Este conteúdo não está disponível no idioma selecionado.

Chapter 12. Configuring NVMe over fabrics using NVMe/TCP


In a Non-volatile Memory Express™ (NVMe™) over TCP (NVMe/TCP) setup, the host mode is fully supported and the controller setup is not supported.

Note

In RHEL 9, the native NVMe multipathing is enabled by default. Enabling DM multipathing is not supported with NVMe/TCP.

12.1. Configuring an NVMe/TCP host

You can configure a Non-volatile Memory Express™ (NVMe™) over TCP (NVMe/TCP) host by using the NVMe management command-line interface (nvme-cli) tool.

Procedure

  1. Install the nvme-cli tool:

    Copy to Clipboard Toggle word wrap
    # dnf install nvme-cli

    This tool creates the hostnqn file in the /etc/nvme/ directory, which identifies the NVMe host.

  2. Find the nvme hostid and hostnqn:

    Copy to Clipboard Toggle word wrap
    # cat /etc/nvme/hostnqn
    nqn.2014-08.org.nvmexpress:uuid:8ae2b12c-3d28-4458-83e3-658e571ed4b8
    
    # cat /etc/nvme/hostid
    09e2ce17-ccc9-412d-8dcf-2b0a1d581ee3

    Use the hostid and hostnqn values to configure the NVMe/TCP controller.

  3. Check the status of the controller:

    Copy to Clipboard Toggle word wrap
    # nmcli device show ens6
    GENERAL.DEVICE:                         ens6
    GENERAL.TYPE:                           ethernet
    GENERAL.HWADDR:                         52:57:02:12:02:02
    GENERAL.MTU:                            1500
    GENERAL.STATE:                          30 (disconnected)
    GENERAL.CONNECTION:                     --
    GENERAL.CON-PATH:                       --
    WIRED-PROPERTIES.CARRIER:               on
  4. Configure the host network for a newly installed Ethernet controller with a static IP address:

    Copy to Clipboard Toggle word wrap
    # nmcli connection add con-name ens6 ifname ens6 type ethernet ip4 192.168.101.154/24 gw4 192.168.101.1

    Here, replace 192.168.101.154 with the host IP address.

    Copy to Clipboard Toggle word wrap
    # nmcli connection mod ens6 ipv4.method manual
    # nmcli connection up ens6

    Since a new network is created to connect the NVMe/TCP host to the NVMe/TCP controller, execute this step on the controller too.

Verification

  • Verify if the newly created host network works correctly:

    Copy to Clipboard Toggle word wrap
    # nmcli device show ens6
    GENERAL.DEVICE:                         ens6
    GENERAL.TYPE:                           ethernet
    GENERAL.HWADDR:                         52:57:02:12:02:02
    GENERAL.MTU:                            1500
    GENERAL.STATE:                          100 (connected)
    GENERAL.CONNECTION:                     ens6
    GENERAL.CON-PATH:                       /org/freedesktop/NetworkManager/ActiveConnection/5
    WIRED-PROPERTIES.CARRIER:               on
    IP4.ADDRESS[1]:                         192.168.101.154/24
    IP4.GATEWAY:                            192.168.101.1
    IP4.ROUTE[1]:                           dst = 192.168.101.0/24, nh = 0.0.0.0, mt = 101
    IP4.ROUTE[2]:                           dst = 192.168.1.1/32, nh = 0.0.0.0, mt = 101
    IP4.ROUTE[3]:                           dst = 0.0.0.0/0, nh = 192.168.1.1, mt = 101
    IP6.ADDRESS[1]:                         fe80::27ce:dde1:620:996c/64
    IP6.GATEWAY:                            --
    IP6.ROUTE[1]:                           dst = fe80::/64, nh = ::, mt = 101

Additional resources

  • nvme(1) man page on your system

12.2. Connecting the NVMe/TCP host to the NVMe/TCP controller

Connect the NVMe™ over TCP (NVMe/TCP) host to the NVMe/TCP controller system to verify that the NVMe/TCP host can now access the namespace.

Note

The NVMe/TCP controller (nvmet-tcp) module is not supported.

Prerequisites

  • You have configured an NVMe/TCP host. For more information, see Configuring an NVMe/TCP host.
  • You have configured an NVMe/TCP controller using external storage software and the network is configured on the controller. In this procedure, 192.168.101.55 is the IP address of NVMe/TCP controller.

Procedure

  1. Load the nvme-tcp module if not already:

    Copy to Clipboard Toggle word wrap
    # modprobe nvme-tcp
  2. Discover the available subsystems on the NVMe controller:

    Copy to Clipboard Toggle word wrap
    # nvme discover --transport=tcp --traddr=192.168.101.55 --host-traddr=192.168.101.154 --trsvcid=8009
    
    Discovery Log Number of Records 2, Generation counter 7
    =====Discovery Log Entry 0======
    trtype:  tcp
    adrfam:  ipv4
    subtype: current discovery subsystem
    treq:	not specified, sq flow control disable supported
    portid:  2
    trsvcid: 8009
    subnqn:  nqn.2014-08.org.nvmexpress.discovery
    traddr:  192.168.101.55
    eflags:  not specified
    sectype: none
    =====Discovery Log Entry 1======
    trtype:  tcp
    adrfam:  ipv4
    subtype: nvme subsystem
    treq:	not specified, sq flow control disable supported
    portid:  2
    trsvcid: 8009
    subnqn:  nqn.2014-08.org.nvmexpress:uuid:0c468c4d-a385-47e0-8299-6e95051277db
    traddr:  192.168.101.55
    eflags:  not specified
    sectype: none

    Here, 192.168.101.55 is the NVMe/TCP controller IP address and 192.168.101.154 is the NVMe/TCP host IP address.

  3. Configure the /etc/nvme/discovery.conf file to add the parameters used in the nvme discover command :

    Copy to Clipboard Toggle word wrap
    # echo "--transport=tcp --traddr=192.168.101.55 --host-traddr=192.168.101.154 --trsvcid=8009" >> /etc/nvme/discovery.conf
  4. Connect the NVMe/TCP host to the controller system:

    Copy to Clipboard Toggle word wrap
    # nvme connect-all

Verification

  • Verify that the NVMe/TCP host can access the namespace:

    Copy to Clipboard Toggle word wrap
    # nvme list-subsys
    
    nvme-subsys3 - NQN=nqn.2014-08.org.nvmexpress:uuid:0c468c4d-a385-47e0-8299-6e95051277db
    \
     +- nvme3 tcp traddr=192.168.101.55,trsvcid=8009,host_traddr=192.168.101.154 live optimized
    
    # nvme list
    Node              	Generic           	SN               	Model                                	Namespace Usage                  	Format       	FW Rev
    --------------------- --------------------- -------------------- ---------------------------------------- --------- -------------------------- ---------------- --------
    /dev/nvme3n1      	/dev/ng3n1        	d93a63d394d043ab4b74 Linux                                    1          21.47  GB /  21.47  GB    512   B +  0 B   5.18.5-2

Additional resources

  • nvme(1) man page on your system

12.3. Configuring NVMe host authentication

To establish an authenticated connection with an NVMe over Fabrics (NVMe-oF) controller, you can configure authentication on a Non-volatile Memory Express (NVMe) host. NVMe authentication uses a shared secret or a pair of secrets, with a challenge-response protocol, for example, NVMe DH-HMAC-CHAP.

Prerequisites

  • The nvme-cli package is installed.
  • You know the Host NVMe Qualified Name (Host NQN) and the Subsystem NVMe Qualified Name (Subsystem NQN), if using bi-directional authentication. To see the default Host NQN for your system, run nvme show-hostnqnq.

Procedure

  1. Generate an authentication secret:

    1. For the host:

      Copy to Clipboard Toggle word wrap
      # hostkey=$(nvme gen-dhchap-key -n ${HOSTNQN})
    2. For the subsystem:

      Copy to Clipboard Toggle word wrap
      # ctrlkey= $(nvme gen-dhchap-key -n ${SUBSYSTEM})
  2. Configure the host for authentication:

    Copy to Clipboard Toggle word wrap
    # nvme connect -t tcp -n ${SUBSYSTEM} -a ${TRADDR} -s 4420 --dhchap-secret=${hostkey} --dhchap-ctrl-secret=${ctrlkey}

    This provides the authentication secrets to the nvme-connect utility so that it can authenticate and establish a connection to the target.

    • Optional: To enable automated logins, set up persistent NVMe fabrics configuration. To do so, add the --dhchap-secret and --dhchap-ctrl-secret parameters to /etc/nvme/discovery.conf or /etc/nvme/config.json.

Verification

  • Verify that the NVMe storage is attached:

    Copy to Clipboard Toggle word wrap
    # nvme list

    This displays the list of NVMe devices currently attached to the host. Verify that the expected storage is listed, indicating the connection to the storage server is successful.

12.4. Configuring an NVMe/TCP host using TLS with Pre-Shared-Keys

You can configure a Non-volatile Memory Express™ (NVMe™) over TCP (NVMe™/TCP) host while enabling TLS encryption. The NVMe/TLS configuration uses a TLS Pre-Shared Key (PSK).

The NVM Express TCP Transport Specification specifies a PSK Interchange Format for exchanging PSK information between systems. You can use nvme-cli or other methods to generate PSKs in this format (for example, create it on a storage target, see your vendor documentation). These configured PSKs are then used by nvme-cli to derive retained PSKs, which are inserted into a kernel keyring for use.

Important

NVMe/TCP using TLS is a Technology Preview feature only. Technology Preview features are not supported with Red Hat production service level agreements (SLAs) and might not be functionally complete. Red Hat does not recommend using them in production. These features provide early access to upcoming product features, enabling customers to test functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features, see Technology Preview Features Support Scope.

Prerequisites

  • The nvme_tcp kernel module is installed on your system.
  • The following packages are installed on your system:

    • nvme-cli
    • ktls-utils
  • You have the Subsystem NVMe Qualified Name (Subsystem NQN).
  • You have root permissions on the system.

Procedure

  1. Configure Pre-Shared-Key Keyring.

    1. Identify Host NQN:

      Copy to Clipboard Toggle word wrap
      # HOSTNQN=$(nvme show-hostnqn)
    2. Generate and copy a newly configured PSK:

      Copy to Clipboard Toggle word wrap
      # PSK=$(nvme gen-tls-key)
      Copy to Clipboard Toggle word wrap
      # echo $PSK
    3. Configure Pre-Shared-Key Keyring:

      Copy to Clipboard Toggle word wrap
      # nvme check-tls-key --insert --hostnqn=${HOSTNQN} --subsysnqn=${SUBSYSTEM} --keydata=${PSK} --identity=1
  2. Configure the tlshd service.

    1. Add the keyring name to the /etc/tlshd.conf configuration file:

      Copy to Clipboard Toggle word wrap
      ...
      [authenticate]
      keyring=.nvme
      ...
    2. Restart the tlshd service:

      Copy to Clipboard Toggle word wrap
      # systemctl restart tlshd
  3. Enable TLS for NVMe fabrics connections:

    Copy to Clipboard Toggle word wrap
    # nvme discover -t tcp --tls -a ${TRADDR} -s 4420
    Copy to Clipboard Toggle word wrap
    # nvme connect -t tcp --tls -a ${TRADDR} -s 4420 -n ${SUBSYSTEM}

Verification

  • List the NVMe devices that are currently connected:

    Copy to Clipboard Toggle word wrap
    # nvme list
    Node              	Generic           	SN               	Model                                	Namespace  Usage                  	Format       	FW Rev
    --------------------- --------------------- -------------------- ---------------------------------------- ---------- -------------------------- ---------------- --------
    /dev/nvme4n1      	/dev/ng4n1        	81JJAJTOpnmUAAAAAAAB NetApp ONTAP Controller              	0x1     	16.17  GB / 161.06  GB  	4 KiB +  0 B   9.16.1
Voltar ao topo
Red Hat logoGithubredditYoutubeTwitter

Aprender

Experimente, compre e venda

Comunidades

Sobre a documentação da Red Hat

Ajudamos os usuários da Red Hat a inovar e atingir seus objetivos com nossos produtos e serviços com conteúdo em que podem confiar. Explore nossas atualizações recentes.

Tornando o open source mais inclusivo

A Red Hat está comprometida em substituir a linguagem problemática em nosso código, documentação e propriedades da web. Para mais detalhes veja o Blog da Red Hat.

Sobre a Red Hat

Fornecemos soluções robustas que facilitam o trabalho das empresas em plataformas e ambientes, desde o data center principal até a borda da rede.

Theme

© 2025 Red Hat, Inc.