Questo contenuto non è disponibile nella lingua selezionata.
Chapter 2. Networking Operators
2.1. DNS Operator in OpenShift Dedicated
In OpenShift Dedicated, the DNS Operator deploys and manages a CoreDNS instance to provide a name resolution service to pods inside the cluster, enables DNS-based Kubernetes Service discovery, and resolves internal cluster.local
names.
2.1.1. Checking the status of the DNS Operator
The DNS Operator implements the dns
API from the operator.openshift.io
API group. The Operator deploys CoreDNS using a daemon set, creates a service for the daemon set, and configures the kubelet to instruct pods to use the CoreDNS service IP address for name resolution.
Procedure
The DNS Operator is deployed during installation with a Deployment
object.
Use the
oc get
command to view the deployment status:$ oc get -n openshift-dns-operator deployment/dns-operator
Example output
NAME READY UP-TO-DATE AVAILABLE AGE dns-operator 1/1 1 1 23h
Use the
oc get
command to view the state of the DNS Operator:$ oc get clusteroperator/dns
Example output
NAME VERSION AVAILABLE PROGRESSING DEGRADED SINCE MESSAGE dns 4.1.15-0.11 True False False 92m
AVAILABLE
,PROGRESSING
, andDEGRADED
provide information about the status of the Operator.AVAILABLE
isTrue
when at least 1 pod from the CoreDNS daemon set reports anAvailable
status condition, and the DNS service has a cluster IP address.
2.1.2. View the default DNS
Every new OpenShift Dedicated installation has a dns.operator
named default
.
Procedure
Use the
oc describe
command to view the defaultdns
:$ oc describe dns.operator/default
Example output
Name: default Namespace: Labels: <none> Annotations: <none> API Version: operator.openshift.io/v1 Kind: DNS ... Status: Cluster Domain: cluster.local 1 Cluster IP: 172.30.0.10 2 ...
2.1.3. Using DNS forwarding
You can use DNS forwarding to override the default forwarding configuration in the /etc/resolv.conf
file in the following ways:
Specify name servers (
spec.servers
) for every zone. If the forwarded zone is the ingress domain managed by OpenShift Dedicated, then the upstream name server must be authorized for the domain.ImportantYou must specify at least one zone. Otherwise, your cluster can lose functionality.
-
Provide a list of upstream DNS servers (
spec.upstreamResolvers
). - Change the default forwarding policy.
A DNS forwarding configuration for the default domain can have both the default servers specified in the /etc/resolv.conf
file and the upstream DNS servers.
Procedure
Modify the DNS Operator object named
default
:$ oc edit dns.operator/default
After you issue the previous command, the Operator creates and updates the config map named
dns-default
with additional server configuration blocks based onspec.servers
.ImportantWhen specifying values for the
zones
parameter, ensure that you only forward to specific zones, such as your intranet. You must specify at least one zone. Otherwise, your cluster can lose functionality.If none of the servers have a zone that matches the query, then name resolution falls back to the upstream DNS servers.
Configuring DNS forwarding
apiVersion: operator.openshift.io/v1 kind: DNS metadata: name: default spec: cache: negativeTTL: 0s positiveTTL: 0s logLevel: Normal nodePlacement: {} operatorLogLevel: Normal servers: - name: example-server 1 zones: - example.com 2 forwardPlugin: policy: Random 3 upstreams: 4 - 1.1.1.1 - 2.2.2.2:5353 upstreamResolvers: 5 policy: Random 6 protocolStrategy: "" 7 transportConfig: {} 8 upstreams: - type: SystemResolvConf 9 - type: Network address: 1.2.3.4 10 port: 53 11 status: clusterDomain: cluster.local clusterIP: x.y.z.10 conditions: ...
- 1
- Must comply with the
rfc6335
service name syntax. - 2
- Must conform to the definition of a subdomain in the
rfc1123
service name syntax. The cluster domain,cluster.local
, is an invalid subdomain for thezones
field. - 3
- Defines the policy to select upstream resolvers listed in the
forwardPlugin
. Default value isRandom
. You can also use the valuesRoundRobin
, andSequential
. - 4
- A maximum of 15
upstreams
is allowed perforwardPlugin
. - 5
- You can use
upstreamResolvers
to override the default forwarding policy and forward DNS resolution to the specified DNS resolvers (upstream resolvers) for the default domain. If you do not provide any upstream resolvers, the DNS name queries go to the servers declared in/etc/resolv.conf
. - 6
- Determines the order in which upstream servers listed in
upstreams
are selected for querying. You can specify one of these values:Random
,RoundRobin
, orSequential
. The default value isSequential
. - 7
- When omitted, the platform chooses a default, normally the protocol of the original client request. Set to
TCP
to specify that the platform should use TCP for all upstream DNS requests, even if the client request uses UDP. - 8
- Used to configure the transport type, server name, and optional custom CA or CA bundle to use when forwarding DNS requests to an upstream resolver.
- 9
- You can specify two types of
upstreams
:SystemResolvConf
orNetwork
.SystemResolvConf
configures the upstream to use/etc/resolv.conf
andNetwork
defines aNetworkresolver
. You can specify one or both. - 10
- If the specified type is
Network
, you must provide an IP address. Theaddress
field must be a valid IPv4 or IPv6 address. - 11
- If the specified type is
Network
, you can optionally provide a port. Theport
field must have a value between1
and65535
. If you do not specify a port for the upstream, the default port is 853.
Additional resources
- For more information on DNS forwarding, see the CoreDNS forward documentation.
2.1.4. Checking DNS Operator status
You can inspect the status and view the details of the DNS Operator using the oc describe
command.
Procedure
View the status of the DNS Operator:
$ oc describe clusteroperators/dns
Though the messages and spelling might vary in a specific release, the expected status output looks like:
Status: Conditions: Last Transition Time: <date> Message: DNS "default" is available. Reason: AsExpected Status: True Type: Available Last Transition Time: <date> Message: Desired and current number of DNSes are equal Reason: AsExpected Status: False Type: Progressing Last Transition Time: <date> Reason: DNSNotDegraded Status: False Type: Degraded Last Transition Time: <date> Message: DNS default is upgradeable: DNS Operator can be upgraded Reason: DNSUpgradeable Status: True Type: Upgradeable
2.1.5. Viewing DNS Operator logs
You can view DNS Operator logs by using the oc logs
command.
Procedure
View the logs of the DNS Operator:
$ oc logs -n openshift-dns-operator deployment/dns-operator -c dns-operator
2.1.6. Setting the CoreDNS log level
Log levels for CoreDNS and the CoreDNS Operator are set by using different methods. You can configure the CoreDNS log level to determine the amount of detail in logged error messages. The valid values for CoreDNS log level are Normal
, Debug
, and Trace
. The default logLevel
is Normal
.
The CoreDNS error log level is always enabled. The following log level settings report different error responses:
-
logLevel
:Normal
enables the "errors" class:log . { class error }
. -
logLevel
:Debug
enables the "denial" class:log . { class denial error }
. -
logLevel
:Trace
enables the "all" class:log . { class all }
.
Procedure
To set
logLevel
toDebug
, enter the following command:$ oc patch dnses.operator.openshift.io/default -p '{"spec":{"logLevel":"Debug"}}' --type=merge
To set
logLevel
toTrace
, enter the following command:$ oc patch dnses.operator.openshift.io/default -p '{"spec":{"logLevel":"Trace"}}' --type=merge
Verification
To ensure the desired log level was set, check the config map:
$ oc get configmap/dns-default -n openshift-dns -o yaml
For example, after setting the
logLevel
toTrace
, you should see this stanza in each server block:errors log . { class all }
2.1.7. Setting the CoreDNS Operator log level
Log levels for CoreDNS and CoreDNS Operator are set by using different methods. Cluster administrators can configure the Operator log level to more quickly track down OpenShift DNS issues. The valid values for operatorLogLevel
are Normal
, Debug
, and Trace
. Trace
has the most detailed information. The default operatorlogLevel
is Normal
. There are seven logging levels for Operator issues: Trace, Debug, Info, Warning, Error, Fatal, and Panic. After the logging level is set, log entries with that severity or anything above it will be logged.
-
operatorLogLevel: "Normal"
setslogrus.SetLogLevel("Info")
. -
operatorLogLevel: "Debug"
setslogrus.SetLogLevel("Debug")
. -
operatorLogLevel: "Trace"
setslogrus.SetLogLevel("Trace")
.
Procedure
To set
operatorLogLevel
toDebug
, enter the following command:$ oc patch dnses.operator.openshift.io/default -p '{"spec":{"operatorLogLevel":"Debug"}}' --type=merge
To set
operatorLogLevel
toTrace
, enter the following command:$ oc patch dnses.operator.openshift.io/default -p '{"spec":{"operatorLogLevel":"Trace"}}' --type=merge
Verification
To review the resulting change, enter the following command:
$ oc get dnses.operator -A -oyaml
You should see two log level entries. The
operatorLogLevel
applies to OpenShift DNS Operator issues, and thelogLevel
applies to the daemonset of CoreDNS pods:logLevel: Trace operatorLogLevel: Debug
To review the logs for the daemonset, enter the following command:
$ oc logs -n openshift-dns ds/dns-default
2.1.8. Tuning the CoreDNS cache
For CoreDNS, you can configure the maximum duration of both successful or unsuccessful caching, also known respectively as positive or negative caching. Tuning the cache duration of DNS query responses can reduce the load for any upstream DNS resolvers.
Setting TTL fields to low values could lead to an increased load on the cluster, any upstream resolvers, or both.
Procedure
Edit the DNS Operator object named
default
by running the following command:$ oc edit dns.operator.openshift.io/default
Modify the time-to-live (TTL) caching values:
Configuring DNS caching
apiVersion: operator.openshift.io/v1 kind: DNS metadata: name: default spec: cache: positiveTTL: 1h 1 negativeTTL: 0.5h10m 2
- 1
- The string value
1h
is converted to its respective number of seconds by CoreDNS. If this field is omitted, the value is assumed to be0s
and the cluster uses the internal default value of900s
as a fallback. - 2
- The string value can be a combination of units such as
0.5h10m
and is converted to its respective number of seconds by CoreDNS. If this field is omitted, the value is assumed to be0s
and the cluster uses the internal default value of30s
as a fallback.
Verification
To review the change, look at the config map again by running the following command:
oc get configmap/dns-default -n openshift-dns -o yaml
Verify that you see entries that look like the following example:
cache 3600 { denial 9984 2400 }
Additional resources
For more information on caching, see CoreDNS cache.
2.1.9. Advanced tasks
2.1.9.1. Changing the DNS Operator managementState
The DNS Operator manages the CoreDNS component to provide a name resolution service for pods and services in the cluster. The managementState
of the DNS Operator is set to Managed
by default, which means that the DNS Operator is actively managing its resources. You can change it to Unmanaged
, which means the DNS Operator is not managing its resources.
The following are use cases for changing the DNS Operator managementState
:
-
You are a developer and want to test a configuration change to see if it fixes an issue in CoreDNS. You can stop the DNS Operator from overwriting the configuration change by setting the
managementState
toUnmanaged
. -
You are a cluster administrator and have reported an issue with CoreDNS, but need to apply a workaround until the issue is fixed. You can set the
managementState
field of the DNS Operator toUnmanaged
to apply the workaround.
Procedure
Change
managementState
toUnmanaged
in the DNS Operator:oc patch dns.operator.openshift.io default --type merge --patch '{"spec":{"managementState":"Unmanaged"}}'
Review
managementState
of the DNS Operator using thejsonpath
command line JSON parser:$ oc get dns.operator.openshift.io default -ojsonpath='{.spec.managementState}'
Example output
"Unmanaged"
You cannot upgrade while the managementState
is set to Unmanaged
.
2.1.9.2. Controlling DNS pod placement
The DNS Operator has two daemon sets: one for CoreDNS called dns-default
and one for managing the /etc/hosts
file called node-resolver
.
You might find a need to control which nodes have CoreDNS pods assigned and running, although this is not a common operation. For example, if the cluster administrator has configured security policies that can prohibit communication between pairs of nodes, that would necessitate restricting the set of nodes on which the daemonset for CoreDNS runs. If DNS pods are running on some nodes in the cluster and the nodes where DNS pods are not running have network connectivity to nodes where DNS pods are running, DNS service will be available to all pods.
The node-resolver
daemon set must run on every node host because it adds an entry for the cluster image registry to support pulling images. The node-resolver
pods have only one job: to look up the image-registry.openshift-image-registry.svc
service’s cluster IP address and add it to /etc/hosts
on the node host so that the container runtime can resolve the service name.
As a cluster administrator, you can use a custom node selector to configure the daemon set for CoreDNS to run or not run on certain nodes.
Prerequisites
-
You installed the
oc
CLI. -
You are logged in to the cluster as a user with
cluster-admin
privileges. -
Your DNS Operator
managementState
is set toManaged
.
Procedure
To allow the daemon set for CoreDNS to run on certain nodes, configure a taint and toleration:
Modify the DNS Operator object named
default
:$ oc edit dns.operator/default
Specify a taint key and a toleration for the taint:
spec: nodePlacement: tolerations: - effect: NoExecute key: "dns-only" operators: Equal value: abc tolerationSeconds: 3600 1
- 1
- If the taint is
dns-only
, it can be tolerated indefinitely. You can omittolerationSeconds
.
2.1.9.3. Configuring DNS forwarding with TLS
When working in a highly regulated environment, you might need the ability to secure DNS traffic when forwarding requests to upstream resolvers so that you can ensure additional DNS traffic and data privacy.
Be aware that CoreDNS caches forwarded connections for 10 seconds. CoreDNS will hold a TCP connection open for those 10 seconds if no request is issued. With large clusters, ensure that your DNS server is aware that it might get many new connections to hold open because you can initiate a connection per node. Set up your DNS hierarchy accordingly to avoid performance issues.
When specifying values for the zones
parameter, ensure that you only forward to specific zones, such as your intranet. You must specify at least one zone. Otherwise, your cluster can lose functionality.
Procedure
Modify the DNS Operator object named
default
:$ oc edit dns.operator/default
Cluster administrators can configure transport layer security (TLS) for forwarded DNS queries.
Configuring DNS forwarding with TLS
apiVersion: operator.openshift.io/v1 kind: DNS metadata: name: default spec: servers: - name: example-server 1 zones: - example.com 2 forwardPlugin: transportConfig: transport: TLS 3 tls: caBundle: name: mycacert serverName: dnstls.example.com 4 policy: Random 5 upstreams: 6 - 1.1.1.1 - 2.2.2.2:5353 upstreamResolvers: 7 transportConfig: transport: TLS tls: caBundle: name: mycacert serverName: dnstls.example.com upstreams: - type: Network 8 address: 1.2.3.4 9 port: 53 10
- 1
- Must comply with the
rfc6335
service name syntax. - 2
- Must conform to the definition of a subdomain in the
rfc1123
service name syntax. The cluster domain,cluster.local
, is an invalid subdomain for thezones
field. The cluster domain,cluster.local
, is an invalidsubdomain
forzones
. - 3
- When configuring TLS for forwarded DNS queries, set the
transport
field to have the valueTLS
. - 4
- When configuring TLS for forwarded DNS queries, this is a mandatory server name used as part of the server name indication (SNI) to validate the upstream TLS server certificate.
- 5
- Defines the policy to select upstream resolvers. Default value is
Random
. You can also use the valuesRoundRobin
, andSequential
. - 6
- Required. Use it to provide upstream resolvers. A maximum of 15
upstreams
entries are allowed perforwardPlugin
entry. - 7
- Optional. You can use it to override the default policy and forward DNS resolution to the specified DNS resolvers (upstream resolvers) for the default domain. If you do not provide any upstream resolvers, the DNS name queries go to the servers in
/etc/resolv.conf
. - 8
- Only the
Network
type is allowed when using TLS and you must provide an IP address.Network
type indicates that this upstream resolver should handle forwarded requests separately from the upstream resolvers listed in/etc/resolv.conf
. - 9
- The
address
field must be a valid IPv4 or IPv6 address. - 10
- You can optionally provide a port. The
port
must have a value between1
and65535
. If you do not specify a port for the upstream, the default port is 853.
NoteIf
servers
is undefined or invalid, the config map only contains the default server.
Verification
View the config map:
$ oc get configmap/dns-default -n openshift-dns -o yaml
Sample DNS ConfigMap based on TLS forwarding example
apiVersion: v1 data: Corefile: | example.com:5353 { forward . 1.1.1.1 2.2.2.2:5353 } bar.com:5353 example.com:5353 { forward . 3.3.3.3 4.4.4.4:5454 1 } .:5353 { errors health kubernetes cluster.local in-addr.arpa ip6.arpa { pods insecure upstream fallthrough in-addr.arpa ip6.arpa } prometheus :9153 forward . /etc/resolv.conf 1.2.3.4:53 { policy Random } cache 30 reload } kind: ConfigMap metadata: labels: dns.operator.openshift.io/owning-dns: default name: dns-default namespace: openshift-dns
- 1
- Changes to the
forwardPlugin
triggers a rolling update of the CoreDNS daemon set.
Additional resources
- For more information on DNS forwarding, see the CoreDNS forward documentation.
2.2. Ingress Operator in OpenShift Dedicated
The Ingress Operator implements the IngressController
API and is the component responsible for enabling external access to OpenShift Dedicated cluster services.
2.2.1. OpenShift Dedicated Ingress Operator
When you create your OpenShift Dedicated cluster, pods and services running on the cluster are each allocated their own IP addresses. The IP addresses are accessible to other pods and services running nearby but are not accessible to outside clients.
The Ingress Operator makes it possible for external clients to access your service by deploying and managing one or more HAProxy-based Ingress Controllers to handle routing. Red Hat Site Reliability Engineers (SRE) manage the Ingress Operator for OpenShift Dedicated clusters. While you cannot alter the settings for the Ingress Operator, you may view the default Ingress Controller configurations, status, and logs as well as the Ingress Operator status.
2.2.2. The Ingress configuration asset
The installation program generates an asset with an Ingress
resource in the config.openshift.io
API group, cluster-ingress-02-config.yml
.
YAML Definition of the Ingress
resource
apiVersion: config.openshift.io/v1 kind: Ingress metadata: name: cluster spec: domain: apps.openshiftdemos.com
The installation program stores this asset in the cluster-ingress-02-config.yml
file in the manifests/
directory. This Ingress
resource defines the cluster-wide configuration for Ingress. This Ingress configuration is used as follows:
- The Ingress Operator uses the domain from the cluster Ingress configuration as the domain for the default Ingress Controller.
-
The OpenShift API Server Operator uses the domain from the cluster Ingress configuration. This domain is also used when generating a default host for a
Route
resource that does not specify an explicit host.
2.2.3. Ingress Controller configuration parameters
The IngressController
custom resource (CR) includes optional configuration parameters that you can configure to meet specific needs for your organization.
Parameter | Description |
---|---|
|
The
If empty, the default value is |
|
|
|
For cloud environments, use the
You can configure the following
If not set, the default value is based on
For most platforms, the
If you need to update the
|
|
The
The secret must contain the following keys and data: *
If not set, a wildcard certificate is automatically generated and used. The certificate is valid for the Ingress Controller The in-use certificate, whether generated or user-specified, is automatically integrated with OpenShift Dedicated built-in OAuth server. |
|
|
|
|
|
If not set, the defaults values are used. Note
The nodePlacement: nodeSelector: matchLabels: kubernetes.io/os: linux tolerations: - effect: NoSchedule operator: Exists |
|
If not set, the default value is based on the
When using the
The minimum TLS version for Ingress Controllers is Note
Ciphers and the minimum TLS version of the configured security profile are reflected in the Important
The Ingress Operator converts the TLS |
|
The
The |
|
|
|
|
|
By setting the
By default, the policy is set to
By setting These adjustments are only applied to cleartext, edge-terminated, and re-encrypt routes, and only when using HTTP/1.
For request headers, these adjustments are applied only for routes that have the
|
|
|
|
|
|
For any cookie that you want to capture, the following parameters must be in your
For example: httpCaptureCookies: - matchType: Exact maxLength: 128 name: MYCOOKIE |
|
httpCaptureHeaders: request: - maxLength: 256 name: Connection - maxLength: 128 name: User-Agent response: - maxLength: 256 name: Content-Type - maxLength: 256 name: Content-Length |
|
|
|
The
|
|
The
These connections come from load balancer health probes or web browser speculative connections (preconnect) and can be safely ignored. However, these requests can be caused by network errors, so setting this field to |
2.2.3.1. Ingress Controller TLS security profiles
TLS security profiles provide a way for servers to regulate which ciphers a connecting client can use when connecting to the server.
2.2.3.1.1. Understanding TLS security profiles
You can use a TLS (Transport Layer Security) security profile to define which TLS ciphers are required by various OpenShift Dedicated components. The OpenShift Dedicated TLS security profiles are based on Mozilla recommended configurations.
You can specify one of the following TLS security profiles for each component:
Profile | Description |
---|---|
| This profile is intended for use with legacy clients or libraries. The profile is based on the Old backward compatibility recommended configuration.
The Note For the Ingress Controller, the minimum TLS version is converted from 1.0 to 1.1. |
| This profile is the recommended configuration for the majority of clients. It is the default TLS security profile for the Ingress Controller, kubelet, and control plane. The profile is based on the Intermediate compatibility recommended configuration.
The |
| This profile is intended for use with modern clients that have no need for backwards compatibility. This profile is based on the Modern compatibility recommended configuration.
The |
| This profile allows you to define the TLS version and ciphers to use. Warning
Use caution when using a |
When using one of the predefined profile types, the effective profile configuration is subject to change between releases. For example, given a specification to use the Intermediate profile deployed on release X.Y.Z, an upgrade to release X.Y.Z+1 might cause a new profile configuration to be applied, resulting in a rollout.
2.2.3.1.2. Configuring the TLS security profile for the Ingress Controller
To configure a TLS security profile for an Ingress Controller, edit the IngressController
custom resource (CR) to specify a predefined or custom TLS security profile. If a TLS security profile is not configured, the default value is based on the TLS security profile set for the API server.
Sample IngressController
CR that configures the Old
TLS security profile
apiVersion: operator.openshift.io/v1 kind: IngressController ... spec: tlsSecurityProfile: old: {} type: Old ...
The TLS security profile defines the minimum TLS version and the TLS ciphers for TLS connections for Ingress Controllers.
You can see the ciphers and the minimum TLS version of the configured TLS security profile in the IngressController
custom resource (CR) under Status.Tls Profile
and the configured TLS security profile under Spec.Tls Security Profile
. For the Custom
TLS security profile, the specific ciphers and minimum TLS version are listed under both parameters.
The HAProxy Ingress Controller image supports TLS 1.3
and the Modern
profile.
The Ingress Operator also converts the TLS 1.0
of an Old
or Custom
profile to 1.1
.
Prerequisites
-
You have access to the cluster as a user with the
cluster-admin
role.
Procedure
Edit the
IngressController
CR in theopenshift-ingress-operator
project to configure the TLS security profile:$ oc edit IngressController default -n openshift-ingress-operator
Add the
spec.tlsSecurityProfile
field:Sample
IngressController
CR for aCustom
profileapiVersion: operator.openshift.io/v1 kind: IngressController ... spec: tlsSecurityProfile: type: Custom 1 custom: 2 ciphers: 3 - ECDHE-ECDSA-CHACHA20-POLY1305 - ECDHE-RSA-CHACHA20-POLY1305 - ECDHE-RSA-AES128-GCM-SHA256 - ECDHE-ECDSA-AES128-GCM-SHA256 minTLSVersion: VersionTLS11 ...
- Save the file to apply the changes.
Verification
Verify that the profile is set in the
IngressController
CR:$ oc describe IngressController default -n openshift-ingress-operator
Example output
Name: default Namespace: openshift-ingress-operator Labels: <none> Annotations: <none> API Version: operator.openshift.io/v1 Kind: IngressController ... Spec: ... Tls Security Profile: Custom: Ciphers: ECDHE-ECDSA-CHACHA20-POLY1305 ECDHE-RSA-CHACHA20-POLY1305 ECDHE-RSA-AES128-GCM-SHA256 ECDHE-ECDSA-AES128-GCM-SHA256 Min TLS Version: VersionTLS11 Type: Custom ...
2.2.3.1.3. Configuring mutual TLS authentication
You can configure the Ingress Controller to enable mutual TLS (mTLS) authentication by setting a spec.clientTLS
value. The clientTLS
value configures the Ingress Controller to verify client certificates. This configuration includes setting a clientCA
value, which is a reference to a config map. The config map contains the PEM-encoded CA certificate bundle that is used to verify a client’s certificate. Optionally, you can also configure a list of certificate subject filters.
If the clientCA
value specifies an X509v3 certificate revocation list (CRL) distribution point, the Ingress Operator downloads and manages a CRL config map based on the HTTP URI X509v3 CRL Distribution Point
specified in each provided certificate. The Ingress Controller uses this config map during mTLS/TLS negotiation. Requests that do not provide valid certificates are rejected.
Prerequisites
-
You have access to the cluster as a user with the
cluster-admin
role. - You have a PEM-encoded CA certificate bundle.
If your CA bundle references a CRL distribution point, you must have also included the end-entity or leaf certificate to the client CA bundle. This certificate must have included an HTTP URI under
CRL Distribution Points
, as described in RFC 5280. For example:Issuer: C=US, O=Example Inc, CN=Example Global G2 TLS RSA SHA256 2020 CA1 Subject: SOME SIGNED CERT X509v3 CRL Distribution Points: Full Name: URI:http://crl.example.com/example.crl
Procedure
In the
openshift-config
namespace, create a config map from your CA bundle:$ oc create configmap \ router-ca-certs-default \ --from-file=ca-bundle.pem=client-ca.crt \1 -n openshift-config
- 1
- The config map data key must be
ca-bundle.pem
, and the data value must be a CA certificate in PEM format.
Edit the
IngressController
resource in theopenshift-ingress-operator
project:$ oc edit IngressController default -n openshift-ingress-operator
Add the
spec.clientTLS
field and subfields to configure mutual TLS:Sample
IngressController
CR for aclientTLS
profile that specifies filtering patternsapiVersion: operator.openshift.io/v1 kind: IngressController metadata: name: default namespace: openshift-ingress-operator spec: clientTLS: clientCertificatePolicy: Required clientCA: name: router-ca-certs-default allowedSubjectPatterns: - "^/CN=example.com/ST=NC/C=US/O=Security/OU=OpenShift$"
-
Optional, get the Distinguished Name (DN) for
allowedSubjectPatterns
by entering the following command.
$ openssl x509 -in custom-cert.pem -noout -subject subject= /CN=example.com/ST=NC/C=US/O=Security/OU=OpenShift
2.2.4. View the default Ingress Controller
The Ingress Operator is a core feature of OpenShift Dedicated and is enabled out of the box.
Every new OpenShift Dedicated installation has an ingresscontroller
named default. It can be supplemented with additional Ingress Controllers. If the default ingresscontroller
is deleted, the Ingress Operator will automatically recreate it within a minute.
Procedure
View the default Ingress Controller:
$ oc describe --namespace=openshift-ingress-operator ingresscontroller/default
2.2.5. View Ingress Operator status
You can view and inspect the status of your Ingress Operator.
Procedure
View your Ingress Operator status:
$ oc describe clusteroperators/ingress
2.2.6. View Ingress Controller logs
You can view your Ingress Controller logs.
Procedure
View your Ingress Controller logs:
$ oc logs --namespace=openshift-ingress-operator deployments/ingress-operator -c <container_name>
2.2.7. View Ingress Controller status
Your can view the status of a particular Ingress Controller.
Procedure
View the status of an Ingress Controller:
$ oc describe --namespace=openshift-ingress-operator ingresscontroller/<name>
2.2.8. Creating a custom Ingress Controller
As a cluster administrator, you can create a new custom Ingress Controller. Because the default Ingress Controller might change during OpenShift Dedicated updates, creating a custom Ingress Controller can be helpful when maintaining a configuration manually that persists across cluster updates.
This example provides a minimal spec for a custom Ingress Controller. To further customize your custom Ingress Controller, see "Configuring the Ingress Controller".
Prerequisites
-
Install the OpenShift CLI (
oc
). -
Log in as a user with
cluster-admin
privileges.
Procedure
Create a YAML file that defines the custom
IngressController
object:Example
custom-ingress-controller.yaml
fileapiVersion: operator.openshift.io/v1 kind: IngressController metadata: name: <custom_name> 1 namespace: openshift-ingress-operator spec: defaultCertificate: name: <custom-ingress-custom-certs> 2 replicas: 1 3 domain: <custom_domain> 4
- 1
- Specify the a custom
name
for theIngressController
object. - 2
- Specify the name of the secret with the custom wildcard certificate.
- 3
- Minimum replica needs to be ONE
- 4
- Specify the domain to your domain name. The domain specified on the IngressController object and the domain used for the certificate must match. For example, if the domain value is "custom_domain.mycompany.com", then the certificate must have SAN *.custom_domain.mycompany.com (with the
*.
added to the domain).
Create the object by running the following command:
$ oc create -f custom-ingress-controller.yaml
2.2.9. Configuring the Ingress Controller
2.2.9.1. Setting a custom default certificate
As an administrator, you can configure an Ingress Controller to use a custom certificate by creating a Secret resource and editing the IngressController
custom resource (CR).
Prerequisites
- You must have a certificate/key pair in PEM-encoded files, where the certificate is signed by a trusted certificate authority or by a private trusted certificate authority that you configured in a custom PKI.
Your certificate meets the following requirements:
- The certificate is valid for the ingress domain.
-
The certificate uses the
subjectAltName
extension to specify a wildcard domain, such as*.apps.ocp4.example.com
.
You must have an
IngressController
CR. You may use the default one:$ oc --namespace openshift-ingress-operator get ingresscontrollers
Example output
NAME AGE default 10m
If you have intermediate certificates, they must be included in the tls.crt
file of the secret containing a custom default certificate. Order matters when specifying a certificate; list your intermediate certificate(s) after any server certificate(s).
Procedure
The following assumes that the custom certificate and key pair are in the tls.crt
and tls.key
files in the current working directory. Substitute the actual path names for tls.crt
and tls.key
. You also may substitute another name for custom-certs-default
when creating the Secret resource and referencing it in the IngressController CR.
This action will cause the Ingress Controller to be redeployed, using a rolling deployment strategy.
Create a Secret resource containing the custom certificate in the
openshift-ingress
namespace using thetls.crt
andtls.key
files.$ oc --namespace openshift-ingress create secret tls custom-certs-default --cert=tls.crt --key=tls.key
Update the IngressController CR to reference the new certificate secret:
$ oc patch --type=merge --namespace openshift-ingress-operator ingresscontrollers/default \ --patch '{"spec":{"defaultCertificate":{"name":"custom-certs-default"}}}'
Verify the update was effective:
$ echo Q |\ openssl s_client -connect console-openshift-console.apps.<domain>:443 -showcerts 2>/dev/null |\ openssl x509 -noout -subject -issuer -enddate
where:
<domain>
- Specifies the base domain name for your cluster.
Example output
subject=C = US, ST = NC, L = Raleigh, O = RH, OU = OCP4, CN = *.apps.example.com issuer=C = US, ST = NC, L = Raleigh, O = RH, OU = OCP4, CN = example.com notAfter=May 10 08:32:45 2022 GM
TipYou can alternatively apply the following YAML to set a custom default certificate:
apiVersion: operator.openshift.io/v1 kind: IngressController metadata: name: default namespace: openshift-ingress-operator spec: defaultCertificate: name: custom-certs-default
The certificate secret name should match the value used to update the CR.
Once the IngressController CR has been modified, the Ingress Operator updates the Ingress Controller’s deployment to use the custom certificate.
2.2.9.2. Removing a custom default certificate
As an administrator, you can remove a custom certificate that you configured an Ingress Controller to use.
Prerequisites
-
You have access to the cluster as a user with the
cluster-admin
role. -
You have installed the OpenShift CLI (
oc
). - You previously configured a custom default certificate for the Ingress Controller.
Procedure
To remove the custom certificate and restore the certificate that ships with OpenShift Dedicated, enter the following command:
$ oc patch -n openshift-ingress-operator ingresscontrollers/default \ --type json -p $'- op: remove\n path: /spec/defaultCertificate'
There can be a delay while the cluster reconciles the new certificate configuration.
Verification
To confirm that the original cluster certificate is restored, enter the following command:
$ echo Q | \ openssl s_client -connect console-openshift-console.apps.<domain>:443 -showcerts 2>/dev/null | \ openssl x509 -noout -subject -issuer -enddate
where:
<domain>
- Specifies the base domain name for your cluster.
Example output
subject=CN = *.apps.<domain> issuer=CN = ingress-operator@1620633373 notAfter=May 10 10:44:36 2023 GMT
2.2.9.3. Autoscaling an Ingress Controller
You can automatically scale an Ingress Controller to dynamically meet routing performance or availability requirements, such as the requirement to increase throughput.
The following procedure provides an example for scaling up the default Ingress Controller.
Prerequisites
-
You have the OpenShift CLI (
oc
) installed. -
You have access to an OpenShift Dedicated cluster as a user with the
cluster-admin
role. You installed the Custom Metrics Autoscaler Operator and an associated KEDA Controller.
-
You can install the Operator by using OperatorHub on the web console. After you install the Operator, you can create an instance of
KedaController
.
-
You can install the Operator by using OperatorHub on the web console. After you install the Operator, you can create an instance of
Procedure
Create a service account to authenticate with Thanos by running the following command:
$ oc create -n openshift-ingress-operator serviceaccount thanos && oc describe -n openshift-ingress-operator serviceaccount thanos
Example output
Name: thanos Namespace: openshift-ingress-operator Labels: <none> Annotations: <none> Image pull secrets: thanos-dockercfg-kfvf2 Mountable secrets: thanos-dockercfg-kfvf2 Tokens: <none> Events: <none>
Manually create the service account secret token with the following command:
$ oc apply -f - <<EOF apiVersion: v1 kind: Secret metadata: name: thanos-token namespace: openshift-ingress-operator annotations: kubernetes.io/service-account.name: thanos type: kubernetes.io/service-account-token EOF
Define a
TriggerAuthentication
object within theopenshift-ingress-operator
namespace by using the service account’s token.Create the
TriggerAuthentication
object and pass the value of thesecret
variable to theTOKEN
parameter:$ oc apply -f - <<EOF apiVersion: keda.sh/v1alpha1 kind: TriggerAuthentication metadata: name: keda-trigger-auth-prometheus namespace: openshift-ingress-operator spec: secretTargetRef: - parameter: bearerToken name: thanos-token key: token - parameter: ca name: thanos-token key: ca.crt EOF
Create and apply a role for reading metrics from Thanos:
Create a new role,
thanos-metrics-reader.yaml
, that reads metrics from pods and nodes:thanos-metrics-reader.yaml
apiVersion: rbac.authorization.k8s.io/v1 kind: Role metadata: name: thanos-metrics-reader namespace: openshift-ingress-operator rules: - apiGroups: - "" resources: - pods - nodes verbs: - get - apiGroups: - metrics.k8s.io resources: - pods - nodes verbs: - get - list - watch - apiGroups: - "" resources: - namespaces verbs: - get
Apply the new role by running the following command:
$ oc apply -f thanos-metrics-reader.yaml
Add the new role to the service account by entering the following commands:
$ oc adm policy -n openshift-ingress-operator add-role-to-user thanos-metrics-reader -z thanos --role-namespace=openshift-ingress-operator
$ oc adm policy -n openshift-ingress-operator add-cluster-role-to-user cluster-monitoring-view -z thanos
NoteThe argument
add-cluster-role-to-user
is only required if you use cross-namespace queries. The following step uses a query from thekube-metrics
namespace which requires this argument.Create a new
ScaledObject
YAML file,ingress-autoscaler.yaml
, that targets the default Ingress Controller deployment:Example
ScaledObject
definitionapiVersion: keda.sh/v1alpha1 kind: ScaledObject metadata: name: ingress-scaler namespace: openshift-ingress-operator spec: scaleTargetRef: 1 apiVersion: operator.openshift.io/v1 kind: IngressController name: default envSourceContainerName: ingress-operator minReplicaCount: 1 maxReplicaCount: 20 2 cooldownPeriod: 1 pollingInterval: 1 triggers: - type: prometheus metricType: AverageValue metadata: serverAddress: https://thanos-querier.openshift-monitoring.svc.cluster.local:9091 3 namespace: openshift-ingress-operator 4 metricName: 'kube-node-role' threshold: '1' query: 'sum(kube_node_role{role="worker",service="kube-state-metrics"})' 5 authModes: "bearer" authenticationRef: name: keda-trigger-auth-prometheus
- 1
- The custom resource that you are targeting. In this case, the Ingress Controller.
- 2
- Optional: The maximum number of replicas. If you omit this field, the default maximum is set to 100 replicas.
- 3
- The Thanos service endpoint in the
openshift-monitoring
namespace. - 4
- The Ingress Operator namespace.
- 5
- This expression evaluates to however many worker nodes are present in the deployed cluster.
ImportantIf you are using cross-namespace queries, you must target port 9091 and not port 9092 in the
serverAddress
field. You also must have elevated privileges to read metrics from this port.Apply the custom resource definition by running the following command:
$ oc apply -f ingress-autoscaler.yaml
Verification
Verify that the default Ingress Controller is scaled out to match the value returned by the
kube-state-metrics
query by running the following commands:Use the
grep
command to search the Ingress Controller YAML file for replicas:$ oc get -n openshift-ingress-operator ingresscontroller/default -o yaml | grep replicas:
Example output
replicas: 3
Get the pods in the
openshift-ingress
project:$ oc get pods -n openshift-ingress
Example output
NAME READY STATUS RESTARTS AGE router-default-7b5df44ff-l9pmm 2/2 Running 0 17h router-default-7b5df44ff-s5sl5 2/2 Running 0 3d22h router-default-7b5df44ff-wwsth 2/2 Running 0 66s
2.2.9.4. Scaling an Ingress Controller
Manually scale an Ingress Controller to meeting routing performance or availability requirements such as the requirement to increase throughput. oc
commands are used to scale the IngressController
resource. The following procedure provides an example for scaling up the default IngressController
.
Scaling is not an immediate action, as it takes time to create the desired number of replicas.
Procedure
View the current number of available replicas for the default
IngressController
:$ oc get -n openshift-ingress-operator ingresscontrollers/default -o jsonpath='{$.status.availableReplicas}'
Example output
2
Scale the default
IngressController
to the desired number of replicas using theoc patch
command. The following example scales the defaultIngressController
to 3 replicas:$ oc patch -n openshift-ingress-operator ingresscontroller/default --patch '{"spec":{"replicas": 3}}' --type=merge
Example output
ingresscontroller.operator.openshift.io/default patched
Verify that the default
IngressController
scaled to the number of replicas that you specified:$ oc get -n openshift-ingress-operator ingresscontrollers/default -o jsonpath='{$.status.availableReplicas}'
Example output
3
TipYou can alternatively apply the following YAML to scale an Ingress Controller to three replicas:
apiVersion: operator.openshift.io/v1 kind: IngressController metadata: name: default namespace: openshift-ingress-operator spec: replicas: 3 1
- 1
- If you need a different amount of replicas, change the
replicas
value.
2.2.9.5. Configuring Ingress access logging
You can configure the Ingress Controller to enable access logs. If you have clusters that do not receive much traffic, then you can log to a sidecar. If you have high traffic clusters, to avoid exceeding the capacity of the logging stack or to integrate with a logging infrastructure outside of OpenShift Dedicated, you can forward logs to a custom syslog endpoint. You can also specify the format for access logs.
Container logging is useful to enable access logs on low-traffic clusters when there is no existing Syslog logging infrastructure, or for short-term use while diagnosing problems with the Ingress Controller.
Syslog is needed for high-traffic clusters where access logs could exceed the OpenShift Logging stack’s capacity, or for environments where any logging solution needs to integrate with an existing Syslog logging infrastructure. The Syslog use-cases can overlap.
Prerequisites
-
Log in as a user with
cluster-admin
privileges.
Procedure
Configure Ingress access logging to a sidecar.
To configure Ingress access logging, you must specify a destination using
spec.logging.access.destination
. To specify logging to a sidecar container, you must specifyContainer
spec.logging.access.destination.type
. The following example is an Ingress Controller definition that logs to aContainer
destination:apiVersion: operator.openshift.io/v1 kind: IngressController metadata: name: default namespace: openshift-ingress-operator spec: replicas: 2 logging: access: destination: type: Container
When you configure the Ingress Controller to log to a sidecar, the operator creates a container named
logs
inside the Ingress Controller Pod:$ oc -n openshift-ingress logs deployment.apps/router-default -c logs
Example output
2020-05-11T19:11:50.135710+00:00 router-default-57dfc6cd95-bpmk6 router-default-57dfc6cd95-bpmk6 haproxy[108]: 174.19.21.82:39654 [11/May/2020:19:11:50.133] public be_http:hello-openshift:hello-openshift/pod:hello-openshift:hello-openshift:10.128.2.12:8080 0/0/1/0/1 200 142 - - --NI 1/1/0/0/0 0/0 "GET / HTTP/1.1"
Configure Ingress access logging to a Syslog endpoint.
To configure Ingress access logging, you must specify a destination using
spec.logging.access.destination
. To specify logging to a Syslog endpoint destination, you must specifySyslog
forspec.logging.access.destination.type
. If the destination type isSyslog
, you must also specify a destination endpoint usingspec.logging.access.destination.syslog.address
and you can specify a facility usingspec.logging.access.destination.syslog.facility
. The following example is an Ingress Controller definition that logs to aSyslog
destination:apiVersion: operator.openshift.io/v1 kind: IngressController metadata: name: default namespace: openshift-ingress-operator spec: replicas: 2 logging: access: destination: type: Syslog syslog: address: 1.2.3.4 port: 10514
NoteThe
syslog
destination port must be UDP.The
syslog
destination address must be an IP address. It does not support DNS hostname.
Configure Ingress access logging with a specific log format.
You can specify
spec.logging.access.httpLogFormat
to customize the log format. The following example is an Ingress Controller definition that logs to asyslog
endpoint with IP address 1.2.3.4 and port 10514:apiVersion: operator.openshift.io/v1 kind: IngressController metadata: name: default namespace: openshift-ingress-operator spec: replicas: 2 logging: access: destination: type: Syslog syslog: address: 1.2.3.4 port: 10514 httpLogFormat: '%ci:%cp [%t] %ft %b/%s %B %bq %HM %HU %HV'
Disable Ingress access logging.
To disable Ingress access logging, leave
spec.logging
orspec.logging.access
empty:apiVersion: operator.openshift.io/v1 kind: IngressController metadata: name: default namespace: openshift-ingress-operator spec: replicas: 2 logging: access: null
Allow the Ingress Controller to modify the HAProxy log length when using a sidecar.
Use
spec.logging.access.destination.syslog.maxLength
if you are usingspec.logging.access.destination.type: Syslog
.apiVersion: operator.openshift.io/v1 kind: IngressController metadata: name: default namespace: openshift-ingress-operator spec: replicas: 2 logging: access: destination: type: Syslog syslog: address: 1.2.3.4 maxLength: 4096 port: 10514
Use
spec.logging.access.destination.container.maxLength
if you are usingspec.logging.access.destination.type: Container
.apiVersion: operator.openshift.io/v1 kind: IngressController metadata: name: default namespace: openshift-ingress-operator spec: replicas: 2 logging: access: destination: type: Container container: maxLength: 8192
2.2.9.6. Setting Ingress Controller thread count
A cluster administrator can set the thread count to increase the amount of incoming connections a cluster can handle. You can patch an existing Ingress Controller to increase the amount of threads.
Prerequisites
- The following assumes that you already created an Ingress Controller.
Procedure
Update the Ingress Controller to increase the number of threads:
$ oc -n openshift-ingress-operator patch ingresscontroller/default --type=merge -p '{"spec":{"tuningOptions": {"threadCount": 8}}}'
NoteIf you have a node that is capable of running large amounts of resources, you can configure
spec.nodePlacement.nodeSelector
with labels that match the capacity of the intended node, and configurespec.tuningOptions.threadCount
to an appropriately high value.
2.2.9.7. Configuring an Ingress Controller to use an internal load balancer
When creating an Ingress Controller on cloud platforms, the Ingress Controller is published by a public cloud load balancer by default. As an administrator, you can create an Ingress Controller that uses an internal cloud load balancer.
If you want to change the scope
for an IngressController
, you can change the .spec.endpointPublishingStrategy.loadBalancer.scope
parameter after the custom resource (CR) is created.
Figure 2.1. Diagram of LoadBalancer
The preceding graphic shows the following concepts pertaining to OpenShift Dedicated Ingress LoadBalancerService endpoint publishing strategy:
- You can load balance externally, using the cloud provider load balancer, or internally, using the OpenShift Ingress Controller Load Balancer.
- You can use the single IP address of the load balancer and more familiar ports, such as 8080 and 4200 as shown on the cluster depicted in the graphic.
- Traffic from the external load balancer is directed at the pods, and managed by the load balancer, as depicted in the instance of a down node. See the Kubernetes Services documentation for implementation details.
Prerequisites
-
Install the OpenShift CLI (
oc
). -
Log in as a user with
cluster-admin
privileges.
Procedure
Create an
IngressController
custom resource (CR) in a file named<name>-ingress-controller.yaml
, such as in the following example:apiVersion: operator.openshift.io/v1 kind: IngressController metadata: namespace: openshift-ingress-operator name: <name> 1 spec: domain: <domain> 2 endpointPublishingStrategy: type: LoadBalancerService loadBalancer: scope: Internal 3
Create the Ingress Controller defined in the previous step by running the following command:
$ oc create -f <name>-ingress-controller.yaml 1
- 1
- Replace
<name>
with the name of theIngressController
object.
Optional: Confirm that the Ingress Controller was created by running the following command:
$ oc --all-namespaces=true get ingresscontrollers
2.2.9.8. Setting the Ingress Controller health check interval
A cluster administrator can set the health check interval to define how long the router waits between two consecutive health checks. This value is applied globally as a default for all routes. The default value is 5 seconds.
Prerequisites
- The following assumes that you already created an Ingress Controller.
Procedure
Update the Ingress Controller to change the interval between back end health checks:
$ oc -n openshift-ingress-operator patch ingresscontroller/default --type=merge -p '{"spec":{"tuningOptions": {"healthCheckInterval": "8s"}}}'
NoteTo override the
healthCheckInterval
for a single route, use the route annotationrouter.openshift.io/haproxy.health.check.interval
2.2.9.9. Configuring the default Ingress Controller for your cluster to be internal
You can configure the default
Ingress Controller for your cluster to be internal by deleting and recreating it.
If you want to change the scope
for an IngressController
, you can change the .spec.endpointPublishingStrategy.loadBalancer.scope
parameter after the custom resource (CR) is created.
Prerequisites
-
Install the OpenShift CLI (
oc
). -
Log in as a user with
cluster-admin
privileges.
Procedure
Configure the
default
Ingress Controller for your cluster to be internal by deleting and recreating it.$ oc replace --force --wait --filename - <<EOF apiVersion: operator.openshift.io/v1 kind: IngressController metadata: namespace: openshift-ingress-operator name: default spec: endpointPublishingStrategy: type: LoadBalancerService loadBalancer: scope: Internal EOF
2.2.9.10. Configuring the route admission policy
Administrators and application developers can run applications in multiple namespaces with the same domain name. This is for organizations where multiple teams develop microservices that are exposed on the same hostname.
Allowing claims across namespaces should only be enabled for clusters with trust between namespaces, otherwise a malicious user could take over a hostname. For this reason, the default admission policy disallows hostname claims across namespaces.
Prerequisites
- Cluster administrator privileges.
Procedure
Edit the
.spec.routeAdmission
field of theingresscontroller
resource variable using the following command:$ oc -n openshift-ingress-operator patch ingresscontroller/default --patch '{"spec":{"routeAdmission":{"namespaceOwnership":"InterNamespaceAllowed"}}}' --type=merge
Sample Ingress Controller configuration
spec: routeAdmission: namespaceOwnership: InterNamespaceAllowed ...
TipYou can alternatively apply the following YAML to configure the route admission policy:
apiVersion: operator.openshift.io/v1 kind: IngressController metadata: name: default namespace: openshift-ingress-operator spec: routeAdmission: namespaceOwnership: InterNamespaceAllowed
2.2.9.11. Using wildcard routes
The HAProxy Ingress Controller has support for wildcard routes. The Ingress Operator uses wildcardPolicy
to configure the ROUTER_ALLOW_WILDCARD_ROUTES
environment variable of the Ingress Controller.
The default behavior of the Ingress Controller is to admit routes with a wildcard policy of None
, which is backwards compatible with existing IngressController
resources.
Procedure
Configure the wildcard policy.
Use the following command to edit the
IngressController
resource:$ oc edit IngressController
Under
spec
, set thewildcardPolicy
field toWildcardsDisallowed
orWildcardsAllowed
:spec: routeAdmission: wildcardPolicy: WildcardsDisallowed # or WildcardsAllowed
2.2.9.12. HTTP header configuration
OpenShift Dedicated provides different methods for working with HTTP headers. When setting or deleting headers, you can use specific fields in the Ingress Controller or an individual route to modify request and response headers. You can also set certain headers by using route annotations. The various ways of configuring headers can present challenges when working together.
You can only set or delete headers within an IngressController
or Route
CR, you cannot append them. If an HTTP header is set with a value, that value must be complete and not require appending in the future. In situations where it makes sense to append a header, such as the X-Forwarded-For header, use the spec.httpHeaders.forwardedHeaderPolicy
field, instead of spec.httpHeaders.actions
.
2.2.9.12.1. Order of precedence
When the same HTTP header is modified both in the Ingress Controller and in a route, HAProxy prioritizes the actions in certain ways depending on whether it is a request or response header.
- For HTTP response headers, actions specified in the Ingress Controller are executed after the actions specified in a route. This means that the actions specified in the Ingress Controller take precedence.
- For HTTP request headers, actions specified in a route are executed after the actions specified in the Ingress Controller. This means that the actions specified in the route take precedence.
For example, a cluster administrator sets the X-Frame-Options response header with the value DENY
in the Ingress Controller using the following configuration:
Example IngressController
spec
apiVersion: operator.openshift.io/v1 kind: IngressController # ... spec: httpHeaders: actions: response: - name: X-Frame-Options action: type: Set set: value: DENY
A route owner sets the same response header that the cluster administrator set in the Ingress Controller, but with the value SAMEORIGIN
using the following configuration:
Example Route
spec
apiVersion: route.openshift.io/v1 kind: Route # ... spec: httpHeaders: actions: response: - name: X-Frame-Options action: type: Set set: value: SAMEORIGIN
When both the IngressController
spec and Route
spec are configuring the X-Frame-Options response header, then the value set for this header at the global level in the Ingress Controller takes precedence, even if a specific route allows frames. For a request header, the Route
spec value overrides the IngressController
spec value.
This prioritization occurs because the haproxy.config
file uses the following logic, where the Ingress Controller is considered the front end and individual routes are considered the back end. The header value DENY
applied to the front end configurations overrides the same header with the value SAMEORIGIN
that is set in the back end:
frontend public http-response set-header X-Frame-Options 'DENY' frontend fe_sni http-response set-header X-Frame-Options 'DENY' frontend fe_no_sni http-response set-header X-Frame-Options 'DENY' backend be_secure:openshift-monitoring:alertmanager-main http-response set-header X-Frame-Options 'SAMEORIGIN'
Additionally, any actions defined in either the Ingress Controller or a route override values set using route annotations.
2.2.9.12.2. Special case headers
The following headers are either prevented entirely from being set or deleted, or allowed under specific circumstances:
Header name | Configurable using IngressController spec | Configurable using Route spec | Reason for disallowment | Configurable using another method |
---|---|---|---|---|
| No | No |
The | No |
| No | Yes |
When the | No |
| No | No |
The |
Yes: the |
| No | No | The cookies that HAProxy sets are used for session tracking to map client connections to particular back-end servers. Allowing these headers to be set could interfere with HAProxy’s session affinity and restrict HAProxy’s ownership of a cookie. | Yes:
|
2.2.9.13. Setting or deleting HTTP request and response headers in an Ingress Controller
You can set or delete certain HTTP request and response headers for compliance purposes or other reasons. You can set or delete these headers either for all routes served by an Ingress Controller or for specific routes.
For example, you might want to migrate an application running on your cluster to use mutual TLS, which requires that your application checks for an X-Forwarded-Client-Cert request header, but the OpenShift Dedicated default Ingress Controller provides an X-SSL-Client-Der request header.
The following procedure modifies the Ingress Controller to set the X-Forwarded-Client-Cert request header, and delete the X-SSL-Client-Der request header.
Prerequisites
-
You have installed the OpenShift CLI (
oc
). -
You have access to an OpenShift Dedicated cluster as a user with the
cluster-admin
role.
Procedure
Edit the Ingress Controller resource:
$ oc -n openshift-ingress-operator edit ingresscontroller/default
Replace the X-SSL-Client-Der HTTP request header with the X-Forwarded-Client-Cert HTTP request header:
apiVersion: operator.openshift.io/v1 kind: IngressController metadata: name: default namespace: openshift-ingress-operator spec: httpHeaders: actions: 1 request: 2 - name: X-Forwarded-Client-Cert 3 action: type: Set 4 set: value: "%{+Q}[ssl_c_der,base64]" 5 - name: X-SSL-Client-Der action: type: Delete
- 1
- The list of actions you want to perform on the HTTP headers.
- 2
- The type of header you want to change. In this case, a request header.
- 3
- The name of the header you want to change. For a list of available headers you can set or delete, see HTTP header configuration.
- 4
- The type of action being taken on the header. This field can have the value
Set
orDelete
. - 5
- When setting HTTP headers, you must provide a
value
. The value can be a string from a list of available directives for that header, for exampleDENY
, or it can be a dynamic value that will be interpreted using HAProxy’s dynamic value syntax. In this case, a dynamic value is added.
NoteFor setting dynamic header values for HTTP responses, allowed sample fetchers are
res.hdr
andssl_c_der
. For setting dynamic header values for HTTP requests, allowed sample fetchers arereq.hdr
andssl_c_der
. Both request and response dynamic values can use thelower
andbase64
converters.- Save the file to apply the changes.
2.2.9.14. Using X-Forwarded headers
You configure the HAProxy Ingress Controller to specify a policy for how to handle HTTP headers including Forwarded
and X-Forwarded-For
. The Ingress Operator uses the HTTPHeaders
field to configure the ROUTER_SET_FORWARDED_HEADERS
environment variable of the Ingress Controller.
Procedure
Configure the
HTTPHeaders
field for the Ingress Controller.Use the following command to edit the
IngressController
resource:$ oc edit IngressController
Under
spec
, set theHTTPHeaders
policy field toAppend
,Replace
,IfNone
, orNever
:apiVersion: operator.openshift.io/v1 kind: IngressController metadata: name: default namespace: openshift-ingress-operator spec: httpHeaders: forwardedHeaderPolicy: Append
Example use cases
As a cluster administrator, you can:
Configure an external proxy that injects the
X-Forwarded-For
header into each request before forwarding it to an Ingress Controller.To configure the Ingress Controller to pass the header through unmodified, you specify the
never
policy. The Ingress Controller then never sets the headers, and applications receive only the headers that the external proxy provides.Configure the Ingress Controller to pass the
X-Forwarded-For
header that your external proxy sets on external cluster requests through unmodified.To configure the Ingress Controller to set the
X-Forwarded-For
header on internal cluster requests, which do not go through the external proxy, specify theif-none
policy. If an HTTP request already has the header set through the external proxy, then the Ingress Controller preserves it. If the header is absent because the request did not come through the proxy, then the Ingress Controller adds the header.
As an application developer, you can:
Configure an application-specific external proxy that injects the
X-Forwarded-For
header.To configure an Ingress Controller to pass the header through unmodified for an application’s Route, without affecting the policy for other Routes, add an annotation
haproxy.router.openshift.io/set-forwarded-headers: if-none
orhaproxy.router.openshift.io/set-forwarded-headers: never
on the Route for the application.NoteYou can set the
haproxy.router.openshift.io/set-forwarded-headers
annotation on a per route basis, independent from the globally set value for the Ingress Controller.
2.2.9.15. Enabling HTTP/2 Ingress connectivity
You can enable transparent end-to-end HTTP/2 connectivity in HAProxy. It allows application owners to make use of HTTP/2 protocol capabilities, including single connection, header compression, binary streams, and more.
You can enable HTTP/2 connectivity for an individual Ingress Controller or for the entire cluster.
To enable the use of HTTP/2 for the connection from the client to HAProxy, a route must specify a custom certificate. A route that uses the default certificate cannot use HTTP/2. This restriction is necessary to avoid problems from connection coalescing, where the client re-uses a connection for different routes that use the same certificate.
The connection from HAProxy to the application pod can use HTTP/2 only for re-encrypt routes and not for edge-terminated or insecure routes. This restriction is because HAProxy uses Application-Level Protocol Negotiation (ALPN), which is a TLS extension, to negotiate the use of HTTP/2 with the back-end. The implication is that end-to-end HTTP/2 is possible with passthrough and re-encrypt and not with insecure or edge-terminated routes.
For non-passthrough routes, the Ingress Controller negotiates its connection to the application independently of the connection from the client. This means a client may connect to the Ingress Controller and negotiate HTTP/1.1, and the Ingress Controller may then connect to the application, negotiate HTTP/2, and forward the request from the client HTTP/1.1 connection using the HTTP/2 connection to the application. This poses a problem if the client subsequently tries to upgrade its connection from HTTP/1.1 to the WebSocket protocol, because the Ingress Controller cannot forward WebSocket to HTTP/2 and cannot upgrade its HTTP/2 connection to WebSocket. Consequently, if you have an application that is intended to accept WebSocket connections, it must not allow negotiating the HTTP/2 protocol or else clients will fail to upgrade to the WebSocket protocol.
Procedure
Enable HTTP/2 on a single Ingress Controller.
To enable HTTP/2 on an Ingress Controller, enter the
oc annotate
command:$ oc -n openshift-ingress-operator annotate ingresscontrollers/<ingresscontroller_name> ingress.operator.openshift.io/default-enable-http2=true
Replace
<ingresscontroller_name>
with the name of the Ingress Controller to annotate.
Enable HTTP/2 on the entire cluster.
To enable HTTP/2 for the entire cluster, enter the
oc annotate
command:$ oc annotate ingresses.config/cluster ingress.operator.openshift.io/default-enable-http2=true
TipYou can alternatively apply the following YAML to add the annotation:
apiVersion: config.openshift.io/v1 kind: Ingress metadata: name: cluster annotations: ingress.operator.openshift.io/default-enable-http2: "true"
2.2.9.16. Configuring the PROXY protocol for an Ingress Controller
A cluster administrator can configure the PROXY protocol when an Ingress Controller uses either the HostNetwork
, NodePortService
, or Private
endpoint publishing strategy types. The PROXY protocol enables the load balancer to preserve the original client addresses for connections that the Ingress Controller receives. The original client addresses are useful for logging, filtering, and injecting HTTP headers. In the default configuration, the connections that the Ingress Controller receives only contain the source address that is associated with the load balancer.
The default Ingress Controller with installer-provisioned clusters on non-cloud platforms that use a Keepalived Ingress Virtual IP (VIP) do not support the PROXY protocol.
The PROXY protocol enables the load balancer to preserve the original client addresses for connections that the Ingress Controller receives. The original client addresses are useful for logging, filtering, and injecting HTTP headers. In the default configuration, the connections that the Ingress Controller receives contain only the source IP address that is associated with the load balancer.
For a passthrough route configuration, servers in OpenShift Dedicated clusters cannot observe the original client source IP address. If you need to know the original client source IP address, configure Ingress access logging for your Ingress Controller so that you can view the client source IP addresses.
For re-encrypt and edge routes, the OpenShift Dedicated router sets the Forwarded
and X-Forwarded-For
headers so that application workloads check the client source IP address.
For more information about Ingress access logging, see "Configuring Ingress access logging".
Configuring the PROXY protocol for an Ingress Controller is not supported when using the LoadBalancerService
endpoint publishing strategy type. This restriction is because when OpenShift Dedicated runs in a cloud platform, and an Ingress Controller specifies that a service load balancer should be used, the Ingress Operator configures the load balancer service and enables the PROXY protocol based on the platform requirement for preserving source addresses.
You must configure both OpenShift Dedicated and the external load balancer to use either the PROXY protocol or TCP.
This feature is not supported in cloud deployments. This restriction is because when OpenShift Dedicated runs in a cloud platform, and an Ingress Controller specifies that a service load balancer should be used, the Ingress Operator configures the load balancer service and enables the PROXY protocol based on the platform requirement for preserving source addresses.
You must configure both OpenShift Dedicated and the external load balancer to either use the PROXY protocol or to use Transmission Control Protocol (TCP).
Prerequisites
- You created an Ingress Controller.
Procedure
Edit the Ingress Controller resource by entering the following command in your CLI:
$ oc -n openshift-ingress-operator edit ingresscontroller/default
Set the PROXY configuration:
If your Ingress Controller uses the
HostNetwork
endpoint publishing strategy type, set thespec.endpointPublishingStrategy.hostNetwork.protocol
subfield toPROXY
:Sample
hostNetwork
configuration toPROXY
# ... spec: endpointPublishingStrategy: hostNetwork: protocol: PROXY type: HostNetwork # ...
If your Ingress Controller uses the
NodePortService
endpoint publishing strategy type, set thespec.endpointPublishingStrategy.nodePort.protocol
subfield toPROXY
:Sample
nodePort
configuration toPROXY
# ... spec: endpointPublishingStrategy: nodePort: protocol: PROXY type: NodePortService # ...
If your Ingress Controller uses the
Private
endpoint publishing strategy type, set thespec.endpointPublishingStrategy.private.protocol
subfield toPROXY
:Sample
private
configuration toPROXY
# ... spec: endpointPublishingStrategy: private: protocol: PROXY type: Private # ...
Additional resources
2.2.9.17. Specifying an alternative cluster domain using the appsDomain option
As a cluster administrator, you can specify an alternative to the default cluster domain for user-created routes by configuring the appsDomain
field. The appsDomain
field is an optional domain for OpenShift Dedicated to use instead of the default, which is specified in the domain
field. If you specify an alternative domain, it overrides the default cluster domain for the purpose of determining the default host for a new route.
For example, you can use the DNS domain for your company as the default domain for routes and ingresses for applications running on your cluster.
Prerequisites
- You deployed an OpenShift Dedicated cluster.
-
You installed the
oc
command line interface.
Procedure
Configure the
appsDomain
field by specifying an alternative default domain for user-created routes.Edit the ingress
cluster
resource:$ oc edit ingresses.config/cluster -o yaml
Edit the YAML file:
Sample
appsDomain
configuration totest.example.com
apiVersion: config.openshift.io/v1 kind: Ingress metadata: name: cluster spec: domain: apps.example.com 1 appsDomain: <test.example.com> 2
Verify that an existing route contains the domain name specified in the
appsDomain
field by exposing the route and verifying the route domain change:NoteWait for the
openshift-apiserver
finish rolling updates before exposing the route.Expose the route:
$ oc expose service hello-openshift route.route.openshift.io/hello-openshift exposed
Example output
$ oc get routes NAME HOST/PORT PATH SERVICES PORT TERMINATION WILDCARD hello-openshift hello_openshift-<my_project>.test.example.com hello-openshift 8080-tcp None
2.2.9.18. Converting HTTP header case
HAProxy lowercases HTTP header names by default; for example, changing Host: xyz.com
to host: xyz.com
. If legacy applications are sensitive to the capitalization of HTTP header names, use the Ingress Controller spec.httpHeaders.headerNameCaseAdjustments
API field for a solution to accommodate legacy applications until they can be fixed.
OpenShift Dedicated includes HAProxy 2.8. If you want to update to this version of the web-based load balancer, ensure that you add the spec.httpHeaders.headerNameCaseAdjustments
section to your cluster’s configuration file.
As a cluster administrator, you can convert the HTTP header case by entering the oc patch
command or by setting the HeaderNameCaseAdjustments
field in the Ingress Controller YAML file.
Prerequisites
-
You have installed the OpenShift CLI (
oc
). -
You have access to the cluster as a user with the
cluster-admin
role.
Procedure
Capitalize an HTTP header by using the
oc patch
command.Change the HTTP header from
host
toHost
by running the following command:$ oc -n openshift-ingress-operator patch ingresscontrollers/default --type=merge --patch='{"spec":{"httpHeaders":{"headerNameCaseAdjustments":["Host"]}}}'
Create a
Route
resource YAML file so that the annotation can be applied to the application.Example of a route named
my-application
apiVersion: route.openshift.io/v1 kind: Route metadata: annotations: haproxy.router.openshift.io/h1-adjust-case: true 1 name: <application_name> namespace: <application_name> # ...
- 1
- Set
haproxy.router.openshift.io/h1-adjust-case
so that the Ingress Controller can adjust thehost
request header as specified.
Specify adjustments by configuring the
HeaderNameCaseAdjustments
field in the Ingress Controller YAML configuration file.The following example Ingress Controller YAML file adjusts the
host
header toHost
for HTTP/1 requests to appropriately annotated routes:Example Ingress Controller YAML
apiVersion: operator.openshift.io/v1 kind: IngressController metadata: name: default namespace: openshift-ingress-operator spec: httpHeaders: headerNameCaseAdjustments: - Host
The following example route enables HTTP response header name case adjustments by using the
haproxy.router.openshift.io/h1-adjust-case
annotation:Example route YAML
apiVersion: route.openshift.io/v1 kind: Route metadata: annotations: haproxy.router.openshift.io/h1-adjust-case: true 1 name: my-application namespace: my-application spec: to: kind: Service name: my-application
- 1
- Set
haproxy.router.openshift.io/h1-adjust-case
to true.
2.2.9.19. Using router compression
You configure the HAProxy Ingress Controller to specify router compression globally for specific MIME types. You can use the mimeTypes
variable to define the formats of MIME types to which compression is applied. The types are: application, image, message, multipart, text, video, or a custom type prefaced by "X-". To see the full notation for MIME types and subtypes, see RFC1341.
Memory allocated for compression can affect the max connections. Additionally, compression of large buffers can cause latency, like heavy regex or long lists of regex.
Not all MIME types benefit from compression, but HAProxy still uses resources to try to compress if instructed to. Generally, text formats, such as html, css, and js, formats benefit from compression, but formats that are already compressed, such as image, audio, and video, benefit little in exchange for the time and resources spent on compression.
Procedure
Configure the
httpCompression
field for the Ingress Controller.Use the following command to edit the
IngressController
resource:$ oc edit -n openshift-ingress-operator ingresscontrollers/default
Under
spec
, set thehttpCompression
policy field tomimeTypes
and specify a list of MIME types that should have compression applied:apiVersion: operator.openshift.io/v1 kind: IngressController metadata: name: default namespace: openshift-ingress-operator spec: httpCompression: mimeTypes: - "text/html" - "text/css; charset=utf-8" - "application/json" ...
2.2.9.20. Exposing router metrics
You can expose the HAProxy router metrics by default in Prometheus format on the default stats port, 1936. The external metrics collection and aggregation systems such as Prometheus can access the HAProxy router metrics. You can view the HAProxy router metrics in a browser in the HTML and comma separated values (CSV) format.
Prerequisites
- You configured your firewall to access the default stats port, 1936.
Procedure
Get the router pod name by running the following command:
$ oc get pods -n openshift-ingress
Example output
NAME READY STATUS RESTARTS AGE router-default-76bfffb66c-46qwp 1/1 Running 0 11h
Get the router’s username and password, which the router pod stores in the
/var/lib/haproxy/conf/metrics-auth/statsUsername
and/var/lib/haproxy/conf/metrics-auth/statsPassword
files:Get the username by running the following command:
$ oc rsh <router_pod_name> cat metrics-auth/statsUsername
Get the password by running the following command:
$ oc rsh <router_pod_name> cat metrics-auth/statsPassword
Get the router IP and metrics certificates by running the following command:
$ oc describe pod <router_pod>
Get the raw statistics in Prometheus format by running the following command:
$ curl -u <user>:<password> http://<router_IP>:<stats_port>/metrics
Access the metrics securely by running the following command:
$ curl -u user:password https://<router_IP>:<stats_port>/metrics -k
Access the default stats port, 1936, by running the following command:
$ curl -u <user>:<password> http://<router_IP>:<stats_port>/metrics
Example 2.1. Example output
... # HELP haproxy_backend_connections_total Total number of connections. # TYPE haproxy_backend_connections_total gauge haproxy_backend_connections_total{backend="http",namespace="default",route="hello-route"} 0 haproxy_backend_connections_total{backend="http",namespace="default",route="hello-route-alt"} 0 haproxy_backend_connections_total{backend="http",namespace="default",route="hello-route01"} 0 ... # HELP haproxy_exporter_server_threshold Number of servers tracked and the current threshold value. # TYPE haproxy_exporter_server_threshold gauge haproxy_exporter_server_threshold{type="current"} 11 haproxy_exporter_server_threshold{type="limit"} 500 ... # HELP haproxy_frontend_bytes_in_total Current total of incoming bytes. # TYPE haproxy_frontend_bytes_in_total gauge haproxy_frontend_bytes_in_total{frontend="fe_no_sni"} 0 haproxy_frontend_bytes_in_total{frontend="fe_sni"} 0 haproxy_frontend_bytes_in_total{frontend="public"} 119070 ... # HELP haproxy_server_bytes_in_total Current total of incoming bytes. # TYPE haproxy_server_bytes_in_total gauge haproxy_server_bytes_in_total{namespace="",pod="",route="",server="fe_no_sni",service=""} 0 haproxy_server_bytes_in_total{namespace="",pod="",route="",server="fe_sni",service=""} 0 haproxy_server_bytes_in_total{namespace="default",pod="docker-registry-5-nk5fz",route="docker-registry",server="10.130.0.89:5000",service="docker-registry"} 0 haproxy_server_bytes_in_total{namespace="default",pod="hello-rc-vkjqx",route="hello-route",server="10.130.0.90:8080",service="hello-svc-1"} 0 ...
Launch the stats window by entering the following URL in a browser:
http://<user>:<password>@<router_IP>:<stats_port>
Optional: Get the stats in CSV format by entering the following URL in a browser:
http://<user>:<password>@<router_ip>:1936/metrics;csv
2.2.9.21. Customizing HAProxy error code response pages
As a cluster administrator, you can specify a custom error code response page for either 503, 404, or both error pages. The HAProxy router serves a 503 error page when the application pod is not running or a 404 error page when the requested URL does not exist. For example, if you customize the 503 error code response page, then the page is served when the application pod is not running, and the default 404 error code HTTP response page is served by the HAProxy router for an incorrect route or a non-existing route.
Custom error code response pages are specified in a config map then patched to the Ingress Controller. The config map keys have two available file names as follows: error-page-503.http
and error-page-404.http
.
Custom HTTP error code response pages must follow the HAProxy HTTP error page configuration guidelines. Here is an example of the default OpenShift Dedicated HAProxy router http 503 error code response page. You can use the default content as a template for creating your own custom page.
By default, the HAProxy router serves only a 503 error page when the application is not running or when the route is incorrect or non-existent. This default behavior is the same as the behavior on OpenShift Dedicated 4.8 and earlier. If a config map for the customization of an HTTP error code response is not provided, and you are using a custom HTTP error code response page, the router serves a default 404 or 503 error code response page.
If you use the OpenShift Dedicated default 503 error code page as a template for your customizations, the headers in the file require an editor that can use CRLF line endings.
Procedure
Create a config map named
my-custom-error-code-pages
in theopenshift-config
namespace:$ oc -n openshift-config create configmap my-custom-error-code-pages \ --from-file=error-page-503.http \ --from-file=error-page-404.http
ImportantIf you do not specify the correct format for the custom error code response page, a router pod outage occurs. To resolve this outage, you must delete or correct the config map and delete the affected router pods so they can be recreated with the correct information.
Patch the Ingress Controller to reference the
my-custom-error-code-pages
config map by name:$ oc patch -n openshift-ingress-operator ingresscontroller/default --patch '{"spec":{"httpErrorCodePages":{"name":"my-custom-error-code-pages"}}}' --type=merge
The Ingress Operator copies the
my-custom-error-code-pages
config map from theopenshift-config
namespace to theopenshift-ingress
namespace. The Operator names the config map according to the pattern,<your_ingresscontroller_name>-errorpages
, in theopenshift-ingress
namespace.Display the copy:
$ oc get cm default-errorpages -n openshift-ingress
Example output
NAME DATA AGE default-errorpages 2 25s 1
- 1
- The example config map name is
default-errorpages
because thedefault
Ingress Controller custom resource (CR) was patched.
Confirm that the config map containing the custom error response page mounts on the router volume where the config map key is the filename that has the custom HTTP error code response:
For 503 custom HTTP custom error code response:
$ oc -n openshift-ingress rsh <router_pod> cat /var/lib/haproxy/conf/error_code_pages/error-page-503.http
For 404 custom HTTP custom error code response:
$ oc -n openshift-ingress rsh <router_pod> cat /var/lib/haproxy/conf/error_code_pages/error-page-404.http
Verification
Verify your custom error code HTTP response:
Create a test project and application:
$ oc new-project test-ingress
$ oc new-app django-psql-example
For 503 custom http error code response:
- Stop all the pods for the application.
Run the following curl command or visit the route hostname in the browser:
$ curl -vk <route_hostname>
For 404 custom http error code response:
- Visit a non-existent route or an incorrect route.
Run the following curl command or visit the route hostname in the browser:
$ curl -vk <route_hostname>
Check if the
errorfile
attribute is properly in thehaproxy.config
file:$ oc -n openshift-ingress rsh <router> cat /var/lib/haproxy/conf/haproxy.config | grep errorfile
2.2.9.22. Setting the Ingress Controller maximum connections
A cluster administrator can set the maximum number of simultaneous connections for OpenShift router deployments. You can patch an existing Ingress Controller to increase the maximum number of connections.
Prerequisites
- The following assumes that you already created an Ingress Controller
Procedure
Update the Ingress Controller to change the maximum number of connections for HAProxy:
$ oc -n openshift-ingress-operator patch ingresscontroller/default --type=merge -p '{"spec":{"tuningOptions": {"maxConnections": 7500}}}'
WarningIf you set the
spec.tuningOptions.maxConnections
value greater than the current operating system limit, the HAProxy process will not start. See the table in the "Ingress Controller configuration parameters" section for more information about this parameter.
2.2.10. OpenShift Dedicated Ingress Operator configurations
The following table details the components of the Ingress Operator and if Red Hat Site Reliability Engineers (SRE) maintains this component on OpenShift Dedicated clusters.
Ingress component | Managed by | Default configuration? |
---|---|---|
Scaling Ingress Controller | SRE | Yes |
Ingress Operator thread count | SRE | Yes |
Ingress Controller access logging | SRE | Yes |
Ingress Controller sharding | SRE | Yes |
Ingress Controller route admission policy | SRE | Yes |
Ingress Controller wildcard routes | SRE | Yes |
Ingress Controller X-Forwarded headers | SRE | Yes |
Ingress Controller route compression | SRE | Yes |