검색

이 콘텐츠는 선택한 언어로 제공되지 않습니다.

Chapter 1. Overview

download PDF

AMQ Python is a library for developing messaging applications. It enables you to write Python applications that send and receive AMQP messages.

AMQ Python is part of AMQ Clients, a suite of messaging libraries supporting multiple languages and platforms. For an overview of the clients, see AMQ Clients Overview. For information about this release, see AMQ Clients 2.9 Release Notes.

AMQ Python is based on the Proton API from Apache Qpid. For detailed API documentation, see the AMQ Python API reference.

1.1. Key features

  • An event-driven API that simplifies integration with existing applications
  • SSL/TLS for secure communication
  • Flexible SASL authentication
  • Automatic reconnect and failover
  • Seamless conversion between AMQP and language-native data types
  • Access to all the features and capabilities of AMQP 1.0
  • Distributed tracing based on the OpenTracing standard (RHEL 7 and 8)

    Important

    Distributed tracing in AMQ Clients is a Technology Preview feature only. Technology Preview features are not supported with Red Hat production service level agreements (SLAs) and might not be functionally complete. Red Hat does not recommend using them in production. These features provide early access to upcoming product features, enabling customers to test functionality and provide feedback during the development process. For more information about the support scope of Red Hat Technology Preview features, see https://access.redhat.com/support/offerings/techpreview/.

1.2. Supported standards and protocols

AMQ Python supports the following industry-recognized standards and network protocols:

1.3. Supported configurations

AMQ Python supports the OS and language versions listed below. For more information, see Red Hat AMQ 7 Supported Configurations.

  • Red Hat Enterprise Linux 7 with Python 2.7
  • Red Hat Enterprise Linux 8 with Python 3.6
  • Microsoft Windows 10 Pro with Python 3.6 and Python 3.8
  • Microsoft Windows Server 2012 R2 and 2016 with Python 3.6 and Python 3.8

AMQ Python is supported in combination with the following AMQ components and versions:

  • All versions of AMQ Broker
  • All versions of AMQ Interconnect
  • A-MQ 6 versions 6.2.1 and newer

1.4. Terms and concepts

This section introduces the core API entities and describes how they operate together.

Table 1.1. API terms
EntityDescription

Container

A top-level container of connections.

Connection

A channel for communication between two peers on a network. It contains sessions.

Session

A context for sending and receiving messages. It contains senders and receivers.

Sender

A channel for sending messages to a target. It has a target.

Receiver

A channel for receiving messages from a source. It has a source.

Source

A named point of origin for messages.

Target

A named destination for messages.

Message

An application-specific piece of information.

Delivery

A message transfer.

AMQ Python sends and receives messages. Messages are transferred between connected peers over senders and receivers. Senders and receivers are established over sessions. Sessions are established over connections. Connections are established between two uniquely identified containers. Though a connection can have multiple sessions, often this is not needed. The API allows you to ignore sessions unless you require them.

A sending peer creates a sender to send messages. The sender has a target that identifies a queue or topic at the remote peer. A receiving peer creates a receiver to receive messages. The receiver has a source that identifies a queue or topic at the remote peer.

The sending of a message is called a delivery. The message is the content sent, including all metadata such as headers and annotations. The delivery is the protocol exchange associated with the transfer of that content.

To indicate that a delivery is complete, either the sender or the receiver settles it. When the other side learns that it has been settled, it will no longer communicate about that delivery. The receiver can also indicate whether it accepts or rejects the message.

1.5. Document conventions

The sudo command

In this document, sudo is used for any command that requires root privileges. Exercise caution when using sudo because any changes can affect the entire system. For more information about sudo, see Using the sudo command.

File paths

In this document, all file paths are valid for Linux, UNIX, and similar operating systems (for example, /home/andrea). On Microsoft Windows, you must use the equivalent Windows paths (for example, C:\Users\andrea).

Variable text

This document contains code blocks with variables that you must replace with values specific to your environment. Variable text is enclosed in arrow braces and styled as italic monospace. For example, in the following command, replace <project-dir> with the value for your environment:

$ cd <project-dir>
Red Hat logoGithubRedditYoutubeTwitter

자세한 정보

평가판, 구매 및 판매

커뮤니티

Red Hat 문서 정보

Red Hat을 사용하는 고객은 신뢰할 수 있는 콘텐츠가 포함된 제품과 서비스를 통해 혁신하고 목표를 달성할 수 있습니다.

보다 포괄적 수용을 위한 오픈 소스 용어 교체

Red Hat은 코드, 문서, 웹 속성에서 문제가 있는 언어를 교체하기 위해 최선을 다하고 있습니다. 자세한 내용은 다음을 참조하세요.Red Hat 블로그.

Red Hat 소개

Red Hat은 기업이 핵심 데이터 센터에서 네트워크 에지에 이르기까지 플랫폼과 환경 전반에서 더 쉽게 작업할 수 있도록 강화된 솔루션을 제공합니다.

© 2024 Red Hat, Inc.