3.8. 推論エンドポイント


これらの例は、推論エンドポイントを使用してモデルをクエリーする方法を示しています。

注記

モデルのデプロイ時にトークン認可を有効にした場合は、Authorization ヘッダーを追加してトークン値を指定する必要があります。

3.8.1. Caikit TGIS ServingRuntime for KServe

  • :443/api/v1/task/text-generation
  • :443/api/v1/task/server-streaming-text-generation

コマンドの例

curl --json '{"model_id": "<model_name__>", "inputs": "<text>"}' https://<inference_endpoint_url>:443/api/v1/task/server-streaming-text-generation -H 'Authorization: Bearer <token>'

3.8.2. Caikit Standalone ServingRuntime for KServe

複数のモデルを提供している場合は、/info/models または :443 caikit.runtime.info.InfoService/GetModelsInfo をクエリーして、提供されているモデルのリストを表示できます。

REST エンドポイント

  • /api/v1/task/embedding
  • /api/v1/task/embedding-tasks
  • /api/v1/task/sentence-similarity
  • /api/v1/task/sentence-similarity-tasks
  • /api/v1/task/rerank
  • /api/v1/task/rerank-tasks
  • /info/models
  • /info/version
  • /info/runtime

gRPC エンドポイント

  • :443 caikit.runtime.Nlp.NlpService/EmbeddingTaskPredict
  • :443 caikit.runtime.Nlp.NlpService/EmbeddingTasksPredict
  • :443 caikit.runtime.Nlp.NlpService/SentenceSimilarityTaskPredict
  • :443 caikit.runtime.Nlp.NlpService/SentenceSimilarityTasksPredict
  • :443 caikit.runtime.Nlp.NlpService/RerankTaskPredict
  • :443 caikit.runtime.Nlp.NlpService/RerankTasksPredict
  • :443 caikit.runtime.info.InfoService/GetModelsInfo
  • :443 caikit.runtime.info.InfoService/GetRuntimeInfo
注記

デフォルトでは、Caikit Standalone ランタイムは REST エンドポイントを公開します。gRPC プロトコルを使用するには、カスタム Caikit Standalone ServingRuntime を手動でデプロイします。詳細は、シングルモデルサービングプラットフォーム用のカスタムモデルサービングランタイムの追加 を参照してください。

サンプルのマニフェストは caikit-tgis-serving GitHub リポジトリー で入手できます。

REST

curl -H 'Content-Type: application/json' -d '{"inputs": "<text>", "model_id": "<model_id>"}' <inference_endpoint_url>/api/v1/task/embedding -H 'Authorization: Bearer <token>'

gRPC

grpcurl -d '{"text": "<text>"}' -H \"mm-model-id: <model_id>\" <inference_endpoint_url>:443 caikit.runtime.Nlp.NlpService/EmbeddingTaskPredict -H 'Authorization: Bearer <token>'

3.8.3. TGIS Standalone ServingRuntime for KServe

  • :443 fmaas.GenerationService/Generate
  • :443 fmaas.GenerationService/GenerateStream

    注記

    TGIS スタンドアロンランタイムのエンドポイントをクエリーするには、OpenShift AI text-generation-inference リポジトリーの proto ディレクトリーにあるファイルもダウンロードする必要があります。

コマンドの例

grpcurl -proto text-generation-inference/proto/generation.proto -d '{"requests": [{"text":"<text>"}]}' -H 'Authorization: Bearer <token>' -insecure <inference_endpoint_url>:443 fmaas.GenerationService/Generate

3.8.4. OpenVINO Model Server

  • /v2/models/<model-name>/infer

コマンドの例

curl -ks <inference_endpoint_url>/v2/models/<model_name>/infer -d '{ "model_name": "<model_name>", "inputs": [{ "name": "<name_of_model_input>", "shape": [<shape>], "datatype": "<data_type>", "data": [<data>] }]}' -H 'Authorization: Bearer <token>'

3.8.5. vLLM ServingRuntime for KServe

  • :443/version
  • :443/docs
  • :443/v1/models
  • :443/v1/chat/completions
  • :443/v1/completions
  • :443/v1/embeddings
  • :443/tokenize
  • :443/detokenize

    注記
    • vLLM ランタイムは OpenAI REST API と互換性があります。vLLM ランタイムがサポートするモデルのリストは、サポートされるモデル を参照してください。
    • vLLM で embeddings 推論エンドポイントを使用するには、vLLM でサポートされている embeddings モデルを使用する必要があります。生成モデルでは embeddings エンドポイントは使用できません。詳細は、vLLM でサポートされている embeddings モデル を参照してください。
    • vLLM v0.5.5 以降では、/v1/chat/completions エンドポイントを使用してモデルをクエリーするときに、チャットテンプレートを提供する必要があります。モデルに定義済みのチャットテンプレートが含まれていない場合は、例に示すように、chat-template コマンドラインパラメーターを使用して、カスタム vLLM ランタイムでチャットテンプレートを指定できます。<CHAT_TEMPLATE> をテンプレートのパスに置き換えます。

      containers:
        - args:
            - --chat-template=<CHAT_TEMPLATE>

      ここで .jinja ファイルとして利用できるチャットテンプレート、または /apps/data/template の下の vLLM イメージを使用できます。詳細は、チャットテンプレート を参照してください。

    上記のパスで示されているように、シングルモデルサービングプラットフォームは、OpenShift ルーターの HTTPS ポート (通常はポート 443) を使用して、外部 API リクエストを処理します。

コマンドの例

curl -v https://<inference_endpoint_url>:443/v1/chat/completions -H "Content-Type: application/json" -d '{ "messages": [{ "role": "<role>", "content": "<content>" }] -H 'Authorization: Bearer <token>'

3.8.6. Nvidia Triton Inference Server

REST エンドポイント

  • v2/models/[/versions/<model_version>]/infer
  • v2/models/<model_name>[/versions/<model_version>]
  • v2/health/ready
  • v2/health/live
  • v2/models/<model_name>[/versions/]/ready
  • v2

コマンドの例

curl -ks <inference_endpoint_url>/v2/models/<model_name>/infer -d '{ "model_name": "<model_name>", "inputs": [{ "name": "<name_of_model_input>", "shape": [<shape>], "datatype": "<data_type>", "data": [<data>] }]}' -H 'Authorization: Bearer <token>'

gRPC エンドポイント

  • :443 inference.GRPCInferenceService/ModelInfer
  • :443 inference.GRPCInferenceService/ModelReady
  • :443 inference.GRPCInferenceService/ModelMetadata
  • :443 inference.GRPCInferenceService/ServerReady
  • :443 inference.GRPCInferenceService/ServerLive
  • :443 inference.GRPCInferenceService/ServerMetadata

コマンドの例

grpcurl -cacert ./openshift_ca_istio_knative.crt -proto ./grpc_predict_v2.proto -d @ -H "Authorization: Bearer <token>" <inference_endpoint_url>:443 inference.GRPCInferenceService/ModelMetadata

3.8.7. 関連情報

Red Hat logoGithubRedditYoutubeTwitter

詳細情報

試用、購入および販売

コミュニティー

Red Hat ドキュメントについて

Red Hat をお使いのお客様が、信頼できるコンテンツが含まれている製品やサービスを活用することで、イノベーションを行い、目標を達成できるようにします。

多様性を受け入れるオープンソースの強化

Red Hat では、コード、ドキュメント、Web プロパティーにおける配慮に欠ける用語の置き換えに取り組んでいます。このような変更は、段階的に実施される予定です。詳細情報: Red Hat ブログ.

会社概要

Red Hat は、企業がコアとなるデータセンターからネットワークエッジに至るまで、各種プラットフォームや環境全体で作業を簡素化できるように、強化されたソリューションを提供しています。

© 2024 Red Hat, Inc.