media types that are not configured by default, users will also need to manually add support for cosign and Helm if desired. The ztsd compression scheme is supported by default, so users will not need to add that OCI media type to their config.yaml to enable support.
2.25. Mail configuration fields
Field | Type | Description |
---|---|---|
FEATURE_MAILING | Boolean |
Whether emails are enabled |
MAIL_DEFAULT_SENDER | String |
If specified, the e-mail address used as the |
MAIL_PASSWORD | String | The SMTP password to use when sending e-mails |
MAIL_PORT | Number | The SMTP port to use. If not specified, defaults to 587. |
MAIL_SERVER | String |
The SMTP server to use for sending e-mails. Only required if FEATURE_MAILING is set to true. |
MAIL_USERNAME | String | The SMTP username to use when sending e-mails |
MAIL_USE_TLS | Boolean |
If specified, whether to use TLS for sending e-mails |
2.26. User configuration fields
Field | Type | Description |
---|---|---|
FEATURE_SUPER_USERS | Boolean |
Whether superusers are supported |
FEATURE_USER_CREATION | Boolean |
Whether users can be created (by non-superusers) |
FEATURE_USER_LAST_ACCESSED | Boolean |
Whether to record the last time a user was accessed |
FEATURE_USER_LOG_ACCESS | Boolean |
If set to true, users will have access to audit logs for their namespace |
FEATURE_USER_METADATA | Boolean |
Whether to collect and support user metadata |
FEATURE_USERNAME_CONFIRMATION | Boolean |
If set to true, users can confirm and modify their initial usernames when logging in via OpenID Connect (OIDC) or a non-database internal authentication provider like LDAP. |
FEATURE_USER_RENAME | Boolean |
If set to true, users can rename their own namespace |
FEATURE_INVITE_ONLY_USER_CREATION | Boolean |
Whether users being created must be invited by another user |
FRESH_LOGIN_TIMEOUT | String |
The time after which a fresh login requires users to re-enter their password |
USERFILES_LOCATION | String |
ID of the storage engine in which to place user-uploaded files |
USERFILES_PATH | String |
Path under storage in which to place user-uploaded files |
USER_RECOVERY_TOKEN_LIFETIME | String |
The length of time a token for recovering a user accounts is valid |
FEATURE_SUPERUSERS_FULL_ACCESS | Boolean | Grants superusers the ability to read, write, and delete content from other repositories in namespaces that they do not own or have explicit permissions for.
Default: |
FEATURE_RESTRICTED_USERS | Boolean |
When set with
Default: |
RESTRICTED_USERS_WHITELIST | String |
When set with |
GLOBAL_READONLY_SUPER_USERS | String | When set, grants users of this list read access to all repositories, regardless of whether they are public repositories. |
2.26.1. User configuration fields references
Use the following references to update your config.yaml
file with the desired configuration field.
2.26.1.1. FEATURE_SUPERUSERS_FULL_ACCESS configuration reference
--- SUPER_USERS: - quayadmin FEATURE_SUPERUSERS_FULL_ACCESS: True ---
2.26.1.2. GLOBAL_READONLY_SUPER_USERS configuration reference
--- GLOBAL_READONLY_SUPER_USERS: - user1 ---
2.26.1.3. FEATURE_RESTRICTED_USERS configuration reference
--- AUTHENTICATION_TYPE: Database --- --- FEATURE_RESTRICTED_USERS: true ---
2.26.1.4. RESTRICTED_USERS_WHITELIST configuration reference
Prerequisites
-
FEATURE_RESTRICTED_USERS
is set totrue
in yourconfig.yaml
file.
--- AUTHENTICATION_TYPE: Database --- --- FEATURE_RESTRICTED_USERS: true RESTRICTED_USERS_WHITELIST: - user1 ---
When this field is set, whitelisted users can create organizations, or read or write content from the repository even if FEATURE_RESTRICTED_USERS
is set to true
. Other users, for example, user2
, user3
, and user4
are restricted from creating organizations, reading, or writing content
2.27. Recaptcha configuration fields
Field | Type | Description |
---|---|---|
FEATURE_RECAPTCHA | Boolean |
Whether Recaptcha is necessary for user login and recovery |
RECAPTCHA_SECRET_KEY | String | If recaptcha is enabled, the secret key for the Recaptcha service |
RECAPTCHA_SITE_KEY | String | If recaptcha is enabled, the site key for the Recaptcha service |
2.28. ACI configuration fields
Field | Type | Description |
---|---|---|
FEATURE_ACI_CONVERSION | Boolean |
Whether to enable conversion to ACIs |
GPG2_PRIVATE_KEY_FILENAME | String | The filename of the private key used to decrypte ACIs |
GPG2_PRIVATE_KEY_NAME | String | The name of the private key used to sign ACIs |
GPG2_PUBLIC_KEY_FILENAME | String | The filename of the public key used to encrypt ACIs |
2.29. JWT configuration fields
Field | Type | Description |
---|---|---|
JWT_AUTH_ISSUER | String |
The endpoint for JWT users |
JWT_GETUSER_ENDPOINT | String |
The endpoint for JWT users |
JWT_QUERY_ENDPOINT | String |
The endpoint for JWT queries |
JWT_VERIFY_ENDPOINT | String |
The endpoint for JWT verification |
2.30. App tokens configuration fields
Field | Type | Description |
---|---|---|
FEATURE_APP_SPECIFIC_TOKENS | Boolean |
If enabled, users can create tokens for use by the Docker CLI |
APP_SPECIFIC_TOKEN_EXPIRATION | String |
The expiration for external app tokens. |
EXPIRED_APP_SPECIFIC_TOKEN_GC | String |
Duration of time expired external app tokens will remain before being garbage collected |
2.31. Miscellaneous configuration fields
Field | Type | Description |
---|---|---|
ALLOW_PULLS_WITHOUT_STRICT_LOGGING | String |
If true, pulls will still succeed even if the pull audit log entry cannot be written . This is useful if the database is in a read-only state and it is desired for pulls to continue during that time. |
AVATAR_KIND | String |
The types of avatars to display, either generated inline (local) or Gravatar (gravatar) |
BROWSER_API_CALLS_XHR_ONLY | Boolean |
If enabled, only API calls marked as being made by an XHR will be allowed from browsers |
DEFAULT_NAMESPACE_MAXIMUM_BUILD_COUNT | Number |
The default maximum number of builds that can be queued in a namespace. |
ENABLE_HEALTH_DEBUG_SECRET | String | If specified, a secret that can be given to health endpoints to see full debug info when not authenticated as a superuser |
EXTERNAL_TLS_TERMINATION | Boolean |
Set to |
FRESH_LOGIN_TIMEOUT | String |
The time after which a fresh login requires users to re-enter their password |
HEALTH_CHECKER | String |
The configured health check |
PROMETHEUS_NAMESPACE | String |
The prefix applied to all exposed Prometheus metrics |
PUBLIC_NAMESPACES | Array of String | If a namespace is defined in the public namespace list, then it will appear on all users' repository list pages, regardless of whether the user is a member of the namespace. Typically, this is used by an enterprise customer in configuring a set of "well-known" namespaces. |
REGISTRY_STATE | String |
The state of the registry |
SEARCH_MAX_RESULT_PAGE_COUNT | Number |
Maximum number of pages the user can paginate in search before they are limited |
SEARCH_RESULTS_PER_PAGE | Number |
Number of results returned per page by search page |
V2_PAGINATION_SIZE | Number |
The number of results returned per page in V2 registry APIs |
WEBHOOK_HOSTNAME_BLACKLIST | Array of String | The set of hostnames to disallow from webhooks when validating, beyond localhost |
CREATE_PRIVATE_REPO_ON_PUSH | Boolean |
Whether new repositories created by push are set to private visibility |
CREATE_NAMESPACE_ON_PUSH | Boolean |
Whether new push to a non-existent organization creates it |
NON_RATE_LIMITED_NAMESPACES | Array of String |
If rate limiting has been enabled using |
Boolean | When set, allows users to try the beta UI environment.
Default: |
2.31.1. Miscellaneous configuration field references
Use the following references to update your config.yaml
file with the desired configuration field.
2.31.1.1. v2 user interface configuration
With FEATURE_UI_V2
enabled, you can toggle between the current version of the user interface and the new version of the user interface.
- This UI is currently in beta and subject to change. In its current state, users can only create, view, and delete organizations, repositories, and image tags.
- When running Red Hat Quay in the old UI, timed-out sessions would require that the user input their password again in the pop-up window. With the new UI, users are returned to the main page and required to input their username and password credentials. This is a known issue and will be fixed in a future version of the new UI.
- There is a discrepancy in how image manifest sizes are reported between the legacy UI and the new UI. In the legacy UI, image manifests were reported in mebibytes. In the new UI, Red Hat Quay uses the standard definition of megabyte (MB) to report image manifest sizes.
Procedure
In your deployment’s
config.yaml
file, add theFEATURE_UI_V2
parameter and set it totrue
, for example:--- FEATURE_TEAM_SYNCING: false FEATURE_UI_V2: true FEATURE_USER_CREATION: true ---
- Log in to your Red Hat Quay deployment.
In the navigation pane of your Red Hat Quay deployment, you are given the option to toggle between Current UI and New UI. Click the toggle button to set it to new UI, and then click Use Beta Environment, for example:
2.31.1.1.1. Creating a new organization in the Red Hat Quay 3.8 beta UI
Prerequisites
- You have toggled your Red Hat Quay deployment to use the 3.8 beta UI.
Use the following procedure to create an organization using the Red Hat Quay 3.8 beta UI.
Procedure
- Click Organization in the navigation pane.
- Click Create Organization.
-
Enter an Organization Name, for example,
testorg
. - Click Create.
Now, your example organization should populate under the Organizations page.
2.31.1.1.2. Deleting an organization using the Red Hat Quay 3.8 beta UI
Use the following procedure to delete an organization using the Red Hat Quay 3.8 beta UI.
Procedure
-
On the Organizations page, select the name of the organization you want to delete, for example,
testorg
. - Click the More Actions drop down menu.
Click Delete.
NoteOn the Delete page, there is a Search input box. With this box, users can search for specific organizations to ensure that they are properly scheduled for deletion. For example, if a user is deleting 10 organizations and they want to ensure that a specific organization was deleted, they can use the Search input box to confirm said organization is marked for deletion.
- Confirm that you want to permanently delete the organization by typing confirm in the box.
- Click Delete.
After deletion, you are returned to the Organizations page.
You can delete more than one organization at a time by selecting multiple organizations, and then clicking More Actions
2.31.1.1.3. Creating a new repository using the Red Hat Quay 3.8 beta UI
Use the following procedure to create a repository using the Red Hat Quay 3.8 beta UI.
Procedure
- Click Repositories on the navigation pane.
- Click Create Repository.
-
Select a namespace, for example, quayadmin, and then enter a Repository name, for example,
testrepo
. - Click Create.
Now, your example repository should populate under the Repositories page.
2.31.1.1.4. Deleting a repository using the Red Hat Quay 3.8 beta UI
Prerequisites
- You have created a repository.
Procedure
-
On the Repositories page of the Red Hat Quay 3.8 beta UI, click the name of the image you want to delete, for example,
quay/admin/busybox
. - Click the More Actions drop-down menu.
Click Delete.
NoteIf desired, you could click Make Public or Make Private.
- Type confirm in the box, and then click Delete.
- After deletion, you are returned to the Repositories page.
2.31.1.1.5. Pushing an image to the Red Hat Quay 3.8 beta UI
Use the following procedure to push an image to the Red Hat Quay 3.8 beta UI.
Procedure
Pull a sample image from an external registry:
$ podman pull busybox
Tag the image:
$ podman tag docker.io/library/busybox quay-server.example.com/quayadmin/busybox:test
Push the image to your Red Hat Quay registry:
$ podman push quay-server.example.com/quayadmin/busybox:test
- Navigate to the Repositories page on the Red Hat Quay UI and ensure that your image has been properly pushed.
- You can check the security details by selecting your image tag, and then navigating to the Security Report page.
2.31.1.1.6. Deleting an image using the Red Hat Quay 3.8 beta UI
Use the following procedure to delete an image using theRed Hat Quay 3.8 beta UI.
Prerequisites
- You have pushed an image to your Red Hat Quay registry.
Procedure
-
On the Repositories page of the Red Hat Quay 3.8 beta UI, click the name of the image you want to delete, for example,
quay/admin/busybox
. - Click the More Actions drop-down menu.
Click Delete.
NoteIf desired, you could click Make Public or Make Private.
- Type confirm in the box, and then click Delete.
- After deletion, you are returned to the Repositories page.
2.31.1.1.7. Enabling the Red Hat Quay legacy UI
In the navigation pane of your Red Hat Quay deployment, you are given the option to toggle between Current UI and New UI. Click the toggle button to set it to Current UI.
2.32. Legacy configuration fields
Some fields are deprecated or obsolete:
Field | Type | Description |
---|---|---|
FEATURE_BLACKLISTED_EMAILS | Boolean | If set to true, no new User accounts may be created if their email domain is blacklisted |
BLACKLISTED_EMAIL_DOMAINS | Array of String |
The list of email-address domains that is used if FEATURE_BLACKLISTED_EMAILS is set to true |
BLACKLIST_V2_SPEC | String |
The Docker CLI versions to which Red Hat Quay will respond that V2 is unsupported |
DOCUMENTATION_ROOT | String | Root URL for documentation links |
SECURITY_SCANNER_V4_NAMESPACE_WHITELIST | String | The namespaces for which the security scanner should be enabled |
FEATURE_RESTRICTED_V1_PUSH | Boolean |
If set to true, only namespaces listed in V1_PUSH_WHITELIST support V1 push |
V1_PUSH_WHITELIST | Array of String | The array of namespace names that support V1 push if FEATURE_RESTRICTED_V1_PUSH is set to true |
2.33. User interface v2 configuration field
Field | Type | Description |
---|---|---|
FEATURE_UI_V2 | Boolean | When set, allows users to try the beta UI environment.
Default: |
2.34. IPv6 configuration field
Field | Type | Description |
---|---|---|
FEATURE_LISTEN_IP_VERSION | String | Enables IPv4, IPv6, or dual-stack protocol family. This configuration field must be properly set, otherwise Red Hat Quay fails to start.
Default:
Additional configurations: |
2.35. Branding configuration fields
Field | Type | Description |
---|---|---|
BRANDING | Object | Custom branding for logos and URLs in the Red Hat Quay UI. |
.logo | String |
Main logo image URL.
The header logo defaults to 205x30 PX. The form logo on the Red Hat Quay sign in screen of the web UI defaults to 356.5x39.7 PX. |
.footer_img | String |
Logo for UI footer. Defaults to 144x34 PX. |
.footer_url | String |
Link for footer image. |
2.35.1. Example configuration for Red Hat Quay branding
Branding config.yaml example
BRANDING: logo: https://www.mend.io/wp-content/media/2020/03/5-tips_small.jpg footer_img: https://www.mend.io/wp-content/media/2020/03/5-tips_small.jpg footer_url: https://opensourceworld.org/
2.36. Session timeout configuration field
The following configuration field relies on on the Flask API configuration field of the same name.
Field | Type | Description |
---|---|---|
PERMANENT_SESSION_LIFETIME | Integer |
A
Default: |
2.36.1. Example session timeout configuration
The following YAML is the suggest configuration when enabling session lifetime.
Altering session lifetime is not recommended. Administrators should be aware of the allotted time when setting a session timeout. If you set the time too early, it might interrupt your workflow.
Session timeout YAML configuration
PERMANENT_SESSION_LIFETIME: 3000