Post-installation configuration


OpenShift Container Platform 4.6

Day 2 operations for OpenShift Container Platform

Red Hat OpenShift Documentation Team

Abstract

This document provides instructions and guidance on post installation activities for OpenShift Container Platform.

Chapter 1. Post-installation configuration overview

After installing OpenShift Container Platform, a cluster administrator can configure and customize the following components:

  • Machine
  • Cluster
  • Node
  • Network
  • Storage
  • Users
  • Alerts and notifications

1.1. Performing post-installation configuration tasks

Cluster administrators can perform the following post-installation configuration tasks:

  • Configure operating system features: Machine Config Operator (MCO) manages MachineConfig objects. By using MCO, you can perform the following on an OpenShift Container Platform cluster:

    • Configure nodes by using MachineConfig objects
    • Configure MCO-related custom resources
  • Configure cluster features: As a cluster administrator, you can modify the configuration resources of the major features of an OpenShift Container Platform cluster. These features include:

    • Image registry
    • Networking configuration
    • Image build behavior
    • Identity provider
    • The etcd configuration
    • Machine set creation to handle the workloads
    • Cloud provider credential management
  • Perform node operations: By default, OpenShift Container Platform uses Red Hat Enterprise Linux CoreOS (RHCOS) compute machines. As a cluster administrator, you can perform the following operations with the machines in your OpenShift Container Platform cluster:

    • Add and remove compute machines
    • Add and remove taints and tolerations to the nodes
    • Configure the maximum number of pods per node
    • Enable Device Manager
  • Configure network: After installing OpenShift Container Platform, as a cluster administrator, you can configure the following:

    • Ingress cluster traffic
    • Node port service range
    • Network policy
    • Enabling the cluster-wide proxy
  • Configure storage: By default, containers operate using ephemeral storage or transient local storage. The ephemeral storage has a lifetime limitation, so you must configure persistent storage to store the data for a long time. You can configure storage by using one of the following methods:

    • Dynamic provisioning: You can dynamically provision storage on demand by defining and creating storage classes that control different levels of storage, including storage access.
    • Static provisioning: Cluster administrators can use Kubernetes persistent volumes to make existing storage available to a cluster by supporting various device configurations and mount options.
  • Configure users: OAuth access tokens allow users to authenticate themselves to the API. As a cluster administrator, you can configure OAuth to specify an identity provider, use role-based access control to define and apply permissions to users, and install an Operator from OperatorHub.
  • Manage alerts and notifications: As a cluster administrator, you can view firing alerts by default from the Alerting UI of the web console. You can also configure OpenShift Container Platform to send alert notifications to external systems so that you learn about important issues with your cluster.

Chapter 2. Post-installation machine configuration tasks

There are times when you need to make changes to the operating systems running on OpenShift Container Platform nodes. This can include changing settings for network time service, adding kernel arguments, or configuring journaling in a specific way.

Aside from a few specialized features, most changes to operating systems on OpenShift Container Platform nodes can be done by creating what are referred to as MachineConfig objects that are managed by the Machine Config Operator.

Tasks in this section describe how to use features of the Machine Config Operator to configure operating system features on OpenShift Container Platform nodes.

2.1. Understanding the Machine Config Operator

2.1.1. Machine Config Operator

Purpose

The Machine Config Operator manages and applies configuration and updates of the base operating system and container runtime, including everything between the kernel and kubelet.

There are four components:

  • machine-config-server: Provides Ignition configuration to new machines joining the cluster.
  • machine-config-controller: Coordinates the upgrade of machines to the desired configurations defined by a MachineConfig object. Options are provided to control the upgrade for sets of machines individually.
  • machine-config-daemon: Applies new machine configuration during update. Validates and verifies the state of the machine to the requested machine configuration.
  • machine-config: Provides a complete source of machine configuration at installation, first start up, and updates for a machine.
Project

openshift-machine-config-operator

2.1.2. Machine config overview

The Machine Config Operator (MCO) manages updates to systemd, CRI-O and Kubelet, the kernel, Network Manager and other system features. It also offers a MachineConfig CRD that can write configuration files onto the host (see machine-config-operator). Understanding what MCO does and how it interacts with other components is critical to making advanced, system-level changes to an OpenShift Container Platform cluster. Here are some things you should know about MCO, machine configs, and how they are used:

  • A machine config can make a specific change to a file or service on the operating system of each system representing a pool of OpenShift Container Platform nodes.
  • MCO applies changes to operating systems in pools of machines. All OpenShift Container Platform clusters start with worker and control plane node (also known as the master node) pools. By adding more role labels, you can configure custom pools of nodes. For example, you can set up a custom pool of worker nodes that includes particular hardware features needed by an application. However, examples in this section focus on changes to the default pool types.
  • Some machine configuration must be in place before OpenShift Container Platform is installed to disk. In most cases, this can be accomplished by creating a machine config that is injected directly into the OpenShift Container Platform installer process, instead of running as a post-installation machine config. In other cases, you might need to do bare metal installation where you pass kernel arguments at OpenShift Container Platform installer startup, to do such things as setting per-node individual IP addresses or advanced disk partitioning.
  • MCO manages items that are set in machine configs. Manual changes you do to your systems will not be overwritten by MCO, unless MCO is explicitly told to manage a conflicting file. In other words, MCO only makes specific updates you request, it does not claim control over the whole node.
  • Manual changes to nodes are strongly discouraged. If you need to decommission a node and start a new one, those direct changes would be lost.
  • MCO is only supported for writing to files in /etc and /var directories, although there are symbolic links to some directories that can be writeable by being symbolically linked to one of those areas. The /opt and /usr/local directories are examples.
  • Ignition is the configuration format used in MachineConfigs. See the Ignition Configuration Specification v3.1.0 for details.
  • Although Ignition config settings can be delivered directly at OpenShift Container Platform installation time, and are formatted in the same way that MCO delivers Ignition configs, MCO has no way of seeing what those original Ignition configs are. Therefore, you should wrap Ignition config settings into a machine config before deploying them.
  • When a file managed by MCO changes outside of MCO, the Machine Config Daemon (MCD) sets the node as degraded. It will not overwrite the offending file, however, and should continue to operate in a degraded state.
  • A key reason for using a machine config is that it will be applied when you spin up new nodes for a pool in your OpenShift Container Platform cluster. The machine-api-operator provisions a new machine and MCO configures it.

MCO uses Ignition as the configuration format. OpenShift Container Platform 4.6 moved from Ignition config specification version 2 to version 3.

2.1.2.1. What can you change with machine configs?

The kinds of components that MCO can change include:

  • config: Create Ignition config objects (see the Ignition configuration specification) to do things like modify files, systemd services, and other features on OpenShift Container Platform machines, including:

    • Configuration files: Create or overwrite files in the /var or /etc directory.
    • systemd units: Create and set the status of a systemd service or add to an existing systemd service by dropping in additional settings.
    • users and groups: Change ssh keys in the passwd section post-installation.
  • kernelArguments: Add arguments to the kernel command line when OpenShift Container Platform nodes boot.
  • kernelType: Optionally identify a non-standard kernel to use instead of the standard kernel. Use realtime to use the RT kernel (for RAN). This is only supported on select platforms.
  • fips: Enable FIPS mode. FIPS should be set at installation-time setting and not a post-installation procedure.
Important

The use of FIPS Validated / Modules in Process cryptographic libraries is only supported on OpenShift Container Platform deployments on the x86_64 architecture.

  • extensions: Extend RHCOS features by adding selected pre-packaged software. For this feature (new in OpenShift Container Platform 4.6), available extensions include usbguard and kernel modules.
  • Custom resources (for ContainerRuntime and Kubelet): Outside of machine configs, MCO manages two special custom resources for modifying CRI-O container runtime settings (ContainerRuntime CR) and the Kubelet service (Kubelet CR).

The MCO is not the only Operator that can change operating system components on OpenShift Container Platform nodes. Other Operators can modify operating system-level features as well. One example is the Node Tuning Operator, which allows you to do node-level tuning through Tuned daemon profiles.

Tasks for the MCO configuration that can be done post-installation are included in the following procedures. See descriptions of RHCOS bare metal installation for system configuration tasks that must be done during or before OpenShift Container Platform installation.

2.1.2.2. Project

See the openshift-machine-config-operator GitHub site for details.

2.1.3. Checking machine config pool status

To see the status of the Machine Config Operator (MCO), its sub-components, and the resources it manages, use the following oc commands:

Procedure

  1. To see the number of MCO-managed nodes available on your cluster for each machine config pool (MCP), run the following command:

    $ oc get machineconfigpool

    Example output

    NAME      CONFIG                    UPDATED  UPDATING   DEGRADED  MACHINECOUNT  READYMACHINECOUNT  UPDATEDMACHINECOUNT DEGRADEDMACHINECOUNT  AGE
    master    rendered-master-06c9c4…   True     False      False     3             3                  3                   0                     4h42m
    worker    rendered-worker-f4b64…    False    True       False     3             2                  2                   0                     4h42m

    where:

    UPDATED
    The True status indicates that the MCO has applied the current machine config to the nodes in that MCP. The current machine config is specified in the STATUS field in the oc get mcp output. The False status indicates a node in the MCP is updating.
    UPDATING
    The True status indicates that the MCO is applying the desired machine config, as specified in the MachineConfigPool custom resource, to at least one of the nodes in that MCP. The desired machine config is the new, edited machine config. Nodes that are updating might not be available for scheduling. The False status indicates that all nodes in the MCP are updated.
    DEGRADED
    A True status indicates the MCO is blocked from applying the current or desired machine config to at least one of the nodes in that MCP, or the configuration is failing. Nodes that are degraded might not be available for scheduling. A False status indicates that all nodes in the MCP are ready.
    MACHINECOUNT
    Indicates the total number of machines in that MCP.
    READYMACHINECOUNT
    Indicates the total number of machines in that MCP that are ready for scheduling.
    UPDATEDMACHINECOUNT
    Indicates the total number of machines in that MCP that have the current machine config.
    DEGRADEDMACHINECOUNT
    Indicates the total number of machines in that MCP that are marked as degraded or unreconcilable.

    In the previous output, there are three control plane (master) nodes and three worker nodes. The control plane MCP and the associated nodes are updated to the current machine config. The nodes in the worker MCP are being updated to the desired machine config. Two of the nodes in the worker MCP are updated and one is still updating, as indicated by the UPDATEDMACHINECOUNT being 2. There are no issues, as indicated by the DEGRADEDMACHINECOUNT being 0 and DEGRADED being False.

    While the nodes in the MCP are updating, the machine config listed under CONFIG is the current machine config, which the MCP is being updated from. When the update is complete, the listed machine config is the desired machine config, which the MCP was updated to.

    Note

    If a node is being cordoned, that node is not included in the READYMACHINECOUNT, but is included in the MACHINECOUNT. Also, the MCP status is set to UPDATING. Because the node has the current machine config, it is counted in the UPDATEDMACHINECOUNT total:

    Example output

    NAME      CONFIG                    UPDATED  UPDATING   DEGRADED  MACHINECOUNT  READYMACHINECOUNT  UPDATEDMACHINECOUNT DEGRADEDMACHINECOUNT  AGE
    master    rendered-master-06c9c4…   True     False      False     3             3                  3                   0                     4h42m
    worker    rendered-worker-c1b41a…   False    True       False     3             2                  3                   0                     4h42m

  2. To check the status of the nodes in an MCP by examining the MachineConfigPool custom resource, run the following command: :

    $ oc describe mcp worker

    Example output

    ...
      Degraded Machine Count:     0
      Machine Count:              3
      Observed Generation:        2
      Ready Machine Count:        3
      Unavailable Machine Count:  0
      Updated Machine Count:      3
    Events:                       <none>

    Note

    If a node is being cordoned, the node is not included in the Ready Machine Count. It is included in the Unavailable Machine Count:

    Example output

    ...
      Degraded Machine Count:     0
      Machine Count:              3
      Observed Generation:        2
      Ready Machine Count:        2
      Unavailable Machine Count:  1
      Updated Machine Count:      3

  3. To see each existing MachineConfig object, run the following command:

    $ oc get machineconfigs

    Example output

    NAME                             GENERATEDBYCONTROLLER          IGNITIONVERSION  AGE
    00-master                        2c9371fbb673b97a6fe8b1c52...   3.2.0            5h18m
    00-worker                        2c9371fbb673b97a6fe8b1c52...   3.2.0            5h18m
    01-master-container-runtime      2c9371fbb673b97a6fe8b1c52...   3.2.0            5h18m
    01-master-kubelet                2c9371fbb673b97a6fe8b1c52…     3.2.0            5h18m
    ...
    rendered-master-dde...           2c9371fbb673b97a6fe8b1c52...   3.2.0            5h18m
    rendered-worker-fde...           2c9371fbb673b97a6fe8b1c52...   3.2.0            5h18m

    Note that the MachineConfig objects listed as rendered are not meant to be changed or deleted.

  4. To view the contents of a particular machine config (in this case, 01-master-kubelet), run the following command:

    $ oc describe machineconfigs 01-master-kubelet

    The output from the command shows that this MachineConfig object contains both configuration files (cloud.conf and kubelet.conf) and a systemd service (Kubernetes Kubelet):

    Example output

    Name:         01-master-kubelet
    ...
    Spec:
      Config:
        Ignition:
          Version:  3.1.0
        Storage:
          Files:
            Contents:
              Source:   data:,
            Mode:       420
            Overwrite:  true
            Path:       /etc/kubernetes/cloud.conf
            Contents:
              Source:   data:,kind%3A%20KubeletConfiguration%0AapiVersion%3A%20kubelet.config.k8s.io%2Fv1beta1%0Aauthentication%3A%0A%20%20x509%3A%0A%20%20%20%20clientCAFile%3A%20%2Fetc%2Fkubernetes%2Fkubelet-ca.crt%0A%20%20anonymous...
            Mode:       420
            Overwrite:  true
            Path:       /etc/kubernetes/kubelet.conf
        Systemd:
          Units:
            Contents:  [Unit]
    Description=Kubernetes Kubelet
    Wants=rpc-statd.service network-online.target crio.service
    After=network-online.target crio.service
    
    ExecStart=/usr/bin/hyperkube \
        kubelet \
          --config=/etc/kubernetes/kubelet.conf \ ...

If something goes wrong with a machine config that you apply, you can always back out that change. For example, if you had run oc create -f ./myconfig.yaml to apply a machine config, you could remove that machine config by running the following command:

$ oc delete -f ./myconfig.yaml

If that was the only problem, the nodes in the affected pool should return to a non-degraded state. This actually causes the rendered configuration to roll back to its previously rendered state.

If you add your own machine configs to your cluster, you can use the commands shown in the previous example to check their status and the related status of the pool to which they are applied.

2.2. Using MachineConfig objects to configure nodes

You can use the tasks in this section to create MachineConfig objects that modify files, systemd unit files, and other operating system features running on OpenShift Container Platform nodes. For more ideas on working with machine configs, see content related to updating SSH authorized keys, verifying image signatures, enabling SCTP, and configuring iSCSI initiatornames for OpenShift Container Platform.

OpenShift Container Platform version 4.6 supports Ignition specification version 3.1. All new machine configs you create going forward should be based on Ignition specification version 3.1. If you are upgrading your OpenShift Container Platform cluster, any existing Ignition specification version 2.x machine configs will be translated automatically to specification version 3.1.

Tip

Use the following "Configuring chrony time service" procedure as a model for how to go about adding other configuration files to OpenShift Container Platform nodes.

2.2.1. Configuring chrony time service

You can set the time server and related settings used by the chrony time service (chronyd) by modifying the contents of the chrony.conf file and passing those contents to your nodes as a machine config.

Procedure

  1. Create the contents of the chrony.conf file and encode it as base64. For example:

    $ cat << EOF | base64
        pool 0.rhel.pool.ntp.org iburst 1
        driftfile /var/lib/chrony/drift
        makestep 1.0 3
        rtcsync
        logdir /var/log/chrony
    EOF
    1
    Specify any valid, reachable time source, such as the one provided by your DHCP server. Alternately, you can specify any of the following NTP servers: 1.rhel.pool.ntp.org, 2.rhel.pool.ntp.org, or 3.rhel.pool.ntp.org.

    Example output

    ICAgIHNlcnZlciBjbG9jay5yZWRoYXQuY29tIGlidXJzdAogICAgZHJpZnRmaWxlIC92YXIvbGli
    L2Nocm9ueS9kcmlmdAogICAgbWFrZXN0ZXAgMS4wIDMKICAgIHJ0Y3N5bmMKICAgIGxvZ2RpciAv
    dmFyL2xvZy9jaHJvbnkK

  2. Create the MachineConfig object file, replacing the base64 string with the one you just created. This example adds the file to master nodes. You can change it to worker or make an additional MachineConfig for the worker role. Create MachineConfig files for each type of machine that your cluster uses:

    $ cat << EOF > ./99-masters-chrony-configuration.yaml
    apiVersion: machineconfiguration.openshift.io/v1
    kind: MachineConfig
    metadata:
      labels:
        machineconfiguration.openshift.io/role: master
      name: 99-masters-chrony-configuration
    spec:
      config:
        ignition:
          config: {}
          security:
            tls: {}
          timeouts: {}
          version: 3.1.0
        networkd: {}
        passwd: {}
        storage:
          files:
          - contents:
              source: data:text/plain;charset=utf-8;base64,ICAgIHNlcnZlciBjbG9jay5yZWRoYXQuY29tIGlidXJzdAogICAgZHJpZnRmaWxlIC92YXIvbGliL2Nocm9ueS9kcmlmdAogICAgbWFrZXN0ZXAgMS4wIDMKICAgIHJ0Y3N5bmMKICAgIGxvZ2RpciAvdmFyL2xvZy9jaHJvbnkK
            mode: 420 1
            overwrite: true
            path: /etc/chrony.conf
      osImageURL: ""
    EOF
    1
    Specify an octal value mode for the mode field in the machine config file. After creating the file and applying the changes, the mode is converted to a decimal value. You can check the YAML file with the command oc get mc <mc-name> -o yaml.
  3. Make a backup copy of the configuration files.
  4. Apply the configurations in one of two ways:

    • If the cluster is not up yet, after you generate manifest files, add this file to the <installation_directory>/openshift directory, and then continue to create the cluster.
    • If the cluster is already running, apply the file:

      $ oc apply -f ./99-masters-chrony-configuration.yaml

2.2.2. Adding kernel arguments to nodes

In some special cases, you might want to add kernel arguments to a set of nodes in your cluster. This should only be done with caution and clear understanding of the implications of the arguments you set.

Warning

Improper use of kernel arguments can result in your systems becoming unbootable.

Examples of kernel arguments you could set include:

  • enforcing=0: Configures Security Enhanced Linux (SELinux) to run in permissive mode. In permissive mode, the system acts as if SELinux is enforcing the loaded security policy, including labeling objects and emitting access denial entries in the logs, but it does not actually deny any operations. While not supported for production systems, permissive mode can be helpful for debugging.
  • nosmt: Disables symmetric multithreading (SMT) in the kernel. Multithreading allows multiple logical threads for each CPU. You could consider nosmt in multi-tenant environments to reduce risks from potential cross-thread attacks. By disabling SMT, you essentially choose security over performance.

See Kernel.org kernel parameters for a list and descriptions of kernel arguments.

In the following procedure, you create a MachineConfig object that identifies:

  • A set of machines to which you want to add the kernel argument. In this case, machines with a worker role.
  • Kernel arguments that are appended to the end of the existing kernel arguments.
  • A label that indicates where in the list of machine configs the change is applied.

Prerequisites

  • Have administrative privilege to a working OpenShift Container Platform cluster.

Procedure

  1. List existing MachineConfig objects for your OpenShift Container Platform cluster to determine how to label your machine config:

    $ oc get MachineConfig

    Example output

     NAME                                               GENERATEDBYCONTROLLER                      IGNITIONVERSION   AGE
     00-master                                          5ce9351ceb24e721e28cd82de3a44fc7cc27137c   3.1.0             65m
     00-worker                                          5ce9351ceb24e721e28cd82de3a44fc7cc27137c   3.1.0             65m
     01-master-container-runtime                        5ce9351ceb24e721e28cd82de3a44fc7cc27137c   3.1.0             65m
     01-master-kubelet                                  5ce9351ceb24e721e28cd82de3a44fc7cc27137c   3.1.0             65m
     01-worker-container-runtime                        5ce9351ceb24e721e28cd82de3a44fc7cc27137c   3.1.0             65m
     01-worker-kubelet                                  5ce9351ceb24e721e28cd82de3a44fc7cc27137c   3.1.0             65m
     99-master-generated-registries                     5ce9351ceb24e721e28cd82de3a44fc7cc27137c   3.1.0             65m
     99-master-ssh                                                                                 3.1.0             77m
     99-worker-generated-registries                     5ce9351ceb24e721e28cd82de3a44fc7cc27137c   3.1.0             65m
     99-worker-ssh                                                                                 3.1.0             77m
     rendered-master-0f314bb55448c47e6776e16e608c5912   5ce9351ceb24e721e28cd82de3a44fc7cc27137c   3.1.0             42m
     rendered-master-c7761e6162e6c9538b0cdd7eef567d38   5ce9351ceb24e721e28cd82de3a44fc7cc27137c   3.1.0             65m

  2. Create a MachineConfig object file that identifies the kernel argument (for example, 05-worker-kernelarg-selinuxpermissive.yaml)

    apiVersion: machineconfiguration.openshift.io/v1
    kind: MachineConfig
    metadata:
      labels:
        machineconfiguration.openshift.io/role: worker1
      name: 05-worker-kernelarg-selinuxpermissive2
    spec:
      config:
        ignition:
          version: 3.1.0
      kernelArguments:
        - enforcing=03
    1
    Applies the new kernel argument only to worker nodes.
    2
    Named to identify where it fits among the machine configs (05) and what it does (adds a kernel argument to configure SELinux permissive mode).
    3
    Identifies the exact kernel argument as enforcing=0.
  3. Create the new machine config:

    $ oc create -f 05-worker-kernelarg-selinuxpermissive.yaml
  4. Check the machine configs to see that the new one was added:

    $ oc get MachineConfig

    Example output

     NAME                                               GENERATEDBYCONTROLLER                      IGNITIONVERSION   AGE
     00-master                                          5ce9351ceb24e721e28cd82de3a44fc7cc27137c   3.1.0             65m
     00-worker                                          5ce9351ceb24e721e28cd82de3a44fc7cc27137c   3.1.0             65m
     01-master-container-runtime                        5ce9351ceb24e721e28cd82de3a44fc7cc27137c   3.1.0             65m
     01-master-kubelet                                  5ce9351ceb24e721e28cd82de3a44fc7cc27137c   3.1.0             65m
     01-worker-container-runtime                        5ce9351ceb24e721e28cd82de3a44fc7cc27137c   3.1.0             65m
     01-worker-kubelet                                  5ce9351ceb24e721e28cd82de3a44fc7cc27137c   3.1.0             65m
    
     05-worker-kernelarg-selinuxpermissive                                                         3.1.0             105s
    
     99-master-generated-registries                     5ce9351ceb24e721e28cd82de3a44fc7cc27137c   3.1.0             65m
     99-master-ssh                                                                                 3.1.0             77m
     99-worker-generated-registries                     5ce9351ceb24e721e28cd82de3a44fc7cc27137c   3.1.0             65m
     99-worker-ssh                                                                                 3.1.0             77m
     rendered-master-0f314bb55448c47e6776e16e608c5912   5ce9351ceb24e721e28cd82de3a44fc7cc27137c   3.1.0             42m
     rendered-master-c7761e6162e6c9538b0cdd7eef567d38   5ce9351ceb24e721e28cd82de3a44fc7cc27137c   3.1.0             65m

  5. Check the nodes:

    $ oc get nodes

    Example output

    NAME                           STATUS                     ROLES    AGE   VERSION
    ip-10-0-136-161.ec2.internal   Ready                      worker   28m   v1.19.0
    ip-10-0-136-243.ec2.internal   Ready                      master   34m   v1.19.0
    ip-10-0-141-105.ec2.internal   Ready,SchedulingDisabled   worker   28m   v1.19.0
    ip-10-0-142-249.ec2.internal   Ready                      master   34m   v1.19.0
    ip-10-0-153-11.ec2.internal    Ready                      worker   28m   v1.19.0
    ip-10-0-153-150.ec2.internal   Ready                      master   34m   v1.19.0

    You can see that scheduling on each worker node is disabled as the change is being applied.

  6. Check that the kernel argument worked by going to one of the worker nodes and listing the kernel command line arguments (in /proc/cmdline on the host):

    $ oc debug node/ip-10-0-141-105.ec2.internal

    Example output

    Starting pod/ip-10-0-141-105ec2internal-debug ...
    To use host binaries, run `chroot /host`
    
    sh-4.2# cat /host/proc/cmdline
    BOOT_IMAGE=/ostree/rhcos-... console=tty0 console=ttyS0,115200n8
    rootflags=defaults,prjquota rw root=UUID=fd0... ostree=/ostree/boot.0/rhcos/16...
    coreos.oem.id=qemu coreos.oem.id=ec2 ignition.platform.id=ec2 enforcing=0
    
    sh-4.2# exit

    You should see the enforcing=0 argument added to the other kernel arguments.

2.2.3. Adding a real-time kernel to nodes

Some OpenShift Container Platform workloads require a high degree of determinism.While Linux is not a real-time operating system, the Linux real-time kernel includes a preemptive scheduler that provides the operating system with real-time characteristics.

If your OpenShift Container Platform workloads require these real-time characteristics, you can switch your machines to the Linux real-time kernel. For OpenShift Container Platform, 4.6 you can make this switch using a MachineConfig object. Although making the change is as simple as changing a machine config kernelType setting to realtime, there are a few other considerations before making the change:

  • Currently, real-time kernel is supported only on worker nodes, and only for radio access network (RAN) use.
  • The following procedure is fully supported with bare metal installations that use systems that are certified for Red Hat Enterprise Linux for Real Time 8.
  • Real-time support in OpenShift Container Platform is limited to specific subscriptions.
  • The following procedure is also supported for use with Google Cloud Platform.

Prerequisites

  • Have a running OpenShift Container Platform cluster (version 4.4 or later).
  • Log in to the cluster as a user with administrative privileges.

Procedure

  1. Create a machine config for the real-time kernel: Create a YAML file (for example, 99-worker-realtime.yaml) that contains a MachineConfig object for the realtime kernel type. This example tells the cluster to use a real-time kernel for all worker nodes:

    $ cat << EOF > 99-worker-realtime.yaml
    apiVersion: machineconfiguration.openshift.io/v1
    kind: MachineConfig
    metadata:
      labels:
        machineconfiguration.openshift.io/role: "worker"
      name: 99-worker-realtime
    spec:
      kernelType: realtime
    EOF
  2. Add the machine config to the cluster. Type the following to add the machine config to the cluster:

    $ oc create -f 99-worker-realtime.yaml
  3. Check the real-time kernel: Once each impacted node reboots, log in to the cluster and run the following commands to make sure that the real-time kernel has replaced the regular kernel for the set of nodes you configured:

    $ oc get nodes

    Example output

    NAME                                        STATUS  ROLES    AGE   VERSION
    ip-10-0-143-147.us-east-2.compute.internal  Ready   worker   103m  v1.19.0
    ip-10-0-146-92.us-east-2.compute.internal   Ready   worker   101m  v1.19.0
    ip-10-0-169-2.us-east-2.compute.internal    Ready   worker   102m  v1.19.0

    $ oc debug node/ip-10-0-143-147.us-east-2.compute.internal

    Example output

    Starting pod/ip-10-0-143-147us-east-2computeinternal-debug ...
    To use host binaries, run `chroot /host`
    
    sh-4.4# uname -a
    Linux <worker_node> 4.18.0-147.3.1.rt24.96.el8_1.x86_64 #1 SMP PREEMPT RT
            Wed Nov 27 18:29:55 UTC 2019 x86_64 x86_64 x86_64 GNU/Linux

    The kernel name contains rt and text “PREEMPT RT” indicates that this is a real-time kernel.

  4. To go back to the regular kernel, delete the MachineConfig object:

    $ oc delete -f 99-worker-realtime.yaml

2.2.4. Configuring journald settings

If you need to configure settings for the journald service on OpenShift Container Platform nodes, you can do that by modifying the appropriate configuration file and passing the file to the appropriate pool of nodes as a machine config.

This procedure describes how to modify journald rate limiting settings in the /etc/systemd/journald.conf file and apply them to worker nodes. See the journald.conf man page for information on how to use that file.

Prerequisites

  • Have a running OpenShift Container Platform cluster (version 4.4 or later).
  • Log in to the cluster as a user with administrative privileges.

Procedure

  1. Create the contents of the /etc/systemd/journald.conf file and encode it as base64. For example:

    $ cat > /tmp/jrnl.conf <<EOF
    # Disable rate limiting
    RateLimitInterval=1s
    RateLimitBurst=10000
    Storage=volatile
    Compress=no
    MaxRetentionSec=30s
    EOF
  2. Convert the temporary journal.conf file to base64 and save it into a variable (jrnl_cnf):

    $ export jrnl_cnf=$( cat /tmp/jrnl.conf | base64 -w0 )
    $ echo $jrnl_cnf
    IyBEaXNhYmxlIHJhdGUgbGltaXRpbmcKUmF0ZUxpbWl0SW50ZXJ2YWw9MXMKUmF0ZUxpbWl0QnVyc3Q9MTAwMDAKU3RvcmFnZT12b2xhdGlsZQpDb21wcmVzcz1ubwpNYXhSZXRlbnRpb25TZWM9MzBzCg==
  3. Create the machine config, including the encoded contents of journald.conf (jrnl_cnf variable):

    $ cat > /tmp/40-worker-custom-journald.yaml <<EOF
    apiVersion: machineconfiguration.openshift.io/v1
    kind: MachineConfig
    metadata:
      labels:
        machineconfiguration.openshift.io/role: worker
      name: 40-worker-custom-journald
    spec:
      config:
        ignition:
          config: {}
          security:
            tls: {}
          timeouts: {}
          version: 3.1.0
        networkd: {}
        passwd: {}
        storage:
          files:
          - contents:
              source: data:text/plain;charset=utf-8;base64,${jrnl_cnf}
              verification: {}
            filesystem: root
            mode: 420
            path: /etc/systemd/journald.conf
        systemd: {}
      osImageURL: ""
    EOF
  4. Apply the machine config to the pool:

    $ oc apply -f /tmp/40-worker-custom-journald.yaml
  5. Check that the new machine config is applied and that the nodes are not in a degraded state. It might take a few minutes. The worker pool will show the updates in progress, as each node successfully has the new machine config applied:

    $ oc get machineconfigpool
    NAME   CONFIG             UPDATED UPDATING DEGRADED MACHINECOUNT READYMACHINECOUNT UPDATEDMACHINECOUNT DEGRADEDMACHINECOUNT AGE
    master rendered-master-35 True    False    False    3            3                 3                   0                    34m
    worker rendered-worker-d8 False   True     False    3            1                 1                   0                    34m
  6. To check that the change was applied, you can log in to a worker node:

    $ oc get node | grep worker
    ip-10-0-0-1.us-east-2.compute.internal   Ready    worker   39m   v0.0.0-master+$Format:%h$
    $ oc debug node/ip-10-0-0-1.us-east-2.compute.internal
    Starting pod/ip-10-0-141-142us-east-2computeinternal-debug ...
    ...
    sh-4.2# chroot /host
    sh-4.4# cat /etc/systemd/journald.conf
    # Disable rate limiting
    RateLimitInterval=1s
    RateLimitBurst=10000
    Storage=volatile
    Compress=no
    MaxRetentionSec=30s
    sh-4.4# exit

2.2.5. Configuring container image registry settings

Settings that define the registries that OpenShift Container Platform uses to get container images are held in the /etc/containers/registries.conf file by default. In that file, you can set registries to not require authentication (insecure), point to mirrored registries, or set which registries are searched for unqualified container image requests.

Rather than change registries.conf directly, you can drop configuration files into the /etc/containers/registries.conf.d directory that are then automatically appended to the system’s existing registries.conf settings.

This procedure describes how to create a registries.d file (/etc/containers/registries/99-worker-unqualified-search-registries.conf) that adds quay.io as an unqualified search registry (one that OpenShift Container Platform can search when it tries to pull an image name that does not include the registry name). It includes base64-encoded content that you can examine as follows:

$ echo dW5xdWFsaWZpZWQtc2VhcmNoLXJlZ2lzdHJpZXMgPSBbJ3JlZ2lzdHJ5LmFjY2Vzcy5yZWRoYXQuY29tJywgJ2RvY2tlci5pbycsICdxdWF5LmlvJ10K | base64 -d
unqualified-search-registries = ['registry.access.redhat.com', 'docker.io', 'quay.io']

See the containers-registries.conf man page for the format for the registries.conf and registries.d directory files.

Prerequisites

  • Have a running OpenShift Container Platform cluster (version 4.4 or later).
  • Log in to the cluster as a user with administrative privileges.

Procedure

  1. Create a YAML file (myregistry.yaml) to hold the contents of the /etc/containers/registries.conf.d/99-worker-unqualified-search-registries.conf file, including the encoded base64 contents for that file. For example:

    $ cat > /tmp/myregistry.yaml <<EOF
    apiVersion: machineconfiguration.openshift.io/v1
    kind: MachineConfig
    metadata:
      labels:
        machineconfiguration.openshift.io/role: worker
      name: 99-worker-unqualified-search-registries
    spec:
      config:
        ignition:
          version: 3.1.0
        storage:
          files:
          - contents:
              source: data:text/plain;charset=utf-8;base64,dW5xdWFsaWZpZWQtc2VhcmNoLXJlZ2lzdHJpZXMgPSBbJ3JlZ2lzdHJ5LmFjY2Vzcy5yZWRoYXQuY29tJywgJ2RvY2tlci5pbycsICdxdWF5LmlvJ10K
            filesystem: root
            mode: 0644
            path: /etc/containers/registries.conf.d/99-worker-unqualified-search-registries.conf
    EOF
  2. Apply the machine config to the pool:

    $ oc apply -f /tmp/myregistry.yaml
  3. Check that the new machine config has been applied and that the nodes are not in a degraded state. It might take a few minutes. The worker pool will show the updates in progress, as each machine successfully has the new machine config applied:

    $ oc get machineconfigpool

    Example output

    NAME   CONFIG             UPDATED UPDATING DEGRADED MACHINECOUNT READYMACHINECOUNT UPDATEDMACHINECOUNT DEGRADEDMACHINECOUNT AGE
    master rendered-master-35 True    False    False    3            3                 3                   0                    34m
    worker rendered-worker-d8 False   True     False    3            1                 1                   0                    34m

  4. To check that the change was applied, you can log in to a worker node:

    $ oc get node | grep worker

    Example output

    ip-10-0-0-1.us-east-2.compute.internal   Ready    worker   39m   v0.0.0-master+$Format:%h$

    $ oc debug node/ip-10-0-0-1.us-east-2.compute.internal

    Example output

    Starting pod/ip-10-0-141-142us-east-2computeinternal-debug ...
    ...

    sh-4.2# chroot /host
    sh-4.4# cat /etc/containers/registries.conf.d/99-worker-unqualified-search-registries.conf
    unqualified-search-registries = ['registry.access.redhat.com', 'docker.io', 'quay.io']
    sh-4.4# exit

2.2.6. Adding extensions to RHCOS

RHCOS is a minimal container-oriented RHEL operating system, designed to provide a common set of capabilities to OpenShift Container Platform clusters across all platforms. While adding software packages to RHCOS systems is generally discouraged, the MCO provides an extensions feature you can use to add a minimal set of features to RHCOS nodes.

Currently, the following extension is available:

  • usbguard: Adding the usbguard extension protects RHCOS systems from attacks from intrusive USB devices. See USBGuard for details.

The following procedure describes how to use a machine config to add one or more extensions to your RHCOS nodes.

Prerequisites

  • Have a running OpenShift Container Platform cluster (version 4.6 or later).
  • Log in to the cluster as a user with administrative privileges.

Procedure

  1. Create a machine config for extensions: Create a YAML file (for example, 80-extensions.yaml) that contains a MachineConfig extensions object. This example tells the cluster to add the usbguard extension.

    $ cat << EOF > 80-extensions.yaml
    apiVersion: machineconfiguration.openshift.io/v1
    kind: MachineConfig
    metadata:
      labels:
        machineconfiguration.openshift.io/role: worker
      name: 80-worker-extensions
    spec:
      config:
        ignition:
          version: 3.1.0
      extensions:
        - usbguard
    EOF
  2. Add the machine config to the cluster. Type the following to add the machine config to the cluster:

    $ oc create -f 80-extensions.yaml

    This sets all worker nodes to have rpm packages for usbguard installed.

  3. Check that the extensions were applied:

    $ oc get machineconfig 80-worker-extensions

    Example output

    NAME                 GENERATEDBYCONTROLLER IGNITIONVERSION AGE
    80-worker-extensions                       3.1.0           57s

  4. Check that the new machine config is now applied and that the nodes are not in a degraded state. It may take a few minutes. The worker pool will show the updates in progress, as each machine successfully has the new machine config applied:

    $ oc get machineconfigpool

    Example output

    NAME   CONFIG             UPDATED UPDATING DEGRADED MACHINECOUNT READYMACHINECOUNT UPDATEDMACHINECOUNT DEGRADEDMACHINECOUNT AGE
    master rendered-master-35 True    False    False    3            3                 3                   0                    34m
    worker rendered-worker-d8 False   True     False    3            1                 1                   0                    34m

  5. Check the extensions. To check that the extension was applied, run:

    $ oc get node | grep worker

    Example output

    NAME                                        STATUS  ROLES    AGE   VERSION
    ip-10-0-169-2.us-east-2.compute.internal    Ready   worker   102m  v1.18.3

    $ oc debug node/ip-10-0-169-2.us-east-2.compute.internal

    Example output

    ...
    To use host binaries, run `chroot /host`
    sh-4.4# chroot /host
    sh-4.4# rpm -q usbguard
    usbguard-0.7.4-4.el8.x86_64.rpm

2.2.7. Loading custom firmware blobs in the machine config manifest

Because the default location for firmware blobs in /usr/lib is read-only, you can locate a custom firmware blob by updating the search path. This enables you to load local firmware blobs in the machine config manifest when the blobs are not managed by RHCOS.

Procedure

  1. Create a Butane config file, 98-worker-firmware-blob.bu, that updates the search path so that it is root-owned and writable to local storage. The following example places the custom blob file from your local workstation onto nodes under /var/lib/firmware.

    Note

    See "Creating machine configs with Butane" for information about Butane.

    Butane config file for custom firmware blob

    variant: openshift
    version: 4.9.0
    metadata:
      labels:
        machineconfiguration.openshift.io/role: worker
      name: 98-worker-firmware-blob
    storage:
      files:
      - path: /var/lib/firmware/<package_name> 1
        contents:
          local: <package_name> 2
        mode: 0644 3
    openshift:
      kernel_arguments:
        - 'firmware_class.path=/var/lib/firmware' 4

    1
    Sets the path on the node where the firmware package is copied to.
    2
    Specifies a file with contents that are read from a local file directory on the system running Butane. The path of the local file is relative to a files-dir directory, which must be specified by using the --files-dir option with Butane in the following step.
    3
    Sets the permissions for the file on the RHCOS node. It is recommended to set 0644 permissions.
    4
    The firmware_class.path parameter customizes the kernel search path of where to look for the custom firmware blob that was copied from your local workstation onto the root file system of the node. This example uses /var/lib/firmware as the customized path.
  2. Run Butane to generate a MachineConfig object file that uses a copy of the firmware blob on your local workstation named 98-worker-firmware-blob.yaml. The firmware blob contains the configuration to be delivered to the nodes. The following example uses the --files-dir option to specify the directory on your workstation where the local file or files are located:

    $ butane 98-worker-firmware-blob.bu -o 98-worker-firmware-blob.yaml --files-dir <directory_including_package_name>
  3. Apply the configurations to the nodes in one of two ways:

    • If the cluster is not running yet, after you generate manifest files, add the MachineConfig object file to the <installation_directory>/openshift directory, and then continue to create the cluster.
    • If the cluster is already running, apply the file:

      $ oc apply -f 98-worker-firmware-blob.yaml

      A MachineConfig object YAML file is created for you to finish configuring your machines.

  4. Save the Butane config in case you need to update the MachineConfig object in the future.

2.3. Configuring MCO-related custom resources

Besides managing MachineConfig objects, the MCO manages two custom resources (CRs): KubeletConfig and ContainerRuntimeConfig. Those CRs let you change node-level settings impacting how the Kubelet and CRI-O container runtime services behave.

2.3.1. Creating a KubeletConfig CRD to edit kubelet parameters

The kubelet configuration is currently serialized as an Ignition configuration, so it can be directly edited. However, there is also a new kubelet-config-controller added to the Machine Config Controller (MCC). This allows you to create a KubeletConfig custom resource (CR) to edit the kubelet parameters.

Note

As the fields in the kubeletConfig object are passed directly to the kubelet from upstream Kubernetes, the kubelet validates those values directly. Invalid values in the kubeletConfig object might cause cluster nodes to become unavailable. For valid values, see the Kubernetes documentation.

Procedure

  1. View the available machine configuration objects that you can select:

    $ oc get machineconfig

    By default, the two kubelet-related configs are 01-master-kubelet and 01-worker-kubelet.

  2. To check the current value of max pods per node, run:

    # oc describe node <node-ip> | grep Allocatable -A6

    Look for value: pods: <value>.

    For example:

    # oc describe node ip-172-31-128-158.us-east-2.compute.internal | grep Allocatable -A6

    Example output

    Allocatable:
     attachable-volumes-aws-ebs:  25
     cpu:                         3500m
     hugepages-1Gi:               0
     hugepages-2Mi:               0
     memory:                      15341844Ki
     pods:                        250

  3. To set the max pods per node on the worker nodes, create a custom resource file that contains the kubelet configuration. For example, change-maxPods-cr.yaml:

    apiVersion: machineconfiguration.openshift.io/v1
    kind: KubeletConfig
    metadata:
      name: set-max-pods
    spec:
      machineConfigPoolSelector:
        matchLabels:
          custom-kubelet: large-pods
      kubeletConfig:
        maxPods: 500

    The rate at which the kubelet talks to the API server depends on queries per second (QPS) and burst values. The default values, 50 for kubeAPIQPS and 100 for kubeAPIBurst, are good enough if there are limited pods running on each node. Updating the kubelet QPS and burst rates is recommended if there are enough CPU and memory resources on the node:

    apiVersion: machineconfiguration.openshift.io/v1
    kind: KubeletConfig
    metadata:
      name: set-max-pods
    spec:
      machineConfigPoolSelector:
        matchLabels:
          custom-kubelet: large-pods
      kubeletConfig:
        maxPods: <pod_count>
        kubeAPIBurst: <burst_rate>
        kubeAPIQPS: <QPS>
    1. Update the machine config pool for workers with the label:

      $ oc label machineconfigpool worker custom-kubelet=large-pods
    2. Create the KubeletConfig object:

      $ oc create -f change-maxPods-cr.yaml
    3. Verify that the KubeletConfig object is created:

      $ oc get kubeletconfig

      This should return set-max-pods.

      Depending on the number of worker nodes in the cluster, wait for the worker nodes to be rebooted one by one. For a cluster with 3 worker nodes, this could take about 10 to 15 minutes.

  4. Check for maxPods changing for the worker nodes:

    $ oc describe node
    1. Verify the change by running:

      $ oc get kubeletconfigs set-max-pods -o yaml

      This should show a status of True and type:Success

Procedure

By default, only one machine is allowed to be unavailable when applying the kubelet-related configuration to the available worker nodes. For a large cluster, it can take a long time for the configuration change to be reflected. At any time, you can adjust the number of machines that are updating to speed up the process.

  1. Edit the worker machine config pool:

    $ oc edit machineconfigpool worker
  2. Set maxUnavailable to the desired value.

    spec:
      maxUnavailable: <node_count>
    Important

    When setting the value, consider the number of worker nodes that can be unavailable without affecting the applications running on the cluster.

2.3.2. Creating a ContainerRuntimeConfig CR to edit CRI-O parameters

The ContainerRuntimeConfig custom resource definition (CRD) provides a structured way of changing settings associated with the OpenShift Container Platform CRI-O runtime. Using a ContainerRuntimeConfig custom resource (CR), you select the configuration values you want and the MCO handles rebuilding the crio.conf and storage.conf configuration files.

You can modify the following settings by using a ContainerRuntimeConfig CR:

  • PIDs limit: The pidsLimit parameter sets the CRI-O pids_limit parameter, which is maximum number of processes allowed in a container. The default is 1024 (pids_limit = 1024).
  • Log level: The logLevel parameter sets the CRI-O log_level parameter, which is the level of verbosity for log messages. The default is info (log_level = info). Other options include fatal, panic, error, warn, debug, and trace.
  • Overlay size: The overlaySize parameter sets the CRI-O Overlay storage driver size parameter, which is the maximum size of a container image.
  • Maximum log size: The logSizeMax parameter sets the CRI-O log_size_max parameter, which is the maximum size allowed for the container log file. The default is unlimited (log_size_max = -1). If set to a positive number, it must be at least 8192 to not be smaller than the ConMon read buffer. ConMon is a program that monitors communications between a container manager (such as Podman or CRI-O) and the OCI runtime (such as runc or crun) for a single container.

The following procedure describes how to change CRI-O settings using the ContainerRuntimeConfig CR.

Procedure

  1. To raise the pidsLimit to 2048, set the logLevel to debug, and set the overlaySize to 8 GB, create a CR file (for example, overlay-size.yaml) that contains that setting:

    $ cat << EOF > /tmp/overlay-size.yaml
    apiVersion: machineconfiguration.openshift.io/v1
    kind: ContainerRuntimeConfig
    metadata:
     name: overlay-size
    spec:
     machineConfigPoolSelector:
       matchLabels:
         custom-crio: overlay-size
     containerRuntimeConfig:
       pidsLimit: 2048
       logLevel: debug
       overlaySize: 8G
    EOF
  2. To apply the ContainerRuntimeConfig object settings, run:

    $ oc create -f /tmp/overlay-size.yaml
  3. To verify that the YAML file applied the settings, run the following command:

    $ oc get ContainerRuntimeConfig
    NAME           AGE
    overlay-size   3m19s
  4. To edit a pool of machines, such as worker, run the following command to open a machine config pool:

    $ oc edit machineconfigpool worker
  5. Check that a new containerruntime object has appeared under the machineconfigs:

    $ oc get machineconfigs | grep containerrun
    99-worker-generated-containerruntime   2c9371fbb673b97a6fe8b1c52691999ed3a1bfc2  3.1.0  31s
  6. Monitor the machine config pool as the changes are rolled into the machines until all are shown as ready:

    $ oc get mcp worker

    Example output

    NAME    CONFIG               UPDATED  UPDATING  DEGRADED  MACHINECOUNT  READYMACHINECOUNT  UPDATEDMACHINECOUNT  DEGRADEDMACHINECOUNT  AGE
    worker  rendered-worker-169  False    True      False     3             1                  1                    0                     9h

  7. Open an oc debug session to a worker node and run chroot /host.
  8. Verify the changes by running:

    $ crio config | egrep 'log_level|pids_limit'

    Example output

    pids_limit = 2048
    log_level = "debug"

    $ head -n 7 /etc/containers/storage.conf

    Example output

    [storage]
      driver = "overlay"
      runroot = "/var/run/containers/storage"
      graphroot = "/var/lib/containers/storage"
      [storage.options]
        additionalimagestores = []
        size = "8G"

2.3.3. Setting the default maximum container root partition size for Overlay with CRI-O

The root partition of each container shows all of the available disk space of the underlying host. Follow this guidance to set a maximum partition size for the root disk of all containers.

To configure the maximum Overlay size, as well as other CRI-O options like the log level and PID limit, you can create the following ContainerRuntimeConfig custom resource definition (CRD):

apiVersion: machineconfiguration.openshift.io/v1
kind: ContainerRuntimeConfig
metadata:
 name: overlay-size
spec:
 machineConfigPoolSelector:
   matchLabels:
     custom-crio: overlay-size
 containerRuntimeConfig:
   pidsLimit: 2048
   logLevel: debug
   overlaySize: 8G

Procedure

  1. Create the configuration object:

    $ oc apply -f overlaysize.yml
  2. To apply the new CRI-O configuration to your worker nodes, edit the worker machine config pool:

    $ oc edit machineconfigpool worker
  3. Add the custom-crio label based on the matchLabels name you set in the ContainerRuntimeConfig CRD:

    apiVersion: machineconfiguration.openshift.io/v1
    kind: MachineConfigPool
    metadata:
      creationTimestamp: "2020-07-09T15:46:34Z"
      generation: 3
      labels:
        custom-crio: overlay-size
        machineconfiguration.openshift.io/mco-built-in: ""
  4. Save the changes, then view the machine configs:

    $ oc get machineconfigs

    New 99-worker-generated-containerruntime and rendered-worker-xyz objects are created:

    Example output

    99-worker-generated-containerruntime  4173030d89fbf4a7a0976d1665491a4d9a6e54f1   2.2.0             7m42s
    rendered-worker-xyz                   4173030d89fbf4a7a0976d1665491a4d9a6e54f1   2.2.0             7m36s

  5. After those objects are created, monitor the machine config pool for the changes to be applied:

    $ oc get mcp worker

    The worker nodes show UPDATING as True, as well as the number of machines, the number updated, and other details:

    Example output

    NAME   CONFIG              UPDATED   UPDATING   DEGRADED  MACHINECOUNT  READYMACHINECOUNT  UPDATEDMACHINECOUNT   DEGRADEDMACHINECOUNT   AGE
    worker rendered-worker-xyz False True False     3             2                   2                    0                      20h

    When complete, the worker nodes transition back to UPDATING as False, and the UPDATEDMACHINECOUNT number matches the MACHINECOUNT:

    Example output

    NAME   CONFIG              UPDATED   UPDATING   DEGRADED  MACHINECOUNT  READYMACHINECOUNT  UPDATEDMACHINECOUNT   DEGRADEDMACHINECOUNT   AGE
    worker   rendered-worker-xyz   True      False      False      3         3            3             0           20h

    Looking at a worker machine, you see that the new 8 GB max size configuration is applied to all of the workers:

    Example output

    head -n 7 /etc/containers/storage.conf
    [storage]
      driver = "overlay"
      runroot = "/var/run/containers/storage"
      graphroot = "/var/lib/containers/storage"
      [storage.options]
        additionalimagestores = []
        size = "8G"

    Looking inside a container, you see that the root partition is now 8 GB:

    Example output

    ~ $ df -h
    Filesystem                Size      Used Available Use% Mounted on
    overlay                   8.0G      8.0K      8.0G   0% /

Chapter 3. Post-installation cluster tasks

After installing OpenShift Container Platform, you can further expand and customize your cluster to your requirements.

3.1. Adjust worker nodes

If you incorrectly sized the worker nodes during deployment, adjust them by creating one or more new machine sets, scale them up, then scale the original machine set down before removing them.

3.1.1. Understanding the difference between machine sets and the machine config pool

MachineSet objects describe OpenShift Container Platform nodes with respect to the cloud or machine provider.

The MachineConfigPool object allows MachineConfigController components to define and provide the status of machines in the context of upgrades.

The MachineConfigPool object allows users to configure how upgrades are rolled out to the OpenShift Container Platform nodes in the machine config pool.

The NodeSelector object can be replaced with a reference to the MachineSet object.

3.1.2. Scaling a machine set manually

To add or remove an instance of a machine in a machine set, you can manually scale the machine set.

This guidance is relevant to fully automated, installer-provisioned infrastructure installations. Customized, user-provisioned infrastructure installations do not have machine sets.

Prerequisites

  • Install an OpenShift Container Platform cluster and the oc command line.
  • Log in to oc as a user with cluster-admin permission.

Procedure

  1. View the machine sets that are in the cluster:

    $ oc get machinesets -n openshift-machine-api

    The machine sets are listed in the form of <clusterid>-worker-<aws-region-az>.

  2. View the machines that are in the cluster:

    $ oc get machine -n openshift-machine-api
  3. Set the annotation on the machine that you want to delete:

    $ oc annotate machine/<machine_name> -n openshift-machine-api machine.openshift.io/cluster-api-delete-machine="true"
  4. Cordon and drain the node that you want to delete:

    $ oc adm cordon <node_name>
    $ oc adm drain <node_name>
  5. Scale the machine set:

    $ oc scale --replicas=2 machineset <machineset> -n openshift-machine-api

    Or:

    $ oc edit machineset <machineset> -n openshift-machine-api

    You can scale the machine set up or down. It takes several minutes for the new machines to be available.

Verification

  • Verify the deletion of the intended machine:

    $ oc get machines

3.1.3. The machine set deletion policy

Random, Newest, and Oldest are the three supported deletion options. The default is Random, meaning that random machines are chosen and deleted when scaling machine sets down. The deletion policy can be set according to the use case by modifying the particular machine set:

spec:
  deletePolicy: <delete_policy>
  replicas: <desired_replica_count>

Specific machines can also be prioritized for deletion by adding the annotation machine.openshift.io/cluster-api-delete-machine=true to the machine of interest, regardless of the deletion policy.

Important

By default, the OpenShift Container Platform router pods are deployed on workers. Because the router is required to access some cluster resources, including the web console, do not scale the worker machine set to 0 unless you first relocate the router pods.

Note

Custom machine sets can be used for use cases requiring that services run on specific nodes and that those services are ignored by the controller when the worker machine sets are scaling down. This prevents service disruption.

3.1.4. Creating default cluster-wide node selectors

You can use default cluster-wide node selectors on pods together with labels on nodes to constrain all pods created in a cluster to specific nodes.

With cluster-wide node selectors, when you create a pod in that cluster, OpenShift Container Platform adds the default node selectors to the pod and schedules the pod on nodes with matching labels.

You configure cluster-wide node selectors by editing the Scheduler Operator custom resource (CR). You add labels to a node, a machine set, or a machine config. Adding the label to the machine set ensures that if the node or machine goes down, new nodes have the label. Labels added to a node or machine config do not persist if the node or machine goes down.

Note

You can add additional key/value pairs to a pod. But you cannot add a different value for a default key.

Procedure

To add a default cluster-wide node selector:

  1. Edit the Scheduler Operator CR to add the default cluster-wide node selectors:

    $ oc edit scheduler cluster

    Example Scheduler Operator CR with a node selector

    apiVersion: config.openshift.io/v1
    kind: Scheduler
    metadata:
      name: cluster
    ...
    
    spec:
      defaultNodeSelector: type=user-node,region=east 1
      mastersSchedulable: false
      policy:
        name: ""

    1
    Add a node selector with the appropriate <key>:<value> pairs.

    After making this change, wait for the pods in the openshift-kube-apiserver project to redeploy. This can take several minutes. The default cluster-wide node selector does not take effect until the pods redeploy.

  2. Add labels to a node by using a machine set or editing the node directly:

    • Use a machine set to add labels to nodes managed by the machine set when a node is created:

      1. Run the following command to add labels to a MachineSet object:

        $ oc patch MachineSet <name> --type='json' -p='[{"op":"add","path":"/spec/template/spec/metadata/labels", "value":{"<key>"="<value>","<key>"="<value>"}}]'  -n openshift-machine-api 1
        1
        Add a <key>/<value> pair for each label.

        For example:

        $ oc patch MachineSet ci-ln-l8nry52-f76d1-hl7m7-worker-c --type='json' -p='[{"op":"add","path":"/spec/template/spec/metadata/labels", "value":{"type":"user-node","region":"east"}}]'  -n openshift-machine-api
      2. Verify that the labels are added to the MachineSet object by using the oc edit command:

        For example:

        $ oc edit MachineSet ci-ln-l8nry52-f76d1-hl7m7-worker-c -n openshift-machine-api

        Example output

        apiVersion: machine.openshift.io/v1beta1
        kind: MachineSet
        metadata:
        ...
        spec:
        ...
          template:
            metadata:
        ...
            spec:
              metadata:
                labels:
                  region: east
                  type: user-node

      3. Redeploy the nodes associated with that machine set by scaling down to 0 and scaling up the nodes:

        For example:

        $ oc scale --replicas=0 MachineSet ci-ln-l8nry52-f76d1-hl7m7-worker-c -n openshift-machine-api
        $ oc scale --replicas=1 MachineSet ci-ln-l8nry52-f76d1-hl7m7-worker-c -n openshift-machine-api
      4. When the nodes are ready and available, verify that the label is added to the nodes by using the oc get command:

        $ oc get nodes -l <key>=<value>

        For example:

        $ oc get nodes -l type=user-node

        Example output

        NAME                                       STATUS   ROLES    AGE   VERSION
        ci-ln-l8nry52-f76d1-hl7m7-worker-c-vmqzp   Ready    worker   61s   v1.18.3+002a51f

    • Add labels directly to a node:

      1. Edit the Node object for the node:

        $ oc label nodes <name> <key>=<value>

        For example, to label a node:

        $ oc label nodes ci-ln-l8nry52-f76d1-hl7m7-worker-b-tgq49 type=user-node region=east
      2. Verify that the labels are added to the node using the oc get command:

        $ oc get nodes -l <key>=<value>,<key>=<value>

        For example:

        $ oc get nodes -l type=user-node,region=east

        Example output

        NAME                                       STATUS   ROLES    AGE   VERSION
        ci-ln-l8nry52-f76d1-hl7m7-worker-b-tgq49   Ready    worker   17m   v1.18.3+002a51f

3.2. Creating infrastructure machine sets for production environments

You can create a machine set to create machines that host only infrastructure components, such as the default router, the integrated container image registry, and components for cluster metrics and monitoring. These infrastructure machines are not counted toward the total number of subscriptions that are required to run the environment.

In a production deployment, it is recommended that you deploy at least three machine sets to hold infrastructure components. Both OpenShift Logging and Red Hat OpenShift Service Mesh deploy Elasticsearch, which requires three instances to be installed on different nodes. Each of these nodes can be deployed to different availability zones for high availability. A configuration like this requires three different machine sets, one for each availability zone. In global Azure regions that do not have multiple availability zones, you can use availability sets to ensure high availability.

For information on infrastructure nodes and which components can run on infrastructure nodes, see Creating infrastructure machine sets.

For sample machine sets that you can use with these procedures, see Creating machine sets for different clouds.

3.2.1. Creating a machine set

In addition to the ones created by the installation program, you can create your own machine sets to dynamically manage the machine compute resources for specific workloads of your choice.

Prerequisites

  • Deploy an OpenShift Container Platform cluster.
  • Install the OpenShift CLI (oc).
  • Log in to oc as a user with cluster-admin permission.

Procedure

  1. Create a new YAML file that contains the machine set custom resource (CR) sample and is named <file_name>.yaml.

    Ensure that you set the <clusterID> and <role> parameter values.

    1. If you are not sure which value to set for a specific field, you can check an existing machine set from your cluster:

      $ oc get machinesets -n openshift-machine-api

      Example output

      NAME                                DESIRED   CURRENT   READY   AVAILABLE   AGE
      agl030519-vplxk-worker-us-east-1a   1         1         1       1           55m
      agl030519-vplxk-worker-us-east-1b   1         1         1       1           55m
      agl030519-vplxk-worker-us-east-1c   1         1         1       1           55m
      agl030519-vplxk-worker-us-east-1d   0         0                             55m
      agl030519-vplxk-worker-us-east-1e   0         0                             55m
      agl030519-vplxk-worker-us-east-1f   0         0                             55m

    2. Check values of a specific machine set:

      $ oc get machineset <machineset_name> -n \
           openshift-machine-api -o yaml

      Example output

      ...
      template:
          metadata:
            labels:
              machine.openshift.io/cluster-api-cluster: agl030519-vplxk 1
              machine.openshift.io/cluster-api-machine-role: worker 2
              machine.openshift.io/cluster-api-machine-type: worker
              machine.openshift.io/cluster-api-machineset: agl030519-vplxk-worker-us-east-1a

      1
      The cluster ID.
      2
      A default node label.
  2. Create the new MachineSet CR:

    $ oc create -f <file_name>.yaml
  3. View the list of machine sets:

    $ oc get machineset -n openshift-machine-api

    Example output

    NAME                                DESIRED   CURRENT   READY   AVAILABLE   AGE
    agl030519-vplxk-infra-us-east-1a    1         1         1       1           11m
    agl030519-vplxk-worker-us-east-1a   1         1         1       1           55m
    agl030519-vplxk-worker-us-east-1b   1         1         1       1           55m
    agl030519-vplxk-worker-us-east-1c   1         1         1       1           55m
    agl030519-vplxk-worker-us-east-1d   0         0                             55m
    agl030519-vplxk-worker-us-east-1e   0         0                             55m
    agl030519-vplxk-worker-us-east-1f   0         0                             55m

    When the new machine set is available, the DESIRED and CURRENT values match. If the machine set is not available, wait a few minutes and run the command again.

3.2.2. Creating an infrastructure node

Important

See Creating infrastructure machine sets for installer-provisioned infrastructure environments or for any cluster where the control plane nodes (also known as the master nodes) are managed by the machine API.

Requirements of the cluster dictate that infrastructure, also called infra nodes, be provisioned. The installer only provides provisions for control plane and worker nodes. Worker nodes can be designated as infrastructure nodes or application, also called app, nodes through labeling.

Procedure

  1. Add a label to the worker node that you want to act as application node:

    $ oc label node <node-name> node-role.kubernetes.io/app=""
  2. Add a label to the worker nodes that you want to act as infrastructure nodes:

    $ oc label node <node-name> node-role.kubernetes.io/infra=""
  3. Check to see if applicable nodes now have the infra role and app roles:

    $ oc get nodes
  4. Create a default cluster-wide node selector. The default node selector is applied to pods created in all namespaces. This creates an intersection with any existing node selectors on a pod, which additionally constrains the pod’s selector.

    Important

    If the default node selector key conflicts with the key of a pod’s label, then the default node selector is not applied.

    However, do not set a default node selector that might cause a pod to become unschedulable. For example, setting the default node selector to a specific node role, such as node-role.kubernetes.io/infra="", when a pod’s label is set to a different node role, such as node-role.kubernetes.io/master="", can cause the pod to become unschedulable. For this reason, use caution when setting the default node selector to specific node roles.

    You can alternatively use a project node selector to avoid cluster-wide node selector key conflicts.

    1. Edit the Scheduler object:

      $ oc edit scheduler cluster
    2. Add the defaultNodeSelector field with the appropriate node selector:

      apiVersion: config.openshift.io/v1
      kind: Scheduler
      metadata:
        name: cluster
      ...
      spec:
        defaultNodeSelector: topology.kubernetes.io/region=us-east-1 1
      ...
      1
      This example node selector deploys pods on nodes in the us-east-1 region by default.
    3. Save the file to apply the changes.

You can now move infrastructure resources to the newly labeled infra nodes.

Additional resources

  • For information on how to configure project node selectors to avoid cluster-wide node selector key conflicts, see Project node selectors.

3.2.3. Creating a machine config pool for infrastructure machines

If you need infrastructure machines to have dedicated configurations, you must create an infra pool.

Procedure

  1. Add a label to the node you want to assign as the infra node with a specific label:

    $ oc label node <node_name> <label>
    $ oc label node ci-ln-n8mqwr2-f76d1-xscn2-worker-c-6fmtx node-role.kubernetes.io/infra=
  2. Create a machine config pool that contains both the worker role and your custom role as machine config selector:

    $ cat infra.mcp.yaml

    Example output

    apiVersion: machineconfiguration.openshift.io/v1
    kind: MachineConfigPool
    metadata:
      name: infra
    spec:
      machineConfigSelector:
        matchExpressions:
          - {key: machineconfiguration.openshift.io/role, operator: In, values: [worker,infra]} 1
      nodeSelector:
        matchLabels:
          node-role.kubernetes.io/infra: "" 2

    1
    Add the worker role and your custom role.
    2
    Add the label you added to the node as a nodeSelector.
    Note

    Custom machine config pools inherit machine configs from the worker pool. Custom pools use any machine config targeted for the worker pool, but add the ability to also deploy changes that are targeted at only the custom pool. Because a custom pool inherits resources from the worker pool, any change to the worker pool also affects the custom pool.

  3. After you have the YAML file, you can create the machine config pool:

    $ oc create -f infra.mcp.yaml
  4. Check the machine configs to ensure that the infrastructure configuration rendered successfully:

    $ oc get machineconfig

    Example output

    NAME                                                        GENERATEDBYCONTROLLER                      IGNITIONVERSION   CREATED
    00-master                                                   365c1cfd14de5b0e3b85e0fc815b0060f36ab955   2.2.0             31d
    00-worker                                                   365c1cfd14de5b0e3b85e0fc815b0060f36ab955   2.2.0             31d
    01-master-container-runtime                                 365c1cfd14de5b0e3b85e0fc815b0060f36ab955   2.2.0             31d
    01-master-kubelet                                           365c1cfd14de5b0e3b85e0fc815b0060f36ab955   2.2.0             31d
    01-worker-container-runtime                                 365c1cfd14de5b0e3b85e0fc815b0060f36ab955   2.2.0             31d
    01-worker-kubelet                                           365c1cfd14de5b0e3b85e0fc815b0060f36ab955   2.2.0             31d
    99-master-1ae2a1e0-a115-11e9-8f14-005056899d54-registries   365c1cfd14de5b0e3b85e0fc815b0060f36ab955   2.2.0             31d
    99-master-ssh                                                                                          2.2.0             31d
    99-worker-1ae64748-a115-11e9-8f14-005056899d54-registries   365c1cfd14de5b0e3b85e0fc815b0060f36ab955   2.2.0             31d
    99-worker-ssh                                                                                          2.2.0             31d
    rendered-infra-4e48906dca84ee702959c71a53ee80e7             365c1cfd14de5b0e3b85e0fc815b0060f36ab955   2.2.0             19s
    rendered-master-072d4b2da7f88162636902b074e9e28e            5b6fb8349a29735e48446d435962dec4547d3090   2.2.0             31d
    rendered-master-3e88ec72aed3886dec061df60d16d1af            02c07496ba0417b3e12b78fb32baf6293d314f79   2.2.0             31d
    rendered-master-419bee7de96134963a15fdf9dd473b25            365c1cfd14de5b0e3b85e0fc815b0060f36ab955   2.2.0             17d
    rendered-master-53f5c91c7661708adce18739cc0f40fb            365c1cfd14de5b0e3b85e0fc815b0060f36ab955   2.2.0             13d
    rendered-master-a6a357ec18e5bce7f5ac426fc7c5ffcd            365c1cfd14de5b0e3b85e0fc815b0060f36ab955   2.2.0             7d3h
    rendered-master-dc7f874ec77fc4b969674204332da037            5b6fb8349a29735e48446d435962dec4547d3090   2.2.0             31d
    rendered-worker-1a75960c52ad18ff5dfa6674eb7e533d            5b6fb8349a29735e48446d435962dec4547d3090   2.2.0             31d
    rendered-worker-2640531be11ba43c61d72e82dc634ce6            5b6fb8349a29735e48446d435962dec4547d3090   2.2.0             31d
    rendered-worker-4e48906dca84ee702959c71a53ee80e7            365c1cfd14de5b0e3b85e0fc815b0060f36ab955   2.2.0             7d3h
    rendered-worker-4f110718fe88e5f349987854a1147755            365c1cfd14de5b0e3b85e0fc815b0060f36ab955   2.2.0             17d
    rendered-worker-afc758e194d6188677eb837842d3b379            02c07496ba0417b3e12b78fb32baf6293d314f79   2.2.0             31d
    rendered-worker-daa08cc1e8f5fcdeba24de60cd955cc3            365c1cfd14de5b0e3b85e0fc815b0060f36ab955   2.2.0             13d

    You should see a new machine config, with the rendered-infra-* prefix.

  5. Optional: To deploy changes to a custom pool, create a machine config that uses the custom pool name as the label, such as infra. Note that this is not required and only shown for instructional purposes. In this manner, you can apply any custom configurations specific to only your infra nodes.

    Note

    After you create the new machine config pool, the MCO generates a new rendered config for that pool, and associated nodes of that pool reboot to apply the new configuration.

    1. Create a machine config:

      $ cat infra.mc.yaml

      Example output

      apiVersion: machineconfiguration.openshift.io/v1
      kind: MachineConfig
      metadata:
        name: 51-infra
        labels:
          machineconfiguration.openshift.io/role: infra 1
      spec:
        config:
          ignition:
            version: 3.1.0
          storage:
            files:
            - path: /etc/infratest
              mode: 0644
              contents:
                source: data:,infra

      1
      Add the label you added to the node as a nodeSelector.
    2. Apply the machine config to the infra-labeled nodes:

      $ oc create -f infra.mc.yaml
  6. Confirm that your new machine config pool is available:

    $ oc get mcp

    Example output

    NAME     CONFIG                                             UPDATED   UPDATING   DEGRADED   MACHINECOUNT   READYMACHINECOUNT   UPDATEDMACHINECOUNT   DEGRADEDMACHINECOUNT   AGE
    infra    rendered-infra-60e35c2e99f42d976e084fa94da4d0fc    True      False      False      1              1                   1                     0                      4m20s
    master   rendered-master-9360fdb895d4c131c7c4bebbae099c90   True      False      False      3              3                   3                     0                      91m
    worker   rendered-worker-60e35c2e99f42d976e084fa94da4d0fc   True      False      False      2              2                   2                     0                      91m

    In this example, a worker node was changed to an infra node.

Additional resources

3.3. Assigning machine set resources to infrastructure nodes

After creating an infrastructure machine set, the worker and infra roles are applied to new infra nodes. Nodes with the infra role are not counted toward the total number of subscriptions that are required to run the environment, even when the worker role is also applied.

However, when an infra node is assigned the worker role, there is a chance that user workloads can get assigned inadvertently to the infra node. To avoid this, you can apply a taint to the infra node and tolerations for the pods that you want to control.

3.3.1. Binding infrastructure node workloads using taints and tolerations

If you have an infra node that has the infra and worker roles assigned, you must configure the node so that user workloads are not assigned to it.

Important

It is recommended that you preserve the dual infra,worker label that is created for infra nodes and use taints and tolerations to manage nodes that user workloads are scheduled on. If you remove the worker label from the node, you must create a custom pool to manage it. A node with a label other than master or worker is not recognized by the MCO without a custom pool. Maintaining the worker label allows the node to be managed by the default worker machine config pool, if no custom pools that select the custom label exists. The infra label communicates to the cluster that it does not count toward the total number of subscriptions.

Prerequisites

  • Configure additional MachineSet objects in your OpenShift Container Platform cluster.

Procedure

  1. Add a taint to the infra node to prevent scheduling user workloads on it:

    1. Determine if the node has the taint:

      $ oc describe nodes <node_name>

      Sample output

      oc describe node ci-ln-iyhx092-f76d1-nvdfm-worker-b-wln2l
      Name:               ci-ln-iyhx092-f76d1-nvdfm-worker-b-wln2l
      Roles:              worker
       ...
      Taints:             node-role.kubernetes.io/infra:NoSchedule
       ...

      This example shows that the node has a taint. You can proceed with adding a toleration to your pod in the next step.

    2. If you have not configured a taint to prevent scheduling user workloads on it:

      $ oc adm taint nodes <node_name> <key>:<effect>

      For example:

      $ oc adm taint nodes node1 node-role.kubernetes.io/infra:NoSchedule

      This example places a taint on node1 that has key node-role.kubernetes.io/infra and taint effect NoSchedule. Nodes with the NoSchedule effect schedule only pods that tolerate the taint, but allow existing pods to remain scheduled on the node.

      Note

      If a descheduler is used, pods violating node taints could be evicted from the cluster.

  2. Add tolerations for the pod configurations you want to schedule on the infra node, like router, registry, and monitoring workloads. Add the following code to the Pod object specification:

    tolerations:
      - effect: NoSchedule 1
        key: node-role.kubernetes.io/infra 2
        operator: Exists 3
    1
    Specify the effect that you added to the node.
    2
    Specify the key that you added to the node.
    3
    Specify the Exists Operator to require a taint with the key node-role.kubernetes.io/infra to be present on the node.

    This toleration matches the taint created by the oc adm taint command. A pod with this toleration can be scheduled onto the infra node.

    Note

    Moving pods for an Operator installed via OLM to an infra node is not always possible. The capability to move Operator pods depends on the configuration of each Operator.

  3. Schedule the pod to the infra node using a scheduler. See the documentation for Controlling pod placement onto nodes for details.

Additional resources

3.4. Moving resources to infrastructure machine sets

Some of the infrastructure resources are deployed in your cluster by default. You can move them to the infrastructure machine sets that you created.

3.4.1. Moving the router

You can deploy the router pod to a different machine set. By default, the pod is deployed to a worker node.

Prerequisites

  • Configure additional machine sets in your OpenShift Container Platform cluster.

Procedure

  1. View the IngressController custom resource for the router Operator:

    $ oc get ingresscontroller default -n openshift-ingress-operator -o yaml

    The command output resembles the following text:

    apiVersion: operator.openshift.io/v1
    kind: IngressController
    metadata:
      creationTimestamp: 2019-04-18T12:35:39Z
      finalizers:
      - ingresscontroller.operator.openshift.io/finalizer-ingresscontroller
      generation: 1
      name: default
      namespace: openshift-ingress-operator
      resourceVersion: "11341"
      selfLink: /apis/operator.openshift.io/v1/namespaces/openshift-ingress-operator/ingresscontrollers/default
      uid: 79509e05-61d6-11e9-bc55-02ce4781844a
    spec: {}
    status:
      availableReplicas: 2
      conditions:
      - lastTransitionTime: 2019-04-18T12:36:15Z
        status: "True"
        type: Available
      domain: apps.<cluster>.example.com
      endpointPublishingStrategy:
        type: LoadBalancerService
      selector: ingresscontroller.operator.openshift.io/deployment-ingresscontroller=default
  2. Edit the ingresscontroller resource and change the nodeSelector to use the infra label:

    $ oc edit ingresscontroller default -n openshift-ingress-operator

    Add the nodeSelector stanza that references the infra label to the spec section, as shown:

      spec:
        nodePlacement:
          nodeSelector:
            matchLabels:
              node-role.kubernetes.io/infra: ""
  3. Confirm that the router pod is running on the infra node.

    1. View the list of router pods and note the node name of the running pod:

      $ oc get pod -n openshift-ingress -o wide

      Example output

      NAME                              READY     STATUS        RESTARTS   AGE       IP           NODE                           NOMINATED NODE   READINESS GATES
      router-default-86798b4b5d-bdlvd   1/1      Running       0          28s       10.130.2.4   ip-10-0-217-226.ec2.internal   <none>           <none>
      router-default-955d875f4-255g8    0/1      Terminating   0          19h       10.129.2.4   ip-10-0-148-172.ec2.internal   <none>           <none>

      In this example, the running pod is on the ip-10-0-217-226.ec2.internal node.

    2. View the node status of the running pod:

      $ oc get node <node_name> 1
      1
      Specify the <node_name> that you obtained from the pod list.

      Example output

      NAME                          STATUS  ROLES         AGE   VERSION
      ip-10-0-217-226.ec2.internal  Ready   infra,worker  17h   v1.19.0

      Because the role list includes infra, the pod is running on the correct node.

3.4.2. Moving the default registry

You configure the registry Operator to deploy its pods to different nodes.

Prerequisites

  • Configure additional machine sets in your OpenShift Container Platform cluster.

Procedure

  1. View the config/instance object:

    $ oc get configs.imageregistry.operator.openshift.io/cluster -o yaml

    Example output

    apiVersion: imageregistry.operator.openshift.io/v1
    kind: Config
    metadata:
      creationTimestamp: 2019-02-05T13:52:05Z
      finalizers:
      - imageregistry.operator.openshift.io/finalizer
      generation: 1
      name: cluster
      resourceVersion: "56174"
      selfLink: /apis/imageregistry.operator.openshift.io/v1/configs/cluster
      uid: 36fd3724-294d-11e9-a524-12ffeee2931b
    spec:
      httpSecret: d9a012ccd117b1e6616ceccb2c3bb66a5fed1b5e481623
      logging: 2
      managementState: Managed
      proxy: {}
      replicas: 1
      requests:
        read: {}
        write: {}
      storage:
        s3:
          bucket: image-registry-us-east-1-c92e88cad85b48ec8b312344dff03c82-392c
          region: us-east-1
    status:
    ...

  2. Edit the config/instance object:

    $ oc edit configs.imageregistry.operator.openshift.io/cluster
  3. Modify the spec section of the object to resemble the following YAML:

    spec:
      affinity:
        podAntiAffinity:
          preferredDuringSchedulingIgnoredDuringExecution:
          - podAffinityTerm:
              namespaces:
              - openshift-image-registry
              topologyKey: kubernetes.io/hostname
            weight: 100
      logLevel: Normal
      managementState: Managed
      nodeSelector:
        node-role.kubernetes.io/infra: ""
  4. Verify the registry pod has been moved to the infrastructure node.

    1. Run the following command to identify the node where the registry pod is located:

      $ oc get pods -o wide -n openshift-image-registry
    2. Confirm the node has the label you specified:

      $ oc describe node <node_name>

      Review the command output and confirm that node-role.kubernetes.io/infra is in the LABELS list.

3.4.3. Moving the monitoring solution

By default, the Prometheus Cluster Monitoring stack, which contains Prometheus, Grafana, and AlertManager, is deployed to provide cluster monitoring. It is managed by the Cluster Monitoring Operator. To move its components to different machines, you create and apply a custom config map.

Procedure

  1. Save the following ConfigMap definition as the cluster-monitoring-configmap.yaml file:

    apiVersion: v1
    kind: ConfigMap
    metadata:
      name: cluster-monitoring-config
      namespace: openshift-monitoring
    data:
      config.yaml: |+
        alertmanagerMain:
          nodeSelector:
            node-role.kubernetes.io/infra: ""
        prometheusK8s:
          nodeSelector:
            node-role.kubernetes.io/infra: ""
        prometheusOperator:
          nodeSelector:
            node-role.kubernetes.io/infra: ""
        grafana:
          nodeSelector:
            node-role.kubernetes.io/infra: ""
        k8sPrometheusAdapter:
          nodeSelector:
            node-role.kubernetes.io/infra: ""
        kubeStateMetrics:
          nodeSelector:
            node-role.kubernetes.io/infra: ""
        telemeterClient:
          nodeSelector:
            node-role.kubernetes.io/infra: ""
        openshiftStateMetrics:
          nodeSelector:
            node-role.kubernetes.io/infra: ""
        thanosQuerier:
          nodeSelector:
            node-role.kubernetes.io/infra: ""

    Running this config map forces the components of the monitoring stack to redeploy to infrastructure nodes.

  2. Apply the new config map:

    $ oc create -f cluster-monitoring-configmap.yaml
  3. Watch the monitoring pods move to the new machines:

    $ watch 'oc get pod -n openshift-monitoring -o wide'
  4. If a component has not moved to the infra node, delete the pod with this component:

    $ oc delete pod -n openshift-monitoring <pod>

    The component from the deleted pod is re-created on the infra node.

3.4.4. Moving the cluster logging resources

You can configure the Cluster Logging Operator to deploy the pods for any or all of the Cluster Logging components, Elasticsearch, Kibana, and Curator to different nodes. You cannot move the Cluster Logging Operator pod from its installed location.

For example, you can move the Elasticsearch pods to a separate node because of high CPU, memory, and disk requirements.

Prerequisites

  • Cluster logging and Elasticsearch must be installed. These features are not installed by default.

Procedure

  1. Edit the ClusterLogging custom resource (CR) in the openshift-logging project:

    $ oc edit ClusterLogging instance
    apiVersion: logging.openshift.io/v1
    kind: ClusterLogging
    
    ...
    
    spec:
      collection:
        logs:
          fluentd:
            resources: null
          type: fluentd
      curation:
        curator:
          nodeSelector: 1
            node-role.kubernetes.io/infra: ''
          resources: null
          schedule: 30 3 * * *
        type: curator
      logStore:
        elasticsearch:
          nodeCount: 3
          nodeSelector: 2
            node-role.kubernetes.io/infra: ''
          redundancyPolicy: SingleRedundancy
          resources:
            limits:
              cpu: 500m
              memory: 16Gi
            requests:
              cpu: 500m
              memory: 16Gi
          storage: {}
        type: elasticsearch
      managementState: Managed
      visualization:
        kibana:
          nodeSelector: 3
            node-role.kubernetes.io/infra: ''
          proxy:
            resources: null
          replicas: 1
          resources: null
        type: kibana
    
    ...
1 2 3
Add a nodeSelector parameter with the appropriate value to the component you want to move. You can use a nodeSelector in the format shown or use <key>: <value> pairs, based on the value specified for the node.

Verification

To verify that a component has moved, you can use the oc get pod -o wide command.

For example:

  • You want to move the Kibana pod from the ip-10-0-147-79.us-east-2.compute.internal node:

    $ oc get pod kibana-5b8bdf44f9-ccpq9 -o wide

    Example output

    NAME                      READY   STATUS    RESTARTS   AGE   IP            NODE                                        NOMINATED NODE   READINESS GATES
    kibana-5b8bdf44f9-ccpq9   2/2     Running   0          27s   10.129.2.18   ip-10-0-147-79.us-east-2.compute.internal   <none>           <none>

  • You want to move the Kibana Pod to the ip-10-0-139-48.us-east-2.compute.internal node, a dedicated infrastructure node:

    $ oc get nodes

    Example output

    NAME                                         STATUS   ROLES          AGE   VERSION
    ip-10-0-133-216.us-east-2.compute.internal   Ready    master         60m   v1.19.0
    ip-10-0-139-146.us-east-2.compute.internal   Ready    master         60m   v1.19.0
    ip-10-0-139-192.us-east-2.compute.internal   Ready    worker         51m   v1.19.0
    ip-10-0-139-241.us-east-2.compute.internal   Ready    worker         51m   v1.19.0
    ip-10-0-147-79.us-east-2.compute.internal    Ready    worker         51m   v1.19.0
    ip-10-0-152-241.us-east-2.compute.internal   Ready    master         60m   v1.19.0
    ip-10-0-139-48.us-east-2.compute.internal    Ready    infra          51m   v1.19.0

    Note that the node has a node-role.kubernetes.io/infra: '' label:

    $ oc get node ip-10-0-139-48.us-east-2.compute.internal -o yaml

    Example output

    kind: Node
    apiVersion: v1
    metadata:
      name: ip-10-0-139-48.us-east-2.compute.internal
      selfLink: /api/v1/nodes/ip-10-0-139-48.us-east-2.compute.internal
      uid: 62038aa9-661f-41d7-ba93-b5f1b6ef8751
      resourceVersion: '39083'
      creationTimestamp: '2020-04-13T19:07:55Z'
      labels:
        node-role.kubernetes.io/infra: ''
    ...

  • To move the Kibana pod, edit the ClusterLogging CR to add a node selector:

    apiVersion: logging.openshift.io/v1
    kind: ClusterLogging
    
    ...
    
    spec:
    
    ...
    
      visualization:
        kibana:
          nodeSelector: 1
            node-role.kubernetes.io/infra: ''
          proxy:
            resources: null
          replicas: 1
          resources: null
        type: kibana
    1
    Add a node selector to match the label in the node specification.
  • After you save the CR, the current Kibana pod is terminated and new pod is deployed:

    $ oc get pods

    Example output

    NAME                                            READY   STATUS        RESTARTS   AGE
    cluster-logging-operator-84d98649c4-zb9g7       1/1     Running       0          29m
    elasticsearch-cdm-hwv01pf7-1-56588f554f-kpmlg   2/2     Running       0          28m
    elasticsearch-cdm-hwv01pf7-2-84c877d75d-75wqj   2/2     Running       0          28m
    elasticsearch-cdm-hwv01pf7-3-f5d95b87b-4nx78    2/2     Running       0          28m
    fluentd-42dzz                                   1/1     Running       0          28m
    fluentd-d74rq                                   1/1     Running       0          28m
    fluentd-m5vr9                                   1/1     Running       0          28m
    fluentd-nkxl7                                   1/1     Running       0          28m
    fluentd-pdvqb                                   1/1     Running       0          28m
    fluentd-tflh6                                   1/1     Running       0          28m
    kibana-5b8bdf44f9-ccpq9                         2/2     Terminating   0          4m11s
    kibana-7d85dcffc8-bfpfp                         2/2     Running       0          33s

  • The new pod is on the ip-10-0-139-48.us-east-2.compute.internal node:

    $ oc get pod kibana-7d85dcffc8-bfpfp -o wide

    Example output

    NAME                      READY   STATUS        RESTARTS   AGE   IP            NODE                                        NOMINATED NODE   READINESS GATES
    kibana-7d85dcffc8-bfpfp   2/2     Running       0          43s   10.131.0.22   ip-10-0-139-48.us-east-2.compute.internal   <none>           <none>

  • After a few moments, the original Kibana pod is removed.

    $ oc get pods

    Example output

    NAME                                            READY   STATUS    RESTARTS   AGE
    cluster-logging-operator-84d98649c4-zb9g7       1/1     Running   0          30m
    elasticsearch-cdm-hwv01pf7-1-56588f554f-kpmlg   2/2     Running   0          29m
    elasticsearch-cdm-hwv01pf7-2-84c877d75d-75wqj   2/2     Running   0          29m
    elasticsearch-cdm-hwv01pf7-3-f5d95b87b-4nx78    2/2     Running   0          29m
    fluentd-42dzz                                   1/1     Running   0          29m
    fluentd-d74rq                                   1/1     Running   0          29m
    fluentd-m5vr9                                   1/1     Running   0          29m
    fluentd-nkxl7                                   1/1     Running   0          29m
    fluentd-pdvqb                                   1/1     Running   0          29m
    fluentd-tflh6                                   1/1     Running   0          29m
    kibana-7d85dcffc8-bfpfp                         2/2     Running   0          62s

3.5. About the cluster autoscaler

The cluster autoscaler adjusts the size of an OpenShift Container Platform cluster to meet its current deployment needs. It uses declarative, Kubernetes-style arguments to provide infrastructure management that does not rely on objects of a specific cloud provider. The cluster autoscaler has a cluster scope, and is not associated with a particular namespace.

The cluster autoscaler increases the size of the cluster when there are pods that fail to schedule on any of the current worker nodes due to insufficient resources or when another node is necessary to meet deployment needs. The cluster autoscaler does not increase the cluster resources beyond the limits that you specify.

The cluster autoscaler computes the total memory, CPU, and GPU on all nodes the cluster, even though it does not manage the control plane nodes. These values are not single-machine oriented. They are an aggregation of all the resources in the entire cluster. For example, if you set the maximum memory resource limit, the cluster autoscaler includes all the nodes in the cluster when calculating the current memory usage. That calculation is then used to determine if the cluster autoscaler has the capacity to add more worker resources.

Important

Ensure that the maxNodesTotal value in the ClusterAutoscaler resource definition that you create is large enough to account for the total possible number of machines in your cluster. This value must encompass the number of control plane machines and the possible number of compute machines that you might scale to.

Every 10 seconds, the cluster autoscaler checks which nodes are unnecessary in the cluster and removes them. The cluster autoscaler considers a node for removal if the following conditions apply:

  • The sum of CPU and memory requests of all pods running on the node is less than 50% of the allocated resources on the node.
  • The cluster autoscaler can move all pods running on the node to the other nodes.
  • The cluster autoscaler does not have scale down disabled annotation.

If the following types of pods are present on a node, the cluster autoscaler will not remove the node:

  • Pods with restrictive pod disruption budgets (PDBs).
  • Kube-system pods that do not run on the node by default.
  • Kube-system pods that do not have a PDB or have a PDB that is too restrictive.
  • Pods that are not backed by a controller object such as a deployment, replica set, or stateful set.
  • Pods with local storage.
  • Pods that cannot be moved elsewhere because of a lack of resources, incompatible node selectors or affinity, matching anti-affinity, and so on.
  • Unless they also have a "cluster-autoscaler.kubernetes.io/safe-to-evict": "true" annotation, pods that have a "cluster-autoscaler.kubernetes.io/safe-to-evict": "false" annotation.

For example, you set the maximum CPU limit to 64 cores and configure the cluster autoscaler to only create machines that have 8 cores each. If your cluster starts with 30 cores, the cluster autoscaler can add up to 4 more nodes with 32 cores, for a total of 62.

If you configure the cluster autoscaler, additional usage restrictions apply:

  • Do not modify the nodes that are in autoscaled node groups directly. All nodes within the same node group have the same capacity and labels and run the same system pods.
  • Specify requests for your pods.
  • If you have to prevent pods from being deleted too quickly, configure appropriate PDBs.
  • Confirm that your cloud provider quota is large enough to support the maximum node pools that you configure.
  • Do not run additional node group autoscalers, especially the ones offered by your cloud provider.

The horizontal pod autoscaler (HPA) and the cluster autoscaler modify cluster resources in different ways. The HPA changes the deployment’s or replica set’s number of replicas based on the current CPU load. If the load increases, the HPA creates new replicas, regardless of the amount of resources available to the cluster. If there are not enough resources, the cluster autoscaler adds resources so that the HPA-created pods can run. If the load decreases, the HPA stops some replicas. If this action causes some nodes to be underutilized or completely empty, the cluster autoscaler deletes the unnecessary nodes.

The cluster autoscaler takes pod priorities into account. The Pod Priority and Preemption feature enables scheduling pods based on priorities if the cluster does not have enough resources, but the cluster autoscaler ensures that the cluster has resources to run all pods. To honor the intention of both features, the cluster autoscaler includes a priority cutoff function. You can use this cutoff to schedule "best-effort" pods, which do not cause the cluster autoscaler to increase resources but instead run only when spare resources are available.

Pods with priority lower than the cutoff value do not cause the cluster to scale up or prevent the cluster from scaling down. No new nodes are added to run the pods, and nodes running these pods might be deleted to free resources.

3.5.1. ClusterAutoscaler resource definition

This ClusterAutoscaler resource definition shows the parameters and sample values for the cluster autoscaler.

apiVersion: "autoscaling.openshift.io/v1"
kind: "ClusterAutoscaler"
metadata:
  name: "default"
spec:
  podPriorityThreshold: -10 1
  resourceLimits:
    maxNodesTotal: 24 2
    cores:
      min: 8 3
      max: 128 4
    memory:
      min: 4 5
      max: 256 6
    gpus:
      - type: nvidia.com/gpu 7
        min: 0 8
        max: 16 9
      - type: amd.com/gpu
        min: 0
        max: 4
  scaleDown: 10
    enabled: true 11
    delayAfterAdd: 10m 12
    delayAfterDelete: 5m 13
    delayAfterFailure: 30s 14
    unneededTime: 5m 15
1
Specify the priority that a pod must exceed to cause the cluster autoscaler to deploy additional nodes. Enter a 32-bit integer value. The podPriorityThreshold value is compared to the value of the PriorityClass that you assign to each pod.
2
Specify the maximum number of nodes to deploy. This value is the total number of machines that are deployed in your cluster, not just the ones that the autoscaler controls. Ensure that this value is large enough to account for all of your control plane and compute machines and the total number of replicas that you specify in your MachineAutoscaler resources.
3
Specify the minimum number of cores to deploy in the cluster.
4
Specify the maximum number of cores to deploy in the cluster.
5
Specify the minimum amount of memory, in GiB, in the cluster.
6
Specify the maximum amount of memory, in GiB, in the cluster.
7
Optionally, specify the type of GPU node to deploy. Only nvidia.com/gpu and amd.com/gpu are valid types.
8
Specify the minimum number of GPUs to deploy in the cluster.
9
Specify the maximum number of GPUs to deploy in the cluster.
10
In this section, you can specify the period to wait for each action by using any valid ParseDuration interval, including ns, us, ms, s, m, and h.
11
Specify whether the cluster autoscaler can remove unnecessary nodes.
12
Optionally, specify the period to wait before deleting a node after a node has recently been added. If you do not specify a value, the default value of 10m is used.
13
Specify the period to wait before deleting a node after a node has recently been deleted. If you do not specify a value, the default value of 10s is used.
14
Specify the period to wait before deleting a node after a scale down failure occurred. If you do not specify a value, the default value of 3m is used.
15
Specify the period before an unnecessary node is eligible for deletion. If you do not specify a value, the default value of 10m is used.
Note

When performing a scaling operation, the cluster autoscaler remains within the ranges set in the ClusterAutoscaler resource definition, such as the minimum and maximum number of cores to deploy or the amount of memory in the cluster. However, the cluster autoscaler does not correct the current values in your cluster to be within those ranges.

The minimum and maximum CPUs, memory, and GPU values are determined by calculating those resources on all nodes in the cluster, even if the cluster autoscaler does not manage the nodes. For example, the control plane nodes are considered in the total memory in the cluster, even though the cluster autoscaler does not manage the control plane nodes.

3.5.2. Deploying the cluster autoscaler

To deploy the cluster autoscaler, you create an instance of the ClusterAutoscaler resource.

Procedure

  1. Create a YAML file for the ClusterAutoscaler resource that contains the customized resource definition.
  2. Create the resource in the cluster:

    $ oc create -f <filename>.yaml 1
    1
    <filename> is the name of the resource file that you customized.

3.6. About the machine autoscaler

The machine autoscaler adjusts the number of Machines in the machine sets that you deploy in an OpenShift Container Platform cluster. You can scale both the default worker machine set and any other machine sets that you create. The machine autoscaler makes more Machines when the cluster runs out of resources to support more deployments. Any changes to the values in MachineAutoscaler resources, such as the minimum or maximum number of instances, are immediately applied to the machine set they target.

Important

You must deploy a machine autoscaler for the cluster autoscaler to scale your machines. The cluster autoscaler uses the annotations on machine sets that the machine autoscaler sets to determine the resources that it can scale. If you define a cluster autoscaler without also defining machine autoscalers, the cluster autoscaler will never scale your cluster.

3.6.1. MachineAutoscaler resource definition

This MachineAutoscaler resource definition shows the parameters and sample values for the machine autoscaler.

apiVersion: "autoscaling.openshift.io/v1beta1"
kind: "MachineAutoscaler"
metadata:
  name: "worker-us-east-1a" 1
  namespace: "openshift-machine-api"
spec:
  minReplicas: 1 2
  maxReplicas: 12 3
  scaleTargetRef: 4
    apiVersion: machine.openshift.io/v1beta1
    kind: MachineSet 5
    name: worker-us-east-1a 6
1
Specify the machine autoscaler name. To make it easier to identify which machine set this machine autoscaler scales, specify or include the name of the machine set to scale. The machine set name takes the following form: <clusterid>-<machineset>-<region>.
2
Specify the minimum number machines of the specified type that must remain in the specified zone after the cluster autoscaler initiates cluster scaling. If running in AWS, GCP, or Azure, this value can be set to 0. For other providers, do not set this value to 0.

You can save on costs by setting this value to 0 for use cases such as running expensive or limited-usage hardware that is used for specialized workloads, or by scaling a machine set with extra large machines. The cluster autoscaler scales the machine set down to zero if the machines are not in use.

Important

Do not set the spec.minReplicas value to 0 for the three compute machine sets that are created during the OpenShift Container Platform installation process for an installer provisioned infrastructure.

3
Specify the maximum number machines of the specified type that the cluster autoscaler can deploy in the specified zone after it initiates cluster scaling. Ensure that the maxNodesTotal value in the ClusterAutoscaler resource definition is large enough to allow the machine autoscaler to deploy this number of machines.
4
In this section, provide values that describe the existing machine set to scale.
5
The kind parameter value is always MachineSet.
6
The name value must match the name of an existing machine set, as shown in the metadata.name parameter value.

3.6.2. Deploying the machine autoscaler

To deploy the machine autoscaler, you create an instance of the MachineAutoscaler resource.

Procedure

  1. Create a YAML file for the MachineAutoscaler resource that contains the customized resource definition.
  2. Create the resource in the cluster:

    $ oc create -f <filename>.yaml 1
    1
    <filename> is the name of the resource file that you customized.

3.7. Enabling Technology Preview features using FeatureGates

You can turn on a subset of the current Technology Preview features on for all nodes in the cluster by editing the FeatureGate custom resource (CR).

3.7.1. Understanding feature gates

You can use the FeatureGate custom resource (CR) to enable specific feature sets in your cluster. A feature set is a collection of OpenShift Container Platform features that are not enabled by default.

You can activate the following feature set by using the FeatureGate CR:

  • IPv6DualStackNoUpgrade. This feature gate enables the dual-stack networking mode in your cluster. Dual-stack networking supports the use of IPv4 and IPv6 simultaneously. Enabling this feature set is not supported, cannot be undone, and prevents updates. This feature set is not recommended on production clusters.

3.7.2. Enabling feature sets using the CLI

You can use the OpenShift CLI (oc) to enable feature sets for all of the nodes in a cluster by editing the FeatureGate custom resource (CR).

Prerequisites

  • You have installed the OpenShift CLI (oc).

Procedure

To enable feature sets:

  1. Edit the FeatureGate CR named cluster:

    $ oc edit featuregate cluster

    Sample FeatureGate custom resource

    apiVersion: config.openshift.io/v1
    kind: FeatureGate
    metadata:
      name: cluster 1
    spec:
      featureSet: IPv6DualStackNoUpgrade 2

    1
    The name of the FeatureGate CR must be cluster.
    2
    Add the IPv6DualStackNoUpgrade feature set to enable the dual-stack networking mode.

    After you save the changes, new machine configs are created, the machine config pools are updated, and scheduling on each node is disabled while the change is being applied.

    Note

    Enabling the IPv6DualStackNoUpgrade feature set cannot be undone and prevents updates. This feature set is not recommended on production clusters.

Verification

You can verify that the feature gates are enabled by looking at the kubelet.conf file on a node after the nodes return to the ready state.

  1. Start a debug session for a node:

    $ oc debug node/<node_name>
  2. Change your root directory to the host:

    sh-4.2# chroot /host
  3. View the kubelet.conf file:

    sh-4.2# cat /etc/kubernetes/kubelet.conf

    Sample output

     ...
    featureGates:
      InsightsOperatorPullingSCA: true,
      LegacyNodeRoleBehavior: false
     ...

    The features that are listed as true are enabled on your cluster.

    Note

    The features listed vary depending upon the OpenShift Container Platform version.

3.8. etcd tasks

Back up etcd, enable or disable etcd encryption, or defragment etcd data.

3.8.1. About etcd encryption

By default, etcd data is not encrypted in OpenShift Container Platform. You can enable etcd encryption for your cluster to provide an additional layer of data security. For example, it can help protect the loss of sensitive data if an etcd backup is exposed to the incorrect parties.

When you enable etcd encryption, the following OpenShift API server and Kubernetes API server resources are encrypted:

  • Secrets
  • Config maps
  • Routes
  • OAuth access tokens
  • OAuth authorize tokens

When you enable etcd encryption, encryption keys are created. These keys are rotated on a weekly basis. You must have these keys in order to restore from an etcd backup.

Note

Keep in mind that etcd encryption only encrypts values, not keys. This means that resource types, namespaces, and object names are unencrypted.

3.8.2. Enabling etcd encryption

You can enable etcd encryption to encrypt sensitive resources in your cluster.

Warning

It is not recommended to take a backup of etcd until the initial encryption process is complete. If the encryption process has not completed, the backup might be only partially encrypted.

Prerequisites

  • Access to the cluster as a user with the cluster-admin role.

Procedure

  1. Modify the APIServer object:

    $ oc edit apiserver
  2. Set the encryption field type to aescbc:

    spec:
      encryption:
        type: aescbc 1
    1
    The aescbc type means that AES-CBC with PKCS#7 padding and a 32 byte key is used to perform the encryption.
  3. Save the file to apply the changes.

    The encryption process starts. It can take 20 minutes or longer for this process to complete, depending on the size of your cluster.

  4. Verify that etcd encryption was successful.

    1. Review the Encrypted status condition for the OpenShift API server to verify that its resources were successfully encrypted:

      $ oc get openshiftapiserver -o=jsonpath='{range .items[0].status.conditions[?(@.type=="Encrypted")]}{.reason}{"\n"}{.message}{"\n"}'

      The output shows EncryptionCompleted upon successful encryption:

      EncryptionCompleted
      All resources encrypted: routes.route.openshift.io, oauthaccesstokens.oauth.openshift.io, oauthauthorizetokens.oauth.openshift.io

      If the output shows EncryptionInProgress, this means that encryption is still in progress. Wait a few minutes and try again.

    2. Review the Encrypted status condition for the Kubernetes API server to verify that its resources were successfully encrypted:

      $ oc get kubeapiserver -o=jsonpath='{range .items[0].status.conditions[?(@.type=="Encrypted")]}{.reason}{"\n"}{.message}{"\n"}'

      The output shows EncryptionCompleted upon successful encryption:

      EncryptionCompleted
      All resources encrypted: secrets, configmaps

      If the output shows EncryptionInProgress, this means that encryption is still in progress. Wait a few minutes and try again.

3.8.3. Disabling etcd encryption

You can disable encryption of etcd data in your cluster.

Prerequisites

  • Access to the cluster as a user with the cluster-admin role.

Procedure

  1. Modify the APIServer object:

    $ oc edit apiserver
  2. Set the encryption field type to identity:

    spec:
      encryption:
        type: identity 1
    1
    The identity type is the default value and means that no encryption is performed.
  3. Save the file to apply the changes.

    The decryption process starts. It can take 20 minutes or longer for this process to complete, depending on the size of your cluster.

  4. Verify that etcd decryption was successful.

    1. Review the Encrypted status condition for the OpenShift API server to verify that its resources were successfully decrypted:

      $ oc get openshiftapiserver -o=jsonpath='{range .items[0].status.conditions[?(@.type=="Encrypted")]}{.reason}{"\n"}{.message}{"\n"}'

      The output shows DecryptionCompleted upon successful decryption:

      DecryptionCompleted
      Encryption mode set to identity and everything is decrypted

      If the output shows DecryptionInProgress, this means that decryption is still in progress. Wait a few minutes and try again.

    2. Review the Encrypted status condition for the Kubernetes API server to verify that its resources were successfully decrypted:

      $ oc get kubeapiserver -o=jsonpath='{range .items[0].status.conditions[?(@.type=="Encrypted")]}{.reason}{"\n"}{.message}{"\n"}'

      The output shows DecryptionCompleted upon successful decryption:

      DecryptionCompleted
      Encryption mode set to identity and everything is decrypted

      If the output shows DecryptionInProgress, this means that decryption is still in progress. Wait a few minutes and try again.

3.8.4. Backing up etcd data

Follow these steps to back up etcd data by creating an etcd snapshot and backing up the resources for the static pods. This backup can be saved and used at a later time if you need to restore etcd.

Important

Only save a backup from a single control plane host (also known as the master host). Do not take a backup from each control plane host in the cluster.

Prerequisites

  • You have access to the cluster as a user with the cluster-admin role.
  • You have checked whether the cluster-wide proxy is enabled.

    Tip

    You can check whether the proxy is enabled by reviewing the output of oc get proxy cluster -o yaml. The proxy is enabled if the httpProxy, httpsProxy, and noProxy fields have values set.

Procedure

  1. Start a debug session for a control plane node:

    $ oc debug node/<node_name>
  2. Change your root directory to the host:

    sh-4.2# chroot /host
  3. If the cluster-wide proxy is enabled, be sure that you have exported the NO_PROXY, HTTP_PROXY, and HTTPS_PROXY environment variables.
  4. Run the cluster-backup.sh script and pass in the location to save the backup to.

    Tip

    The cluster-backup.sh script is maintained as a component of the etcd Cluster Operator and is a wrapper around the etcdctl snapshot save command.

    sh-4.4# /usr/local/bin/cluster-backup.sh /home/core/assets/backup

    Example script output

    found latest kube-apiserver: /etc/kubernetes/static-pod-resources/kube-apiserver-pod-6
    found latest kube-controller-manager: /etc/kubernetes/static-pod-resources/kube-controller-manager-pod-7
    found latest kube-scheduler: /etc/kubernetes/static-pod-resources/kube-scheduler-pod-6
    found latest etcd: /etc/kubernetes/static-pod-resources/etcd-pod-3
    ede95fe6b88b87ba86a03c15e669fb4aa5bf0991c180d3c6895ce72eaade54a1
    etcdctl version: 3.4.14
    API version: 3.4
    {"level":"info","ts":1624647639.0188997,"caller":"snapshot/v3_snapshot.go:119","msg":"created temporary db file","path":"/home/core/assets/backup/snapshot_2021-06-25_190035.db.part"}
    {"level":"info","ts":"2021-06-25T19:00:39.030Z","caller":"clientv3/maintenance.go:200","msg":"opened snapshot stream; downloading"}
    {"level":"info","ts":1624647639.0301006,"caller":"snapshot/v3_snapshot.go:127","msg":"fetching snapshot","endpoint":"https://10.0.0.5:2379"}
    {"level":"info","ts":"2021-06-25T19:00:40.215Z","caller":"clientv3/maintenance.go:208","msg":"completed snapshot read; closing"}
    {"level":"info","ts":1624647640.6032252,"caller":"snapshot/v3_snapshot.go:142","msg":"fetched snapshot","endpoint":"https://10.0.0.5:2379","size":"114 MB","took":1.584090459}
    {"level":"info","ts":1624647640.6047094,"caller":"snapshot/v3_snapshot.go:152","msg":"saved","path":"/home/core/assets/backup/snapshot_2021-06-25_190035.db"}
    Snapshot saved at /home/core/assets/backup/snapshot_2021-06-25_190035.db
    {"hash":3866667823,"revision":31407,"totalKey":12828,"totalSize":114446336}
    snapshot db and kube resources are successfully saved to /home/core/assets/backup

    In this example, two files are created in the /home/core/assets/backup/ directory on the control plane host:

    • snapshot_<datetimestamp>.db: This file is the etcd snapshot. The cluster-backup.sh script confirms its validity.
    • static_kuberesources_<datetimestamp>.tar.gz: This file contains the resources for the static pods. If etcd encryption is enabled, it also contains the encryption keys for the etcd snapshot.

      Note

      If etcd encryption is enabled, it is recommended to store this second file separately from the etcd snapshot for security reasons. However, this file is required in order to restore from the etcd snapshot.

      Keep in mind that etcd encryption only encrypts values, not keys. This means that resource types, namespaces, and object names are unencrypted.

3.8.5. Defragmenting etcd data

Manual defragmentation must be performed periodically to reclaim disk space after etcd history compaction and other events cause disk fragmentation.

History compaction is performed automatically every five minutes and leaves gaps in the back-end database. This fragmented space is available for use by etcd, but is not available to the host file system. You must defragment etcd to make this space available to the host file system.

Because etcd writes data to disk, its performance strongly depends on disk performance. Consider defragmenting etcd every month, twice a month, or as needed for your cluster. You can also monitor the etcd_db_total_size_in_bytes metric to determine whether defragmentation is necessary.

Warning

Defragmenting etcd is a blocking action. The etcd member will not response until defragmentation is complete. For this reason, wait at least one minute between defragmentation actions on each of the pods to allow the cluster to recover.

Follow this procedure to defragment etcd data on each etcd member.

Prerequisites

  • You have access to the cluster as a user with the cluster-admin role.

Procedure

  1. Determine which etcd member is the leader, because the leader should be defragmented last.

    1. Get the list of etcd pods:

      $ oc get pods -n openshift-etcd -o wide | grep -v quorum-guard | grep etcd

      Example output

      etcd-ip-10-0-159-225.example.redhat.com                3/3     Running     0          175m   10.0.159.225   ip-10-0-159-225.example.redhat.com   <none>           <none>
      etcd-ip-10-0-191-37.example.redhat.com                 3/3     Running     0          173m   10.0.191.37    ip-10-0-191-37.example.redhat.com    <none>           <none>
      etcd-ip-10-0-199-170.example.redhat.com                3/3     Running     0          176m   10.0.199.170   ip-10-0-199-170.example.redhat.com   <none>           <none>

    2. Choose a pod and run the following command to determine which etcd member is the leader:

      $ oc rsh -n openshift-etcd etcd-ip-10-0-159-225.example.redhat.com etcdctl endpoint status --cluster -w table

      Example output

      Defaulting container name to etcdctl.
      Use 'oc describe pod/etcd-ip-10-0-159-225.example.redhat.com -n openshift-etcd' to see all of the containers in this pod.
      +---------------------------+------------------+---------+---------+-----------+------------+-----------+------------+--------------------+--------+
      |         ENDPOINT          |        ID        | VERSION | DB SIZE | IS LEADER | IS LEARNER | RAFT TERM | RAFT INDEX | RAFT APPLIED INDEX | ERRORS |
      +---------------------------+------------------+---------+---------+-----------+------------+-----------+------------+--------------------+--------+
      |  https://10.0.191.37:2379 | 251cd44483d811c3 |   3.4.9 |  104 MB |     false |      false |         7 |      91624 |              91624 |        |
      | https://10.0.159.225:2379 | 264c7c58ecbdabee |   3.4.9 |  104 MB |     false |      false |         7 |      91624 |              91624 |        |
      | https://10.0.199.170:2379 | 9ac311f93915cc79 |   3.4.9 |  104 MB |      true |      false |         7 |      91624 |              91624 |        |
      +---------------------------+------------------+---------+---------+-----------+------------+-----------+------------+--------------------+--------+

      Based on the IS LEADER column of this output, the https://10.0.199.170:2379 endpoint is the leader. Matching this endpoint with the output of the previous step, the pod name of the leader is etcd-ip-10-0-199-170.example.redhat.com.

  2. Defragment an etcd member.

    1. Connect to the running etcd container, passing in the name of a pod that is not the leader:

      $ oc rsh -n openshift-etcd etcd-ip-10-0-159-225.example.redhat.com
    2. Unset the ETCDCTL_ENDPOINTS environment variable:

      sh-4.4# unset ETCDCTL_ENDPOINTS
    3. Defragment the etcd member:

      sh-4.4# etcdctl --command-timeout=30s --endpoints=https://localhost:2379 defrag

      Example output

      Finished defragmenting etcd member[https://localhost:2379]

      If a timeout error occurs, increase the value for --command-timeout until the command succeeds.

    4. Verify that the database size was reduced:

      sh-4.4# etcdctl endpoint status -w table --cluster

      Example output

      +---------------------------+------------------+---------+---------+-----------+------------+-----------+------------+--------------------+--------+
      |         ENDPOINT          |        ID        | VERSION | DB SIZE | IS LEADER | IS LEARNER | RAFT TERM | RAFT INDEX | RAFT APPLIED INDEX | ERRORS |
      +---------------------------+------------------+---------+---------+-----------+------------+-----------+------------+--------------------+--------+
      |  https://10.0.191.37:2379 | 251cd44483d811c3 |   3.4.9 |  104 MB |     false |      false |         7 |      91624 |              91624 |        |
      | https://10.0.159.225:2379 | 264c7c58ecbdabee |   3.4.9 |   41 MB |     false |      false |         7 |      91624 |              91624 |        | 1
      | https://10.0.199.170:2379 | 9ac311f93915cc79 |   3.4.9 |  104 MB |      true |      false |         7 |      91624 |              91624 |        |
      +---------------------------+------------------+---------+---------+-----------+------------+-----------+------------+--------------------+--------+

      This example shows that the database size for this etcd member is now 41 MB as opposed to the starting size of 104 MB.

    5. Repeat these steps to connect to each of the other etcd members and defragment them. Always defragment the leader last.

      Wait at least one minute between defragmentation actions to allow the etcd pod to recover. Until the etcd pod recovers, the etcd member will not respond.

  3. If any NOSPACE alarms were triggered due to the space quota being exceeded, clear them.

    1. Check if there are any NOSPACE alarms:

      sh-4.4# etcdctl alarm list

      Example output

      memberID:12345678912345678912 alarm:NOSPACE

    2. Clear the alarms:

      sh-4.4# etcdctl alarm disarm

3.8.6. Restoring to a previous cluster state

You can use a saved etcd backup to restore a previous cluster state or restore a cluster that has lost the majority of control plane hosts (also known as the master hosts).

Important

When you restore your cluster, you must use an etcd backup that was taken from the same z-stream release. For example, an OpenShift Container Platform 4.6.2 cluster must use an etcd backup that was taken from 4.6.2.

Prerequisites

  • Access to the cluster as a user with the cluster-admin role.
  • A healthy control plane host to use as the recovery host.
  • SSH access to control plane hosts.
  • A backup directory containing both the etcd snapshot and the resources for the static pods, which were from the same backup. The file names in the directory must be in the following formats: snapshot_<datetimestamp>.db and static_kuberesources_<datetimestamp>.tar.gz.
Important

For non-recovery control plane nodes, it is not required to establish SSH connectivity or to stop the static pods. You can delete and recreate other non-recovery, control plane machines, one by one.

Procedure

  1. Select a control plane host to use as the recovery host. This is the host that you will run the restore operation on.
  2. Establish SSH connectivity to each of the control plane nodes, including the recovery host.

    The Kubernetes API server becomes inaccessible after the restore process starts, so you cannot access the control plane nodes. For this reason, it is recommended to establish SSH connectivity to each control plane host in a separate terminal.

    Important

    If you do not complete this step, you will not be able to access the control plane hosts to complete the restore procedure, and you will be unable to recover your cluster from this state.

  3. Copy the etcd backup directory to the recovery control plane host.

    This procedure assumes that you copied the backup directory containing the etcd snapshot and the resources for the static pods to the /home/core/ directory of your recovery control plane host.

  4. Stop the static pods on any other control plane nodes.

    Note

    It is not required to manually stop the pods on the recovery host. The recovery script will stop the pods on the recovery host.

    1. Access a control plane host that is not the recovery host.
    2. Move the existing etcd pod file out of the kubelet manifest directory:

      $ sudo mv /etc/kubernetes/manifests/etcd-pod.yaml /tmp
    3. Verify that the etcd pods are stopped.

      $ sudo crictl ps | grep etcd | grep -v operator

      The output of this command should be empty. If it is not empty, wait a few minutes and check again.

    4. Move the existing Kubernetes API server pod file out of the kubelet manifest directory:

      $ sudo mv /etc/kubernetes/manifests/kube-apiserver-pod.yaml /tmp
    5. Verify that the Kubernetes API server pods are stopped.

      $ sudo crictl ps | grep kube-apiserver | grep -v operator

      The output of this command should be empty. If it is not empty, wait a few minutes and check again.

    6. Move the etcd data directory to a different location:

      $ sudo mv /var/lib/etcd/ /tmp
    7. Repeat this step on each of the other control plane hosts that is not the recovery host.
  5. Access the recovery control plane host.
  6. If the cluster-wide proxy is enabled, be sure that you have exported the NO_PROXY, HTTP_PROXY, and HTTPS_PROXY environment variables.

    Tip

    You can check whether the proxy is enabled by reviewing the output of oc get proxy cluster -o yaml. The proxy is enabled if the httpProxy, httpsProxy, and noProxy fields have values set.

  7. Run the restore script on the recovery control plane host and pass in the path to the etcd backup directory:

    $ sudo -E /usr/local/bin/cluster-restore.sh /home/core/backup

    Example script output

    ...stopping kube-scheduler-pod.yaml
    ...stopping kube-controller-manager-pod.yaml
    ...stopping etcd-pod.yaml
    ...stopping kube-apiserver-pod.yaml
    Waiting for container etcd to stop
    .complete
    Waiting for container etcdctl to stop
    .............................complete
    Waiting for container etcd-metrics to stop
    complete
    Waiting for container kube-controller-manager to stop
    complete
    Waiting for container kube-apiserver to stop
    ..........................................................................................complete
    Waiting for container kube-scheduler to stop
    complete
    Moving etcd data-dir /var/lib/etcd/member to /var/lib/etcd-backup
    starting restore-etcd static pod
    starting kube-apiserver-pod.yaml
    static-pod-resources/kube-apiserver-pod-7/kube-apiserver-pod.yaml
    starting kube-controller-manager-pod.yaml
    static-pod-resources/kube-controller-manager-pod-7/kube-controller-manager-pod.yaml
    starting kube-scheduler-pod.yaml
    static-pod-resources/kube-scheduler-pod-8/kube-scheduler-pod.yaml

    Note

    The restore process can cause nodes to enter the NotReady state if the node certificates were updated after the last etcd backup.

  8. Check the nodes to ensure they are in the Ready state.

    1. Run the following command:

      $ oc get nodes -w

      Sample output

      NAME                STATUS  ROLES          AGE     VERSION
      host-172-25-75-28   Ready   master         3d20h   v1.23.3+e419edf
      host-172-25-75-38   Ready   infra,worker   3d20h   v1.23.3+e419edf
      host-172-25-75-40   Ready   master         3d20h   v1.23.3+e419edf
      host-172-25-75-65   Ready   master         3d20h   v1.23.3+e419edf
      host-172-25-75-74   Ready   infra,worker   3d20h   v1.23.3+e419edf
      host-172-25-75-79   Ready   worker         3d20h   v1.23.3+e419edf
      host-172-25-75-86   Ready   worker         3d20h   v1.23.3+e419edf
      host-172-25-75-98   Ready   infra,worker   3d20h   v1.23.3+e419edf

      It can take several minutes for all nodes to report their state.

    2. If any nodes are in the NotReady state, log in to the nodes and remove all of the PEM files from the /var/lib/kubelet/pki directory on each node. You can SSH into the nodes or use the terminal window in the web console.

      $  ssh -i <ssh-key-path> core@<master-hostname>

      Sample pki directory

      sh-4.4# pwd
      /var/lib/kubelet/pki
      sh-4.4# ls
      kubelet-client-2022-04-28-11-24-09.pem  kubelet-server-2022-04-28-11-24-15.pem
      kubelet-client-current.pem              kubelet-server-current.pem

  9. Restart the kubelet service on all control plane hosts.

    1. From the recovery host, run the following command:

      $ sudo systemctl restart kubelet.service
    2. Repeat this step on all other control plane hosts.
  10. Approve the pending CSRs:

    1. Get the list of current CSRs:

      $ oc get csr

      Example output

      NAME        AGE    SIGNERNAME                                    REQUESTOR                                                                   CONDITION
      csr-2s94x   8m3s   kubernetes.io/kubelet-serving                 system:node:<node_name>                                                     Pending 1
      csr-4bd6t   8m3s   kubernetes.io/kubelet-serving                 system:node:<node_name>                                                     Pending 2
      csr-4hl85   13m    kubernetes.io/kube-apiserver-client-kubelet   system:serviceaccount:openshift-machine-config-operator:node-bootstrapper   Pending 3
      csr-zhhhp   3m8s   kubernetes.io/kube-apiserver-client-kubelet   system:serviceaccount:openshift-machine-config-operator:node-bootstrapper   Pending 4
      ...

      1 1 2
      A pending kubelet service CSR (for user-provisioned installations).
      3 4
      A pending node-bootstrapper CSR.
    2. Review the details of a CSR to verify that it is valid:

      $ oc describe csr <csr_name> 1
      1
      <csr_name> is the name of a CSR from the list of current CSRs.
    3. Approve each valid node-bootstrapper CSR:

      $ oc adm certificate approve <csr_name>
    4. For user-provisioned installations, approve each valid kubelet service CSR:

      $ oc adm certificate approve <csr_name>
  11. Verify that the single member control plane has started successfully.

    1. From the recovery host, verify that the etcd container is running.

      $ sudo crictl ps | grep etcd | grep -v operator

      Example output

      3ad41b7908e32       36f86e2eeaaffe662df0d21041eb22b8198e0e58abeeae8c743c3e6e977e8009                                                         About a minute ago   Running             etcd                                          0                   7c05f8af362f0

    2. From the recovery host, verify that the etcd pod is running.

      $ oc get pods -n openshift-etcd | grep -v etcd-quorum-guard | grep etcd
      Note

      If you attempt to run oc login prior to running this command and receive the following error, wait a few moments for the authentication controllers to start and try again.

      Unable to connect to the server: EOF

      Example output

      NAME                                             READY   STATUS      RESTARTS   AGE
      etcd-ip-10-0-143-125.ec2.internal                1/1     Running     1          2m47s

      If the status is Pending, or the output lists more than one running etcd pod, wait a few minutes and check again.

  12. Force etcd redeployment.

    In a terminal that has access to the cluster as a cluster-admin user, run the following command:

    $ oc patch etcd cluster -p='{"spec": {"forceRedeploymentReason": "recovery-'"$( date --rfc-3339=ns )"'"}}' --type=merge 1
    1
    The forceRedeploymentReason value must be unique, which is why a timestamp is appended.

    When the etcd cluster Operator performs a redeployment, the existing nodes are started with new pods similar to the initial bootstrap scale up.

  13. Verify all nodes are updated to the latest revision.

    In a terminal that has access to the cluster as a cluster-admin user, run the following command:

    $ oc get etcd -o=jsonpath='{range .items[0].status.conditions[?(@.type=="NodeInstallerProgressing")]}{.reason}{"\n"}{.message}{"\n"}'

    Review the NodeInstallerProgressing status condition for etcd to verify that all nodes are at the latest revision. The output shows AllNodesAtLatestRevision upon successful update:

    AllNodesAtLatestRevision
    3 nodes are at revision 7 1
    1
    In this example, the latest revision number is 7.

    If the output includes multiple revision numbers, such as 2 nodes are at revision 6; 1 nodes are at revision 7, this means that the update is still in progress. Wait a few minutes and try again.

  14. After etcd is redeployed, force new rollouts for the control plane. The Kubernetes API server will reinstall itself on the other nodes because the kubelet is connected to API servers using an internal load balancer.

    In a terminal that has access to the cluster as a cluster-admin user, run the following commands.

    1. Force a new rollout for the Kubernetes API server:

      $ oc patch kubeapiserver cluster -p='{"spec": {"forceRedeploymentReason": "recovery-'"$( date --rfc-3339=ns )"'"}}' --type=merge

      Verify all nodes are updated to the latest revision.

      $ oc get kubeapiserver -o=jsonpath='{range .items[0].status.conditions[?(@.type=="NodeInstallerProgressing")]}{.reason}{"\n"}{.message}{"\n"}'

      Review the NodeInstallerProgressing status condition to verify that all nodes are at the latest revision. The output shows AllNodesAtLatestRevision upon successful update:

      AllNodesAtLatestRevision
      3 nodes are at revision 7 1
      1
      In this example, the latest revision number is 7.

      If the output includes multiple revision numbers, such as 2 nodes are at revision 6; 1 nodes are at revision 7, this means that the update is still in progress. Wait a few minutes and try again.

    2. Force a new rollout for the Kubernetes controller manager:

      $ oc patch kubecontrollermanager cluster -p='{"spec": {"forceRedeploymentReason": "recovery-'"$( date --rfc-3339=ns )"'"}}' --type=merge

      Verify all nodes are updated to the latest revision.

      $ oc get kubecontrollermanager -o=jsonpath='{range .items[0].status.conditions[?(@.type=="NodeInstallerProgressing")]}{.reason}{"\n"}{.message}{"\n"}'

      Review the NodeInstallerProgressing status condition to verify that all nodes are at the latest revision. The output shows AllNodesAtLatestRevision upon successful update:

      AllNodesAtLatestRevision
      3 nodes are at revision 7 1
      1
      In this example, the latest revision number is 7.

      If the output includes multiple revision numbers, such as 2 nodes are at revision 6; 1 nodes are at revision 7, this means that the update is still in progress. Wait a few minutes and try again.

    3. Force a new rollout for the Kubernetes scheduler:

      $ oc patch kubescheduler cluster -p='{"spec": {"forceRedeploymentReason": "recovery-'"$( date --rfc-3339=ns )"'"}}' --type=merge

      Verify all nodes are updated to the latest revision.

      $ oc get kubescheduler -o=jsonpath='{range .items[0].status.conditions[?(@.type=="NodeInstallerProgressing")]}{.reason}{"\n"}{.message}{"\n"}'

      Review the NodeInstallerProgressing status condition to verify that all nodes are at the latest revision. The output shows AllNodesAtLatestRevision upon successful update:

      AllNodesAtLatestRevision
      3 nodes are at revision 7 1
      1
      In this example, the latest revision number is 7.

      If the output includes multiple revision numbers, such as 2 nodes are at revision 6; 1 nodes are at revision 7, this means that the update is still in progress. Wait a few minutes and try again.

  15. Verify that all control plane hosts have started and joined the cluster.

    In a terminal that has access to the cluster as a cluster-admin user, run the following command:

    $ oc get pods -n openshift-etcd | grep -v etcd-quorum-guard | grep etcd

    Example output

    etcd-ip-10-0-143-125.ec2.internal                2/2     Running     0          9h
    etcd-ip-10-0-154-194.ec2.internal                2/2     Running     0          9h
    etcd-ip-10-0-173-171.ec2.internal                2/2     Running     0          9h

To ensure that all workloads return to normal operation following a recovery procedure, restart each pod that stores Kubernetes API information. This includes OpenShift Container Platform components such as routers, Operators, and third-party components.

Note that it might take several minutes after completing this procedure for all services to be restored. For example, authentication by using oc login might not immediately work until the OAuth server pods are restarted.

3.8.7. Issues and workarounds for restoring a persistent storage state

If your OpenShift Container Platform cluster uses persistent storage of any form, a state of the cluster is typically stored outside etcd. It might be an Elasticsearch cluster running in a pod or a database running in a StatefulSet object. When you restore from an etcd backup, the status of the workloads in OpenShift Container Platform is also restored. However, if the etcd snapshot is old, the status might be invalid or outdated.

Important

The contents of persistent volumes (PVs) are never part of the etcd snapshot. When you restore an OpenShift Container Platform cluster from an etcd snapshot, non-critical workloads might gain access to critical data, or vice-versa.

The following are some example scenarios that produce an out-of-date status:

  • MySQL database is running in a pod backed up by a PV object. Restoring OpenShift Container Platform from an etcd snapshot does not bring back the volume on the storage provider, and does not produce a running MySQL pod, despite the pod repeatedly attempting to start. You must manually restore this pod by restoring the volume on the storage provider, and then editing the PV to point to the new volume.
  • Pod P1 is using volume A, which is attached to node X. If the etcd snapshot is taken while another pod uses the same volume on node Y, then when the etcd restore is performed, pod P1 might not be able to start correctly due to the volume still being attached to node Y. OpenShift Container Platform is not aware of the attachment, and does not automatically detach it. When this occurs, the volume must be manually detached from node Y so that the volume can attach on node X, and then pod P1 can start.
  • Cloud provider or storage provider credentials were updated after the etcd snapshot was taken. This causes any CSI drivers or Operators that depend on the those credentials to not work. You might have to manually update the credentials required by those drivers or Operators.
  • A device is removed or renamed from OpenShift Container Platform nodes after the etcd snapshot is taken. The Local Storage Operator creates symlinks for each PV that it manages from /dev/disk/by-id or /dev directories. This situation might cause the local PVs to refer to devices that no longer exist.

    To fix this problem, an administrator must:

    1. Manually remove the PVs with invalid devices.
    2. Remove symlinks from respective nodes.
    3. Delete LocalVolume or LocalVolumeSet objects (see StorageConfiguring persistent storagePersistent storage using local volumesDeleting the Local Storage Operator Resources).

3.9. Pod disruption budgets

Understand and configure pod disruption budgets.

3.9.1. Understanding how to use pod disruption budgets to specify the number of pods that must be up

A pod disruption budget is part of the Kubernetes API, which can be managed with oc commands like other object types. They allow the specification of safety constraints on pods during operations, such as draining a node for maintenance.

PodDisruptionBudget is an API object that specifies the minimum number or percentage of replicas that must be up at a time. Setting these in projects can be helpful during node maintenance (such as scaling a cluster down or a cluster upgrade) and is only honored on voluntary evictions (not on node failures).

A PodDisruptionBudget object’s configuration consists of the following key parts:

  • A label selector, which is a label query over a set of pods.
  • An availability level, which specifies the minimum number of pods that must be available simultaneously, either:

    • minAvailable is the number of pods must always be available, even during a disruption.
    • maxUnavailable is the number of pods can be unavailable during a disruption.
Note

A maxUnavailable of 0% or 0 or a minAvailable of 100% or equal to the number of replicas is permitted but can block nodes from being drained.

You can check for pod disruption budgets across all projects with the following:

$ oc get poddisruptionbudget --all-namespaces

Example output

NAMESPACE         NAME          MIN-AVAILABLE   SELECTOR
another-project   another-pdb   4               bar=foo
test-project      my-pdb        2               foo=bar

The PodDisruptionBudget is considered healthy when there are at least minAvailable pods running in the system. Every pod above that limit can be evicted.

Note

Depending on your pod priority and preemption settings, lower-priority pods might be removed despite their pod disruption budget requirements.

3.9.2. Specifying the number of pods that must be up with pod disruption budgets

You can use a PodDisruptionBudget object to specify the minimum number or percentage of replicas that must be up at a time.

Procedure

To configure a pod disruption budget:

  1. Create a YAML file with the an object definition similar to the following:

    apiVersion: policy/v1beta1 1
    kind: PodDisruptionBudget
    metadata:
      name: my-pdb
    spec:
      minAvailable: 2  2
      selector:  3
        matchLabels:
          foo: bar
    1
    PodDisruptionBudget is part of the policy/v1beta1 API group.
    2
    The minimum number of pods that must be available simultaneously. This can be either an integer or a string specifying a percentage, for example, 20%.
    3
    A label query over a set of resources. The result of matchLabels and matchExpressions are logically conjoined.

    Or:

    apiVersion: policy/v1beta1 1
    kind: PodDisruptionBudget
    metadata:
      name: my-pdb
    spec:
      maxUnavailable: 25% 2
      selector: 3
        matchLabels:
          foo: bar
    1
    PodDisruptionBudget is part of the policy/v1beta1 API group.
    2
    The maximum number of pods that can be unavailable simultaneously. This can be either an integer or a string specifying a percentage, for example, 20%.
    3
    A label query over a set of resources. The result of matchLabels and matchExpressions are logically conjoined.
  2. Run the following command to add the object to project:

    $ oc create -f </path/to/file> -n <project_name>

3.10. Rotating or removing cloud provider credentials

After installing OpenShift Container Platform, some organizations require the rotation or removal of the cloud provider credentials that were used during the initial installation.

To allow the cluster to use the new credentials, you must update the secrets that the Cloud Credential Operator (CCO) uses to manage cloud provider credentials.

3.10.1. Rotating cloud provider credentials manually

If your cloud provider credentials are changed for any reason, you must manually update the secret that the Cloud Credential Operator (CCO) uses to manage cloud provider credentials.

The process for rotating cloud credentials depends on the mode that the CCO is configured to use. After you rotate credentials for a cluster that is using mint mode, you must manually remove the component credentials that were created by the removed credential.

Prerequisites

  • Your cluster is installed on a platform that supports rotating cloud credentials manually with the CCO mode that you are using:

    • For mint mode, Amazon Web Services (AWS), Azure, and Google Cloud Platform (GCP) are supported.
    • For passthrough mode, AWS, Azure, GCP, Red Hat OpenStack Platform (RHOSP), Red Hat Virtualization (RHV), and VMware vSphere are supported.
  • You are using OpenShift Container Platform version 4.6.18 or later.
  • You have changed the credentials that are used to interface with your cloud provider.
  • The new credentials have sufficient permissions for the mode CCO is configured to use in your cluster.

Procedure

  1. In the Administrator perspective of the web console, navigate to WorkloadsSecrets.
  2. In the table on the Secrets page, find the root secret for your cloud provider.

    PlatformSecret name

    AWS

    aws-creds

    Azure

    azure-credentials

    GCP

    gcp-credentials

    RHOSP

    openstack-credentials

    RHV

    ovirt-credentials

    vSphere

    vsphere-creds

  3. Click the Options menu kebab in the same row as the secret and select Edit Secret.
  4. Record the contents of the Value field or fields. You can use this information to verify that the value is different after updating the credentials.
  5. Update the text in the Value field or fields with the new authentication information for your cloud provider, and then click Save.
  6. If the CCO for your cluster is configured to use mint mode, delete each component secret that is referenced by the individual CredentialsRequest objects.

    1. Log in to the OpenShift Container Platform CLI as a user with the cluster-admin role.
    2. Get the names and namespaces of all referenced component secrets:

      $ oc -n openshift-cloud-credential-operator get CredentialsRequest -o json | jq -r '.items[] | select (.spec.providerSpec.kind=="<provider_spec>") | .spec.secretRef'

      Where <provider_spec> is the corresponding value for your cloud provider:

      Platform<provider_spec>

      AWS

      AWSProviderSpec

      Azure

      AzureProviderSpec

      GCP

      GCPProviderSpec

      Partial example output for AWS

      {
        "name": "ebs-cloud-credentials",
        "namespace": "openshift-cluster-csi-drivers"
      }
      {
        "name": "cloud-credential-operator-iam-ro-creds",
        "namespace": "openshift-cloud-credential-operator"
      }
      ...

    3. Delete each of the referenced component secrets:

      $ oc delete secret <secret_name> -n <secret_namespace>

      Where <secret_name> is the name of a secret and <secret_namespace> is the namespace that contains the secret.

      Example deletion of an AWS secret

      $ oc delete secret ebs-cloud-credentials -n openshift-cluster-csi-drivers

      You do not need to manually delete the credentials from your provider console. Deleting the referenced component secrets will cause the CCO to delete the existing credentials from the platform and create new ones.

  7. To verify that the credentials have changed:

    1. In the Administrator perspective of the web console, navigate to WorkloadsSecrets.
    2. Verify that the contents of the Value field or fields are different than the previously recorded information.

3.10.2. Removing cloud provider credentials

After installing an OpenShift Container Platform cluster on Amazon Web Services (AWS) with the Cloud Credential Operator (CCO) in mint mode, you can remove the administrator-level credential secret from the kube-system namespace in the cluster. The administrator-level credential is required only during changes that require its elevated permissions, such as upgrades.

Note

Prior to a non z-stream upgrade, you must reinstate the credential secret with the administrator-level credential. If the credential is not present, the upgrade might be blocked.

Prerequisites

  • Your cluster is installed on AWS with the CCO configured to use mint mode.

Procedure

  1. In the Administrator perspective of the web console, navigate to WorkloadsSecrets.
  2. In the table on the Secrets page, find the aws-creds root secret for AWS.

    PlatformSecret name

    AWS

    aws-creds

  3. Click the Options menu kebab in the same row as the secret and select Delete Secret.

3.11. Configuring image streams for a disconnected cluster

After installing OpenShift Container Platform in a disconnected environment, configure the image streams for the Cluster Samples Operator and the must-gather image stream.

3.11.1. Using Cluster Samples Operator image streams with alternate or mirrored registries

Most image streams in the openshift namespace managed by the Cluster Samples Operator point to images located in the Red Hat registry at registry.redhat.io. Mirroring will not apply to these image streams.

Important

The jenkins, jenkins-agent-maven, and jenkins-agent-nodejs image streams come from the install payload and are managed by the Samples Operator, so no further mirroring procedures are needed for those image streams.

Setting the samplesRegistry field in the Sample Operator configuration file to registry.redhat.io is redundant because it is already directed to registry.redhat.io for everything but Jenkins images and image streams.

Note

The cli, installer, must-gather, and tests image streams, while part of the install payload, are not managed by the Cluster Samples Operator. These are not addressed in this procedure.

Prerequisites

  • Access to the cluster as a user with the cluster-admin role.
  • Create a pull secret for your mirror registry.

Procedure

  1. Access the images of a specific image stream to mirror, for example:

    $ oc get is <imagestream> -n openshift -o json | jq .spec.tags[].from.name | grep registry.redhat.io
  2. Mirror images from registry.redhat.io associated with any image streams you need in the restricted network environment into one of the defined mirrors, for example:

    $ oc image mirror registry.redhat.io/rhscl/ruby-25-rhel7:latest ${MIRROR_ADDR}/rhscl/ruby-25-rhel7:latest
  3. Create the cluster’s image configuration object:

    $ oc create configmap registry-config --from-file=${MIRROR_ADDR_HOSTNAME}..5000=$path/ca.crt -n openshift-config
  4. Add the required trusted CAs for the mirror in the cluster’s image configuration object:

    $ oc patch image.config.openshift.io/cluster --patch '{"spec":{"additionalTrustedCA":{"name":"registry-config"}}}' --type=merge
  5. Update the samplesRegistry field in the Cluster Samples Operator configuration object to contain the hostname portion of the mirror location defined in the mirror configuration:

    $ oc edit configs.samples.operator.openshift.io -n openshift-cluster-samples-operator
    Note

    This is required because the image stream import process does not use the mirror or search mechanism at this time.

  6. Add any image streams that are not mirrored into the skippedImagestreams field of the Cluster Samples Operator configuration object. Or if you do not want to support any of the sample image streams, set the Cluster Samples Operator to Removed in the Cluster Samples Operator configuration object.

    Note

    The Cluster Samples Operator issues alerts if image stream imports are failing but the Cluster Samples Operator is either periodically retrying or does not appear to be retrying them.

    Many of the templates in the openshift namespace reference the image streams. So using Removed to purge both the image streams and templates will eliminate the possibility of attempts to use them if they are not functional because of any missing image streams.

3.11.2. Preparing your cluster to gather support data

Clusters using a restricted network must import the default must-gather image in order to gather debugging data for Red Hat support. The must-gather image is not imported by default, and clusters on a restricted network do not have access to the internet to pull the latest image from a remote repository.

Procedure

  1. If you have not added your mirror registry’s trusted CA to your cluster’s image configuration object as part of the Cluster Samples Operator configuration, perform the following steps:

    1. Create the cluster’s image configuration object:

      $ oc create configmap registry-config --from-file=${MIRROR_ADDR_HOSTNAME}..5000=$path/ca.crt -n openshift-config
    2. Add the required trusted CAs for the mirror in the cluster’s image configuration object:

      $ oc patch image.config.openshift.io/cluster --patch '{"spec":{"additionalTrustedCA":{"name":"registry-config"}}}' --type=merge
  2. Import the default must-gather image from your installation payload:

    $ oc import-image is/must-gather -n openshift

When running the oc adm must-gather command, use the --image flag and point to the payload image, as in the following example:

$ oc adm must-gather --image=$(oc adm release info --image-for must-gather)

Additional resources

Chapter 4. Post-installation node tasks

After installing OpenShift Container Platform, you can further expand and customize your cluster to your requirements through certain node tasks.

4.1. Adding RHEL compute machines to an OpenShift Container Platform cluster

Understand and work with RHEL compute nodes.

4.1.1. About adding RHEL compute nodes to a cluster

In OpenShift Container Platform 4.6, you have the option of using Red Hat Enterprise Linux (RHEL) machines as compute machines, which are also known as worker machines, in your cluster if you use a user-provisioned infrastructure installation. You must use Red Hat Enterprise Linux CoreOS (RHCOS) machines for the control plane, or master, machines in your cluster.

As with all installations that use user-provisioned infrastructure, if you choose to use RHEL compute machines in your cluster, you take responsibility for all operating system life cycle management and maintenance, including performing system updates, applying patches, and completing all other required tasks.

Important

Because removing OpenShift Container Platform from a machine in the cluster requires destroying the operating system, you must use dedicated hardware for any RHEL machines that you add to the cluster.

Important

Swap memory is disabled on all RHEL machines that you add to your OpenShift Container Platform cluster. You cannot enable swap memory on these machines.

You must add any RHEL compute machines to the cluster after you initialize the control plane.

4.1.2. System requirements for RHEL compute nodes

The Red Hat Enterprise Linux (RHEL) compute, or worker, machine hosts in your OpenShift Container Platform environment must meet the following minimum hardware specifications and system-level requirements:

  • You must have an active OpenShift Container Platform subscription on your Red Hat account. If you do not, contact your sales representative for more information.
  • Production environments must provide compute machines to support your expected workloads. As a cluster administrator, you must calculate the expected workload and add about 10 percent for overhead. For production environments, allocate enough resources so that a node host failure does not affect your maximum capacity.
  • Each system must meet the following hardware requirements:

    • Physical or virtual system, or an instance running on a public or private IaaS.
    • Base OS: RHEL 7.9 with "Minimal" installation option.

      Important

      Adding RHEL 7 compute machines to an OpenShift Container Platform cluster is deprecated. Deprecated functionality is still included in OpenShift Container Platform and continues to be supported; however, it will be removed in a future release of this product and is not recommended for new deployments.

      In addition, you must not upgrade your compute machines to RHEL 8 because support is not available in this release.

      For the most recent list of major functionality that has been deprecated or removed within OpenShift Container Platform, refer to the Deprecated and removed features section of the OpenShift Container Platform release notes.

    • If you deployed OpenShift Container Platform in FIPS mode, you must enable FIPS on the RHEL machine before you boot it. See Enabling FIPS Mode in the RHEL 7 documentation.
Important

The use of FIPS Validated / Modules in Process cryptographic libraries is only supported on OpenShift Container Platform deployments on the x86_64 architecture.

  • NetworkManager 1.0 or later.
  • 1 vCPU.
  • Minimum 8 GB RAM.
  • Minimum 15 GB hard disk space for the file system containing /var/.
  • Minimum 1 GB hard disk space for the file system containing /usr/local/bin/.
  • Minimum 1 GB hard disk space for the file system containing the system’s temporary directory. The system’s temporary directory is determined according to the rules defined in the tempfile module in Python’s standard library.

    • Each system must meet any additional requirements for your system provider. For example, if you installed your cluster on VMware vSphere, your disks must be configured according to its storage guidelines and the disk.enableUUID=true attribute must be set.
    • Each system must be able to access the cluster’s API endpoints by using DNS-resolvable hostnames. Any network security access control that is in place must allow the system access to the cluster’s API service endpoints.
4.1.2.1. Certificate signing requests management

Because your cluster has limited access to automatic machine management when you use infrastructure that you provision, you must provide a mechanism for approving cluster certificate signing requests (CSRs) after installation. The kube-controller-manager only approves the kubelet client CSRs. The machine-approver cannot guarantee the validity of a serving certificate that is requested by using kubelet credentials because it cannot confirm that the correct machine issued the request. You must determine and implement a method of verifying the validity of the kubelet serving certificate requests and approving them.

4.1.3. Preparing the machine to run the playbook

Before you can add compute machines that use Red Hat Enterprise Linux (RHEL) as the operating system to an OpenShift Container Platform 4.6 cluster, you must prepare a RHEL 7 machine to run an Ansible playbook that adds the new node to the cluster. This machine is not part of the cluster but must be able to access it.

Prerequisites

  • Install the OpenShift CLI (oc) on the machine that you run the playbook on.
  • Log in as a user with cluster-admin permission.

Procedure

  1. Ensure that the kubeconfig file for the cluster and the installation program that you used to install the cluster are on the machine. One way to accomplish this is to use the same machine that you used to install the cluster.
  2. Configure the machine to access all of the RHEL hosts that you plan to use as compute machines. You can use any method that your company allows, including a bastion with an SSH proxy or a VPN.
  3. Configure a user on the machine that you run the playbook on that has SSH access to all of the RHEL hosts.

    Important

    If you use SSH key-based authentication, you must manage the key with an SSH agent.

  4. If you have not already done so, register the machine with RHSM and attach a pool with an OpenShift subscription to it:

    1. Register the machine with RHSM:

      # subscription-manager register --username=<user_name> --password=<password>
    2. Pull the latest subscription data from RHSM:

      # subscription-manager refresh
    3. List the available subscriptions:

      # subscription-manager list --available --matches '*OpenShift*'
    4. In the output for the previous command, find the pool ID for an OpenShift Container Platform subscription and attach it:

      # subscription-manager attach --pool=<pool_id>
  5. Enable the repositories required by OpenShift Container Platform 4.6:

    # subscription-manager repos \
        --enable="rhel-7-server-rpms" \
        --enable="rhel-7-server-extras-rpms" \
        --enable="rhel-7-server-ansible-2.9-rpms" \
        --enable="rhel-7-server-ose-4.6-rpms"
  6. Install the required packages, including openshift-ansible:

    # yum install openshift-ansible openshift-clients jq

    The openshift-ansible package provides installation program utilities and pulls in other packages that you require to add a RHEL compute node to your cluster, such as Ansible, playbooks, and related configuration files. The openshift-clients provides the oc CLI, and the jq package improves the display of JSON output on your command line.

4.1.4. Preparing a RHEL compute node

Before you add a Red Hat Enterprise Linux (RHEL) machine to your OpenShift Container Platform cluster, you must register each host with Red Hat Subscription Manager (RHSM), attach an active OpenShift Container Platform subscription, and enable the required repositories.

  1. On each host, register with RHSM:

    # subscription-manager register --username=<user_name> --password=<password>
  2. Pull the latest subscription data from RHSM:

    # subscription-manager refresh
  3. List the available subscriptions:

    # subscription-manager list --available --matches '*OpenShift*'
  4. In the output for the previous command, find the pool ID for an OpenShift Container Platform subscription and attach it:

    # subscription-manager attach --pool=<pool_id>
  5. Disable all yum repositories:

    1. Disable all the enabled RHSM repositories:

      # subscription-manager repos --disable="*"
    2. List the remaining yum repositories and note their names under repo id, if any:

      # yum repolist
    3. Use yum-config-manager to disable the remaining yum repositories:

      # yum-config-manager --disable <repo_id>

      Alternatively, disable all repositories:

      # yum-config-manager --disable \*

      Note that this might take a few minutes if you have a large number of available repositories

  6. Enable only the repositories required by OpenShift Container Platform 4.6:

    # subscription-manager repos \
        --enable="rhel-7-server-rpms" \
        --enable="rhel-7-fast-datapath-rpms" \
        --enable="rhel-7-server-extras-rpms" \
        --enable="rhel-7-server-optional-rpms" \
        --enable="rhel-7-server-ose-4.6-rpms"
  7. Stop and disable firewalld on the host:

    # systemctl disable --now firewalld.service
    Note

    You must not enable firewalld later. If you do, you cannot access OpenShift Container Platform logs on the worker.

4.1.5. Adding a RHEL compute machine to your cluster

You can add compute machines that use Red Hat Enterprise Linux as the operating system to an OpenShift Container Platform 4.6 cluster.

Prerequisites

  • You installed the required packages and performed the necessary configuration on the machine that you run the playbook on.
  • You prepared the RHEL hosts for installation.

Procedure

Perform the following steps on the machine that you prepared to run the playbook:

  1. Create an Ansible inventory file that is named /<path>/inventory/hosts that defines your compute machine hosts and required variables:

    [all:vars]
    ansible_user=root 1
    #ansible_become=True 2
    
    openshift_kubeconfig_path="~/.kube/config" 3
    
    [new_workers] 4
    mycluster-rhel7-0.example.com
    mycluster-rhel7-1.example.com
    1
    Specify the user name that runs the Ansible tasks on the remote compute machines.
    2
    If you do not specify root for the ansible_user, you must set ansible_become to True and assign the user sudo permissions.
    3
    Specify the path and file name of the kubeconfig file for your cluster.
    4
    List each RHEL machine to add to your cluster. You must provide the fully-qualified domain name for each host. This name is the hostname that the cluster uses to access the machine, so set the correct public or private name to access the machine.
  2. Navigate to the Ansible playbook directory:

    $ cd /usr/share/ansible/openshift-ansible
  3. Run the playbook:

    $ ansible-playbook -i /<path>/inventory/hosts playbooks/scaleup.yml 1
    1
    For <path>, specify the path to the Ansible inventory file that you created.

4.1.6. Required parameters for the Ansible hosts file

You must define the following parameters in the Ansible hosts file before you add Red Hat Enterprise Linux (RHEL) compute machines to your cluster.

ParamterDescriptionValues

ansible_user

The SSH user that allows SSH-based authentication without requiring a password. If you use SSH key-based authentication, then you must manage the key with an SSH agent.

A user name on the system. The default value is root.

ansible_become

If the values of ansible_user is not root, you must set ansible_become to True, and the user that you specify as the ansible_user must be configured for passwordless sudo access.

True. If the value is not True, do not specify and define this parameter.

openshift_kubeconfig_path

Specifies a path and file name to a local directory that contains the kubeconfig file for your cluster.

The path and name of the configuration file.

4.1.7. Optional: Removing RHCOS compute machines from a cluster

After you add the Red Hat Enterprise Linux (RHEL) compute machines to your cluster, you can optionally remove the Red Hat Enterprise Linux CoreOS (RHCOS) compute machines to free up resources.

Prerequisites

  • You have added RHEL compute machines to your cluster.

Procedure

  1. View the list of machines and record the node names of the RHCOS compute machines:

    $ oc get nodes -o wide
  2. For each RHCOS compute machine, delete the node:

    1. Mark the node as unschedulable by running the oc adm cordon command:

      $ oc adm cordon <node_name> 1
      1
      Specify the node name of one of the RHCOS compute machines.
    2. Drain all the pods from the node:

      $ oc adm drain <node_name> --force --delete-local-data --ignore-daemonsets 1
      1
      Specify the node name of the RHCOS compute machine that you isolated.
    3. Delete the node:

      $ oc delete nodes <node_name> 1
      1
      Specify the node name of the RHCOS compute machine that you drained.
  3. Review the list of compute machines to ensure that only the RHEL nodes remain:

    $ oc get nodes -o wide
  4. Remove the RHCOS machines from the load balancer for your cluster’s compute machines. You can delete the virtual machines or reimage the physical hardware for the RHCOS compute machines.

4.2. Adding RHCOS compute machines to an OpenShift Container Platform cluster

You can add more Red Hat Enterprise Linux CoreOS (RHCOS) compute machines to your OpenShift Container Platform cluster on bare metal.

Before you add more compute machines to a cluster that you installed on bare metal infrastructure, you must create RHCOS machines for it to use. You can either use an ISO image or network PXE booting to create the machines.

4.2.1. Prerequisites

  • You installed a cluster on bare metal.
  • You have installation media and Red Hat Enterprise Linux CoreOS (RHCOS) images that you used to create your cluster. If you do not have these files, you must obtain them by following the instructions in the installation procedure.

4.2.2. Creating more RHCOS machines using an ISO image

You can create more Red Hat Enterprise Linux CoreOS (RHCOS) compute machines for your bare metal cluster by using an ISO image to create the machines.

Prerequisites

  • Obtain the URL of the Ignition config file for the compute machines for your cluster. You uploaded this file to your HTTP server during installation.

Procedure

  1. Use the ISO file to install RHCOS on more compute machines. Use the same method that you used when you created machines before you installed the cluster:

    • Burn the ISO image to a disk and boot it directly.
    • Use ISO redirection with a LOM interface.
  2. After the instance boots, press the TAB or E key to edit the kernel command line.
  3. Add the parameters to the kernel command line:

    coreos.inst.install_dev=sda 1
    coreos.inst.ignition_url=http://example.com/worker.ign 2
    1
    Specify the block device of the system to install to.
    2
    Specify the URL of the compute Ignition config file. Only HTTP and HTTPS protocols are supported.
  4. Press Enter to complete the installation. After RHCOS installs, the system reboots. After the system reboots, it applies the Ignition config file that you specified.
  5. Continue to create more compute machines for your cluster.

4.2.3. Creating more RHCOS machines by PXE or iPXE booting

You can create more Red Hat Enterprise Linux CoreOS (RHCOS) compute machines for your bare metal cluster by using PXE or iPXE booting.

Prerequisites

  • Obtain the URL of the Ignition config file for the compute machines for your cluster. You uploaded this file to your HTTP server during installation.
  • Obtain the URLs of the RHCOS ISO image, compressed metal BIOS, kernel, and initramfs files that you uploaded to your HTTP server during cluster installation.
  • You have access to the PXE booting infrastructure that you used to create the machines for your OpenShift Container Platform cluster during installation. The machines must boot from their local disks after RHCOS is installed on them.
  • If you use UEFI, you have access to the grub.conf file that you modified during OpenShift Container Platform installation.

Procedure

  1. Confirm that your PXE or iPXE installation for the RHCOS images is correct.

    • For PXE:

      DEFAULT pxeboot
      TIMEOUT 20
      PROMPT 0
      LABEL pxeboot
          KERNEL http://<HTTP_server>/rhcos-<version>-live-kernel-<architecture> 1
          APPEND initrd=http://<HTTP_server>/rhcos-<version>-live-initramfs.<architecture>.img coreos.inst.install_dev=/dev/sda coreos.inst.ignition_url=http://<HTTP_server>/worker.ign coreos.live.rootfs_url=http://<HTTP_server>/rhcos-<version>-live-rootfs.<architecture>.img 2
      1
      Specify the location of the live kernel file that you uploaded to your HTTP server.
      2
      Specify locations of the RHCOS files that you uploaded to your HTTP server. The initrd parameter value is the location of the live initramfs file, the coreos.inst.ignition_url parameter value is the location of the worker Ignition config file, and the coreos.live.rootfs_url parameter value is the location of the live rootfs file. The coreos.inst.ignition_url and coreos.live.rootfs_url parameters only support HTTP and HTTPS.

This configuration does not enable serial console access on machines with a graphical console. To configure a different console, add one or more console= arguments to the APPEND line. For example, add console=tty0 console=ttyS0 to set the first PC serial port as the primary console and the graphical console as a secondary console. For more information, see How does one set up a serial terminal and/or console in Red Hat Enterprise Linux?.

  • For iPXE:

    kernel http://<HTTP_server>/rhcos-<version>-live-kernel-<architecture> initrd=main coreos.inst.install_dev=/dev/sda coreos.inst.ignition_url=http://<HTTP_server>/worker.ign coreos.live.rootfs_url=http://<HTTP_server>/rhcos-<version>-live-rootfs.<architecture>.img 1
    initrd --name main http://<HTTP_server>/rhcos-<version>-live-initramfs.<architecture>.img 2
    1
    Specify locations of the RHCOS files that you uploaded to your HTTP server. The kernel parameter value is the location of the kernel file, the initrd=main argument is needed for booting on UEFI systems, the coreos.inst.ignition_url parameter value is the location of the worker Ignition config file, and the coreos.live.rootfs_url parameter value is the location of the live rootfs file. The coreos.inst.ignition_url and coreos.live.rootfs_url parameters only support HTTP and HTTPS.
    2
    Specify the location of the initramfs file that you uploaded to your HTTP server.

This configuration does not enable serial console access on machines with a graphical console. To configure a different console, add one or more console= arguments to the kernel line. For example, add console=tty0 console=ttyS0 to set the first PC serial port as the primary console and the graphical console as a secondary console. For more information, see How does one set up a serial terminal and/or console in Red Hat Enterprise Linux?.

  1. Use the PXE or iPXE infrastructure to create the required compute machines for your cluster.

4.2.4. Approving the certificate signing requests for your machines

When you add machines to a cluster, two pending certificate signing requests (CSRs) are generated for each machine that you added. You must confirm that these CSRs are approved or, if necessary, approve them yourself. The client requests must be approved first, followed by the server requests.

Prerequisites

  • You added machines to your cluster.

Procedure

  1. Confirm that the cluster recognizes the machines:

    $ oc get nodes

    Example output

    NAME      STATUS    ROLES   AGE  VERSION
    master-0  Ready     master  63m  v1.19.0
    master-1  Ready     master  63m  v1.19.0
    master-2  Ready     master  64m  v1.19.0

    The output lists all of the machines that you created.

    Note

    The preceding output might not include the compute nodes, also known as worker nodes, until some CSRs are approved.

  2. Review the pending CSRs and ensure that you see the client requests with the Pending or Approved status for each machine that you added to the cluster:

    $ oc get csr

    Example output

    NAME        AGE     REQUESTOR                                                                   CONDITION
    csr-8b2br   15m     system:serviceaccount:openshift-machine-config-operator:node-bootstrapper   Pending
    csr-8vnps   15m     system:serviceaccount:openshift-machine-config-operator:node-bootstrapper   Pending
    ...

    In this example, two machines are joining the cluster. You might see more approved CSRs in the list.

  3. If the CSRs were not approved, after all of the pending CSRs for the machines you added are in Pending status, approve the CSRs for your cluster machines:

    Note

    Because the CSRs rotate automatically, approve your CSRs within an hour of adding the machines to the cluster. If you do not approve them within an hour, the certificates will rotate, and more than two certificates will be present for each node. You must approve all of these certificates. Once the client CSR is approved, the Kubelet creates a secondary CSR for the serving certificate, which requires manual approval. Then, subsequent serving certificate renewal requests are automatically approved by the machine-approver if the Kubelet requests a new certificate with identical parameters.

    Note

    For clusters running on platforms that are not machine API enabled, such as bare metal and other user-provisioned infrastructure, you must implement a method of automatically approving the kubelet serving certificate requests (CSRs). If a request is not approved, then the oc exec, oc rsh, and oc logs commands cannot succeed, because a serving certificate is required when the API server connects to the kubelet. Any operation that contacts the Kubelet endpoint requires this certificate approval to be in place. The method must watch for new CSRs, confirm that the CSR was submitted by the node-bootstrapper service account in the system:node or system:admin groups, and confirm the identity of the node.

    • To approve them individually, run the following command for each valid CSR:

      $ oc adm certificate approve <csr_name> 1
      1
      <csr_name> is the name of a CSR from the list of current CSRs.
    • To approve all pending CSRs, run the following command:

      $ oc get csr -o go-template='{{range .items}}{{if not .status}}{{.metadata.name}}{{"\n"}}{{end}}{{end}}' | xargs --no-run-if-empty oc adm certificate approve
      Note

      Some Operators might not become available until some CSRs are approved.

  4. Now that your client requests are approved, you must review the server requests for each machine that you added to the cluster:

    $ oc get csr

    Example output

    NAME        AGE     REQUESTOR                                                                   CONDITION
    csr-bfd72   5m26s   system:node:ip-10-0-50-126.us-east-2.compute.internal                       Pending
    csr-c57lv   5m26s   system:node:ip-10-0-95-157.us-east-2.compute.internal                       Pending
    ...

  5. If the remaining CSRs are not approved, and are in the Pending status, approve the CSRs for your cluster machines:

    • To approve them individually, run the following command for each valid CSR:

      $ oc adm certificate approve <csr_name> 1
      1
      <csr_name> is the name of a CSR from the list of current CSRs.
    • To approve all pending CSRs, run the following command:

      $ oc get csr -o go-template='{{range .items}}{{if not .status}}{{.metadata.name}}{{"\n"}}{{end}}{{end}}' | xargs oc adm certificate approve
  6. After all client and server CSRs have been approved, the machines have the Ready status. Verify this by running the following command:

    $ oc get nodes

    Example output

    NAME      STATUS    ROLES   AGE  VERSION
    master-0  Ready     master  73m  v1.20.0
    master-1  Ready     master  73m  v1.20.0
    master-2  Ready     master  74m  v1.20.0
    worker-0  Ready     worker  11m  v1.20.0
    worker-1  Ready     worker  11m  v1.20.0

    Note

    It can take a few minutes after approval of the server CSRs for the machines to transition to the Ready status.

Additional information

4.3. Deploying machine health checks

Understand and deploy machine health checks.

Important

This process is not applicable for clusters with manually provisioned machines. You can use the advanced machine management and scaling capabilities only in clusters where the Machine API is operational.

4.3.1. About machine health checks

You can define conditions under which machines in a cluster are considered unhealthy by using a MachineHealthCheck resource. Machines matching the conditions are automatically remediated.

To monitor machine health, create a MachineHealthCheck custom resource (CR) that includes a label for the set of machines to monitor and a condition to check, such as staying in the NotReady status for 15 minutes or displaying a permanent condition in the node-problem-detector.

The controller that observes a MachineHealthCheck CR checks for the condition that you defined. If a machine fails the health check, the machine is automatically deleted and a new one is created to take its place. When a machine is deleted, you see a machine deleted event.

Note

For machines with the master role, the machine health check reports the number of unhealthy nodes, but the machine is not deleted. For example:

Example output

$ oc get machinehealthcheck example -n openshift-machine-api

NAME      MAXUNHEALTHY   EXPECTEDMACHINES   CURRENTHEALTHY
example   40%            3                  1

To limit the disruptive impact of machine deletions, the controller drains and deletes only one node at a time. If there are more unhealthy machines than the maxUnhealthy threshold allows for in the targeted pool of machines, the controller stops deleting machines and you must manually intervene.

To stop the check, remove the custom resource.

4.3.1.1. MachineHealthChecks on Bare Metal

Machine deletion on bare metal cluster triggers reprovisioning of a bare metal host. Usually bare metal reprovisioning is a lengthy process, during which the cluster is missing compute resources and applications might be interrupted. To change the default remediation process from machine deletion to host power-cycle, annotate the MachineHealthCheck resource with the machine.openshift.io/remediation-strategy: external-baremetal annotation.

After you set the annotation, unhealthy machines are power-cycled by using BMC credentials.

4.3.1.2. Limitations when deploying machine health checks

There are limitations to consider before deploying a machine health check:

  • Only machines owned by a machine set are remediated by a machine health check.
  • Control plane machines are not currently supported and are not remediated if they are unhealthy.
  • If the node for a machine is removed from the cluster, a machine health check considers the machine to be unhealthy and remediates it immediately.
  • If the corresponding node for a machine does not join the cluster after the nodeStartupTimeout, the machine is remediated.
  • A machine is remediated immediately if the Machine resource phase is Failed.

4.3.2. Sample MachineHealthCheck resource

The MachineHealthCheck resource resembles one of the following YAML files:

MachineHealthCheck for bare metal

apiVersion: machine.openshift.io/v1beta1
kind: MachineHealthCheck
metadata:
  name: example 1
  namespace: openshift-machine-api
  annotations:
    machine.openshift.io/remediation-strategy: external-baremetal 2
spec:
  selector:
    matchLabels:
      machine.openshift.io/cluster-api-machine-role: <role> 3
      machine.openshift.io/cluster-api-machine-type: <role> 4
      machine.openshift.io/cluster-api-machineset: <cluster_name>-<label>-<zone> 5
  unhealthyConditions:
  - type:    "Ready"
    timeout: "300s" 6
    status: "False"
  - type:    "Ready"
    timeout: "300s" 7
    status: "Unknown"
  maxUnhealthy: "40%" 8
  nodeStartupTimeout: "10m" 9

1
Specify the name of the machine health check to deploy.
2
For bare metal clusters, you must include the machine.openshift.io/remediation-strategy: external-baremetal annotation in the annotations section to enable power-cycle remediation. With this remediation strategy, unhealthy hosts are rebooted instead of removed from the cluster.
3 4
Specify a label for the machine pool that you want to check.
5
Specify the machine set to track in <cluster_name>-<label>-<zone> format. For example, prod-node-us-east-1a.
6 7
Specify the timeout duration for a node condition. If a condition is met for the duration of the timeout, the machine will be remediated. Long timeouts can result in long periods of downtime for a workload on an unhealthy machine.
8
Specify the amount of machines allowed to be concurrently remediated in the targeted pool. This can be set as a percentage or an integer. If the number of unhealthy machines exceeds the limit set by maxUnhealthy, remediation is not performed.
9
Specify the timeout duration that a machine health check must wait for a node to join the cluster before a machine is determined to be unhealthy.
Note

The matchLabels are examples only; you must map your machine groups based on your specific needs.

MachineHealthCheck for all other installation types

apiVersion: machine.openshift.io/v1beta1
kind: MachineHealthCheck
metadata:
  name: example 1
  namespace: openshift-machine-api
spec:
  selector:
    matchLabels:
      machine.openshift.io/cluster-api-machine-role: <role> 2
      machine.openshift.io/cluster-api-machine-type: <role> 3
      machine.openshift.io/cluster-api-machineset: <cluster_name>-<label>-<zone> 4
  unhealthyConditions:
  - type:    "Ready"
    timeout: "300s" 5
    status: "False"
  - type:    "Ready"
    timeout: "300s" 6
    status: "Unknown"
  maxUnhealthy: "40%" 7
  nodeStartupTimeout: "10m" 8

1
Specify the name of the machine health check to deploy.
2 3
Specify a label for the machine pool that you want to check.
4
Specify the machine set to track in <cluster_name>-<label>-<zone> format. For example, prod-node-us-east-1a.
5 6
Specify the timeout duration for a node condition. If a condition is met for the duration of the timeout, the machine will be remediated. Long timeouts can result in long periods of downtime for a workload on an unhealthy machine.
7
Specify the amount of machines allowed to be concurrently remediated in the targeted pool. This can be set as a percentage or an integer. If the number of unhealthy machines exceeds the limit set by maxUnhealthy, remediation is not performed.
8
Specify the timeout duration that a machine health check must wait for a node to join the cluster before a machine is determined to be unhealthy.
Note

The matchLabels are examples only; you must map your machine groups based on your specific needs.

4.3.2.1. Short-circuiting machine health check remediation

Short circuiting ensures that machine health checks remediate machines only when the cluster is healthy. Short-circuiting is configured through the maxUnhealthy field in the MachineHealthCheck resource.

If the user defines a value for the maxUnhealthy field, before remediating any machines, the MachineHealthCheck compares the value of maxUnhealthy with the number of machines within its target pool that it has determined to be unhealthy. Remediation is not performed if the number of unhealthy machines exceeds the maxUnhealthy limit.

Important

If maxUnhealthy is not set, the value defaults to 100% and the machines are remediated regardless of the state of the cluster.

The appropriate maxUnhealthy value depends on the scale of the cluster you deploy and how many machines the MachineHealthCheck covers. For example, you can use the maxUnhealthy value to cover multiple machine sets across multiple availability zones so that if you lose an entire zone, your maxUnhealthy setting prevents further remediation within the cluster.

The maxUnhealthy field can be set as either an integer or percentage. There are different remediation implementations depending on the maxUnhealthy value.

4.3.2.1.1. Setting maxUnhealthy by using an absolute value

If maxUnhealthy is set to 2:

  • Remediation will be performed if 2 or fewer nodes are unhealthy
  • Remediation will not be performed if 3 or more nodes are unhealthy

These values are independent of how many machines are being checked by the machine health check.

4.3.2.1.2. Setting maxUnhealthy by using percentages

If maxUnhealthy is set to 40% and there are 25 machines being checked:

  • Remediation will be performed if 10 or fewer nodes are unhealthy
  • Remediation will not be performed if 11 or more nodes are unhealthy

If maxUnhealthy is set to 40% and there are 6 machines being checked:

  • Remediation will be performed if 2 or fewer nodes are unhealthy
  • Remediation will not be performed if 3 or more nodes are unhealthy
Note

The allowed number of machines is rounded down when the percentage of maxUnhealthy machines that are checked is not a whole number.

4.3.3. Creating a MachineHealthCheck resource

You can create a MachineHealthCheck resource for all MachineSets in your cluster. You should not create a MachineHealthCheck resource that targets control plane machines.

Prerequisites

  • Install the oc command line interface.

Procedure

  1. Create a healthcheck.yml file that contains the definition of your machine health check.
  2. Apply the healthcheck.yml file to your cluster:

    $ oc apply -f healthcheck.yml

4.3.4. Scaling a machine set manually

To add or remove an instance of a machine in a machine set, you can manually scale the machine set.

This guidance is relevant to fully automated, installer-provisioned infrastructure installations. Customized, user-provisioned infrastructure installations do not have machine sets.

Prerequisites

  • Install an OpenShift Container Platform cluster and the oc command line.
  • Log in to oc as a user with cluster-admin permission.

Procedure

  1. View the machine sets that are in the cluster:

    $ oc get machinesets -n openshift-machine-api

    The machine sets are listed in the form of <clusterid>-worker-<aws-region-az>.

  2. View the machines that are in the cluster:

    $ oc get machine -n openshift-machine-api
  3. Set the annotation on the machine that you want to delete:

    $ oc annotate machine/<machine_name> -n openshift-machine-api machine.openshift.io/cluster-api-delete-machine="true"
  4. Cordon and drain the node that you want to delete:

    $ oc adm cordon <node_name>
    $ oc adm drain <node_name>
  5. Scale the machine set:

    $ oc scale --replicas=2 machineset <machineset> -n openshift-machine-api

    Or:

    $ oc edit machineset <machineset> -n openshift-machine-api

    You can scale the machine set up or down. It takes several minutes for the new machines to be available.

Verification

  • Verify the deletion of the intended machine:

    $ oc get machines

4.3.5. Understanding the difference between machine sets and the machine config pool

MachineSet objects describe OpenShift Container Platform nodes with respect to the cloud or machine provider.

The MachineConfigPool object allows MachineConfigController components to define and provide the status of machines in the context of upgrades.

The MachineConfigPool object allows users to configure how upgrades are rolled out to the OpenShift Container Platform nodes in the machine config pool.

The NodeSelector object can be replaced with a reference to the MachineSet object.

4.4. Recommended node host practices

The OpenShift Container Platform node configuration file contains important options. For example, two parameters control the maximum number of pods that can be scheduled to a node: podsPerCore and maxPods.

When both options are in use, the lower of the two values limits the number of pods on a node. Exceeding these values can result in:

  • Increased CPU utilization.
  • Slow pod scheduling.
  • Potential out-of-memory scenarios, depending on the amount of memory in the node.
  • Exhausting the pool of IP addresses.
  • Resource overcommitting, leading to poor user application performance.
Important

In Kubernetes, a pod that is holding a single container actually uses two containers. The second container is used to set up networking prior to the actual container starting. Therefore, a system running 10 pods will actually have 20 containers running.

podsPerCore sets the number of pods the node can run based on the number of processor cores on the node. For example, if podsPerCore is set to 10 on a node with 4 processor cores, the maximum number of pods allowed on the node will be 40.

kubeletConfig:
  podsPerCore: 10

Setting podsPerCore to 0 disables this limit. The default is 0. podsPerCore cannot exceed maxPods.

maxPods sets the number of pods the node can run to a fixed value, regardless of the properties of the node.

 kubeletConfig:
    maxPods: 250

4.4.1. Creating a KubeletConfig CRD to edit kubelet parameters

The kubelet configuration is currently serialized as an Ignition configuration, so it can be directly edited. However, there is also a new kubelet-config-controller added to the Machine Config Controller (MCC). This allows you to create a KubeletConfig custom resource (CR) to edit the kubelet parameters.

Note

As the fields in the kubeletConfig object are passed directly to the kubelet from upstream Kubernetes, the kubelet validates those values directly. Invalid values in the kubeletConfig object might cause cluster nodes to become unavailable. For valid values, see the Kubernetes documentation.

Procedure

  1. View the available machine configuration objects that you can select:

    $ oc get machineconfig

    By default, the two kubelet-related configs are 01-master-kubelet and 01-worker-kubelet.

  2. To check the current value of max pods per node, run:

    # oc describe node <node-ip> | grep Allocatable -A6

    Look for value: pods: <value>.

    For example:

    # oc describe node ip-172-31-128-158.us-east-2.compute.internal | grep Allocatable -A6

    Example output

    Allocatable:
     attachable-volumes-aws-ebs:  25
     cpu:                         3500m
     hugepages-1Gi:               0
     hugepages-2Mi:               0
     memory:                      15341844Ki
     pods:                        250

  3. To set the max pods per node on the worker nodes, create a custom resource file that contains the kubelet configuration. For example, change-maxPods-cr.yaml:

    apiVersion: machineconfiguration.openshift.io/v1
    kind: KubeletConfig
    metadata:
      name: set-max-pods
    spec:
      machineConfigPoolSelector:
        matchLabels:
          custom-kubelet: large-pods
      kubeletConfig:
        maxPods: 500

    The rate at which the kubelet talks to the API server depends on queries per second (QPS) and burst values. The default values, 50 for kubeAPIQPS and 100 for kubeAPIBurst, are good enough if there are limited pods running on each node. Updating the kubelet QPS and burst rates is recommended if there are enough CPU and memory resources on the node:

    apiVersion: machineconfiguration.openshift.io/v1
    kind: KubeletConfig
    metadata:
      name: set-max-pods
    spec:
      machineConfigPoolSelector:
        matchLabels:
          custom-kubelet: large-pods
      kubeletConfig:
        maxPods: <pod_count>
        kubeAPIBurst: <burst_rate>
        kubeAPIQPS: <QPS>
    1. Update the machine config pool for workers with the label:

      $ oc label machineconfigpool worker custom-kubelet=large-pods
    2. Create the KubeletConfig object:

      $ oc create -f change-maxPods-cr.yaml
    3. Verify that the KubeletConfig object is created:

      $ oc get kubeletconfig

      This should return set-max-pods.

      Depending on the number of worker nodes in the cluster, wait for the worker nodes to be rebooted one by one. For a cluster with 3 worker nodes, this could take about 10 to 15 minutes.

  4. Check for maxPods changing for the worker nodes:

    $ oc describe node
    1. Verify the change by running:

      $ oc get kubeletconfigs set-max-pods -o yaml

      This should show a status of True and type:Success

Procedure

By default, only one machine is allowed to be unavailable when applying the kubelet-related configuration to the available worker nodes. For a large cluster, it can take a long time for the configuration change to be reflected. At any time, you can adjust the number of machines that are updating to speed up the process.

  1. Edit the worker machine config pool:

    $ oc edit machineconfigpool worker
  2. Set maxUnavailable to the desired value.

    spec:
      maxUnavailable: <node_count>
    Important

    When setting the value, consider the number of worker nodes that can be unavailable without affecting the applications running on the cluster.

4.4.2. Control plane node sizing

The control plane node resource requirements depend on the number of nodes in the cluster. The following control plane node size recommendations are based on the results of control plane density focused testing. The control plane tests create the following objects across the cluster in each of the namespaces depending on the node counts:

  • 12 image streams
  • 3 build configurations
  • 6 builds
  • 1 deployment with 2 pod replicas mounting two secrets each
  • 2 deployments with 1 pod replica mounting two secrets
  • 3 services pointing to the previous deployments
  • 3 routes pointing to the previous deployments
  • 10 secrets, 2 of which are mounted by the previous deployments
  • 10 config maps, 2 of which are mounted by the previous deployments
Number of worker nodesCluster load (namespaces)CPU coresMemory (GB)

25

500

4

16

100

1000

8

32

250

4000

16

96

On a large and dense cluster with three masters or control plane nodes, the CPU and memory usage will spike up when one of the nodes is stopped, rebooted or fails. The failures can be due to unexpected issues with power, network or underlying infrastructure in addition to intentional cases where the cluster is restarted after shutting it down to save costs. The remaining two control plane nodes must handle the load in order to be highly available which leads to increase in the resource usage. This is also expected during upgrades because the masters are cordoned, drained, and rebooted serially to apply the operating system updates, as well as the control plane Operators update. To avoid cascading failures, keep the overall CPU and memory resource usage on the control plane nodes to at most 60% of all available capacity to handle the resource usage spikes. Increase the CPU and memory on the control plane nodes accordingly to avoid potential downtime due to lack of resources.

Important

The node sizing varies depending on the number of nodes and object counts in the cluster. It also depends on whether the objects are actively being created on the cluster. During object creation, the control plane is more active in terms of resource usage compared to when the objects are in the running phase.

Important

If you used an installer-provisioned infrastructure installation method, you cannot modify the control plane node size in a running OpenShift Container Platform 4.6 cluster. Instead, you must estimate your total node count and use the suggested control plane node size during installation.

Important

The recommendations are based on the data points captured on OpenShift Container Platform clusters with OpenShiftSDN as the network plug-in.

Note

In OpenShift Container Platform 4.6, half of a CPU core (500 millicore) is now reserved by the system by default compared to OpenShift Container Platform 3.11 and previous versions. The sizes are determined taking that into consideration.

4.4.3. Setting up CPU Manager

Procedure

  1. Optional: Label a node:

    # oc label node perf-node.example.com cpumanager=true
  2. Edit the MachineConfigPool of the nodes where CPU Manager should be enabled. In this example, all workers have CPU Manager enabled:

    # oc edit machineconfigpool worker
  3. Add a label to the worker machine config pool:

    metadata:
      creationTimestamp: 2020-xx-xxx
      generation: 3
      labels:
        custom-kubelet: cpumanager-enabled
  4. Create a KubeletConfig, cpumanager-kubeletconfig.yaml, custom resource (CR). Refer to the label created in the previous step to have the correct nodes updated with the new kubelet config. See the machineConfigPoolSelector section:

    apiVersion: machineconfiguration.openshift.io/v1
    kind: KubeletConfig
    metadata:
      name: cpumanager-enabled
    spec:
      machineConfigPoolSelector:
        matchLabels:
          custom-kubelet: cpumanager-enabled
      kubeletConfig:
         cpuManagerPolicy: static 1
         cpuManagerReconcilePeriod: 5s 2
    1
    Specify a policy:
    • none. This policy explicitly enables the existing default CPU affinity scheme, providing no affinity beyond what the scheduler does automatically.
    • static. This policy allows pods with certain resource characteristics to be granted increased CPU affinity and exclusivity on the node.
    2
    Optional. Specify the CPU Manager reconcile frequency. The default is 5s.
  5. Create the dynamic kubelet config:

    # oc create -f cpumanager-kubeletconfig.yaml

    This adds the CPU Manager feature to the kubelet config and, if needed, the Machine Config Operator (MCO) reboots the node. To enable CPU Manager, a reboot is not needed.

  6. Check for the merged kubelet config:

    # oc get machineconfig 99-worker-XXXXXX-XXXXX-XXXX-XXXXX-kubelet -o json | grep ownerReference -A7

    Example output

           "ownerReferences": [
                {
                    "apiVersion": "machineconfiguration.openshift.io/v1",
                    "kind": "KubeletConfig",
                    "name": "cpumanager-enabled",
                    "uid": "7ed5616d-6b72-11e9-aae1-021e1ce18878"
                }
            ]

  7. Check the worker for the updated kubelet.conf:

    # oc debug node/perf-node.example.com
    sh-4.2# cat /host/etc/kubernetes/kubelet.conf | grep cpuManager

    Example output

    cpuManagerPolicy: static        1
    cpuManagerReconcilePeriod: 5s   2

    1 2
    These settings were defined when you created the KubeletConfig CR.
  8. Create a pod that requests a core or multiple cores. Both limits and requests must have their CPU value set to a whole integer. That is the number of cores that will be dedicated to this pod:

    # cat cpumanager-pod.yaml

    Example output

    apiVersion: v1
    kind: Pod
    metadata:
      generateName: cpumanager-
    spec:
      containers:
      - name: cpumanager
        image: gcr.io/google_containers/pause-amd64:3.0
        resources:
          requests:
            cpu: 1
            memory: "1G"
          limits:
            cpu: 1
            memory: "1G"
      nodeSelector:
        cpumanager: "true"

  9. Create the pod:

    # oc create -f cpumanager-pod.yaml
  10. Verify that the pod is scheduled to the node that you labeled:

    # oc describe pod cpumanager

    Example output

    Name:               cpumanager-6cqz7
    Namespace:          default
    Priority:           0
    PriorityClassName:  <none>
    Node:  perf-node.example.com/xxx.xx.xx.xxx
    ...
     Limits:
          cpu:     1
          memory:  1G
        Requests:
          cpu:        1
          memory:     1G
    ...
    QoS Class:       Guaranteed
    Node-Selectors:  cpumanager=true

  11. Verify that the cgroups are set up correctly. Get the process ID (PID) of the pause process:

    # ├─init.scope
    │ └─1 /usr/lib/systemd/systemd --switched-root --system --deserialize 17
    └─kubepods.slice
      ├─kubepods-pod69c01f8e_6b74_11e9_ac0f_0a2b62178a22.slice
      │ ├─crio-b5437308f1a574c542bdf08563b865c0345c8f8c0b0a655612c.scope
      │ └─32706 /pause

    Pods of quality of service (QoS) tier Guaranteed are placed within the kubepods.slice. Pods of other QoS tiers end up in child cgroups of kubepods:

    # cd /sys/fs/cgroup/cpuset/kubepods.slice/kubepods-pod69c01f8e_6b74_11e9_ac0f_0a2b62178a22.slice/crio-b5437308f1ad1a7db0574c542bdf08563b865c0345c86e9585f8c0b0a655612c.scope
    # for i in `ls cpuset.cpus tasks` ; do echo -n "$i "; cat $i ; done

    Example output

    cpuset.cpus 1
    tasks 32706

  12. Check the allowed CPU list for the task:

    # grep ^Cpus_allowed_list /proc/32706/status

    Example output

     Cpus_allowed_list:    1

  13. Verify that another pod (in this case, the pod in the burstable QoS tier) on the system cannot run on the core allocated for the Guaranteed pod:

    # cat /sys/fs/cgroup/cpuset/kubepods.slice/kubepods-besteffort.slice/kubepods-besteffort-podc494a073_6b77_11e9_98c0_06bba5c387ea.slice/crio-c56982f57b75a2420947f0afc6cafe7534c5734efc34157525fa9abbf99e3849.scope/cpuset.cpus
    0
    # oc describe node perf-node.example.com

    Example output

    ...
    Capacity:
     attachable-volumes-aws-ebs:  39
     cpu:                         2
     ephemeral-storage:           124768236Ki
     hugepages-1Gi:               0
     hugepages-2Mi:               0
     memory:                      8162900Ki
     pods:                        250
    Allocatable:
     attachable-volumes-aws-ebs:  39
     cpu:                         1500m
     ephemeral-storage:           124768236Ki
     hugepages-1Gi:               0
     hugepages-2Mi:               0
     memory:                      7548500Ki
     pods:                        250
    -------                               ----                           ------------  ----------  ---------------  -------------  ---
      default                                 cpumanager-6cqz7               1 (66%)       1 (66%)     1G (12%)         1G (12%)       29m
    
    Allocated resources:
      (Total limits may be over 100 percent, i.e., overcommitted.)
      Resource                    Requests          Limits
      --------                    --------          ------
      cpu                         1440m (96%)       1 (66%)

    This VM has two CPU cores. The system-reserved setting reserves 500 millicores, meaning that half of one core is subtracted from the total capacity of the node to arrive at the Node Allocatable amount. You can see that Allocatable CPU is 1500 millicores. This means you can run one of the CPU Manager pods since each will take one whole core. A whole core is equivalent to 1000 millicores. If you try to schedule a second pod, the system will accept the pod, but it will never be scheduled:

    NAME                    READY   STATUS    RESTARTS   AGE
    cpumanager-6cqz7        1/1     Running   0          33m
    cpumanager-7qc2t        0/1     Pending   0          11s

4.5. Huge pages

Understand and configure huge pages.

4.5.1. What huge pages do

Memory is managed in blocks known as pages. On most systems, a page is 4Ki. 1Mi of memory is equal to 256 pages; 1Gi of memory is 256,000 pages, and so on. CPUs have a built-in memory management unit that manages a list of these pages in hardware. The Translation Lookaside Buffer (TLB) is a small hardware cache of virtual-to-physical page mappings. If the virtual address passed in a hardware instruction can be found in the TLB, the mapping can be determined quickly. If not, a TLB miss occurs, and the system falls back to slower, software-based address translation, resulting in performance issues. Since the size of the TLB is fixed, the only way to reduce the chance of a TLB miss is to increase the page size.

A huge page is a memory page that is larger than 4Ki. On x86_64 architectures, there are two common huge page sizes: 2Mi and 1Gi. Sizes vary on other architectures. In order to use huge pages, code must be written so that applications are aware of them. Transparent Huge Pages (THP) attempt to automate the management of huge pages without application knowledge, but they have limitations. In particular, they are limited to 2Mi page sizes. THP can lead to performance degradation on nodes with high memory utilization or fragmentation due to defragmenting efforts of THP, which can lock memory pages. For this reason, some applications may be designed to (or recommend) usage of pre-allocated huge pages instead of THP.

4.5.2. How huge pages are consumed by apps

Nodes must pre-allocate huge pages in order for the node to report its huge page capacity. A node can only pre-allocate huge pages for a single size.

Huge pages can be consumed through container-level resource requirements using the resource name hugepages-<size>, where size is the most compact binary notation using integer values supported on a particular node. For example, if a node supports 2048KiB page sizes, it exposes a schedulable resource hugepages-2Mi. Unlike CPU or memory, huge pages do not support over-commitment.

apiVersion: v1
kind: Pod
metadata:
  generateName: hugepages-volume-
spec:
  containers:
  - securityContext:
      privileged: true
    image: rhel7:latest
    command:
    - sleep
    - inf
    name: example
    volumeMounts:
    - mountPath: /dev/hugepages
      name: hugepage
    resources:
      limits:
        hugepages-2Mi: 100Mi 1
        memory: "1Gi"
        cpu: "1"
  volumes:
  - name: hugepage
    emptyDir:
      medium: HugePages
1
Specify the amount of memory for hugepages as the exact amount to be allocated. Do not specify this value as the amount of memory for hugepages multiplied by the size of the page. For example, given a huge page size of 2MB, if you want to use 100MB of huge-page-backed RAM for your application, then you would allocate 50 huge pages. OpenShift Container Platform handles the math for you. As in the above example, you can specify 100MB directly.

Allocating huge pages of a specific size

Some platforms support multiple huge page sizes. To allocate huge pages of a specific size, precede the huge pages boot command parameters with a huge page size selection parameter hugepagesz=<size>. The <size> value must be specified in bytes with an optional scale suffix [kKmMgG]. The default huge page size can be defined with the default_hugepagesz=<size> boot parameter.

Huge page requirements

  • Huge page requests must equal the limits. This is the default if limits are specified, but requests are not.
  • Huge pages are isolated at a pod scope. Container isolation is planned in a future iteration.
  • EmptyDir volumes backed by huge pages must not consume more huge page memory than the pod request.
  • Applications that consume huge pages via shmget() with SHM_HUGETLB must run with a supplemental group that matches proc/sys/vm/hugetlb_shm_group.

4.5.3. Configuring huge pages

Nodes must pre-allocate huge pages used in an OpenShift Container Platform cluster. There are two ways of reserving huge pages: at boot time and at run time. Reserving at boot time increases the possibility of success because the memory has not yet been significantly fragmented. The Node Tuning Operator currently supports boot time allocation of huge pages on specific nodes.

4.5.3.1. At boot time

Procedure

To minimize node reboots, the order of the steps below needs to be followed:

  1. Label all nodes that need the same huge pages setting by a label.

    $ oc label node <node_using_hugepages> node-role.kubernetes.io/worker-hp=
  2. Create a file with the following content and name it hugepages-tuned-boottime.yaml:

    apiVersion: tuned.openshift.io/v1
    kind: Tuned
    metadata:
      name: hugepages 1
      namespace: openshift-cluster-node-tuning-operator
    spec:
      profile: 2
      - data: |
          [main]
          summary=Boot time configuration for hugepages
          include=openshift-node
          [bootloader]
          cmdline_openshift_node_hugepages=hugepagesz=2M hugepages=50 3
        name: openshift-node-hugepages
    
      recommend:
      - machineConfigLabels: 4
          machineconfiguration.openshift.io/role: "worker-hp"
        priority: 30
        profile: openshift-node-hugepages
    1
    Set the name of the Tuned resource to hugepages.
    2
    Set the profile section to allocate huge pages.
    3
    Note the order of parameters is important as some platforms support huge pages of various sizes.
    4
    Enable machine config pool based matching.
  3. Create the Tuned hugepages profile

    $ oc create -f hugepages-tuned-boottime.yaml
  4. Create a file with the following content and name it hugepages-mcp.yaml:

    apiVersion: machineconfiguration.openshift.io/v1
    kind: MachineConfigPool
    metadata:
      name: worker-hp
      labels:
        worker-hp: ""
    spec:
      machineConfigSelector:
        matchExpressions:
          - {key: machineconfiguration.openshift.io/role, operator: In, values: [worker,worker-hp]}
      nodeSelector:
        matchLabels:
          node-role.kubernetes.io/worker-hp: ""
  5. Create the machine config pool:

    $ oc create -f hugepages-mcp.yaml

Given enough non-fragmented memory, all the nodes in the worker-hp machine config pool should now have 50 2Mi huge pages allocated.

$ oc get node <node_using_hugepages> -o jsonpath="{.status.allocatable.hugepages-2Mi}"
100Mi
Warning

This functionality is currently only supported on Red Hat Enterprise Linux CoreOS (RHCOS) 8.x worker nodes. On Red Hat Enterprise Linux (RHEL) 7.x worker nodes the Tuned [bootloader] plug-in is currently not supported.

4.6. Understanding device plug-ins

The device plug-in provides a consistent and portable solution to consume hardware devices across clusters. The device plug-in provides support for these devices through an extension mechanism, which makes these devices available to Containers, provides health checks of these devices, and securely shares them.

Important

OpenShift Container Platform supports the device plug-in API, but the device plug-in Containers are supported by individual vendors.

A device plug-in is a gRPC service running on the nodes (external to the kubelet) that is responsible for managing specific hardware resources. Any device plug-in must support following remote procedure calls (RPCs):

service DevicePlugin {
      // GetDevicePluginOptions returns options to be communicated with Device
      // Manager
      rpc GetDevicePluginOptions(Empty) returns (DevicePluginOptions) {}

      // ListAndWatch returns a stream of List of Devices
      // Whenever a Device state change or a Device disappears, ListAndWatch
      // returns the new list
      rpc ListAndWatch(Empty) returns (stream ListAndWatchResponse) {}

      // Allocate is called during container creation so that the Device
      // Plug-in can run device specific operations and instruct Kubelet
      // of the steps to make the Device available in the container
      rpc Allocate(AllocateRequest) returns (AllocateResponse) {}

      // PreStartcontainer is called, if indicated by Device Plug-in during
      // registration phase, before each container start. Device plug-in
      // can run device specific operations such as reseting the device
      // before making devices available to the container
      rpc PreStartcontainer(PreStartcontainerRequest) returns (PreStartcontainerResponse) {}
}
Example device plug-ins
Note

For easy device plug-in reference implementation, there is a stub device plug-in in the Device Manager code: vendor/k8s.io/kubernetes/pkg/kubelet/cm/deviceplugin/device_plugin_stub.go.

4.6.1. Methods for deploying a device plug-in

  • Daemon sets are the recommended approach for device plug-in deployments.
  • Upon start, the device plug-in will try to create a UNIX domain socket at /var/lib/kubelet/device-plugin/ on the node to serve RPCs from Device Manager.
  • Since device plug-ins must manage hardware resources, access to the host file system, as well as socket creation, they must be run in a privileged security context.
  • More specific details regarding deployment steps can be found with each device plug-in implementation.

4.6.2. Understanding the Device Manager

Device Manager provides a mechanism for advertising specialized node hardware resources with the help of plug-ins known as device plug-ins.

You can advertise specialized hardware without requiring any upstream code changes.

Important

OpenShift Container Platform supports the device plug-in API, but the device plug-in Containers are supported by individual vendors.

Device Manager advertises devices as Extended Resources. User pods can consume devices, advertised by Device Manager, using the same Limit/Request mechanism, which is used for requesting any other Extended Resource.

Upon start, the device plug-in registers itself with Device Manager invoking Register on the /var/lib/kubelet/device-plugins/kubelet.sock and starts a gRPC service at /var/lib/kubelet/device-plugins/<plugin>.sock for serving Device Manager requests.

Device Manager, while processing a new registration request, invokes ListAndWatch remote procedure call (RPC) at the device plug-in service. In response, Device Manager gets a list of Device objects from the plug-in over a gRPC stream. Device Manager will keep watching on the stream for new updates from the plug-in. On the plug-in side, the plug-in will also keep the stream open and whenever there is a change in the state of any of the devices, a new device list is sent to the Device Manager over the same streaming connection.

While handling a new pod admission request, Kubelet passes requested Extended Resources to the Device Manager for device allocation. Device Manager checks in its database to verify if a corresponding plug-in exists or not. If the plug-in exists and there are free allocatable devices as well as per local cache, Allocate RPC is invoked at that particular device plug-in.

Additionally, device plug-ins can also perform several other device-specific operations, such as driver installation, device initialization, and device resets. These functionalities vary from implementation to implementation.

4.6.3. Enabling Device Manager

Enable Device Manager to implement a device plug-in to advertise specialized hardware without any upstream code changes.

Device Manager provides a mechanism for advertising specialized node hardware resources with the help of plug-ins known as device plug-ins.

  1. Obtain the label associated with the static MachineConfigPool CRD for the type of node you want to configure. Perform one of the following steps:

    1. View the machine config:

      # oc describe machineconfig <name>

      For example:

      # oc describe machineconfig 00-worker

      Example output

      Name:         00-worker
      Namespace:
      Labels:       machineconfiguration.openshift.io/role=worker 1

      1
      Label required for the Device Manager.

Procedure

  1. Create a custom resource (CR) for your configuration change.

    Sample configuration for a Device Manager CR

    apiVersion: machineconfiguration.openshift.io/v1
    kind: KubeletConfig
    metadata:
      name: devicemgr 1
    spec:
      machineConfigPoolSelector:
        matchLabels:
           machineconfiguration.openshift.io: devicemgr 2
      kubeletConfig:
        feature-gates:
          - DevicePlugins=true 3

    1
    Assign a name to CR.
    2
    Enter the label from the Machine Config Pool.
    3
    Set DevicePlugins to 'true`.
  2. Create the Device Manager:

    $ oc create -f devicemgr.yaml

    Example output

    kubeletconfig.machineconfiguration.openshift.io/devicemgr created

  3. Ensure that Device Manager was actually enabled by confirming that /var/lib/kubelet/device-plugins/kubelet.sock is created on the node. This is the UNIX domain socket on which the Device Manager gRPC server listens for new plug-in registrations. This sock file is created when the Kubelet is started only if Device Manager is enabled.

4.7. Taints and tolerations

Understand and work with taints and tolerations.

4.7.1. Understanding taints and tolerations

A taint allows a node to refuse a pod to be scheduled unless that pod has a matching toleration.

You apply taints to a node through the Node specification (NodeSpec) and apply tolerations to a pod through the Pod specification (PodSpec). When you apply a taint a node, the scheduler cannot place a pod on that node unless the pod can tolerate the taint.

Example taint in a node specification

spec:
....
  template:
....
    spec:
      taints:
      - effect: NoExecute
        key: key1
        value: value1
....

Example toleration in a Pod spec

spec:
....
  template:
....
    spec:
      tolerations:
      - key: "key1"
        operator: "Equal"
        value: "value1"
        effect: "NoExecute"
        tolerationSeconds: 3600
....

Taints and tolerations consist of a key, value, and effect.

Table 4.1. Taint and toleration components
ParameterDescription

key

The key is any string, up to 253 characters. The key must begin with a letter or number, and may contain letters, numbers, hyphens, dots, and underscores.

value

The value is any string, up to 63 characters. The value must begin with a letter or number, and may contain letters, numbers, hyphens, dots, and underscores.

effect

The effect is one of the following:

NoSchedule [1]

  • New pods that do not match the taint are not scheduled onto that node.
  • Existing pods on the node remain.

PreferNoSchedule

  • New pods that do not match the taint might be scheduled onto that node, but the scheduler tries not to.
  • Existing pods on the node remain.

NoExecute

  • New pods that do not match the taint cannot be scheduled onto that node.
  • Existing pods on the node that do not have a matching toleration are removed.

operator

Equal

The key/value/effect parameters must match. This is the default.

Exists

The key/effect parameters must match. You must leave a blank value parameter, which matches any.

  1. If you add a NoSchedule taint to a control plane node (also known as the master node) the node must have the node-role.kubernetes.io/master=:NoSchedule taint, which is added by default.

    For example:

    apiVersion: v1
    kind: Node
    metadata:
      annotations:
        machine.openshift.io/machine: openshift-machine-api/ci-ln-62s7gtb-f76d1-v8jxv-master-0
        machineconfiguration.openshift.io/currentConfig: rendered-master-cdc1ab7da414629332cc4c3926e6e59c
    ...
    spec:
      taints:
      - effect: NoSchedule
        key: node-role.kubernetes.io/master
    ...

A toleration matches a taint:

  • If the operator parameter is set to Equal:

    • the key parameters are the same;
    • the value parameters are the same;
    • the effect parameters are the same.
  • If the operator parameter is set to Exists:

    • the key parameters are the same;
    • the effect parameters are the same.

The following taints are built into OpenShift Container Platform:

  • node.kubernetes.io/not-ready: The node is not ready. This corresponds to the node condition Ready=False.
  • node.kubernetes.io/unreachable: The node is unreachable from the node controller. This corresponds to the node condition Ready=Unknown.
  • node.kubernetes.io/memory-pressure: The node has memory pressure issues. This corresponds to the node condition MemoryPressure=True.
  • node.kubernetes.io/disk-pressure: The node has disk pressure issues. This corresponds to the node condition DiskPressure=True.
  • node.kubernetes.io/network-unavailable: The node network is unavailable.
  • node.kubernetes.io/unschedulable: The node is unschedulable.
  • node.cloudprovider.kubernetes.io/uninitialized: When the node controller is started with an external cloud provider, this taint is set on a node to mark it as unusable. After a controller from the cloud-controller-manager initializes this node, the kubelet removes this taint.
  • node.kubernetes.io/pid-pressure: The node has pid pressure. This corresponds to the node condition PIDPressure=True.

    Important

    OpenShift Container Platform does not set a default pid.available evictionHard.

4.7.1.1. Understanding how to use toleration seconds to delay pod evictions

You can specify how long a pod can remain bound to a node before being evicted by specifying the tolerationSeconds parameter in the Pod specification or MachineSet object. If a taint with the NoExecute effect is added to a node, a pod that does tolerate the taint, which has the tolerationSeconds parameter, the pod is not evicted until that time period expires.

Example output

spec:
....
  template:
....
    spec:
      tolerations:
      - key: "key1"
        operator: "Equal"
        value: "value1"
        effect: "NoExecute"
        tolerationSeconds: 3600

Here, if this pod is running but does not have a matching toleration, the pod stays bound to the node for 3,600 seconds and then be evicted. If the taint is removed before that time, the pod is not evicted.

4.7.1.2. Understanding how to use multiple taints

You can put multiple taints on the same node and multiple tolerations on the same pod. OpenShift Container Platform processes multiple taints and tolerations as follows:

  1. Process the taints for which the pod has a matching toleration.
  2. The remaining unmatched taints have the indicated effects on the pod:

    • If there is at least one unmatched taint with effect NoSchedule, OpenShift Container Platform cannot schedule a pod onto that node.
    • If there is no unmatched taint with effect NoSchedule but there is at least one unmatched taint with effect PreferNoSchedule, OpenShift Container Platform tries to not schedule the pod onto the node.
    • If there is at least one unmatched taint with effect NoExecute, OpenShift Container Platform evicts the pod from the node if it is already running on the node, or the pod is not scheduled onto the node if it is not yet running on the node.

      • Pods that do not tolerate the taint are evicted immediately.
      • Pods that tolerate the taint without specifying tolerationSeconds in their Pod specification remain bound forever.
      • Pods that tolerate the taint with a specified tolerationSeconds remain bound for the specified amount of time.

For example:

  • Add the following taints to the node:

    $ oc adm taint nodes node1 key1=value1:NoSchedule
    $ oc adm taint nodes node1 key1=value1:NoExecute
    $ oc adm taint nodes node1 key2=value2:NoSchedule
  • The pod has the following tolerations:

    spec:
    ....
      template:
    ....
        spec:
          tolerations:
          - key: "key1"
            operator: "Equal"
            value: "value1"
            effect: "NoSchedule"
          - key: "key1"
            operator: "Equal"
            value: "value1"
            effect: "NoExecute"

In this case, the pod cannot be scheduled onto the node, because there is no toleration matching the third taint. The pod continues running if it is already running on the node when the taint is added, because the third taint is the only one of the three that is not tolerated by the pod.

4.7.1.3. Understanding pod scheduling and node conditions (taint node by condition)

The Taint Nodes By Condition feature, which is enabled by default, automatically taints nodes that report conditions such as memory pressure and disk pressure. If a node reports a condition, a taint is added until the condition clears. The taints have the NoSchedule effect, which means no pod can be scheduled on the node unless the pod has a matching toleration.

The scheduler checks for these taints on nodes before scheduling pods. If the taint is present, the pod is scheduled on a different node. Because the scheduler checks for taints and not the actual node conditions, you configure the scheduler to ignore some of these node conditions by adding appropriate pod tolerations.

To ensure backward compatibility, the daemon set controller automatically adds the following tolerations to all daemons:

  • node.kubernetes.io/memory-pressure
  • node.kubernetes.io/disk-pressure
  • node.kubernetes.io/unschedulable (1.10 or later)
  • node.kubernetes.io/network-unavailable (host network only)

You can also add arbitrary tolerations to daemon sets.

Note

The control plane also adds the node.kubernetes.io/memory-pressure toleration on pods that have a QoS class. This is because Kubernetes manages pods in the Guaranteed or Burstable QoS classes. The new BestEffort pods do not get scheduled onto the affected node.

4.7.1.4. Understanding evicting pods by condition (taint-based evictions)

The Taint-Based Evictions feature, which is enabled by default, evicts pods from a node that experiences specific conditions, such as not-ready and unreachable. When a node experiences one of these conditions, OpenShift Container Platform automatically adds taints to the node, and starts evicting and rescheduling the pods on different nodes.

Taint Based Evictions have a NoExecute effect, where any pod that does not tolerate the taint is evicted immediately and any pod that does tolerate the taint will never be evicted, unless the pod uses the tolerationSeconds parameter.

The tolerationSeconds parameter allows you to specify how long a pod stays bound to a node that has a node condition. If the condition still exists after the tolerationSeconds period, the taint remains on the node and the pods with a matching toleration are evicted. If the condition clears before the tolerationSeconds period, pods with matching tolerations are not removed.

If you use the tolerationSeconds parameter with no value, pods are never evicted because of the not ready and unreachable node conditions.

Note

OpenShift Container Platform evicts pods in a rate-limited way to prevent massive pod evictions in scenarios such as the master becoming partitioned from the nodes.

By default, if more than 55% of nodes in a given zone are unhealthy, the node lifecycle controller changes that zone’s state to PartialDisruption and the rate of pod evictions is reduced. For small clusters (by default, 50 nodes or less) in this state, nodes in this zone are not tainted and evictions are stopped.

For more information, see Rate limits on eviction in the Kubernetes documentation.

OpenShift Container Platform automatically adds a toleration for node.kubernetes.io/not-ready and node.kubernetes.io/unreachable with tolerationSeconds=300, unless the Pod configuration specifies either toleration.

spec:
....
  template:
....
    spec:
      tolerations:
      - key: node.kubernetes.io/not-ready
        operator: Exists
        effect: NoExecute
        tolerationSeconds: 300 1
      - key: node.kubernetes.io/unreachable
        operator: Exists
        effect: NoExecute
        tolerationSeconds: 300
1
These tolerations ensure that the default pod behavior is to remain bound for five minutes after one of these node conditions problems is detected.

You can configure these tolerations as needed. For example, if you have an application with a lot of local state, you might want to keep the pods bound to node for a longer time in the event of network partition, allowing for the partition to recover and avoiding pod eviction.

Pods spawned by a daemon set are created with NoExecute tolerations for the following taints with no tolerationSeconds:

  • node.kubernetes.io/unreachable
  • node.kubernetes.io/not-ready

As a result, daemon set pods are never evicted because of these node conditions.

4.7.1.5. Tolerating all taints

You can configure a pod to tolerate all taints by adding an operator: "Exists" toleration with no key and value parameters. Pods with this toleration are not removed from a node that has taints.

Pod spec for tolerating all taints

spec:
....
  template:
....
    spec:
      tolerations:
      - operator: "Exists"

4.7.2. Adding taints and tolerations

You add tolerations to pods and taints to nodes to allow the node to control which pods should or should not be scheduled on them. For existing pods and nodes, you should add the toleration to the pod first, then add the taint to the node to avoid pods being removed from the node before you can add the toleration.

Procedure

  1. Add a toleration to a pod by editing the Pod spec to include a tolerations stanza:

    Sample pod configuration file with an Equal operator

    spec:
    ....
      template:
    ....
        spec:
          tolerations:
          - key: "key1" 1
            value: "value1"
            operator: "Equal"
            effect: "NoExecute"
            tolerationSeconds: 3600 2

    1
    The toleration parameters, as described in the Taint and toleration components table.
    2
    The tolerationSeconds parameter specifies how long a pod can remain bound to a node before being evicted.

    For example:

    Sample pod configuration file with an Exists operator

    spec:
    ....
      template:
    ....
        spec:
          tolerations:
          - key: "key1"
            operator: "Exists" 1
            effect: "NoExecute"
            tolerationSeconds: 3600

    1
    The Exists operator does not take a value.

    This example places a taint on node1 that has key key1, value value1, and taint effect NoExecute.

  2. Add a taint to a node by using the following command with the parameters described in the Taint and toleration components table:

    $ oc adm taint nodes <node_name> <key>=<value>:<effect>

    For example:

    $ oc adm taint nodes node1 key1=value1:NoExecute

    This command places a taint on node1 that has key key1, value value1, and effect NoExecute.

    Note

    If you add a NoSchedule taint to a control plane node (also known as the master node) the node must have the node-role.kubernetes.io/master=:NoSchedule taint, which is added by default.

    For example:

    apiVersion: v1
    kind: Node
    metadata:
      annotations:
        machine.openshift.io/machine: openshift-machine-api/ci-ln-62s7gtb-f76d1-v8jxv-master-0
        machineconfiguration.openshift.io/currentConfig: rendered-master-cdc1ab7da414629332cc4c3926e6e59c
    ...
    spec:
      taints:
      - effect: NoSchedule
        key: node-role.kubernetes.io/master
    ...

    The tolerations on the pod match the taint on the node. A pod with either toleration can be scheduled onto node1.

4.7.3. Adding taints and tolerations using a machine set

You can add taints to nodes using a machine set. All nodes associated with the MachineSet object are updated with the taint. Tolerations respond to taints added by a machine set in the same manner as taints added directly to the nodes.

Procedure

  1. Add a toleration to a pod by editing the Pod spec to include a tolerations stanza:

    Sample pod configuration file with Equal operator

    spec:
    ....
      template:
    ....
        spec:
          tolerations:
          - key: "key1" 1
            value: "value1"
            operator: "Equal"
            effect: "NoExecute"
            tolerationSeconds: 3600 2

    1
    The toleration parameters, as described in the Taint and toleration components table.
    2
    The tolerationSeconds parameter specifies how long a pod is bound to a node before being evicted.

    For example:

    Sample pod configuration file with Exists operator

    spec:
      tolerations:
      - key: "key1"
        operator: "Exists"
        effect: "NoExecute"
        tolerationSeconds: 3600

  2. Add the taint to the MachineSet object:

    1. Edit the MachineSet YAML for the nodes you want to taint or you can create a new MachineSet object:

      $ oc edit machineset <machineset>
    2. Add the taint to the spec.template.spec section:

      Example taint in a machine set specification

      spec:
      ....
        template:
      ....
          spec:
            taints:
            - effect: NoExecute
              key: key1
              value: value1
      ....

      This example places a taint that has the key key1, value value1, and taint effect NoExecute on the nodes.

    3. Scale down the machine set to 0:

      $ oc scale --replicas=0 machineset <machineset> -n openshift-machine-api

      Wait for the machines to be removed.

    4. Scale up the machine set as needed:

      $ oc scale --replicas=2 machineset <machineset> -n openshift-machine-api

      Wait for the machines to start. The taint is added to the nodes associated with the MachineSet object.

4.7.4. Binding a user to a node using taints and tolerations

If you want to dedicate a set of nodes for exclusive use by a particular set of users, add a toleration to their pods. Then, add a corresponding taint to those nodes. The pods with the tolerations are allowed to use the tainted nodes, or any other nodes in the cluster.

If you want ensure the pods are scheduled to only those tainted nodes, also add a label to the same set of nodes and add a node affinity to the pods so that the pods can only be scheduled onto nodes with that label.

Procedure

To configure a node so that users can use only that node:

  1. Add a corresponding taint to those nodes:

    For example:

    $ oc adm taint nodes node1 dedicated=groupName:NoSchedule
  2. Add a toleration to the pods by writing a custom admission controller.

4.7.5. Controlling nodes with special hardware using taints and tolerations

In a cluster where a small subset of nodes have specialized hardware, you can use taints and tolerations to keep pods that do not need the specialized hardware off of those nodes, leaving the nodes for pods that do need the specialized hardware. You can also require pods that need specialized hardware to use specific nodes.

You can achieve this by adding a toleration to pods that need the special hardware and tainting the nodes that have the specialized hardware.

Procedure

To ensure nodes with specialized hardware are reserved for specific pods:

  1. Add a toleration to pods that need the special hardware.

    For example:

    spec:
      tolerations:
        - key: "disktype"
          value: "ssd"
          operator: "Equal"
          effect: "NoSchedule"
          tolerationSeconds: 3600
  2. Taint the nodes that have the specialized hardware using one of the following commands:

    $ oc adm taint nodes <node-name> disktype=ssd:NoSchedule

    Or:

    $ oc adm taint nodes <node-name> disktype=ssd:PreferNoSchedule

4.7.6. Removing taints and tolerations

You can remove taints from nodes and tolerations from pods as needed. You should add the toleration to the pod first, then add the taint to the node to avoid pods being removed from the node before you can add the toleration.

Procedure

To remove taints and tolerations:

  1. To remove a taint from a node:

    $ oc adm taint nodes <node-name> <key>-

    For example:

    $ oc adm taint nodes ip-10-0-132-248.ec2.internal key1-

    Example output

    node/ip-10-0-132-248.ec2.internal untainted

  2. To remove a toleration from a pod, edit the Pod spec to remove the toleration:

    spec:
      tolerations:
      - key: "key2"
        operator: "Exists"
        effect: "NoExecute"
        tolerationSeconds: 3600

4.8. Topology Manager

Understand and work with Topology Manager.

4.8.1. Topology Manager policies

Topology Manager aligns Pod resources of all Quality of Service (QoS) classes by collecting topology hints from Hint Providers, such as CPU Manager and Device Manager, and using the collected hints to align the Pod resources.

Note

To align CPU resources with other requested resources in a Pod spec, the CPU Manager must be enabled with the static CPU Manager policy.

Topology Manager supports four allocation policies, which you assign in the cpumanager-enabled custom resource (CR):

none policy
This is the default policy and does not perform any topology alignment.
best-effort policy
For each container in a pod with the best-effort topology management policy, kubelet calls each Hint Provider to discover their resource availability. Using this information, the Topology Manager stores the preferred NUMA Node affinity for that container. If the affinity is not preferred, Topology Manager stores this and admits the pod to the node.
restricted policy
For each container in a pod with the restricted topology management policy, kubelet calls each Hint Provider to discover their resource availability. Using this information, the Topology Manager stores the preferred NUMA Node affinity for that container. If the affinity is not preferred, Topology Manager rejects this pod from the node, resulting in a pod in a Terminated state with a pod admission failure.
single-numa-node policy
For each container in a pod with the single-numa-node topology management policy, kubelet calls each Hint Provider to discover their resource availability. Using this information, the Topology Manager determines if a single NUMA Node affinity is possible. If it is, the pod is admitted to the node. If a single NUMA Node affinity is not possible, the Topology Manager rejects the pod from the node. This results in a pod in a Terminated state with a pod admission failure.

4.8.2. Setting up Topology Manager

To use Topology Manager, you must configure an allocation policy in the cpumanager-enabled custom resource (CR). This file might exist if you have set up CPU Manager. If the file does not exist, you can create the file.

Prequisites

  • Configure the CPU Manager policy to be static. Refer to Using CPU Manager in the Scalability and Performance section.

Procedure

To activate Topololgy Manager:

  1. Configure the Topology Manager allocation policy in the cpumanager-enabled custom resource (CR).

    $ oc edit KubeletConfig cpumanager-enabled
    apiVersion: machineconfiguration.openshift.io/v1
    kind: KubeletConfig
    metadata:
      name: cpumanager-enabled
    spec:
      machineConfigPoolSelector:
        matchLabels:
          custom-kubelet: cpumanager-enabled
      kubeletConfig:
         cpuManagerPolicy: static 1
         cpuManagerReconcilePeriod: 5s
         topologyManagerPolicy: single-numa-node 2
    1
    This parameter must be static.
    2
    Specify your selected Topology Manager allocation policy. Here, the policy is single-numa-node. Acceptable values are: default, best-effort, restricted, single-numa-node.

4.8.3. Pod interactions with Topology Manager policies

The example Pod specs below help illustrate pod interactions with Topology Manager.

The following pod runs in the BestEffort QoS class because no resource requests or limits are specified.

spec:
  containers:
  - name: nginx
    image: nginx

The next pod runs in the Burstable QoS class because requests are less than limits.

spec:
  containers:
  - name: nginx
    image: nginx
    resources:
      limits:
        memory: "200Mi"
      requests:
        memory: "100Mi"

If the selected policy is anything other than none, Topology Manager would not consider either of these Pod specifications.

The last example pod below runs in the Guaranteed QoS class because requests are equal to limits.

spec:
  containers:
  - name: nginx
    image: nginx
    resources:
      limits:
        memory: "200Mi"
        cpu: "2"
        example.com/device: "1"
      requests:
        memory: "200Mi"
        cpu: "2"
        example.com/device: "1"

Topology Manager would consider this pod. The Topology Manager consults the CPU Manager static policy, which returns the topology of available CPUs. Topology Manager also consults Device Manager to discover the topology of available devices for example.com/device.

Topology Manager will use this information to store the best Topology for this container. In the case of this pod, CPU Manager and Device Manager will use this stored information at the resource allocation stage.

4.9. Resource requests and overcommitment

For each compute resource, a container may specify a resource request and limit. Scheduling decisions are made based on the request to ensure that a node has enough capacity available to meet the requested value. If a container specifies limits, but omits requests, the requests are defaulted to the limits. A container is not able to exceed the specified limit on the node.

The enforcement of limits is dependent upon the compute resource type. If a container makes no request or limit, the container is scheduled to a node with no resource guarantees. In practice, the container is able to consume as much of the specified resource as is available with the lowest local priority. In low resource situations, containers that specify no resource requests are given the lowest quality of service.

Scheduling is based on resources requested, while quota and hard limits refer to resource limits, which can be set higher than requested resources. The difference between request and limit determines the level of overcommit; for instance, if a container is given a memory request of 1Gi and a memory limit of 2Gi, it is scheduled based on the 1Gi request being available on the node, but could use up to 2Gi; so it is 200% overcommitted.

4.10. Cluster-level overcommit using the Cluster Resource Override Operator

The Cluster Resource Override Operator is an admission webhook that allows you to control the level of overcommit and manage container density across all the nodes in your cluster. The Operator controls how nodes in specific projects can exceed defined memory and CPU limits.

You must install the Cluster Resource Override Operator using the OpenShift Container Platform console or CLI as shown in the following sections. During the installation, you create a ClusterResourceOverride custom resource (CR), where you set the level of overcommit, as shown in the following example:

apiVersion: operator.autoscaling.openshift.io/v1
kind: ClusterResourceOverride
metadata:
    name: cluster 1
spec:
  podResourceOverride:
    spec:
      memoryRequestToLimitPercent: 50 2
      cpuRequestToLimitPercent: 25 3
      limitCPUToMemoryPercent: 200 4
1
The name must be cluster.
2
Optional. If a container memory limit has been specified or defaulted, the memory request is overridden to this percentage of the limit, between 1-100. The default is 50.
3
Optional. If a container CPU limit has been specified or defaulted, the CPU request is overridden to this percentage of the limit, between 1-100. The default is 25.
4
Optional. If a container memory limit has been specified or defaulted, the CPU limit is overridden to a percentage of the memory limit, if specified. Scaling 1Gi of RAM at 100 percent is equal to 1 CPU core. This is processed prior to overriding the CPU request (if configured). The default is 200.
Note

The Cluster Resource Override Operator overrides have no effect if limits have not been set on containers. Create a LimitRange object with default limits per individual project or configure limits in Pod specs for the overrides to apply.

When configured, overrides can be enabled per-project by applying the following label to the Namespace object for each project:

apiVersion: v1
kind: Namespace
metadata:

....

  labels:
    clusterresourceoverrides.admission.autoscaling.openshift.io/enabled: "true"

....

The Operator watches for the ClusterResourceOverride CR and ensures that the ClusterResourceOverride admission webhook is installed into the same namespace as the operator.

4.10.1. Installing the Cluster Resource Override Operator using the web console

You can use the OpenShift Container Platform web console to install the Cluster Resource Override Operator to help control overcommit in your cluster.

Prerequisites

  • The Cluster Resource Override Operator has no effect if limits have not been set on containers. You must specify default limits for a project using a LimitRange object or configure limits in Pod specs for the overrides to apply.

Procedure

To install the Cluster Resource Override Operator using the OpenShift Container Platform web console:

  1. In the OpenShift Container Platform web console, navigate to HomeProjects

    1. Click Create Project.
    2. Specify clusterresourceoverride-operator as the name of the project.
    3. Click Create.
  2. Navigate to OperatorsOperatorHub.

    1. Choose ClusterResourceOverride Operator from the list of available Operators and click Install.
    2. On the Install Operator page, make sure A specific Namespace on the cluster is selected for Installation Mode.
    3. Make sure clusterresourceoverride-operator is selected for Installed Namespace.
    4. Select an Update Channel and Approval Strategy.
    5. Click Install.
  3. On the Installed Operators page, click ClusterResourceOverride.

    1. On the ClusterResourceOverride Operator details page, click Create Instance.
    2. On the Create ClusterResourceOverride page, edit the YAML template to set the overcommit values as needed:

      apiVersion: operator.autoscaling.openshift.io/v1
      kind: ClusterResourceOverride
      metadata:
        name: cluster 1
      spec:
        podResourceOverride:
          spec:
            memoryRequestToLimitPercent: 50 2
            cpuRequestToLimitPercent: 25 3
            limitCPUToMemoryPercent: 200 4
      1
      The name must be cluster.
      2
      Optional. Specify the percentage to override the container memory limit, if used, between 1-100. The default is 50.
      3
      Optional. Specify the percentage to override the container CPU limit, if used, between 1-100. The default is 25.
      4
      Optional. Specify the percentage to override the container memory limit, if used. Scaling 1Gi of RAM at 100 percent is equal to 1 CPU core. This is processed prior to overriding the CPU request, if configured. The default is 200.
    3. Click Create.
  4. Check the current state of the admission webhook by checking the status of the cluster custom resource:

    1. On the ClusterResourceOverride Operator page, click cluster.
    2. On the ClusterResourceOverride Details age, click YAML. The mutatingWebhookConfigurationRef section appears when the webhook is called.

      apiVersion: operator.autoscaling.openshift.io/v1
      kind: ClusterResourceOverride
      metadata:
        annotations:
          kubectl.kubernetes.io/last-applied-configuration: |
            {"apiVersion":"operator.autoscaling.openshift.io/v1","kind":"ClusterResourceOverride","metadata":{"annotations":{},"name":"cluster"},"spec":{"podResourceOverride":{"spec":{"cpuRequestToLimitPercent":25,"limitCPUToMemoryPercent":200,"memoryRequestToLimitPercent":50}}}}
        creationTimestamp: "2019-12-18T22:35:02Z"
        generation: 1
        name: cluster
        resourceVersion: "127622"
        selfLink: /apis/operator.autoscaling.openshift.io/v1/clusterresourceoverrides/cluster
        uid: 978fc959-1717-4bd1-97d0-ae00ee111e8d
      spec:
        podResourceOverride:
          spec:
            cpuRequestToLimitPercent: 25
            limitCPUToMemoryPercent: 200
            memoryRequestToLimitPercent: 50
      status:
      
      ....
      
          mutatingWebhookConfigurationRef: 1
            apiVersion: admissionregistration.k8s.io/v1beta1
            kind: MutatingWebhookConfiguration
            name: clusterresourceoverrides.admission.autoscaling.openshift.io
            resourceVersion: "127621"
            uid: 98b3b8ae-d5ce-462b-8ab5-a729ea8f38f3
      
      ....
      1
      Reference to the ClusterResourceOverride admission webhook.

4.10.2. Installing the Cluster Resource Override Operator using the CLI

You can use the OpenShift Container Platform CLI to install the Cluster Resource Override Operator to help control overcommit in your cluster.

Prerequisites

  • The Cluster Resource Override Operator has no effect if limits have not been set on containers. You must specify default limits for a project using a LimitRange object or configure limits in Pod specs for the overrides to apply.

Procedure

To install the Cluster Resource Override Operator using the CLI:

  1. Create a namespace for the Cluster Resource Override Operator:

    1. Create a Namespace object YAML file (for example, cro-namespace.yaml) for the Cluster Resource Override Operator:

      apiVersion: v1
      kind: Namespace
      metadata:
        name: clusterresourceoverride-operator
    2. Create the namespace:

      $ oc create -f <file-name>.yaml

      For example:

      $ oc create -f cro-namespace.yaml
  2. Create an Operator group:

    1. Create an OperatorGroup object YAML file (for example, cro-og.yaml) for the Cluster Resource Override Operator:

      apiVersion: operators.coreos.com/v1
      kind: OperatorGroup
      metadata:
        name: clusterresourceoverride-operator
        namespace: clusterresourceoverride-operator
      spec:
        targetNamespaces:
          - clusterresourceoverride-operator
    2. Create the Operator Group:

      $ oc create -f <file-name>.yaml

      For example:

      $ oc create -f cro-og.yaml
  3. Create a subscription:

    1. Create a Subscription object YAML file (for example, cro-sub.yaml) for the Cluster Resource Override Operator:

      apiVersion: operators.coreos.com/v1alpha1
      kind: Subscription
      metadata:
        name: clusterresourceoverride
        namespace: clusterresourceoverride-operator
      spec:
        channel: "4.6"
        name: clusterresourceoverride
        source: redhat-operators
        sourceNamespace: openshift-marketplace
    2. Create the subscription:

      $ oc create -f <file-name>.yaml

      For example:

      $ oc create -f cro-sub.yaml
  4. Create a ClusterResourceOverride custom resource (CR) object in the clusterresourceoverride-operator namespace:

    1. Change to the clusterresourceoverride-operator namespace.

      $ oc project clusterresourceoverride-operator
    2. Create a ClusterResourceOverride object YAML file (for example, cro-cr.yaml) for the Cluster Resource Override Operator:

      apiVersion: operator.autoscaling.openshift.io/v1
      kind: ClusterResourceOverride
      metadata:
          name: cluster 1
      spec:
        podResourceOverride:
          spec:
            memoryRequestToLimitPercent: 50 2
            cpuRequestToLimitPercent: 25 3
            limitCPUToMemoryPercent: 200 4
      1
      The name must be cluster.
      2
      Optional. Specify the percentage to override the container memory limit, if used, between 1-100. The default is 50.
      3
      Optional. Specify the percentage to override the container CPU limit, if used, between 1-100. The default is 25.
      4
      Optional. Specify the percentage to override the container memory limit, if used. Scaling 1Gi of RAM at 100 percent is equal to 1 CPU core. This is processed prior to overriding the CPU request, if configured. The default is 200.
    3. Create the ClusterResourceOverride object:

      $ oc create -f <file-name>.yaml

      For example:

      $ oc create -f cro-cr.yaml
  5. Verify the current state of the admission webhook by checking the status of the cluster custom resource.

    $ oc get clusterresourceoverride cluster -n clusterresourceoverride-operator -o yaml

    The mutatingWebhookConfigurationRef section appears when the webhook is called.

    Example output

    apiVersion: operator.autoscaling.openshift.io/v1
    kind: ClusterResourceOverride
    metadata:
      annotations:
        kubectl.kubernetes.io/last-applied-configuration: |
          {"apiVersion":"operator.autoscaling.openshift.io/v1","kind":"ClusterResourceOverride","metadata":{"annotations":{},"name":"cluster"},"spec":{"podResourceOverride":{"spec":{"cpuRequestToLimitPercent":25,"limitCPUToMemoryPercent":200,"memoryRequestToLimitPercent":50}}}}
      creationTimestamp: "2019-12-18T22:35:02Z"
      generation: 1
      name: cluster
      resourceVersion: "127622"
      selfLink: /apis/operator.autoscaling.openshift.io/v1/clusterresourceoverrides/cluster
      uid: 978fc959-1717-4bd1-97d0-ae00ee111e8d
    spec:
      podResourceOverride:
        spec:
          cpuRequestToLimitPercent: 25
          limitCPUToMemoryPercent: 200
          memoryRequestToLimitPercent: 50
    status:
    
    ....
    
        mutatingWebhookConfigurationRef: 1
          apiVersion: admissionregistration.k8s.io/v1beta1
          kind: MutatingWebhookConfiguration
          name: clusterresourceoverrides.admission.autoscaling.openshift.io
          resourceVersion: "127621"
          uid: 98b3b8ae-d5ce-462b-8ab5-a729ea8f38f3
    
    ....

    1
    Reference to the ClusterResourceOverride admission webhook.

4.10.3. Configuring cluster-level overcommit

The Cluster Resource Override Operator requires a ClusterResourceOverride custom resource (CR) and a label for each project where you want the Operator to control overcommit.

Prerequisites

  • The Cluster Resource Override Operator has no effect if limits have not been set on containers. You must specify default limits for a project using a LimitRange object or configure limits in Pod specs for the overrides to apply.

Procedure

To modify cluster-level overcommit:

  1. Edit the ClusterResourceOverride CR:

    apiVersion: operator.autoscaling.openshift.io/v1
    kind: ClusterResourceOverride
    metadata:
        name: cluster
    spec:
      podResourceOverride:
        spec:
          memoryRequestToLimitPercent: 50 1
          cpuRequestToLimitPercent: 25 2
          limitCPUToMemoryPercent: 200 3
    1
    Optional. Specify the percentage to override the container memory limit, if used, between 1-100. The default is 50.
    2
    Optional. Specify the percentage to override the container CPU limit, if used, between 1-100. The default is 25.
    3
    Optional. Specify the percentage to override the container memory limit, if used. Scaling 1Gi of RAM at 100 percent is equal to 1 CPU core. This is processed prior to overriding the CPU request, if configured. The default is 200.
  2. Ensure the following label has been added to the Namespace object for each project where you want the Cluster Resource Override Operator to control overcommit:

    apiVersion: v1
    kind: Namespace
    metadata:
    
     ...
    
      labels:
        clusterresourceoverrides.admission.autoscaling.openshift.io/enabled: "true" 1
    
     ...
    1
    Add this label to each project.

4.11. Node-level overcommit

You can use various ways to control overcommit on specific nodes, such as quality of service (QOS) guarantees, CPU limits, or reserve resources. You can also disable overcommit for specific nodes and specific projects.

4.11.1. Understanding compute resources and containers

The node-enforced behavior for compute resources is specific to the resource type.

4.11.1.1. Understanding container CPU requests

A container is guaranteed the amount of CPU it requests and is additionally able to consume excess CPU available on the node, up to any limit specified by the container. If multiple containers are attempting to use excess CPU, CPU time is distributed based on the amount of CPU requested by each container.

For example, if one container requested 500m of CPU time and another container requested 250m of CPU time, then any extra CPU time available on the node is distributed among the containers in a 2:1 ratio. If a container specified a limit, it will be throttled not to use more CPU than the specified limit. CPU requests are enforced using the CFS shares support in the Linux kernel. By default, CPU limits are enforced using the CFS quota support in the Linux kernel over a 100ms measuring interval, though this can be disabled.

4.11.1.2. Understanding container memory requests

A container is guaranteed the amount of memory it requests. A container can use more memory than requested, but once it exceeds its requested amount, it could be terminated in a low memory situation on the node. If a container uses less memory than requested, it will not be terminated unless system tasks or daemons need more memory than was accounted for in the node’s resource reservation. If a container specifies a limit on memory, it is immediately terminated if it exceeds the limit amount.

4.11.2. Understanding overcomitment and quality of service classes

A node is overcommitted when it has a pod scheduled that makes no request, or when the sum of limits across all pods on that node exceeds available machine capacity.

In an overcommitted environment, it is possible that the pods on the node will attempt to use more compute resource than is available at any given point in time. When this occurs, the node must give priority to one pod over another. The facility used to make this decision is referred to as a Quality of Service (QoS) Class.

For each compute resource, a container is divided into one of three QoS classes with decreasing order of priority:

Table 4.2. Quality of Service Classes
PriorityClass NameDescription

1 (highest)

Guaranteed

If limits and optionally requests are set (not equal to 0) for all resources and they are equal, then the container is classified as Guaranteed.

2

Burstable

If requests and optionally limits are set (not equal to 0) for all resources, and they are not equal, then the container is classified as Burstable.

3 (lowest)

BestEffort

If requests and limits are not set for any of the resources, then the container is classified as BestEffort.

Memory is an incompressible resource, so in low memory situations, containers that have the lowest priority are terminated first:

  • Guaranteed containers are considered top priority, and are guaranteed to only be terminated if they exceed their limits, or if the system is under memory pressure and there are no lower priority containers that can be evicted.
  • Burstable containers under system memory pressure are more likely to be terminated once they exceed their requests and no other BestEffort containers exist.
  • BestEffort containers are treated with the lowest priority. Processes in these containers are first to be terminated if the system runs out of memory.
4.11.2.1. Understanding how to reserve memory across quality of service tiers

You can use the qos-reserved parameter to specify a percentage of memory to be reserved by a pod in a particular QoS level. This feature attempts to reserve requested resources to exclude pods from lower OoS classes from using resources requested by pods in higher QoS classes.

OpenShift Container Platform uses the qos-reserved parameter as follows:

  • A value of qos-reserved=memory=100% will prevent the Burstable and BestEffort QOS classes from consuming memory that was requested by a higher QoS class. This increases the risk of inducing OOM on BestEffort and Burstable workloads in favor of increasing memory resource guarantees for Guaranteed and Burstable workloads.
  • A value of qos-reserved=memory=50% will allow the Burstable and BestEffort QOS classes to consume half of the memory requested by a higher QoS class.
  • A value of qos-reserved=memory=0% will allow a Burstable and BestEffort QoS classes to consume up to the full node allocatable amount if available, but increases the risk that a Guaranteed workload will not have access to requested memory. This condition effectively disables this feature.

4.11.3. Understanding swap memory and QOS

You can disable swap by default on your nodes to preserve quality of service (QOS) guarantees. Otherwise, physical resources on a node can oversubscribe, affecting the resource guarantees the Kubernetes scheduler makes during pod placement.

For example, if two guaranteed pods have reached their memory limit, each container could start using swap memory. Eventually, if there is not enough swap space, processes in the pods can be terminated due to the system being oversubscribed.

Failing to disable swap results in nodes not recognizing that they are experiencing MemoryPressure, resulting in pods not receiving the memory they made in their scheduling request. As a result, additional pods are placed on the node to further increase memory pressure, ultimately increasing your risk of experiencing a system out of memory (OOM) event.

Important

If swap is enabled, any out-of-resource handling eviction thresholds for available memory will not work as expected. Take advantage of out-of-resource handling to allow pods to be evicted from a node when it is under memory pressure, and rescheduled on an alternative node that has no such pressure.

4.11.4. Understanding nodes overcommitment

In an overcommitted environment, it is important to properly configure your node to provide best system behavior.

When the node starts, it ensures that the kernel tunable flags for memory management are set properly. The kernel should never fail memory allocations unless it runs out of physical memory.

To ensure this behavior, OpenShift Container Platform configures the kernel to always overcommit memory by setting the vm.overcommit_memory parameter to 1, overriding the default operating system setting.

OpenShift Container Platform also configures the kernel not to panic when it runs out of memory by setting the vm.panic_on_oom parameter to 0. A setting of 0 instructs the kernel to call oom_killer in an Out of Memory (OOM) condition, which kills processes based on priority

You can view the current setting by running the following commands on your nodes:

$ sysctl -a |grep commit

Example output

vm.overcommit_memory = 1

$ sysctl -a |grep panic

Example output

vm.panic_on_oom = 0

Note

The above flags should already be set on nodes, and no further action is required.

You can also perform the following configurations for each node:

  • Disable or enforce CPU limits using CPU CFS quotas
  • Reserve resources for system processes
  • Reserve memory across quality of service tiers

4.11.5. Disabling or enforcing CPU limits using CPU CFS quotas

Nodes by default enforce specified CPU limits using the Completely Fair Scheduler (CFS) quota support in the Linux kernel.

If you disable CPU limit enforcement, it is important to understand the impact on your node:

  • If a container has a CPU request, the request continues to be enforced by CFS shares in the Linux kernel.
  • If a container does not have a CPU request, but does have a CPU limit, the CPU request defaults to the specified CPU limit, and is enforced by CFS shares in the Linux kernel.
  • If a container has both a CPU request and limit, the CPU request is enforced by CFS shares in the Linux kernel, and the CPU limit has no impact on the node.

Prerequisites

  1. Obtain the label associated with the static MachineConfigPool CRD for the type of node you want to configure. Perform one of the following steps:

    1. View the machine config pool:

      $ oc describe machineconfigpool <name>

      For example:

      $ oc describe machineconfigpool worker

      Example output

      apiVersion: machineconfiguration.openshift.io/v1
      kind: MachineConfigPool
      metadata:
        creationTimestamp: 2019-02-08T14:52:39Z
        generation: 1
        labels:
          custom-kubelet: small-pods 1

      1
      If a label has been added it appears under labels.
    2. If the label is not present, add a key/value pair:

      $ oc label machineconfigpool worker custom-kubelet=small-pods

Procedure

  1. Create a custom resource (CR) for your configuration change.

    Sample configuration for a disabling CPU limits

    apiVersion: machineconfiguration.openshift.io/v1
    kind: KubeletConfig
    metadata:
      name: disable-cpu-units 1
    spec:
      machineConfigPoolSelector:
        matchLabels:
          custom-kubelet: small-pods 2
      kubeletConfig:
        cpuCfsQuota: 3
          - "false"

    1
    Assign a name to CR.
    2
    Specify the label to apply the configuration change.
    3
    Set the cpuCfsQuota parameter to false.

4.11.6. Reserving resources for system processes

To provide more reliable scheduling and minimize node resource overcommitment, each node can reserve a portion of its resources for use by system daemons that are required to run on your node for your cluster to function. In particular, it is recommended that you reserve resources for incompressible resources such as memory.

Procedure

To explicitly reserve resources for non-pod processes, allocate node resources by specifying resources available for scheduling. For more details, see Allocating Resources for Nodes.

4.11.7. Disabling overcommitment for a node

When enabled, overcommitment can be disabled on each node.

Procedure

To disable overcommitment in a node run the following command on that node:

$ sysctl -w vm.overcommit_memory=0

4.12. Project-level limits

To help control overcommit, you can set per-project resource limit ranges, specifying memory and CPU limits and defaults for a project that overcommit cannot exceed.

For information on project-level resource limits, see Additional resources.

Alternatively, you can disable overcommitment for specific projects.

4.12.1. Disabling overcommitment for a project

When enabled, overcommitment can be disabled per-project. For example, you can allow infrastructure components to be configured independently of overcommitment.

Procedure

To disable overcommitment in a project:

  1. Edit the project object file
  2. Add the following annotation:

    quota.openshift.io/cluster-resource-override-enabled: "false"
  3. Create the project object:

    $ oc create -f <file-name>.yaml

4.13. Freeing node resources using garbage collection

Understand and use garbage collection.

4.13.1. Understanding how terminated containers are removed through garbage collection

Container garbage collection can be performed using eviction thresholds.

When eviction thresholds are set for garbage collection, the node tries to keep any container for any pod accessible from the API. If the pod has been deleted, the containers will be as well. Containers are preserved as long the pod is not deleted and the eviction threshold is not reached. If the node is under disk pressure, it will remove containers and their logs will no longer be accessible using oc logs.

  • eviction-soft - A soft eviction threshold pairs an eviction threshold with a required administrator-specified grace period.
  • eviction-hard - A hard eviction threshold has no grace period, and if observed, OpenShift Container Platform takes immediate action.

The following table lists the eviction thresholds:

Table 4.3. Variables for configuring container garbage collection
Node conditionEviction signalDescription

MemoryPressure

memory.available

The available memory on the node.

DiskPressure

  • nodefs.available
  • nodefs.inodesFree
  • imagefs.available
  • imagefs.inodesFree

The available disk space or inodes on the node root file system, nodefs, or image file system, imagefs.

Note

For evictionHard you must specify all of these parameters. If you do not specify all parameters, only the specified parameters are applied and the garbage collection will not function properly.

If a node is oscillating above and below a soft eviction threshold, but not exceeding its associated grace period, the corresponding node would constantly oscillate between true and false. As a consequence, the scheduler could make poor scheduling decisions.

To protect against this oscillation, use the eviction-pressure-transition-period flag to control how long OpenShift Container Platform must wait before transitioning out of a pressure condition. OpenShift Container Platform will not set an eviction threshold as being met for the specified pressure condition for the period specified before toggling the condition back to false.

4.13.2. Understanding how images are removed through garbage collection

Image garbage collection relies on disk usage as reported by cAdvisor on the node to decide which images to remove from the node.

The policy for image garbage collection is based on two conditions:

  • The percent of disk usage (expressed as an integer) which triggers image garbage collection. The default is 85.
  • The percent of disk usage (expressed as an integer) to which image garbage collection attempts to free. Default is 80.

For image garbage collection, you can modify any of the following variables using a custom resource.

Table 4.4. Variables for configuring image garbage collection
SettingDescription

imageMinimumGCAge

The minimum age for an unused image before the image is removed by garbage collection. The default is 2m.

imageGCHighThresholdPercent

The percent of disk usage, expressed as an integer, which triggers image garbage collection. The default is 85.

imageGCLowThresholdPercent

The percent of disk usage, expressed as an integer, to which image garbage collection attempts to free. The default is 80.

Two lists of images are retrieved in each garbage collector run:

  1. A list of images currently running in at least one pod.
  2. A list of images available on a host.

As new containers are run, new images appear. All images are marked with a time stamp. If the image is running (the first list above) or is newly detected (the second list above), it is marked with the current time. The remaining images are already marked from the previous spins. All images are then sorted by the time stamp.

Once the collection starts, the oldest images get deleted first until the stopping criterion is met.

4.13.3. Configuring garbage collection for containers and images

As an administrator, you can configure how OpenShift Container Platform performs garbage collection by creating a kubeletConfig object for each machine config pool.

Note

OpenShift Container Platform supports only one kubeletConfig object for each machine config pool.

You can configure any combination of the following:

  • Soft eviction for containers
  • Hard eviction for containers
  • Eviction for images

Prerequisites

  1. Obtain the label associated with the static MachineConfigPool CRD for the type of node you want to configure. Perform one of the following steps:

    1. View the machine config pool:

      $ oc describe machineconfigpool <name>

      For example:

      $ oc describe machineconfigpool worker

      Example output

      Name:         worker
      Namespace:
      Labels:       custom-kubelet=small-pods 1

      1
      If a label has been added it appears under Labels.
    2. If the label is not present, add a key/value pair:

      $ oc label machineconfigpool worker custom-kubelet=small-pods

Procedure

  1. Create a custom resource (CR) for your configuration change.

    Important

    If there is one file system, or if /var/lib/kubelet and /var/lib/containers/ are in the same file system, the settings with the highest values trigger evictions, as those are met first. The file system triggers the eviction.

    Sample configuration for a container garbage collection CR:

    apiVersion: machineconfiguration.openshift.io/v1
    kind: KubeletConfig
    metadata:
      name: worker-kubeconfig 1
    spec:
      machineConfigPoolSelector:
        matchLabels:
          custom-kubelet: small-pods 2
      kubeletConfig:
        evictionSoft: 3
          memory.available: "500Mi" 4
          nodefs.available: "10%"
          nodefs.inodesFree: "5%"
          imagefs.available: "15%"
          imagefs.inodesFree: "10%"
        evictionSoftGracePeriod:  5
          memory.available: "1m30s"
          nodefs.available: "1m30s"
          nodefs.inodesFree: "1m30s"
          imagefs.available: "1m30s"
          imagefs.inodesFree: "1m30s"
        evictionHard: 6
          memory.available: "200Mi"
          nodefs.available: "5%"
          nodefs.inodesFree: "4%"
          imagefs.available: "10%"
          imagefs.inodesFree: "5%"
        evictionPressureTransitionPeriod: 0s 7
        imageMinimumGCAge: 5m 8
        imageGCHighThresholdPercent: 80 9
        imageGCLowThresholdPercent: 75 10

    1
    Name for the object.
    2
    Selector label.
    3
    Type of eviction: evictionSoft or evictionHard.
    4
    Eviction thresholds based on a specific eviction trigger signal.
    5
    Grace periods for the soft eviction. This parameter does not apply to eviction-hard.
    6
    Eviction thresholds based on a specific eviction trigger signal. For evictionHard you must specify all of these parameters. If you do not specify all parameters, only the specified parameters are applied and the garbage collection will not function properly.
    7
    The duration to wait before transitioning out of an eviction pressure condition.
    8
    The minimum age for an unused image before the image is removed by garbage collection.
    9
    The percent of disk usage (expressed as an integer) that triggers image garbage collection.
    10
    The percent of disk usage (expressed as an integer) that image garbage collection attempts to free.
  2. Create the object:

    $ oc create -f <file-name>.yaml

    For example:

    $ oc create -f gc-container.yaml

    Example output

    kubeletconfig.machineconfiguration.openshift.io/gc-container created

  3. Verify that garbage collection is active. The Machine Config Pool you specified in the custom resource appears with UPDATING as 'true` until the change is fully implemented:

    $ oc get machineconfigpool

    Example output

    NAME     CONFIG                                   UPDATED   UPDATING
    master   rendered-master-546383f80705bd5aeaba93   True      False
    worker   rendered-worker-b4c51bb33ccaae6fc4a6a5   False     True

4.14. Using the Node Tuning Operator

Understand and use the Node Tuning Operator.

The Node Tuning Operator helps you manage node-level tuning by orchestrating the Tuned daemon. The majority of high-performance applications require some level of kernel tuning. The Node Tuning Operator provides a unified management interface to users of node-level sysctls and more flexibility to add custom tuning specified by user needs.

The Operator manages the containerized Tuned daemon for OpenShift Container Platform as a Kubernetes daemon set. It ensures the custom tuning specification is passed to all containerized Tuned daemons running in the cluster in the format that the daemons understand. The daemons run on all nodes in the cluster, one per node.

Node-level settings applied by the containerized Tuned daemon are rolled back on an event that triggers a profile change or when the containerized Tuned daemon is terminated gracefully by receiving and handling a termination signal.

The Node Tuning Operator is part of a standard OpenShift Container Platform installation in version 4.1 and later.

4.14.1. Accessing an example Node Tuning Operator specification

Use this process to access an example Node Tuning Operator specification.

Procedure

  1. Run:

    $ oc get Tuned/default -o yaml -n openshift-cluster-node-tuning-operator

The default CR is meant for delivering standard node-level tuning for the OpenShift Container Platform platform and it can only be modified to set the Operator Management state. Any other custom changes to the default CR will be overwritten by the Operator. For custom tuning, create your own Tuned CRs. Newly created CRs will be combined with the default CR and custom tuning applied to OpenShift Container Platform nodes based on node or pod labels and profile priorities.

Warning

While in certain situations the support for pod labels can be a convenient way of automatically delivering required tuning, this practice is discouraged and strongly advised against, especially in large-scale clusters. The default Tuned CR ships without pod label matching. If a custom profile is created with pod label matching, then the functionality will be enabled at that time. The pod label functionality might be deprecated in future versions of the Node Tuning Operator.

4.14.2. Custom tuning specification

The custom resource (CR) for the Operator has two major sections. The first section, profile:, is a list of Tuned profiles and their names. The second, recommend:, defines the profile selection logic.

Multiple custom tuning specifications can co-exist as multiple CRs in the Operator’s namespace. The existence of new CRs or the deletion of old CRs is detected by the Operator. All existing custom tuning specifications are merged and appropriate objects for the containerized Tuned daemons are updated.

Management state

The Operator Management state is set by adjusting the default Tuned CR. By default, the Operator is in the Managed state and the spec.managementState field is not present in the default Tuned CR. Valid values for the Operator Management state are as follows:

  • Managed: the Operator will update its operands as configuration resources are updated
  • Unmanaged: the Operator will ignore changes to the configuration resources
  • Removed: the Operator will remove its operands and resources the Operator provisioned

Profile data

The profile: section lists Tuned profiles and their names.

profile:
- name: tuned_profile_1
  data: |
    # Tuned profile specification
    [main]
    summary=Description of tuned_profile_1 profile

    [sysctl]
    net.ipv4.ip_forward=1
    # ... other sysctl's or other Tuned daemon plugins supported by the containerized Tuned

# ...

- name: tuned_profile_n
  data: |
    # Tuned profile specification
    [main]
    summary=Description of tuned_profile_n profile

    # tuned_profile_n profile settings

Recommended profiles

The profile: selection logic is defined by the recommend: section of the CR. The recommend: section is a list of items to recommend the profiles based on a selection criteria.

recommend:
<recommend-item-1>
# ...
<recommend-item-n>

The individual items of the list:

- machineConfigLabels: 1
    <mcLabels> 2
  match: 3
    <match> 4
  priority: <priority> 5
  profile: <tuned_profile_name> 6
1
Optional.
2
A dictionary of key/value MachineConfig labels. The keys must be unique.
3
If omitted, profile match is assumed unless a profile with a higher priority matches first or machineConfigLabels is set.
4
An optional list.
5
Profile ordering priority. Lower numbers mean higher priority (0 is the highest priority).
6
A Tuned profile to apply on a match. For example tuned_profile_1.

<match> is an optional list recursively defined as follows:

- label: <label_name> 1
  value: <label_value> 2
  type: <label_type> 3
    <match> 4
1
Node or pod label name.
2
Optional node or pod label value. If omitted, the presence of <label_name> is enough to match.
3
Optional object type (node or pod). If omitted, node is assumed.
4
An optional <match> list.

If <match> is not omitted, all nested <match> sections must also evaluate to true. Otherwise, false is assumed and the profile with the respective <match> section will not be applied or recommended. Therefore, the nesting (child <match> sections) works as logical AND operator. Conversely, if any item of the <match> list matches, the entire <match> list evaluates to true. Therefore, the list acts as logical OR operator.

If machineConfigLabels is defined, machine config pool based matching is turned on for the given recommend: list item. <mcLabels> specifies the labels for a machine config. The machine config is created automatically to apply host settings, such as kernel boot parameters, for the profile <tuned_profile_name>. This involves finding all machine config pools with machine config selector matching <mcLabels> and setting the profile <tuned_profile_name> on all nodes that are assigned the found machine config pools. To target nodes that have both master and worker roles, you must use the master role.

The list items match and machineConfigLabels are connected by the logical OR operator. The match item is evaluated first in a short-circuit manner. Therefore, if it evaluates to true, the machineConfigLabels item is not considered.

Important

When using machine config pool based matching, it is advised to group nodes with the same hardware configuration into the same machine config pool. Not following this practice might result in Tuned operands calculating conflicting kernel parameters for two or more nodes sharing the same machine config pool.

Example: node or pod label based matching

- match:
  - label: tuned.openshift.io/elasticsearch
    match:
    - label: node-role.kubernetes.io/master
    - label: node-role.kubernetes.io/infra
    type: pod
  priority: 10
  profile: openshift-control-plane-es
- match:
  - label: node-role.kubernetes.io/master
  - label: node-role.kubernetes.io/infra
  priority: 20
  profile: openshift-control-plane
- priority: 30
  profile: openshift-node

The CR above is translated for the containerized Tuned daemon into its recommend.conf file based on the profile priorities. The profile with the highest priority (10) is openshift-control-plane-es and, therefore, it is considered first. The containerized Tuned daemon running on a given node looks to see if there is a pod running on the same node with the tuned.openshift.io/elasticsearch label set. If not, the entire <match> section evaluates as false. If there is such a pod with the label, in order for the <match> section to evaluate to true, the node label also needs to be node-role.kubernetes.io/master or node-role.kubernetes.io/infra.

If the labels for the profile with priority 10 matched, openshift-control-plane-es profile is applied and no other profile is considered. If the node/pod label combination did not match, the second highest priority profile (openshift-control-plane) is considered. This profile is applied if the containerized Tuned pod runs on a node with labels node-role.kubernetes.io/master or node-role.kubernetes.io/infra.

Finally, the profile openshift-node has the lowest priority of 30. It lacks the <match> section and, therefore, will always match. It acts as a profile catch-all to set openshift-node profile, if no other profile with higher priority matches on a given node.

Decision workflow

Example: machine config pool based matching

apiVersion: tuned.openshift.io/v1
kind: Tuned
metadata:
  name: openshift-node-custom
  namespace: openshift-cluster-node-tuning-operator
spec:
  profile:
  - data: |
      [main]
      summary=Custom OpenShift node profile with an additional kernel parameter
      include=openshift-node
      [bootloader]
      cmdline_openshift_node_custom=+skew_tick=1
    name: openshift-node-custom

  recommend:
  - machineConfigLabels:
      machineconfiguration.openshift.io/role: "worker-custom"
    priority: 20
    profile: openshift-node-custom

To minimize node reboots, label the target nodes with a label the machine config pool’s node selector will match, then create the Tuned CR above and finally create the custom machine config pool itself.

4.14.3. Default profiles set on a cluster

The following are the default profiles set on a cluster.

apiVersion: tuned.openshift.io/v1
kind: Tuned
metadata:
  name: default
  namespace: openshift-cluster-node-tuning-operator
spec:
  profile:
  - name: "openshift"
    data: |
      [main]
      summary=Optimize systems running OpenShift (parent profile)
      include=${f:virt_check:virtual-guest:throughput-performance}

      [selinux]
      avc_cache_threshold=8192

      [net]
      nf_conntrack_hashsize=131072

      [sysctl]
      net.ipv4.ip_forward=1
      kernel.pid_max=>4194304
      net.netfilter.nf_conntrack_max=1048576
      net.ipv4.conf.all.arp_announce=2
      net.ipv4.neigh.default.gc_thresh1=8192
      net.ipv4.neigh.default.gc_thresh2=32768
      net.ipv4.neigh.default.gc_thresh3=65536
      net.ipv6.neigh.default.gc_thresh1=8192
      net.ipv6.neigh.default.gc_thresh2=32768
      net.ipv6.neigh.default.gc_thresh3=65536
      vm.max_map_count=262144

      [sysfs]
      /sys/module/nvme_core/parameters/io_timeout=4294967295
      /sys/module/nvme_core/parameters/max_retries=10

  - name: "openshift-control-plane"
    data: |
      [main]
      summary=Optimize systems running OpenShift control plane
      include=openshift

      [sysctl]
      # ktune sysctl settings, maximizing i/o throughput
      #
      # Minimal preemption granularity for CPU-bound tasks:
      # (default: 1 msec#  (1 + ilog(ncpus)), units: nanoseconds)
      kernel.sched_min_granularity_ns=10000000
      # The total time the scheduler will consider a migrated process
      # "cache hot" and thus less likely to be re-migrated
      # (system default is 500000, i.e. 0.5 ms)
      kernel.sched_migration_cost_ns=5000000
      # SCHED_OTHER wake-up granularity.
      #
      # Preemption granularity when tasks wake up.  Lower the value to
      # improve wake-up latency and throughput for latency critical tasks.
      kernel.sched_wakeup_granularity_ns=4000000

  - name: "openshift-node"
    data: |
      [main]
      summary=Optimize systems running OpenShift nodes
      include=openshift

      [sysctl]
      net.ipv4.tcp_fastopen=3
      fs.inotify.max_user_watches=65536
      fs.inotify.max_user_instances=8192

  recommend:
  - profile: "openshift-control-plane"
    priority: 30
    match:
    - label: "node-role.kubernetes.io/master"
    - label: "node-role.kubernetes.io/infra"

  - profile: "openshift-node"
    priority: 40

4.14.4. Supported Tuned daemon plug-ins

Excluding the [main] section, the following Tuned plug-ins are supported when using custom profiles defined in the profile: section of the Tuned CR:

  • audio
  • cpu
  • disk
  • eeepc_she
  • modules
  • mounts
  • net
  • scheduler
  • scsi_host
  • selinux
  • sysctl
  • sysfs
  • usb
  • video
  • vm

There is some dynamic tuning functionality provided by some of these plug-ins that is not supported. The following Tuned plug-ins are currently not supported:

  • bootloader
  • script
  • systemd

See Available Tuned Plug-ins and Getting Started with Tuned for more information.

4.15. Configuring the maximum number of pods per node

Two parameters control the maximum number of pods that can be scheduled to a node: podsPerCore and maxPods. If you use both options, the lower of the two limits the number of pods on a node.

For example, if podsPerCore is set to 10 on a node with 4 processor cores, the maximum number of pods allowed on the node will be 40.

Prerequisites

  1. Obtain the label associated with the static MachineConfigPool CRD for the type of node you want to configure. Perform one of the following steps:

    1. View the machine config pool:

      $ oc describe machineconfigpool <name>

      For example:

      $ oc describe machineconfigpool worker

      Example output

      apiVersion: machineconfiguration.openshift.io/v1
      kind: MachineConfigPool
      metadata:
        creationTimestamp: 2019-02-08T14:52:39Z
        generation: 1
        labels:
          custom-kubelet: small-pods 1

      1
      If a label has been added it appears under labels.
    2. If the label is not present, add a key/value pair:

      $ oc label machineconfigpool worker custom-kubelet=small-pods

Procedure

  1. Create a custom resource (CR) for your configuration change.

    Sample configuration for a max-pods CR

    apiVersion: machineconfiguration.openshift.io/v1
    kind: KubeletConfig
    metadata:
      name: set-max-pods 1
    spec:
      machineConfigPoolSelector:
        matchLabels:
          custom-kubelet: small-pods 2
      kubeletConfig:
        podsPerCore: 10 3
        maxPods: 250 4

    1
    Assign a name to CR.
    2
    Specify the label to apply the configuration change.
    3
    Specify the number of pods the node can run based on the number of processor cores on the node.
    4
    Specify the number of pods the node can run to a fixed value, regardless of the properties of the node.
    Note

    Setting podsPerCore to 0 disables this limit.

    In the above example, the default value for podsPerCore is 10 and the default value for maxPods is 250. This means that unless the node has 25 cores or more, by default, podsPerCore will be the limiting factor.

  2. List the MachineConfigPool CRDs to see if the change is applied. The UPDATING column reports True if the change is picked up by the Machine Config Controller:

    $ oc get machineconfigpools

    Example output

    NAME     CONFIG                        UPDATED   UPDATING   DEGRADED
    master   master-9cc2c72f205e103bb534   False     False      False
    worker   worker-8cecd1236b33ee3f8a5e   False     True       False

    Once the change is complete, the UPDATED column reports True.

    $ oc get machineconfigpools

    Example output

    NAME     CONFIG                        UPDATED   UPDATING   DEGRADED
    master   master-9cc2c72f205e103bb534   False     True       False
    worker   worker-8cecd1236b33ee3f8a5e   True      False      False

Chapter 5. Post-installation network configuration

After installing OpenShift Container Platform, you can further expand and customize your network to your requirements.

5.1. Cluster Network Operator configuration

The configuration for the cluster network is specified as part of the Cluster Network Operator (CNO) configuration and stored in a custom resource (CR) object that is named cluster. The CR specifies the fields for the Network API in the operator.openshift.io API group.

The CNO configuration inherits the following fields during cluster installation from the Network API in the Network.config.openshift.io API group and these fields cannot be changed:

clusterNetwork
IP address pools from which pod IP addresses are allocated.
serviceNetwork
IP address pool for services.
defaultNetwork.type
Cluster network provider, such as OpenShift SDN or OVN-Kubernetes.
Note

After cluster installation, you cannot modify the fields listed in the previous section.

5.2. Enabling the cluster-wide proxy

The Proxy object is used to manage the cluster-wide egress proxy. When a cluster is installed or upgraded without the proxy configured, a Proxy object is still generated but it will have a nil spec. For example:

apiVersion: config.openshift.io/v1
kind: Proxy
metadata:
  name: cluster
spec:
  trustedCA:
    name: ""
status:

A cluster administrator can configure the proxy for OpenShift Container Platform by modifying this cluster Proxy object.

Note

Only the Proxy object named cluster is supported, and no additional proxies can be created.

Prerequisites

  • Cluster administrator permissions
  • OpenShift Container Platform oc CLI tool installed

Procedure

  1. Create a ConfigMap that contains any additional CA certificates required for proxying HTTPS connections.

    Note

    You can skip this step if the proxy’s identity certificate is signed by an authority from the RHCOS trust bundle.

    1. Create a file called user-ca-bundle.yaml with the following contents, and provide the values of your PEM-encoded certificates:

      apiVersion: v1
      data:
        ca-bundle.crt: | 1
          <MY_PEM_ENCODED_CERTS> 2
      kind: ConfigMap
      metadata:
        name: user-ca-bundle 3
        namespace: openshift-config 4
      1
      This data key must be named ca-bundle.crt.
      2
      One or more PEM-encoded X.509 certificates used to sign the proxy’s identity certificate.
      3
      The ConfigMap name that will be referenced from the Proxy object.
      4
      The ConfigMap must be in the openshift-config namespace.
    2. Create the ConfigMap from this file:

      $ oc create -f user-ca-bundle.yaml
  2. Use the oc edit command to modify the Proxy object:

    $ oc edit proxy/cluster
  3. Configure the necessary fields for the proxy:

    apiVersion: config.openshift.io/v1
    kind: Proxy
    metadata:
      name: cluster
    spec:
      httpProxy: http://<username>:<pswd>@<ip>:<port> 1
      httpsProxy: http://<username>:<pswd>@<ip>:<port> 2
      noProxy: example.com 3
      readinessEndpoints:
      - http://www.google.com 4
      - https://www.google.com
      trustedCA:
        name: user-ca-bundle 5
    1
    A proxy URL to use for creating HTTP connections outside the cluster. The URL scheme must be http.
    2
    A proxy URL to use for creating HTTPS connections outside the cluster.
    3
    A comma-separated list of destination domain names, domains, IP addresses or other network CIDRs to exclude proxying.

    Preface a domain with . to match subdomains only. For example, .y.com matches x.y.com, but not y.com. Use * to bypass proxy for all destinations. If you scale up workers that are not included in the network defined by the networking.machineNetwork[].cidr field from the installation configuration, you must add them to this list to prevent connection issues.

    This field is ignored if neither the httpProxy or httpsProxy fields are set.

    4
    One or more URLs external to the cluster to use to perform a readiness check before writing the httpProxy and httpsProxy values to status.
    5
    A reference to the ConfigMap in the openshift-config namespace that contains additional CA certificates required for proxying HTTPS connections. Note that the ConfigMap must already exist before referencing it here. This field is required unless the proxy’s identity certificate is signed by an authority from the RHCOS trust bundle.
  4. Save the file to apply the changes.

5.3. Setting DNS to private

After you deploy a cluster, you can modify its DNS to use only a private zone.

Procedure

  1. Review the DNS custom resource for your cluster:

    $ oc get dnses.config.openshift.io/cluster -o yaml

    Example output

    apiVersion: config.openshift.io/v1
    kind: DNS
    metadata:
      creationTimestamp: "2019-10-25T18:27:09Z"
      generation: 2
      name: cluster
      resourceVersion: "37966"
      selfLink: /apis/config.openshift.io/v1/dnses/cluster
      uid: 0e714746-f755-11f9-9cb1-02ff55d8f976
    spec:
      baseDomain: <base_domain>
      privateZone:
        tags:
          Name: <infrastructure_id>-int
          kubernetes.io/cluster/<infrastructure_id>: owned
      publicZone:
        id: Z2XXXXXXXXXXA4
    status: {}

    Note that the spec section contains both a private and a public zone.

  2. Patch the DNS custom resource to remove the public zone:

    $ oc patch dnses.config.openshift.io/cluster --type=merge --patch='{"spec": {"publicZone": null}}'
    dns.config.openshift.io/cluster patched

    Because the Ingress Controller consults the DNS definition when it creates Ingress objects, when you create or modify Ingress objects, only private records are created.

    Important

    DNS records for the existing Ingress objects are not modified when you remove the public zone.

  3. Optional: Review the DNS custom resource for your cluster and confirm that the public zone was removed:

    $ oc get dnses.config.openshift.io/cluster -o yaml

    Example output

    apiVersion: config.openshift.io/v1
    kind: DNS
    metadata:
      creationTimestamp: "2019-10-25T18:27:09Z"
      generation: 2
      name: cluster
      resourceVersion: "37966"
      selfLink: /apis/config.openshift.io/v1/dnses/cluster
      uid: 0e714746-f755-11f9-9cb1-02ff55d8f976
    spec:
      baseDomain: <base_domain>
      privateZone:
        tags:
          Name: <infrastructure_id>-int
          kubernetes.io/cluster/<infrastructure_id>-wfpg4: owned
    status: {}

5.4. Configuring ingress cluster traffic

OpenShift Container Platform provides the following methods for communicating from outside the cluster with services running in the cluster:

  • If you have HTTP/HTTPS, use an Ingress Controller.
  • If you have a TLS-encrypted protocol other than HTTPS, such as TLS with the SNI header, use an Ingress Controller.
  • Otherwise, use a load balancer, an external IP, or a node port.
MethodPurpose

Use an Ingress Controller

Allows access to HTTP/HTTPS traffic and TLS-encrypted protocols other than HTTPS, such as TLS with the SNI header.

Automatically assign an external IP by using a load balancer service

Allows traffic to non-standard ports through an IP address assigned from a pool.

Manually assign an external IP to a service

Allows traffic to non-standard ports through a specific IP address.

Configure a NodePort

Expose a service on all nodes in the cluster.

5.5. Configuring the node port service range

As a cluster administrator, you can expand the available node port range. If your cluster uses of a large number of node ports, you might need to increase the number of available ports.

The default port range is 30000-32767. You can never reduce the port range, even if you first expand it beyond the default range.

5.5.1. Prerequisites

  • Your cluster infrastructure must allow access to the ports that you specify within the expanded range. For example, if you expand the node port range to 30000-32900, the inclusive port range of 32768-32900 must be allowed by your firewall or packet filtering configuration.
5.5.1.1. Expanding the node port range

You can expand the node port range for the cluster.

Prerequisites

  • Install the OpenShift CLI (oc).
  • Log in to the cluster with a user with cluster-admin privileges.

Procedure

  1. To expand the node port range, enter the following command. Replace <port> with the largest port number in the new range.

    $ oc patch network.config.openshift.io cluster --type=merge -p \
      '{
        "spec":
          { "serviceNodePortRange": "30000-<port>" }
      }'

    Example output

    network.config.openshift.io/cluster patched

  2. To confirm that the configuration is active, enter the following command. It can take several minutes for the update to apply.

    $ oc get configmaps -n openshift-kube-apiserver config \
      -o jsonpath="{.data['config\.yaml']}" | \
      grep -Eo '"service-node-port-range":["[[:digit:]]+-[[:digit:]]+"]'

    Example output

    "service-node-port-range":["30000-33000"]

5.6. Configuring network policy

As a cluster administrator or project administrator, you can configure network policies for a project.

5.6.1. About network policy

In a cluster using a Kubernetes Container Network Interface (CNI) plug-in that supports Kubernetes network policy, network isolation is controlled entirely by NetworkPolicy objects. In OpenShift Container Platform 4.6, OpenShift SDN supports using network policy in its default network isolation mode.

Note

When using the OpenShift SDN cluster network provider, the following limitations apply regarding network policies:

  • Egress network policy as specified by the egress field is not supported.
  • IPBlock is supported by network policy, but without support for except clauses. If you create a policy with an IPBlock section that includes an except clause, the SDN pods log warnings and the entire IPBlock section of that policy is ignored.
Warning

Network policy does not apply to the host network namespace. Pods with host networking enabled are unaffected by network policy rules.

By default, all pods in a project are accessible from other pods and network endpoints. To isolate one or more pods in a project, you can create NetworkPolicy objects in that project to indicate the allowed incoming connections. Project administrators can create and delete NetworkPolicy objects within their own project.

If a pod is matched by selectors in one or more NetworkPolicy objects, then the pod will accept only connections that are allowed by at least one of those NetworkPolicy objects. A pod that is not selected by any NetworkPolicy objects is fully accessible.

The following example NetworkPolicy objects demonstrate supporting different scenarios:

  • Deny all traffic:

    To make a project deny by default, add a NetworkPolicy object that matches all pods but accepts no traffic:

    kind: NetworkPolicy
    apiVersion: networking.k8s.io/v1
    metadata:
      name: deny-by-default
    spec:
      podSelector: {}
      ingress: []
  • Only allow connections from the OpenShift Container Platform Ingress Controller:

    To make a project allow only connections from the OpenShift Container Platform Ingress Controller, add the following NetworkPolicy object.

    apiVersion: networking.k8s.io/v1
    kind: NetworkPolicy
    metadata:
      name: allow-from-openshift-ingress
    spec:
      ingress:
      - from:
        - namespaceSelector:
            matchLabels:
              network.openshift.io/policy-group: ingress
      podSelector: {}
      policyTypes:
      - Ingress
  • Only accept connections from pods within a project:

    To make pods accept connections from other pods in the same project, but reject all other connections from pods in other projects, add the following NetworkPolicy object:

    kind: NetworkPolicy
    apiVersion: networking.k8s.io/v1
    metadata:
      name: allow-same-namespace
    spec:
      podSelector: {}
      ingress:
      - from:
        - podSelector: {}
  • Only allow HTTP and HTTPS traffic based on pod labels:

    To enable only HTTP and HTTPS access to the pods with a specific label (role=frontend in following example), add a NetworkPolicy object similar to the following:

    kind: NetworkPolicy
    apiVersion: networking.k8s.io/v1
    metadata:
      name: allow-http-and-https
    spec:
      podSelector:
        matchLabels:
          role: frontend
      ingress:
      - ports:
        - protocol: TCP
          port: 80
        - protocol: TCP
          port: 443
  • Accept connections by using both namespace and pod selectors:

    To match network traffic by combining namespace and pod selectors, you can use a NetworkPolicy object similar to the following:

    kind: NetworkPolicy
    apiVersion: networking.k8s.io/v1
    metadata:
      name: allow-pod-and-namespace-both
    spec:
      podSelector:
        matchLabels:
          name: test-pods
      ingress:
        - from:
          - namespaceSelector:
              matchLabels:
                project: project_name
            podSelector:
              matchLabels:
                name: test-pods

NetworkPolicy objects are additive, which means you can combine multiple NetworkPolicy objects together to satisfy complex network requirements.

For example, for the NetworkPolicy objects defined in previous samples, you can define both allow-same-namespace and allow-http-and-https policies within the same project. Thus allowing the pods with the label role=frontend, to accept any connection allowed by each policy. That is, connections on any port from pods in the same namespace, and connections on ports 80 and 443 from pods in any namespace.

5.6.2. Example NetworkPolicy object

The following annotates an example NetworkPolicy object:

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
  name: allow-27107 1
spec:
  podSelector: 2
    matchLabels:
      app: mongodb
  ingress:
  - from:
    - podSelector: 3
        matchLabels:
          app: app
    ports: 4
    - protocol: TCP
      port: 27017
1
The name of the NetworkPolicy object.
2
A selector that describes the pods to which the policy applies. The policy object can only select pods in the project that defines the NetworkPolicy object.
3
A selector that matches the pods from which the policy object allows ingress traffic. The selector matches pods in the same namespace as the NetworkPolicy.
4
A list of one or more destination ports on which to accept traffic.

5.6.3. Creating a network policy

To define granular rules describing ingress or egress network traffic allowed for namespaces in your cluster, you can create a network policy.

Note

If you log in with a user with the cluster-admin role, then you can create a network policy in any namespace in the cluster.

Prerequisites

  • Your cluster uses a cluster network provider that supports NetworkPolicy objects, such as the OVN-Kubernetes network provider or the OpenShift SDN network provider with mode: NetworkPolicy set. This mode is the default for OpenShift SDN.
  • You installed the OpenShift CLI (oc).
  • You are logged in to the cluster with a user with admin privileges.
  • You are working in the namespace that the network policy applies to.

Procedure

  1. Create a policy rule:

    1. Create a <policy_name>.yaml file:

      $ touch <policy_name>.yaml

      where:

      <policy_name>
      Specifies the network policy file name.
    2. Define a network policy in the file that you just created, such as in the following examples:

      Deny ingress from all pods in all namespaces

      kind: NetworkPolicy
      apiVersion: networking.k8s.io/v1
      metadata:
        name: deny-by-default
      spec:
        podSelector:
        ingress: []

      Allow ingress from all pods in the same namespace

      kind: NetworkPolicy
      apiVersion: networking.k8s.io/v1
      metadata:
        name: allow-same-namespace
      spec:
        podSelector:
        ingress:
        - from:
          - podSelector: {}

  2. To create the network policy object, enter the following command:

    $ oc apply -f <policy_name>.yaml -n <namespace>

    where:

    <policy_name>
    Specifies the network policy file name.
    <namespace>
    Optional: Specifies the namespace if the object is defined in a different namespace than the current namespace.

    Example output

    networkpolicy "default-deny" created

5.6.4. Configuring multitenant isolation by using network policy

You can configure your project to isolate it from pods and services in other project namespaces.

Prerequisites

  • Your cluster uses a cluster network provider that supports NetworkPolicy objects, such as the OVN-Kubernetes network provider or the OpenShift SDN network provider with mode: NetworkPolicy set. This mode is the default for OpenShift SDN.
  • You installed the OpenShift CLI (oc).
  • You are logged in to the cluster with a user with admin privileges.

Procedure

  1. Create the following NetworkPolicy objects:

    1. A policy named allow-from-openshift-ingress.

      $ cat << EOF| oc create -f -
      apiVersion: networking.k8s.io/v1
      kind: NetworkPolicy
      metadata:
        name: allow-from-openshift-ingress
      spec:
        ingress:
        - from:
          - namespaceSelector:
              matchLabels:
                policy-group.network.openshift.io/ingress: ""
        podSelector: {}
        policyTypes:
        - Ingress
      EOF
    2. A policy named allow-from-openshift-monitoring:

      $ cat << EOF| oc create -f -
      apiVersion: networking.k8s.io/v1
      kind: NetworkPolicy
      metadata:
        name: allow-from-openshift-monitoring
      spec:
        ingress:
        - from:
          - namespaceSelector:
              matchLabels:
                network.openshift.io/policy-group: monitoring
        podSelector: {}
        policyTypes:
        - Ingress
      EOF
    3. A policy named allow-same-namespace:

      $ cat << EOF| oc create -f -
      kind: NetworkPolicy
      apiVersion: networking.k8s.io/v1
      metadata:
        name: allow-same-namespace
      spec:
        podSelector:
        ingress:
        - from:
          - podSelector: {}
      EOF
  2. Optional: To confirm that the network policies exist in your current project, enter the following command:

    $ oc describe networkpolicy

    Example output

    Name:         allow-from-openshift-ingress
    Namespace:    example1
    Created on:   2020-06-09 00:28:17 -0400 EDT
    Labels:       <none>
    Annotations:  <none>
    Spec:
      PodSelector:     <none> (Allowing the specific traffic to all pods in this namespace)
      Allowing ingress traffic:
        To Port: <any> (traffic allowed to all ports)
        From:
          NamespaceSelector: network.openshift.io/policy-group: ingress
      Not affecting egress traffic
      Policy Types: Ingress
    
    
    Name:         allow-from-openshift-monitoring
    Namespace:    example1
    Created on:   2020-06-09 00:29:57 -0400 EDT
    Labels:       <none>
    Annotations:  <none>
    Spec:
      PodSelector:     <none> (Allowing the specific traffic to all pods in this namespace)
      Allowing ingress traffic:
        To Port: <any> (traffic allowed to all ports)
        From:
          NamespaceSelector: network.openshift.io/policy-group: monitoring
      Not affecting egress traffic
      Policy Types: Ingress

5.6.5. Creating default network policies for a new project

As a cluster administrator, you can modify the new project template to automatically include NetworkPolicy objects when you create a new project.

5.6.6. Modifying the template for new projects

As a cluster administrator, you can modify the default project template so that new projects are created using your custom requirements.

To create your own custom project template:

Procedure

  1. Log in as a user with cluster-admin privileges.
  2. Generate the default project template:

    $ oc adm create-bootstrap-project-template -o yaml > template.yaml
  3. Use a text editor to modify the generated template.yaml file by adding objects or modifying existing objects.
  4. The project template must be created in the openshift-config namespace. Load your modified template:

    $ oc create -f template.yaml -n openshift-config
  5. Edit the project configuration resource using the web console or CLI.

    • Using the web console:

      1. Navigate to the AdministrationCluster Settings page.
      2. Click Global Configuration to view all configuration resources.
      3. Find the entry for Project and click Edit YAML.
    • Using the CLI:

      1. Edit the project.config.openshift.io/cluster resource:

        $ oc edit project.config.openshift.io/cluster
  6. Update the spec section to include the projectRequestTemplate and name parameters, and set the name of your uploaded project template. The default name is project-request.

    Project configuration resource with custom project template

    apiVersion: config.openshift.io/v1
    kind: Project
    metadata:
      ...
    spec:
      projectRequestTemplate:
        name: <template_name>

  7. After you save your changes, create a new project to verify that your changes were successfully applied.
5.6.6.1. Adding network policies to the new project template

As a cluster administrator, you can add network policies to the default template for new projects. OpenShift Container Platform will automatically create all the NetworkPolicy objects specified in the template in the project.

Prerequisites

  • Your cluster uses a default CNI network provider that supports NetworkPolicy objects, such as the OpenShift SDN network provider with mode: NetworkPolicy set. This mode is the default for OpenShift SDN.
  • You installed the OpenShift CLI (oc).
  • You must log in to the cluster with a user with cluster-admin privileges.
  • You must have created a custom default project template for new projects.

Procedure

  1. Edit the default template for a new project by running the following command:

    $ oc edit template <project_template> -n openshift-config

    Replace <project_template> with the name of the default template that you configured for your cluster. The default template name is project-request.

  2. In the template, add each NetworkPolicy object as an element to the objects parameter. The objects parameter accepts a collection of one or more objects.

    In the following example, the objects parameter collection includes several NetworkPolicy objects.

    Important

    For the OVN-Kubernetes network provider plug-in, when the Ingress Controller is configured to use the HostNetwork endpoint publishing strategy, there is no supported way to apply network policy so that ingress traffic is allowed and all other traffic is denied.

    objects:
    - apiVersion: networking.k8s.io/v1
      kind: NetworkPolicy
      metadata:
        name: allow-from-same-namespace
      spec:
        podSelector: {}
        ingress:
        - from:
          - podSelector: {}
    - apiVersion: networking.k8s.io/v1
      kind: NetworkPolicy
      metadata:
        name: allow-from-openshift-ingress
      spec:
        ingress:
        - from:
          - namespaceSelector:
              matchLabels:
                network.openshift.io/policy-group: ingress
        podSelector: {}
        policyTypes:
        - Ingress
    ...
  3. Optional: Create a new project to confirm that your network policy objects are created successfully by running the following commands:

    1. Create a new project:

      $ oc new-project <project> 1
      1
      Replace <project> with the name for the project you are creating.
    2. Confirm that the network policy objects in the new project template exist in the new project:

      $ oc get networkpolicy
      NAME                           POD-SELECTOR   AGE
      allow-from-openshift-ingress   <none>         7s
      allow-from-same-namespace      <none>         7s

5.7. Supported configurations

The following configurations are supported for the current release of Red Hat OpenShift Service Mesh.

5.7.1. Supported platforms

The Red Hat OpenShift Service Mesh Operator supports multiple versions of the ServiceMeshControlPlane resource. Version 2.2 Service Mesh control planes are supported on the following platform versions:

  • Red Hat OpenShift Container Platform version 4.9 or later.
  • Red Hat OpenShift Dedicated version 4.
  • Azure Red Hat OpenShift (ARO) version 4.
  • Red Hat OpenShift Service on AWS (ROSA).

5.7.2. Unsupported configurations

Explicitly unsupported cases include:

  • OpenShift Online is not supported for Red Hat OpenShift Service Mesh.
  • Red Hat OpenShift Service Mesh does not support the management of microservices outside the cluster where Service Mesh is running.

5.7.3. Supported network configurations

Red Hat OpenShift Service Mesh supports the following network configurations.

  • OpenShift-SDN
  • OVN-Kubernetes is supported on OpenShift Container Platform 4.7.32+, OpenShift Container Platform 4.8.12+, and OpenShift Container Platform 4.9+.
  • Third-Party Container Network Interface (CNI) plug-ins that have been certified on OpenShift Container Platform and passed Service Mesh conformance testing. See Certified OpenShift CNI Plug-ins for more information.

5.7.4. Supported configurations for Service Mesh

  • This release of Red Hat OpenShift Service Mesh is only available on OpenShift Container Platform x86_64, IBM Z, and IBM Power Systems.

    • IBM Z is only supported on OpenShift Container Platform 4.6 and later.
    • IBM Power Systems is only supported on OpenShift Container Platform 4.6 and later.
  • Configurations where all Service Mesh components are contained within a single OpenShift Container Platform cluster.
  • Configurations that do not integrate external services such as virtual machines.
  • Red Hat OpenShift Service Mesh does not support EnvoyFilter configuration except where explicitly documented.

5.7.5. Supported configurations for Kiali

  • The Kiali console is only supported on the two most recent releases of the Chrome, Edge, Firefox, or Safari browsers.

5.7.6. Supported configurations for Distributed Tracing

  • Jaeger agent as a sidecar is the only supported configuration for Jaeger. Jaeger as a daemonset is not supported for multitenant installations or OpenShift Dedicated.

5.7.7. Supported WebAssembly module

  • 3scale WebAssembly is the only provided WebAssembly module. You can create custom WebAssembly modules.

5.7.8. Operator overview

Red Hat OpenShift Service Mesh requires the following four Operators:

  • OpenShift Elasticsearch - (Optional) Provides database storage for tracing and logging with the distributed tracing platform. It is based on the open source Elasticsearch project.
  • Red Hat OpenShift distributed tracing platform - Provides distributed tracing to monitor and troubleshoot transactions in complex distributed systems. It is based on the open source Jaeger project.
  • Kiali - Provides observability for your service mesh. Allows you to view configurations, monitor traffic, and analyze traces in a single console. It is based on the open source Kiali project.
  • Red Hat OpenShift Service Mesh - Allows you to connect, secure, control, and observe the microservices that comprise your applications. The Service Mesh Operator defines and monitors the ServiceMeshControlPlane resources that manage the deployment, updating, and deletion of the Service Mesh components. It is based on the open source Istio project.

Next steps

5.8. Optimizing routing

The OpenShift Container Platform HAProxy router scales to optimize performance.

5.8.1. Baseline Ingress Controller (router) performance

The OpenShift Container Platform Ingress Controller, or router, is the Ingress point for all external traffic destined for OpenShift Container Platform services.

When evaluating a single HAProxy router performance in terms of HTTP requests handled per second, the performance varies depending on many factors. In particular:

  • HTTP keep-alive/close mode
  • Route type
  • TLS session resumption client support
  • Number of concurrent connections per target route
  • Number of target routes
  • Back end server page size
  • Underlying infrastructure (network/SDN solution, CPU, and so on)

While performance in your specific environment will vary, Red Hat lab tests on a public cloud instance of size 4 vCPU/16GB RAM. A single HAProxy router handling 100 routes terminated by backends serving 1kB static pages is able to handle the following number of transactions per second.

In HTTP keep-alive mode scenarios:

EncryptionLoadBalancerServiceHostNetwork

none

21515

29622

edge

16743

22913

passthrough

36786

53295

re-encrypt

21583

25198

In HTTP close (no keep-alive) scenarios:

EncryptionLoadBalancerServiceHostNetwork

none

5719

8273

edge

2729

4069

passthrough

4121

5344

re-encrypt

2320

2941

Default Ingress Controller configuration with ROUTER_THREADS=4 was used and two different endpoint publishing strategies (LoadBalancerService/HostNetwork) were tested. TLS session resumption was used for encrypted routes. With HTTP keep-alive, a single HAProxy router is capable of saturating 1 Gbit NIC at page sizes as small as 8 kB.

When running on bare metal with modern processors, you can expect roughly twice the performance of the public cloud instance above. This overhead is introduced by the virtualization layer in place on public clouds and holds mostly true for private cloud-based virtualization as well. The following table is a guide to how many applications to use behind the router:

Number of applicationsApplication type

5-10

static file/web server or caching proxy

100-1000

applications generating dynamic content

In general, HAProxy can support routes for 5 to 1000 applications, depending on the technology in use. Ingress Controller performance might be limited by the capabilities and performance of the applications behind it, such as language or static versus dynamic content.

Ingress, or router, sharding should be used to serve more routes towards applications and help horizontally scale the routing tier.

5.8.2. Ingress Controller (router) performance optimizations

OpenShift Container Platform no longer supports modifying Ingress Controller deployments by setting environment variables such as ROUTER_THREADS, ROUTER_DEFAULT_TUNNEL_TIMEOUT, ROUTER_DEFAULT_CLIENT_TIMEOUT, ROUTER_DEFAULT_SERVER_TIMEOUT, and RELOAD_INTERVAL.

You can modify the Ingress Controller deployment, but if the Ingress Operator is enabled, the configuration is overwritten.

5.9. Post-installation RHOSP network configuration

You can configure some aspects of a OpenShift Container Platform on Red Hat OpenStack Platform (RHOSP) cluster after installation.

5.9.1. Configuring application access with floating IP addresses

After you install OpenShift Container Platform, configure Red Hat OpenStack Platform (RHOSP) to allow application network traffic.

Note

You do not need to perform this procedure if you provided values for platform.openstack.lbFloatingIP and platform.openstack.ingressFloatingIP in the install-config.yaml file, or os_api_fip and os_ingress_fip in the inventory.yaml playbook, during installation. The floating IP addresses are already set.

Prerequisites

  • OpenShift Container Platform cluster must be installed
  • Floating IP addresses are enabled as described in the OpenShift Container Platform on RHOSP installation documentation.

Procedure

After you install the OpenShift Container Platform cluster, attach a floating IP address to the ingress port:

  1. Show the port:

    $ openstack port show <cluster_name>-<cluster_ID>-ingress-port
  2. Attach the port to the IP address:

    $ openstack floating ip set --port <ingress_port_ID> <apps_FIP>
  3. Add a wildcard A record for *apps. to your DNS file:

    *.apps.<cluster_name>.<base_domain>  IN  A  <apps_FIP>
Note

If you do not control the DNS server but want to enable application access for non-production purposes, you can add these hostnames to /etc/hosts:

<apps_FIP> console-openshift-console.apps.<cluster name>.<base domain>
<apps_FIP> integrated-oauth-server-openshift-authentication.apps.<cluster name>.<base domain>
<apps_FIP> oauth-openshift.apps.<cluster name>.<base domain>
<apps_FIP> prometheus-k8s-openshift-monitoring.apps.<cluster name>.<base domain>
<apps_FIP> grafana-openshift-monitoring.apps.<cluster name>.<base domain>
<apps_FIP> <app name>.apps.<cluster name>.<base domain>

5.9.2. Kuryr ports pools

A Kuryr ports pool maintains a number of ports on standby for pod creation.

Keeping ports on standby minimizes pod creation time. Without ports pools, Kuryr must explicitly request port creation or deletion whenever a pod is created or deleted.

The Neutron ports that Kuryr uses are created in subnets that are tied to namespaces. These pod ports are also added as subports to the primary port of OpenShift Container Platform cluster nodes.

Because Kuryr keeps each namespace in a separate subnet, a separate ports pool is maintained for each namespace-worker pair.

Prior to installing a cluster, you can set the following parameters in the cluster-network-03-config.yml manifest file to configure ports pool behavior:

  • The enablePortPoolsPrepopulation parameter controls pool prepopulation, which forces Kuryr to add ports to the pool when it is created, such as when a new host is added, or a new namespace is created. The default value is false.
  • The poolMinPorts parameter is the minimum number of free ports that are kept in the pool. The default value is 1.
  • The poolMaxPorts parameter is the maximum number of free ports that are kept in the pool. A value of 0 disables that upper bound. This is the default setting.

    If your OpenStack port quota is low, or you have a limited number of IP addresses on the pod network, consider setting this option to ensure that unneeded ports are deleted.

  • The poolBatchPorts parameter defines the maximum number of Neutron ports that can be created at once. The default value is 3.

5.9.3. Adjusting Kuryr ports pool settings in active deployments on RHOSP

You can use a custom resource (CR) to configure how Kuryr manages Red Hat OpenStack Platform (RHOSP) Neutron ports to control the speed and efficiency of pod creation on a deployed cluster.

Procedure

  1. From a command line, open the Cluster Network Operator (CNO) CR for editing:

    $ oc edit networks.operator.openshift.io cluster
  2. Edit the settings to meet your requirements. The following file is provided as an example:

    apiVersion: operator.openshift.io/v1
    kind: Network
    metadata:
      name: cluster
    spec:
      clusterNetwork:
      - cidr: 10.128.0.0/14
        hostPrefix: 23
      serviceNetwork:
      - 172.30.0.0/16
      defaultNetwork:
        type: Kuryr
        kuryrConfig:
          enablePortPoolsPrepopulation: false 1
          poolMinPorts: 1 2
          poolBatchPorts: 3 3
          poolMaxPorts: 5 4
    1
    Set enablePortPoolsPrepopulation to true to make Kuryr create new Neutron ports after a namespace is created or a new node is added to the cluster. This setting raises the Neutron ports quota but can reduce the time that is required to spawn pods. The default value is false.
    2
    Kuryr creates new ports for a pool if the number of free ports in that pool is lower than the value of poolMinPorts. The default value is 1.
    3
    poolBatchPorts controls the number of new ports that are created if the number of free ports is lower than the value of poolMinPorts. The default value is 3.
    4
    If the number of free ports in a pool is higher than the value of poolMaxPorts, Kuryr deletes them until the number matches that value. Setting the value to 0 disables this upper bound, preventing pools from shrinking. The default value is 0.
  3. Save your changes and quit the text editor to commit your changes.
Important

Modifying these options on a running cluster forces the kuryr-controller and kuryr-cni pods to restart. As a result, the creation of new pods and services will be delayed.

Chapter 6. Post-installation storage configuration

After installing OpenShift Container Platform, you can further expand and customize your cluster to your requirements, including storage configuration.

6.1. Dynamic provisioning

6.1.1. About dynamic provisioning

The StorageClass resource object describes and classifies storage that can be requested, as well as provides a means for passing parameters for dynamically provisioned storage on demand. StorageClass objects can also serve as a management mechanism for controlling different levels of storage and access to the storage. Cluster Administrators (cluster-admin) or Storage Administrators (storage-admin) define and create the StorageClass objects that users can request without needing any detailed knowledge about the underlying storage volume sources.

The OpenShift Container Platform persistent volume framework enables this functionality and allows administrators to provision a cluster with persistent storage. The framework also gives users a way to request those resources without having any knowledge of the underlying infrastructure.

Many storage types are available for use as persistent volumes in OpenShift Container Platform. While all of them can be statically provisioned by an administrator, some types of storage are created dynamically using the built-in provider and plug-in APIs.

6.1.2. Available dynamic provisioning plug-ins

OpenShift Container Platform provides the following provisioner plug-ins, which have generic implementations for dynamic provisioning that use the cluster’s configured provider’s API to create new storage resources:

Storage typeProvisioner plug-in nameNotes

Red Hat OpenStack Platform (RHOSP) Cinder

kubernetes.io/cinder

 

RHOSP Manila Container Storage Interface (CSI)

manila.csi.openstack.org

Once installed, the OpenStack Manila CSI Driver Operator and ManilaDriver automatically create the required storage classes for all available Manila share types needed for dynamic provisioning.

AWS Elastic Block Store (EBS)

kubernetes.io/aws-ebs

For dynamic provisioning when using multiple clusters in different zones, tag each node with Key=kubernetes.io/cluster/<cluster_name>,Value=<cluster_id> where <cluster_name> and <cluster_id> are unique per cluster.

Azure Disk

kubernetes.io/azure-disk

 

Azure File

kubernetes.io/azure-file

The persistent-volume-binder service account requires permissions to create and get secrets to store the Azure storage account and keys.

GCE Persistent Disk (gcePD)

kubernetes.io/gce-pd

In multi-zone configurations, it is advisable to run one OpenShift Container Platform cluster per GCE project to avoid PVs from being created in zones where no node in the current cluster exists.

VMware vSphere

kubernetes.io/vsphere-volume

 
Important

Any chosen provisioner plug-in also requires configuration for the relevant cloud, host, or third-party provider as per the relevant documentation.

6.2. Defining a storage class

StorageClass objects are currently a globally scoped object and must be created by cluster-admin or storage-admin users.

Important

The Cluster Storage Operator might install a default storage class depending on the platform in use. This storage class is owned and controlled by the operator. It cannot be deleted or modified beyond defining annotations and labels. If different behavior is desired, you must define a custom storage class.

The following sections describe the basic definition for a StorageClass object and specific examples for each of the supported plug-in types.

6.2.1. Basic StorageClass object definition

The following resource shows the parameters and default values that you use to configure a storage class. This example uses the AWS ElasticBlockStore (EBS) object definition.

Sample StorageClass definition

kind: StorageClass 1
apiVersion: storage.k8s.io/v1 2
metadata:
  name: gp2 3
  annotations: 4
    storageclass.kubernetes.io/is-default-class: 'true'
    ...
provisioner: kubernetes.io/aws-ebs 5
parameters: 6
  type: gp2
...

1
(required) The API object type.
2
(required) The current apiVersion.
3
(required) The name of the storage class.
4
(optional) Annotations for the storage class.
5
(required) The type of provisioner associated with this storage class.
6
(optional) The parameters required for the specific provisioner, this will change from plug-in to plug-in.

6.2.2. Storage class annotations

To set a storage class as the cluster-wide default, add the following annotation to your storage class metadata:

storageclass.kubernetes.io/is-default-class: "true"

For example:

apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
  annotations:
    storageclass.kubernetes.io/is-default-class: "true"
...

This enables any persistent volume claim (PVC) that does not specify a specific storage class to automatically be provisioned through the default storage class. However, your cluster can have more than one storage class, but only one of them can be the default storage class.

Note

The beta annotation storageclass.beta.kubernetes.io/is-default-class is still working; however, it will be removed in a future release.

To set a storage class description, add the following annotation to your storage class metadata:

kubernetes.io/description: My Storage Class Description

For example:

apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
  annotations:
    kubernetes.io/description: My Storage Class Description
...

6.2.3. RHOSP Cinder object definition

cinder-storageclass.yaml

kind: StorageClass
apiVersion: storage.k8s.io/v1
metadata:
  name: gold
provisioner: kubernetes.io/cinder
parameters:
  type: fast  1
  availability: nova 2
  fsType: ext4 3

1
Volume type created in Cinder. Default is empty.
2
Availability Zone. If not specified, volumes are generally round-robined across all active zones where the OpenShift Container Platform cluster has a node.
3
File system that is created on dynamically provisioned volumes. This value is copied to the fsType field of dynamically provisioned persistent volumes and the file system is created when the volume is mounted for the first time. The default value is ext4.

6.2.4. AWS Elastic Block Store (EBS) object definition

aws-ebs-storageclass.yaml

kind: StorageClass
apiVersion: storage.k8s.io/v1
metadata:
  name: slow
provisioner: kubernetes.io/aws-ebs
parameters:
  type: io1 1
  iopsPerGB: "10" 2
  encrypted: "true" 3
  kmsKeyId: keyvalue 4
  fsType: ext4 5

1
(required) Select from io1, gp2, sc1, st1. The default is gp2. See the AWS documentation for valid Amazon Resource Name (ARN) values.
2
(optional) Only for io1 volumes. I/O operations per second per GiB. The AWS volume plug-in multiplies this with the size of the requested volume to compute IOPS of the volume. The value cap is 20,000 IOPS, which is the maximum supported by AWS. See the AWS documentation for further details.
3
(optional) Denotes whether to encrypt the EBS volume. Valid values are true or false.
4
(optional) The full ARN of the key to use when encrypting the volume. If none is supplied, but encypted is set to true, then AWS generates a key. See the AWS documentation for a valid ARN value.
5
(optional) File system that is created on dynamically provisioned volumes. This value is copied to the fsType field of dynamically provisioned persistent volumes and the file system is created when the volume is mounted for the first time. The default value is ext4.

6.2.5. Azure Disk object definition

azure-advanced-disk-storageclass.yaml

apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
  name: managed-premium
provisioner: kubernetes.io/azure-disk
volumeBindingMode: WaitForFirstConsumer 1
allowVolumeExpansion: true
parameters:
  kind: Managed 2
  storageaccounttype: Premium_LRS 3
reclaimPolicy: Delete

1
Using WaitForFirstConsumer is strongly recommended. This provisions the volume while allowing enough storage to schedule the pod on a free worker node from an available zone.
2
Possible values are Shared (default), Managed, and Dedicated.
Important

Red Hat only supports the use of kind: Managed in the storage class.

With Shared and Dedicated, Azure creates unmanaged disks, while OpenShift Container Platform creates a managed disk for machine OS (root) disks. But because Azure Disk does not allow the use of both managed and unmanaged disks on a node, unmanaged disks created with Shared or Dedicated cannot be attached to OpenShift Container Platform nodes.

3
Azure storage account SKU tier. Default is empty. Note that Premium VMs can attach both Standard_LRS and Premium_LRS disks, Standard VMs can only attach Standard_LRS disks, Managed VMs can only attach managed disks, and unmanaged VMs can only attach unmanaged disks.
  1. If kind is set to Shared, Azure creates all unmanaged disks in a few shared storage accounts in the same resource group as the cluster.
  2. If kind is set to Managed, Azure creates new managed disks.
  3. If kind is set to Dedicated and a storageAccount is specified, Azure uses the specified storage account for the new unmanaged disk in the same resource group as the cluster. For this to work:

    • The specified storage account must be in the same region.
    • Azure Cloud Provider must have write access to the storage account.
  4. If kind is set to Dedicated and a storageAccount is not specified, Azure creates a new dedicated storage account for the new unmanaged disk in the same resource group as the cluster.

6.2.6. Azure File object definition

The Azure File storage class uses secrets to store the Azure storage account name and the storage account key that are required to create an Azure Files share. These permissions are created as part of the following procedure.

Procedure

  1. Define a ClusterRole object that allows access to create and view secrets:

    apiVersion: rbac.authorization.k8s.io/v1
    kind: ClusterRole
    metadata:
    #  name: system:azure-cloud-provider
      name: <persistent-volume-binder-role> 1
    rules:
    - apiGroups: ['']
      resources: ['secrets']
      verbs:     ['get','create']
    1
    The name of the cluster role to view and create secrets.
  2. Add the cluster role to the service account:

    $ oc adm policy add-cluster-role-to-user <persistent-volume-binder-role>

    Example output

     system:serviceaccount:kube-system:persistent-volume-binder

  3. Create the Azure File StorageClass object:

    kind: StorageClass
    apiVersion: storage.k8s.io/v1
    metadata:
      name: <azure-file> 1
    provisioner: kubernetes.io/azure-file
    parameters:
      location: eastus 2
      skuName: Standard_LRS 3
      storageAccount: <storage-account> 4
    reclaimPolicy: Delete
    volumeBindingMode: Immediate
    1
    Name of the storage class. The persistent volume claim uses this storage class for provisioning the associated persistent volumes.
    2
    Location of the Azure storage account, such as eastus. Default is empty, meaning that a new Azure storage account will be created in the OpenShift Container Platform cluster’s location.
    3
    SKU tier of the Azure storage account, such as Standard_LRS. Default is empty, meaning that a new Azure storage account will be created with the Standard_LRS SKU.
    4
    Name of the Azure storage account. If a storage account is provided, then skuName and location are ignored. If no storage account is provided, then the storage class searches for any storage account that is associated with the resource group for any accounts that match the defined skuName and location.
6.2.6.1. Considerations when using Azure File

The following file system features are not supported by the default Azure File storage class:

  • Symlinks
  • Hard links
  • Extended attributes
  • Sparse files
  • Named pipes

Additionally, the owner user identifier (UID) of the Azure File mounted directory is different from the process UID of the container. The uid mount option can be specified in the StorageClass object to define a specific user identifier to use for the mounted directory.

The following StorageClass object demonstrates modifying the user and group identifier, along with enabling symlinks for the mounted directory.

kind: StorageClass
apiVersion: storage.k8s.io/v1
metadata:
  name: azure-file
mountOptions:
  - uid=1500 1
  - gid=1500 2
  - mfsymlinks 3
provisioner: kubernetes.io/azure-file
parameters:
  location: eastus
  skuName: Standard_LRS
reclaimPolicy: Delete
volumeBindingMode: Immediate
1
Specifies the user identifier to use for the mounted directory.
2
Specifies the group identifier to use for the mounted directory.
3
Enables symlinks.

6.2.7. GCE PersistentDisk (gcePD) object definition

gce-pd-storageclass.yaml

apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
  name: standard
provisioner: kubernetes.io/gce-pd
parameters:
  type: pd-standard 1
  replication-type: none
volumeBindingMode: WaitForFirstConsumer
allowVolumeExpansion: true
reclaimPolicy: Delete

1
Select either pd-standard or pd-ssd. The default is pd-standard.

6.2.8. VMware vSphere object definition

vsphere-storageclass.yaml

kind: StorageClass
apiVersion: storage.k8s.io/v1
metadata:
  name: slow
provisioner: kubernetes.io/vsphere-volume 1
parameters:
  diskformat: thin 2

1
For more information about using VMware vSphere with OpenShift Container Platform, see the VMware vSphere documentation.
2
diskformat: thin, zeroedthick and eagerzeroedthick are all valid disk formats. See vSphere docs for additional details regarding the disk format types. The default value is thin.

6.3. Changing the default storage class

If you are using AWS, use the following process to change the default storage class. This process assumes you have two storage classes defined, gp2 and standard, and you want to change the default storage class from gp2 to standard.

  1. List the storage class:

    $ oc get storageclass

    Example output

    NAME                 TYPE
    gp2 (default)        kubernetes.io/aws-ebs 1
    standard             kubernetes.io/aws-ebs

    1
    (default) denotes the default storage class.
  2. Change the value of the annotation storageclass.kubernetes.io/is-default-class to false for the default storage class:

    $ oc patch storageclass gp2 -p '{"metadata": {"annotations": {"storageclass.kubernetes.io/is-default-class": "false"}}}'
  3. Make another storage class the default by adding or modifying the annotation as storageclass.kubernetes.io/is-default-class=true.

    $ oc patch storageclass standard -p '{"metadata": {"annotations": {"storageclass.kubernetes.io/is-default-class": "true"}}}'
  4. Verify the changes:

    $ oc get storageclass

    Example output

    NAME                 TYPE
    gp2                  kubernetes.io/aws-ebs
    standard (default)   kubernetes.io/aws-ebs

6.4. Optimizing storage

Optimizing storage helps to minimize storage use across all resources. By optimizing storage, administrators help ensure that existing storage resources are working in an efficient manner.

6.5. Available persistent storage options

Understand your persistent storage options so that you can optimize your OpenShift Container Platform environment.

Table 6.1. Available storage options
Storage typeDescriptionExamples

Block

  • Presented to the operating system (OS) as a block device
  • Suitable for applications that need full control of storage and operate at a low level on files bypassing the file system
  • Also referred to as a Storage Area Network (SAN)
  • Non-shareable, which means that only one client at a time can mount an endpoint of this type

AWS EBS and VMware vSphere support dynamic persistent volume (PV) provisioning natively in OpenShift Container Platform.

File

  • Presented to the OS as a file system export to be mounted
  • Also referred to as Network Attached Storage (NAS)
  • Concurrency, latency, file locking mechanisms, and other capabilities vary widely between protocols, implementations, vendors, and scales.

RHEL NFS, NetApp NFS [1], and Vendor NFS

Object

  • Accessible through a REST API endpoint
  • Configurable for use in the OpenShift Container Platform Registry
  • Applications must build their drivers into the application and/or container.

AWS S3

  1. NetApp NFS supports dynamic PV provisioning when using the Trident plug-in.
Important

Currently, CNS is not supported in OpenShift Container Platform 4.6.

6.6. Recommended configurable storage technology

The following table summarizes the recommended and configurable storage technologies for the given OpenShift Container Platform cluster application.

Table 6.2. Recommended and configurable storage technology
Storage typeROX1RWX2RegistryScaled registryMetrics3LoggingApps

1 ReadOnlyMany

2 ReadWriteMany

3 Prometheus is the underlying technology used for metrics.

4 This does not apply to physical disk, VM physical disk, VMDK, loopback over NFS, AWS EBS, and Azure Disk.

5 For metrics, using file storage with the ReadWriteMany (RWX) access mode is unreliable. If you use file storage, do not configure the RWX access mode on any persistent volume claims (PVCs) that are configured for use with metrics.

6 For logging, using any shared storage would be an anti-pattern. One volume per elasticsearch is required.

7 Object storage is not consumed through OpenShift Container Platform’s PVs or PVCs. Apps must integrate with the object storage REST API.

Block

Yes4

No

Configurable

Not configurable

Recommended

Recommended

Recommended

File

Yes4

Yes

Configurable

Configurable

Configurable5

Configurable6

Recommended

Object

Yes

Yes

Recommended

Recommended

Not configurable

Not configurable

Not configurable7

Note

A scaled registry is an OpenShift Container Platform registry where two or more pod replicas are running.

6.6.1. Specific application storage recommendations

Important

Testing shows issues with using the NFS server on Red Hat Enterprise Linux (RHEL) as storage backend for core services. This includes the OpenShift Container Registry and Quay, Prometheus for monitoring storage, and Elasticsearch for logging storage. Therefore, using RHEL NFS to back PVs used by core services is not recommended.

Other NFS implementations on the marketplace might not have these issues. Contact the individual NFS implementation vendor for more information on any testing that was possibly completed against these OpenShift Container Platform core components.

6.6.1.1. Registry

In a non-scaled/high-availability (HA) OpenShift Container Platform registry cluster deployment:

  • The storage technology does not have to support RWX access mode.
  • The storage technology must ensure read-after-write consistency.
  • The preferred storage technology is object storage followed by block storage.
  • File storage is not recommended for OpenShift Container Platform registry cluster deployment with production workloads.
6.6.1.2. Scaled registry

In a scaled/HA OpenShift Container Platform registry cluster deployment:

  • The storage technology must support RWX access mode.
  • The storage technology must ensure read-after-write consistency.
  • The preferred storage technology is object storage.
  • Amazon Simple Storage Service (Amazon S3), Google Cloud Storage (GCS), Microsoft Azure Blob Storage, and OpenStack Swift are supported.
  • Object storage should be S3 or Swift compliant.
  • For non-cloud platforms, such as vSphere and bare metal installations, the only configurable technology is file storage.
  • Block storage is not configurable.
6.6.1.3. Metrics

In an OpenShift Container Platform hosted metrics cluster deployment:

  • The preferred storage technology is block storage.
  • Object storage is not configurable.
Important

It is not recommended to use file storage for a hosted metrics cluster deployment with production workloads.

6.6.1.4. Logging

In an OpenShift Container Platform hosted logging cluster deployment:

  • The preferred storage technology is block storage.
  • Object storage is not configurable.
6.6.1.5. Applications

Application use cases vary from application to application, as described in the following examples:

  • Storage technologies that support dynamic PV provisioning have low mount time latencies, and are not tied to nodes to support a healthy cluster.
  • Application developers are responsible for knowing and understanding the storage requirements for their application, and how it works with the provided storage to ensure that issues do not occur when an application scales or interacts with the storage layer.

6.6.2. Other specific application storage recommendations

Important

It is not recommended to use RAID configurations on Write intensive workloads, such as etcd. If you are running etcd with a RAID configuration, you might be at risk of encountering performance issues with your workloads.

  • Red Hat OpenStack Platform (RHOSP) Cinder: RHOSP Cinder tends to be adept in ROX access mode use cases.
  • Databases: Databases (RDBMSs, NoSQL DBs, etc.) tend to perform best with dedicated block storage.
  • The etcd database must have enough storage and adequate performance capacity to enable a large cluster. Information about monitoring and benchmarking tools to establish ample storage and a high-performance environment is described in Recommended etcd practices.

Additional resources

6.7. Deploy Red Hat OpenShift Container Storage

Red Hat OpenShift Container Storage is a provider of agnostic persistent storage for OpenShift Container Platform supporting file, block, and object storage, either in-house or in hybrid clouds. As a Red Hat storage solution, Red Hat OpenShift Container Storage is completely integrated with OpenShift Container Platform for deployment, management, and monitoring.

If you are looking for Red Hat OpenShift Container Storage information about…​See the following Red Hat OpenShift Container Storage documentation:

What’s new, known issues, notable bug fixes, and Technology Previews

OpenShift Container Storage 4.7 Release Notes

Supported workloads, layouts, hardware and software requirements, sizing and scaling recommendations

Planning your OpenShift Container Storage 4.5 deployment

Instructions on preparing to deploy when your environment is not directly connected to the internet

Preparing to deploy OpenShift Container Storage 4.5 in a disconnected environment

Instructions on deploying OpenShift Container Storage to use an external Red Hat Ceph Storage cluster

Deploying OpenShift Container Storage 4.5 in external mode

Instructions on deploying OpenShift Container Storage to local storage on bare metal infrastructure

Deploying OpenShift Container Storage 4.5 using bare metal infrastructure

Instructions on deploying OpenShift Container Storage on Red Hat OpenShift Container Platform VMware vSphere clusters

Deploying OpenShift Container Storage 4.5 on VMware vSphere

Instructions on deploying OpenShift Container Storage using Amazon Web Services for local or cloud storage

Deploying OpenShift Container Storage 4.5 using Amazon Web Services

Instructions on deploying and managing OpenShift Container Storage on existing Red Hat OpenShift Container Platform Google Cloud clusters

Deploying and managing OpenShift Container Storage 4.5 using Google Cloud

Instructions on deploying and managing OpenShift Container Storage on existing Red Hat OpenShift Container Platform Azure clusters

Deploying and managing OpenShift Container Storage 4.5 using Microsoft Azure

Managing a Red Hat OpenShift Container Storage 4.5 cluster

Managing OpenShift Container Storage 4.5

Monitoring a Red Hat OpenShift Container Storage 4.5 cluster

Monitoring Red Hat OpenShift Container Storage 4.5

Resolve issues encountered during operations

Troubleshooting OpenShift Container Storage 4.5

Migrating your OpenShift Container Platform cluster from version 3 to version 4

Migration

Chapter 7. Preparing for users

After installing OpenShift Container Platform, you can further expand and customize your cluster to your requirements, including taking steps to prepare for users.

7.1. Understanding identity provider configuration

The OpenShift Container Platform control plane includes a built-in OAuth server. Developers and administrators obtain OAuth access tokens to authenticate themselves to the API.

As an administrator, you can configure OAuth to specify an identity provider after you install your cluster.

7.1.1. About identity providers in OpenShift Container Platform

By default, only a kubeadmin user exists on your cluster. To specify an identity provider, you must create a custom resource (CR) that describes that identity provider and add it to the cluster.

Note

OpenShift Container Platform user names containing /, :, and % are not supported.

7.1.2. Supported identity providers

You can configure the following types of identity providers:

Identity providerDescription

HTPasswd

Configure the htpasswd identity provider to validate user names and passwords against a flat file generated using htpasswd.

Keystone

Configure the keystone identity provider to integrate your OpenShift Container Platform cluster with Keystone to enable shared authentication with an OpenStack Keystone v3 server configured to store users in an internal database.

LDAP

Configure the ldap identity provider to validate user names and passwords against an LDAPv3 server, using simple bind authentication.

Basic authentication

Configure a basic-authentication identity provider for users to log in to OpenShift Container Platform with credentials validated against a remote identity provider. Basic authentication is a generic backend integration mechanism.

Request header

Configure a request-header identity provider to identify users from request header values, such as X-Remote-User. It is typically used in combination with an authenticating proxy, which sets the request header value.

GitHub or GitHub Enterprise

Configure a github identity provider to validate user names and passwords against GitHub or GitHub Enterprise’s OAuth authentication server.

GitLab

Configure a gitlab identity provider to use GitLab.com or any other GitLab instance as an identity provider.

Google

Configure a google identity provider using Google’s OpenID Connect integration.

OpenID Connect

Configure an oidc identity provider to integrate with an OpenID Connect identity provider using an Authorization Code Flow.

After you define an identity provider, you can use RBAC to define and apply permissions.

7.1.3. Identity provider parameters

The following parameters are common to all identity providers:

ParameterDescription

name

The provider name is prefixed to provider user names to form an identity name.

mappingMethod

Defines how new identities are mapped to users when they log in. Enter one of the following values:

claim
The default value. Provisions a user with the identity’s preferred user name. Fails if a user with that user name is already mapped to another identity.
lookup
Looks up an existing identity, user identity mapping, and user, but does not automatically provision users or identities. This allows cluster administrators to set up identities and users manually, or using an external process. Using this method requires you to manually provision users.
generate
Provisions a user with the identity’s preferred user name. If a user with the preferred user name is already mapped to an existing identity, a unique user name is generated. For example, myuser2. This method should not be used in combination with external processes that require exact matches between OpenShift Container Platform user names and identity provider user names, such as LDAP group sync.
add
Provisions a user with the identity’s preferred user name. If a user with that user name already exists, the identity is mapped to the existing user, adding to any existing identity mappings for the user. Required when multiple identity providers are configured that identify the same set of users and map to the same user names.
Note

When adding or changing identity providers, you can map identities from the new provider to existing users by setting the mappingMethod parameter to add.

7.1.4. Sample identity provider CR

The following custom resource (CR) shows the parameters and default values that you use to configure an identity provider. This example uses the HTPasswd identity provider.

Sample identity provider CR

apiVersion: config.openshift.io/v1
kind: OAuth
metadata:
  name: cluster
spec:
  identityProviders:
  - name: my_identity_provider 1
    mappingMethod: claim 2
    type: HTPasswd
    htpasswd:
      fileData:
        name: htpass-secret 3

1
This provider name is prefixed to provider user names to form an identity name.
2
Controls how mappings are established between this provider’s identities and User objects.
3
An existing secret containing a file generated using htpasswd.

7.2. Using RBAC to define and apply permissions

Understand and apply role-based access control.

7.2.1. RBAC overview

Role-based access control (RBAC) objects determine whether a user is allowed to perform a given action within a project.

Cluster administrators can use the cluster roles and bindings to control who has various access levels to the OpenShift Container Platform platform itself and all projects.

Developers can use local roles and bindings to control who has access to their projects. Note that authorization is a separate step from authentication, which is more about determining the identity of who is taking the action.

Authorization is managed using:

Authorization objectDescription

Rules

Sets of permitted verbs on a set of objects. For example, whether a user or service account can create pods.

Roles

Collections of rules. You can associate, or bind, users and groups to multiple roles.

Bindings

Associations between users and/or groups with a role.

There are two levels of RBAC roles and bindings that control authorization:

RBAC levelDescription

Cluster RBAC

Roles and bindings that are applicable across all projects. Cluster roles exist cluster-wide, and cluster role bindings can reference only cluster roles.

Local RBAC

Roles and bindings that are scoped to a given project. While local roles exist only in a single project, local role bindings can reference both cluster and local roles.

A cluster role binding is a binding that exists at the cluster level. A role binding exists at the project level. The cluster role view must be bound to a user using a local role binding for that user to view the project. Create local roles only if a cluster role does not provide the set of permissions needed for a particular situation.

This two-level hierarchy allows reuse across multiple projects through the cluster roles while allowing customization inside of individual projects through local roles.

During evaluation, both the cluster role bindings and the local role bindings are used. For example:

  1. Cluster-wide "allow" rules are checked.
  2. Locally-bound "allow" rules are checked.
  3. Deny by default.
7.2.1.1. Default cluster roles

OpenShift Container Platform includes a set of default cluster roles that you can bind to users and groups cluster-wide or locally.

Important

It is not recommended to manually modify the default cluster roles. Modifications to these system roles can prevent a cluster from functioning properly.

Default cluster roleDescription

admin

A project manager. If used in a local binding, an admin has rights to view any resource in the project and modify any resource in the project except for quota.

basic-user

A user that can get basic information about projects and users.

cluster-admin

A super-user that can perform any action in any project. When bound to a user with a local binding, they have full control over quota and every action on every resource in the project.

cluster-status

A user that can get basic cluster status information.

cluster-reader

A user that can get or view most of the objects but cannot modify them.

edit

A user that can modify most objects in a project but does not have the power to view or modify roles or bindings.

self-provisioner

A user that can create their own projects.

view

A user who cannot make any modifications, but can see most objects in a project. They cannot view or modify roles or bindings.

Be mindful of the difference between local and cluster bindings. For example, if you bind the cluster-admin role to a user by using a local role binding, it might appear that this user has the privileges of a cluster administrator. This is not the case. Binding the cluster-admin to a user in a project grants super administrator privileges for only that project to the user. That user has the permissions of the cluster role admin, plus a few additional permissions like the ability to edit rate limits, for that project. This binding can be confusing via the web console UI, which does not list cluster role bindings that are bound to true cluster administrators. However, it does list local role bindings that you can use to locally bind cluster-admin.

The relationships between cluster roles, local roles, cluster role bindings, local role bindings, users, groups and service accounts are illustrated below.

OpenShift Container Platform RBAC
7.2.1.2. Evaluating authorization

OpenShift Container Platform evaluates authorization by using:

Identity
The user name and list of groups that the user belongs to.
Action

The action you perform. In most cases, this consists of:

  • Project: The project you access. A project is a Kubernetes namespace with additional annotations that allows a community of users to organize and manage their content in isolation from other communities.
  • Verb : The action itself: get, list, create, update, delete, deletecollection, or watch.
  • Resource name: The API endpoint that you access.
Bindings
The full list of bindings, the associations between users or groups with a role.

OpenShift Container Platform evaluates authorization by using the following steps:

  1. The identity and the project-scoped action is used to find all bindings that apply to the user or their groups.
  2. Bindings are used to locate all the roles that apply.
  3. Roles are used to find all the rules that apply.
  4. The action is checked against each rule to find a match.
  5. If no matching rule is found, the action is then denied by default.
Tip

Remember that users and groups can be associated with, or bound to, multiple roles at the same time.

Project administrators can use the CLI to view local roles and bindings, including a matrix of the verbs and resources each are associated with.

Important

The cluster role bound to the project administrator is limited in a project through a local binding. It is not bound cluster-wide like the cluster roles granted to the cluster-admin or system:admin.

Cluster roles are roles defined at the cluster level but can be bound either at the cluster level or at the project level.

7.2.1.2.1. Cluster role aggregation

The default admin, edit, view, and cluster-reader cluster roles support cluster role aggregation, where the cluster rules for each role are dynamically updated as new rules are created. This feature is relevant only if you extend the Kubernetes API by creating custom resources.

7.2.2. Projects and namespaces

A Kubernetes namespace provides a mechanism to scope resources in a cluster. The Kubernetes documentation has more information on namespaces.

Namespaces provide a unique scope for:

  • Named resources to avoid basic naming collisions.
  • Delegated management authority to trusted users.
  • The ability to limit community resource consumption.

Most objects in the system are scoped by namespace, but some are excepted and have no namespace, including nodes and users.

A project is a Kubernetes namespace with additional annotations and is the central vehicle by which access to resources for regular users is managed. A project allows a community of users to organize and manage their content in isolation from other communities. Users must be given access to projects by administrators, or if allowed to create projects, automatically have access to their own projects.

Projects can have a separate name, displayName, and description.

  • The mandatory name is a unique identifier for the project and is most visible when using the CLI tools or API. The maximum name length is 63 characters.
  • The optional displayName is how the project is displayed in the web console (defaults to name).
  • The optional description can be a more detailed description of the project and is also visible in the web console.

Each project scopes its own set of:

ObjectDescription

Objects

Pods, services, replication controllers, etc.

Policies

Rules for which users can or cannot perform actions on objects.

Constraints

Quotas for each kind of object that can be limited.

Service accounts

Service accounts act automatically with designated access to objects in the project.

Cluster administrators can create projects and delegate administrative rights for the project to any member of the user community. Cluster administrators can also allow developers to create their own projects.

Developers and administrators can interact with projects by using the CLI or the web console.

7.2.3. Default projects

OpenShift Container Platform comes with a number of default projects, and projects starting with openshift- are the most essential to users. These projects host master components that run as pods and other infrastructure components. The pods created in these namespaces that have a critical pod annotation are considered critical, and the have guaranteed admission by kubelet. Pods created for master components in these namespaces are already marked as critical.

Note

You cannot assign an SCC to pods created in one of the default namespaces: default, kube-system, kube-public, openshift-node, openshift-infra, and openshift. You cannot use these namespaces for running pods or services.

7.2.4. Viewing cluster roles and bindings

You can use the oc CLI to view cluster roles and bindings by using the oc describe command.

Prerequisites

  • Install the oc CLI.
  • Obtain permission to view the cluster roles and bindings.

Users with the cluster-admin default cluster role bound cluster-wide can perform any action on any resource, including viewing cluster roles and bindings.

Procedure

  1. To view the cluster roles and their associated rule sets:

    $ oc describe clusterrole.rbac

    Example output

    Name:         admin
    Labels:       kubernetes.io/bootstrapping=rbac-defaults
    Annotations:  rbac.authorization.kubernetes.io/autoupdate: true
    PolicyRule:
      Resources                                                  Non-Resource URLs  Resource Names  Verbs
      ---------                                                  -----------------  --------------  -----
      .packages.apps.redhat.com                                  []                 []              [* create update patch delete get list watch]
      imagestreams                                               []                 []              [create delete deletecollection get list patch update watch create get list watch]
      imagestreams.image.openshift.io                            []                 []              [create delete deletecollection get list patch update watch create get list watch]
      secrets                                                    []                 []              [create delete deletecollection get list patch update watch get list watch create delete deletecollection patch update]
      buildconfigs/webhooks                                      []                 []              [create delete deletecollection get list patch update watch get list watch]
      buildconfigs                                               []                 []              [create delete deletecollection get list patch update watch get list watch]
      buildlogs                                                  []                 []              [create delete deletecollection get list patch update watch get list watch]
      deploymentconfigs/scale                                    []                 []              [create delete deletecollection get list patch update watch get list watch]
      deploymentconfigs                                          []                 []              [create delete deletecollection get list patch update watch get list watch]
      imagestreamimages                                          []                 []              [create delete deletecollection get list patch update watch get list watch]
      imagestreammappings                                        []                 []              [create delete deletecollection get list patch update watch get list watch]
      imagestreamtags                                            []                 []              [create delete deletecollection get list patch update watch get list watch]
      processedtemplates                                         []                 []              [create delete deletecollection get list patch update watch get list watch]
      routes                                                     []                 []              [create delete deletecollection get list patch update watch get list watch]
      templateconfigs                                            []                 []              [create delete deletecollection get list patch update watch get list watch]
      templateinstances                                          []                 []              [create delete deletecollection get list patch update watch get list watch]
      templates                                                  []                 []              [create delete deletecollection get list patch update watch get list watch]
      deploymentconfigs.apps.openshift.io/scale                  []                 []              [create delete deletecollection get list patch update watch get list watch]
      deploymentconfigs.apps.openshift.io                        []                 []              [create delete deletecollection get list patch update watch get list watch]
      buildconfigs.build.openshift.io/webhooks                   []                 []              [create delete deletecollection get list patch update watch get list watch]
      buildconfigs.build.openshift.io                            []                 []              [create delete deletecollection get list patch update watch get list watch]
      buildlogs.build.openshift.io                               []                 []              [create delete deletecollection get list patch update watch get list watch]
      imagestreamimages.image.openshift.io                       []                 []              [create delete deletecollection get list patch update watch get list watch]
      imagestreammappings.image.openshift.io                     []                 []              [create delete deletecollection get list patch update watch get list watch]
      imagestreamtags.image.openshift.io                         []                 []              [create delete deletecollection get list patch update watch get list watch]
      routes.route.openshift.io                                  []                 []              [create delete deletecollection get list patch update watch get list watch]
      processedtemplates.template.openshift.io                   []                 []              [create delete deletecollection get list patch update watch get list watch]
      templateconfigs.template.openshift.io                      []                 []              [create delete deletecollection get list patch update watch get list watch]
      templateinstances.template.openshift.io                    []                 []              [create delete deletecollection get list patch update watch get list watch]
      templates.template.openshift.io                            []                 []              [create delete deletecollection get list patch update watch get list watch]
      serviceaccounts                                            []                 []              [create delete deletecollection get list patch update watch impersonate create delete deletecollection patch update get list watch]
      imagestreams/secrets                                       []                 []              [create delete deletecollection get list patch update watch]
      rolebindings                                               []                 []              [create delete deletecollection get list patch update watch]
      roles                                                      []                 []              [create delete deletecollection get list patch update watch]
      rolebindings.authorization.openshift.io                    []                 []              [create delete deletecollection get list patch update watch]
      roles.authorization.openshift.io                           []                 []              [create delete deletecollection get list patch update watch]
      imagestreams.image.openshift.io/secrets                    []                 []              [create delete deletecollection get list patch update watch]
      rolebindings.rbac.authorization.k8s.io                     []                 []              [create delete deletecollection get list patch update watch]
      roles.rbac.authorization.k8s.io                            []                 []              [create delete deletecollection get list patch update watch]
      networkpolicies.extensions                                 []                 []              [create delete deletecollection patch update create delete deletecollection get list patch update watch get list watch]
      networkpolicies.networking.k8s.io                          []                 []              [create delete deletecollection patch update create delete deletecollection get list patch update watch get list watch]
      configmaps                                                 []                 []              [create delete deletecollection patch update get list watch]
      endpoints                                                  []                 []              [create delete deletecollection patch update get list watch]
      persistentvolumeclaims                                     []                 []              [create delete deletecollection patch update get list watch]
      pods                                                       []                 []              [create delete deletecollection patch update get list watch]
      replicationcontrollers/scale                               []                 []              [create delete deletecollection patch update get list watch]
      replicationcontrollers                                     []                 []              [create delete deletecollection patch update get list watch]
      services                                                   []                 []              [create delete deletecollection patch update get list watch]
      daemonsets.apps                                            []                 []              [create delete deletecollection patch update get list watch]
      deployments.apps/scale                                     []                 []              [create delete deletecollection patch update get list watch]
      deployments.apps                                           []                 []              [create delete deletecollection patch update get list watch]
      replicasets.apps/scale                                     []                 []              [create delete deletecollection patch update get list watch]
      replicasets.apps                                           []                 []              [create delete deletecollection patch update get list watch]
      statefulsets.apps/scale                                    []                 []              [create delete deletecollection patch update get list watch]
      statefulsets.apps                                          []                 []              [create delete deletecollection patch update get list watch]
      horizontalpodautoscalers.autoscaling                       []                 []              [create delete deletecollection patch update get list watch]
      cronjobs.batch                                             []                 []              [create delete deletecollection patch update get list watch]
      jobs.batch                                                 []                 []              [create delete deletecollection patch update get list watch]
      daemonsets.extensions                                      []                 []              [create delete deletecollection patch update get list watch]
      deployments.extensions/scale                               []                 []              [create delete deletecollection patch update get list watch]
      deployments.extensions                                     []                 []              [create delete deletecollection patch update get list watch]
      ingresses.extensions                                       []                 []              [create delete deletecollection patch update get list watch]
      replicasets.extensions/scale                               []                 []              [create delete deletecollection patch update get list watch]
      replicasets.extensions                                     []                 []              [create delete deletecollection patch update get list watch]
      replicationcontrollers.extensions/scale                    []                 []              [create delete deletecollection patch update get list watch]
      poddisruptionbudgets.policy                                []                 []              [create delete deletecollection patch update get list watch]
      deployments.apps/rollback                                  []                 []              [create delete deletecollection patch update]
      deployments.extensions/rollback                            []                 []              [create delete deletecollection patch update]
      catalogsources.operators.coreos.com                        []                 []              [create update patch delete get list watch]
      clusterserviceversions.operators.coreos.com                []                 []              [create update patch delete get list watch]
      installplans.operators.coreos.com                          []                 []              [create update patch delete get list watch]
      packagemanifests.operators.coreos.com                      []                 []              [create update patch delete get list watch]
      subscriptions.operators.coreos.com                         []                 []              [create update patch delete get list watch]
      buildconfigs/instantiate                                   []                 []              [create]
      buildconfigs/instantiatebinary                             []                 []              [create]
      builds/clone                                               []                 []              [create]
      deploymentconfigrollbacks                                  []                 []              [create]
      deploymentconfigs/instantiate                              []                 []              [create]
      deploymentconfigs/rollback                                 []                 []              [create]
      imagestreamimports                                         []                 []              [create]
      localresourceaccessreviews                                 []                 []              [create]
      localsubjectaccessreviews                                  []                 []              [create]
      podsecuritypolicyreviews                                   []                 []              [create]
      podsecuritypolicyselfsubjectreviews                        []                 []              [create]
      podsecuritypolicysubjectreviews                            []                 []              [create]
      resourceaccessreviews                                      []                 []              [create]
      routes/custom-host                                         []                 []              [create]
      subjectaccessreviews                                       []                 []              [create]
      subjectrulesreviews                                        []                 []              [create]
      deploymentconfigrollbacks.apps.openshift.io                []                 []              [create]
      deploymentconfigs.apps.openshift.io/instantiate            []                 []              [create]
      deploymentconfigs.apps.openshift.io/rollback               []                 []              [create]
      localsubjectaccessreviews.authorization.k8s.io             []                 []              [create]
      localresourceaccessreviews.authorization.openshift.io      []                 []              [create]
      localsubjectaccessreviews.authorization.openshift.io       []                 []              [create]
      resourceaccessreviews.authorization.openshift.io           []                 []              [create]
      subjectaccessreviews.authorization.openshift.io            []                 []              [create]
      subjectrulesreviews.authorization.openshift.io             []                 []              [create]
      buildconfigs.build.openshift.io/instantiate                []                 []              [create]
      buildconfigs.build.openshift.io/instantiatebinary          []                 []              [create]
      builds.build.openshift.io/clone                            []                 []              [create]
      imagestreamimports.image.openshift.io                      []                 []              [create]
      routes.route.openshift.io/custom-host                      []                 []              [create]
      podsecuritypolicyreviews.security.openshift.io             []                 []              [create]
      podsecuritypolicyselfsubjectreviews.security.openshift.io  []                 []              [create]
      podsecuritypolicysubjectreviews.security.openshift.io      []                 []              [create]
      jenkins.build.openshift.io                                 []                 []              [edit view view admin edit view]
      builds                                                     []                 []              [get create delete deletecollection get list patch update watch get list watch]
      builds.build.openshift.io                                  []                 []              [get create delete deletecollection get list patch update watch get list watch]
      projects                                                   []                 []              [get delete get delete get patch update]
      projects.project.openshift.io                              []                 []              [get delete get delete get patch update]
      namespaces                                                 []                 []              [get get list watch]
      pods/attach                                                []                 []              [get list watch create delete deletecollection patch update]
      pods/exec                                                  []                 []              [get list watch create delete deletecollection patch update]
      pods/portforward                                           []                 []              [get list watch create delete deletecollection patch update]
      pods/proxy                                                 []                 []              [get list watch create delete deletecollection patch update]
      services/proxy                                             []                 []              [get list watch create delete deletecollection patch update]
      routes/status                                              []                 []              [get list watch update]
      routes.route.openshift.io/status                           []                 []              [get list watch update]
      appliedclusterresourcequotas                               []                 []              [get list watch]
      bindings                                                   []                 []              [get list watch]
      builds/log                                                 []                 []              [get list watch]
      deploymentconfigs/log                                      []                 []              [get list watch]
      deploymentconfigs/status                                   []                 []              [get list watch]
      events                                                     []                 []              [get list watch]
      imagestreams/status                                        []                 []              [get list watch]
      limitranges                                                []                 []              [get list watch]
      namespaces/status                                          []                 []              [get list watch]
      pods/log                                                   []                 []              [get list watch]
      pods/status                                                []                 []              [get list watch]
      replicationcontrollers/status                              []                 []              [get list watch]
      resourcequotas/status                                      []                 []              [get list watch]
      resourcequotas                                             []                 []              [get list watch]
      resourcequotausages                                        []                 []              [get list watch]
      rolebindingrestrictions                                    []                 []              [get list watch]
      deploymentconfigs.apps.openshift.io/log                    []                 []              [get list watch]
      deploymentconfigs.apps.openshift.io/status                 []                 []              [get list watch]
      controllerrevisions.apps                                   []                 []              [get list watch]
      rolebindingrestrictions.authorization.openshift.io         []                 []              [get list watch]
      builds.build.openshift.io/log                              []                 []              [get list watch]
      imagestreams.image.openshift.io/status                     []                 []              [get list watch]
      appliedclusterresourcequotas.quota.openshift.io            []                 []              [get list watch]
      imagestreams/layers                                        []                 []              [get update get]
      imagestreams.image.openshift.io/layers                     []                 []              [get update get]
      builds/details                                             []                 []              [update]
      builds.build.openshift.io/details                          []                 []              [update]
    
    
    Name:         basic-user
    Labels:       <none>
    Annotations:  openshift.io/description: A user that can get basic information about projects.
    	              rbac.authorization.kubernetes.io/autoupdate: true
    PolicyRule:
    	Resources                                           Non-Resource URLs  Resource Names  Verbs
    	  ---------                                           -----------------  --------------  -----
    	  selfsubjectrulesreviews                             []                 []              [create]
    	  selfsubjectaccessreviews.authorization.k8s.io       []                 []              [create]
    	  selfsubjectrulesreviews.authorization.openshift.io  []                 []              [create]
    	  clusterroles.rbac.authorization.k8s.io              []                 []              [get list watch]
    	  clusterroles                                        []                 []              [get list]
    	  clusterroles.authorization.openshift.io             []                 []              [get list]
    	  storageclasses.storage.k8s.io                       []                 []              [get list]
    	  users                                               []                 [~]             [get]
    	  users.user.openshift.io                             []                 [~]             [get]
    	  projects                                            []                 []              [list watch]
    	  projects.project.openshift.io                       []                 []              [list watch]
    	  projectrequests                                     []                 []              [list]
    	  projectrequests.project.openshift.io                []                 []              [list]
    
    Name:         cluster-admin
    Labels:       kubernetes.io/bootstrapping=rbac-defaults
    Annotations:  rbac.authorization.kubernetes.io/autoupdate: true
    PolicyRule:
    Resources  Non-Resource URLs  Resource Names  Verbs
    ---------  -----------------  --------------  -----
    *.*        []                 []              [*]
               [*]                []              [*]
    
    ...

  2. To view the current set of cluster role bindings, which shows the users and groups that are bound to various roles:

    $ oc describe clusterrolebinding.rbac

    Example output

    Name:         alertmanager-main
    Labels:       <none>
    Annotations:  <none>
    Role:
      Kind:  ClusterRole
      Name:  alertmanager-main
    Subjects:
      Kind            Name               Namespace
      ----            ----               ---------
      ServiceAccount  alertmanager-main  openshift-monitoring
    
    
    Name:         basic-users
    Labels:       <none>
    Annotations:  rbac.authorization.kubernetes.io/autoupdate: true
    Role:
      Kind:  ClusterRole
      Name:  basic-user
    Subjects:
      Kind   Name                  Namespace
      ----   ----                  ---------
      Group  system:authenticated
    
    
    Name:         cloud-credential-operator-rolebinding
    Labels:       <none>
    Annotations:  <none>
    Role:
      Kind:  ClusterRole
      Name:  cloud-credential-operator-role
    Subjects:
      Kind            Name     Namespace
      ----            ----     ---------
      ServiceAccount  default  openshift-cloud-credential-operator
    
    
    Name:         cluster-admin
    Labels:       kubernetes.io/bootstrapping=rbac-defaults
    Annotations:  rbac.authorization.kubernetes.io/autoupdate: true
    Role:
      Kind:  ClusterRole
      Name:  cluster-admin
    Subjects:
      Kind   Name            Namespace
      ----   ----            ---------
      Group  system:masters
    
    
    Name:         cluster-admins
    Labels:       <none>
    Annotations:  rbac.authorization.kubernetes.io/autoupdate: true
    Role:
      Kind:  ClusterRole
      Name:  cluster-admin
    Subjects:
      Kind   Name                   Namespace
      ----   ----                   ---------
      Group  system:cluster-admins
      User   system:admin
    
    
    Name:         cluster-api-manager-rolebinding
    Labels:       <none>
    Annotations:  <none>
    Role:
      Kind:  ClusterRole
      Name:  cluster-api-manager-role
    Subjects:
      Kind            Name     Namespace
      ----            ----     ---------
      ServiceAccount  default  openshift-machine-api
    
    ...

7.2.5. Viewing local roles and bindings

You can use the oc CLI to view local roles and bindings by using the oc describe command.

Prerequisites

  • Install the oc CLI.
  • Obtain permission to view the local roles and bindings:

    • Users with the cluster-admin default cluster role bound cluster-wide can perform any action on any resource, including viewing local roles and bindings.
    • Users with the admin default cluster role bound locally can view and manage roles and bindings in that project.

Procedure

  1. To view the current set of local role bindings, which show the users and groups that are bound to various roles for the current project:

    $ oc describe rolebinding.rbac
  2. To view the local role bindings for a different project, add the -n flag to the command:

    $ oc describe rolebinding.rbac -n joe-project

    Example output

    Name:         admin
    Labels:       <none>
    Annotations:  <none>
    Role:
      Kind:  ClusterRole
      Name:  admin
    Subjects:
      Kind  Name        Namespace
      ----  ----        ---------
      User  kube:admin
    
    
    Name:         system:deployers
    Labels:       <none>
    Annotations:  openshift.io/description:
                    Allows deploymentconfigs in this namespace to rollout pods in
                    this namespace.  It is auto-managed by a controller; remove
                    subjects to disa...
    Role:
      Kind:  ClusterRole
      Name:  system:deployer
    Subjects:
      Kind            Name      Namespace
      ----            ----      ---------
      ServiceAccount  deployer  joe-project
    
    
    Name:         system:image-builders
    Labels:       <none>
    Annotations:  openshift.io/description:
                    Allows builds in this namespace to push images to this
                    namespace.  It is auto-managed by a controller; remove subjects
                    to disable.
    Role:
      Kind:  ClusterRole
      Name:  system:image-builder
    Subjects:
      Kind            Name     Namespace
      ----            ----     ---------
      ServiceAccount  builder  joe-project
    
    
    Name:         system:image-pullers
    Labels:       <none>
    Annotations:  openshift.io/description:
                    Allows all pods in this namespace to pull images from this
                    namespace.  It is auto-managed by a controller; remove subjects
                    to disable.
    Role:
      Kind:  ClusterRole
      Name:  system:image-puller
    Subjects:
      Kind   Name                                Namespace
      ----   ----                                ---------
      Group  system:serviceaccounts:joe-project

7.2.6. Adding roles to users

You can use the oc adm administrator CLI to manage the roles and bindings.

Binding, or adding, a role to users or groups gives the user or group the access that is granted by the role. You can add and remove roles to and from users and groups using oc adm policy commands.

You can bind any of the default cluster roles to local users or groups in your project.

Procedure

  1. Add a role to a user in a specific project:

    $ oc adm policy add-role-to-user <role> <user> -n <project>

    For example, you can add the admin role to the alice user in joe project by running:

    $ oc adm policy add-role-to-user admin alice -n joe
  2. View the local role bindings and verify the addition in the output:

    $ oc describe rolebinding.rbac -n <project>

    For example, to view the local role bindings for the joe project:

    $ oc describe rolebinding.rbac -n joe

    Example output

    Name:         admin
    Labels:       <none>
    Annotations:  <none>
    Role:
      Kind:  ClusterRole
      Name:  admin
    Subjects:
      Kind  Name        Namespace
      ----  ----        ---------
      User  kube:admin
    
    
    Name:         admin-0
    Labels:       <none>
    Annotations:  <none>
    Role:
      Kind:  ClusterRole
      Name:  admin
    Subjects:
      Kind  Name   Namespace
      ----  ----   ---------
      User  alice 1
    
    
    Name:         system:deployers
    Labels:       <none>
    Annotations:  openshift.io/description:
                    Allows deploymentconfigs in this namespace to rollout pods in
                    this namespace.  It is auto-managed by a controller; remove
                    subjects to disa...
    Role:
      Kind:  ClusterRole
      Name:  system:deployer
    Subjects:
      Kind            Name      Namespace
      ----            ----      ---------
      ServiceAccount  deployer  joe
    
    
    Name:         system:image-builders
    Labels:       <none>
    Annotations:  openshift.io/description:
                    Allows builds in this namespace to push images to this
                    namespace.  It is auto-managed by a controller; remove subjects
                    to disable.
    Role:
      Kind:  ClusterRole
      Name:  system:image-builder
    Subjects:
      Kind            Name     Namespace
      ----            ----     ---------
      ServiceAccount  builder  joe
    
    
    Name:         system:image-pullers
    Labels:       <none>
    Annotations:  openshift.io/description:
                    Allows all pods in this namespace to pull images from this
                    namespace.  It is auto-managed by a controller; remove subjects
                    to disable.
    Role:
      Kind:  ClusterRole
      Name:  system:image-puller
    Subjects:
      Kind   Name                                Namespace
      ----   ----                                ---------
      Group  system:serviceaccounts:joe

    1
    The alice user has been added to the admins RoleBinding.

7.2.7. Creating a local role

You can create a local role for a project and then bind it to a user.

Procedure

  1. To create a local role for a project, run the following command:

    $ oc create role <name> --verb=<verb> --resource=<resource> -n <project>

    In this command, specify:

    • <name>, the local role’s name
    • <verb>, a comma-separated list of the verbs to apply to the role
    • <resource>, the resources that the role applies to
    • <project>, the project name

    For example, to create a local role that allows a user to view pods in the blue project, run the following command:

    $ oc create role podview --verb=get --resource=pod -n blue
  2. To bind the new role to a user, run the following command:

    $ oc adm policy add-role-to-user podview user2 --role-namespace=blue -n blue

7.2.8. Creating a cluster role

You can create a cluster role.

Procedure

  1. To create a cluster role, run the following command:

    $ oc create clusterrole <name> --verb=<verb> --resource=<resource>

    In this command, specify:

    • <name>, the local role’s name
    • <verb>, a comma-separated list of the verbs to apply to the role
    • <resource>, the resources that the role applies to

    For example, to create a cluster role that allows a user to view pods, run the following command:

    $ oc create clusterrole podviewonly --verb=get --resource=pod

7.2.9. Local role binding commands

When you manage a user or group’s associated roles for local role bindings using the following operations, a project may be specified with the -n flag. If it is not specified, then the current project is used.

You can use the following commands for local RBAC management.

Table 7.1. Local role binding operations
CommandDescription

$ oc adm policy who-can <verb> <resource>

Indicates which users can perform an action on a resource.

$ oc adm policy add-role-to-user <role> <username>

Binds a specified role to specified users in the current project.

$ oc adm policy remove-role-from-user <role> <username>

Removes a given role from specified users in the current project.

$ oc adm policy remove-user <username>

Removes specified users and all of their roles in the current project.

$ oc adm policy add-role-to-group <role> <groupname>

Binds a given role to specified groups in the current project.

$ oc adm policy remove-role-from-group <role> <groupname>

Removes a given role from specified groups in the current project.

$ oc adm policy remove-group <groupname>

Removes specified groups and all of their roles in the current project.

7.2.10. Cluster role binding commands

You can also manage cluster role bindings using the following operations. The -n flag is not used for these operations because cluster role bindings use non-namespaced resources.

Table 7.2. Cluster role binding operations
CommandDescription

$ oc adm policy add-cluster-role-to-user <role> <username>

Binds a given role to specified users for all projects in the cluster.

$ oc adm policy remove-cluster-role-from-user <role> <username>

Removes a given role from specified users for all projects in the cluster.

$ oc adm policy add-cluster-role-to-group <role> <groupname>

Binds a given role to specified groups for all projects in the cluster.

$ oc adm policy remove-cluster-role-from-group <role> <groupname>

Removes a given role from specified groups for all projects in the cluster.

7.2.11. Creating a cluster admin

The cluster-admin role is required to perform administrator level tasks on the OpenShift Container Platform cluster, such as modifying cluster resources.

Prerequisites

  • You must have created a user to define as the cluster admin.

Procedure

  • Define the user as a cluster admin:

    $ oc adm policy add-cluster-role-to-user cluster-admin <user>

7.3. The kubeadmin user

OpenShift Container Platform creates a cluster administrator, kubeadmin, after the installation process completes.

This user has the cluster-admin role automatically applied and is treated as the root user for the cluster. The password is dynamically generated and unique to your OpenShift Container Platform environment. After installation completes the password is provided in the installation program’s output. For example:

INFO Install complete!
INFO Run 'export KUBECONFIG=<your working directory>/auth/kubeconfig' to manage the cluster with 'oc', the OpenShift CLI.
INFO The cluster is ready when 'oc login -u kubeadmin -p <provided>' succeeds (wait a few minutes).
INFO Access the OpenShift web-console here: https://console-openshift-console.apps.demo1.openshift4-beta-abcorp.com
INFO Login to the console with user: kubeadmin, password: <provided>

7.3.1. Removing the kubeadmin user

After you define an identity provider and create a new cluster-admin user, you can remove the kubeadmin to improve cluster security.

Warning

If you follow this procedure before another user is a cluster-admin, then OpenShift Container Platform must be reinstalled. It is not possible to undo this command.

Prerequisites

  • You must have configured at least one identity provider.
  • You must have added the cluster-admin role to a user.
  • You must be logged in as an administrator.

Procedure

  • Remove the kubeadmin secrets:

    $ oc delete secrets kubeadmin -n kube-system

7.4. Image configuration

Understand and configure image registry settings.

7.4.1. Image controller configuration parameters

The image.config.openshift.io/cluster resource holds cluster-wide information about how to handle images. The canonical, and only valid name is cluster. Its spec offers the following configuration parameters.

Note

Parameters such as DisableScheduledImport, MaxImagesBulkImportedPerRepository, MaxScheduledImportsPerMinute, ScheduledImageImportMinimumIntervalSeconds, InternalRegistryHostname are not configurable.

ParameterDescription

allowedRegistriesForImport

Limits the container image registries from which normal users can import images. Set this list to the registries that you trust to contain valid images, and that you want applications to be able to import from. Users with permission to create images or ImageStreamMappings from the API are not affected by this policy. Typically only cluster administrators have the appropriate permissions.

Every element of this list contains a location of the registry specified by the registry domain name.

domainName: Specifies a domain name for the registry. In case the registry uses a non-standard 80 or 443 port, the port should be included in the domain name as well.

insecure: Insecure indicates whether the registry is secure or insecure. By default, if not otherwise specified, the registry is assumed to be secure.

additionalTrustedCA

A reference to a config map containing additional CAs that should be trusted during image stream import, pod image pull, openshift-image-registry pullthrough, and builds.

The namespace for this config map is openshift-config. The format of the config map is to use the registry hostname as the key, and the PEM-encoded certificate as the value, for each additional registry CA to trust.

externalRegistryHostnames

Provides the hostnames for the default external image registry. The external hostname should be set only when the image registry is exposed externally. The first value is used in publicDockerImageRepository field in image streams. The value must be in hostname[:port] format.

registrySources

Contains configuration that determines how the container runtime should treat individual registries when accessing images for builds and pods. For instance, whether or not to allow insecure access. It does not contain configuration for the internal cluster registry.

insecureRegistries: Registries which do not have a valid TLS certificate or only support HTTP connections.

blockedRegistries: Denylisted for image pull and push actions. All other registries are allowed.

allowedRegistries: Allowlisted for image pull and push actions. All other registries are blocked.

Either blockedRegistries or allowedRegistries can be set, but not both.

Warning

When the allowedRegistries parameter is defined, all registries, including registry.redhat.io and quay.io registries and the default internal image registry, are blocked unless explicitly listed. When using the parameter, to prevent pod failure, add all registries including the registry.redhat.io and quay.io registries and the internalRegistryHostname to the allowedRegistries list, as they are required by payload images within your environment. For disconnected clusters, mirror registries should also be added.

The status field of the image.config.openshift.io/cluster resource holds observed values from the cluster.

ParameterDescription

internalRegistryHostname

Set by the Image Registry Operator, which controls the internalRegistryHostname. It sets the hostname for the default internal image registry. The value must be in hostname[:port] format. For backward compatibility, you can still use the OPENSHIFT_DEFAULT_REGISTRY environment variable, but this setting overrides the environment variable.

externalRegistryHostnames

Set by the Image Registry Operator, provides the external hostnames for the image registry when it is exposed externally. The first value is used in publicDockerImageRepository field in image streams. The values must be in hostname[:port] format.

7.4.2. Configuring image registry settings

You can configure image registry settings by editing the image.config.openshift.io/cluster custom resource (CR). The Machine Config Operator (MCO) watches the image.config.openshift.io/cluster CR for any changes to the registries and reboots the nodes when it detects changes.

Procedure

  1. Edit the image.config.openshift.io/cluster custom resource:

    $ oc edit image.config.openshift.io/cluster

    The following is an example image.config.openshift.io/cluster CR:

    apiVersion: config.openshift.io/v1
    kind: Image 1
    metadata:
      annotations:
        release.openshift.io/create-only: "true"
      creationTimestamp: "2019-05-17T13:44:26Z"
      generation: 1
      name: cluster
      resourceVersion: "8302"
      selfLink: /apis/config.openshift.io/v1/images/cluster
      uid: e34555da-78a9-11e9-b92b-06d6c7da38dc
    spec:
      allowedRegistriesForImport: 2
        - domainName: quay.io
          insecure: false
      additionalTrustedCA: 3
        name: myconfigmap
      registrySources:4
        allowedRegistries:
        - example.com
        - quay.io
        - registry.redhat.io
        - image-registry.openshift-image-registry.svc:5000
        insecureRegistries:
        - insecure.com
    status:
      internalRegistryHostname: image-registry.openshift-image-registry.svc:5000
    1
    Image: Holds cluster-wide information about how to handle images. The canonical, and only valid name is cluster.
    2
    allowedRegistriesForImport: Limits the container image registries from which normal users may import images. Set this list to the registries that you trust to contain valid images, and that you want applications to be able to import from. Users with permission to create images or ImageStreamMappings from the API are not affected by this policy. Typically only cluster administrators have the appropriate permissions.
    3
    additionalTrustedCA: A reference to a config map containing additional certificate authorities (CA) that are trusted during image stream import, pod image pull, openshift-image-registry pullthrough, and builds. The namespace for this config map is openshift-config. The format of the config map is to use the registry hostname as the key, and the PEM certificate as the value, for each additional registry CA to trust.
    4
    registrySources: Contains configuration that determines whether the container runtime allows or blocks individual registries when accessing images for builds and pods. Either the allowedRegistries parameter or the blockedRegistries parameter can be set, but not both. You can also define whether or not to allow access to insecure registries. This example uses the allowedRegistries parameter, which defines the registries that are allowed to be used. The insecure registry insecure.com is also allowed. The registrySources paramter does not contain configuration for the internal cluster registry.
    Note

    When the allowedRegistries parameter is defined, all registries, including the registry.redhat.io and quay.io registries and the default internal image registry, are blocked unless explicitly listed. If you use the parameter, to prevent pod failure, you must add the registry.redhat.io and quay.io registries and the internalRegistryHostname to the allowedRegistries list, because they are required by payload images within your environment. Do not add the registry.redhat.io and quay.io registries to the blockedRegistries list.

    Insecure external registries should be avoided to reduce possible security risks.

  2. To check that the changes are applied, list your nodes:

    $ oc get nodes

    Example output

    NAME                                       STATUS                     ROLES    AGE   VERSION
    ci-ln-j5cd0qt-f76d1-vfj5x-master-0         Ready                         master   98m   v1.19.0+7070803
    ci-ln-j5cd0qt-f76d1-vfj5x-master-1         Ready,SchedulingDisabled      master   99m   v1.19.0+7070803
    ci-ln-j5cd0qt-f76d1-vfj5x-master-2         Ready                         master   98m   v1.19.0+7070803
    ci-ln-j5cd0qt-f76d1-vfj5x-worker-b-nsnd4   Ready                         worker   90m   v1.19.0+7070803
    ci-ln-j5cd0qt-f76d1-vfj5x-worker-c-5z2gz   NotReady,SchedulingDisabled   worker   90m   v1.19.0+7070803
    ci-ln-j5cd0qt-f76d1-vfj5x-worker-d-stsjv   Ready                         worker   90m   v1.19.0+7070803

For more information on the allowed, blocked, and insecure registry parameters, see Configuring image registry settings.

7.4.2.1. Configuring additional trust stores for image registry access

The image.config.openshift.io/cluster custom resource can contain a reference to a config map that contains additional certificate authorities to be trusted during image registry access.

Prerequisites

  • The certificate authorities (CA) must be PEM-encoded.

Procedure

You can create a config map in the openshift-config namespace and use its name in AdditionalTrustedCA in the image.config.openshift.io custom resource to provide additional CAs that should be trusted when contacting external registries.

The config map key is the hostname of a registry with the port for which this CA is to be trusted, and the base64-encoded certificate is the value, for each additional registry CA to trust.

Image registry CA config map example

apiVersion: v1
kind: ConfigMap
metadata:
  name: my-registry-ca
data:
  registry.example.com: |
    -----BEGIN CERTIFICATE-----
    ...
    -----END CERTIFICATE-----
  registry-with-port.example.com..5000: | 1
    -----BEGIN CERTIFICATE-----
    ...
    -----END CERTIFICATE-----

1
If the registry has the port, such as registry-with-port.example.com:5000, : should be replaced with ...

You can configure additional CAs with the following procedure.

  1. To configure an additional CA:

    $ oc create configmap registry-config --from-file=<external_registry_address>=ca.crt -n openshift-config
    $ oc edit image.config.openshift.io cluster
    spec:
      additionalTrustedCA:
        name: registry-config
7.4.2.2. Configuring image registry repository mirroring

Setting up container registry repository mirroring enables you to do the following:

  • Configure your OpenShift Container Platform cluster to redirect requests to pull images from a repository on a source image registry and have it resolved by a repository on a mirrored image registry.
  • Identify multiple mirrored repositories for each target repository, to make sure that if one mirror is down, another can be used.

The attributes of repository mirroring in OpenShift Container Platform include:

  • Image pulls are resilient to registry downtimes.
  • Clusters in restricted networks can pull images from critical locations, such as quay.io, and have registries behind a company firewall provide the requested images.
  • A particular order of registries is tried when an image pull request is made, with the permanent registry typically being the last one tried.
  • The mirror information you enter is added to the /etc/containers/registries.conf file on every node in the OpenShift Container Platform cluster.
  • When a node makes a request for an image from the source repository, it tries each mirrored repository in turn until it finds the requested content. If all mirrors fail, the cluster tries the source repository. If successful, the image is pulled to the node.

Setting up repository mirroring can be done in the following ways:

  • At OpenShift Container Platform installation:

    By pulling container images needed by OpenShift Container Platform and then bringing those images behind your company’s firewall, you can install OpenShift Container Platform into a datacenter that is in a restricted network.

  • After OpenShift Container Platform installation:

    Even if you don’t configure mirroring during OpenShift Container Platform installation, you can do so later using the ImageContentSourcePolicy object.

The following procedure provides a post-installation mirror configuration, where you create an ImageContentSourcePolicy object that identifies:

  • The source of the container image repository you want to mirror.
  • A separate entry for each mirror repository you want to offer the content requested from the source repository.
Note

You can only configure global pull secrets for clusters that have an ImageContentSourcePolicy object. You cannot add a pull secret to a project.

Prerequisites

  • Access to the cluster as a user with the cluster-admin role.

Procedure

  1. Configure mirrored repositories, by either:

    • Setting up a mirrored repository with Red Hat Quay, as described in Red Hat Quay Repository Mirroring. Using Red Hat Quay allows you to copy images from one repository to another and also automatically sync those repositories repeatedly over time.
    • Using a tool such as skopeo to copy images manually from the source directory to the mirrored repository.

      For example, after installing the skopeo RPM package on a Red Hat Enterprise Linux (RHEL) 7 or RHEL 8 system, use the skopeo command as shown in this example:

      $ skopeo copy \
      docker://registry.access.redhat.com/ubi8/ubi-minimal@sha256:5cfbaf45ca96806917830c183e9f37df2e913b187adb32e89fd83fa455ebaa6 \
      docker://example.io/example/ubi-minimal

      In this example, you have a container image registry that is named example.io with an image repository named example to which you want to copy the ubi8/ubi-minimal image from registry.access.redhat.com. After you create the registry, you can configure your OpenShift Container Platform cluster to redirect requests made of the source repository to the mirrored repository.

  2. Log in to your OpenShift Container Platform cluster.
  3. Create an ImageContentSourcePolicy file (for example, registryrepomirror.yaml), replacing the source and mirrors with your own registry and repository pairs and images:

    apiVersion: operator.openshift.io/v1alpha1
    kind: ImageContentSourcePolicy
    metadata:
      name: ubi8repo
    spec:
      repositoryDigestMirrors:
      - mirrors:
        - example.io/example/ubi-minimal 1
        source: registry.access.redhat.com/ubi8/ubi-minimal 2
      - mirrors:
        - example.com/example/ubi-minimal
        source: registry.access.redhat.com/ubi8/ubi-minimal
      - mirrors:
        - mirror.example.com/redhat
        source: registry.redhat.io/openshift4 3
    1
    Indicates the name of the image registry and repository.
    2
    Indicates the registry and repository containing the content that is mirrored.
    3
    You can configure a namespace inside a registry to use any image in that namespace. If you use a registry domain as a source, the ImageContentSourcePolicy resource is applied to all repositories from the registry.
  4. Create the new ImageContentSourcePolicy object:

    $ oc create -f registryrepomirror.yaml

    After the ImageContentSourcePolicy object is created, the new settings are deployed to each node and the cluster starts using the mirrored repository for requests to the source repository.

  5. To check that the mirrored configuration settings, are applied, do the following on one of the nodes.

    1. List your nodes:

      $ oc get node

      Example output

      NAME                           STATUS                     ROLES    AGE  VERSION
      ip-10-0-137-44.ec2.internal    Ready                      worker   7m   v1.19.0
      ip-10-0-138-148.ec2.internal   Ready                      master   11m  v1.19.0
      ip-10-0-139-122.ec2.internal   Ready                      master   11m  v1.19.0
      ip-10-0-147-35.ec2.internal    Ready,SchedulingDisabled   worker   7m   v1.19.0
      ip-10-0-153-12.ec2.internal    Ready                      worker   7m   v1.19.0
      ip-10-0-154-10.ec2.internal    Ready                      master   11m  v1.19.0

      You can see that scheduling on each worker node is disabled as the change is being applied.

    2. Start the debugging process to access the node:

      $ oc debug node/ip-10-0-147-35.ec2.internal

      Example output

      Starting pod/ip-10-0-147-35ec2internal-debug ...
      To use host binaries, run `chroot /host`

    3. Access the node’s files:

      sh-4.2# chroot /host
    4. Check the /etc/containers/registries.conf file to make sure the changes were made:

      sh-4.2# cat /etc/containers/registries.conf

      Example output

      unqualified-search-registries = ["registry.access.redhat.com", "docker.io"]
      [[registry]]
        location = "registry.access.redhat.com/ubi8/"
        insecure = false
        blocked = false
        mirror-by-digest-only = true
        prefix = ""
      
        [[registry.mirror]]
          location = "example.io/example/ubi8-minimal"
          insecure = false
      
        [[registry.mirror]]
          location = "example.com/example/ubi8-minimal"
          insecure = false

    5. Pull an image digest to the node from the source and check if it is resolved by the mirror. ImageContentSourcePolicy objects support image digests only, not image tags.

      sh-4.2# podman pull --log-level=debug registry.access.redhat.com/ubi8/ubi-minimal@sha256:5cfbaf45ca96806917830c183e9f37df2e913b187adb32e89fd83fa455ebaa6

Troubleshooting repository mirroring

If the repository mirroring procedure does not work as described, use the following information about how repository mirroring works to help troubleshoot the problem.

  • The first working mirror is used to supply the pulled image.
  • The main registry is only used if no other mirror works.
  • From the system context, the Insecure flags are used as fallback.
  • The format of the /etc/containers/registries.conf file has changed recently. It is now version 2 and in TOML format.

7.5. Operator installation with OperatorHub

OperatorHub is a user interface for discovering Operators; it works in conjunction with Operator Lifecycle Manager (OLM), which installs and manages Operators on a cluster.

As a cluster administrator, you can install an Operator from OperatorHub using the OpenShift Container Platform web console or CLI. Subscribing an Operator to one or more namespaces makes the Operator available to developers on your cluster.

During installation, you must determine the following initial settings for the Operator:

Installation Mode
Choose All namespaces on the cluster (default) to have the Operator installed on all namespaces or choose individual namespaces, if available, to only install the Operator on selected namespaces. This example chooses All namespaces…​ to make the Operator available to all users and projects.
Update Channel
If an Operator is available through multiple channels, you can choose which channel you want to subscribe to. For example, to deploy from the stable channel, if available, select it from the list.
Approval Strategy

You can choose automatic or manual updates.

If you choose automatic updates for an installed Operator, when a new version of that Operator is available in the selected channel, Operator Lifecycle Manager (OLM) automatically upgrades the running instance of your Operator without human intervention.

If you select manual updates, when a newer version of an Operator is available, OLM creates an update request. As a cluster administrator, you must then manually approve that update request to have the Operator updated to the new version.

7.5.1. Installing from OperatorHub using the web console

You can install and subscribe to an Operator from OperatorHub using the OpenShift Container Platform web console.

Prerequisites

  • Access to an OpenShift Container Platform cluster using an account with cluster-admin permissions.

Procedure

  1. Navigate in the web console to the Operators → OperatorHub page.
  2. Scroll or type a keyword into the Filter by keyword box to find the Operator you want. For example, type jaeger to find the Jaeger Operator.

    You can also filter options by Infrastructure Features. For example, select Disconnected if you want to see Operators that work in disconnected environments, also known as restricted network environments.

  3. Select the Operator to display additional information.

    Note

    Choosing a Community Operator warns that Red Hat does not certify Community Operators; you must acknowledge the warning before continuing.

  4. Read the information about the Operator and click Install.
  5. On the Install Operator page:

    1. Select one of the following:

      • All namespaces on the cluster (default) installs the Operator in the default openshift-operators namespace to watch and be made available to all namespaces in the cluster. This option is not always available.
      • A specific namespace on the cluster allows you to choose a specific, single namespace in which to install the Operator. The Operator will only watch and be made available for use in this single namespace.
    2. Select an Update Channel (if more than one is available).
    3. Select Automatic or Manual approval strategy, as described earlier.
  6. Click Install to make the Operator available to the selected namespaces on this OpenShift Container Platform cluster.

    1. If you selected a Manual approval strategy, the upgrade status of the subscription remains Upgrading until you review and approve the install plan.

      After approving on the Install Plan page, the subscription upgrade status moves to Up to date.

    2. If you selected an Automatic approval strategy, the upgrade status should resolve to Up to date without intervention.
  7. After the upgrade status of the subscription is Up to date, select Operators → Installed Operators to verify that the cluster service version (CSV) of the installed Operator eventually shows up. The Status should ultimately resolve to InstallSucceeded in the relevant namespace.

    Note

    For the All namespaces…​ installation mode, the status resolves to InstallSucceeded in the openshift-operators namespace, but the status is Copied if you check in other namespaces.

    If it does not:

    1. Check the logs in any pods in the openshift-operators project (or other relevant namespace if A specific namespace…​ installation mode was selected) on the Workloads → Pods page that are reporting issues to troubleshoot further.

7.5.2. Installing from OperatorHub using the CLI

Instead of using the OpenShift Container Platform web console, you can install an Operator from OperatorHub using the CLI. Use the oc command to create or update a Subscription object.

Prerequisites

  • Access to an OpenShift Container Platform cluster using an account with cluster-admin permissions.
  • Install the oc command to your local system.

Procedure

  1. View the list of Operators available to the cluster from OperatorHub:

    $ oc get packagemanifests -n openshift-marketplace

    Example output

    NAME                               CATALOG               AGE
    3scale-operator                    Red Hat Operators     91m
    advanced-cluster-management        Red Hat Operators     91m
    amq7-cert-manager                  Red Hat Operators     91m
    ...
    couchbase-enterprise-certified     Certified Operators   91m
    crunchy-postgres-operator          Certified Operators   91m
    mongodb-enterprise                 Certified Operators   91m
    ...
    etcd                               Community Operators   91m
    jaeger                             Community Operators   91m
    kubefed                            Community Operators   91m
    ...

    Note the catalog for your desired Operator.

  2. Inspect your desired Operator to verify its supported install modes and available channels:

    $ oc describe packagemanifests <operator_name> -n openshift-marketplace
  3. An Operator group, defined by an OperatorGroup object, selects target namespaces in which to generate required RBAC access for all Operators in the same namespace as the Operator group.

    The namespace to which you subscribe the Operator must have an Operator group that matches the install mode of the Operator, either the AllNamespaces or SingleNamespace mode. If the Operator you intend to install uses the AllNamespaces, then the openshift-operators namespace already has an appropriate Operator group in place.

    However, if the Operator uses the SingleNamespace mode and you do not already have an appropriate Operator group in place, you must create one.

    Note

    The web console version of this procedure handles the creation of the OperatorGroup and Subscription objects automatically behind the scenes for you when choosing SingleNamespace mode.

    1. Create an OperatorGroup object YAML file, for example operatorgroup.yaml:

      Example OperatorGroup object

      apiVersion: operators.coreos.com/v1
      kind: OperatorGroup
      metadata:
        name: <operatorgroup_name>
        namespace: <namespace>
      spec:
        targetNamespaces:
        - <namespace>

    2. Create the OperatorGroup object:

      $ oc apply -f operatorgroup.yaml
  4. Create a Subscription object YAML file to subscribe a namespace to an Operator, for example sub.yaml:

    Example Subscription object

    apiVersion: operators.coreos.com/v1alpha1
    kind: Subscription
    metadata:
      name: <subscription_name>
      namespace: openshift-operators 1
    spec:
      channel: <channel_name> 2
      name: <operator_name> 3
      source: redhat-operators 4
      sourceNamespace: openshift-marketplace 5
      config:
        env: 6
        - name: ARGS
          value: "-v=10"
        envFrom: 7
        - secretRef:
            name: license-secret
        volumes: 8
        - name: <volume_name>
          configMap:
            name: <configmap_name>
        volumeMounts: 9
        - mountPath: <directory_name>
          name: <volume_name>
        tolerations: 10
        - operator: "Exists"
        resources: 11
          requests:
            memory: "64Mi"
            cpu: "250m"
          limits:
            memory: "128Mi"
            cpu: "500m"
        nodeSelector: 12
          foo: bar

    1
    For AllNamespaces install mode usage, specify the openshift-operators namespace. Otherwise, specify the relevant single namespace for SingleNamespace install mode usage.
    2
    Name of the channel to subscribe to.
    3
    Name of the Operator to subscribe to.
    4
    Name of the catalog source that provides the Operator.
    5
    Namespace of the catalog source. Use openshift-marketplace for the default OperatorHub catalog sources.
    6
    The env parameter defines a list of Environment Variables that must exist in all containers in the pod created by OLM.
    7
    The envFrom parameter defines a list of sources to populate Environment Variables in the container.
    8
    The volumes parameter defines a list of Volumes that must exist on the pod created by OLM.
    9
    The volumeMounts parameter defines a list of VolumeMounts that must exist in all containers in the pod created by OLM. If a volumeMount references a volume that does not exist, OLM fails to deploy the Operator.
    10
    The tolerations parameter defines a list of Tolerations for the pod created by OLM.
    11
    The resources parameter defines resource constraints for all the containers in the pod created by OLM.
    12
    The nodeSelector parameter defines a NodeSelector for the pod created by OLM.
  5. Create the Subscription object:

    $ oc apply -f sub.yaml

    At this point, OLM is now aware of the selected Operator. A cluster service version (CSV) for the Operator should appear in the target namespace, and APIs provided by the Operator should be available for creation.

Additional resources

Chapter 8. Configuring alert notifications

In OpenShift Container Platform, an alert is fired when the conditions defined in an alerting rule are true. An alert provides a notification that a set of circumstances are apparent within a cluster. Firing alerts can be viewed in the Alerting UI in the OpenShift Container Platform web console by default. After an installation, you can configure OpenShift Container Platform to send alert notifications to external systems.

8.1. Sending notifications to external systems

In OpenShift Container Platform 4.6, firing alerts can be viewed in the Alerting UI. Alerts are not configured by default to be sent to any notification systems. You can configure OpenShift Container Platform to send alerts to the following receiver types:

  • PagerDuty
  • Webhook
  • Email
  • Slack

Routing alerts to receivers enables you to send timely notifications to the appropriate teams when failures occur. For example, critical alerts require immediate attention and are typically paged to an individual or a critical response team. Alerts that provide non-critical warning notifications might instead be routed to a ticketing system for non-immediate review.

Checking that alerting is operational by using the watchdog alert

OpenShift Container Platform monitoring includes a watchdog alert that fires continuously. Alertmanager repeatedly sends watchdog alert notifications to configured notification providers. The provider is usually configured to notify an administrator when it stops receiving the watchdog alert. This mechanism helps you quickly identify any communication issues between Alertmanager and the notification provider.

8.1.1. Configuring alert receivers

You can configure alert receivers to ensure that you learn about important issues with your cluster.

Prerequisites

  • You have access to the cluster as a user with the cluster-admin role.

Procedure

  1. In the Administrator perspective, navigate to AdministrationCluster SettingsGlobal ConfigurationAlertmanager.

    Note

    Alternatively, you can navigate to the same page through the notification drawer. Select the bell icon at the top right of the OpenShift Container Platform web console and choose Configure in the AlertmanagerReceiverNotConfigured alert.

  2. Select Create Receiver in the Receivers section of the page.
  3. In the Create Receiver form, add a Receiver Name and choose a Receiver Type from the list.
  4. Edit the receiver configuration:

    • For PagerDuty receivers:

      1. Choose an integration type and add a PagerDuty integration key.
      2. Add the URL of your PagerDuty installation.
      3. Select Show advanced configuration if you want to edit the client and incident details or the severity specification.
    • For webhook receivers:

      1. Add the endpoint to send HTTP POST requests to.
      2. Select Show advanced configuration if you want to edit the default option to send resolved alerts to the receiver.
    • For email receivers:

      1. Add the email address to send notifications to.
      2. Add SMTP configuration details, including the address to send notifications from, the smarthost and port number used for sending emails, the hostname of the SMTP server, and authentication details.
      3. Choose whether TLS is required.
      4. Select Show advanced configuration if you want to edit the default option not to send resolved alerts to the receiver or edit the body of email notifications configuration.
    • For Slack receivers:

      1. Add the URL of the Slack webhook.
      2. Add the Slack channel or user name to send notifications to.
      3. Select Show advanced configuration if you want to edit the default option not to send resolved alerts to the receiver or edit the icon and username configuration. You can also choose whether to find and link channel names and usernames.
  5. By default, firing alerts with labels that match all of the selectors will be sent to the receiver. If you want label values for firing alerts to be matched exactly before they are sent to the receiver:

    1. Add routing label names and values in the Routing Labels section of the form.
    2. Select Regular Expression if want to use a regular expression.
    3. Select Add Label to add further routing labels.
  6. Select Create to create the receiver.

8.2. Additional resources

Legal Notice

Copyright © 2024 Red Hat, Inc.

OpenShift documentation is licensed under the Apache License 2.0 (https://www.apache.org/licenses/LICENSE-2.0).

Modified versions must remove all Red Hat trademarks.

Portions adapted from https://github.com/kubernetes-incubator/service-catalog/ with modifications by Red Hat.

Red Hat, Red Hat Enterprise Linux, the Red Hat logo, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other countries.

Linux® is the registered trademark of Linus Torvalds in the United States and other countries.

Java® is a registered trademark of Oracle and/or its affiliates.

XFS® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States and/or other countries.

MySQL® is a registered trademark of MySQL AB in the United States, the European Union and other countries.

Node.js® is an official trademark of Joyent. Red Hat Software Collections is not formally related to or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack® Word Mark and OpenStack logo are either registered trademarks/service marks or trademarks/service marks of the OpenStack Foundation, in the United States and other countries and are used with the OpenStack Foundation’s permission. We are not affiliated with, endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Red Hat logoGithubRedditYoutubeTwitter

Learn

Try, buy, & sell

Communities

About Red Hat Documentation

We help Red Hat users innovate and achieve their goals with our products and services with content they can trust.

Making open source more inclusive

Red Hat is committed to replacing problematic language in our code, documentation, and web properties. For more details, see the Red Hat Blog.

About Red Hat

We deliver hardened solutions that make it easier for enterprises to work across platforms and environments, from the core datacenter to the network edge.

© 2024 Red Hat, Inc.