Service Mesh


Red Hat OpenShift Service on AWS 4

Service Mesh installation, usage, and release notes

Red Hat OpenShift Documentation Team

Abstract

This document provides information on how to use Service Mesh in Red Hat OpenShift Service on AWS.

Chapter 1. Service Mesh 2.x

1.1. About OpenShift Service Mesh

Note

Because Red Hat OpenShift Service Mesh releases on a different cadence from Red Hat OpenShift Service on AWS and because the Red Hat OpenShift Service Mesh Operator supports deploying multiple versions of the ServiceMeshControlPlane, the Service Mesh documentation does not maintain separate documentation sets for minor versions of the product. The current documentation set applies to the most recent version of Service Mesh unless version-specific limitations are called out in a particular topic or for a particular feature.

For additional information about the Red Hat OpenShift Service Mesh life cycle and supported platforms, refer to the Platform Life Cycle Policy.

1.1.1. Introduction to Red Hat OpenShift Service Mesh

Red Hat OpenShift Service Mesh addresses a variety of problems in a microservice architecture by creating a centralized point of control in an application. It adds a transparent layer on existing distributed applications without requiring any changes to the application code.

Microservice architectures split the work of enterprise applications into modular services, which can make scaling and maintenance easier. However, as an enterprise application built on a microservice architecture grows in size and complexity, it becomes difficult to understand and manage. Service Mesh can address those architecture problems by capturing or intercepting traffic between services and can modify, redirect, or create new requests to other services.

Service Mesh, which is based on the open source Istio project, provides an easy way to create a network of deployed services that provides discovery, load balancing, service-to-service authentication, failure recovery, metrics, and monitoring. A service mesh also provides more complex operational functionality, including A/B testing, canary releases, access control, and end-to-end authentication.

1.1.2. Core features

Red Hat OpenShift Service Mesh provides a number of key capabilities uniformly across a network of services:

  • Traffic Management - Control the flow of traffic and API calls between services, make calls more reliable, and make the network more robust in the face of adverse conditions.
  • Service Identity and Security - Provide services in the mesh with a verifiable identity and provide the ability to protect service traffic as it flows over networks of varying degrees of trustworthiness.
  • Policy Enforcement - Apply organizational policy to the interaction between services, ensure access policies are enforced and resources are fairly distributed among consumers. Policy changes are made by configuring the mesh, not by changing application code.
  • Telemetry - Gain understanding of the dependencies between services and the nature and flow of traffic between them, providing the ability to quickly identify issues.

1.2. Service Mesh Release Notes

1.2.1. Making open source more inclusive

Red Hat is committed to replacing problematic language in our code, documentation, and web properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the enormity of this endeavor, these changes will be implemented gradually over several upcoming releases. For more details, see our CTO Chris Wright’s message.

1.2.2. Red Hat OpenShift Service Mesh version 2.6.5

This release of Red Hat OpenShift Service Mesh updates the Red Hat OpenShift Service Mesh Operator version to 2.6.5, and includes the following ServiceMeshControlPlane resource version updates: 2.6.5, 2.5.8, and 2.4.14.

This release addresses Common Vulnerabilities and Exposures (CVEs) and is supported on Red Hat OpenShift Service on AWS 4.14 and later.

The most current version of the Red Hat OpenShift Service Mesh Operator can be used with all supported versions of Service Mesh. The version of Service Mesh is specified using the ServiceMeshControlPlane.

You can use the most current version of the Kiali Operator provided by Red Hat with all supported versions of Red Hat OpenShift Service Mesh. The version of Service Mesh is specified by using the ServiceMeshControlPlane resource. The version of Service Mesh automatically ensures a compatible version of Kiali.

1.2.2.1. Component updates
ComponentVersion

Istio

1.20.8

Envoy Proxy

1.28.7

Kiali Server

1.73.18

1.2.2.2. New features
  • Red Hat OpenShift distributed tracing platform (Tempo) Stack is now supported on IBM Z.
1.2.2.3. Fixed issues
  • OSSM-8608 Previously, terminating a Container Network Interface (CNI) pod during the installation phase while copying binaries could leave Istio-CNI temporary files on the node file system. Repeated occurrences could eventually fill up the node disk space. Now, while terminating a CNI pod during the installation phase, existing temporary files are deleted before copying the CNI binary, ensuring that only one temporary file per Istio version exists on the node file system.

1.2.3. Red Hat OpenShift Service Mesh version 2.5.8

This release of Red Hat OpenShift Service Mesh is included with the Red Hat OpenShift Service Mesh Operator 2.6.5 and is supported on Red Hat OpenShift Service on AWS 4.14 and later. This release addresses Common Vulnerabilities and Exposures (CVEs).

1.2.3.1. Component updates
ComponentVersion

Istio

1.18.7

Envoy Proxy

1.26.8

Kiali Server

1.73.18

1.2.3.2. Fixed issues
  • OSSM-8608 Previously, terminating a Container Network Interface (CNI) pod during the installation phase while copying binaries could leave Istio-CNI temporary files on the node file system. Repeated occurrences could eventually fill up the node disk space. Now, while terminating a CNI pod during the installation phase, existing temporary files are deleted before copying the CNI binary, ensuring that only one temporary file per Istio version exists on the node file system.

1.2.4. Red Hat OpenShift Service Mesh version 2.4.14

This release of Red Hat OpenShift Service Mesh is included with the Red Hat OpenShift Service Mesh Operator 2.6.5 and is supported on Red Hat OpenShift Service on AWS 4.14 and later. This release addresses Common Vulnerabilities and Exposures (CVEs).

1.2.4.1. Component updates
ComponentVersion

Istio

1.16.7

Envoy Proxy

1.24.12

Kiali Server

1.65.19

1.2.4.2. Fixed issues
  • OSSM-8608 Previously, terminating a Container Network Interface (CNI) pod during the installation phase while copying binaries could leave Istio-CNI temporary files on the node file system. Repeated occurrences could eventually fill up the node disk space. Now, while terminating a CNI pod during the installation phase, existing temporary files are deleted before copying the CNI binary, ensuring that only one temporary file per Istio version exists on the node file system.

1.2.5. Red Hat OpenShift Service Mesh version 2.6.4

This release of Red Hat OpenShift Service Mesh updates the Red Hat OpenShift Service Mesh Operator version to 2.6.4, and includes the following ServiceMeshControlPlane resource version updates: 2.6.4, 2.5.7, and 2.4.13.

This release addresses Common Vulnerabilities and Exposures (CVEs) and is supported on Red Hat OpenShift Service on AWS 4.14 and later.

The most current version of the Kiali Operator provided by Red Hat can be used with all supported versions of Red Hat OpenShift Service Mesh. The version of Service Mesh is specified by using the ServiceMeshControlPlane resource. The version of Service Mesh automatically ensures a compatible version of Kiali.

1.2.5.1. Component updates
ComponentVersion

Istio

1.20.8

Envoy Proxy

1.28.7

Kiali Server

1.73.17

1.2.6. Red Hat OpenShift Service Mesh version 2.5.7

This release of Red Hat OpenShift Service Mesh is included with the Red Hat OpenShift Service Mesh Operator 2.6.4 and is supported on Red Hat OpenShift Service on AWS 4.14 and later. This release addresses Common Vulnerabilities and Exposures (CVEs).

1.2.6.1. Component updates
ComponentVersion

Istio

1.18.7

Envoy Proxy

1.26.8

Kiali Server

1.73.17

1.2.7. Red Hat OpenShift Service Mesh version 2.4.13

This release of Red Hat OpenShift Service Mesh is included with the Red Hat OpenShift Service Mesh Operator 2.6.4 and is supported on Red Hat OpenShift Service on AWS 4.14 and later. This release addresses Common Vulnerabilities and Exposures (CVEs).

1.2.7.1. Component updates
ComponentVersion

Istio

1.16.7

Envoy Proxy

1.24.12

Kiali Server

1.65.18

1.2.8. Red Hat OpenShift Service Mesh version 2.6.3

This release of Red Hat OpenShift Service Mesh updates the Red Hat OpenShift Service Mesh Operator version to 2.6.3, and includes the following ServiceMeshControlPlane resource version updates: 2.6.3, 2.5.6, and 2.4.12.

This release addresses Common Vulnerabilities and Exposures (CVEs) and is supported on Red Hat OpenShift Service on AWS 4.14 and later.

The most current version of the Kiali Operator provided by Red Hat can be used with all supported versions of Red Hat OpenShift Service Mesh. The version of Service Mesh is specified by using the ServiceMeshControlPlane resource. The version of Service Mesh automatically ensures a compatible version of Kiali.

1.2.8.1. Component updates
ComponentVersion

Istio

1.20.8

Envoy Proxy

1.28.7

Kiali Server

1.73.16

1.2.9. Red Hat OpenShift Service Mesh version 2.5.6

This release of Red Hat OpenShift Service Mesh is included with the Red Hat OpenShift Service Mesh Operator 2.6.3, addresses Common Vulnerabilities and Exposures (CVEs), and is supported on Red Hat OpenShift Service on AWS 4.14 and later.

1.2.9.1. Component updates
ComponentVersion

Istio

1.18.7

Envoy Proxy

1.26.8

Kiali Server

1.73.16

1.2.10. Red Hat OpenShift Service Mesh version 2.4.12

This release of Red Hat OpenShift Service Mesh is included with the Red Hat OpenShift Service Mesh Operator 2.6.3, addresses Common Vulnerabilities and Exposures (CVEs), and is supported on Red Hat OpenShift Service on AWS 4.14 and later.

1.2.10.1. Component updates
ComponentVersion

Istio

1.16.7

Envoy Proxy

1.24.12

Kiali Server

1.65.17

1.2.11. Red Hat OpenShift Service Mesh version 2.6.2

This release of Red Hat OpenShift Service Mesh updates the Red Hat OpenShift Service Mesh Operator version to 2.6.2, and includes the following ServiceMeshControlPlane resource version updates: 2.6.2, 2.5.5 and 2.4.11.

This release addresses Common Vulnerabilities and Exposures (CVEs), contains bug fixes, and is supported on Red Hat OpenShift Service on AWS 4.14 and later.

The most current version of the Kiali Operator provided by Red Hat can be used with all supported versions of Red Hat OpenShift Service Mesh. The version of Service Mesh is specified by using the ServiceMeshControlPlane resource. The version of Service Mesh automatically ensures a compatible version of Kiali.

1.2.11.1. Component updates
ComponentVersion

Istio

1.20.8

Envoy Proxy

1.28.7

Kiali Server

1.73.15

1.2.11.2. New features
  • The cert-manager Operator for Red Hat OpenShift is now supported on IBM Power, IBM Z, and IBM® LinuxONE.
1.2.11.3. Fixed issues
  • OSSM-8099 Previously, there was an issue supporting persistent session labels when the endpoints were in the draining phase. Now, there is a method of handling draining endpoints for the stateful header sessions.
  • OSSM-8001 Previously, when runAsUser and runAsGroup were set to the same value in pods, the proxy GID was incorrectly set to match the container’s GID, causing traffic interception issues with iptables rules applied by Istio CNI. Now, containers can have the same value for runAsUser and runAsGroup, and iptables rules apply correctly.
  • OSSM-8074 Previously, the Kiali Operator failed to install the Kiali server when a Service Mesh had a numeric-only namespace (e.g., 12345). Now, namespaces with only numerals work correctly.

1.2.12. Red Hat OpenShift Service Mesh version 2.5.5

This release of Red Hat OpenShift Service Mesh is included with the Red Hat OpenShift Service Mesh Operator 2.6.2, addresses Common Vulnerabilities and Exposures (CVEs), and is supported on Red Hat OpenShift Service on AWS 4.14 and later.

1.2.12.1. Component updates
ComponentVersion

Istio

1.18.7

Envoy Proxy

1.26.8

Kiali Server

1.73.15

1.2.12.2. Fixed issues
  • OSSM-8001 Previously, when the runAsUser and runAsGroup parameters were set to the same value in pods, the proxy GID was incorrectly set to match the container’s GID, causing traffic interception issues with iptables rules applied by Istio CNI. Now, containers can have the same value for the runAsUser and runAsGroup parameters, and iptables rules apply correctly.
  • OSSM-8074 Previously, the Kiali Operator provided by Red Hat failed to install the Kiali Server when a Service Mesh had a numeric-only namespace (e.g., 12345). Now, namespaces with only numerals work correctly.

1.2.13. Red Hat OpenShift Service Mesh version 2.4.11

This release of Red Hat OpenShift Service Mesh is included with the Red Hat OpenShift Service Mesh Operator 2.6.2, addresses Common Vulnerabilities and Exposures (CVEs), and is supported on Red Hat OpenShift Service on AWS 4.14 and later.

1.2.13.1. Component updates
ComponentVersion

Istio

1.16.7

Envoy Proxy

1.24.12

Kiali Server

1.65.16

1.2.13.2. Fixed issues
  • OSSM-8001 Previously, when the runAsUser and runAsGroup parameters were set to the same value in pods, the proxy GID was incorrectly set to match the container’s GID, causing traffic interception issues with iptables rules applied by Istio CNI. Now, containers can have the same value for the runAsUser and runAsGroup parameters, and iptables rules apply correctly.
  • OSSM-8074 Previously, the Kiali Operator provided by Red Hat failed to install the Kiali Server when a Service Mesh had a numeric-only namespace (e.g., 12345). Now, namespaces with only numerals work correctly.

1.2.14. Red Hat OpenShift Service Mesh version 2.6.1

This release of Red Hat OpenShift Service Mesh updates the Red Hat OpenShift Service Mesh Operator version to 2.6.1, and includes the following ServiceMeshControlPlane resource version updates: 2.6.1, 2.5.4 and 2.4.10. This release addresses Common Vulnerabilities and Exposures (CVEs), contains a bug fix, and is supported on Red Hat OpenShift Service on AWS 4.14 and later.

The most current version of the Kiali Operator provided by Red Hat can be used with all supported versions of Red Hat OpenShift Service Mesh. The version of Service Mesh is specified by using the ServiceMeshControlPlane resource. The version of Service Mesh automatically ensures a compatible version of Kiali.

1.2.14.1. Component updates
ComponentVersion

Istio

1.20.8

Envoy Proxy

1.28.5

Kiali Server

1.73.14

1.2.14.2. Fixed issues
  • OSSM-6766 Previously, the OpenShift Service Mesh Console (OSSMC) plugin failed if the user wanted to update a namespace (for example, enabling or disabling injection), or create any Istio object (for example, creating traffic policies). Now, the OpenShift Service Mesh Console (OSSMC) plugin does not fail if the user updates a namespace or creates any Istio object.

1.2.15. Red Hat OpenShift Service Mesh version 2.5.4

This release of Red Hat OpenShift Service Mesh is included with the Red Hat OpenShift Service Mesh Operator 2.6.1, addresses Common Vulnerabilities and Exposures (CVEs), and is supported on Red Hat OpenShift Service on AWS 4.14 and later.

1.2.15.1. Component updates
ComponentVersion

Istio

1.18.7

Envoy Proxy

1.26.8

Kiali Server

1.73.14

1.2.16. Red Hat OpenShift Service Mesh version 2.4.10

This release of Red Hat OpenShift Service Mesh is included with the Red Hat OpenShift Service Mesh Operator 2.6.1, addresses Common Vulnerabilities and Exposures (CVEs), and is supported on Red Hat OpenShift Service on AWS 4.14 and later.

1.2.16.1. Component updates
ComponentVersion

Istio

1.16.7

Envoy Proxy

1.24.12

Kiali Server

1.65.15

1.2.17. Red Hat OpenShift Service Mesh version 2.6.0

This release of Red Hat OpenShift Service Mesh updates the Red Hat OpenShift Service Mesh Operator version to 2.6.0, and includes the following ServiceMeshControlPlane resource version updates: 2.6.0, 2.5.3 and 2.4.9. This release adds new features, addresses Common Vulnerabilities and Exposures (CVEs), and is supported on Red Hat OpenShift Service on AWS 4.14 and later.

This release ends maintenance support for Red Hat OpenShift Service Mesh version 2.3. If you are using Service Mesh version 2.3, you should update to a supported version.

Important

Red Hat OpenShift Service Mesh is designed for FIPS. Service Mesh uses the RHEL cryptographic libraries that have been submitted to NIST for FIPS 140-2/140-3 Validation on the x86_64, ppc64le, and s390x architectures. For more information about the NIST validation program, see Cryptographic Module Validation Program. For the latest NIST status for the individual versions of RHEL cryptographic libraries that have been submitted for validation, see Compliance Activities and Government Standards.

1.2.17.1. Component updates
ComponentVersion

Istio

1.20.8

Envoy Proxy

1.28.5

Kiali

1.73.9

1.2.17.2. Istio 1.20 support

Service Mesh 2.6 is based on Istio 1.20, which provides new features and product enhancements, including:

  • Native sidecars are supported on Red Hat OpenShift Service on AWS 4.16 or later.

    Example ServiceMeshControlPlane resource

    apiVersion: maistra.io/v2
    kind: ServiceMeshControlPlane
    metadata:
      name: basic
    spec:
      runtime:
        components:
          pilot:
            container:
              env:
                ENABLE_NATIVE_SIDECARS: "true"

  • Traffic mirroring in Istio 1.20 now supports multiple destinations. This feature enables the mirroring of traffic to various endpoints, allowing for simultaneous observation across different service versions or configurations.

While Red Hat OpenShift Service Mesh supports many Istio 1.20 features, the following exceptions should be noted:

  • Ambient mesh is not supported
  • QuickAssist Technology (QAT) PrivateKeyProvider in Istio is not supported
1.2.17.3. Istio and Kiali bundle image name changes

This release updates the Istio bundle image name and the Kiali bundle image name to better align with Red Hat naming conventions.

  • Istio bundle image name: openshift-service-mesh/istio-operator-bundle
  • Kiali bundle image name: openshift-service-mesh/kiali-operator-bundle
1.2.17.4. Integration with Red Hat OpenShift distributed tracing platform (Tempo) and Red Hat build of OpenTelemetry

This release introduces a generally available integration of the tracing extension provider(s) Red Hat OpenShift distributed tracing platform (Tempo) and Red Hat build of OpenTelemetry.

You can expose tracing data to the Red Hat OpenShift distributed tracing platform (Tempo) by appending a named element and the opentelemetry provider to the spec.meshConfig.extensionProviders specification in the ServiceMehControlPlane resource. Then, a telemetry custom resource configures Istio proxies to collect trace spans and send them to the OpenTelemetry Collector endpoint.

You can create a Red Hat build of OpenTelemetry instance in a mesh namespace and configure it to send tracing data to a tracing platform backend service.

1.2.17.5. Red Hat OpenShift distributed tracing platform (Jaeger) default setting change

This release disables Red Hat OpenShift distributed tracing platform (Jaeger) by default for new instances of the ServiceMeshControlPlane resource.

When updating existing instances of the ServiceMeshControlPlane resource to Red Hat OpenShift Service Mesh version 2.6, distributed tracing platform (Jaeger) remains enabled by default.

Red Hat OpenShift Service Mesh 2.6 is the last release that includes support for Red Hat OpenShift distributed tracing platform (Jaeger) and OpenShift Elasticsearch Operator. Both distributed tracing platform (Jaeger) and OpenShift Elasticsearch Operator will be removed in the next release. If you are currently using distributed tracing platform (Jaeger) and OpenShift Elasticsearch Operator, you need to switch to Red Hat OpenShift distributed tracing platform (Tempo) and Red Hat build of OpenTelemetry.

1.2.17.6. Gateway API use is generally available for Red Hat OpenShift Service Mesh cluster-wide deployments

This release introduces the General Availability for using the Kubernetes Gateway API version 1.0.0 with Red Hat OpenShift Service Mesh 2.6. This API use is limited to Red Hat OpenShift Service Mesh. The Gateway API custom resource definitions (CRDs) are not supported.

Gateway API is now enabled by default if cluster-wide mode is enabled (spec.mode: ClusterWide). It can be enabled even if the custom resource definitions (CRDs) are not installed in the cluster.

Important

Gateway API for multitenant mesh deployments is still in Technology Preview.

Refer to the following table to determine which Gateway API version should be installed with the OpenShift Service Mesh version you are using:

Service Mesh VersionIstio VersionGateway API VersionNotes

2.6

1.20.x

1.0.0

N/A

2.5.x

1.18.x

0.6.2

Use the experimental branch because ReferenceGrand is missing in v0.6.2.

2.4.x

1.16.x

0.5.1

For multitenant mesh deployment, all Gateway API CRDs must be present. Use the experimental branch.

You can disable this feature by setting PILOT_ENABLE_GATEWAY_API to false:

apiVersion: maistra.io/v2
kind: ServiceMeshControlPlane
metadata:
  name: basic
spec:
  runtime:
    components:
      pilot:
        container:
          env:
            PILOT_ENABLE_GATEWAY_API: "false"
1.2.17.7. Fixed issues
  • OSSM-6754 Previously, in Red Hat OpenShift Service on AWS 4.15, when users navigated to a Service details page, clicked the Service Mesh tab, and refreshed the page, the Service Mesh details page remained stuck on Service Mesh content information, even though the active tab was the default Details tab. Now, after a refresh, users can navigate through the different tabs of the Service details page without issue.
  • OSSM-2101 Previously, the Istio Operator never deleted the istio-cni-node DaemonSet and other CNI resources when they were no longer needed. Now, after upgrading the Operator, if there is at least one SMCP installed in the cluster, the Operator reconciles this SMCP, and then deletes all unused CNI installations (even very old CNI versions as early as v2.0).
1.2.17.8. Kiali known issues
  • OSSM-6099 Installing the OpenShift Service Mesh Console (OSSMC) plugin fails on an IPv6 cluster.

    Workaround: Install the OSSMC plugin on an IPv4 cluster.

1.2.18. Red Hat OpenShift Service Mesh version 2.5.3

This release of Red Hat OpenShift Service Mesh is included with the Red Hat OpenShift Service Mesh Operator 2.6.0, addresses Common Vulnerabilities and Exposures (CVEs), and is supported on Red Hat OpenShift Service on AWS 4.12 and later.

1.2.18.1. Component updates
ComponentVersion

Istio

1.18.7

Envoy Proxy

1.26.8

Kiali

1.73.9

1.2.19. Red Hat OpenShift Service Mesh version 2.4.9

This release of Red Hat OpenShift Service Mesh is included with the Red Hat OpenShift Service Mesh Operator 2.6.0, addresses Common Vulnerabilities and Exposures (CVEs), and is supported on Red Hat OpenShift Service on AWS 4.12 and later.

1.2.19.1. Component updates
ComponentVersion

Istio

1.16.7

Envoy Proxy

1.24.12

Kiali

1.65.11

1.2.20. Red Hat OpenShift Service Mesh version 2.5.2

This release of Red Hat OpenShift Service Mesh updates the Red Hat OpenShift Service Mesh Operator version to 2.5.2, and includes the following ServiceMeshControlPlane resource version updates: 2.5.2, 2.4.8 and 2.3.12. This release addresses Common Vulnerabilities and Exposures (CVEs), contains bug fixes, and is supported on Red Hat OpenShift Service on AWS 4.12 and later.

1.2.20.1. Component updates
ComponentVersion

Istio

1.18.7

Envoy Proxy

1.26.8

Kiali

1.73.8

1.2.20.2. Fixed issues
  • OSSM-6331 Previously, the smcp.general.logging.componentLevels spec accepted invalid LogLevel values, and the ServiceMeshControlPlane resource was still created. Now, the terminal shows an error message if an invalid value is used, and the control plane is not created.
  • OSSM-6290 Previously, the Project filter drop-down of the Istio Config list page did not work correctly. All istio config items were displayed from all namespaces even if you selected a specific project from the drop-down menu. Now, only the istio config items that belong to the selected project in the filter drop-down are displayed.
  • OSSM-6298 Previously, when you clicked an item reference within the OpenShift Service Mesh Console (OSSMC) plugin, the console sometimes performed multiple redirects before opening the desired page. As a result, navigating back to the previous page that was open in the console caused your web browser to open the wrong page. Now, these redirects do not occur, and clicking Back in a web browser opens the correct page.
  • OSSM-6299 Previously, in Red Hat OpenShift Service on AWS 4.15, when you clicked the Node graph menu option of any node menu within the traffic graph, the node graph was not displayed. Instead, the page refreshed with the same traffic graph. Now, clicking the Node graph menu option correctly displays the node graph.
  • OSSM-6267 Previously, configuring a data source in Red Hat OpenShift Service Mesh 2.5 Grafana caused a data query authentication error, and users could not view data in the Istio service and workload dashboards. Now, upgrading an existing 2.5 SMCP to version 2.5.2 or later resolves the Grafana error.

1.2.21. Red Hat OpenShift Service Mesh version 2.4.8

This release of Red Hat OpenShift Service Mesh is included with the Red Hat OpenShift Service Mesh Operator 2.5.2, addresses Common Vulnerabilities and Exposures (CVEs), contains bug fixes, and is supported on Red Hat OpenShift Service on AWS 4.12 and later.

The most current version of the Red Hat OpenShift Service Mesh Operator can be used with all supported versions of Service Mesh. The version of Service Mesh is specified using the ServiceMeshControlPlane.

1.2.21.1. Component updates
ComponentVersion

Istio

1.16.7

Envoy Proxy

1.24.12

Kiali

1.65.11

1.2.22. Red Hat OpenShift Service Mesh version 2.3.12

This release of Red Hat OpenShift Service Mesh is included with the Red Hat OpenShift Service Mesh Operator 2.5.2, addresses Common Vulnerabilities and Exposures (CVEs), contains bug fixes, and is supported on Red Hat OpenShift Service on AWS 4.12 and later.

The most current version of the Red Hat OpenShift Service Mesh Operator can be used with all supported versions of Service Mesh. The version of Service Mesh is specified using the ServiceMeshControlPlane resource.

1.2.22.1. Component updates
ComponentVersion

Istio

1.14.5

Envoy Proxy

1.22.11

Kiali

1.57.14

1.2.23. Previous releases

These previous releases added features and improvements.

1.2.23.1. New features Red Hat OpenShift Service Mesh version 2.5.1

This release of Red Hat OpenShift Service Mesh updates the Red Hat OpenShift Service Mesh Operator version to 2.5.1, and includes the following ServiceMeshControlPlane resource version updates: 2.5.1, 2.4.7 and 2.3.11.

This release addresses Common Vulnerabilities and Exposures (CVEs), contains bug fixes, and is supported on Red Hat OpenShift Service on AWS 4.12 and later.

1.2.23.1.1. Component versions for Red Hat OpenShift Service Mesh version 2.5.1
ComponentVersion

Istio

1.18.7

Envoy Proxy

1.26.8

Kiali

1.73.7

1.2.23.2. New features Red Hat OpenShift Service Mesh version 2.5

This release of Red Hat OpenShift Service Mesh updates the Red Hat OpenShift Service Mesh Operator version to 2.5.0, and includes the following ServiceMeshControlPlane resource version updates: 2.5.0, 2.4.6 and 2.3.10.

This release adds new features, addresses Common Vulnerabilities and Exposures (CVEs), contains bug fixes, and is supported on Red Hat OpenShift Service on AWS 4.12 and later.

This release ends maintenance support for OpenShift Service Mesh version 2.2. If you are using OpenShift Service Mesh version 2.2, you should update to a supported version.

1.2.23.2.1. Component versions for Red Hat OpenShift Service Mesh version 2.5
ComponentVersion

Istio

1.18.7

Envoy Proxy

1.26.8

Kiali

1.73.4

1.2.23.2.2. Istio 1.18 support

Service Mesh 2.5 is based on Istio 1.18, which brings in new features and product enhancements. While Red Hat OpenShift Service Mesh supports many Istio 1.18 features, the following exceptions should be noted:

  • Ambient mesh is not supported
  • QuickAssist Technology (QAT) PrivateKeyProvider in Istio is not supported
1.2.23.2.3. Cluster-Wide mesh migration

This release adds documentation for migrating from a multitenant mesh to a cluster-wide mesh. For more information, see the following documentation:

  • "About migrating to a cluster-wide mesh"
  • "Excluding namespaces from a cluster-wide mesh"
  • "Defining which namespaces receive sidecar injection in a cluster-wide mesh"
  • "Excluding individual pods from a cluster-wide mesh"
1.2.23.2.4. Red Hat OpenShift Service Mesh Operator on ARM-based clusters

This release provides the Red Hat OpenShift Service Mesh Operator on ARM-based clusters as a generally available feature.

1.2.23.2.5. Integration with Red Hat OpenShift distributed tracing platform (Tempo) Stack

This release introduces a generally available integration of the tracing extension provider(s). You can expose tracing data to the Red Hat OpenShift distributed tracing platform (Tempo) stack by appending a named element and the zipkin provider to the spec.meshConfig.extensionProviders specification. Then, a telemetry custom resource configures Istio proxies to collect trace spans and send them to the Tempo distributor service endpoint.

Note

Red Hat OpenShift distributed tracing platform (Tempo) Stack is not supported on IBM Z.

1.2.23.2.6. OpenShift Service Mesh Console plugin

This release introduces a generally available version of the OpenShift Service Mesh Console (OSSMC) plugin.

The OSSMC plugin is an extension to the OpenShift Console that provides visibility into your Service Mesh. With the OSSMC plugin installed, a new Service Mesh menu option is available on the navigation pane of the web console, as well as new Service Mesh tabs that enhance existing Workloads and Service console pages.

The features of the OSSMC plugin are very similar to those of the standalone Kiali Console. The OSSMC plugin does not replace the Kiali Console, and after installing the OSSMC plugin, you can still access the standalone Kiali Console.

1.2.23.2.7. Istio OpenShift Routing (IOR) default setting change

The default setting for Istio OpenShift Routing (IOR) has changed. Starting with this release, automatic routes are disabled by default for new instances of the ServiceMeshControlPlane resource.

For new instances of the ServiceMeshControlPlane resources, you can use automatic routes by setting the enabled field to true in the gateways.openshiftRoute specification of the ServiceMeshControlPlane resource.

Example ServiceMeshControlPlane resource

apiVersion: maistra.io/v2
kind: ServiceMeshControlPlane
spec:
  gateways:
    openshiftRoute:
      enabled: true

When updating existing instances of the ServiceMeshControlPlane resource to Red Hat OpenShift Service Mesh version 2.5, automatic routes remain enabled by default.

1.2.23.2.8. Istio proxy concurrency configuration enhancement

The concurrency parameter in the networking.istio API configures how many worker threads the Istio proxy runs.

For consistency across deployments, Istio now configures the concurrency parameter based upon the CPU limit allocated to the proxy container. For example, a limit of 2500m would set the concurrency parameter to 3. If you set the concurrency parameter to a different value, then Istio uses that value to configure how many threads the proxy runs instead of using the CPU limit.

Previously, the default setting for the parameter was 2.

1.2.23.2.9. Gateway API CRD versions
Important

Red Hat OpenShift Service on AWS Gateway API support is a Technology Preview feature only. Technology Preview features are not supported with Red Hat production service level agreements (SLAs) and might not be functionally complete. Red Hat does not recommend using them in production. These features provide early access to upcoming product features, enabling customers to test functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features, see Technology Preview Features Support Scope.

A new version of the Gateway API custom resource definition (CRD) is now available. Refer to the following table to determine which Gateway API version should be installed with the OpenShift Service Mesh version you are using:

Service Mesh VersionIstio VersionGateway API VersionNotes

2.5.x

1.18.x

0.6.2

Use the experimental branch because ReferenceGrand is missing in v0.6.2

2.4.x

1.16.x

0.5.1

For multitenant mesh deployment, all Gateway API CRDs must be present. Use the experimental branch.

1.2.23.3. New features Red Hat OpenShift Service Mesh version 2.4.7

This release of Red Hat OpenShift Service Mesh is included with the Red Hat OpenShift Service Mesh Operator 2.5.1, addresses Common Vulnerabilities and Exposures (CVEs), contains bug fixes, and is supported on Red Hat OpenShift Service on AWS 4.12 and later.

1.2.23.3.1. Component versions for Red Hat OpenShift Service Mesh version 2.4.7
ComponentVersion

Istio

1.16.7

Envoy Proxy

1.24.12

Kiali

1.65.11

1.2.23.4. New features Red Hat OpenShift Service Mesh version 2.4.6

This release of Red Hat OpenShift Service Mesh is included with the Red Hat OpenShift Service Mesh Operator 2.5.0, addresses Common Vulnerabilities and Exposures (CVEs), contains bug fixes, and is supported on Red Hat OpenShift Service on AWS 4.12 and later.

1.2.23.4.1. Component versions for Red Hat OpenShift Service Mesh version 2.4.6
ComponentVersion

Istio

1.16.7

Envoy Proxy

1.24.12

Kiali

1.65.11

1.2.23.5. New features Red Hat OpenShift Service Mesh version 2.4.5

This release of Red Hat OpenShift Service Mesh updates the Red Hat OpenShift Service Mesh Operator version to 2.4.5, and includes the following ServiceMeshControlPlane resource version updates: 2.4.5, 2.3.9 and 2.2.12.

This release addresses Common Vulnerabilities and Exposures (CVEs), contains bug fixes, and is supported on Red Hat OpenShift Service on AWS 4.11 and later.

1.2.23.5.1. Component versions included in Red Hat OpenShift Service Mesh version 2.4.5
ComponentVersion

Istio

1.16.7

Envoy Proxy

1.24.12

Kiali

1.65.11

1.2.23.6. New features Red Hat OpenShift Service Mesh version 2.4.4

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures (CVEs), contains bug fixes, and is supported on Red Hat OpenShift Service on AWS 4.11 and later versions.

1.2.23.6.1. Component versions included in Red Hat OpenShift Service Mesh version 2.4.4
ComponentVersion

Istio

1.16.7

Envoy Proxy

1.24.12

Jaeger

1.47.0

Kiali

1.65.10

1.2.23.7. New features Red Hat OpenShift Service Mesh version 2.4.3
  • The envoyExtAuthzGrpc field has been added, which is used to configure an external authorization provider using the gRPC API.
  • Common Vulnerabilities and Exposures (CVEs) have been addressed.
  • This release is supported on Red Hat OpenShift Service on AWS 4.10 and newer versions.
1.2.23.7.1. Component versions included in Red Hat OpenShift Service Mesh version 2.4.3
ComponentVersion

Istio

1.16.7

Envoy Proxy

1.24.10

Jaeger

1.42.0

Kiali

1.65.8

1.2.23.7.2. Remote Procedure Calls (gRPC) API support for external authorization configuration

This enhancement adds the envoyExtAuthzGrpc field to configure an external authorization provider using the gRPC API.

1.2.23.8. New features Red Hat OpenShift Service Mesh version 2.4.2

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures (CVEs), contains bug fixes, and is supported on Red Hat OpenShift Service on AWS 4.10 and later versions.

1.2.23.8.1. Component versions included in Red Hat OpenShift Service Mesh version 2.4.2
ComponentVersion

Istio

1.16.7

Envoy Proxy

1.24.10

Jaeger

1.42.0

Kiali

1.65.7

1.2.23.9. New features Red Hat OpenShift Service Mesh version 2.4.1

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures (CVEs), contains bug fixes, and is supported on Red Hat OpenShift Service on AWS 4.10 and later versions.

1.2.23.9.1. Component versions included in Red Hat OpenShift Service Mesh version 2.4.1
ComponentVersion

Istio

1.16.5

Envoy Proxy

1.24.8

Jaeger

1.42.0

Kiali

1.65.7

1.2.23.10. New features Red Hat OpenShift Service Mesh version 2.4

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures (CVEs), contains bug fixes, and is supported on Red Hat OpenShift Service on AWS 4.10 and later versions.

1.2.23.10.1. Component versions included in Red Hat OpenShift Service Mesh version 2.4
ComponentVersion

Istio

1.16.5

Envoy Proxy

1.24.8

Jaeger

1.42.0

Kiali

1.65.6

1.2.23.10.2. Cluster-wide deployments

This enhancement introduces a generally available version of cluster-wide deployments. A cluster-wide deployment contains a service mesh control plane that monitors resources for an entire cluster. The control plane uses a single query across all namespaces to monitor each Istio or Kubernetes resource that affects the mesh configuration. Reducing the number of queries the control plane performs in a cluster-wide deployment improves performance.

1.2.23.10.3. Support for discovery selectors

This enhancement introduces a generally available version of the meshConfig.discoverySelectors field, which can be used in cluster-wide deployments to limit the services the service mesh control plane can discover.

spec:
  meshConfig
    discoverySelectors:
    - matchLabels:
        env: prod
        region: us-east1
    - matchExpressions:
      - key: app
        operator: In
        values:
          - cassandra
          - spark
1.2.23.10.4. Integration with cert-manager istio-csr

With this update, Red Hat OpenShift Service Mesh integrates with the cert-manager controller and the istio-csr agent. cert-manager adds certificates and certificate issuers as resource types in Kubernetes clusters, and simplifies the process of obtaining, renewing, and using those certificates. cert-manager provides and rotates an intermediate CA certificate for Istio. Integration with istio-csr enables users to delegate signing certificate requests from Istio proxies to cert-manager. ServiceMeshControlPlane v2.4 accepts CA certificates provided by cert-manager as cacerts secret.

Note

Integration with cert-manager and istio-csr is not supported on IBM Power®, IBM Z®, and IBM® LinuxONE.

1.2.23.10.5. Integration with external authorization systems

This enhancement introduces a generally available method of integrating Red Hat OpenShift Service Mesh with external authorization systems by using the action: CUSTOM field of the AuthorizationPolicy resource. Use the envoyExtAuthzHttp field to delegate the access control to an external authorization system.

1.2.23.10.6. Integration with external Prometheus installation

This enhancement introduces a generally available version of the Prometheus extension provider. You can expose metrics to the Red Hat OpenShift Service on AWS monitoring stack or a custom Prometheus installation by setting the value of the extensionProviders field to prometheus in the spec.meshConfig specification. The telemetry object configures Istio proxies to collect traffic metrics. Service Mesh only supports the Telemetry API for Prometheus metrics.

spec:
  meshConfig:
    extensionProviders:
    - name: prometheus
      prometheus: {}
---
apiVersion: telemetry.istio.io/v1alpha1
kind: Telemetry
metadata:
  name: enable-prometheus-metrics
spec:
  metrics:
  - providers:
    - name: prometheus
1.2.23.10.7. Single stack IPv6 support

This enhancement introduces generally available support for single stack IPv6 clusters, providing access to a broader range of IP addresses. Dual stack IPv4 or IPv6 cluster is not supported.

Note

Single stack IPv6 support is not available on IBM Power®, IBM Z®, and IBM® LinuxONE.

1.2.23.10.7.1. Enabling Red Hat OpenShift Service on AWS Gateway API

To enable the Red Hat OpenShift Service on AWS Gateway API, set the value of the enabled field to true in the techPreview.gatewayAPI specification of the ServiceMeshControlPlane resource.

spec:
  techPreview:
    gatewayAPI:
      enabled: true

Previously, environment variables were used to enable the Gateway API.

spec:
  runtime:
    components:
      pilot:
        container:
          env:
            PILOT_ENABLE_GATEWAY_API: "true"
            PILOT_ENABLE_GATEWAY_API_STATUS: "true"
            PILOT_ENABLE_GATEWAY_API_DEPLOYMENT_CONTROLLER: "true"
1.2.23.10.8. Istio 1.16 support

Service Mesh 2.4 is based on Istio 1.16, which brings in new features and product enhancements. While many Istio 1.16 features are supported, the following exceptions should be noted:

  • HBONE protocol for sidecars is an experimental feature that is not supported.
  • Service Mesh on ARM64 architecture is not supported.
1.2.23.11. New features Red Hat OpenShift Service Mesh version 2.3.11

This release of Red Hat OpenShift Service Mesh is included with the Red Hat OpenShift Service Mesh Operator 2.5.1, addresses Common Vulnerabilities and Exposures (CVEs), contains bug fixes, and is supported on Red Hat OpenShift Service on AWS 4.12 and later.

1.2.23.11.1. Component versions for Red Hat OpenShift Service Mesh version 2.3.11
ComponentVersion

Istio

1.14.5

Envoy Proxy

1.22.11

Kiali

1.57.14

1.2.23.12. New features Red Hat OpenShift Service Mesh version 2.3.10

This release of Red Hat OpenShift Service Mesh is included with the Red Hat OpenShift Service Mesh Operator 2.5.0, addresses Common Vulnerabilities and Exposures (CVEs), contains bug fixes, and is supported on Red Hat OpenShift Service on AWS 4.12 and later.

1.2.23.12.1. Component versions for Red Hat OpenShift Service Mesh version 2.3.10
ComponentVersion

Istio

1.14.5

Envoy Proxy

1.22.11

Kiali

1.57.14

1.2.23.13. New features Red Hat OpenShift Service Mesh version 2.3.9

This release of Red Hat OpenShift Service Mesh is included with the Red Hat OpenShift Service Mesh Operator 2.4.5, addresses Common Vulnerabilities and Exposures (CVEs), contains bug fixes, and is supported on Red Hat OpenShift Service on AWS 4.11 and later.

1.2.23.13.1. Component versions included in Red Hat OpenShift Service Mesh version 2.3.9
ComponentVersion

Istio

1.14.5

Envoy Proxy

1.22.11

Jaeger

1.47.0

Kiali

1.57.14

1.2.23.14. New features Red Hat OpenShift Service Mesh version 2.3.8

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures (CVEs), contains bug fixes, and is supported on Red Hat OpenShift Service on AWS 4.11 and later versions.

1.2.23.14.1. Component versions included in Red Hat OpenShift Service Mesh version 2.3.8
ComponentVersion

Istio

1.14.5

Envoy Proxy

1.22.11

Jaeger

1.47.0

Kiali

1.57.13

1.2.23.15. New features Red Hat OpenShift Service Mesh version 2.3.7

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures (CVEs), contains bug fixes, and is supported on Red Hat OpenShift Service on AWS 4.10 and later versions.

1.2.23.15.1. Component versions included in Red Hat OpenShift Service Mesh version 2.3.7
ComponentVersion

Istio

1.14.6

Envoy Proxy

1.22.11

Jaeger

1.42.0

Kiali

1.57.11

1.2.23.16. New features Red Hat OpenShift Service Mesh version 2.3.6

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures (CVEs), contains bug fixes, and is supported on Red Hat OpenShift Service on AWS 4.10 and later versions.

1.2.23.16.1. Component versions included in Red Hat OpenShift Service Mesh version 2.3.6
ComponentVersion

Istio

1.14.5

Envoy Proxy

1.22.11

Jaeger

1.42.0

Kiali

1.57.10

1.2.23.17. New features Red Hat OpenShift Service Mesh version 2.3.5

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures (CVEs), contains bug fixes, and is supported on Red Hat OpenShift Service on AWS 4.10 and later versions.

1.2.23.17.1. Component versions included in Red Hat OpenShift Service Mesh version 2.3.5
ComponentVersion

Istio

1.14.5

Envoy Proxy

1.22.9

Jaeger

1.42.0

Kiali

1.57.10

1.2.23.18. New features Red Hat OpenShift Service Mesh version 2.3.4

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures (CVEs), contains bug fixes, and is supported on Red Hat OpenShift Service on AWS 4.10 and later versions.

1.2.23.18.1. Component versions included in Red Hat OpenShift Service Mesh version 2.3.4
ComponentVersion

Istio

1.14.6

Envoy Proxy

1.22.9

Jaeger

1.42.0

Kiali

1.57.9

1.2.23.19. New features Red Hat OpenShift Service Mesh version 2.3.3

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures (CVEs), contains bug fixes, and is supported on Red Hat OpenShift Service on AWS 4.9 and later versions.

1.2.23.19.1. Component versions included in Red Hat OpenShift Service Mesh version 2.3.3
ComponentVersion

Istio

1.14.5

Envoy Proxy

1.22.9

Jaeger

1.42.0

Kiali

1.57.7

1.2.23.20. New features Red Hat OpenShift Service Mesh version 2.3.2

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures (CVEs), contains bug fixes, and is supported on Red Hat OpenShift Service on AWS 4.9 and later versions.

1.2.23.20.1. Component versions included in Red Hat OpenShift Service Mesh version 2.3.2
ComponentVersion

Istio

1.14.5

Envoy Proxy

1.22.7

Jaeger

1.39

Kiali

1.57.6

1.2.23.21. New features Red Hat OpenShift Service Mesh version 2.3.1

This release of Red Hat OpenShift Service Mesh introduces new features, addresses Common Vulnerabilities and Exposures (CVEs), contains bug fixes, and is supported on Red Hat OpenShift Service on AWS 4.9 and later versions.

1.2.23.21.1. Component versions included in Red Hat OpenShift Service Mesh version 2.3.1
ComponentVersion

Istio

1.14.5

Envoy Proxy

1.22.4

Jaeger

1.39

Kiali

1.57.5

1.2.23.22. New features Red Hat OpenShift Service Mesh version 2.3

This release of Red Hat OpenShift Service Mesh introduces new features, addresses Common Vulnerabilities and Exposures (CVEs), contains bug fixes, and is supported on Red Hat OpenShift Service on AWS 4.9 and later versions.

1.2.23.22.1. Component versions included in Red Hat OpenShift Service Mesh version 2.3
ComponentVersion

Istio

1.14.3

Envoy Proxy

1.22.4

Jaeger

1.38

Kiali

1.57.3

1.2.23.22.2. New Container Network Interface (CNI) DaemonSet container and ConfigMap

The openshift-operators namespace includes a new istio CNI DaemonSet istio-cni-node-v2-3 and a new ConfigMap resource, istio-cni-config-v2-3.

When upgrading to Service Mesh Control Plane 2.3, the existing istio-cni-node DaemonSet is not changed, and a new istio-cni-node-v2-3 DaemonSet is created.

This name change does not affect previous releases or any istio-cni-node CNI DaemonSet associated with a Service Mesh Control Plane deployed using a previous release.

1.2.23.22.3. Gateway injection support

This release introduces generally available support for Gateway injection. Gateway configurations are applied to standalone Envoy proxies that are running at the edge of the mesh, rather than the sidecar Envoy proxies running alongside your service workloads. This enables the ability to customize gateway options. When using gateway injection, you must create the following resources in the namespace where you want to run your gateway proxy: Service, Deployment, Role, and RoleBinding.

1.2.23.22.4. Istio 1.14 Support

Service Mesh 2.3 is based on Istio 1.14, which brings in new features and product enhancements. While many Istio 1.14 features are supported, the following exceptions should be noted:

  • ProxyConfig API is supported with the exception of the image field.
  • SPIRE runtime is not a supported feature.
1.2.23.22.4.1. Configuring cluster-wide deployment

The following example ServiceMeshControlPlane object configures a cluster-wide deployment.

To create an SMCP for cluster-wide deployment, a user must belong to the cluster-admin ClusterRole. If the SMCP is configured for cluster-wide deployment, it must be the only SMCP in the cluster. You cannot change the control plane mode from multitenant to cluster-wide (or from cluster-wide to multitenant). If a multitenant control plane already exists, delete it and create a new one.

This example configures the SMCP for cluster-wide deployment.

  apiVersion: maistra.io/v2
  kind: ServiceMeshControlPlane
  metadata:
    name: cluster-wide
    namespace: istio-system
  spec:
    version: v2.3
    techPreview:
      controlPlaneMode: ClusterScoped 1
1
Enables Istiod to monitor resources at the cluster level rather than monitor each individual namespace.

Additionally, the SMMR must also be configured for cluster-wide deployment. This example configures the SMMR for cluster-wide deployment.

  apiVersion: maistra.io/v1
  kind: ServiceMeshMemberRoll
  metadata:
    name: default
  spec:
    members:
    - '*' 1
1
Adds all namespaces to the mesh, including any namespaces you subsequently create. The following namespaces are not part of the mesh: kube, openshift, kube-* and openshift-*.
1.2.23.23. New features Red Hat OpenShift Service Mesh version 2.2.12

This release of Red Hat OpenShift Service Mesh is included with the Red Hat OpenShift Service Mesh Operator 2.4.5, addresses Common Vulnerabilities and Exposures (CVEs), contains bug fixes, and is supported on Red Hat OpenShift Service on AWS 4.11 and later.

1.2.23.23.1. Component versions included in Red Hat OpenShift Service Mesh version 2.2.12
ComponentVersion

Istio

1.12.9

Envoy Proxy

1.20.8

Jaeger

1.47.0

Kiali

1.48.11

1.2.23.24. New features Red Hat OpenShift Service Mesh version 2.2.11

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures (CVEs), contains bug fixes, and is supported on Red Hat OpenShift Service on AWS 4.11 and later versions.

1.2.23.24.1. Component versions included in Red Hat OpenShift Service Mesh version 2.2.11
ComponentVersion

Istio

1.12.9

Envoy Proxy

1.20.8

Jaeger

1.47.0

Kiali

1.48.10

1.2.23.25. New features Red Hat OpenShift Service Mesh version 2.2.10

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures (CVEs), contains bug fixes, and is supported on Red Hat OpenShift Service on AWS 4.10 and later versions.

1.2.23.25.1. Component versions included in Red Hat OpenShift Service Mesh version 2.2.10
ComponentVersion

Istio

1.12.9

Envoy Proxy

1.20.8

Jaeger

1.42.0

Kiali

1.48.8

1.2.23.26. New features Red Hat OpenShift Service Mesh version 2.2.9

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures (CVEs), contains bug fixes, and is supported on Red Hat OpenShift Service on AWS 4.10 and later versions.

1.2.23.26.1. Component versions included in Red Hat OpenShift Service Mesh version 2.2.9
ComponentVersion

Istio

1.12.9

Envoy Proxy

1.20.8

Jaeger

1.42.0

Kiali

1.48.7

1.2.23.27. New features Red Hat OpenShift Service Mesh version 2.2.8

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures (CVEs), contains bug fixes, and is supported on Red Hat OpenShift Service on AWS 4.10 and later versions.

1.2.23.27.1. Component versions included in Red Hat OpenShift Service Mesh version 2.2.8
ComponentVersion

Istio

1.12.9

Envoy Proxy

1.20.8

Jaeger

1.42.0

Kiali

1.48.7

1.2.23.28. New features Red Hat OpenShift Service Mesh version 2.2.7

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures (CVEs), contains bug fixes, and is supported on Red Hat OpenShift Service on AWS 4.10 and later versions.

1.2.23.28.1. Component versions included in Red Hat OpenShift Service Mesh version 2.2.7
ComponentVersion

Istio

1.12.9

Envoy Proxy

1.20.8

Jaeger

1.42.0

Kiali

1.48.6

1.2.23.29. New features Red Hat OpenShift Service Mesh version 2.2.6

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures (CVEs), contains bug fixes, and is supported on Red Hat OpenShift Service on AWS 4.9 and later versions.

1.2.23.29.1. Component versions included in Red Hat OpenShift Service Mesh version 2.2.6
ComponentVersion

Istio

1.12.9

Envoy Proxy

1.20.8

Jaeger

1.39

Kiali

1.48.5

1.2.23.30. New features Red Hat OpenShift Service Mesh version 2.2.5

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures (CVEs), contains bug fixes, and is supported on Red Hat OpenShift Service on AWS 4.9 and later versions.

1.2.23.30.1. Component versions included in Red Hat OpenShift Service Mesh version 2.2.5
ComponentVersion

Istio

1.12.9

Envoy Proxy

1.20.8

Jaeger

1.39

Kiali

1.48.3

1.2.23.31. New features Red Hat OpenShift Service Mesh version 2.2.4

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures (CVEs), contains bug fixes, and is supported on Red Hat OpenShift Service on AWS 4.9 and later versions.

1.2.23.31.1. Component versions included in Red Hat OpenShift Service Mesh version 2.2.4
ComponentVersion

Istio

1.12.9

Envoy Proxy

1.20.8

Jaeger

1.36.14

Kiali

1.48.3

1.2.23.32. New features Red Hat OpenShift Service Mesh version 2.2.3

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures (CVEs), bug fixes, and is supported on Red Hat OpenShift Service on AWS 4.9 and later versions.

1.2.23.32.1. Component versions included in Red Hat OpenShift Service Mesh version 2.2.3
ComponentVersion

Istio

1.12.9

Envoy Proxy

1.20.8

Jaeger

1.36

Kiali

1.48.3

1.2.23.33. New features Red Hat OpenShift Service Mesh version 2.2.2

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures (CVEs), bug fixes, and is supported on Red Hat OpenShift Service on AWS 4.9 and later versions.

1.2.23.33.1. Component versions included in Red Hat OpenShift Service Mesh version 2.2.2
ComponentVersion

Istio

1.12.7

Envoy Proxy

1.20.6

Jaeger

1.36

Kiali

1.48.2-1

1.2.23.33.2. Copy route labels

With this enhancement, in addition to copying annotations, you can copy specific labels for an OpenShift route. Red Hat OpenShift Service Mesh copies all labels and annotations present in the Istio Gateway resource (with the exception of annotations starting with kubectl.kubernetes.io) into the managed OpenShift Route resource.

1.2.23.34. New features Red Hat OpenShift Service Mesh version 2.2.1

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures (CVEs), bug fixes, and is supported on Red Hat OpenShift Service on AWS 4.9 and later versions.

1.2.23.34.1. Component versions included in Red Hat OpenShift Service Mesh version 2.2.1
ComponentVersion

Istio

1.12.7

Envoy Proxy

1.20.6

Jaeger

1.34.1

Kiali

1.48.2-1

1.2.23.35. New features Red Hat OpenShift Service Mesh 2.2

This release of Red Hat OpenShift Service Mesh adds new features and enhancements, and is supported on Red Hat OpenShift Service on AWS 4.9 and later versions.

1.2.23.35.1. Component versions included in Red Hat OpenShift Service Mesh version 2.2
ComponentVersion

Istio

1.12.7

Envoy Proxy

1.20.4

Jaeger

1.34.1

Kiali

1.48.0.16

1.2.23.35.2. WasmPlugin API

This release adds support for the WasmPlugin API and deprecates the ServiceMeshExtension API.

1.2.23.35.3. ROSA support

This release introduces service mesh support for Red Hat OpenShift on AWS (ROSA), including multi-cluster federation.

1.2.23.35.4. istio-node DaemonSet renamed

This release, the istio-node DaemonSet is renamed to istio-cni-node to match the name in upstream Istio.

1.2.23.35.5. Envoy sidecar networking changes

Istio 1.10 updated Envoy to send traffic to the application container using eth0 rather than lo by default.

1.2.23.35.6. Service Mesh Control Plane 1.1

This release marks the end of support for Service Mesh Control Planes based on Service Mesh 1.1 for all platforms.

1.2.23.35.7. Istio 1.12 Support

Service Mesh 2.2 is based on Istio 1.12, which brings in new features and product enhancements. While many Istio 1.12 features are supported, the following unsupported features should be noted:

  • AuthPolicy Dry Run is a tech preview feature.
  • gRPC Proxyless Service Mesh is a tech preview feature.
  • Telemetry API is a tech preview feature.
  • Discovery selectors is not a supported feature.
  • External control plane is not a supported feature.
  • Gateway injection is not a supported feature.
1.2.23.35.7.1. Installing the Gateway API CRDs

The Gateway API CRDs do not come preinstalled by default on OpenShift clusters. Install the CRDs prior to enabling Gateway API support in the SMCP.

$ kubectl get crd gateways.gateway.networking.k8s.io || { kubectl kustomize "github.com/kubernetes-sigs/gateway-api/config/crd?ref=v0.4.0" | kubectl apply -f -; }
1.2.23.35.7.2. Enabling Kubernetes Gateway API

To enable the feature, set the following environment variables for the Istiod container in ServiceMeshControlPlane:

spec:
  runtime:
    components:
      pilot:
        container:
          env:
            PILOT_ENABLE_GATEWAY_API: "true"
            PILOT_ENABLE_GATEWAY_API_STATUS: "true"
            # and optionally, for the deployment controller
            PILOT_ENABLE_GATEWAY_API_DEPLOYMENT_CONTROLLER: "true"

Restricting route attachment on Gateway API listeners is possible using the SameNamespace or All settings. Istio ignores usage of label selectors in listeners.allowedRoutes.namespaces and reverts to the default behavior (SameNamespace).

1.2.23.35.7.3. Manually linking an existing gateway to a Gateway resource

If the Kubernetes API deployment controller is disabled, you must manually deploy and then link an ingress gateway to the created Gateway resource.

  apiVersion: gateway.networking.k8s.io/v1alpha2
  kind: Gateway
  metadata:
    name: gateway
  spec:
    addresses:
    - value: ingress.istio-gateways.svc.cluster.local
      type: Hostname
1.2.23.36. New features Red Hat OpenShift Service Mesh 2.1.6

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures (CVEs), contains bug fixes, and is supported on Red Hat OpenShift Service on AWS 4.9 and later versions.

1.2.23.36.1. Component versions included in Red Hat OpenShift Service Mesh version 2.1.6
ComponentVersion

Istio

1.9.9

Envoy Proxy

1.17.5

Jaeger

1.36

Kiali

1.36.16

1.2.23.37. New features Red Hat OpenShift Service Mesh 2.1.5.2

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures (CVEs), contains bug fixes, and is supported on Red Hat OpenShift Service on AWS 4.9 and later versions.

1.2.23.37.1. Component versions included in Red Hat OpenShift Service Mesh version 2.1.5.2
ComponentVersion

Istio

1.9.9

Envoy Proxy

1.17.5

Jaeger

1.36

Kiali

1.24.17

1.2.23.38. New features Red Hat OpenShift Service Mesh 2.1.5.1

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures (CVEs), bug fixes, and is supported on Red Hat OpenShift Service on AWS 4.9 and later versions.

1.2.23.38.1. Component versions included in Red Hat OpenShift Service Mesh version 2.1.5.1
ComponentVersion

Istio

1.9.9

Envoy Proxy

1.17.5

Jaeger

1.36

Kiali

1.36.13

1.2.23.39. New features Red Hat OpenShift Service Mesh 2.1.5

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures (CVEs), bug fixes, and is supported on Red Hat OpenShift Service on AWS 4.9 and later versions.

1.2.23.39.1. Component versions included in Red Hat OpenShift Service Mesh version 2.1.5
ComponentVersion

Istio

1.9.9

Envoy Proxy

1.17.1

Jaeger

1.36

Kiali

1.36.12-1

1.2.23.40. New features Red Hat OpenShift Service Mesh 2.1.4

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures (CVEs) and bug fixes.

1.2.23.40.1. Component versions included in Red Hat OpenShift Service Mesh version 2.1.4
ComponentVersion

Istio

1.9.9

Envoy Proxy

1.17.1

Jaeger

1.30.2

Kiali

1.36.12-1

1.2.23.41. New features Red Hat OpenShift Service Mesh 2.1.3

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures (CVEs) and bug fixes.

1.2.23.41.1. Component versions included in Red Hat OpenShift Service Mesh version 2.1.3
ComponentVersion

Istio

1.9.9

Envoy Proxy

1.17.1

Jaeger

1.30.2

Kiali

1.36.10-2

1.2.23.42. New features Red Hat OpenShift Service Mesh 2.1.2.1

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures (CVEs) and bug fixes.

1.2.23.42.1. Component versions included in Red Hat OpenShift Service Mesh version 2.1.2.1
ComponentVersion

Istio

1.9.9

Envoy Proxy

1.17.1

Jaeger

1.30.2

Kiali

1.36.9

1.2.23.43. New features Red Hat OpenShift Service Mesh 2.1.2

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures (CVEs) and bug fixes.

With this release, the Red Hat OpenShift distributed tracing platform (Jaeger) Operator is now installed to the openshift-distributed-tracing namespace by default. Previously the default installation had been in the openshift-operator namespace.

1.2.23.43.1. Component versions included in Red Hat OpenShift Service Mesh version 2.1.2
ComponentVersion

Istio

1.9.9

Envoy Proxy

1.17.1

Jaeger

1.30.1

Kiali

1.36.8

1.2.23.44. New features Red Hat OpenShift Service Mesh 2.1.1

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures (CVEs) and bug fixes.

This release also adds the ability to disable the automatic creation of network policies.

1.2.23.44.1. Component versions included in Red Hat OpenShift Service Mesh version 2.1.1
ComponentVersion

Istio

1.9.9

Envoy Proxy

1.17.1

Jaeger

1.24.1

Kiali

1.36.7

1.2.23.44.2. Disabling network policies

Red Hat OpenShift Service Mesh automatically creates and manages a number of NetworkPolicies resources in the Service Mesh control plane and application namespaces. This is to ensure that applications and the control plane can communicate with each other.

If you want to disable the automatic creation and management of NetworkPolicies resources, for example to enforce company security policies, you can do so. You can edit the ServiceMeshControlPlane to set the spec.security.manageNetworkPolicy setting to false

Note

When you disable spec.security.manageNetworkPolicy Red Hat OpenShift Service Mesh will not create any NetworkPolicy objects. The system administrator is responsible for managing the network and fixing any issues this might cause.

Procedure

  1. In the Red Hat OpenShift Service on AWS web console, click OperatorsInstalled Operators.
  2. Select the project where you installed the Service Mesh control plane, for example istio-system, from the Project menu.
  3. Click the Red Hat OpenShift Service Mesh Operator. In the Istio Service Mesh Control Plane column, click the name of your ServiceMeshControlPlane, for example basic-install.
  4. On the Create ServiceMeshControlPlane Details page, click YAML to modify your configuration.
  5. Set the ServiceMeshControlPlane field spec.security.manageNetworkPolicy to false, as shown in this example.

    apiVersion: maistra.io/v2
    kind: ServiceMeshControlPlane
    spec:
      security:
          trust:
          manageNetworkPolicy: false
  6. Click Save.
1.2.23.45. New features and enhancements Red Hat OpenShift Service Mesh 2.1

This release of Red Hat OpenShift Service Mesh adds support for Istio 1.9.8, Envoy Proxy 1.17.1, Jaeger 1.24.1, and Kiali 1.36.5 on Red Hat OpenShift Service on AWS 4.6 EUS, 4.7, 4.8, 4.9, along with new features and enhancements.

1.2.23.45.1. Component versions included in Red Hat OpenShift Service Mesh version 2.1
ComponentVersion

Istio

1.9.6

Envoy Proxy

1.17.1

Jaeger

1.24.1

Kiali

1.36.5

1.2.23.45.2. Service Mesh Federation

New Custom Resource Definitions (CRDs) have been added to support federating service meshes. Service meshes may be federated both within the same cluster or across different OpenShift clusters. These new resources include:

  • ServiceMeshPeer - Defines a federation with a separate service mesh, including gateway configuration, root trust certificate configuration, and status fields. In a pair of federated meshes, each mesh will define its own separate ServiceMeshPeer resource.
  • ExportedServiceMeshSet - Defines which services for a given ServiceMeshPeer are available for the peer mesh to import.
  • ImportedServiceSet - Defines which services for a given ServiceMeshPeer are imported from the peer mesh. These services must also be made available by the peer’s ExportedServiceMeshSet resource.

Service Mesh Federation is not supported between clusters on Red Hat OpenShift Service on AWS (ROSA) or OpenShift Dedicated (OSD).

1.2.23.45.3. OVN-Kubernetes Container Network Interface (CNI) generally available

The OVN-Kubernetes Container Network Interface (CNI) was previously introduced as a Technology Preview feature in Red Hat OpenShift Service Mesh 2.0.1 and is now generally available in Red Hat OpenShift Service Mesh 2.1 and 2.0.x for use on Red Hat OpenShift Service on AWS 4.7.32, Red Hat OpenShift Service on AWS 4.8.12, and Red Hat OpenShift Service on AWS 4.9.

1.2.23.45.4. Service Mesh WebAssembly (WASM) Extensions

The ServiceMeshExtensions Custom Resource Definition (CRD), first introduced in 2.0 as Technology Preview, is now generally available. You can use CRD to build your own plugins, but Red Hat does not provide support for the plugins you create.

Mixer has been completely removed in Service Mesh 2.1. Upgrading from a Service Mesh 2.0.x release to 2.1 will be blocked if Mixer is enabled. Mixer plugins will need to be ported to WebAssembly Extensions.

1.2.23.45.5. 3scale WebAssembly Adapter (WASM)

With Mixer now officially removed, OpenShift Service Mesh 2.1 does not support the 3scale mixer adapter. Before upgrading to Service Mesh 2.1, remove the Mixer-based 3scale adapter and any additional Mixer plugins. Then, manually install and configure the new 3scale WebAssembly adapter with Service Mesh 2.1+ using a ServiceMeshExtension resource.

3scale 2.11 introduces an updated Service Mesh integration based on WebAssembly.

1.2.23.45.6. Istio 1.9 Support

Service Mesh 2.1 is based on Istio 1.9, which brings in a large number of new features and product enhancements. While the majority of Istio 1.9 features are supported, the following exceptions should be noted:

  • Virtual Machine integration is not yet supported
  • Kubernetes Gateway API is not yet supported
  • Remote fetch and load of WebAssembly HTTP filters are not yet supported
  • Custom CA Integration using the Kubernetes CSR API is not yet supported
  • Request Classification for monitoring traffic is a tech preview feature
  • Integration with external authorization systems via Authorization policy’s CUSTOM action is a tech preview feature
1.2.23.45.7. Improved Service Mesh operator performance

The amount of time Red Hat OpenShift Service Mesh uses to prune old resources at the end of every ServiceMeshControlPlane reconciliation has been reduced. This results in faster ServiceMeshControlPlane deployments, and allows changes applied to existing SMCPs to take effect more quickly.

1.2.23.45.8. Kiali updates

Kiali 1.36 includes the following features and enhancements:

  • Service Mesh troubleshooting functionality

    • Control plane and gateway monitoring
    • Proxy sync statuses
    • Envoy configuration views
    • Unified view showing Envoy proxy and application logs interleaved
  • Namespace and cluster boxing to support federated service mesh views
  • New validations, wizards, and distributed tracing enhancements
1.2.23.46. New features Red Hat OpenShift Service Mesh 2.0.11.1

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures (CVEs), bug fixes, and is supported on Red Hat OpenShift Service on AWS 4.9 or later.

1.2.23.46.1. Component versions included in Red Hat OpenShift Service Mesh version 2.0.11.1
ComponentVersion

Istio

1.6.14

Envoy Proxy

1.14.5

Jaeger

1.36

Kiali

1.24.17

1.2.23.47. New features Red Hat OpenShift Service Mesh 2.0.11

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures (CVEs), bug fixes, and is supported on Red Hat OpenShift Service on AWS 4.9 or later.

1.2.23.47.1. Component versions included in Red Hat OpenShift Service Mesh version 2.0.11
ComponentVersion

Istio

1.6.14

Envoy Proxy

1.14.5

Jaeger

1.36

Kiali

1.24.16-1

1.2.23.48. New features Red Hat OpenShift Service Mesh 2.0.10

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures (CVEs) and bug fixes.

1.2.23.48.1. Component versions included in Red Hat OpenShift Service Mesh version 2.0.10
ComponentVersion

Istio

1.6.14

Envoy Proxy

1.14.5

Jaeger

1.28.0

Kiali

1.24.16-1

1.2.23.49. New features Red Hat OpenShift Service Mesh 2.0.9

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures (CVEs) and bug fixes.

1.2.23.49.1. Component versions included in Red Hat OpenShift Service Mesh version 2.0.9
ComponentVersion

Istio

1.6.14

Envoy Proxy

1.14.5

Jaeger

1.24.1

Kiali

1.24.11

1.2.23.50. New features Red Hat OpenShift Service Mesh 2.0.8

This release of Red Hat OpenShift Service Mesh addresses bug fixes.

1.2.23.51. New features Red Hat OpenShift Service Mesh 2.0.7.1

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures (CVEs).

1.2.23.51.1. Change in how Red Hat OpenShift Service Mesh handles URI fragments

Red Hat OpenShift Service Mesh contains a remotely exploitable vulnerability, CVE-2021-39156, where an HTTP request with a fragment (a section in the end of a URI that begins with a # character) in the URI path could bypass the Istio URI path-based authorization policies. For instance, an Istio authorization policy denies requests sent to the URI path /user/profile. In the vulnerable versions, a request with URI path /user/profile#section1 bypasses the deny policy and routes to the backend (with the normalized URI path /user/profile%23section1), possibly leading to a security incident.

You are impacted by this vulnerability if you use authorization policies with DENY actions and operation.paths, or ALLOW actions and operation.notPaths.

With the mitigation, the fragment part of the request’s URI is removed before the authorization and routing. This prevents a request with a fragment in its URI from bypassing authorization policies which are based on the URI without the fragment part.

To opt-out from the new behavior in the mitigation, the fragment section in the URI will be kept. You can configure your ServiceMeshControlPlane to keep URI fragments.

Warning

Disabling the new behavior will normalize your paths as described above and is considered unsafe. Ensure that you have accommodated for this in any security policies before opting to keep URI fragments.

Example ServiceMeshControlPlane modification

apiVersion: maistra.io/v2
kind: ServiceMeshControlPlane
metadata:
  name: basic
spec:
  techPreview:
    meshConfig:
      defaultConfig:
        proxyMetadata: HTTP_STRIP_FRAGMENT_FROM_PATH_UNSAFE_IF_DISABLED: "false"

1.2.23.51.2. Required update for authorization policies

Istio generates hostnames for both the hostname itself and all matching ports. For instance, a virtual service or Gateway for a host of "httpbin.foo" generates a config matching "httpbin.foo and httpbin.foo:*". However, exact match authorization policies only match the exact string given for the hosts or notHosts fields.

Your cluster is impacted if you have AuthorizationPolicy resources using exact string comparison for the rule to determine hosts or notHosts.

You must update your authorization policy rules to use prefix match instead of exact match. For example, replacing hosts: ["httpbin.com"] with hosts: ["httpbin.com:*"] in the first AuthorizationPolicy example.

First example AuthorizationPolicy using prefix match

apiVersion: security.istio.io/v1beta1
kind: AuthorizationPolicy
metadata:
  name: httpbin
  namespace: foo
spec:
  action: DENY
  rules:
  - from:
    - source:
        namespaces: ["dev"]
    to:
    - operation:
        hosts: [“httpbin.com”,"httpbin.com:*"]

Second example AuthorizationPolicy using prefix match

apiVersion: security.istio.io/v1beta1
kind: AuthorizationPolicy
metadata:
  name: httpbin
  namespace: default
spec:
  action: DENY
  rules:
  - to:
    - operation:
        hosts: ["httpbin.example.com:*"]

1.2.23.52. New features Red Hat OpenShift Service Mesh 2.0.7

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures (CVEs) and bug fixes.

1.2.23.53. Red Hat OpenShift Service Mesh on Red Hat OpenShift Dedicated

Red Hat OpenShift Service Mesh is now supported through Red Hat OpenShift Dedicated.

1.2.23.54. New features Red Hat OpenShift Service Mesh 2.0.6

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures (CVEs) and bug fixes.

1.2.23.55. New features Red Hat OpenShift Service Mesh 2.0.5

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures (CVEs) and bug fixes.

1.2.23.56. New features Red Hat OpenShift Service Mesh 2.0.4

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures (CVEs) and bug fixes.

Important

There are manual steps that must be completed to address CVE-2021-29492 and CVE-2021-31920.

1.2.23.56.1. Manual updates required by CVE-2021-29492 and CVE-2021-31920

Istio contains a remotely exploitable vulnerability where an HTTP request path with multiple slashes or escaped slash characters (%2F or %5C) could potentially bypass an Istio authorization policy when path-based authorization rules are used.

For example, assume an Istio cluster administrator defines an authorization DENY policy to reject the request at path /admin. A request sent to the URL path //admin will NOT be rejected by the authorization policy.

According to RFC 3986, the path //admin with multiple slashes should technically be treated as a different path from the /admin. However, some backend services choose to normalize the URL paths by merging multiple slashes into a single slash. This can result in a bypass of the authorization policy (//admin does not match /admin), and a user can access the resource at path /admin in the backend; this would represent a security incident.

Your cluster is impacted by this vulnerability if you have authorization policies using ALLOW action + notPaths field or DENY action + paths field patterns. These patterns are vulnerable to unexpected policy bypasses.

Your cluster is NOT impacted by this vulnerability if:

  • You don’t have authorization policies.
  • Your authorization policies don’t define paths or notPaths fields.
  • Your authorization policies use ALLOW action + paths field or DENY action + notPaths field patterns. These patterns could only cause unexpected rejection instead of policy bypasses. The upgrade is optional for these cases.
Note

The Red Hat OpenShift Service Mesh configuration location for path normalization is different from the Istio configuration.

1.2.23.56.2. Updating the path normalization configuration

Istio authorization policies can be based on the URL paths in the HTTP request. Path normalization, also known as URI normalization, modifies and standardizes the incoming requests' paths so that the normalized paths can be processed in a standard way. Syntactically different paths may be equivalent after path normalization.

Istio supports the following normalization schemes on the request paths before evaluating against the authorization policies and routing the requests:

Table 1.1. Normalization schemes
OptionDescriptionExampleNotes

NONE

No normalization is done. Anything received by Envoy will be forwarded exactly as-is to any backend service.

../%2Fa../b is evaluated by the authorization policies and sent to your service.

This setting is vulnerable to CVE-2021-31920.

BASE

This is currently the option used in the default installation of Istio. This applies the normalize_path option on Envoy proxies, which follows RFC 3986 with extra normalization to convert backslashes to forward slashes.

/a/../b is normalized to /b. \da is normalized to /da.

This setting is vulnerable to CVE-2021-31920.

MERGE_SLASHES

Slashes are merged after the BASE normalization.

/a//b is normalized to /a/b.

Update to this setting to mitigate CVE-2021-31920.

DECODE_AND_MERGE_SLASHES

The strictest setting when you allow all traffic by default. This setting is recommended, with the caveat that you must thoroughly test your authorization policies routes. Percent-encoded slash and backslash characters (%2F, %2f, %5C and %5c) are decoded to / or \, before the MERGE_SLASHES normalization.

/a%2fb is normalized to /a/b.

Update to this setting to mitigate CVE-2021-31920. This setting is more secure, but also has the potential to break applications. Test your applications before deploying to production.

The normalization algorithms are conducted in the following order:

  1. Percent-decode %2F, %2f, %5C and %5c.
  2. The RFC 3986 and other normalization implemented by the normalize_path option in Envoy.
  3. Merge slashes.
Warning

While these normalization options represent recommendations from HTTP standards and common industry practices, applications may interpret a URL in any way it chooses to. When using denial policies, ensure that you understand how your application behaves.

1.2.23.56.3. Path normalization configuration examples

Ensuring Envoy normalizes request paths to match your backend services' expectations is critical to the security of your system. The following examples can be used as a reference for you to configure your system. The normalized URL paths, or the original URL paths if NONE is selected, will be:

  1. Used to check against the authorization policies.
  2. Forwarded to the backend application.
Table 1.2. Configuration examples
If your application…​Choose…​

Relies on the proxy to do normalization

BASE, MERGE_SLASHES or DECODE_AND_MERGE_SLASHES

Normalizes request paths based on RFC 3986 and does not merge slashes.

BASE

Normalizes request paths based on RFC 3986 and merges slashes, but does not decode percent-encoded slashes.

MERGE_SLASHES

Normalizes request paths based on RFC 3986, decodes percent-encoded slashes, and merges slashes.

DECODE_AND_MERGE_SLASHES

Processes request paths in a way that is incompatible with RFC 3986.

NONE

1.2.23.56.4. Configuring your SMCP for path normalization

To configure path normalization for Red Hat OpenShift Service Mesh, specify the following in your ServiceMeshControlPlane. Use the configuration examples to help determine the settings for your system.

SMCP v2 pathNormalization

spec:
  techPreview:
    global:
      pathNormalization: <option>

1.2.23.56.5. Configuring for case normalization

In some environments, it may be useful to have paths in authorization policies compared in a case insensitive manner. For example, treating https://myurl/get and https://myurl/GeT as equivalent. In those cases, you can use the EnvoyFilter shown below. This filter will change both the path used for comparison and the path presented to the application. In this example, istio-system is the name of the Service Mesh control plane project.

Save the EnvoyFilter to a file and run the following command:

$ oc create -f <myEnvoyFilterFile>
apiVersion: networking.istio.io/v1alpha3
kind: EnvoyFilter
metadata:
  name: ingress-case-insensitive
  namespace: istio-system
spec:
  configPatches:
  - applyTo: HTTP_FILTER
    match:
      context: GATEWAY
      listener:
        filterChain:
          filter:
            name: "envoy.filters.network.http_connection_manager"
            subFilter:
              name: "envoy.filters.http.router"
    patch:
      operation: INSERT_BEFORE
      value:
        name: envoy.lua
        typed_config:
            "@type": "type.googleapis.com/envoy.extensions.filters.http.lua.v3.Lua"
            inlineCode: |
              function envoy_on_request(request_handle)
                local path = request_handle:headers():get(":path")
                request_handle:headers():replace(":path", string.lower(path))
              end
1.2.23.57. New features Red Hat OpenShift Service Mesh 2.0.3

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures (CVEs) and bug fixes.

In addition, this release has the following new features:

  • Added an option to the must-gather data collection tool that gathers information from a specified Service Mesh control plane namespace. For more information, see OSSM-351.
  • Improved performance for Service Mesh control planes with hundreds of namespaces
1.2.23.58. New features Red Hat OpenShift Service Mesh 2.0.2

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures (CVEs) and bug fixes.

1.2.23.59. New features Red Hat OpenShift Service Mesh 2.0.1

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures (CVEs) and bug fixes.

1.2.23.60. New features Red Hat OpenShift Service Mesh 2.0

This release of Red Hat OpenShift Service Mesh adds support for Istio 1.6.5, Jaeger 1.20.0, Kiali 1.24.2, and the 3scale Istio Adapter 2.0 and Red Hat OpenShift Service on AWS 4.6.

In addition, this release has the following new features:

  • Simplifies installation, upgrades, and management of the Service Mesh control plane.
  • Reduces the Service Mesh control plane’s resource usage and startup time.
  • Improves performance by reducing inter-control plane communication over networking.

    • Adds support for Envoy’s Secret Discovery Service (SDS). SDS is a more secure and efficient mechanism for delivering secrets to Envoy side car proxies.
  • Removes the need to use Kubernetes Secrets, which have well known security risks.
  • Improves performance during certificate rotation, as proxies no longer require a restart to recognize new certificates.

    • Adds support for Istio’s Telemetry v2 architecture, which is built using WebAssembly extensions. This new architecture brings significant performance improvements.
    • Updates the ServiceMeshControlPlane resource to v2 with a streamlined configuration to make it easier to manage the Service Mesh Control Plane.

1.2.24. Deprecated and removed features

Some features available in previous releases have been deprecated or removed.

Deprecated functionality is still included in Red Hat OpenShift Service on AWS and continues to be supported; however, it will be removed in a future release of this product and is not recommended for new deployments.

Removed functionality no longer exists in the product.

1.2.24.1. Deprecated and removed features in Red Hat OpenShift Service Mesh 2.5

The v2.2 ServiceMeshControlPlane resource is no longer supported. Customers should update their mesh deployments to use a later version of the ServiceMeshControlPlane resource.

Support for the Red Hat OpenShift distributed tracing platform (Jaeger) Operator is deprecated. To collect trace spans, use the Red Hat OpenShift distributed tracing platform (Tempo) Stack.

Support for the OpenShift Elasticsearch Operator is deprecated.

Istio will remove support for first-party JSON Web Tokens (JWTs). Istio will still support third-Party JWTs.

1.2.24.2. Deprecated and removed features in Red Hat OpenShift Service Mesh 2.4

The v2.1 ServiceMeshControlPlane resource is no longer supported. Customers should upgrade their mesh deployments to use a later version of the ServiceMeshControlPlane resource.

Support for Istio OpenShift Routing (IOR) is deprecated and will be removed in a future release.

Support for Grafana is deprecated and will be removed in a future release.

Support for the following cipher suites, which were deprecated in Red Hat OpenShift Service Mesh 2.3, has been removed from the default list of ciphers used in TLS negotiations on both the client and server sides. Applications that require access to services requiring one of these cipher suites will fail to connect when a TLS connection is initiated from the proxy.

  • ECDHE-ECDSA-AES128-SHA
  • ECDHE-RSA-AES128-SHA
  • AES128-GCM-SHA256
  • AES128-SHA
  • ECDHE-ECDSA-AES256-SHA
  • ECDHE-RSA-AES256-SHA
  • AES256-GCM-SHA384
  • AES256-SHA
1.2.24.3. Deprecated and removed features in Red Hat OpenShift Service Mesh 2.3

Support for the following cipher suites has been deprecated. In a future release, they will be removed from the default list of ciphers used in TLS negotiations on both the client and server sides.

  • ECDHE-ECDSA-AES128-SHA
  • ECDHE-RSA-AES128-SHA
  • AES128-GCM-SHA256
  • AES128-SHA
  • ECDHE-ECDSA-AES256-SHA
  • ECDHE-RSA-AES256-SHA
  • AES256-GCM-SHA384
  • AES256-SHA

The ServiceMeshExtension API, which was deprecated in Red Hat OpenShift Service Mesh version 2.2, was removed in Red Hat OpenShift Service Mesh version 2.3. If you are using the ServiceMeshExtension API, you must migrate to the WasmPlugin API to continue using your WebAssembly extensions.

1.2.24.4. Deprecated features in Red Hat OpenShift Service Mesh 2.2

The ServiceMeshExtension API is deprecated as of release 2.2 and will be removed in a future release. While ServiceMeshExtension API is still supported in release 2.2, customers should start moving to the new WasmPlugin API.

1.2.24.5. Removed features in Red Hat OpenShift Service Mesh 2.2

This release marks the end of support for Service Mesh control planes based on Service Mesh 1.1 for all platforms.

1.2.24.6. Removed features in Red Hat OpenShift Service Mesh 2.1

In Service Mesh 2.1, the Mixer component is removed. Bug fixes and support is provided through the end of the Service Mesh 2.0 life cycle.

Upgrading from a Service Mesh 2.0.x release to 2.1 will not proceed if Mixer plugins are enabled. Mixer plugins must be ported to WebAssembly Extensions.

1.2.24.7. Deprecated features in Red Hat OpenShift Service Mesh 2.0

The Mixer component was deprecated in release 2.0 and will be removed in release 2.1. While using Mixer for implementing extensions was still supported in release 2.0, extensions should have been migrated to the new WebAssembly mechanism.

The following resource types are no longer supported in Red Hat OpenShift Service Mesh 2.0:

  • Policy (authentication.istio.io/v1alpha1) is no longer supported. Depending on the specific configuration in your Policy resource, you may have to configure multiple resources to achieve the same effect.

    • Use RequestAuthentication (security.istio.io/v1beta1)
    • Use PeerAuthentication (security.istio.io/v1beta1)
  • ServiceMeshPolicy (maistra.io/v1) is no longer supported.

    • Use RequestAuthentication or PeerAuthentication, as mentioned above, but place in the Service Mesh control plane namespace.
  • RbacConfig (rbac.istio.io/v1alpha1) is no longer supported.

    • Replaced by AuthorizationPolicy (security.istio.io/v1beta1), which encompasses behavior of RbacConfig, ServiceRole, and ServiceRoleBinding.
  • ServiceMeshRbacConfig (maistra.io/v1) is no longer supported.

    • Use AuthorizationPolicy as above, but place in Service Mesh control plane namespace.
  • ServiceRole (rbac.istio.io/v1alpha1) is no longer supported.
  • ServiceRoleBinding (rbac.istio.io/v1alpha1) is no longer supported.
  • In Kiali, the login and LDAP strategies are deprecated. A future version will introduce authentication using OpenID providers.

1.2.25. Known issues

These limitations exist in Red Hat OpenShift Service Mesh:

  • Red Hat OpenShift Service Mesh does not yet fully support IPv6. As a result, Red Hat OpenShift Service Mesh does not support dual-stack clusters.
  • Graph layout - The layout for the Kiali graph can render differently, depending on your application architecture and the data to display (number of graph nodes and their interactions). Because it is difficult if not impossible to create a single layout that renders nicely for every situation, Kiali offers a choice of several different layouts. To choose a different layout, you can choose a different Layout Schema from the Graph Settings menu.
  • The first time you access related services such as distributed tracing platform (Jaeger) and Grafana, from the Kiali console, you must accept the certificate and re-authenticate using your Red Hat OpenShift Service on AWS login credentials. This happens due to an issue with how the framework displays embedded pages in the console.
1.2.25.1. Service Mesh known issues

These are the known issues in Red Hat OpenShift Service Mesh: * OSSM-5556 Gateways are skipped when istio-system labels do not match discovery selectors.

+ Workaround: Label the control plane namespace to match discovery selectors to avoid skipping the Gateway configurations.

+ .Example ServiceMeshControlPlane resource

apiVersion: maistra.io/v2
kind: ServiceMeshControlPlane
metadata:
  name: basic
  namespace: istio-system
spec:
  mode: ClusterWide
  meshConfig:
    discoverySelectors:
    - matchLabels:
        istio-discovery: enabled
  gateways:
    ingress:
      enabled: true

+ Then, run the following command at the command line:

+

oc label namespace istio-system istio-discovery=enabled
  • OSSM-3890 Attempting to use the Gateway API in a multitenant mesh deployment generates an error message similar to the following:

    2023-05-02T15:20:42.541034Z	error	watch error in cluster Kubernetes: failed to list *v1alpha2.TLSRoute: the server could not find the requested resource (get tlsroutes.gateway.networking.k8s.io)
    2023-05-02T15:20:42.616450Z	info	kube	controller "gateway.networking.k8s.io/v1alpha2/TCPRoute" is syncing...

    To support Gateway API in a multitenant mesh deployment, all Gateway API Custom Resource Definition (CRD) files must be present in the cluster.

    In a multitenant mesh deployment, CRD scan is disabled, and Istio has no way to discover which CRDs are present in a cluster. As a result, Istio attempts to watch all supported Gateway API CRDs, but generates errors if some of those CRDs are not present.

    Service Mesh 2.3.1 and later versions support both v1alpha2 and v1beta1 CRDs. Therefore, both CRD versions must be present for a multitenant mesh deployment to support the Gateway API.

    Workaround: In the following example, the kubectl get operation installs the v1alpha2 and v1beta1 CRDs. Note the URL contains the additional experimental segment and updates any of your existing scripts accordingly:

    $ kubectl get crd gateways.gateway.networking.k8s.io ||   { kubectl kustomize "github.com/kubernetes-sigs/gateway-api/config/crd/experimental?ref=v0.5.1" | kubectl apply -f -; }
  • OSSM-2042 Deployment of SMCP named default fails. If you are creating an SMCP object, and set its version field to v2.3, the name of the object cannot be default. If the name is default, then the control plane fails to deploy, and OpenShift generates a Warning event with the following message:

    Error processing component mesh-config: error: [mesh-config/templates/telemetryv2_1.6.yaml: Internal error occurred: failed calling webhook "rev.validation.istio.io": Post "https://istiod-default.istio-system.svc:443/validate?timeout=10s": x509: certificate is valid for istiod.istio-system.svc, istiod-remote.istio-system.svc, istio-pilot.istio-system.svc, not istiod-default.istio-system.svc, mesh-config/templates/enable-mesh-permissive.yaml

  • OSSM-1655 Kiali dashboard shows error after enabling mTLS in SMCP.

    After enabling the spec.security.controlPlane.mtls setting in the SMCP, the Kiali console displays the following error message No subsets defined.

  • OSSM-1505 This issue only occurs when using the ServiceMeshExtension resource on OpenShift Container Platform 4.11. When you use ServiceMeshExtension on OpenShift Container Platform 4.11 the resource never becomes ready. If you inspect the issue using oc describe ServiceMeshExtension you will see the following error: stderr: Error creating mount namespace before pivot: function not implemented.

    Workaround: ServiceMeshExtension was deprecated in Service Mesh 2.2. Migrate from ServiceMeshExtension to the WasmPlugin resource. For more information, see Migrating from ServiceMeshExtension to WasmPlugin resources.

  • OSSM-1396 If a gateway resource contains the spec.externalIPs setting, instead of being recreated when the ServiceMeshControlPlane is updated, the gateway is removed and never recreated.
  • OSSM-1168 When service mesh resources are created as a single YAML file, the Envoy proxy sidecar is not reliably injected into pods. When the SMCP, SMMR, and Deployment resources are created individually, the deployment works as expected.
  • OSSM-1115 The concurrency field of the spec.proxy API did not propagate to the istio-proxy. The concurrency field works when set with ProxyConfig. The concurrency field specifies the number of worker threads to run. If the field is set to 0, then the number of worker threads available is equal to the number of CPU cores. If the field is not set, then the number of worker threads available defaults to 2.

    In the following example, the concurrency field is set to 0.

    apiVersion: networking.istio.io/v1beta1
    kind: ProxyConfig
    metadata:
      name: mesh-wide-concurrency
      namespace: <istiod-namespace>
    spec:
      concurrency: 0
  • OSSM-1052 When configuring a Service ExternalIP for the ingressgateway in the Service Mesh control plane, the service is not created. The schema for the SMCP is missing the parameter for the service.

    Workaround: Disable the gateway creation in the SMCP spec and manage the gateway deployment entirely manually (including Service, Role and RoleBinding).

  • OSSM-882 This applies for Service Mesh 2.1 and earlier. Namespace is in the accessible_namespace list but does not appear in Kiali UI. By default, Kiali will not show any namespaces that start with "kube" because these namespaces are typically internal-use only and not part of a mesh.

    For example, if you create a namespace called 'akube-a' and add it to the Service Mesh member roll, then the Kiali UI does not display the namespace. For defined exclusion patterns, the software excludes namespaces that start with or contain the pattern.

    Workaround: Change the Kiali Custom Resource setting so it prefixes the setting with a carat (^). For example:

    api:
      namespaces:
        exclude:
        - "^istio-operator"
        - "^kube-.*"
        - "^openshift.*"
        - "^kiali-operator"
  • MAISTRA-2692 With Mixer removed, custom metrics that have been defined in Service Mesh 2.0.x cannot be used in 2.1. Custom metrics can be configured using EnvoyFilter. Red Hat is unable to support EnvoyFilter configuration except where explicitly documented. This is due to tight coupling with the underlying Envoy APIs, meaning that backward compatibility cannot be maintained.
  • MAISTRA-1959 Migration to 2.0 Prometheus scraping (spec.addons.prometheus.scrape set to true) does not work when mTLS is enabled. Additionally, Kiali displays extraneous graph data when mTLS is disabled.

    This problem can be addressed by excluding port 15020 from proxy configuration, for example,

    spec:
      proxy:
        networking:
          trafficControl:
            inbound:
              excludedPorts:
              - 15020
  • MAISTRA-453 If you create a new project and deploy pods immediately, sidecar injection does not occur. The operator fails to add the maistra.io/member-of before the pods are created, therefore the pods must be deleted and recreated for sidecar injection to occur.
  • MAISTRA-158 Applying multiple gateways referencing the same hostname will cause all gateways to stop functioning.
1.2.25.2. Kiali known issues
Note

New issues for Kiali should be created in the OpenShift Service Mesh project with the Component set to Kiali.

These are the known issues in Kiali:

  • OSSM-6299 In Red Hat OpenShift Service on AWS 4.15, when you click the Node graph menu option of any node menu within the traffic graph, the node graph is not displayed. Instead, the page is refreshed with the same traffic graph. Currently, no workaround exists for this issue.
  • OSSM-6298 When you click an item reference within the OpenShift Service Mesh Console (OSSMC) plugin, such as a workload link related to a specific service, the console sometimes performs multiple redirections before opening the desired page. If you click Back in a web browser, a different page of the console opens instead of the previous page. As a workaround, click Back twice to navigate to the previous page.
  • OSSM-6290 For Red Hat OpenShift Service on AWS 4.15, the Project filter of the Istio Config list page does not work correctly. All istio items are displayed even if you select a specific project from the dropdown. Currently, no workaround exists for this issue.
  • KIALI-2206 When you are accessing the Kiali console for the first time, and there is no cached browser data for Kiali, the “View in Grafana” link on the Metrics tab of the Kiali Service Details page redirects to the wrong location. The only way you would encounter this issue is if you are accessing Kiali for the first time.
  • KIALI-507 Kiali does not support Internet Explorer 11. This is because the underlying frameworks do not support Internet Explorer. To access the Kiali console, use one of the two most recent versions of the Chrome, Edge, Firefox or Safari browser.

1.2.26. Fixed issues

The following issues have been resolved in previous releases:

1.2.26.1. Service Mesh fixed issues
  • OSSM-6177 Previously, when validation messages were enabled in the ServiceMeshControlPlane (SMCP), the istiod crashed continuously unless GatewayAPI support was enabled. Now, when validation messages are enabled but GatewayAPI support is not, the istiod does not continuously crash.
  • OSSM-6163 Resolves the following issues:

    • Previously, an unstable Prometheus image was included in the Service Mesh control plane (SMCP) v2.5, and users were not able to access the Prometheus dashboard. Now, in the Service Mesh operator 2.5.1, the Prometheus image has been updated.
    • Previously, in the Service Mesh control plane (SMCP), a Grafana data source was not able to set Basic authentication password automatically and users were not able to view metrics from Prometheus in Grafana mesh dashboards. Now, a Grafana data source password is configured under the secureJsonData field. Metrics are displayed correctly in dashboards.
  • OSSM-6148 Previously, the OpenShift Service Mesh Console (OSSMC) plugin did not respond when the user clicked any option in the menu of any node on the Traffic Graph page. Now, the plugin responds to the selected option in the menu by redirecting to the corresponding details page.
  • OSSM-6099 Previously, the OpenShift Service Mesh Console (OSSMC) plugin failed to load correctly in an IPv6 cluster. Now, the OSSMC plugin configuration has been modified to ensure proper loading in an IPv6 cluster.
  • OSSM-5960 Previously, the OpenShift Service Mesh Console (OSSMC) plugin did not display notification messages such as backend errors or Istio validations. Now, these notifications are displayed correctly at the top of the plugin page.
  • OSSM-5959 Previously, the OpenShift Service Mesh Console (OSSMC) plugin did not display TLS and Istio certification information in the Overview page. Now, this information is displayed correctly.
  • OSSM-5902 Previously, the OpenShift Service Mesh Console (OSSMC) plugin redirected to a "Not Found Page" error when the user clicked the Istio config health symbol on the Overview page. Now, the plugin redirects to the correct Istio config details page.
  • OSSM-5541 Previously, an Istio operator pod might keep waiting for the leader lease in some restart conditions. Now, the leader election implementation has been enhanced to avoid this issue.
  • OSSM-1397 Previously, if you removed the maistra.io/member-of label from a namespace, the Service Mesh Operator did not automatically reapply the label to the namespace. As a result, sidecar injection did not work in the namespace.

    The Operator would reapply the label to the namespace when you made changes to the ServiceMeshMember object, which triggered the reconciliation of this member object.

    Now, any change to the namespace also triggers the member object reconciliation.

  • OSSM-3647 Previously, in the Service Mesh control plane (SMCP) v2.2 (Istio 1.12), WasmPlugins were applied only to inbound listeners. Since SMCP v2.3 (Istio 1.14), WasmPlugins have been applied to inbound and outbound listeners by default, which introduced regression for users of the 3scale WasmPlugin. Now, the environment variable APPLY_WASM_PLUGINS_TO_INBOUND_ONLY is added, which allows safe migration from SMCP v2.2 to v2.3 and v2.4.

    The following setting should be added to the SMCP config:

    spec:
      runtime:
        components:
          pilot:
            container:
              env:
                APPLY_WASM_PLUGINS_TO_INBOUND_ONLY: "true"

    To ensure safe migration, perform the following steps:

    1. Set APPLY_WASM_PLUGINS_TO_INBOUND_ONLY in SMCP v2.2.
    2. Upgrade to 2.4.
    3. Set spec.match[].mode: SERVER in WasmPlugins.
    4. Remove the previously-added environment variable.
  • OSSM-4851 Previously, an error occurred in the operator deploying new pods in a namespace scoped inside the mesh when runAsGroup, runAsUser, or fsGroup parameters were nil. Now, a yaml validation has been added to avoid the nil value.
  • OSSM-3771 Previously, OpenShift routes could not be disabled for additional ingress gateways defined in a Service Mesh Control Plane (SMCP). Now, a routeConfig block can be added to each additionalIngress gateway so the creation of OpenShift routes can be enabled or disabled for each gateway.
  • OSSM-4197 Previously, if you deployed a v2.2 or v2.1 of the 'ServiceMeshControlPlane' resource, the /etc/cni/multus/net.d/ directory was not created. As a result, the istio-cni pod failed to become ready, and the istio-cni pods log contained the following message:

    $ error   Installer exits with open /host/etc/cni/multus/net.d/v2-2-istio-cni.kubeconfig.tmp.841118073: no such file or directory

    Now, if you deploy a v2.2 or v2.1 of the 'ServiceMeshControlPlane' resource, the /etc/cni/multus/net.d/ directory is created, and the istio-cni pod becomes ready.

  • OSSM-3993 Previously, Kiali only supported OpenShift OAuth via a proxy on the standard HTTPS port of 443. Now, Kiali supports OpenShift OAuth over a non-standard HTTPS port. To enable the port, you must set the spec.server.web_port field to the proxy’s non-standard HTTPS port in the Kiali CR.
  • OSSM-3936 Previously, the values for the injection_label_rev and injection_label_name attributes were hardcoded. This prevented custom configurations from taking effect in the Kiali Custom Resource Definition (CRD). Now, the attribute values are not hardcoded. You can customize the values for the injection_label_rev and injection_label_name attributes in the spec.istio_labels specification.
  • OSSM-3644 Previously, the federation egress-gateway received the wrong update of network gateway endpoints, causing extra endpoint entries. Now, the federation-egress gateway has been updated on the server side so it receives the correct network gateway endpoints.
  • OSSM-3595 Previously, the istio-cni plugin sometimes failed on RHEL because SELinux did not allow the utility iptables-restore to open files in the /tmp directory. Now, SELinux passes iptables-restore via stdin input stream instead of via a file.
  • OSSM-3586 Previously, Istio proxies were slow to start when Google Cloud Platform (GCP) metadata servers were not available. When you upgrade to Istio 1.14.6, Istio proxies start as expected on GCP, even if metadata servers are not available.
  • OSSM-3025 Istiod sometimes fails to become ready. Sometimes, when a mesh contained many member namespaces, the Istiod pod did not become ready due to a deadlock within Istiod. The deadlock is now resolved and the pod now starts as expected.
  • OSSM-2493 Default nodeSelector and tolerations in SMCP not passed to Kiali. The nodeSelector and tolerations you add to SMCP.spec.runtime.defaults are now passed to the Kiali resource.
  • OSSM-2492 Default tolerations in SMCP not passed to Jaeger. The nodeSelector and tolerations you add to SMCP.spec.runtime.defaults are now passed to the Jaeger resource.
  • OSSM-2374 If you deleted one of the ServiceMeshMember resources, then the Service Mesh operator deleted the ServiceMeshMemberRoll. While this is expected behavior when you delete the last ServiceMeshMember, the operator should not delete the ServiceMeshMemberRoll if it contains any members in addition to the one that was deleted. This issue is now fixed and the operator only deletes the ServiceMeshMemberRoll when the last ServiceMeshMember resource is deleted.
  • OSSM-2373 Error trying to get OAuth metadata when logging in. To fetch the cluster version, the system:anonymous account is used. With the cluster’s default bundled ClusterRoles and ClusterRoleBinding, the anonymous account can fetch the version correctly. If the system:anonymous account loses its privileges to fetch the cluster version, OpenShift authentication becomes unusable.

    This is fixed by using the Kiali SA to fetch the cluster version. This also allows for improved security on the cluster.

  • OSSM-2371 Despite Kiali being configured as "view-only," a user can change the proxy logging level via the Workload details' Logs tab’s kebab menu. This issue has been fixed so the options under "Set Proxy Log Level" are disabled when Kiali is configured as "view-only."
  • OSSM-2344 Restarting Istiod causes Kiali to flood CRI-O with port-forward requests. This issue occurred when Kiali could not connect to Istiod and Kiali simultaneously issued a large number of requests to istiod. Kiali now limits the number of requests it sends to istiod.
  • OSSM-2335 Dragging the mouse pointer over the Traces scatterchart plot sometimes caused the Kiali console to stop responding due to concurrent backend requests.
  • OSSM-2221 Previously, gateway injection in the ServiceMeshControlPlane namespace was not possible because the ignore-namespace label was applied to the namespace by default.

    When creating a v2.4 control plane, the namespace no longer has the ignore-namespace label applied, and gateway injection is possible.

    In the following example, the oc label command removes the ignore-namespace label from a namespace in an existing deployment:

    $ oc label namespace istio-system maistra.io/ignore-namespace-

    where:

    istio_system
    Specified the name of the ServiceMeshControlPlane namespace.
  • OSSM-2053 Using Red Hat OpenShift Service Mesh Operator 2.2 or 2.3, during SMCP reconciliation, the SMMR controller removed the member namespaces from SMMR.status.configuredMembers. This caused the services in the member namespaces to become unavailable for a few moments.

    Using Red Hat OpenShift Service Mesh Operator 2.2 or 2.3, the SMMR controller no longer removes the namespaces from SMMR.status.configuredMembers. Instead, the controller adds the namespaces to SMMR.status.pendingMembers to indicate that they are not up-to-date. During reconciliation, as each namespace synchronizes with the SMCP, the namespace is automatically removed from SMMR.status.pendingMembers.

  • OSSM-1962 Use EndpointSlices in federation controller. The federation controller now uses EndpointSlices, which improves scalability and performance in large deployments. The PILOT_USE_ENDPOINT_SLICE flag is enabled by default. Disabling the flag prevents use of federation deployments.
  • OSSM-1668 A new field spec.security.jwksResolverCA was added to the Version 2.1 SMCP but was missing in the 2.2.0 and 2.2.1 releases. When upgrading from an Operator version where this field was present to an Operator version that was missing this field, the .spec.security.jwksResolverCA field was not available in the SMCP.
  • OSSM-1325 istiod pod crashes and displays the following error message: fatal error: concurrent map iteration and map write.
  • OSSM-1211 Configuring Federated service meshes for failover does not work as expected.

    The Istiod pilot log displays the following error: envoy connection [C289] TLS error: 337047686:SSL routines:tls_process_server_certificate:certificate verify failed

  • OSSM-1099 The Kiali console displayed the message Sorry, there was a problem. Try a refresh or navigate to a different page.
  • OSSM-1074 Pod annotations defined in SMCP are not injected in the pods.
  • OSSM-999 Kiali retention did not work as expected. Calendar times were greyed out in the dashboard graph.
  • OSSM-797 Kiali Operator pod generates CreateContainerConfigError while installing or updating the operator.
  • OSSM-722 Namespace starting with kube is hidden from Kiali.
  • OSSM-569 There is no CPU memory limit for the Prometheus istio-proxy container. The Prometheus istio-proxy sidecar now uses the resource limits defined in spec.proxy.runtime.container.
  • OSSM-535 Support validationMessages in SMCP. The ValidationMessages field in the Service Mesh Control Plane can now be set to True. This writes a log for the status of the resources, which can be helpful when troubleshooting problems.
  • OSSM-449 VirtualService and Service causes an error "Only unique values for domains are permitted. Duplicate entry of domain."
  • OSSM-419 Namespaces with similar names will all show in Kiali namespace list, even though namespaces may not be defined in Service Mesh Member Role.
  • OSSM-296 When adding health configuration to the Kiali custom resource (CR) is it not being replicated to the Kiali configmap.
  • OSSM-291 In the Kiali console, on the Applications, Services, and Workloads pages, the "Remove Label from Filters" function is not working.
  • OSSM-289 In the Kiali console, on the Service Details pages for the 'istio-ingressgateway' and 'jaeger-query' services there are no Traces being displayed. The traces exist in Jaeger.
  • OSSM-287 In the Kiali console there are no traces being displayed on the Graph Service.
  • OSSM-285 When trying to access the Kiali console, receive the following error message "Error trying to get OAuth Metadata".

    Workaround: Restart the Kiali pod.

  • MAISTRA-2735 The resources that the Service Mesh Operator deletes when reconciling the SMCP changed in Red Hat OpenShift Service Mesh version 2.1. Previously, the Operator deleted a resource with the following labels:

    • maistra.io/owner
    • app.kubernetes.io/version

    Now, the Operator ignores resources that does not also include the app.kubernetes.io/managed-by=maistra-istio-operator label. If you create your own resources, you should not add the app.kubernetes.io/managed-by=maistra-istio-operator label to them.

  • MAISTRA-2687 Red Hat OpenShift Service Mesh 2.1 federation gateway does not send the full certificate chain when using external certificates. The Service Mesh federation egress gateway only sends the client certificate. Because the federation ingress gateway only knows about the root certificate, it cannot verify the client certificate unless you add the root certificate to the federation import ConfigMap.
  • MAISTRA-2635 Replace deprecated Kubernetes API. To remain compatible with Red Hat OpenShift Service on AWS 4.8, the apiextensions.k8s.io/v1beta1 API was deprecated as of Red Hat OpenShift Service Mesh 2.0.8.
  • MAISTRA-2631 The WASM feature is not working because podman is failing due to nsenter binary not being present. Red Hat OpenShift Service Mesh generates the following error message: Error: error configuring CNI network plugin exec: "nsenter": executable file not found in $PATH. The container image now contains nsenter and WASM works as expected.
  • MAISTRA-2534 When istiod attempted to fetch the JWKS for an issuer specified in a JWT rule, the issuer service responded with a 502. This prevented the proxy container from becoming ready and caused deployments to hang. The fix for the community bug has been included in the Service Mesh 2.0.7 release.
  • MAISTRA-2411 When the Operator creates a new ingress gateway using spec.gateways.additionaIngress in the ServiceMeshControlPlane, Operator is not creating a NetworkPolicy for the additional ingress gateway like it does for the default istio-ingressgateway. This is causing a 503 response from the route of the new gateway.

    Workaround: Manually create the NetworkPolicy in the istio-system namespace.

  • MAISTRA-2401 CVE-2021-3586 servicemesh-operator: NetworkPolicy resources incorrectly specified ports for ingress resources. The NetworkPolicy resources installed for Red Hat OpenShift Service Mesh did not properly specify which ports could be accessed. This allowed access to all ports on these resources from any pod. Network policies applied to the following resources are affected:

    • Galley
    • Grafana
    • Istiod
    • Jaeger
    • Kiali
    • Prometheus
    • Sidecar injector
  • MAISTRA-2378 When the cluster is configured to use OpenShift SDN with ovs-multitenant and the mesh contains a large number of namespaces (200+), the Red Hat OpenShift Service on AWS networking plugin is unable to configure the namespaces quickly. Service Mesh times out causing namespaces to be continuously dropped from the service mesh and then reenlisted.
  • MAISTRA-2370 Handle tombstones in listerInformer. The updated cache codebase was not handling tombstones when translating the events from the namespace caches to the aggregated cache, leading to a panic in the go routine.
  • MAISTRA-2117 Add optional ConfigMap mount to operator. The CSV now contains an optional ConfigMap volume mount, which mounts the smcp-templates ConfigMap if it exists. If the smcp-templates ConfigMap does not exist, the mounted directory is empty. When you create the ConfigMap, the directory is populated with the entries from the ConfigMap and can be referenced in SMCP.spec.profiles. No restart of the Service Mesh operator is required.

    Customers using the 2.0 operator with a modified CSV to mount the smcp-templates ConfigMap can upgrade to Red Hat OpenShift Service Mesh 2.1. After upgrading, you can continue using an existing ConfigMap, and the profiles it contains, without editing the CSV. Customers that previously used ConfigMap with a different name will either have to rename the ConfigMap or update the CSV after upgrading.

  • MAISTRA-2010 AuthorizationPolicy does not support request.regex.headers field. The validatingwebhook rejects any AuthorizationPolicy with the field, and even if you disable that, Pilot tries to validate it using the same code, and it does not work.
  • MAISTRA-1979 Migration to 2.0 The conversion webhook drops the following important fields when converting SMCP.status from v2 to v1:

    • conditions
    • components
    • observedGeneration
    • annotations

      Upgrading the operator to 2.0 might break client tools that read the SMCP status using the maistra.io/v1 version of the resource.

      This also causes the READY and STATUS columns to be empty when you run oc get servicemeshcontrolplanes.v1.maistra.io.

  • MAISTRA-1983 Migration to 2.0 Upgrading to 2.0.0 with an existing invalid ServiceMeshControlPlane cannot easily be repaired. The invalid items in the ServiceMeshControlPlane resource caused an unrecoverable error. The fix makes the errors recoverable. You can delete the invalid resource and replace it with a new one or edit the resource to fix the errors. For more information about editing your resource, see [Configuring the Red Hat OpenShift Service Mesh installation].
  • MAISTRA-1502 As a result of CVEs fixes in version 1.0.10, the Istio dashboards are not available from the Home Dashboard menu in Grafana. To access the Istio dashboards, click the Dashboard menu in the navigation panel and select the Manage tab.
  • MAISTRA-1399 Red Hat OpenShift Service Mesh no longer prevents you from installing unsupported CNI protocols. The supported network configurations has not changed.
  • MAISTRA-1089 Migration to 2.0 Gateways created in a non-control plane namespace are automatically deleted. After removing the gateway definition from the SMCP spec, you need to manually delete these resources.
  • MAISTRA-858 The following Envoy log messages describing deprecated options and configurations associated with Istio 1.1.x are expected:

    • [2019-06-03 07:03:28.943][19][warning][misc] [external/envoy/source/common/protobuf/utility.cc:129] Using deprecated option 'envoy.api.v2.listener.Filter.config'. This configuration will be removed from Envoy soon.
    • [2019-08-12 22:12:59.001][13][warning][misc] [external/envoy/source/common/protobuf/utility.cc:174] Using deprecated option 'envoy.api.v2.Listener.use_original_dst' from file lds.proto. This configuration will be removed from Envoy soon.
  • MAISTRA-806 Evicted Istio Operator Pod causes mesh and CNI not to deploy.

    Workaround: If the istio-operator pod is evicted while deploying the control pane, delete the evicted istio-operator pod.

  • MAISTRA-681 When the Service Mesh control plane has many namespaces, it can lead to performance issues.
  • MAISTRA-193 Unexpected console info messages are visible when health checking is enabled for citadel.
  • Bugzilla 1821432 The toggle controls in Red Hat OpenShift Service on AWS Custom Resource details page does not update the CR correctly. UI Toggle controls in the Service Mesh Control Plane (SMCP) Overview page in the Red Hat OpenShift Service on AWS web console sometimes updates the wrong field in the resource. To update a SMCP, edit the YAML content directly or update the resource from the command line instead of clicking the toggle controls.

1.3. Understanding Service Mesh

Red Hat OpenShift Service Mesh provides a platform for behavioral insight and operational control over your networked microservices in a service mesh. With Red Hat OpenShift Service Mesh, you can connect, secure, and monitor microservices in your Red Hat OpenShift Service on AWS environment.

1.3.1. What is Red Hat OpenShift Service Mesh?

A service mesh is the network of microservices that make up applications in a distributed microservice architecture and the interactions between those microservices. When a Service Mesh grows in size and complexity, it can become harder to understand and manage.

Based on the open source Istio project, Red Hat OpenShift Service Mesh adds a transparent layer on existing distributed applications without requiring any changes to the service code. You add Red Hat OpenShift Service Mesh support to services by deploying a special sidecar proxy to relevant services in the mesh that intercepts all network communication between microservices. You configure and manage the Service Mesh using the Service Mesh control plane features.

Red Hat OpenShift Service Mesh gives you an easy way to create a network of deployed services that provide:

  • Discovery
  • Load balancing
  • Service-to-service authentication
  • Failure recovery
  • Metrics
  • Monitoring

Red Hat OpenShift Service Mesh also provides more complex operational functions including:

  • A/B testing
  • Canary releases
  • Access control
  • End-to-end authentication

1.3.2. Service Mesh architecture

Service mesh technology operates at the network communication level. That is, service mesh components capture or intercept traffic to and from microservices, either modifying requests, redirecting them, or creating new requests to other services.

Service Mesh architecture image

At a high level, Red Hat OpenShift Service Mesh consists of a data plane and a control plane

The data plane is a set of intelligent proxies, running alongside application containers in a pod, that intercept and control all inbound and outbound network communication between microservices in the service mesh. The data plane is implemented in such a way that it intercepts all inbound (ingress) and outbound (egress) network traffic. The Istio data plane consists of Envoy containers running along side application containers in a pod. The Envoy container acts as a proxy, controlling all network communication into and out of the pod.

  • Envoy proxies are the only Istio components that interact with data plane traffic. All incoming (ingress) and outgoing (egress) network traffic between services flows through the proxies. The Envoy proxy also collects all metrics related to services traffic within the mesh. Envoy proxies are deployed as sidecars, running in the same pod as services. Envoy proxies are also used to implement mesh gateways.

    • Sidecar proxies manage inbound and outbound communication for their workload instance.
    • Gateways are proxies operating as load balancers receiving incoming or outgoing HTTP/TCP connections. Gateway configurations are applied to standalone Envoy proxies that are running at the edge of the mesh, rather than sidecar Envoy proxies running alongside your service workloads. You use a Gateway to manage inbound and outbound traffic for your mesh, letting you specify which traffic you want to enter or leave the mesh.

      • Ingress-gateway - Also known as an Ingress Controller, the Ingress Gateway is a dedicated Envoy proxy that receives and controls traffic entering the service mesh. An Ingress Gateway allows features such as monitoring and route rules to be applied to traffic entering the cluster.
      • Egress-gateway - Also known as an egress controller, the Egress Gateway is a dedicated Envoy proxy that manages traffic leaving the service mesh. An Egress Gateway allows features such as monitoring and route rules to be applied to traffic exiting the mesh.

The control plane manages and configures the proxies that make up the data plane. It is the authoritative source for configuration, manages access control and usage policies, and collects metrics from the proxies in the service mesh.

  • The Istio control plane is composed of Istiod which consolidates several previous control plane components (Citadel, Galley, Pilot) into a single binary. Istiod provides service discovery, configuration, and certificate management. It converts high-level routing rules to Envoy configurations and propagates them to the sidecars at runtime.

    • Istiod can act as a Certificate Authority (CA), generating certificates supporting secure mTLS communication in the data plane. You can also use an external CA for this purpose.
    • Istiod is responsible for injecting sidecar proxy containers into workloads deployed to an OpenShift cluster.

Red Hat OpenShift Service Mesh uses the istio-operator to manage the installation of the control plane. An Operator is a piece of software that enables you to implement and automate common activities in your OpenShift cluster. It acts as a controller, allowing you to set or change the desired state of objects in your cluster, in this case, a Red Hat OpenShift Service Mesh installation.

Red Hat OpenShift Service Mesh also bundles the following Istio add-ons as part of the product:

  • Kiali - Kiali is the management console for Red Hat OpenShift Service Mesh. It provides dashboards, observability, and robust configuration and validation capabilities. It shows the structure of your service mesh by inferring traffic topology and displays the health of your mesh. Kiali provides detailed metrics, powerful validation, access to Grafana, and strong integration with the distributed tracing platform (Jaeger).
  • Prometheus - Red Hat OpenShift Service Mesh uses Prometheus to store telemetry information from services. Kiali depends on Prometheus to obtain metrics, health status, and mesh topology.
  • Jaeger - Red Hat OpenShift Service Mesh supports the distributed tracing platform (Jaeger). Jaeger is an open source traceability server that centralizes and displays traces associated with a single request between multiple services. Using the distributed tracing platform (Jaeger) you can monitor and troubleshoot your microservices-based distributed systems.
  • Elasticsearch - Elasticsearch is an open source, distributed, JSON-based search and analytics engine. The distributed tracing platform (Jaeger) uses Elasticsearch for persistent storage.
  • Grafana - Grafana provides mesh administrators with advanced query and metrics analysis and dashboards for Istio data. Optionally, Grafana can be used to analyze service mesh metrics.

The following Istio integrations are supported with Red Hat OpenShift Service Mesh:

  • 3scale - Istio provides an optional integration with Red Hat 3scale API Management solutions. For versions prior to 2.1, this integration was achieved via the 3scale Istio adapter. For version 2.1 and later, the 3scale integration is achieved via a WebAssembly module.

For information about how to install the 3scale adapter, refer to the 3scale Istio adapter documentation

1.3.3. Understanding Kiali

Kiali provides visibility into your service mesh by showing you the microservices in your service mesh, and how they are connected.

1.3.3.1. Kiali overview

Kiali provides observability into the Service Mesh running on Red Hat OpenShift Service on AWS. Kiali helps you define, validate, and observe your Istio service mesh. It helps you to understand the structure of your service mesh by inferring the topology, and also provides information about the health of your service mesh.

Kiali provides an interactive graph view of your namespace in real time that provides visibility into features like circuit breakers, request rates, latency, and even graphs of traffic flows. Kiali offers insights about components at different levels, from Applications to Services and Workloads, and can display the interactions with contextual information and charts on the selected graph node or edge. Kiali also provides the ability to validate your Istio configurations, such as gateways, destination rules, virtual services, mesh policies, and more. Kiali provides detailed metrics, and a basic Grafana integration is available for advanced queries. Distributed tracing is provided by integrating Jaeger into the Kiali console.

Kiali is installed by default as part of the Red Hat OpenShift Service Mesh.

1.3.3.2. Kiali architecture

Kiali is based on the open source Kiali project. Kiali is composed of two components: the Kiali application and the Kiali console.

  • Kiali application (back end) – This component runs in the container application platform and communicates with the service mesh components, retrieves and processes data, and exposes this data to the console. The Kiali application does not need storage. When deploying the application to a cluster, configurations are set in ConfigMaps and secrets.
  • Kiali console (front end) – The Kiali console is a web application. The Kiali application serves the Kiali console, which then queries the back end for data to present it to the user.

In addition, Kiali depends on external services and components provided by the container application platform and Istio.

  • Red Hat Service Mesh (Istio) - Istio is a Kiali requirement. Istio is the component that provides and controls the service mesh. Although Kiali and Istio can be installed separately, Kiali depends on Istio and will not work if it is not present. Kiali needs to retrieve Istio data and configurations, which are exposed through Prometheus and the cluster API.
  • Prometheus - A dedicated Prometheus instance is included as part of the Red Hat OpenShift Service Mesh installation. When Istio telemetry is enabled, metrics data are stored in Prometheus. Kiali uses this Prometheus data to determine the mesh topology, display metrics, calculate health, show possible problems, and so on. Kiali communicates directly with Prometheus and assumes the data schema used by Istio Telemetry. Prometheus is an Istio dependency and a hard dependency for Kiali, and many of Kiali’s features will not work without Prometheus.
  • Cluster API - Kiali uses the API of the Red Hat OpenShift Service on AWS (cluster API) to fetch and resolve service mesh configurations. Kiali queries the cluster API to retrieve, for example, definitions for namespaces, services, deployments, pods, and other entities. Kiali also makes queries to resolve relationships between the different cluster entities. The cluster API is also queried to retrieve Istio configurations like virtual services, destination rules, route rules, gateways, quotas, and so on.
  • Jaeger - Jaeger is optional, but is installed by default as part of the Red Hat OpenShift Service Mesh installation. When you install the distributed tracing platform (Jaeger) as part of the default Red Hat OpenShift Service Mesh installation, the Kiali console includes a tab to display distributed tracing data. Note that tracing data will not be available if you disable Istio’s distributed tracing feature. Also note that user must have access to the namespace where the Service Mesh control plane is installed to view tracing data.
  • Grafana - Grafana is optional, but is installed by default as part of the Red Hat OpenShift Service Mesh installation. When available, the metrics pages of Kiali display links to direct the user to the same metric in Grafana. Note that user must have access to the namespace where the Service Mesh control plane is installed to view links to the Grafana dashboard and view Grafana data.
1.3.3.3. Kiali features

The Kiali console is integrated with Red Hat Service Mesh and provides the following capabilities:

  • Health – Quickly identify issues with applications, services, or workloads.
  • Topology – Visualize how your applications, services, or workloads communicate via the Kiali graph.
  • Metrics – Predefined metrics dashboards let you chart service mesh and application performance for Go, Node.js. Quarkus, Spring Boot, Thorntail and Vert.x. You can also create your own custom dashboards.
  • Tracing – Integration with Jaeger lets you follow the path of a request through various microservices that make up an application.
  • Validations – Perform advanced validations on the most common Istio objects (Destination Rules, Service Entries, Virtual Services, and so on).
  • Configuration – Optional ability to create, update and delete Istio routing configuration using wizards or directly in the YAML editor in the Kiali Console.

1.3.4. Understanding distributed tracing

Every time a user takes an action in an application, a request is executed by the architecture that may require dozens of different services to participate to produce a response. The path of this request is a distributed transaction. The distributed tracing platform (Jaeger) lets you perform distributed tracing, which follows the path of a request through various microservices that make up an application.

Distributed tracing is a technique that is used to tie the information about different units of work together—usually executed in different processes or hosts—to understand a whole chain of events in a distributed transaction. Distributed tracing lets developers visualize call flows in large service oriented architectures. It can be invaluable in understanding serialization, parallelism, and sources of latency.

The distributed tracing platform (Jaeger) records the execution of individual requests across the whole stack of microservices, and presents them as traces. A trace is a data/execution path through the system. An end-to-end trace comprises one or more spans.

A span represents a logical unit of work that has an operation name, the start time of the operation, and the duration. Spans may be nested and ordered to model causal relationships.

1.3.4.1. Distributed tracing overview

As a service owner, you can use distributed tracing to instrument your services to gather insights into your service architecture. You can use the Red Hat OpenShift distributed tracing platform for monitoring, network profiling, and troubleshooting the interaction between components in modern, cloud-native, microservices-based applications.

With the distributed tracing platform, you can perform the following functions:

  • Monitor distributed transactions
  • Optimize performance and latency
  • Perform root cause analysis
1.3.4.2. Red Hat OpenShift distributed tracing platform architecture

Red Hat OpenShift distributed tracing platform is made up of several components that work together to collect, store, and display tracing data.

  • Red Hat OpenShift distributed tracing platform (Tempo) - This component is based on the open source Grafana Tempo project.

    • Gateway – The Gateway handles authentication, authorization, and forwarding requests to the Distributor or Query front-end service.
    • Distributor – The Distributor accepts spans in multiple formats including Jaeger, OpenTelemetry, and Zipkin. It routes spans to Ingesters by hashing the traceID and using a distributed consistent hash ring.
    • Ingester – The Ingester batches a trace into blocks, creates bloom filters and indexes, and then flushes it all to the back end.
    • Query Frontend – The Query Frontend is responsible for sharding the search space for an incoming query. The search query is then sent to the Queriers. The Query Frontend deployment exposes the Jaeger UI through the Tempo Query sidecar.
    • Querier - The Querier is responsible for finding the requested trace ID in either the Ingesters or the back-end storage. Depending on parameters, it can query the Ingesters and pull Bloom indexes from the back end to search blocks in object storage.
    • Compactor – The Compactors stream blocks to and from the back-end storage to reduce the total number of blocks.
  • Red Hat build of OpenTelemetry - This component is based on the open source OpenTelemetry project.

    • OpenTelemetry Collector - The OpenTelemetry Collector is a vendor-agnostic way to receive, process, and export telemetry data. The OpenTelemetry Collector supports open-source observability data formats, for example, Jaeger and Prometheus, sending to one or more open-source or commercial back-ends. The Collector is the default location instrumentation libraries export their telemetry data.
  • Red Hat OpenShift distributed tracing platform (Jaeger) - This component is based on the open source Jaeger project.

    Important

    The Red Hat OpenShift distributed tracing platform (Jaeger) is a deprecated feature. Deprecated functionality is still included in Red Hat OpenShift Service on AWS and continues to be supported; however, it will be removed in a future release of this product and is not recommended for new deployments.

    The Red Hat OpenShift distributed tracing platform Operator (Jaeger) will be removed from the redhat-operators catalog in a future release. For more information, see the Red Hat Knowledgebase solution Jaeger Deprecation and Removal in OpenShift.

    Users must migrate to the Tempo Operator and the Red Hat build of OpenTelemetry for distributed tracing collection and storage.

    • Client (Jaeger client, Tracer, Reporter, instrumented application, client libraries)- The distributed tracing platform (Jaeger) clients are language-specific implementations of the OpenTracing API. They might be used to instrument applications for distributed tracing either manually or with a variety of existing open source frameworks, such as Camel (Fuse), Spring Boot (RHOAR), MicroProfile (RHOAR/Thorntail), Wildfly (EAP), and many more, that are already integrated with OpenTracing.
    • Agent (Jaeger agent, Server Queue, Processor Workers) - The distributed tracing platform (Jaeger) agent is a network daemon that listens for spans sent over User Datagram Protocol (UDP), which it batches and sends to the Collector. The agent is meant to be placed on the same host as the instrumented application. This is typically accomplished by having a sidecar in container environments such as Kubernetes.
    • Jaeger Collector (Collector, Queue, Workers) - Similar to the Jaeger agent, the Jaeger Collector receives spans and places them in an internal queue for processing. This allows the Jaeger Collector to return immediately to the client/agent instead of waiting for the span to make its way to the storage.
    • Storage (Data Store) - Collectors require a persistent storage backend. Red Hat OpenShift distributed tracing platform (Jaeger) has a pluggable mechanism for span storage. Red Hat OpenShift distributed tracing platform (Jaeger) supports the Elasticsearch storage.
    • Query (Query Service) - Query is a service that retrieves traces from storage.
    • Ingester (Ingester Service) - Red Hat OpenShift distributed tracing platform can use Apache Kafka as a buffer between the Collector and the actual Elasticsearch backing storage. Ingester is a service that reads data from Kafka and writes to the Elasticsearch storage backend.
    • Jaeger Console – With the Red Hat OpenShift distributed tracing platform (Jaeger) user interface, you can visualize your distributed tracing data. On the Search page, you can find traces and explore details of the spans that make up an individual trace.
1.3.4.3. Red Hat OpenShift distributed tracing platform features

Red Hat OpenShift distributed tracing platform provides the following capabilities:

  • Integration with Kiali – When properly configured, you can view distributed tracing platform data from the Kiali console.
  • High scalability – The distributed tracing platform back end is designed to have no single points of failure and to scale with the business needs.
  • Distributed Context Propagation – Enables you to connect data from different components together to create a complete end-to-end trace.
  • Backwards compatibility with Zipkin – Red Hat OpenShift distributed tracing platform has APIs that enable it to be used as a drop-in replacement for Zipkin, but Red Hat is not supporting Zipkin compatibility in this release.

1.3.5. Next steps

1.4. Service mesh deployment models

Red Hat OpenShift Service Mesh supports several different deployment models that can be combined in different ways to best suit your business requirements.

In Istio, a tenant is a group of users that share common access and privileges for a set of deployed workloads. You can use tenants to provide a level of isolation between different teams. You can segregate access to different tenants using NetworkPolicies, AuthorizationPolicies, and exportTo annotations on istio.io or service resources.

1.4.1. Cluster-Wide (Single Tenant) mesh deployment model

A cluster-wide deployment contains a Service Mesh Control Plane that monitors resources for an entire cluster. Monitoring resources for an entire cluster closely resembles Istio functionality in that the control plane uses a single query across all namespaces to monitor Istio and Kubernetes resources. As a result, cluster-wide deployments decrease the number of requests sent to the API server.

Similar to Istio, a cluster-wide mesh includes namespaces with the istio-injection=enabled namespace label by default. You can change this label by modifying the spec.memberSelectors field of the ServiceMeshMemberRoll resource.

1.4.2. Multitenant deployment model

Red Hat OpenShift Service Mesh installs a ServiceMeshControlPlane that is configured for multitenancy by default. Red Hat OpenShift Service Mesh uses a multitenant Operator to manage the Service Mesh control plane lifecycle. Within a mesh, namespaces are used for tenancy.

Red Hat OpenShift Service Mesh uses ServiceMeshControlPlane resources to manage mesh installations, whose scope is limited by default to namespace that contains the resource. You use ServiceMeshMemberRoll and ServiceMeshMember resources to include additional namespaces into the mesh. A namespace can only be included in a single mesh, and multiple meshes can be installed in a single OpenShift cluster.

Typical service mesh deployments use a single Service Mesh control plane to configure communication between services in the mesh. Red Hat OpenShift Service Mesh supports “soft multitenancy”, where there is one control plane and one mesh per tenant, and there can be multiple independent control planes within the cluster. Multitenant deployments specify the projects that can access the Service Mesh and isolate the Service Mesh from other control plane instances.

The cluster administrator gets control and visibility across all the Istio control planes, while the tenant administrator only gets control over their specific Service Mesh, Kiali, and Jaeger instances.

You can grant a team permission to deploy its workloads only to a given namespace or set of namespaces. If granted the mesh-user role by the service mesh administrator, users can create a ServiceMeshMember resource to add namespaces to the ServiceMeshMemberRoll.

1.4.2.1. About migrating to a cluster-wide mesh

In a cluster-wide mesh, one ServiceMeshControlPlane (SMCP) watches all of the namespaces for an entire cluster. You can migrate an existing cluster from a multitenant mesh to a cluster-wide mesh using Red Hat OpenShift Service Mesh version 2.5 or later.

Note

If a cluster must have more than one SMCP, then you cannot migrate to a cluster-wide mesh.

By default, a cluster-wide mesh discovers all of the namespaces that comprise a cluster. However, you can configure the mesh to access a limited set of namespaces. Namespaces do not receive sidecar injection by default. You must specify which namespaces receive sidecar injection.

Similarly, you must specify which pods receive sidecar injection. Pods that exist in a namespace that receives sidecar injection do not inherit sidecar injection. Applying sidecar injection to namespaces and to pods are separate operations.

If you change the Istio version when migrating to a cluster-wide mesh, then you must restart the applications. If you use the same Istio version, the application proxies will connect to the new SMCP for the cluster-wide mesh, and work the same way they did for a multitenant mesh.

1.4.2.1.1. Including and excluding namespaces from a cluster-wide mesh by using the web console

Using the Red Hat OpenShift Service on AWS web console, you can add discovery selectors to the ServiceMeshControlPlane resource in a cluster-wide mesh. Discovery selectors define the namespaces that the control plane can discover. The control plane ignores any namespace that does not match one of the discovery selectors, which excludes the namespace from the mesh.

Note

If you install ingress or egress gateways in the control plane namespace, you must include the control plane namespace in the discovery selectors.

Prerequisites

  • You have installed the Red Hat OpenShift Service Mesh Operator.
  • You have deployed a ServiceMeshControlPlane resource.
  • You are logged in as a user with the cluster-admin role. If you use Red Hat OpenShift Dedicated, you are logged in as a user with the dedicated-admin role.

Procedure

  1. Log in to the Red Hat OpenShift Service on AWS web console.
  2. Navigate to OperatorsInstalled Operators.
  3. Click the Red Hat OpenShift Service Mesh Operator.
  4. Click Istio Service Mesh Control Plane.
  5. Click the name of the control plane.
  6. Click YAML.
  7. Modify the YAML file so that the spec.meshConfig field of the ServiceMeshControlPlane resource includes the discovery selector.

    Note

    When configuring namespaces that the Istiod service can discover, exclude namespaces that might contain sensitive services that should not be exposed to the rest of the mesh.

    In the following example, the Istiod service discovers any namespace that is labeled istio-discovery: enabled or any namespace that has the name bookinfo, httpbin or istio-system:

    apiVersion: maistra.io/v2
    kind: ServiceMeshControlPlane
    metadata:
      name: basic
    spec:
      mode: ClusterWide
      meshConfig:
        discoverySelectors:
        - matchLabels:
            istio-discovery: enabled 1
        - matchExpressions:
          - key: kubernetes.io/metadata.name 2
            operator: In
            values:
            - bookinfo
            - httpbin
            - istio-system
    1
    Ensures that the mesh discovers namespaces that contain the label istio-discovery: enabled.
    2
    Ensures that the mesh discovers namespaces bookinfo, httpbin and istio-system.

    If a namespace matches any of the discovery selectors, then the mesh discovers the namespace. The mesh excludes namespaces that do not match any of the discovery selectors.

  8. Save the file.
1.4.2.1.2. Including and excluding namespaces from a cluster-wide mesh by using the CLI

Using the Red Hat OpenShift Service on AWS CLI, you can add discovery selectors to the ServiceMeshControlPlane resource in a cluster-wide mesh. Discovery selectors define the namespaces that the control plane can discover. The control plane ignores any namespace that does not match one of the discovery selectors, which excludes the namespace from the mesh.

Note

If you install ingress or egress gateways in the control plane namespace, you must include the control plane namespace in the discovery selectors.

Prerequisites

  • You have installed the Red Hat OpenShift Service Mesh Operator.
  • You have deployed a ServiceMeshControlPlane resource.
  • You are logged in as a user with the cluster-admin role. If you use Red Hat OpenShift Dedicated, you are logged in as a user with the dedicated-admin role.

Procedure

  1. Log in to the Red Hat OpenShift Service on AWS CLI.
  2. Open the ServiceMeshControlPlane resource as a YAML file by running the following command:

    $ oc -n istio-system edit smcp <name> 1
    1
    <name> represents the name of the ServiceMeshControlPlane resource.
  3. Modify the YAML file so that the spec.meshConfig field of the ServiceMeshControlPlane resource includes the discovery selector.

    Note

    When configuring namespaces that the Istiod service can discover, exclude namespaces that might contain sensitive services that should not be exposed to the rest of the mesh.

    In the following example, the Istiod service discovers any namespace that is labeled istio-discovery: enabled or any namespace that has the name bookinfo, httpbin or istio-system:

    apiVersion: maistra.io/v2
    kind: ServiceMeshControlPlane
    metadata:
      name: basic
    spec:
      mode: ClusterWide
      meshConfig:
        discoverySelectors:
        - matchLabels:
            istio-discovery: enabled 1
        - matchExpressions:
          - key: kubernetes.io/metadata.name 2
            operator: In
            values:
            - bookinfo
            - httpbin
            - istio-system
    1
    Ensures that the mesh discovers namespaces that contain the label istio-discovery: enabled.
    2
    Ensures that the mesh discovers namespaces bookinfo, httpbin and istio-system.

    If a namespace matches any of the discovery selectors, then the mesh discovers the namespace. The mesh excludes namespaces that do not match any of the discovery selectors.

  4. Save the file and exit the editor.
1.4.2.1.3. Defining which namespaces receive sidecar injection in a cluster-wide mesh by using the web console

By default, the Red Hat OpenShift Service Mesh Operator uses member selectors to identify which namespaces receive sidecar injection. Namespaces that do not match the istio-injection=enabled label as defined in the ServiceMeshMemberRoll resource do not receive sidecar injection.

Note

Using discovery selectors to determine which namespaces the mesh can discover has no effect on sidecar injection. Discovering namespaces and configuring sidecar injection are separate operations.

Prerequisites

  • You have installed the Red Hat OpenShift Service Mesh Operator.
  • You have deployed a ServiceMeshControlPlanae resource with the mode: ClusterWide annotation.
  • You are logged in as a user with the cluster-admin role. If you use Red Hat OpenShift Dedicated, you are logged in as a user with the dedicated-admin role.

Procedure

  1. Log in to the Red Hat OpenShift Service on AWS web console.
  2. Navigate to OperatorsInstalled Operators.
  3. Click the Red Hat OpenShift Service Mesh Operator.
  4. Click Istio Service Mesh Member Roll.
  5. Click the ServiceMeshMemberRoll resource.
  6. Click YAML.
  7. Modify the spec.memberSelectors field in the ServiceMeshMemberRoll resource by adding a member selector that matches the inject label. The following example uses istio-injection: enabled:

    apiVersion: maistra.io/v1
    kind: ServiceMeshMemberRoll
    metadata:
      name: default
    spec:
      memberSelectors:
      - matchLabels:
          istio-injection: enabled 1
    1
    Ensures that the namespace receives sidecar injection.
  8. Save the file.
1.4.2.1.4. Defining which namespaces receive sidecar injection in a cluster-wide mesh by using the CLI

By default, the Red Hat OpenShift Service Mesh Operator uses member selectors to identify which namespaces receive sidecar injection. Namespaces that do not match the istio-injection=enabled label as defined in the ServiceMeshMemberRoll resource do not receive sidecar injection.

Note

Using discovery selectors to determine which namespaces the mesh can discover has no effect on sidecar injection. Discovering namespaces and configuring sidecar injection are separate operations.

Prerequisites

  • You have installed the Red Hat OpenShift Service Mesh Operator.
  • You have deployed a ServiceMeshControlPlanae resource with the mode: ClusterWide annotation.
  • You are logged in as a user with the cluster-admin role. If you use Red Hat OpenShift Dedicated, you are logged in as a user with the dedicated-admin role.

Procedure

  1. Log in to the Red Hat OpenShift Service on AWS CLI.
  2. Edit the ServiceMeshMemberRoll resource.

    $ oc edit smmr -n <controlplane-namespace>
  3. Modify the spec.memberSelectors field in the ServiceMeshMemberRoll resource by adding a member selector that matches the inject label. The following example uses istio-injection: enabled:

    apiVersion: maistra.io/v1
    kind: ServiceMeshMemberRoll
    metadata:
      name: default
    spec:
      memberSelectors:
      - matchLabels:
          istio-injection: enabled 1
    1
    Ensures that the namespace receives sidecar injection.
  4. Save the file and exit the editor.
1.4.2.1.5. Excluding individual pods from a cluster-wide mesh by using the web console

A pod receives sidecar injection if it has the sidecar.istio.io/inject: true annotation applied, and the pod exists in a namespace that matches either the label selector or the members list defined in the ServiceMeshMemberRoll resource.

If a pod does not have the sidecar.istio.io/inject annotation applied, it cannot receive sidecar injection.

Prerequisites

  • You have installed the Red Hat OpenShift Service Mesh Operator.
  • You have deployed a ServiceMeshControlPlane resource with the mode: ClusterWide annotation.
  • You are logged in as a user with the cluster-admin role. If you use Red Hat OpenShift Dedicated, you are logged in as a user with the dedicated-admin role.

Procedure

  1. Log in to the Red Hat OpenShift Service on AWS web console.
  2. Navigate to WorkloadsDeployments.
  3. Click the name of the deployment.
  4. Click YAML.
  5. Modify the YAML file to deploy one application that receives sidecar injection and one that does not, as shown in the following example:

    apiVersion: apps/v1
    kind: Deployment
    metadata:
      name: nginx
    spec:
      selector:
        matchLabels:
          app: nginx
      template:
        metadata:
          annotations:
            sidecar.istio.io/inject: 'true' 1
          labels:
            app: nginx
        spec:
          containers:
          - name: nginx
            image: nginx:1.14.2
            ports:
            - containerPort: 80
    ---
    apiVersion: apps/v1
    kind: Deployment
    metadata:
      name: nginx-without-sidecar
    spec:
      selector:
        matchLabels:
          app: nginx-without-sidecar
      template:
        metadata:
          labels:
            app: nginx-without-sidecar 2
        spec:
          containers:
          - name: nginx
            image: nginx:1.14.2
            ports:
            - containerPort: 80
    1
    This pod has the sidecar.istio.io/inject annotation applied, so it receives sidecar injection.
    2
    This pod does not have the annotation, so it does not receive sidecar injection.
  6. Save the file.
1.4.2.1.6. Excluding individual pods from a cluster-wide mesh by using the CLI

A pod receives sidecar injection if it has the sidecar.istio.io/inject: true annotation applied, and the pod exists in a namespace that matches either the label selector or the members list defined in the ServiceMeshMemberRoll resource.

If a pod does not have the sidecar.istio.io/inject annotation applied, it cannot receive sidecar injection.

Prerequisites

  • You have installed the Red Hat OpenShift Service Mesh Operator.
  • You have deployed a ServiceMeshControlPlane resource with the mode: ClusterWide annotation.
  • You are logged in as a user with the cluster-admin role. If you use Red Hat OpenShift Dedicated, you are logged in as a user with the dedicated-admin role.

Procedure

  1. Log in to the Red Hat OpenShift Service on AWS CLI.
  2. Edit the deployment by running the following command:

    $ oc edit deployment -n <namespace> <deploymentName>
  3. Modify the YAML file to deploy one application that receives sidecar injection and one that does not, as shown in the following example:

    apiVersion: apps/v1
    kind: Deployment
    metadata:
      name: nginx
    spec:
      selector:
        matchLabels:
          app: nginx
      template:
        metadata:
          annotations:
            sidecar.istio.io/inject: 'true' 1
          labels:
            app: nginx
        spec:
          containers:
          - name: nginx
            image: nginx:1.14.2
            ports:
            - containerPort: 80
    ---
    apiVersion: apps/v1
    kind: Deployment
    metadata:
      name: nginx-without-sidecar
    spec:
      selector:
        matchLabels:
          app: nginx-without-sidecar
      template:
        metadata:
          labels:
            app: nginx-without-sidecar 2
        spec:
          containers:
          - name: nginx
            image: nginx:1.14.2
            ports:
            - containerPort: 80
    1
    This pod has the sidecar.istio.io/inject annotation applied, so it receives sidecar injection.
    2
    This pod does not have the annotation, so it does not receive sidecar injection.
  4. Save the file.

1.4.3. Multimesh or federated deployment model

Federation is a deployment model that lets you share services and workloads between separate meshes managed in distinct administrative domains.

The Istio multi-cluster model requires a high level of trust between meshes and remote access to all Kubernetes API servers on which the individual meshes reside. Red Hat OpenShift Service Mesh federation takes an opinionated approach to a multi-cluster implementation of Service Mesh that assumes minimal trust between meshes.

A federated mesh is a group of meshes behaving as a single mesh. The services in each mesh can be unique services, for example a mesh adding services by importing them from another mesh, can provide additional workloads for the same services across the meshes, providing high availability, or a combination of both. All meshes that are joined into a federated mesh remain managed individually, and you must explicitly configure which services are exported to and imported from other meshes in the federation. Support functions such as certificate generation, metrics and trace collection remain local in their respective meshes.

1.5. Service Mesh and Istio differences

Red Hat OpenShift Service Mesh differs from an installation of Istio to provide additional features or to handle differences when deploying on Red Hat OpenShift Service on AWS.

1.5.1. Differences between Istio and Red Hat OpenShift Service Mesh

The following features are different in Service Mesh and Istio.

1.5.1.1. Command line tool

The command line tool for Red Hat OpenShift Service Mesh is oc.  Red Hat OpenShift Service Mesh does not support istioctl.

1.5.1.2. Installation and upgrades

Red Hat OpenShift Service Mesh does not support Istio installation profiles.

Red Hat OpenShift Service Mesh does not support canary upgrades of the service mesh.

1.5.1.3. Automatic injection

The upstream Istio community installation automatically injects the sidecar into pods within the projects you have labeled.

Red Hat OpenShift Service Mesh does not automatically inject the sidecar into any pods, but you must opt in to injection using an annotation without labeling projects. This method requires fewer privileges and does not conflict with other Red Hat OpenShift Service on AWS capabilities such as builder pods. To enable automatic injection, specify the sidecar.istio.io/inject label, or annotation, as described in the Automatic sidecar injection section.

Table 1.3. Sidecar injection label and annotation settings
 Upstream IstioRed Hat OpenShift Service Mesh

Namespace Label

supports "enabled" and "disabled"

supports "disabled"

Pod Label

supports "true" and "false"

supports "true" and "false"

Pod Annotation

supports "false" only

supports "true" and "false"

1.5.1.4. Istio Role Based Access Control features

Istio Role Based Access Control (RBAC) provides a mechanism you can use to control access to a service. You can identify subjects by user name or by specifying a set of properties and apply access controls accordingly.

The upstream Istio community installation includes options to perform exact header matches, match wildcards in headers, or check for a header containing a specific prefix or suffix.

Red Hat OpenShift Service Mesh extends the ability to match request headers by using a regular expression. Specify a property key of request.regex.headers with a regular expression.

Upstream Istio community matching request headers example

apiVersion: security.istio.io/v1beta1
kind: AuthorizationPolicy
metadata:
  name: httpbin-usernamepolicy
spec:
  action: ALLOW
  rules:
    - when:
        - key: 'request.regex.headers[username]'
          values:
            - "allowed.*"
  selector:
    matchLabels:
      app: httpbin

1.5.1.5. OpenSSL

Red Hat OpenShift Service Mesh replaces BoringSSL with OpenSSL. OpenSSL is a software library that contains an open source implementation of the Secure Sockets Layer (SSL) and Transport Layer Security (TLS) protocols. The Red Hat OpenShift Service Mesh Proxy binary dynamically links the OpenSSL libraries (libssl and libcrypto) from the underlying Red Hat Enterprise Linux operating system.

1.5.1.6. External workloads

Red Hat OpenShift Service Mesh does not support external workloads, such as virtual machines running outside OpenShift on bare metal servers.

1.5.1.7. Virtual Machine Support

You can deploy virtual machines to OpenShift using OpenShift Virtualization. Then, you can apply a mesh policy, such as mTLS or AuthorizationPolicy, to these virtual machines, just like any other pod that is part of a mesh.

1.5.1.8. Component modifications
  • A maistra-version label has been added to all resources.
  • All Ingress resources have been converted to OpenShift Route resources.
  • Grafana, distributed tracing (Jaeger), and Kiali are enabled by default and exposed through OpenShift routes.
  • Godebug has been removed from all templates
  • The istio-multi ServiceAccount and ClusterRoleBinding have been removed, as well as the istio-reader ClusterRole.
1.5.1.9. Envoy filters

Red Hat OpenShift Service Mesh does not support EnvoyFilter configuration except where explicitly documented. Due to tight coupling with the underlying Envoy APIs, backward compatibility cannot be maintained. EnvoyFilter patches are very sensitive to the format of the Envoy configuration that is generated by Istio. If the configuration generated by Istio changes, it has the potential to break the application of the EnvoyFilter.

1.5.1.10. Envoy services

Red Hat OpenShift Service Mesh does not support QUIC-based services.

1.5.1.11. Istio Container Network Interface (CNI) plugin

Red Hat OpenShift Service Mesh includes CNI plugin, which provides you with an alternate way to configure application pod networking. The CNI plugin replaces the init-container network configuration eliminating the need to grant service accounts and projects access to security context constraints (SCCs) with elevated privileges.

Note

By default, Istio Container Network Interface (CNI) pods are created on all Red Hat OpenShift Service on AWS nodes. To exclude the creation of CNI pods in a specific node, apply the maistra.io/exclude-cni=true label to the node. Adding this label removes any previously deployed Istio CNI pods from the node.

1.5.1.12. Global mTLS settings

Red Hat OpenShift Service Mesh creates a PeerAuthentication resource that enables or disables Mutual TLS authentication (mTLS) within the mesh.

1.5.1.13. Gateways

Red Hat OpenShift Service Mesh installs ingress and egress gateways by default. You can disable gateway installation in the ServiceMeshControlPlane (SMCP) resource by using the following settings:

  • spec.gateways.enabled=false to disable both ingress and egress gateways.
  • spec.gateways.ingress.enabled=false to disable ingress gateways.
  • spec.gateways.egress.enabled=false to disable egress gateways.
Note

The Operator annotates the default gateways to indicate that they are generated by and managed by the Red Hat OpenShift Service Mesh Operator.

1.5.1.14. Multicluster configurations

Red Hat OpenShift Service Mesh support for multicluster configurations is limited to the federation of service meshes across multiple clusters.

1.5.1.15. Custom Certificate Signing Requests (CSR)

You cannot configure Red Hat OpenShift Service Mesh to process CSRs through the Kubernetes certificate authority (CA).

1.5.1.16. Routes for Istio Gateways

OpenShift routes for Istio Gateways are automatically managed in Red Hat OpenShift Service Mesh. Every time an Istio Gateway is created, updated or deleted inside the service mesh, an OpenShift route is created, updated or deleted.

A Red Hat OpenShift Service Mesh control plane component called Istio OpenShift Routing (IOR) synchronizes the gateway route. For more information, see Automatic route creation.

1.5.1.16.1. Catch-all domains

Catch-all domains ("*") are not supported. If one is found in the Gateway definition, Red Hat OpenShift Service Mesh will create the route, but will rely on OpenShift to create a default hostname. This means that the newly created route will not be a catch all ("*") route, instead it will have a hostname in the form <route-name>[-<project>].<suffix>. See the Red Hat OpenShift Service on AWS documentation for more information about how default hostnames work and how a cluster-admin can customize it. If you use Red Hat OpenShift Dedicated, refer to the Red Hat OpenShift Dedicated the dedicated-admin role.

1.5.1.16.2. Subdomains

Subdomains (e.g.: "*.domain.com") are supported. However this ability does not come enabled by default in Red Hat OpenShift Service on AWS. This means that Red Hat OpenShift Service Mesh will create the route with the subdomain, but it will only be in effect if Red Hat OpenShift Service on AWS is configured to enable it.

1.5.1.16.3. Transport layer security

Transport Layer Security (TLS) is supported. This means that, if the Gateway contains a tls section, the OpenShift Route will be configured to support TLS.

Additional resources

1.5.2. Multitenant installations

Whereas upstream Istio takes a single tenant approach, Red Hat OpenShift Service Mesh supports multiple independent control planes within the cluster. Red Hat OpenShift Service Mesh uses a multitenant operator to manage the control plane lifecycle.

Red Hat OpenShift Service Mesh installs a multitenant control plane by default. You specify the projects that can access the Service Mesh, and isolate the Service Mesh from other control plane instances.

1.5.2.1. Multitenancy versus cluster-wide installations

The main difference between a multitenant installation and a cluster-wide installation is the scope of privileges used by istod. The components no longer use cluster-scoped Role Based Access Control (RBAC) resource ClusterRoleBinding.

Every project in the ServiceMeshMemberRoll members list will have a RoleBinding for each service account associated with the control plane deployment and each control plane deployment will only watch those member projects. Each member project has a maistra.io/member-of label added to it, where the member-of value is the project containing the control plane installation.

Red Hat OpenShift Service Mesh configures each member project to ensure network access between itself, the control plane, and other member projects by creating a NetworkPolicy resource in each member project allowing ingress to all pods from the other members and the control plane. If you remove a member from Service Mesh, this NetworkPolicy resource is deleted from the project.

Note

This also restricts ingress to only member projects. If you require ingress from non-member projects, you need to create a NetworkPolicy to allow that traffic through.

1.5.2.2. Cluster scoped resources

Upstream Istio has two cluster scoped resources that it relies on. The MeshPolicy and the ClusterRbacConfig. These are not compatible with a multitenant cluster and have been replaced as described below.

  • ServiceMeshPolicy replaces MeshPolicy for configuration of control-plane-wide authentication policies. This must be created in the same project as the control plane.
  • ServicemeshRbacConfig replaces ClusterRbacConfig for configuration of control-plane-wide role based access control. This must be created in the same project as the control plane.

1.5.3. Kiali and service mesh

Installing Kiali via the Service Mesh on Red Hat OpenShift Service on AWS differs from community Kiali installations in multiple ways. These modifications are sometimes necessary to resolve issues, provide additional features, or to handle differences when deploying on Red Hat OpenShift Service on AWS.

  • Kiali has been enabled by default.
  • Ingress has been enabled by default.
  • Updates have been made to the Kiali ConfigMap.
  • Updates have been made to the ClusterRole settings for Kiali.
  • Do not edit the ConfigMap, because your changes might be overwritten by the Service Mesh or Kiali Operators. Files that the Kiali Operator manages have a kiali.io/ label or annotation. Updating the Operator files should be restricted to those users with cluster-admin privileges. If you use Red Hat OpenShift Dedicated, updating the Operator files should be restricted to those users with dedicated-admin privileges.

1.5.4. Distributed tracing and service mesh

Installing the distributed tracing platform (Jaeger) with the Service Mesh on Red Hat OpenShift Service on AWS differs from community Jaeger installations in multiple ways. These modifications are sometimes necessary to resolve issues, provide additional features, or to handle differences when deploying on Red Hat OpenShift Service on AWS.

  • Distributed tracing has been enabled by default for Service Mesh.
  • Ingress has been enabled by default for Service Mesh.
  • The name for the Zipkin port name has changed to jaeger-collector-zipkin (from http)
  • Jaeger uses Elasticsearch for storage by default when you select either the production or streaming deployment option.
  • The community version of Istio provides a generic "tracing" route. Red Hat OpenShift Service Mesh uses a "jaeger" route that is installed by the Red Hat OpenShift distributed tracing platform (Jaeger) Operator and is already protected by OAuth.
  • Red Hat OpenShift Service Mesh uses a sidecar for the Envoy proxy, and Jaeger also uses a sidecar, for the Jaeger agent. These two sidecars are configured separately and should not be confused with each other. The proxy sidecar creates spans related to the pod’s ingress and egress traffic. The agent sidecar receives the spans emitted by the application and sends them to the Jaeger Collector.

1.6. Preparing to install Service Mesh

Before you can install Red Hat OpenShift Service Mesh, you must subscribe to Red Hat OpenShift Service on AWS and install Red Hat OpenShift Service on AWS in a supported configuration.

1.6.1. Prerequisites

  • Maintain an active Red Hat OpenShift Service on AWS subscription on your Red Hat account. If you do not have a subscription, contact your sales representative for more information.
  • Install the version of the Red Hat OpenShift Service on AWS command line utility (the oc client tool) that matches your Red Hat OpenShift Service on AWS version and add it to your path.

For additional information about Red Hat OpenShift Service Mesh lifecycle and supported platforms, refer to the Support Policy.

1.6.2. Supported configurations

The following configurations are supported for the current release of Red Hat OpenShift Service Mesh.

1.6.2.1. Supported platforms

The Red Hat OpenShift Service Mesh Operator supports multiple versions of the ServiceMeshControlPlane resource. Version 2.6 Service Mesh control planes are supported on the following platform versions:

  • Red Hat OpenShift Container Platform version 4.10 or later
  • Red Hat OpenShift Dedicated version 4
  • Azure Red Hat OpenShift (ARO) version 4
  • Red Hat OpenShift Service on AWS (ROSA)
1.6.2.2. Unsupported configurations

Explicitly unsupported cases include:

  • OpenShift Online is not supported for Red Hat OpenShift Service Mesh.
  • Red Hat OpenShift Service Mesh does not support the management of microservices outside the cluster where Service Mesh is running.
1.6.2.3. Supported network configurations

Red Hat OpenShift Service Mesh supports the following network configurations.

  • OpenShift-SDN
  • OVN-Kubernetes is available on all supported versions of Red Hat OpenShift Service on AWS.
  • Third-Party Container Network Interface (CNI) plugins that have been certified on Red Hat OpenShift Service on AWS and passed Service Mesh conformance testing. See Certified OpenShift CNI Plug-ins for more information.
1.6.2.4. Supported configurations for Service Mesh
  • This release of Red Hat OpenShift Service Mesh is only available on Red Hat OpenShift Service on AWS x86_64.
  • Configurations where all Service Mesh components are contained within a single Red Hat OpenShift Service on AWS cluster.
  • Configurations that do not integrate external services such as virtual machines.
  • Red Hat OpenShift Service Mesh does not support EnvoyFilter configuration except where explicitly documented.
1.6.2.5. Supported configurations for Kiali
  • The Kiali console is only supported on the two most recent releases of the Google Chrome, Microsoft Edge, Mozilla Firefox, or Apple Safari browsers.
  • The openshift authentication strategy is the only supported authentication configuration when Kiali is deployed with Red Hat OpenShift Service Mesh (OSSM). The openshift strategy controls access based on the individual’s role-based access control (RBAC) roles of the Red Hat OpenShift Service on AWS.
1.6.2.6. Supported configurations for Distributed Tracing
  • Jaeger agent as a sidecar is the only supported configuration for Jaeger. Jaeger as a daemonset is not supported for multitenant installations or OpenShift Dedicated.
1.6.2.7. Supported WebAssembly module
  • 3scale WebAssembly is the only provided WebAssembly module. You can create custom WebAssembly modules.

1.6.3. Next steps

1.7. Installing the Operators

To install Red Hat OpenShift Service Mesh, first install the Red Hat OpenShift Service Mesh Operator and any optional Operators on Red Hat OpenShift Service on AWS. Then create a ServiceMeshControlPlane resource to deploy the control plane.

Note

This basic installation is configured based on the default OpenShift settings and is not designed for production use.  Use this default installation to verify your installation, and then configure your service mesh for your specific environment.

Prerequisites

The following steps show how to install a basic instance of Red Hat OpenShift Service Mesh on Red Hat OpenShift Service on AWS.

Important

Starting with Red Hat OpenShift Service Mesh 2.5, Red Hat OpenShift distributed tracing platform (Jaeger) and OpenShift Elasticsearch Operator are deprecated and will be removed in a future release. Red Hat will provide bug fixes and support for these features during the current release lifecycle, but this feature will no longer receive enhancements and will be removed. As an alternative to Red Hat OpenShift distributed tracing platform (Jaeger), you can use Red Hat OpenShift distributed tracing platform (Tempo) instead.

1.7.1. Service Mesh Operators overview

Red Hat OpenShift Service Mesh requires the use of the Red Hat OpenShift Service Mesh Operator which allows you to connect, secure, control, and observe the microservices that comprise your applications. You can also install other Operators to enhance your service mesh experience.

Warning

Do not install Community versions of the Operators. Community Operators are not supported.

The following Operator is required:

Red Hat OpenShift Service Mesh Operator
Allows you to connect, secure, control, and observe the microservices that comprise your applications. It also defines and monitors the ServiceMeshControlPlane resources that manage the deployment, updating, and deletion of the Service Mesh components. It is based on the open source Istio project.

The following Operators are optional:

Kiali Operator provided by Red Hat
Provides observability for your service mesh. You can view configurations, monitor traffic, and analyze traces in a single console. It is based on the open source Kiali project.
Red Hat OpenShift distributed tracing platform (Tempo)
Provides distributed tracing to monitor and troubleshoot transactions in complex distributed systems. It is based on the open source Grafana Tempo project.

The following optional Operators are deprecated:

Important

Starting with Red Hat OpenShift Service Mesh 2.5, Red Hat OpenShift distributed tracing platform (Jaeger) and OpenShift Elasticsearch Operator are deprecated and will be removed in a future release. Red Hat will provide bug fixes and support for these features during the current release lifecycle, but these features will no longer receive enhancements and will be removed. As an alternative to Red Hat OpenShift distributed tracing platform (Jaeger), you can use Red Hat OpenShift distributed tracing platform (Tempo) instead.

Red Hat OpenShift distributed tracing platform (Jaeger)
Provides distributed tracing to monitor and troubleshoot transactions in complex distributed systems. It is based on the open source Jaeger project.
OpenShift Elasticsearch Operator
Provides database storage for tracing and logging with the distributed tracing platform (Jaeger). It is based on the open source Elasticsearch project.

1.7.2. Installing the Operators

To install Red Hat OpenShift Service Mesh, you must install the Red Hat OpenShift Service Mesh Operator. Repeat the procedure for each additional Operator you want to install.

Additional Operators include:

  • Kiali Operator provided by Red Hat
  • Tempo Operator

Deprecated additional Operators include:

Important

Starting with Red Hat OpenShift Service Mesh 2.5, Red Hat OpenShift distributed tracing platform (Jaeger) and OpenShift Elasticsearch Operator are deprecated and will be removed in a future release. Red Hat will provide bug fixes and support for these features during the current release lifecycle, but this feature will no longer receive enhancements and will be removed. As an alternative to Red Hat OpenShift distributed tracing platform (Jaeger), you can use Red Hat OpenShift distributed tracing platform (Tempo) instead.

  • Red Hat OpenShift distributed tracing platform (Jaeger)
  • OpenShift Elasticsearch Operator
Note

If you have already installed the OpenShift Elasticsearch Operator as part of OpenShift Logging, you do not need to install the OpenShift Elasticsearch Operator again. The Red Hat OpenShift distributed tracing platform (Jaeger) Operator creates the Elasticsearch instance using the installed OpenShift Elasticsearch Operator.

Procedure

  1. Log in to the Red Hat OpenShift Service on AWS web console as a user with the dedicated-admin role.
  2. In the Red Hat OpenShift Service on AWS web console, click OperatorsOperatorHub.
  3. Type the name of the Operator into the filter box and select the Red Hat version of the Operator. Community versions of the Operators are not supported.
  4. Click Install.
  5. On the Install Operator page for each Operator, accept the default settings.
  6. Click Install. Wait until the Operator installs before repeating the steps for the next Operator you want to install.

    • The Red Hat OpenShift Service Mesh Operator installs in the openshift-operators namespace and is available for all namespaces in the cluster.
    • The Kiali Operator provided by Red Hat installs in the openshift-operators namespace and is available for all namespaces in the cluster.
    • The Tempo Operator installs in the openshift-tempo-operator namespace and is available for all namespaces in the cluster.
    • The Red Hat OpenShift distributed tracing platform (Jaeger) installs in the openshift-distributed-tracing namespace and is available for all namespaces in the cluster.

      Important

      Starting with Red Hat OpenShift Service Mesh 2.5, Red Hat OpenShift distributed tracing platform (Jaeger) is deprecated and will be removed in a future release. Red Hat will provide bug fixes and support for this feature during the current release lifecycle, but this feature will no longer receive enhancements and will be removed. As an alternative to Red Hat OpenShift distributed tracing platform (Jaeger), you can use Red Hat OpenShift distributed tracing platform (Tempo) instead.

    • The OpenShift Elasticsearch Operator installs in the openshift-operators-redhat namespace and is available for all namespaces in the cluster.

      Important

      Starting with Red Hat OpenShift Service Mesh 2.5, OpenShift Elasticsearch Operator is deprecated and will be removed in a future release. Red Hat will provide bug fixes and support for this feature during the current release lifecycle, but this feature will no longer receive enhancements and will be removed.

Verification

  • After all you have installed all four Operators, click OperatorsInstalled Operators to verify that your Operators are installed.

1.7.3. Next steps

  • The Red Hat OpenShift Service Mesh Operator does not create the Service Mesh custom resource definitions (CRDs) until you deploy a Service Mesh control plane. You can use the ServiceMeshControlPlane resource to install and configure the Service Mesh components. For more information, see Creating the ServiceMeshControlPlane.

1.8. Creating the ServiceMeshControlPlane

1.8.1. About ServiceMeshControlPlane

The control plane includes Istiod, Ingress and Egress Gateways, and other components, such as Kiali and Jaeger. The control plane must be deployed in a separate namespace than the Service Mesh Operators and the data plane applications and services. You can deploy a basic installation of the ServiceMeshControlPlane(SMCP) from the Red Hat OpenShift Service on AWS web console or the command line using the oc client tool.

Note

This basic installation is configured based on the default Red Hat OpenShift Service on AWS settings and is not designed for production use. Use this default installation to verify your installation, and then configure your ServiceMeshControlPlane settings for your environment.

If you are deploying the control plane for use on Red Hat OpenShift Service on AWS, see the Red Hat Knowledgebase article OpenShift service mesh operator Istio basic not starting due to authentication errors, which discusses adding a new project and starting pods.

1.8.1.1. Deploying the Service Mesh control plane from the web console

You can deploy a basic ServiceMeshControlPlane by using the web console. In this example, istio-system is the name of the Service Mesh control plane project.

Prerequisites

  • The Red Hat OpenShift Service Mesh Operator must be installed.
  • You are logged in to the Red Hat OpenShift Service on AWS web console as a user with the dedicated-admin role.

Procedure

  1. Log in to the Red Hat OpenShift Service on AWS web console as a user with the cluster-admin role. If you use Red Hat OpenShift Dedicated, you must have an account with the dedicated-admin role.
  2. Create a project named istio-system.

    1. Navigate to HomeProjects.
    2. Click Create Project.
    3. In the Name field, enter istio-system. The ServiceMeshControlPlane resource must be installed in the istio-system project, separate from your microservices and Operators.
    4. Click Create.
  3. Navigate to OperatorsInstalled Operators.
  4. Click the Red Hat OpenShift Service Mesh Operator, then click Istio Service Mesh Control Plane.
  5. On the Istio Service Mesh Control Plane tab, click Create ServiceMeshControlPlane.

    1. Accept the default Service Mesh control plane version to take advantage of the features available in the most current version of the product. The version of the control plane determines the features available regardless of the version of the Operator.
    2. Add the spec.security.identity.type.ThirdParty field, required by Red Hat OpenShift Service on AWS.
    3. Click Create.

    The Operator creates pods, services, and Service Mesh control plane components based on your configuration parameters. You can configure ServiceMeshControlPlane settings at a later time.

Verification

  • To verify the control plane installed correctly, click the Istio Service Mesh Control Plane tab.

    1. Click the name of the new control plane.
    2. Click the Resources tab to see the Red Hat OpenShift Service Mesh control plane resources the Operator created and configured.
1.8.1.2. Deploying the Service Mesh control plane using the CLI

You can deploy a basic ServiceMeshControlPlane from the command line.

Prerequisites

  • The Red Hat OpenShift Service Mesh Operator must be installed.
  • Access to the OpenShift CLI (oc).
  • You are logged in to Red Hat OpenShift Service on AWS as a user with the dedicated-admin role.

Procedure

  1. Create a project named istio-system.

    $ oc new-project istio-system

    The ServiceMeshControlPlane resource must be installed in the istio-system project, separate from your microservices and Operators.

  2. Create a ServiceMeshControlPlane file named istio-installation.yaml using the following example. The version of the Service Mesh control plane determines the features available regardless of the version of the Operator.

    Example ServiceMeshControlPlane resource

    apiVersion: maistra.io/v2
    kind: ServiceMeshControlPlane
    metadata:
      name: basic
      namespace: istio-system
    spec:
      version: v2.6
      security:
        identity:
          type: ThirdParty 1
      tracing:
        type: None
        sampling: 10000
      policy:
        type: Istiod
      addons:
        grafana:
          enabled: true
        kiali:
          enabled: true
        prometheus:
          enabled: true
      telemetry:
        type: Istiod

    1
    Specifies a required setting for Red Hat OpenShift Service on AWS.
  3. Run the following command to deploy the Service Mesh control plane, where <istio_installation.yaml> includes the full path to your file.

    $ oc create -n istio-system -f <istio_installation.yaml>
  4. To watch the progress of the pod deployment, run the following command:

    $ oc get pods -n istio-system -w

    You should see output similar to the following:

    NAME                                   READY   STATUS    RESTARTS   AGE
    grafana-b4d59bd7-mrgbr                 2/2     Running   0          65m
    istio-egressgateway-678dc97b4c-wrjkp   1/1     Running   0          108s
    istio-ingressgateway-b45c9d54d-4qg6n   1/1     Running   0          108s
    istiod-basic-55d78bbbcd-j5556          1/1     Running   0          108s
    kiali-6476c7656c-x5msp                 1/1     Running   0          43m
    prometheus-58954b8d6b-m5std            2/2     Running   0          66m
1.8.1.3. Validating your SMCP installation with the CLI

You can validate the creation of the ServiceMeshControlPlane from the command line.

  1. Prerequisites

    • The Red Hat OpenShift Service Mesh Operator must be installed.
    • Access to the OpenShift CLI (oc).
    • You are logged in to Red Hat OpenShift Service on AWS as a user with the dedicated-admin role.

Procedure

  1. Run the following command to verify the Service Mesh control plane installation, where istio-system is the namespace where you installed the Service Mesh control plane.

    $ oc get smcp -n istio-system

    The installation has finished successfully when the STATUS column is ComponentsReady.

    NAME    READY   STATUS            PROFILES      VERSION   AGE
    basic   10/10   ComponentsReady   ["default"]   2.6.5     66m

1.8.2. About control plane and cluster-wide deployments

A cluster-wide deployment contains a Service Mesh Control Plane that monitors resources for an entire cluster. Monitoring resources for an entire cluster closely resembles Istio functionality in that the control plane uses a single query across all namespaces to monitor Istio and Kubernetes resources. As a result, cluster-wide deployments decrease the number of requests sent to the API server.

You can configure the Service Mesh Control Plane for cluster-wide deployments using either the Red Hat OpenShift Service on AWS web console or the CLI.

1.8.2.1. Configuring the control plane for cluster-wide deployment with the web console

You can configure the ServiceMeshControlPlane resource for cluster-wide deployment using the Red Hat OpenShift Service on AWS web console. In this example, istio-system is the name of the Service Mesh control plane project.

Prerequisites

  • The Red Hat OpenShift Service Mesh Operator is installed.
  • You are logged in to Red Hat OpenShift Service on AWS as a user with the dedicated-admin role.

Procedure

  1. Create a project named istio-system.

    1. Navigate to HomeProjects.
    2. Click Create Project.
    3. In the Name field, enter istio-system. The ServiceMeshControlPlane resource must be installed in a project that is separate from your microservices and Operators.

      These steps use istio-system as an example. You can deploy the Service Mesh control plane to any project as long as it is separate from the project that contains your services.

    4. Click Create.
  2. Navigate to OperatorsInstalled Operators.
  3. Click the Red Hat OpenShift Service Mesh Operator, then click Istio Service Mesh Control Plane.
  4. On the Istio Service Mesh Control Plane tab, click Create ServiceMeshControlPlane.
  5. Click YAML view. The version of the Service Mesh control plane determines the features available regardless of the version of the Operator.
  6. Modify the spec.mode field and add the spec.security.identity.type.ThirdParty field:

    Example ServiceMeshControlPlane resource

    apiVersion: maistra.io/v2
    kind: ServiceMeshControlPlane
    metadata:
      name: basic
      namespace: istio-system
    spec:
      version: v2.6
      mode: ClusterWide 1
      security:
        identity:
          type: ThirdParty 2
      tracing:
        type: Jaeger
        sampling: 10000
      policy:
        type: Istiod
      addons:
        grafana:
          enabled: true
        jaeger:
          install:
            storage:
              type: Memory
        kiali:
          enabled: true
        prometheus:
          enabled: true
      telemetry:
        type: Istiod

    1
    Specifies that the resource is for a cluster-wide deployment.
    2
    Specifies a required setting for Red Hat OpenShift Service on AWS.
  7. Click Create. The Operator creates pods, services, and Service Mesh control plane components based on your configuration parameters. The operator also creates the ServiceMeshMemberRoll if it does not exist as part of the default configuration.

Verification

  • To verify that the control plane installed correctly:

    1. Click the Istio Service Mesh Control Plane tab.
    2. Click the name of the new ServiceMeshControlPlane object.
    3. Click the Resources tab to see the Red Hat OpenShift Service Mesh control plane resources that the Operator created and configured.
1.8.2.2. Configuring the control plane for cluster-wide deployment with the CLI

You can configure the ServiceMeshControlPlane resource for cluster-wide deployment using the CLI. In this example, istio-system is the name of the Service Mesh control plane namespace.

Prerequisites

  • The Red Hat OpenShift Service Mesh Operator is installed.
  • You have access to the OpenShift CLI (oc).
  • You are logged in to Red Hat OpenShift Service on AWS as a user with the dedicated-admin role.

Procedure

  1. Create a project named istio-system.

    $ oc new-project istio-system
  2. Create a ServiceMeshControlPlane file named istio-installation.yaml using the following example:

    Example ServiceMeshControlPlane resource

    apiVersion: maistra.io/v2
    kind: ServiceMeshControlPlane
    metadata:
      name: basic
      namespace: istio-system
    spec:
      version: v2.6
      mode: ClusterWide 1
      security:
        identity:
          type: ThirdParty 2

    1
    Specifies that the resource is for a cluster-wide deployment.
    2
    Specifies a required setting for Red Hat OpenShift Service on AWS.
  3. Run the following command to deploy the Service Mesh control plane:

    $ oc create -n istio-system -f <istio_installation.yaml>

    where:

    <istio_installation.yaml>
    Specifies the full path to your file.

Verification

  1. To monitor the progress of the pod deployment, run the following command:

    $ oc get pods -n istio-system -w

    You should see output similar to the following example:

    Example output

    NAME                                   READY   STATUS    RESTARTS   AGE
    grafana-b4d59bd7-mrgbr                 2/2     Running   0          65m
    istio-egressgateway-678dc97b4c-wrjkp   1/1     Running   0          108s
    istio-ingressgateway-b45c9d54d-4qg6n   1/1     Running   0          108s
    istiod-basic-55d78bbbcd-j5556          1/1     Running   0          108s
    jaeger-67c75bd6dc-jv6k6                2/2     Running   0          65m
    kiali-6476c7656c-x5msp                 1/1     Running   0          43m
    prometheus-58954b8d6b-m5std            2/2     Running   0          66m

1.8.2.3. Customizing the member roll for a cluster-wide mesh

In cluster-wide mode, when you create the ServiceMeshControlPlane resource, the ServiceMeshMemberRoll resource is also created. You can modify the ServiceMeshMemberRoll resource after it gets created. After you modify the resource, the Service Mesh operator no longer changes it. If you modify the ServiceMeshMemberRoll resource by using the Red Hat OpenShift Service on AWS web console, accept the prompt to overwrite the modifications.

Alternatively, you can create a ServiceMeshMemberRoll resource before deploying the ServiceMeshControlPlane resource. When you create the ServiceMeshControlPlane resource, the Service Mesh Operator will not modify the ServiceMeshMemberRoll.

Note

The ServiceMeshMemberRoll resource name must be named default and must be created in the same project namespace as the ServiceMeshControlPlane resource.

There are two ways to add a namespace to the mesh. You can either add the namespace by specifying its name in the spec.members list, or configure a set of namespace label selectors to include or exclude namespaces based on their labels.

Note

Regardless of how members are specified in the ServiceMeshMemberRoll resource, you can also add members to the mesh by creating the ServiceMeshMember resource in each namespace.

1.8.3. Validating your SMCP installation with Kiali

You can use the Kiali console to validate your Service Mesh installation. The Kiali console offers several ways to validate your Service Mesh components are deployed and configured properly.

  1. Prerequisites

    • The Red Hat OpenShift Service Mesh Operator must be installed.
    • Access to the OpenShift CLI (oc).
    • You are logged in to Red Hat OpenShift Service on AWS as a user with the dedicated-admin role.

Procedure

  1. In the Red Hat OpenShift Service on AWS web console, navigate to NetworkingRoutes.
  2. On the Routes page, select the Service Mesh control plane project, for example istio-system, from the Namespace menu.

    The Location column displays the linked address for each route.

  3. If necessary, use the filter to find the route for the Kiali console. Click the route Location to launch the console.
  4. Click Log In With OpenShift.

    When you first log in to the Kiali Console, you see the Overview page which displays all the namespaces in your service mesh that you have permission to view. When there are multiple namespaces shown on the Overview page, Kiali shows namespaces with health or validation problems first.

    Figure 1.1. Kiali Overview page

    Kiali Overview page showing istio-system

    The tile for each namespace displays the number of labels, the Istio Config health, the number of and Applications health, and Traffic for the namespace. If you are validating the console installation and namespaces have not yet been added to the mesh, there might not be any data to display other than istio-system.

  5. Kiali has four dashboards specifically for the namespace where the Service Mesh control plane is installed. To view these dashboards, click the Options menu kebab on the tile for the control plane namespace, for example, istio-system, and select one of the following options:

    • Istio Mesh Dashboard
    • Istio Control Plane Dashboard
    • Istio Performance Dashboard
    • Istio Wasm Exetension Dashboard

      Figure 1.2. Grafana Istio Control Plane Dashboard

      Istio Control Plane Dashboard showing data for bookinfo sample project

      Kiali also installs two additional Grafana dashboards, available from the Grafana Home page:

    • Istio Workload Dashboard
    • Istio Service Dashboard
  6. To view the Service Mesh control plane nodes, click the Graph page, select the Namespace where you installed the ServiceMeshControlPlane from the menu, for example istio-system.

    1. If necessary, click Display idle nodes.
    2. To learn more about the Graph page, click the Graph tour link.
    3. To view the mesh topology, select one or more additional namespaces from the Service Mesh Member Roll from the Namespace menu.
  7. To view the list of applications in the istio-system namespace, click the Applications page. Kiali displays the health of the applications.

    1. Hover your mouse over the information icon to view any additional information noted in the Details column.
  8. To view the list of workloads in the istio-system namespace, click the Workloads page. Kiali displays the health of the workloads.

    1. Hover your mouse over the information icon to view any additional information noted in the Details column.
  9. To view the list of services in the istio-system namespace, click the Services page. Kiali displays the health of the services and of the configurations.

    1. Hover your mouse over the information icon to view any additional information noted in the Details column.
  10. To view a list of the Istio Configuration objects in the istio-system namespace, click the Istio Config page. Kiali displays the health of the configuration.

    1. If there are configuration errors, click the row and Kiali opens the configuration file with the error highlighted.

1.8.4. Additional resources

Red Hat OpenShift Service Mesh supports multiple independent control planes within the cluster. You can create reusable configurations with ServiceMeshControlPlane profiles. For more information, see Creating control plane profiles.

1.8.5. Next steps

1.9. Adding services to a service mesh

A project contains services; however, the services are only available if you add the project to the service mesh.

1.9.1. About adding projects to a service mesh

After installing the Operators and creating the ServiceMeshControlPlane resource, add one or more projects to the service mesh.

Note

In Red Hat OpenShift Service on AWS, a project is essentially a Kubernetes namespace with additional annotations, such as the range of user IDs that can be used in the project. Typically, the Red Hat OpenShift Service on AWS web console uses the term project, and the CLI uses the term namespace, but the terms are essentially synonymous.

You can add projects to an existing service mesh using either the Red Hat OpenShift Service on AWS web console or the CLI. There are three methods to add a project to a service mesh:

  • Specifying the project name in the ServiceMeshMemberRoll resource.
  • Configuring label selectors in the spec.memberSelectors field of the ServiceMeshMemberRoll resource.
  • Creating the ServiceMeshMember resource in the project.

If you use the first method, then you must create the ServiceMeshMemberRoll resource.

1.9.2. Creating the Red Hat OpenShift Service Mesh member roll

The ServiceMeshMemberRoll lists the projects that belong to the Service Mesh control plane. Only projects listed in the ServiceMeshMemberRoll are affected by the control plane. A project does not belong to a service mesh until you add it to the member roll for a particular control plane deployment.

You must create a ServiceMeshMemberRoll resource named default in the same project as the ServiceMeshControlPlane, for example istio-system.

1.9.2.1. Creating the member roll from the web console

You can add one or more projects to the Service Mesh member roll from the web console. In this example, istio-system is the name of the Service Mesh control plane project.

Prerequisites

  • An installed, verified Red Hat OpenShift Service Mesh Operator.
  • List of existing projects to add to the service mesh.

Procedure

  1. Log in to the Red Hat OpenShift Service on AWS web console.
  2. If you do not already have services for your mesh, or you are starting from scratch, create a project for your applications. It must be different from the project where you installed the Service Mesh control plane.

    1. Navigate to HomeProjects.
    2. Enter a name in the Name field.
    3. Click Create.
  3. Navigate to OperatorsInstalled Operators.
  4. Click the Project menu and choose the project where your ServiceMeshControlPlane resource is deployed from the list, for example istio-system.
  5. Click the Red Hat OpenShift Service Mesh Operator.
  6. Click the Istio Service Mesh Member Roll tab.
  7. Click Create ServiceMeshMemberRoll
  8. Click Members, then enter the name of your project in the Value field. You can add any number of projects, but a project can only belong to one ServiceMeshMemberRoll resource.
  9. Click Create.
1.9.2.2. Creating the member roll from the CLI

You can add a project to the ServiceMeshMemberRoll from the command line.

Prerequisites

  • An installed, verified Red Hat OpenShift Service Mesh Operator.
  • List of projects to add to the service mesh.
  • Access to the OpenShift CLI (oc).

Procedure

  1. Log in to the Red Hat OpenShift Service on AWS CLI.

    $ oc login --username=<NAMEOFUSER> https://<HOSTNAME>:6443
  2. If you do not already have services for your mesh, or you are starting from scratch, create a project for your applications. It must be different from the project where you installed the Service Mesh control plane.

    $ oc new-project <your-project>
  3. To add your projects as members, modify the following example YAML. You can add any number of projects, but a project can only belong to one ServiceMeshMemberRoll resource. In this example, istio-system is the name of the Service Mesh control plane project.

    Example servicemeshmemberroll-default.yaml

    apiVersion: maistra.io/v1
    kind: ServiceMeshMemberRoll
    metadata:
      name: default
      namespace: istio-system
    spec:
      members:
        # a list of projects joined into the service mesh
        - your-project-name
        - another-project-name

  4. Run the following command to upload and create the ServiceMeshMemberRoll resource in the istio-system namespace.

    $ oc create -n istio-system -f servicemeshmemberroll-default.yaml
  5. Run the following command to verify the ServiceMeshMemberRoll was created successfully.

    $ oc get smmr -n istio-system default

    The installation has finished successfully when the STATUS column is Configured.

1.9.3. About adding projects using the ServiceMeshMemberRoll resource

Using the ServiceMeshMemberRoll resource is the simplest way to add a project to a service mesh. To add a project, specify the project name in the spec.members field of the ServiceMeshMemberRoll resource. The ServiceMeshMemberRoll resource specifies which projects are controlled by the ServiceMeshControlPlane resource.

Adding project using `ServiceMeshMemberRoll` resource image
Note

Adding projects using this method requires the user to have the update servicemeshmemberrolls and the update pods privileges in the project that is being added.

  • If you already have an application, workload, or service to add to the service mesh, see the following:

    • Adding or removing projects from the mesh using the ServiceMeshMemberRoll resource with the web console
    • Adding or removing projects from the mesh using the ServiceMeshMemberRoll resource with the CLI
  • Alternatively, to install a sample application called Bookinfo and add it to a ServiceMeshMemberRoll resource, see the Bookinfo example application tutorial.
1.9.3.1. Adding or removing projects from the mesh using the ServiceMeshMemberRoll resource with the web console

You can add or remove projects from the mesh using the ServiceMeshMemberRoll resource with the Red Hat OpenShift Service on AWS web console. You can add any number of projects, but a project can only belong to one mesh.

The ServiceMeshMemberRoll resource is deleted when its corresponding ServiceMeshControlPlane resource is deleted.

Prerequisites

  • An installed, verified Red Hat OpenShift Service Mesh Operator.
  • An existing ServiceMeshMemberRoll resource.
  • The name of the project with the ServiceMeshMemberRoll resource.
  • The names of the projects you want to add or remove from the mesh.

Procedure

  1. Log in to the Red Hat OpenShift Service on AWS web console.
  2. Navigate to OperatorsInstalled Operators.
  3. Click the Project menu and choose the project where your ServiceMeshControlPlane resource is deployed from the list. For example istio-system.
  4. Click the Red Hat OpenShift Service Mesh Operator.
  5. Click the Istio Service Mesh Member Roll tab.
  6. Click the default link.
  7. Click the YAML tab.
  8. Modify the YAML to add projects as members (or delete them to remove existing members). You can add any number of projects, but a project can only belong to one ServiceMeshMemberRoll resource.

    Example servicemeshmemberroll-default.yaml

    apiVersion: maistra.io/v1
    kind: ServiceMeshMemberRoll
    metadata:
      name: default
      namespace: istio-system #control plane project
    spec:
      members:
        # a list of projects joined into the service mesh
        - your-project-name
        - another-project-name

  9. Click Save.
  10. Click Reload.
1.9.3.2. Adding or removing projects from the mesh using ServiceMeshMemberRoll resource with the CLI

You can add one or more projects to the mesh using the ServiceMeshMemberRoll resource with the CLI. You can add any number of projects, but a project can only belong to one mesh.

The ServiceMeshMemberRoll resource is deleted when its corresponding ServiceMeshControlPlane resource is deleted.

Prerequisites

  • An installed, verified Red Hat OpenShift Service Mesh Operator.
  • An existing ServiceMeshMemberRoll resource.
  • The name of the project with the ServiceMeshMemberRoll resource.
  • The names of the projects you want to add or remove from the mesh.
  • Access to the OpenShift CLI (oc).

Procedure

  1. Log in to the Red Hat OpenShift Service on AWS CLI.
  2. Edit the ServiceMeshMemberRoll resource.

    $ oc edit smmr -n <controlplane-namespace>
  3. Modify the YAML to add or remove projects as members. You can add any number of projects, but a project can only belong to one ServiceMeshMemberRoll resource.

    Example servicemeshmemberroll-default.yaml

    apiVersion: maistra.io/v1
    kind: ServiceMeshMemberRoll
    metadata:
      name: default
      namespace: istio-system #control plane project
    spec:
      members:
        # a list of projects joined into the service mesh
        - your-project-name
        - another-project-name

  4. Save the file and exit the editor.

1.9.4. About adding projects using the ServiceMeshMember resource

A ServiceMeshMember resource provides a way to add a project to a service mesh without modifying the ServiceMeshMemberRoll resource. To add a project, create a ServiceMeshMember resource in the project that you want to add to the service mesh. When the Service Mesh Operator processes the ServiceMeshMember object, the project appears in the status.members list of the ServiceMeshMemberRoll resource. Then, the services that reside in the project are made available to the mesh.

Adding project using `ServiceMeshMember` resource image

The mesh administrator must grant each mesh user permission to reference the ServiceMeshControlPlane resource in the ServiceMeshMember resource. With this permission in place, a mesh user can add a project to a mesh even when that user does not have direct access rights for the service mesh project or the ServiceMeshMemberRoll resource. For more information, see Creating the Red Hat OpenShift Service Mesh members.

1.9.4.1. Adding a project to the mesh using the ServiceMeshMember resource with the web console

You can add one or more projects to the mesh using the ServiceMeshMember resource with the Red Hat OpenShift Service on AWS web console.

Prerequisites

  • You have installed the Red Hat OpenShift Service Mesh Operator.
  • You know the name of the ServiceMeshControlPlane resource and the name of the project that the resource belongs to.
  • You know the name of the project you want to add to the mesh.
  • A service mesh administrator must explicitly grant access to the service mesh. Administrators can grant users permissions to access the mesh by assigning them the mesh-user Role using a RoleBinding or ClusterRoleBinding. For more information, see Creating the Red Hat OpenShift Service Mesh members.

Procedure

  1. Log in to the Red Hat OpenShift Service on AWS web console.
  2. Navigate to OperatorsInstalled Operators.
  3. Click the Project menu and choose the project that you want to add to the mesh from the drop-down list. For example, istio-system.
  4. Click the Red Hat OpenShift Service Mesh Operator.
  5. Click the Istio Service Mesh Member tab.
  6. Click Create ServiceMeshMember
  7. Accept the default name for the ServiceMeshMember.
  8. Click to expand ControlPlaneRef.
  9. In the Namespace field, select the project that the ServiceMeshControlPlane resource belongs to. For example, istio-system.
  10. In the Name field, enter the name of the ServiceMeshControlPlane resource that this namespace belongs to. For example, basic.
  11. Click Create.

Verification

  1. Confirm the ServiceMeshMember resource was created and that the project was added to the mesh by using the following steps:

    1. Click the resource name, for example, default.
    2. View the Conditions section shown at the end of the screen.
    3. Confirm that the Status of the Reconciled and Ready conditions is True.

      If the Status is False, see the Reason and Message columns for more information.

1.9.4.2. Adding a project to the mesh using the ServiceMeshMember resource with the CLI

You can add one or more projects to the mesh using the ServiceMeshMember resource with the CLI.

Prerequisites

  • You have installed the Red Hat OpenShift Service Mesh Operator.
  • You know the name of the ServiceMeshControlPlane resource and the name of the project it belongs to.
  • You know the name of the project you want to add to the mesh.
  • A service mesh administrator must explicitly grant access to the service mesh. Administrators can grant users permissions to access the mesh by assigning them the mesh-user Role using a RoleBinding or ClusterRoleBinding. For more information, see Creating the Red Hat OpenShift Service Mesh members.

Procedure

  1. Log in to the Red Hat OpenShift Service on AWS CLI.
  2. Create the YAML file for the ServiceMeshMember manifest. The manifest adds the my-application project to the service mesh that was created by the ServiceMeshControlPlane resource deployed in the istio-system namespace:

    apiVersion: maistra.io/v1
    kind: ServiceMeshMember
    metadata:
      name: default
      namespace: my-application
    spec:
      controlPlaneRef:
        namespace: istio-system
        name: basic
  3. Apply the YAML file to create the ServiceMeshMember resource:

    $ oc apply -f <file-name>

Verification

  • Verify that the namespace is part of the mesh by running the following command. Confirm the that the value True appears in the READY column.

    $ oc get smm default -n my-application

    Example output

    NAME      CONTROL PLANE        READY   AGE
    default   istio-system/basic   True    2m11s

  • Alternatively, view the ServiceMeshMemberRoll resource to confirm that the my-application namespace is displayed in the status.members and status.configuredMembers fields of the ServiceMeshMemberRoll resource.

    $ oc describe smmr default -n istio-system

    Example output

    Name:         default
    Namespace:    istio-system
    Labels:       <none>
    # ...
    Status:
    # ...
      Configured Members:
        default
        my-application
    # ...
      Members:
        default
        my-application

1.9.5. About adding projects using label selectors

For cluster-wide deployments, you can use label selectors to add projects to the mesh. Label selectors specified in the ServiceMeshMemberRoll resource enable the Service Mesh Operator to add or remove namespaces to or from the mesh based on namespace labels. Unlike other standard Red Hat OpenShift Service on AWS resources that you can use to specify a single label selector, you can use the ServiceMeshMemberRoll resource to specify multiple label selectors.

Adding project using label selector image

If the labels for a namespace match any of the selectors specified in the ServiceMeshMemberRoll resource, then the namespace is included in the mesh.

Note

In Red Hat OpenShift Service on AWS, a project is essentially a Kubernetes namespace with additional annotations, such as the range of user IDs that can be used in the project. Typically, the Red Hat OpenShift Service on AWS web console uses the term project, and the CLI uses the term namespace, but the terms are essentially synonymous.

1.9.5.1. Adding a project to the mesh using label selectors with the web console

You can use labels selectors to add a project to the Service Mesh with the Red Hat OpenShift Service on AWS web console.

Prerequisites

  • You have installed the Red Hat OpenShift Service Mesh Operator.
  • The deployment has an existing ServiceMeshMemberRoll resource.
  • You are logged in to the Red Hat OpenShift Service on AWS web console as a user with the dedicated-admin role.

Procedure

  1. Navigate to OperatorsInstalled Operators.
  2. Click the Project menu, and from the drop-down list, select the project where your ServiceMeshMemberRoll resource is deployed. For example, istio-system.
  3. Click the Red Hat OpenShift Service Mesh Operator.
  4. Click the Istio Service Mesh Member Roll tab.
  5. Click Create ServiceMeshMember Roll.
  6. Accept the default name for the ServiceMeshMemberRoll.
  7. In the Labels field, enter key-value pairs to define the labels that identify which namespaces to include in the service mesh. If a project namespace has either label specified by the selectors, then the project namespace is included in the service mesh. You do not need to include both labels.

    For example, entering mykey=myvalue includes all namespaces with this label as part of the mesh. When the selector identifies a match, the project namespace is added to the service mesh.

    Entering myotherkey=myothervalue includes all namespaces with this label as part of the mesh. When the selector identifies a match, the project namespace is added to the service mesh.

  8. Click Create.
1.9.5.2. Adding a project to the mesh using label selectors with the CLI

You can use label selectors to add a project to the Service Mesh with the CLI.

Prerequisites

  • You have installed the Red Hat OpenShift Service Mesh Operator.
  • The deployment has an existing ServiceMeshMemberRoll resource.
  • You are logged in to Red Hat OpenShift Service on AWS as a user with the dedicated-admin role.

Procedure

  1. Log in to the Red Hat OpenShift Service on AWS CLI.
  2. Edit the ServiceMeshMemberRoll resource.

    $ oc edit smmr default -n istio-system

    You can deploy the Service Mesh control plane to any project provided that it is separate from the project that contains your services.

  3. Modify the YAML file to include namespace label selectors in the spec.memberSelectors field of the ServiceMeshMemberRoll resource.

    Note

    Instead of using the matchLabels field, you can also use the matchExpressions field in the selector.

    apiVersion: maistra.io/v1
    kind: ServiceMeshMemberRoll
    metadata:
      name: default
      namespace: istio-system
    spec:
      memberSelectors: 1
      - matchLabels: 2
          mykey: myvalue 3
      - matchLabels: 4
          myotherkey: myothervalue 5
    1
    Contains the label selectors used to identify which project namespaces are included in the service mesh. If a project namespace has either label specified by the selectors, then the project namespace is included in the service mesh. The project namespace does not need both labels to be included.
    2 3
    Specifies all namespaces with the mykey=myvalue label. When the selector identifies a match, the project namespace is added to the service mesh.
    4 5
    Specifies all namespaces with the myotherkey=myothervalue label. When the selector identifies a match, the project namespace is added to the service mesh.

1.9.6. Bookinfo example application

The Bookinfo example application allows you to test your Red Hat OpenShift Service Mesh 2.6.5 installation on Red Hat OpenShift Service on AWS.

The Bookinfo application displays information about a book, similar to a single catalog entry of an online book store. The application displays a page that describes the book, book details (ISBN, number of pages, and other information), and book reviews.

The Bookinfo application consists of these microservices:

  • The productpage microservice calls the details and reviews microservices to populate the page.
  • The details microservice contains book information.
  • The reviews microservice contains book reviews. It also calls the ratings microservice.
  • The ratings microservice contains book ranking information that accompanies a book review.

There are three versions of the reviews microservice:

  • Version v1 does not call the ratings Service.
  • Version v2 calls the ratings Service and displays each rating as one to five black stars.
  • Version v3 calls the ratings Service and displays each rating as one to five red stars.
1.9.6.1. Installing the Bookinfo application

This tutorial walks you through how to create a sample application by creating a project, deploying the Bookinfo application to that project, and viewing the running application in Service Mesh.

Prerequisites

  • Red Hat OpenShift Service on AWS 4.1 or higher installed.
  • Red Hat OpenShift Service Mesh 2.6.5 installed.
  • Access to the OpenShift CLI (oc).
  • You are logged in to Red Hat OpenShift Service on AWS as a user with the dedicated-admin role.
Note

The commands in this section assume the Service Mesh control plane project is istio-system. If you installed the control plane in another namespace, edit each command before you run it.

Procedure

  1. Click HomeProjects.
  2. Click Create Project.
  3. Enter bookinfo as the Project Name, enter a Display Name, and enter a Description, then click Create.

    • Alternatively, you can run this command from the CLI to create the bookinfo project.

      $ oc new-project bookinfo
  4. Click OperatorsInstalled Operators.
  5. Click the Project menu and use the Service Mesh control plane namespace. In this example, use istio-system.
  6. Click the Red Hat OpenShift Service Mesh Operator.
  7. Click the Istio Service Mesh Member Roll tab.

    1. If you have already created a Istio Service Mesh Member Roll, click the name, then click the YAML tab to open the YAML editor.
    2. If you have not created a ServiceMeshMemberRoll, click Create ServiceMeshMemberRoll.
  8. Click Members, then enter the name of your project in the Value field.
  9. Click Create to save the updated Service Mesh Member Roll.

    1. Or, save the following example to a YAML file.

      Bookinfo ServiceMeshMemberRoll example servicemeshmemberroll-default.yaml

      apiVersion: maistra.io/v1
      kind: ServiceMeshMemberRoll
      metadata:
        name: default
      spec:
        members:
        - bookinfo

    2. Run the following command to upload that file and create the ServiceMeshMemberRoll resource in the istio-system namespace. In this example, istio-system is the name of the Service Mesh control plane project.

      $ oc create -n istio-system -f servicemeshmemberroll-default.yaml
  10. Run the following command to verify the ServiceMeshMemberRoll was created successfully.

    $ oc get smmr -n istio-system -o wide

    The installation has finished successfully when the STATUS column is Configured.

    NAME      READY   STATUS       AGE   MEMBERS
    default   1/1     Configured   70s   ["bookinfo"]
  11. From the CLI, deploy the Bookinfo application in the `bookinfo` project by applying the bookinfo.yaml file:

    $ oc apply -n bookinfo -f https://raw.githubusercontent.com/Maistra/istio/maistra-2.6/samples/bookinfo/platform/kube/bookinfo.yaml

    You should see output similar to the following:

    service/details created
    serviceaccount/bookinfo-details created
    deployment.apps/details-v1 created
    service/ratings created
    serviceaccount/bookinfo-ratings created
    deployment.apps/ratings-v1 created
    service/reviews created
    serviceaccount/bookinfo-reviews created
    deployment.apps/reviews-v1 created
    deployment.apps/reviews-v2 created
    deployment.apps/reviews-v3 created
    service/productpage created
    serviceaccount/bookinfo-productpage created
    deployment.apps/productpage-v1 created
  12. Create the ingress gateway by applying the bookinfo-gateway.yaml file:

    $ oc apply -n bookinfo -f https://raw.githubusercontent.com/Maistra/istio/maistra-2.6/samples/bookinfo/networking/bookinfo-gateway.yaml

    You should see output similar to the following:

    gateway.networking.istio.io/bookinfo-gateway created
    virtualservice.networking.istio.io/bookinfo created
  13. Set the value for the GATEWAY_URL parameter:

    $ export GATEWAY_URL=$(oc -n istio-system get route istio-ingressgateway -o jsonpath='{.spec.host}')
1.9.6.2. Adding default destination rules

Before you can use the Bookinfo application, you must first add default destination rules. There are two preconfigured YAML files, depending on whether or not you enabled mutual transport layer security (TLS) authentication.

Procedure

  1. To add destination rules, run one of the following commands:

    • If you did not enable mutual TLS:

      $ oc apply -n bookinfo -f https://raw.githubusercontent.com/Maistra/istio/maistra-2.6/samples/bookinfo/networking/destination-rule-all.yaml
    • If you enabled mutual TLS:

      $ oc apply -n bookinfo -f https://raw.githubusercontent.com/Maistra/istio/maistra-2.6/samples/bookinfo/networking/destination-rule-all-mtls.yaml

      You should see output similar to the following:

      destinationrule.networking.istio.io/productpage created
      destinationrule.networking.istio.io/reviews created
      destinationrule.networking.istio.io/ratings created
      destinationrule.networking.istio.io/details created
1.9.6.3. Verifying the Bookinfo installation

To confirm that the sample Bookinfo application was successfully deployed, perform the following steps.

Prerequisites

  • Red Hat OpenShift Service Mesh installed.
  • Complete the steps for installing the Bookinfo sample app.
  • You are logged in to Red Hat OpenShift Service on AWS as a user with the dedicated-admin role.

Procedure from CLI

  1. Verify that all pods are ready with this command:

    $ oc get pods -n bookinfo

    All pods should have a status of Running. You should see output similar to the following:

    NAME                              READY   STATUS    RESTARTS   AGE
    details-v1-55b869668-jh7hb        2/2     Running   0          12m
    productpage-v1-6fc77ff794-nsl8r   2/2     Running   0          12m
    ratings-v1-7d7d8d8b56-55scn       2/2     Running   0          12m
    reviews-v1-868597db96-bdxgq       2/2     Running   0          12m
    reviews-v2-5b64f47978-cvssp       2/2     Running   0          12m
    reviews-v3-6dfd49b55b-vcwpf       2/2     Running   0          12m
  2. Run the following command to retrieve the URL for the product page:

    echo "http://$GATEWAY_URL/productpage"
  3. Copy and paste the output in a web browser to verify the Bookinfo product page is deployed.

Procedure from Kiali web console

  1. Obtain the address for the Kiali web console.

    1. Log in to the Red Hat OpenShift Service on AWS web console.
    2. Navigate to NetworkingRoutes.
    3. On the Routes page, select the Service Mesh control plane project, for example istio-system, from the Namespace menu.

      The Location column displays the linked address for each route.

    4. Click the link in the Location column for Kiali.
    5. Click Log In With OpenShift. The Kiali Overview screen presents tiles for each project namespace.
  2. In Kiali, click Graph.
  3. Select bookinfo from the Namespace list, and App graph from the Graph Type list.
  4. Click Display idle nodes from the Display menu.

    This displays nodes that are defined but have not received or sent requests. It can confirm that an application is properly defined, but that no request traffic has been reported.

    Kiali displaying bookinfo application
    • Use the Duration menu to increase the time period to help ensure older traffic is captured.
    • Use the Refresh Rate menu to refresh traffic more or less often, or not at all.
  5. Click Services, Workloads or Istio Config to see list views of bookinfo components, and confirm that they are healthy.
1.9.6.4. Removing the Bookinfo application

Follow these steps to remove the Bookinfo application.

Prerequisites

  • Red Hat OpenShift Service on AWS 4.1 or higher installed.
  • Red Hat OpenShift Service Mesh 2.6.5 installed.
  • Access to the OpenShift CLI (oc).
1.9.6.4.1. Delete the Bookinfo project

Procedure

  1. Log in to the Red Hat OpenShift Service on AWS web console.
  2. Click to HomeProjects.
  3. Click the bookinfo menu kebab , and then click Delete Project.
  4. Type bookinfo in the confirmation dialog box, and then click Delete.

    • Alternatively, you can run this command using the CLI to create the bookinfo project.

      $ oc delete project bookinfo
1.9.6.4.2. Remove the Bookinfo project from the Service Mesh member roll

Procedure

  1. Log in to the Red Hat OpenShift Service on AWS web console.
  2. Click OperatorsInstalled Operators.
  3. Click the Project menu and choose istio-system from the list.
  4. Click the Istio Service Mesh Member Roll link under Provided APIS for the Red Hat OpenShift Service Mesh Operator.
  5. Click the ServiceMeshMemberRoll menu kebab and select Edit Service Mesh Member Roll.
  6. Edit the default Service Mesh Member Roll YAML and remove bookinfo from the members list.

    • Alternatively, you can run this command using the CLI to remove the bookinfo project from the ServiceMeshMemberRoll. In this example, istio-system is the name of the Service Mesh control plane project.

      $ oc -n istio-system patch --type='json' smmr default -p '[{"op": "remove", "path": "/spec/members", "value":["'"bookinfo"'"]}]'
  7. Click Save to update Service Mesh Member Roll.

1.9.7. Next steps

1.10. Enabling sidecar injection

After adding the namespaces that contain your services to your mesh, the next step is to enable automatic sidecar injection in the Deployment resource for your application. You must enable automatic sidecar injection for each deployment.

If you have installed the Bookinfo sample application, the application was deployed and the sidecars were injected as part of the installation procedure. If you are using your own project and service, deploy your applications on Red Hat OpenShift Service on AWS.

Note

Traffic started by Init Containers, specialized containers that run before the application containers in a pod, cannot travel outside of the service mesh by default. Any action Init Containers perform that requires establishing a network traffic connection outside of the mesh fails.

For more information about connecting Init Containers to a service, see the Red Hat Knowledgebase solution initContainer in CrashLoopBackOff on pod with Service Mesh sidecar injected

1.10.1. Prerequisites

1.10.2. Enabling automatic sidecar injection

When deploying an application, you must opt-in to injection by configuring the label sidecar.istio.io/inject in spec.template.metadata.labels to true in the deployment object. Opting in ensures that the sidecar injection does not interfere with other Red Hat OpenShift Service on AWS features such as builder pods used by numerous frameworks within the Red Hat OpenShift Service on AWS ecosystem.

Prerequisites

  • Identify the namespaces that are part of your service mesh and the deployments that need automatic sidecar injection.

Procedure

  1. To find your deployments use the oc get command.

    $ oc get deployment -n <namespace>

    For example, to view the Deployment YAML file for the 'ratings-v1' microservice in the bookinfo namespace, use the following command to see the resource in YAML format.

    oc get deployment -n bookinfo ratings-v1 -o yaml
  2. Open the application’s Deployment YAML file in an editor.
  3. Add spec.template.metadata.labels.sidecar.istio/inject to your Deployment YAML file and set sidecar.istio.io/inject to true as shown in the following example.

    Example snippet from bookinfo deployment-ratings-v1.yaml

    apiVersion: apps/v1
    kind: Deployment
    metadata:
      name: ratings-v1
      namespace: bookinfo
      labels:
        app: ratings
        version: v1
    spec:
      template:
        metadata:
          labels:
            sidecar.istio.io/inject: 'true'

    Note

    Using the annotations parameter when enabling automatic sidecar injection is deprecated and is replaced by using the labels parameter.

  4. Save the Deployment YAML file.
  5. Add the file back to the project that contains your app.

    $ oc apply -n <namespace> -f deployment.yaml

    In this example, bookinfo is the name of the project that contains the ratings-v1 app and deployment-ratings-v1.yaml is the file you edited.

    $ oc apply -n bookinfo -f deployment-ratings-v1.yaml
  6. To verify that the resource uploaded successfully, run the following command.

    $ oc get deployment -n <namespace> <deploymentName> -o yaml

    For example,

    $ oc get deployment -n bookinfo ratings-v1 -o yaml

1.10.3. Validating sidecar injection

The Kiali console offers several ways to validate whether or not your applications, services, and workloads have a sidecar proxy.

Figure 1.3. Missing sidecar badge

Missing Sidecar badge

The Graph page displays a node badge indicating a Missing Sidecar on the following graphs:

  • App graph
  • Versioned app graph
  • Workload graph

Figure 1.4. Missing sidecar icon

Missing Sidecar icon

The Applications page displays a Missing Sidecar icon in the Details column for any applications in a namespace that do not have a sidecar.

The Workloads page displays a Missing Sidecar icon in the Details column for any applications in a namespace that do not have a sidecar.

The Services page displays a Missing Sidecar icon in the Details column for any applications in a namespace that do not have a sidecar. When there are multiple versions of a service, you use the Service Details page to view Missing Sidecar icons.

The Workload Details page has a special unified Logs tab that lets you view and correlate application and proxy logs. You can view the Envoy logs as another way to validate sidecar injection for your application workloads.

The Workload Details page also has an Envoy tab for any workload that is an Envoy proxy or has been injected with an Envoy proxy. This tab displays a built-in Envoy dashboard that includes subtabs for Clusters, Listeners, Routes, Bootstrap, Config, and Metrics.

For information about enabling Envoy access logs, see the Troubleshooting section.

For information about viewing Envoy logs, see Viewing logs in the Kiali console

1.10.4. Setting proxy environment variables through annotations

Configuration for the Envoy sidecar proxies is managed by the ServiceMeshControlPlane.

You can set environment variables for the sidecar proxy for applications by adding pod annotations to the deployment in the injection-template.yaml file. The environment variables are injected to the sidecar.

Example injection-template.yaml

apiVersion: apps/v1
kind: Deployment
metadata:
  name: resource
spec:
  replicas: 7
  selector:
    matchLabels:
      app: resource
  template:
    metadata:
      annotations:
        sidecar.maistra.io/proxyEnv: "{ \"maistra_test_env\": \"env_value\", \"maistra_test_env_2\": \"env_value_2\" }"

Warning

You should never include maistra.io/ labels and annotations when creating your own custom resources. These labels and annotations indicate that the resources are generated and managed by the Operator. If you are copying content from an Operator-generated resource when creating your own resources, do not include labels or annotations that start with maistra.io/. Resources that include these labels or annotations will be overwritten or deleted by the Operator during the next reconciliation.

1.10.5. Updating sidecar proxies

In order to update the configuration for sidecar proxies the application administrator must restart the application pods.

If your deployment uses automatic sidecar injection, you can update the pod template in the deployment by adding or modifying an annotation. Run the following command to redeploy the pods:

$ oc patch deployment/<deployment> -p '{"spec":{"template":{"metadata":{"annotations":{"kubectl.kubernetes.io/restartedAt": "'`date -Iseconds`'"}}}}}'

If your deployment does not use automatic sidecar injection, you must manually update the sidecars by modifying the sidecar container image specified in the deployment or pod, and then restart the pods.

1.10.6. Next steps

Configure Red Hat OpenShift Service Mesh features for your environment.

1.11. Upgrading Service Mesh

To access the most current features of Red Hat OpenShift Service Mesh, upgrade to the current version, 2.6.5.

1.11.1. Understanding versioning

Red Hat uses semantic versioning for product releases. Semantic Versioning is a 3-component number in the format of X.Y.Z, where:

  • X stands for a Major version. Major releases usually denote some sort of breaking change: architectural changes, API changes, schema changes, and similar major updates.
  • Y stands for a Minor version. Minor releases contain new features and functionality while maintaining backwards compatibility.
  • Z stands for a Patch version (also known as a z-stream release). Patch releases are used to addresses Common Vulnerabilities and Exposures (CVEs) and release bug fixes. New features and functionality are generally not released as part of a Patch release.
1.11.1.1. How versioning affects Service Mesh upgrades

Depending on the version of the update you are making, the upgrade process is different.

  • Patch updates - Patch upgrades are managed by the Operator Lifecycle Manager (OLM); they happen automatically when you update your Operators.
  • Minor upgrades - Minor upgrades require both updating to the most recent Red Hat OpenShift Service Mesh Operator version and manually modifying the spec.version value in your ServiceMeshControlPlane resources.
  • Major upgrades - Major upgrades require both updating to the most recent Red Hat OpenShift Service Mesh Operator version and manually modifying the spec.version value in your ServiceMeshControlPlane resources. Because major upgrades can contain changes that are not backwards compatible, additional manual changes might be required.
1.11.1.2. Understanding Service Mesh versions

In order to understand what version of Red Hat OpenShift Service Mesh you have deployed on your system, you need to understand how each of the component versions is managed.

  • Operator version - The most current Operator version is 2.6.5. The Operator version number only indicates the version of the currently installed Operator. Because the Red Hat OpenShift Service Mesh Operator supports multiple versions of the Service Mesh control plane, the version of the Operator does not determine the version of your deployed ServiceMeshControlPlane resources.

    Important

    Upgrading to the latest Operator version automatically applies patch updates, but does not automatically upgrade your Service Mesh control plane to the latest minor version.

  • ServiceMeshControlPlane version - The ServiceMeshControlPlane version determines what version of Red Hat OpenShift Service Mesh you are using. The value of the spec.version field in the ServiceMeshControlPlane resource controls the architecture and configuration settings that are used to install and deploy Red Hat OpenShift Service Mesh. When you create the Service Mesh control plane you can set the version in one of two ways:

    • To configure in the Form View, select the version from the Control Plane Version menu.
    • To configure in the YAML View, set the value for spec.version in the YAML file.

Operator Lifecycle Manager (OLM) does not manage Service Mesh control plane upgrades, so the version number for your Operator and ServiceMeshControlPlane (SMCP) may not match, unless you have manually upgraded your SMCP.

1.11.2. Upgrade considerations

The maistra.io/ label or annotation should not be used on a user-created custom resource, because it indicates that the resource was generated by and should be managed by the Red Hat OpenShift Service Mesh Operator.

Warning

During the upgrade, the Operator makes changes, including deleting or replacing files, to resources that include the following labels or annotations that indicate that the resource is managed by the Operator.

Before upgrading check for user-created custom resources that include the following labels or annotations:

  • maistra.io/ AND the app.kubernetes.io/managed-by label set to maistra-istio-operator (Red Hat OpenShift Service Mesh)
  • kiali.io/ (Kiali)
  • jaegertracing.io/ (Red Hat OpenShift distributed tracing platform (Jaeger))
  • logging.openshift.io/ (Red Hat Elasticsearch)

Before upgrading, check your user-created custom resources for labels or annotations that indicate they are Operator managed. Remove the label or annotation from custom resources that you do not want to be managed by the Operator.

When upgrading to version 2.0, the Operator only deletes resources with these labels in the same namespace as the SMCP.

When upgrading to version 2.1, the Operator deletes resources with these labels in all namespaces.

1.11.2.1. Known issues that may affect upgrade

Known issues that may affect your upgrade include:

  • When upgrading an Operator, custom configurations for Jaeger or Kiali might be reverted. Before upgrading an Operator, note any custom configuration settings for the Jaeger or Kiali objects in the Service Mesh production deployment so that you can recreate them.
  • Red Hat OpenShift Service Mesh does not support the use of EnvoyFilter configuration except where explicitly documented. This is due to tight coupling with the underlying Envoy APIs, meaning that backward compatibility cannot be maintained. If you are using Envoy Filters, and the configuration generated by Istio has changed due to the lastest version of Envoy introduced by upgrading your ServiceMeshControlPlane, that has the potential to break any EnvoyFilter you may have implemented.
  • OSSM-1505 ServiceMeshExtension does not work with Red Hat OpenShift Service on AWS version 4.11. Because ServiceMeshExtension has been deprecated in Red Hat OpenShift Service Mesh 2.2, this known issue will not be fixed and you must migrate your extensions to WasmPluging
  • OSSM-1396 If a gateway resource contains the spec.externalIPs setting, rather than being recreated when the ServiceMeshControlPlane is updated, the gateway is removed and never recreated.
  • OSSM-1052 When configuring a Service ExternalIP for the ingressgateway in the Service Mesh control plane, the service is not created. The schema for the SMCP is missing the parameter for the service.

    Workaround: Disable the gateway creation in the SMCP spec and manage the gateway deployment entirely manually (including Service, Role and RoleBinding).

1.11.3. Upgrading the Operators

In order to keep your Service Mesh patched with the latest security fixes, bug fixes, and software updates, you must keep your Operators updated. You initiate patch updates by upgrading your Operators.

Important

The version of the Operator does not determine the version of your service mesh. The version of your deployed Service Mesh control plane determines your version of Service Mesh.

Because the Red Hat OpenShift Service Mesh Operator supports multiple versions of the Service Mesh control plane, updating the Red Hat OpenShift Service Mesh Operator does not update the spec.version value of your deployed ServiceMeshControlPlane. Also note that the spec.version value is a two digit number, for example 2.2, and that patch updates, for example 2.2.1, are not reflected in the SMCP version value.

Operator Lifecycle Manager (OLM) controls the installation, upgrade, and role-based access control (RBAC) of Operators in a cluster. The OLM runs by default in Red Hat OpenShift Service on AWS. OLM queries for available Operators as well as upgrades for installed Operators.

Whether or not you have to take action to upgrade your Operators depends on the settings you selected when installing them. When you installed each of your Operators, you selected an Update Channel and an Approval Strategy. The combination of these two settings determine when and how your Operators are updated.

Table 1.4. Interaction of Update Channel and Approval Strategy
 Versioned channel"Stable" or "Preview" Channel

Automatic

Automatically updates the Operator for minor and patch releases for that version only. Will not automatically update to the next major version (that is, from version 2.0 to 3.0). Manual change to Operator subscription required to update to the next major version.

Automatically updates Operator for all major, minor, and patch releases.

Manual

Manual updates required for minor and patch releases for the specified version. Manual change to Operator subscription required to update to the next major version.

Manual updates required for all major, minor, and patch releases.

When you update your Red Hat OpenShift Service Mesh Operator the Operator Lifecycle Manager (OLM) removes the old Operator pod and starts a new pod. Once the new Operator pod starts, the reconciliation process checks the ServiceMeshControlPlane (SMCP), and if there are updated container images available for any of the Service Mesh control plane components, it replaces those Service Mesh control plane pods with ones that use the new container images.

When you upgrade the Kiali and Red Hat OpenShift distributed tracing platform (Jaeger) Operators, the OLM reconciliation process scans the cluster and upgrades the managed instances to the version of the new Operator. For example, if you update the Red Hat OpenShift distributed tracing platform (Jaeger) Operator from version 1.30.2 to version 1.34.1, the Operator scans for running instances of distributed tracing platform (Jaeger) and upgrades them to 1.34.1 as well.

To stay on a particular patch version of Red Hat OpenShift Service Mesh, you would need to disable automatic updates and remain on that specific version of the Operator.

1.11.4. Upgrading the control plane

You must manually update the control plane for minor and major releases. The community Istio project recommends canary upgrades, Red Hat OpenShift Service Mesh only supports in-place upgrades. Red Hat OpenShift Service Mesh requires that you upgrade from each minor release to the next minor release in sequence. For example, you must upgrade from version 2.0 to version 2.1, and then upgrade to version 2.2. You cannot update from Red Hat OpenShift Service Mesh 2.0 to 2.2 directly.

When you upgrade the service mesh control plane, all Operator managed resources, for example gateways, are also upgraded.

Although you can deploy multiple versions of the control plane in the same cluster, Red Hat OpenShift Service Mesh does not support canary upgrades of the service mesh. That is, you can have different SCMP resources with different values for spec.version, but they cannot be managing the same mesh.

For more information about migrating your extensions, refer to Migrating from ServiceMeshExtension to WasmPlugin resources.

1.11.4.1. Upgrade changes from version 2.5 to version 2.6
1.11.4.1.1. Red Hat OpenShift distributed tracing platform (Jaeger) default setting change

This release disables Red Hat OpenShift distributed tracing platform (Jaeger) by default for new instances of the ServiceMeshControlPlane resource.

When updating existing instances of the ServiceMeshControlPlane resource to Red Hat OpenShift Service Mesh version 2.6, distributed tracing platform (Jaeger) remains enabled by default.

Red Hat OpenShift Service Mesh 2.6 is the last release that includes support for Red Hat OpenShift distributed tracing platform (Jaeger) and OpenShift Elasticsearch Operator. Both distributed tracing platform (Jaeger) and OpenShift Elasticsearch Operator will be removed in the next release. If you are currently using distributed tracing platform (Jaeger) and OpenShift Elasticsearch Operator, you must migrate to Red Hat OpenShift distributed tracing platform (Tempo) and Red Hat build of OpenTelemetry.

1.11.4.1.2. Envoy sidecar container default setting change

To enhance pod startup times, Istio now includes a startupProbe in sidecar containers by default. The pod’s readiness probes do not start until the Envoy sidecar has started.

1.11.4.2. Upgrade changes from version 2.4 to version 2.5
1.11.4.2.1. Istio OpenShift Routing (IOR) default setting change

The default setting for Istio OpenShift Routing (IOR) has changed. The setting is now disabled by default.

You can use IOR by setting the enabled field to true in the spec.gateways.openshiftRoute specification of the ServiceMeshControlPlane resource.

apiVersion: maistra.io/v2
kind: ServiceMeshControlPlane
spec:
  gateways:
    openshiftRoute:
      enabled: true
1.11.4.2.2. Istio proxy concurrency configuration enhancement

For consistency across deployments, Istio now configures the concurrency parameter based on the CPU limit allocated to the proxy container. For example, a limit of 2500m would set the concurrency parameter to 3. If you set the concurrency parameter to a value, Istio uses that value to configure how many threads the proxy runs instead of using the CPU limit.

Previously, the default setting for the parameter was 2.

1.11.4.3. Upgrade changes from version 2.3 to version 2.4

Upgrading the Service Mesh control plane from version 2.3 to 2.4 introduces the following behavioral changes:

  • Support for Istio OpenShift Routing (IOR) has been deprecated. IOR functionality is still enabled, but it will be removed in a future release.
  • The following cipher suites are no longer supported, and were removed from the list of ciphers used in client and server side TLS negotiations.

    • ECDHE-ECDSA-AES128-SHA
    • ECDHE-RSA-AES128-SHA
    • AES128-GCM-SHA256
    • AES128-SHA
    • ECDHE-ECDSA-AES256-SHA
    • ECDHE-RSA-AES256-SHA
    • AES256-GCM-SHA384
    • AES256-SHA

      Applications that require access to services that use one of these cipher suites will fail to connect when the proxy initiates a TLS connection.

1.11.4.4. Upgrade changes from version 2.2 to version 2.3

Upgrading the Service Mesh control plane from version 2.2 to 2.3 introduces the following behavioral changes:

  • This release requires use of the WasmPlugin API. Support for the ServiceMeshExtension API, which was deprecated in 2.2, has now been removed. If you attempt to upgrade while using the ServiceMeshExtension API, then the upgrade fails.
1.11.4.5. Upgrade changes from version 2.1 to version 2.2

Upgrading the Service Mesh control plane from version 2.1 to 2.2 introduces the following behavioral changes:

  • The istio-node DaemonSet is renamed to istio-cni-node to match the name in upstream Istio.
  • Istio 1.10 updated Envoy to send traffic to the application container using eth0 rather than lo by default.
  • This release adds support for the WasmPlugin API and deprecates the ServiceMeshExtension API.
1.11.4.6. Upgrade changes from version 2.0 to version 2.1

Upgrading the Service Mesh control plane from version 2.0 to 2.1 introduces the following architectural and behavioral changes.

Architecture changes

Mixer has been completely removed in Red Hat OpenShift Service Mesh 2.1. Upgrading from a Red Hat OpenShift Service Mesh 2.0.x release to 2.1 will be blocked if Mixer is enabled.

If you see the following message when upgrading from v2.0 to v2.1, update the existing Mixer type to Istiod type in the existing Control Plane spec before you update the .spec.version field:

An error occurred
admission webhook smcp.validation.maistra.io denied the request: [support for policy.type "Mixer" and policy.Mixer options have been removed in v2.1, please use another alternative, support for telemetry.type "Mixer" and telemetry.Mixer options have been removed in v2.1, please use another alternative]”

For example:

apiVersion: maistra.io/v2
kind: ServiceMeshControlPlane
spec:
  policy:
    type: Istiod
  telemetry:
    type: Istiod
  version: v2.6

Behavioral changes

  • AuthorizationPolicy updates:

    • With the PROXY protocol, if you are using ipBlocks and notIpBlocks to specify remote IP addresses, update the configuration to use remoteIpBlocks and notRemoteIpBlocks instead.
    • Added support for nested JSON Web Token (JWT) claims.
  • EnvoyFilter breaking changes>

    • Must use typed_config
    • xDS v2 is no longer supported
    • Deprecated filter names
  • Older versions of proxies may report 503 status codes when receiving 1xx or 204 status codes from newer proxies.
1.11.4.7. Upgrading the Service Mesh control plane

To upgrade Red Hat OpenShift Service Mesh, you must update the version field of the Red Hat OpenShift Service Mesh ServiceMeshControlPlane v2 resource. Then, once it is configured and applied, restart the application pods to update each sidecar proxy and its configuration.

Prerequisites

  • You are running Red Hat OpenShift Service on AWS 4.9 or later.
  • You have the latest Red Hat OpenShift Service Mesh Operator.

Procedure

  1. Switch to the project that contains your ServiceMeshControlPlane resource. In this example, istio-system is the name of the Service Mesh control plane project.

    $ oc project istio-system
  2. Check your v2 ServiceMeshControlPlane resource configuration to verify it is valid.

    1. Run the following command to view your ServiceMeshControlPlane resource as a v2 resource.

      $ oc get smcp -o yaml
      Tip

      Back up your Service Mesh control plane configuration.

  3. Update the .spec.version field and apply the configuration.

    For example:

    apiVersion: maistra.io/v2
    kind: ServiceMeshControlPlane
    metadata:
      name: basic
    spec:
      version: v2.6

    Alternatively, instead of using the command line, you can use the web console to edit the Service Mesh control plane. In the Red Hat OpenShift Service on AWS web console, click Project and select the project name you just entered.

    1. Click OperatorsInstalled Operators.
    2. Find your ServiceMeshControlPlane instance.
    3. Select YAML view and update text of the YAML file, as shown in the previous example.
    4. Click Save.
1.11.4.8. Migrating Red Hat OpenShift Service Mesh from version 1.1 to version 2.0

Upgrading from version 1.1 to 2.0 requires manual steps that migrate your workloads and application to a new instance of Red Hat OpenShift Service Mesh running the new version.

Prerequisites

  • You must upgrade to Red Hat OpenShift Service on AWS 4.7. before you upgrade to Red Hat OpenShift Service Mesh 2.0.
  • You must have Red Hat OpenShift Service Mesh version 2.0 operator. If you selected the automatic upgrade path, the operator automatically downloads the latest information. However, there are steps you must take to use the features in Red Hat OpenShift Service Mesh version 2.0.
1.11.4.8.1. Upgrading Red Hat OpenShift Service Mesh

To upgrade Red Hat OpenShift Service Mesh, you must create an instance of Red Hat OpenShift Service Mesh ServiceMeshControlPlane v2 resource in a new namespace. Then, once it is configured, move your microservice applications and workloads from your old mesh to the new service mesh.

Procedure

  1. Check your v1 ServiceMeshControlPlane resource configuration to make sure it is valid.

    1. Run the following command to view your ServiceMeshControlPlane resource as a v2 resource.

      $ oc get smcp -o yaml
    2. Check the spec.techPreview.errored.message field in the output for information about any invalid fields.
    3. If there are invalid fields in your v1 resource, the resource is not reconciled and cannot be edited as a v2 resource. All updates to v2 fields will be overridden by the original v1 settings. To fix the invalid fields, you can replace, patch, or edit the v1 version of the resource. You can also delete the resource without fixing it. After the resource has been fixed, it can be reconciled, and you can to modify or view the v2 version of the resource.
    4. To fix the resource by editing a file, use oc get to retrieve the resource, edit the text file locally, and replace the resource with the file you edited.

      $ oc get smcp.v1.maistra.io <smcp_name> > smcp-resource.yaml
      #Edit the smcp-resource.yaml file.
      $ oc replace -f smcp-resource.yaml
    5. To fix the resource using patching, use oc patch.

      $ oc patch smcp.v1.maistra.io <smcp_name> --type json --patch '[{"op": "replace","path":"/spec/path/to/bad/setting","value":"corrected-value"}]'
    6. To fix the resource by editing with command line tools, use oc edit.

      $ oc edit smcp.v1.maistra.io <smcp_name>
  2. Back up your Service Mesh control plane configuration. Switch to the project that contains your ServiceMeshControlPlane resource. In this example, istio-system is the name of the Service Mesh control plane project.

    $ oc project istio-system
  3. Enter the following command to retrieve the current configuration. Your <smcp_name> is specified in the metadata of your ServiceMeshControlPlane resource, for example basic-install or full-install.

    $ oc get servicemeshcontrolplanes.v1.maistra.io <smcp_name> -o yaml > <smcp_name>.v1.yaml
  4. Convert your ServiceMeshControlPlane to a v2 control plane version that contains information about your configuration as a starting point.

    $ oc get smcp <smcp_name> -o yaml > <smcp_name>.v2.yaml
  5. Create a project. In the Red Hat OpenShift Service on AWS console Project menu, click New Project and enter a name for your project, istio-system-upgrade, for example. Or, you can run this command from the CLI.

    $ oc new-project istio-system-upgrade
  6. Update the metadata.namespace field in your v2 ServiceMeshControlPlane with your new project name. In this example, use istio-system-upgrade.
  7. Update the version field from 1.1 to 2.0 or remove it in your v2 ServiceMeshControlPlane.
  8. Create a ServiceMeshControlPlane in the new namespace. On the command line, run the following command to deploy the control plane with the v2 version of the ServiceMeshControlPlane that you retrieved. In this example, replace `<smcp_name.v2> `with the path to your file.

    $ oc create -n istio-system-upgrade -f <smcp_name>.v2.yaml

    Alternatively, you can use the console to create the Service Mesh control plane. In the Red Hat OpenShift Service on AWS web console, click Project. Then, select the project name you just entered.

    1. Click OperatorsInstalled Operators.
    2. Click Create ServiceMeshControlPlane.
    3. Select YAML view and paste text of the YAML file you retrieved into the field. Check that the apiVersion field is set to maistra.io/v2 and modify the metadata.namespace field to use the new namespace, for example istio-system-upgrade.
    4. Click Create.
1.11.4.8.2. Configuring the 2.0 ServiceMeshControlPlane

The ServiceMeshControlPlane resource has been changed for Red Hat OpenShift Service Mesh version 2.0. After you created a v2 version of the ServiceMeshControlPlane resource, modify it to take advantage of the new features and to fit your deployment. Consider the following changes to the specification and behavior of Red Hat OpenShift Service Mesh 2.0 as you are modifying your ServiceMeshControlPlane resource. You can also refer to the Red Hat OpenShift Service Mesh 2.0 product documentation for new information to features you use. The v2 resource must be used for Red Hat OpenShift Service Mesh 2.0 installations.

1.11.4.8.2.1. Architecture changes

The architectural units used by previous versions have been replaced by Istiod. In 2.0 the Service Mesh control plane components Mixer, Pilot, Citadel, Galley, and the sidecar injector functionality have been combined into a single component, Istiod.

Although Mixer is no longer supported as a control plane component, Mixer policy and telemetry plugins are now supported through WASM extensions in Istiod. Mixer can be enabled for policy and telemetry if you need to integrate legacy Mixer plugins.

Secret Discovery Service (SDS) is used to distribute certificates and keys to sidecars directly from Istiod. In Red Hat OpenShift Service Mesh version 1.1, secrets were generated by Citadel, which were used by the proxies to retrieve their client certificates and keys.

1.11.4.8.2.2. Annotation changes

The following annotations are no longer supported in v2.0. If you are using one of these annotations, you must update your workload before moving it to a v2.0 Service Mesh control plane.

  • sidecar.maistra.io/proxyCPULimit has been replaced with sidecar.istio.io/proxyCPULimit. If you were using sidecar.maistra.io annotations on your workloads, you must modify those workloads to use sidecar.istio.io equivalents instead.
  • sidecar.maistra.io/proxyMemoryLimit has been replaced with sidecar.istio.io/proxyMemoryLimit
  • sidecar.istio.io/discoveryAddress is no longer supported. Also, the default discovery address has moved from pilot.<control_plane_namespace>.svc:15010 (or port 15011, if mtls is enabled) to istiod-<smcp_name>.<control_plane_namespace>.svc:15012.
  • The health status port is no longer configurable and is hard-coded to 15021. * If you were defining a custom status port, for example, status.sidecar.istio.io/port, you must remove the override before moving the workload to a v2.0 Service Mesh control plane. Readiness checks can still be disabled by setting the status port to 0.
  • Kubernetes Secret resources are no longer used to distribute client certificates for sidecars. Certificates are now distributed through Istiod’s SDS service. If you were relying on mounted secrets, they are longer available for workloads in v2.0 Service Mesh control planes.
1.11.4.8.2.3. Behavioral changes

Some features in Red Hat OpenShift Service Mesh 2.0 work differently than they did in previous versions.

  • The readiness port on gateways has moved from 15020 to 15021.
  • The target host visibility includes VirtualService, as well as ServiceEntry resources. It includes any restrictions applied through Sidecar resources.
  • Automatic mutual TLS is enabled by default. Proxy to proxy communication is automatically configured to use mTLS, regardless of global PeerAuthentication policies in place.
  • Secure connections are always used when proxies communicate with the Service Mesh control plane regardless of spec.security.controlPlane.mtls setting. The spec.security.controlPlane.mtls setting is only used when configuring connections for Mixer telemetry or policy.
1.11.4.8.2.4. Migration details for unsupported resources

Policy (authentication.istio.io/v1alpha1)

Policy resources must be migrated to new resource types for use with v2.0 Service Mesh control planes, PeerAuthentication and RequestAuthentication. Depending on the specific configuration in your Policy resource, you may have to configure multiple resources to achieve the same effect.

Mutual TLS

Mutual TLS enforcement is accomplished using the security.istio.io/v1beta1 PeerAuthentication resource. The legacy spec.peers.mtls.mode field maps directly to the new resource’s spec.mtls.mode field. Selection criteria has changed from specifying a service name in spec.targets[x].name to a label selector in spec.selector.matchLabels. In PeerAuthentication, the labels must match the selector on the services named in the targets list. Any port-specific settings will need to be mapped into spec.portLevelMtls.

Authentication

Additional authentication methods specified in spec.origins, must be mapped into a security.istio.io/v1beta1 RequestAuthentication resource. spec.selector.matchLabels must be configured similarly to the same field on PeerAuthentication. Configuration specific to JWT principals from spec.origins.jwt items map to similar fields in spec.rules items.

  • spec.origins[x].jwt.triggerRules specified in the Policy must be mapped into one or more security.istio.io/v1beta1 AuthorizationPolicy resources. Any spec.selector.labels must be configured similarly to the same field on RequestAuthentication.
  • spec.origins[x].jwt.triggerRules.excludedPaths must be mapped into an AuthorizationPolicy whose spec.action is set to ALLOW, with spec.rules[x].to.operation.path entries matching the excluded paths.
  • spec.origins[x].jwt.triggerRules.includedPaths must be mapped into a separate AuthorizationPolicy whose spec.action is set to ALLOW, with spec.rules[x].to.operation.path entries matching the included paths, and spec.rules.[x].from.source.requestPrincipals entries that align with the specified spec.origins[x].jwt.issuer in the Policy resource.

ServiceMeshPolicy (maistra.io/v1)

ServiceMeshPolicy was configured automatically for the Service Mesh control plane through the spec.istio.global.mtls.enabled in the v1 resource or spec.security.dataPlane.mtls in the v2 resource setting. For v2 control planes, a functionally equivalent PeerAuthentication resource is created during installation. This feature is deprecated in Red Hat OpenShift Service Mesh version 2.0

RbacConfig, ServiceRole, ServiceRoleBinding (rbac.istio.io/v1alpha1)

These resources were replaced by the security.istio.io/v1beta1 AuthorizationPolicy resource.

Mimicking RbacConfig behavior requires writing a default AuthorizationPolicy whose settings depend on the spec.mode specified in the RbacConfig.

  • When spec.mode is set to OFF, no resource is required as the default policy is ALLOW, unless an AuthorizationPolicy applies to the request.
  • When spec.mode is set to ON, set spec: {}. You must create AuthorizationPolicy policies for all services in the mesh.
  • spec.mode is set to ON_WITH_INCLUSION, must create an AuthorizationPolicy with spec: {} in each included namespace. Inclusion of individual services is not supported by AuthorizationPolicy. However, as soon as any AuthorizationPolicy is created that applies to the workloads for the service, all other requests not explicitly allowed will be denied.
  • When spec.mode is set to ON_WITH_EXCLUSION, it is not supported by AuthorizationPolicy. A global DENY policy can be created, but an AuthorizationPolicy must be created for every workload in the mesh because there is no allow-all policy that can be applied to either a namespace or a workload.

AuthorizationPolicy includes configuration for both the selector to which the configuration applies, which is similar to the function ServiceRoleBinding provides and the rules which should be applied, which is similar to the function ServiceRole provides.

ServiceMeshRbacConfig (maistra.io/v1)

This resource is replaced by using a security.istio.io/v1beta1 AuthorizationPolicy resource with an empty spec.selector in the Service Mesh control plane’s namespace. This policy will be the default authorization policy applied to all workloads in the mesh. For specific migration details, see RbacConfig above.

1.11.4.8.2.5. Mixer plugins

Mixer components are disabled by default in version 2.0. If you rely on Mixer plugins for your workload, you must configure your version 2.0 ServiceMeshControlPlane to include the Mixer components.

To enable the Mixer policy components, add the following snippet to your ServiceMeshControlPlane.

spec:
  policy:
    type: Mixer

To enable the Mixer telemetry components, add the following snippet to your ServiceMeshControlPlane.

spec:
  telemetry:
    type: Mixer

Legacy mixer plugins can also be migrated to WASM and integrated using the new ServiceMeshExtension (maistra.io/v1alpha1) custom resource.

Built-in WASM filters included in the upstream Istio distribution are not available in Red Hat OpenShift Service Mesh 2.0.

1.11.4.8.2.6. Mutual TLS changes

When using mTLS with workload specific PeerAuthentication policies, a corresponding DestinationRule is required to allow traffic if the workload policy differs from the namespace/global policy.

Auto mTLS is enabled by default, but can be disabled by setting spec.security.dataPlane.automtls to false in the ServiceMeshControlPlane resource. When disabling auto mTLS, DestinationRules may be required for proper communication between services. For example, setting PeerAuthentication to STRICT for one namespace may prevent services in other namespaces from accessing them, unless a DestinationRule configures TLS mode for the services in the namespace.

For information about mTLS, see Enabling mutual Transport Layer Security (mTLS)

1.11.4.8.2.6.1. Other mTLS Examples

To disable mTLS For productpage service in the bookinfo sample application, your Policy resource was configured the following way for Red Hat OpenShift Service Mesh v1.1.

Example Policy resource

apiVersion: authentication.istio.io/v1alpha1
kind: Policy
metadata:
  name: productpage-mTLS-disable
  namespace: <namespace>
spec:
  targets:
  - name: productpage

To disable mTLS For productpage service in the bookinfo sample application, use the following example to configure your PeerAuthentication resource for Red Hat OpenShift Service Mesh v2.0.

Example PeerAuthentication resource

apiVersion: security.istio.io/v1beta1
kind: PeerAuthentication
metadata:
  name: productpage-mTLS-disable
  namespace: <namespace>
spec:
  mtls:
    mode: DISABLE
  selector:
    matchLabels:
      # this should match the selector for the "productpage" service
      app: productpage

To enable mTLS With JWT authentication for the productpage service in the bookinfo sample application, your Policy resource was configured the following way for Red Hat OpenShift Service Mesh v1.1.

Example Policy resource

apiVersion: authentication.istio.io/v1alpha1
kind: Policy
metadata:
  name: productpage-mTLS-with-JWT
  namespace: <namespace>
spec:
  targets:
  - name: productpage
    ports:
    - number: 9000
  peers:
  - mtls:
  origins:
  - jwt:
      issuer: "https://securetoken.google.com"
      audiences:
      - "productpage"
      jwksUri: "https://www.googleapis.com/oauth2/v1/certs"
      jwtHeaders:
      - "x-goog-iap-jwt-assertion"
      triggerRules:
      - excludedPaths:
        - exact: /health_check
  principalBinding: USE_ORIGIN

To enable mTLS With JWT authentication for the productpage service in the bookinfo sample application, use the following example to configure your PeerAuthentication resource for Red Hat OpenShift Service Mesh v2.0.

Example PeerAuthentication resource

#require mtls for productpage:9000
apiVersion: security.istio.io/v1beta1
kind: PeerAuthentication
metadata:
  name: productpage-mTLS-with-JWT
  namespace: <namespace>
spec:
  selector:
    matchLabels:
      # this should match the selector for the "productpage" service
      app: productpage
  portLevelMtls:
    9000:
      mode: STRICT
---
#JWT authentication for productpage
apiVersion: security.istio.io/v1beta1
kind: RequestAuthentication
metadata:
  name: productpage-mTLS-with-JWT
  namespace: <namespace>
spec:
  selector:
    matchLabels:
      # this should match the selector for the "productpage" service
      app: productpage
  jwtRules:
  - issuer: "https://securetoken.google.com"
    audiences:
    - "productpage"
    jwksUri: "https://www.googleapis.com/oauth2/v1/certs"
    fromHeaders:
    - name: "x-goog-iap-jwt-assertion"
---
#Require JWT token to access product page service from
#any client to all paths except /health_check
apiVersion: security.istio.io/v1beta1
kind: AuthorizationPolicy
metadata:
  name: productpage-mTLS-with-JWT
  namespace: <namespace>
spec:
  action: ALLOW
  selector:
    matchLabels:
      # this should match the selector for the "productpage" service
      app: productpage
  rules:
  - to: # require JWT token to access all other paths
      - operation:
          notPaths:
          - /health_check
    from:
      - source:
          # if using principalBinding: USE_PEER in the Policy,
          # then use principals, e.g.
          # principals:
          # - “*”
          requestPrincipals:
          - “*”
  - to: # no JWT token required to access health_check
      - operation:
          paths:
          - /health_check

1.11.4.8.3. Configuration recipes

You can configure the following items with these configuration recipes.

1.11.4.8.3.1. Mutual TLS in a data plane

Mutual TLS for data plane communication is configured through spec.security.dataPlane.mtls in the ServiceMeshControlPlane resource, which is false by default.

1.11.4.8.3.2. Custom signing key

Istiod manages client certificates and private keys used by service proxies. By default, Istiod uses a self-signed certificate for signing, but you can configure a custom certificate and private key. For more information about how to configure signing keys, see Adding an external certificate authority key and certificate

1.11.4.8.3.3. Tracing

Tracing is configured in spec.tracing. Currently, the only type of tracer that is supported is Jaeger. Sampling is a scaled integer representing 0.01% increments, for example, 1 is 0.01% and 10000 is 100%. The tracing implementation and sampling rate can be specified:

spec:
  tracing:
    sampling: 100 # 1%
    type: Jaeger

Jaeger is configured in the addons section of the ServiceMeshControlPlane resource.

spec:
  addons:
    jaeger:
      name: jaeger
      install:
        storage:
          type: Memory # or Elasticsearch for production mode
          memory:
            maxTraces: 100000
          elasticsearch: # the following values only apply if storage:type:=Elasticsearch
            storage: # specific storageclass configuration for the Jaeger Elasticsearch (optional)
              size: "100G"
              storageClassName: "storageclass"
            nodeCount: 3
            redundancyPolicy: SingleRedundancy
  runtime:
    components:
      tracing.jaeger: {} # general Jaeger specific runtime configuration (optional)
      tracing.jaeger.elasticsearch: #runtime configuration for Jaeger Elasticsearch deployment (optional)
        container:
          resources:
            requests:
              memory: "1Gi"
              cpu: "500m"
            limits:
              memory: "1Gi"

The Jaeger installation can be customized with the install field. Container configuration, such as resource limits is configured in spec.runtime.components.jaeger related fields. If a Jaeger resource matching the value of spec.addons.jaeger.name exists, the Service Mesh control plane will be configured to use the existing installation. Use an existing Jaeger resource to fully customize your Jaeger installation.

1.11.4.8.3.4. Visualization

Kiali and Grafana are configured under the addons section of the ServiceMeshControlPlane resource.

spec:
  addons:
    grafana:
      enabled: true
      install: {} # customize install
    kiali:
      enabled: true
      name: kiali
      install: {} # customize install

The Grafana and Kiali installations can be customized through their respective install fields. Container customization, such as resource limits, is configured in spec.runtime.components.kiali and spec.runtime.components.grafana. If an existing Kiali resource matching the value of name exists, the Service Mesh control plane configures the Kiali resource for use with the control plane. Some fields in the Kiali resource are overridden, such as the accessible_namespaces list, as well as the endpoints for Grafana, Prometheus, and tracing. Use an existing resource to fully customize your Kiali installation.

1.11.4.8.3.5. Resource utilization and scheduling

Resources are configured under spec.runtime.<component>. The following component names are supported.

ComponentDescriptionVersions supported

security

Citadel container

v1.0/1.1

galley

Galley container

v1.0/1.1

pilot

Pilot/Istiod container

v1.0/1.1/2.0

mixer

istio-telemetry and istio-policy containers

v1.0/1.1

mixer.policy

istio-policy container

v2.0

mixer.telemetry

istio-telemetry container

v2.0

global.oauthproxy

oauth-proxy container used with various addons

v1.0/1.1/2.0

sidecarInjectorWebhook

sidecar injector webhook container

v1.0/1.1

tracing.jaeger

general Jaeger container - not all settings may be applied. Complete customization of Jaeger installation is supported by specifying an existing Jaeger resource in the Service Mesh control plane configuration.

v1.0/1.1/2.0

tracing.jaeger.agent

settings specific to Jaeger agent

v1.0/1.1/2.0

tracing.jaeger.allInOne

settings specific to Jaeger allInOne

v1.0/1.1/2.0

tracing.jaeger.collector

settings specific to Jaeger collector

v1.0/1.1/2.0

tracing.jaeger.elasticsearch

settings specific to Jaeger elasticsearch deployment

v1.0/1.1/2.0

tracing.jaeger.query

settings specific to Jaeger query

v1.0/1.1/2.0

prometheus

prometheus container

v1.0/1.1/2.0

kiali

Kiali container - complete customization of Kiali installation is supported by specifying an existing Kiali resource in the Service Mesh control plane configuration.

v1.0/1.1/2.0

grafana

Grafana container

v1.0/1.1/2.0

3scale

3scale container

v1.0/1.1/2.0

wasmExtensions.cacher

WASM extensions cacher container

v2.0 - tech preview

Some components support resource limiting and scheduling. For more information, see Performance and scalability.

1.11.4.8.4. Next steps for migrating your applications and workloads

Move the application workload to the new mesh and remove the old instances to complete your upgrade.

1.11.5. Upgrading the data plane

Your data plane will still function after you have upgraded the control plane. But in order to apply updates to the Envoy proxy and any changes to the proxy configuration, you must restart your application pods and workloads.

1.11.5.1. Updating your applications and workloads

To complete the migration, restart all of the application pods in the mesh to upgrade the Envoy sidecar proxies and their configuration.

To perform a rolling update of a deployment use the following command:

$ oc rollout restart <deployment>

You must perform a rolling update for all applications that make up the mesh.

1.12. Managing users and profiles

1.12.1. Creating the Red Hat OpenShift Service Mesh members

ServiceMeshMember resources provide a way for Red Hat OpenShift Service Mesh administrators to delegate permissions to add projects to a service mesh, even when the respective users do not have direct access to the service mesh project or member roll. While project administrators are automatically given permission to create the ServiceMeshMember resource in their project, they cannot point it to any ServiceMeshControlPlane until the service mesh administrator explicitly grants access to the service mesh. Administrators can grant users permissions to access the mesh by granting them the mesh-user user role. In this example, istio-system is the name of the Service Mesh control plane project.

$ oc policy add-role-to-user -n istio-system --role-namespace istio-system mesh-user <user_name>

Administrators can modify the mesh-user role binding in the Service Mesh control plane project to specify the users and groups that are granted access. The ServiceMeshMember adds the project to the ServiceMeshMemberRoll within the Service Mesh control plane project that it references.

apiVersion: maistra.io/v1
kind: ServiceMeshMember
metadata:
  name: default
spec:
  controlPlaneRef:
    namespace: istio-system
    name: basic

The mesh-users role binding is created automatically after the administrator creates the ServiceMeshControlPlane resource. An administrator can use the following command to add a role to a user.

$ oc policy add-role-to-user

The administrator can also create the mesh-user role binding before the administrator creates the ServiceMeshControlPlane resource. For example, the administrator can create it in the same oc apply operation as the ServiceMeshControlPlane resource.

This example adds a role binding for alice:

apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
  namespace: istio-system
  name: mesh-users
roleRef:
  apiGroup: rbac.authorization.k8s.io
  kind: Role
  name: mesh-user
subjects:
- apiGroup: rbac.authorization.k8s.io
  kind: User
  name: alice

1.12.2. Creating Service Mesh control plane profiles

You can create reusable configurations with ServiceMeshControlPlane profiles. Individual users can extend the profiles they create with their own configurations. Profiles can also inherit configuration information from other profiles. For example, you can create an accounting control plane for the accounting team and a marketing control plane for the marketing team. If you create a development template and a production template, members of the marketing team and the accounting team can extend the development and production profiles with team-specific customization.

When you configure Service Mesh control plane profiles, which follow the same syntax as the ServiceMeshControlPlane, users inherit settings in a hierarchical fashion. The Operator is delivered with a default profile with default settings for Red Hat OpenShift Service Mesh.

1.12.2.1. Creating the ConfigMap

To add custom profiles, you must create a ConfigMap named smcp-templates in the openshift-operators project. The Operator container automatically mounts the ConfigMap.

Prerequisites

  • An installed, verified Service Mesh Operator.
  • An account with the cluster-admin role. If you use Red Hat OpenShift Dedicated, you must have an account with the dedicated-admin role.
  • Location of the Operator deployment.
  • Access to the OpenShift CLI (oc).

Procedure

  1. Log in to the Red Hat OpenShift Service on AWS CLI as a cluster-admin. If you use Red Hat OpenShift Dedicated, you must have an account with the dedicated-admin role.
  2. From the CLI, run this command to create the ConfigMap named smcp-templates in the openshift-operators project and replace <profiles-directory> with the location of the ServiceMeshControlPlane files on your local disk:

    $ oc create configmap --from-file=<profiles-directory> smcp-templates -n openshift-operators
  3. You can use the profiles parameter in the ServiceMeshControlPlane to specify one or more templates.

      apiVersion: maistra.io/v2
      kind: ServiceMeshControlPlane
      metadata:
        name: basic
      spec:
        profiles:
        - default
1.12.2.2. Setting the correct network policy

Service Mesh creates network policies in the Service Mesh control plane and member namespaces to allow traffic between them. Before you deploy, consider the following conditions to ensure the services in your service mesh that were previously exposed through an Red Hat OpenShift Service on AWS route.

  • Traffic into the service mesh must always go through the ingress-gateway for Istio to work properly.
  • Deploy services external to the service mesh in separate namespaces that are not in any service mesh.
  • Non-mesh services that need to be deployed within a service mesh enlisted namespace should label their deployments maistra.io/expose-route: "true", which ensures Red Hat OpenShift Service on AWS routes to these services still work.

1.13. Security

If your service mesh application is constructed with a complex array of microservices, you can use Red Hat OpenShift Service Mesh to customize the security of the communication between those services. The infrastructure of Red Hat OpenShift Service on AWS along with the traffic management features of Service Mesh help you manage the complexity of your applications and secure microservices.

Before you begin

If you have a project, add your project to the ServiceMeshMemberRoll resource.

If you don’t have a project, install the Bookinfo sample application and add it to the ServiceMeshMemberRoll resource. The sample application helps illustrate security concepts.

1.13.1. About mutual Transport Layer Security (mTLS)

Mutual Transport Layer Security (mTLS) is a protocol that enables two parties to authenticate each other. It is the default mode of authentication in some protocols (IKE, SSH) and optional in others (TLS). You can use mTLS without changes to the application or service code. The TLS is handled entirely by the service mesh infrastructure and between the two sidecar proxies.

By default, mTLS in Red Hat OpenShift Service Mesh is enabled and set to permissive mode, where the sidecars in Service Mesh accept both plain-text traffic and connections that are encrypted using mTLS. If a service in your mesh configured to use strict mTLS is communicating with a service outside the mesh, communication might break between those services because strict mTLS requires both the client and the server to be able to verify the identify of each other. Use permissive mode while you migrate your workloads to Service Mesh. Then, you can enable strict mTLS across your mesh, namespace, or application.

Enabling mTLS across your mesh at the Service Mesh control plane level secures all the traffic in your service mesh without rewriting your applications and workloads. You can secure namespaces in your mesh at the data plane level in the ServiceMeshControlPlane resource. To customize traffic encryption connections, configure namespaces at the application level with PeerAuthentication and DestinationRule resources.

1.13.1.1. Enabling strict mTLS across the service mesh

If your workloads do not communicate with outside services, you can quickly enable mTLS across your mesh without communication interruptions. You can enable it by setting spec.security.dataPlane.mtls to true in the ServiceMeshControlPlane resource. The Operator creates the required resources.

apiVersion: maistra.io/v2
kind: ServiceMeshControlPlane
spec:
  version: v2.6
  security:
    dataPlane:
      mtls: true

You can also enable mTLS by using the Red Hat OpenShift Service on AWS web console.

Procedure

  1. Log in to the web console.
  2. Click the Project menu and select the project where you installed the Service Mesh control plane, for example istio-system.
  3. Click OperatorsInstalled Operators.
  4. Click Service Mesh Control Plane under Provided APIs.
  5. Click the name of your ServiceMeshControlPlane resource, for example, basic.
  6. On the Details page, click the toggle in the Security section for Data Plane Security.
1.13.1.1.1. Configuring sidecars for incoming connections for specific services

You can also configure mTLS for individual services by creating a policy.

Procedure

  1. Create a YAML file using the following example.

    PeerAuthentication Policy example policy.yaml

    apiVersion: security.istio.io/v1beta1
    kind: PeerAuthentication
    metadata:
      name: default
      namespace: <namespace>
    spec:
      mtls:
        mode: STRICT

    1. Replace <namespace> with the namespace where the service is located.
  2. Run the following command to create the resource in the namespace where the service is located. It must match the namespace field in the Policy resource you just created.

    $ oc create -n <namespace> -f <policy.yaml>
Note

If you are not using automatic mTLS and you are setting PeerAuthentication to STRICT, you must create a DestinationRule resource for your service.

1.13.1.1.2. Configuring sidecars for outgoing connections

Create a destination rule to configure Service Mesh to use mTLS when sending requests to other services in the mesh.

Procedure

  1. Create a YAML file using the following example.

    DestinationRule example destination-rule.yaml

    apiVersion: networking.istio.io/v1alpha3
    kind: DestinationRule
    metadata:
      name: default
      namespace: <namespace>
    spec:
      host: "*.<namespace>.svc.cluster.local"
      trafficPolicy:
       tls:
        mode: ISTIO_MUTUAL

    1. Replace <namespace> with the namespace where the service is located.
  2. Run the following command to create the resource in the namespace where the service is located. It must match the namespace field in the DestinationRule resource you just created.

    $ oc create -n <namespace> -f <destination-rule.yaml>
1.13.1.1.3. Setting the minimum and maximum protocol versions

If your environment has specific requirements for encrypted traffic in your service mesh, you can control the cryptographic functions that are allowed by setting the spec.security.controlPlane.tls.minProtocolVersion or spec.security.controlPlane.tls.maxProtocolVersion in your ServiceMeshControlPlane resource. Those values, configured in your Service Mesh control plane resource, define the minimum and maximum TLS version used by mesh components when communicating securely over TLS.

The default is TLS_AUTO and does not specify a version of TLS.

Table 1.5. Valid values
ValueDescription

TLS_AUTO

default

TLSv1_0

TLS version 1.0

TLSv1_1

TLS version 1.1

TLSv1_2

TLS version 1.2

TLSv1_3

TLS version 1.3

Procedure

  1. Log in to the web console.
  2. Click the Project menu and select the project where you installed the Service Mesh control plane, for example istio-system.
  3. Click OperatorsInstalled Operators.
  4. Click Service Mesh Control Plane under Provided APIs.
  5. Click the name of your ServiceMeshControlPlane resource, for example, basic.
  6. Click the YAML tab.
  7. Insert the following code snippet in the YAML editor. Replace the value in the minProtocolVersion with the TLS version value. In this example, the minimum TLS version is set to TLSv1_2.

    ServiceMeshControlPlane snippet

    kind: ServiceMeshControlPlane
    spec:
      security:
        controlPlane:
          tls:
            minProtocolVersion: TLSv1_2

  8. Click Save.
  9. Click Refresh to verify that the changes updated correctly.
1.13.1.2. Validating encryption with Kiali

The Kiali console offers several ways to validate whether or not your applications, services, and workloads have mTLS encryption enabled.

Figure 1.5. Masthead icon mesh-wide mTLS enabled

mTLS enabled

At the right side of the masthead, Kiali shows a lock icon when the mesh has strictly enabled mTLS for the whole service mesh. It means that all communications in the mesh use mTLS.

Figure 1.6. Masthead icon mesh-wide mTLS partially enabled

mTLS partially enabled

Kiali displays a hollow lock icon when either the mesh is configured in PERMISSIVE mode or there is a error in the mesh-wide mTLS configuration.

Figure 1.7. Security badge

Security badge

The Graph page has the option to display a Security badge on the graph edges to indicate that mTLS is enabled. To enable security badges on the graph, from the Display menu, under Show Badges, select the Security checkbox. When an edge shows a lock icon, it means at least one request with mTLS enabled is present. In case there are both mTLS and non-mTLS requests, the side-panel will show the percentage of requests that use mTLS.

The Applications Detail Overview page displays a Security icon on the graph edges where at least one request with mTLS enabled is present.

The Workloads Detail Overview page displays a Security icon on the graph edges where at least one request with mTLS enabled is present.

The Services Detail Overview page displays a Security icon on the graph edges where at least one request with mTLS enabled is present. Also note that Kiali displays a lock icon in the Network section next to ports that are configured for mTLS.

1.13.2. Configuring Role Based Access Control (RBAC)

Role-based access control (RBAC) objects determine whether a user or service is allowed to perform a given action within a project. You can define mesh-, namespace-, and workload-wide access control for your workloads in the mesh.

To configure RBAC, create an AuthorizationPolicy resource in the namespace for which you are configuring access. If you are configuring mesh-wide access, use the project where you installed the Service Mesh control plane, for example istio-system.

For example, with RBAC, you can create policies that:

  • Configure intra-project communication.
  • Allow or deny full access to all workloads in the default namespace.
  • Allow or deny ingress gateway access.
  • Require a token for access.

An authorization policy includes a selector, an action, and a list of rules:

  • The selector field specifies the target of the policy.
  • The action field specifies whether to allow or deny the request.
  • The rules field specifies when to trigger the action.

    • The from field specifies constraints on the request origin.
    • The to field specifies constraints on request target and parameters.
    • The when field specifies additional conditions that to apply the rule.

Procedure

  1. Create your AuthorizationPolicy resource. The following example shows a resource that updates the ingress-policy AuthorizationPolicy to deny an IP address from accessing the ingress gateway.

    apiVersion: security.istio.io/v1beta1
    kind: AuthorizationPolicy
    metadata:
      name: ingress-policy
      namespace: istio-system
    spec:
      selector:
        matchLabels:
          app: istio-ingressgateway
      action: DENY
      rules:
      - from:
        - source:
            ipBlocks: ["1.2.3.4"]
  2. Run the following command after you write your resource to create your resource in your namespace. The namespace must match your metadata.namespace field in your AuthorizationPolicy resource.

    $ oc create -n istio-system -f <filename>

Next steps

Consider the following examples for other common configurations.

1.13.2.1. Configure intra-project communication

You can use AuthorizationPolicy to configure your Service Mesh control plane to allow or deny the traffic communicating with your mesh or services in your mesh.

1.13.2.1.1. Restrict access to services outside a namespace

You can deny requests from any source that is not in the bookinfo namespace with the following AuthorizationPolicy resource example.

apiVersion: security.istio.io/v1beta1
kind: AuthorizationPolicy
metadata:
 name: httpbin-deny
 namespace: bookinfo
spec:
 selector:
   matchLabels:
     app: httpbin
     version: v1
 action: DENY
 rules:
 - from:
   - source:
       notNamespaces: ["bookinfo"]
1.13.2.1.2. Creating allow-all and default deny-all authorization policies

The following example shows an allow-all authorization policy that allows full access to all workloads in the bookinfo namespace.

apiVersion: security.istio.io/v1beta1
kind: AuthorizationPolicy
metadata:
  name: allow-all
  namespace: bookinfo
spec:
  action: ALLOW
  rules:
  - {}

The following example shows a policy that denies any access to all workloads in the bookinfo namespace.

apiVersion: security.istio.io/v1beta1
kind: AuthorizationPolicy
metadata:
  name: deny-all
  namespace: bookinfo
spec:
  {}
1.13.2.2. Allow or deny access to the ingress gateway

You can set an authorization policy to add allow or deny lists based on IP addresses.

apiVersion: security.istio.io/v1beta1
kind: AuthorizationPolicy
metadata:
  name: ingress-policy
  namespace: istio-system
spec:
  selector:
    matchLabels:
      app: istio-ingressgateway
  action: ALLOW
  rules:
  - from:
    - source:
       ipBlocks: ["1.2.3.4", "5.6.7.0/24"]
1.13.2.3. Restrict access with JSON Web Token

You can restrict what can access your mesh with a JSON Web Token (JWT). After authentication, a user or service can access routes, services that are associated with that token.

Create a RequestAuthentication resource, which defines the authentication methods that are supported by a workload. The following example accepts a JWT issued by http://localhost:8080/auth/realms/master.

apiVersion: "security.istio.io/v1beta1"
kind: "RequestAuthentication"
metadata:
  name: "jwt-example"
  namespace: bookinfo
spec:
  selector:
    matchLabels:
      app: httpbin
  jwtRules:
  - issuer: "http://localhost:8080/auth/realms/master"
    jwksUri: "http://keycloak.default.svc:8080/auth/realms/master/protocol/openid-connect/certs"

Then, create an AuthorizationPolicy resource in the same namespace to work with RequestAuthentication resource you created. The following example requires a JWT to be present in the Authorization header when sending a request to httpbin workloads.

apiVersion: "security.istio.io/v1beta1"
kind: "AuthorizationPolicy"
metadata:
  name: "frontend-ingress"
  namespace: bookinfo
spec:
  selector:
    matchLabels:
      app: httpbin
  action: DENY
  rules:
  - from:
    - source:
        notRequestPrincipals: ["*"]

1.13.3. Configuring cipher suites and ECDH curves

Cipher suites and Elliptic-curve Diffie–Hellman (ECDH curves) can help you secure your service mesh. You can define a comma separated list of cipher suites using spec.security.controlplane.tls.cipherSuites and ECDH curves using spec.security.controlplane.tls.ecdhCurves in your ServiceMeshControlPlane resource. If either of these attributes are empty, then the default values are used.

The cipherSuites setting is effective if your service mesh uses TLS 1.2 or earlier. It has no effect when negotiating with TLS 1.3.

Set your cipher suites in the comma separated list in order of priority. For example, ecdhCurves: CurveP256, CurveP384 sets CurveP256 as a higher priority than CurveP384.

Note

You must include either TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 or TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 when you configure the cipher suite. HTTP/2 support requires at least one of these cipher suites.

The supported cipher suites are:

  • TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256
  • TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256
  • TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256
  • TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256
  • TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384
  • TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384
  • TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256
  • TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA
  • TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256
  • TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA
  • TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA
  • TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA
  • TLS_RSA_WITH_AES_128_GCM_SHA256
  • TLS_RSA_WITH_AES_256_GCM_SHA384
  • TLS_RSA_WITH_AES_128_CBC_SHA256
  • TLS_RSA_WITH_AES_128_CBC_SHA
  • TLS_RSA_WITH_AES_256_CBC_SHA
  • TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA
  • TLS_RSA_WITH_3DES_EDE_CBC_SHA

The supported ECDH Curves are:

  • CurveP256
  • CurveP384
  • CurveP521
  • X25519

1.13.4. Configuring JSON Web Key Sets resolver certificate authority

You can configure your own JSON Web Key Sets (JWKS) resolver certificate authority (CA) from the ServiceMeshControlPlane (SMCP) spec.

Procedure

  1. Edit the ServiceMeshControlPlane spec file:

    $ oc edit smcp <smcp-name>
  2. Enable mtls for the data plane by setting the value of the mtls field to true in the ServiceMeshControlPlane spec, as shown in the following example:

    spec:
      security:
        dataPlane:
            mtls: true # enable mtls for data plane
        # JWKSResolver extra CA
        # PEM-encoded certificate content to trust an additional CA
        jwksResolverCA: |
            -----BEGIN CERTIFICATE-----
            [...]
            [...]
            -----END CERTIFICATE-----
    ...
  3. Save the changes. Red Hat OpenShift Service on AWS automatically applies them.

A ConfigMap such as pilot-jwks-cacerts-<SMCP name> is created with the CA .pem data.

Example ConfigMap pilot-jwks-cacerts-<SMCP name>

kind: ConfigMap
apiVersion: v1
data:
  extra.pem: |
      -----BEGIN CERTIFICATE-----
      [...]
      [...]
      -----END CERTIFICATE-----

1.13.5. Adding an external certificate authority key and certificate

By default, Red Hat OpenShift Service Mesh generates a self-signed root certificate and key and uses them to sign the workload certificates. You can also use the user-defined certificate and key to sign workload certificates with user-defined root certificate. This task demonstrates an example to plug certificates and key into Service Mesh.

Prerequisites

  • Install Red Hat OpenShift Service Mesh with mutual TLS enabled to configure certificates.
  • This example uses the certificates from the Maistra repository. For production, use your own certificates from your certificate authority.
  • Deploy the Bookinfo sample application to verify the results with these instructions.
  • OpenSSL is required to verify certificates.
1.13.5.1. Adding an existing certificate and key

To use an existing signing (CA) certificate and key, you must create a chain of trust file that includes the CA certificate, key, and root certificate. You must use the following exact file names for each of the corresponding certificates. The CA certificate is named ca-cert.pem, the key is ca-key.pem, and the root certificate, which signs ca-cert.pem, is named root-cert.pem. If your workload uses intermediate certificates, you must specify them in a cert-chain.pem file.

  1. Save the example certificates from the Maistra repository locally and replace <path> with the path to your certificates.
  2. Create a secret named cacert that includes the input files ca-cert.pem, ca-key.pem, root-cert.pem and cert-chain.pem.

    $ oc create secret generic cacerts -n istio-system --from-file=<path>/ca-cert.pem \
        --from-file=<path>/ca-key.pem --from-file=<path>/root-cert.pem \
        --from-file=<path>/cert-chain.pem
  3. In the ServiceMeshControlPlane resource set spec.security.dataPlane.mtls true to true and configure the certificateAuthority field as shown in the following example. The default rootCADir is /etc/cacerts. You do not need to set the privateKey if the key and certs are mounted in the default location. Service Mesh reads the certificates and key from the secret-mount files.

    apiVersion: maistra.io/v2
    kind: ServiceMeshControlPlane
    spec:
      security:
        dataPlane:
          mtls: true
        certificateAuthority:
          type: Istiod
          istiod:
            type: PrivateKey
            privateKey:
              rootCADir: /etc/cacerts
  4. After creating/changing/deleting the cacert secret, the Service Mesh control plane istiod and gateway pods must be restarted so the changes go into effect. Use the following command to restart the pods:

    $ oc -n istio-system delete pods -l 'app in (istiod,istio-ingressgateway, istio-egressgateway)'

    The Operator will automatically recreate the pods after they have been deleted.

  5. Restart the bookinfo application pods so that the sidecar proxies pick up the secret changes. Use the following command to restart the pods:

    $ oc -n bookinfo delete pods --all

    You should see output similar to the following:

    pod "details-v1-6cd699df8c-j54nh" deleted
    pod "productpage-v1-5ddcb4b84f-mtmf2" deleted
    pod "ratings-v1-bdbcc68bc-kmng4" deleted
    pod "reviews-v1-754ddd7b6f-lqhsv" deleted
    pod "reviews-v2-675679877f-q67r2" deleted
    pod "reviews-v3-79d7549c7-c2gjs" deleted
  6. Verify that the pods were created and are ready with the following command:

    $ oc get pods -n bookinfo
1.13.5.2. Verifying your certificates

Use the Bookinfo sample application to verify that the workload certificates are signed by the certificates that were plugged into the CA. This process requires that you have openssl installed on your machine.

  1. To extract certificates from bookinfo workloads use the following command:

    $ sleep 60
    $ oc -n bookinfo exec "$(oc -n bookinfo get pod -l app=productpage -o jsonpath={.items..metadata.name})" -c istio-proxy -- openssl s_client -showcerts -connect details:9080 > bookinfo-proxy-cert.txt
    $ sed -n '/-----BEGIN CERTIFICATE-----/{:start /-----END CERTIFICATE-----/!{N;b start};/.*/p}' bookinfo-proxy-cert.txt > certs.pem
    $ awk 'BEGIN {counter=0;} /BEGIN CERT/{counter++} { print > "proxy-cert-" counter ".pem"}' < certs.pem

    After running the command, you should have three files in your working directory: proxy-cert-1.pem, proxy-cert-2.pem and proxy-cert-3.pem.

  2. Verify that the root certificate is the same as the one specified by the administrator. Replace <path> with the path to your certificates.

    $ openssl x509 -in <path>/root-cert.pem -text -noout > /tmp/root-cert.crt.txt

    Run the following syntax at the terminal window.

    $ openssl x509 -in ./proxy-cert-3.pem -text -noout > /tmp/pod-root-cert.crt.txt

    Compare the certificates by running the following syntax at the terminal window.

    $ diff -s /tmp/root-cert.crt.txt /tmp/pod-root-cert.crt.txt

    You should see the following result: Files /tmp/root-cert.crt.txt and /tmp/pod-root-cert.crt.txt are identical

  3. Verify that the CA certificate is the same as the one specified by the administrator. Replace <path> with the path to your certificates.

    $ openssl x509 -in <path>/ca-cert.pem -text -noout > /tmp/ca-cert.crt.txt

    Run the following syntax at the terminal window.

    $ openssl x509 -in ./proxy-cert-2.pem -text -noout > /tmp/pod-cert-chain-ca.crt.txt

    Compare the certificates by running the following syntax at the terminal window.

    $ diff -s /tmp/ca-cert.crt.txt /tmp/pod-cert-chain-ca.crt.txt

    You should see the following result: Files /tmp/ca-cert.crt.txt and /tmp/pod-cert-chain-ca.crt.txt are identical.

  4. Verify the certificate chain from the root certificate to the workload certificate. Replace <path> with the path to your certificates.

    $ openssl verify -CAfile <(cat <path>/ca-cert.pem <path>/root-cert.pem) ./proxy-cert-1.pem

    You should see the following result: ./proxy-cert-1.pem: OK

1.13.5.3. Removing the certificates

To remove the certificates you added, follow these steps.

  1. Remove the secret cacerts. In this example, istio-system is the name of the Service Mesh control plane project.

    $ oc delete secret cacerts -n istio-system
  2. Redeploy Service Mesh with a self-signed root certificate in the ServiceMeshControlPlane resource.

    apiVersion: maistra.io/v2
    kind: ServiceMeshControlPlane
    spec:
      security:
        dataPlane:
          mtls: true

1.13.6. About integrating Service Mesh with cert-manager and istio-csr

The cert-manager tool is a solution for X.509 certificate management on Kubernetes. It delivers a unified API to integrate applications with private or public key infrastructure (PKI), such as Vault, Google Cloud Certificate Authority Service, Let’s Encrypt, and other providers.

The cert-manager tool ensures the certificates are valid and up-to-date by attempting to renew certificates at a configured time before they expire.

For Istio users, cert-manager also provides integration with istio-csr, which is a certificate authority (CA) server that handles certificate signing requests (CSR) from Istio proxies. The server then delegates signing to cert-manager, which forwards CSRs to the configured CA server.

Note

Red Hat provides support for integrating with istio-csr and cert-manager. Red Hat does not provide direct support for the istio-csr or the community cert-manager components. The use of community cert-manager shown here is for demonstration purposes only.

Prerequisites

  • One of these versions of cert-manager:

    • cert-manager Operator for Red Hat OpenShift 1.10 or later
    • community cert-manager Operator 1.11 or later
    • cert-manager 1.11 or later
  • OpenShift Service Mesh Operator 2.4 or later
  • istio-csr 0.6.0 or later
Note

To avoid creating config maps in all namespaces when the istio-csr server is installed with the jetstack/cert-manager-istio-csr Helm chart, use the following setting: app.controller.configmapNamespaceSelector: "maistra.io/member-of: <istio-namespace>" in the istio-csr.yaml file.

1.13.6.1. Installing cert-manager

You can install the cert-manager tool to manage the lifecycle of TLS certificates and ensure that they are valid and up-to-date. If you are running Istio in your environment, you can also install the istio-csr certificate authority (CA) server, which handles certificate signing requests (CSR) from Istio proxies. The istio-csr CA delegates signing to the cert-manager tool, which delegates to the configured CA.

Procedure

  1. Create the root cluster issuer:

    1. Create the cluster-issuer object as in the following example:

      Example cluster-issuer.yaml

      apiVersion: cert-manager.io/v1
      kind: Issuer
      metadata:
        name: selfsigned-root-issuer
        namespace: cert-manager
      spec:
        selfSigned: {}
      ---
      apiVersion: cert-manager.io/v1
      kind: Certificate
      metadata:
        name: root-ca
        namespace: cert-manager
      spec:
        isCA: true
        duration: 21600h # 900d
        secretName: root-ca
        commonName: root-ca.my-company.net
        subject:
          organizations:
          - my-company.net
        issuerRef:
          name: selfsigned-root-issuer
          kind: Issuer
          group: cert-manager.io
      ---
      apiVersion: cert-manager.io/v1
      kind: ClusterIssuer
      metadata:
        name: root-ca
      spec:
        ca:
          secretName: root-ca

      Note

      The namespace of the selfsigned-root-issuer issuer and root-ca certificate is cert-manager because root-ca is a cluster issuer, so the cert-manager looks for a referenced secret in its own namespace. The namespace is called cert-manager in the case of the cert-manager Operator for Red Hat OpenShift.

    2. Create the object by using the following command:

      $ oc apply -f cluster-issuer.yaml
    3. Create the istio-ca object as in the following example:

      Example istio-ca.yaml

      apiVersion: cert-manager.io/v1
      kind: Certificate
      metadata:
        name: istio-ca
        namespace: istio-system
      spec:
        isCA: true
        duration: 21600h
        secretName: istio-ca
        commonName: istio-ca.my-company.net
        subject:
          organizations:
          - my-company.net
        issuerRef:
          name: root-ca
          kind: ClusterIssuer
          group: cert-manager.io
      ---
      apiVersion: cert-manager.io/v1
      kind: Issuer
      metadata:
        name: istio-ca
        namespace: istio-system
      spec:
        ca:
          secretName: istio-ca

    4. Use the following command to create the object:

      $ oc apply -n istio-system -f istio-ca.yaml
  2. Install istio-csr:

    $ helm install istio-csr jetstack/cert-manager-istio-csr \
        -n istio-system \
        -f deploy/examples/cert-manager/istio-csr/istio-csr.yaml

    Example istio-csr.yaml

    replicaCount: 2
    
    image:
      repository: quay.io/jetstack/cert-manager-istio-csr
      tag: v0.6.0
      pullSecretName: ""
    
    app:
      certmanager:
        namespace: istio-system
        issuer:
          group: cert-manager.io
          kind: Issuer
          name: istio-ca
    
      controller:
        configmapNamespaceSelector: "maistra.io/member-of=istio-system"
        leaderElectionNamespace: istio-system
    
      istio:
        namespace: istio-system
        revisions: ["basic"]
    
      server:
        maxCertificateDuration: 5m
    
      tls:
        certificateDNSNames:
        # This DNS name must be set in the SMCP spec.security.certificateAuthority.cert-manager.address
        - cert-manager-istio-csr.istio-system.svc

  3. Deploy SMCP:

    $ oc apply -f mesh.yaml -n istio-system

    Example mesh.yaml

    apiVersion: maistra.io/v2
    kind: ServiceMeshControlPlane
    metadata:
      name: basic
    spec:
      addons:
        grafana:
          enabled: false
        kiali:
          enabled: false
        prometheus:
          enabled: false
      proxy:
        accessLogging:
          file:
            name: /dev/stdout
      security:
        certificateAuthority:
          cert-manager:
            address: cert-manager-istio-csr.istio-system.svc:443
          type: cert-manager
        dataPlane:
          mtls: true
        identity:
          type: ThirdParty
      tracing:
        type: None
    ---
    apiVersion: maistra.io/v1
    kind: ServiceMeshMemberRoll
    metadata:
      name: default
    spec:
      members:
      - httpbin
      - sleep

Note

security.identity.type: ThirdParty must be set when security.certificateAuthority.type: cert-manager is configured.

Verification

Use the sample httpbin service and sleep app to check mTLS traffic from ingress gateways and verify that the cert-manager tool is installed.

  1. Deploy the HTTP and sleep apps:

    $ oc new-project <namespace>
    $ oc apply -f https://raw.githubusercontent.com/maistra/istio/maistra-2.4/samples/httpbin/httpbin.yaml
    $ oc apply -f https://raw.githubusercontent.com/maistra/istio/maistra-2.4/samples/sleep/sleep.yaml
  2. Verify that sleep can access the httpbin service:

    $ oc exec "$(oc get pod -l app=sleep -n <namespace> \
       -o jsonpath={.items..metadata.name})" -c sleep -n <namespace> -- \
       curl http://httpbin.<namespace>:8000/ip -s -o /dev/null \
       -w "%{http_code}\n"

    Example output

    200

  3. Check mTLS traffic from the ingress gateway to the httpbin service:

    $ oc apply -n <namespace> -f https://raw.githubusercontent.com/maistra/istio/maistra-2.4/samples/httpbin/httpbin-gateway.yaml
  4. Get the istio-ingressgateway route:

    INGRESS_HOST=$(oc -n istio-system get routes istio-ingressgateway -o jsonpath='{.spec.host}')
  5. Verify mTLS traffic from the ingress gateway to the httpbin service:

    $ curl -s -I http://$INGRESS_HOST/headers -o /dev/null -w "%{http_code}" -s

1.13.7. Additional resources

For information about how to install the cert-manager Operator for Red Hat OpenShift Service on AWS, see: Installing the cert-manager Operator for Red Hat OpenShift.

1.14. Managing traffic in your service mesh

Using Red Hat OpenShift Service Mesh, you can control the flow of traffic and API calls between services. Some services in your service mesh might need to communicate within the mesh and others might need to be hidden. You can manage the traffic to hide specific backend services, expose services, create testing or versioning deployments, or add a security layer on a set of services.

1.14.1. Using gateways

You can use a gateway to manage inbound and outbound traffic for your mesh to specify which traffic you want to enter or leave the mesh. Gateway configurations are applied to standalone Envoy proxies that are running at the edge of the mesh, rather than sidecar Envoy proxies running alongside your service workloads.

Unlike other mechanisms for controlling traffic entering your systems, such as the Kubernetes Ingress APIs, Red Hat OpenShift Service Mesh gateways use the full power and flexibility of traffic routing.

The Red Hat OpenShift Service Mesh gateway resource can use layer 4-6 load balancing properties, such as ports, to expose and configure Red Hat OpenShift Service Mesh TLS settings. Instead of adding application-layer traffic routing (L7) to the same API resource, you can bind a regular Red Hat OpenShift Service Mesh virtual service to the gateway and manage gateway traffic like any other data plane traffic in a service mesh.

Gateways are primarily used to manage ingress traffic, but you can also configure egress gateways. An egress gateway lets you configure a dedicated exit node for the traffic leaving the mesh. This enables you to limit which services have access to external networks, which adds security control to your service mesh. You can also use a gateway to configure a purely internal proxy.

Gateway example

A gateway resource describes a load balancer operating at the edge of the mesh receiving incoming or outgoing HTTP/TCP connections. The specification describes a set of ports that should be exposed, the type of protocol to use, SNI configuration for the load balancer, and so on.

The following example shows a sample gateway configuration for external HTTPS ingress traffic:

apiVersion: networking.istio.io/v1alpha3
kind: Gateway
metadata:
  name: ext-host-gwy
spec:
  selector:
    istio: ingressgateway # use istio default controller
  servers:
  - port:
      number: 443
      name: https
      protocol: HTTPS
    hosts:
    - ext-host.example.com
    tls:
      mode: SIMPLE
      serverCertificate: /tmp/tls.crt
      privateKey: /tmp/tls.key

This gateway configuration lets HTTPS traffic from ext-host.example.com into the mesh on port 443, but doesn’t specify any routing for the traffic.

To specify routing and for the gateway to work as intended, you must also bind the gateway to a virtual service. You do this using the virtual service’s gateways field, as shown in the following example:

apiVersion: networking.istio.io/v1alpha3
kind: VirtualService
metadata:
  name: virtual-svc
spec:
  hosts:
  - ext-host.example.com
  gateways:
    - ext-host-gwy

You can then configure the virtual service with routing rules for the external traffic.

1.14.1.1. Managing ingress traffic

In Red Hat OpenShift Service Mesh, the Ingress Gateway enables features such as monitoring, security, and route rules to apply to traffic that enters the cluster. Use a Service Mesh gateway to expose a service outside of the service mesh.

1.14.1.1.1. Determining the ingress IP and ports

Ingress configuration differs depending on if your environment supports an external load balancer. An external load balancer is set in the ingress IP and ports for the cluster. To determine if your cluster’s IP and ports are configured for external load balancers, run the following command. In this example, istio-system is the name of the Service Mesh control plane project.

$ oc get svc istio-ingressgateway -n istio-system

That command returns the NAME, TYPE, CLUSTER-IP, EXTERNAL-IP, PORT(S), and AGE of each item in your namespace.

If the EXTERNAL-IP value is set, your environment has an external load balancer that you can use for the ingress gateway.

If the EXTERNAL-IP value is <none>, or perpetually <pending>, your environment does not provide an external load balancer for the ingress gateway.

1.14.1.1.1.1. Determining ingress ports with a load balancer

Follow these instructions if your environment has an external load balancer.

Procedure

  1. Run the following command to set the ingress IP and ports. This command sets a variable in your terminal.

    $ export INGRESS_HOST=$(oc -n istio-system get service istio-ingressgateway -o jsonpath='{.status.loadBalancer.ingress[0].ip}')
  2. Run the following command to set the ingress port.

    $ export INGRESS_PORT=$(oc -n istio-system get service istio-ingressgateway -o jsonpath='{.spec.ports[?(@.name=="http2")].port}')
  3. Run the following command to set the secure ingress port.

    $ export SECURE_INGRESS_PORT=$(oc -n istio-system get service istio-ingressgateway -o jsonpath='{.spec.ports[?(@.name=="https")].port}')
  4. Run the following command to set the TCP ingress port.

    $ export TCP_INGRESS_PORT=$(kubectl -n istio-system get service istio-ingressgateway -o jsonpath='{.spec.ports[?(@.name=="tcp")].port}')
Note

In some environments, the load balancer may be exposed using a hostname instead of an IP address. For that case, the ingress gateway’s EXTERNAL-IP value is not an IP address. Instead, it is a hostname, and the previous command fails to set the INGRESS_HOST environment variable.

In that case, use the following command to correct the INGRESS_HOST value:

$ export INGRESS_HOST=$(oc -n istio-system get service istio-ingressgateway -o jsonpath='{.status.loadBalancer.ingress[0].hostname}')
1.14.1.1.1.2. Determining ingress ports without a load balancer

If your environment does not have an external load balancer, determine the ingress ports and use a node port instead.

Procedure

  1. Set the ingress ports.

    $ export INGRESS_PORT=$(oc -n istio-system get service istio-ingressgateway -o jsonpath='{.spec.ports[?(@.name=="http2")].nodePort}')
  2. Run the following command to set the secure ingress port.

    $ export SECURE_INGRESS_PORT=$(oc -n istio-system get service istio-ingressgateway -o jsonpath='{.spec.ports[?(@.name=="https")].nodePort}')
  3. Run the following command to set the TCP ingress port.

    $ export TCP_INGRESS_PORT=$(kubectl -n istio-system get service istio-ingressgateway -o jsonpath='{.spec.ports[?(@.name=="tcp")].nodePort}')
1.14.1.2. Configuring an ingress gateway

An ingress gateway is a load balancer operating at the edge of the mesh that receives incoming HTTP/TCP connections. It configures exposed ports and protocols but does not include any traffic routing configuration. Traffic routing for ingress traffic is instead configured with routing rules, the same way as for internal service requests.

The following steps show how to create a gateway and configure a VirtualService to expose a service in the Bookinfo sample application to outside traffic for paths /productpage and /login.

Procedure

  1. Create a gateway to accept traffic.

    1. Create a YAML file, and copy the following YAML into it.

      Gateway example gateway.yaml

      apiVersion: networking.istio.io/v1alpha3
      kind: Gateway
      metadata:
        name: bookinfo-gateway
      spec:
        selector:
          istio: ingressgateway
        servers:
        - port:
            number: 80
            name: http
            protocol: HTTP
          hosts:
          - "*"

    2. Apply the YAML file.

      $ oc apply -f gateway.yaml
  2. Create a VirtualService object to rewrite the host header.

    1. Create a YAML file, and copy the following YAML into it.

      Virtual service example

      apiVersion: networking.istio.io/v1alpha3
      kind: VirtualService
      metadata:
        name: bookinfo
      spec:
        hosts:
        - "*"
        gateways:
        - bookinfo-gateway
        http:
        - match:
          - uri:
              exact: /productpage
          - uri:
              prefix: /static
          - uri:
              exact: /login
          - uri:
              exact: /logout
          - uri:
              prefix: /api/v1/products
          route:
          - destination:
              host: productpage
              port:
                number: 9080

    2. Apply the YAML file.

      $ oc apply -f vs.yaml
  3. Test that the gateway and VirtualService have been set correctly.

    1. Set the Gateway URL.

      export GATEWAY_URL=$(oc -n istio-system get route istio-ingressgateway -o jsonpath='{.spec.host}')
    2. Set the port number. In this example, istio-system is the name of the Service Mesh control plane project.

      export TARGET_PORT=$(oc -n istio-system get route istio-ingressgateway -o jsonpath='{.spec.port.targetPort}')
    3. Test a page that has been explicitly exposed.

      curl -s -I "$GATEWAY_URL/productpage"

      The expected result is 200.

1.14.2. Understanding automatic routes

Important

Istio OpenShift Routing (IOR) is a deprecated feature. Deprecated functionality is still included in Red Hat OpenShift Service on AWS and continues to be supported; however, it will be removed in a future release of this product and is not recommended for new deployments.

For the most recent list of major functionality that has been deprecated or removed within Red Hat OpenShift Service on AWS, refer to the Deprecated and removed features section of the Red Hat OpenShift Service on AWS release notes.

OpenShift routes for gateways are automatically managed in Service Mesh. Every time an Istio Gateway is created, updated or deleted inside the service mesh, an OpenShift route is created, updated or deleted.

Note

Starting with Service Mesh 2.5, automatic routes are disabled by default for new instances of the ServiceMeshControlPlane resource.

1.14.2.1. Routes with subdomains

Red Hat OpenShift Service Mesh creates the route with the subdomain, but Red Hat OpenShift Service on AWS must be configured to enable it. Subdomains, for example *.domain.com, are supported, but not by default. Configure an Red Hat OpenShift Service on AWS wildcard policy before configuring a wildcard host gateway.

1.14.2.2. Creating subdomain routes

The following example creates a gateway in the Bookinfo sample application, which creates subdomain routes.

apiVersion: networking.istio.io/v1alpha3
kind: Gateway
metadata:
  name: gateway1
spec:
  selector:
    istio: ingressgateway
  servers:
  - port:
      number: 80
      name: http
      protocol: HTTP
    hosts:
    - www.bookinfo.com
    - bookinfo.example.com

The Gateway resource creates the following OpenShift routes. You can check that the routes are created by using the following command. In this example, istio-system is the name of the Service Mesh control plane project.

$ oc -n istio-system get routes

Expected output

NAME           HOST/PORT             PATH  SERVICES               PORT  TERMINATION   WILDCARD
gateway1-lvlfn bookinfo.example.com        istio-ingressgateway   <all>               None
gateway1-scqhv www.bookinfo.com            istio-ingressgateway   <all>               None

If you delete the gateway, Red Hat OpenShift Service Mesh deletes the routes. However, routes you have manually created are never modified by Red Hat OpenShift Service Mesh.

1.14.2.3. Route labels and annotations

Sometimes specific labels or annotations are needed in an OpenShift route.

For this and other use cases, Red Hat OpenShift Service Mesh will copy all labels and annotations present in the Istio gateway resource (with the exception of annotations starting with kubectl.kubernetes.io) into the managed OpenShift route resource.

If you need specific labels or annotations in the OpenShift routes created by Service Mesh, create them in the Istio gateway resource and they will be copied into the OpenShift route resources managed by the Service Mesh.

1.14.2.4. Disabling automatic route creation

By default, the ServiceMeshControlPlane resource automatically synchronizes the Istio gateway resources with OpenShift routes. Disabling the automatic route creation allows you more flexibility to control routes if you have a special case or prefer to control routes manually.

1.14.2.4.1. Disabling automatic route creation for specific cases

If you want to disable the automatic management of OpenShift routes for a specific Istio gateway, you must add the annotation maistra.io/manageRoute: false to the gateway metadata definition. Red Hat OpenShift Service Mesh will ignore Istio gateways with this annotation, while keeping the automatic management of the other Istio gateways.

1.14.2.4.2. Disabling automatic route creation for all cases

You can disable the automatic management of OpenShift routes for all gateways in your mesh.

Disable integration between Istio gateways and OpenShift routes by setting the ServiceMeshControlPlane field gateways.openshiftRoute.enabled to false. For example, see the following resource snippet.

apiVersion: maistra.io/v1alpha1
kind: ServiceMeshControlPlane
metadata:
  namespace: istio-system
spec:
  gateways:
    openshiftRoute:
      enabled: false

1.14.3. Understanding service entries

A service entry adds an entry to the service registry that Red Hat OpenShift Service Mesh maintains internally. After you add the service entry, the Envoy proxies send traffic to the service as if it is a service in your mesh. Service entries allow you to do the following:

  • Manage traffic for services that run outside of the service mesh.
  • Redirect and forward traffic for external destinations (such as, APIs consumed from the web) or traffic to services in legacy infrastructure.
  • Define retry, timeout, and fault injection policies for external destinations.
  • Run a mesh service in a Virtual Machine (VM) by adding VMs to your mesh.
Note

Add services from a different cluster to the mesh to configure a multicluster Red Hat OpenShift Service Mesh mesh on Kubernetes.

Service entry examples

The following example is a mesh-external service entry that adds the ext-resource external dependency to the Red Hat OpenShift Service Mesh service registry:

apiVersion: networking.istio.io/v1alpha3
kind: ServiceEntry
metadata:
  name: svc-entry
spec:
  hosts:
  - ext-svc.example.com
  ports:
  - number: 443
    name: https
    protocol: HTTPS
  location: MESH_EXTERNAL
  resolution: DNS

Specify the external resource using the hosts field. You can qualify it fully or use a wildcard prefixed domain name.

You can configure virtual services and destination rules to control traffic to a service entry in the same way you configure traffic for any other service in the mesh. For example, the following destination rule configures the traffic route to use mutual TLS to secure the connection to the ext-svc.example.com external service that is configured using the service entry:

apiVersion: networking.istio.io/v1alpha3
kind: DestinationRule
metadata:
  name: ext-res-dr
spec:
  host: ext-svc.example.com
  trafficPolicy:
    tls:
      mode: MUTUAL
      clientCertificate: /etc/certs/myclientcert.pem
      privateKey: /etc/certs/client_private_key.pem
      caCertificates: /etc/certs/rootcacerts.pem

1.14.4. Using VirtualServices

You can route requests dynamically to multiple versions of a microservice through Red Hat OpenShift Service Mesh with a virtual service. With virtual services, you can:

  • Address multiple application services through a single virtual service. If your mesh uses Kubernetes, for example, you can configure a virtual service to handle all services in a specific namespace. A virtual service enables you to turn a monolithic application into a service consisting of distinct microservices with a seamless consumer experience.
  • Configure traffic rules in combination with gateways to control ingress and egress traffic.
1.14.4.1. Configuring VirtualServices

Requests are routed to services within a service mesh with virtual services. Each virtual service consists of a set of routing rules that are evaluated in order. Red Hat OpenShift Service Mesh matches each given request to the virtual service to a specific real destination within the mesh.

Without virtual services, Red Hat OpenShift Service Mesh distributes traffic using least requests load balancing between all service instances. With a virtual service, you can specify traffic behavior for one or more hostnames. Routing rules in the virtual service tell Red Hat OpenShift Service Mesh how to send the traffic for the virtual service to appropriate destinations. Route destinations can be versions of the same service or entirely different services.

Procedure

  1. Create a YAML file using the following example to route requests to different versions of the Bookinfo sample application service depending on which user connects to the application.

    Example VirtualService.yaml

    apiVersion: networking.istio.io/v1alpha3
    kind: VirtualService
    metadata:
      name: reviews
    spec:
      hosts:
      - reviews
      http:
      - match:
        - headers:
            end-user:
              exact: jason
        route:
        - destination:
            host: reviews
            subset: v2
      - route:
        - destination:
            host: reviews
            subset: v3

  2. Run the following command to apply VirtualService.yaml, where VirtualService.yaml is the path to the file.

    $ oc apply -f <VirtualService.yaml>
1.14.4.2. VirtualService configuration reference
ParameterDescription
spec:
  hosts:

The hosts field lists the virtual service’s destination address to which the routing rules apply. This is the address(es) that are used to send requests to the service. The virtual service hostname can be an IP address, a DNS name, or a short name that resolves to a fully qualified domain name.

spec:
  http:
  - match:

The http section contains the virtual service’s routing rules which describe match conditions and actions for routing HTTP/1.1, HTTP2, and gRPC traffic sent to the destination as specified in the hosts field. A routing rule consists of the destination where you want the traffic to go and any specified match conditions. The first routing rule in the example has a condition that begins with the match field. In this example, this routing applies to all requests from the user jason. Add the headers, end-user, and exact fields to select the appropriate requests.

spec:
  http:
  - match:
    - destination:

The destination field in the route section specifies the actual destination for traffic that matches this condition. Unlike the virtual service’s host, the destination’s host must be a real destination that exists in the Red Hat OpenShift Service Mesh service registry. This can be a mesh service with proxies or a non-mesh service added using a service entry. In this example, the hostname is a Kubernetes service name:

1.14.5. Understanding destination rules

Destination rules are applied after virtual service routing rules are evaluated, so they apply to the traffic’s real destination. Virtual services route traffic to a destination. Destination rules configure what happens to traffic at that destination.

By default, Red Hat OpenShift Service Mesh uses a least requests load balancing policy, where the service instance in the pool with the least number of active connections receives the request. Red Hat OpenShift Service Mesh also supports the following models, which you can specify in destination rules for requests to a particular service or service subset.

  • Random: Requests are forwarded at random to instances in the pool.
  • Weighted: Requests are forwarded to instances in the pool according to a specific percentage.
  • Least requests: Requests are forwarded to instances with the least number of requests.

Destination rule example

The following example destination rule configures three different subsets for the my-svc destination service, with different load balancing policies:

apiVersion: networking.istio.io/v1alpha3
kind: DestinationRule
metadata:
  name: my-destination-rule
spec:
  host: my-svc
  trafficPolicy:
    loadBalancer:
      simple: RANDOM
  subsets:
  - name: v1
    labels:
      version: v1
  - name: v2
    labels:
      version: v2
    trafficPolicy:
      loadBalancer:
        simple: ROUND_ROBIN
  - name: v3
    labels:
      version: v3

1.14.6. Understanding network policies

Red Hat OpenShift Service Mesh automatically creates and manages a number of NetworkPolicies resources in the Service Mesh control plane and application namespaces. This is to ensure that applications and the control plane can communicate with each other.

For example, if you have configured your Red Hat OpenShift Service on AWS cluster to use the SDN plugin, Red Hat OpenShift Service Mesh creates a NetworkPolicy resource in each member project. This enables ingress to all pods in the mesh from the other mesh members and the control plane. This also restricts ingress to only member projects. If you require ingress from non-member projects, you need to create a NetworkPolicy to allow that traffic through. If you remove a namespace from Service Mesh, this NetworkPolicy resource is deleted from the project.

1.14.6.1. Disabling automatic NetworkPolicy creation

If you want to disable the automatic creation and management of NetworkPolicy resources, for example to enforce company security policies, or to allow direct access to pods in the mesh, you can do so. You can edit the ServiceMeshControlPlane and set spec.security.manageNetworkPolicy to false.

Note

When you disable spec.security.manageNetworkPolicy Red Hat OpenShift Service Mesh will not create any NetworkPolicy objects. The system administrator is responsible for managing the network and fixing any issues this might cause.

Prerequisites

  • Red Hat OpenShift Service Mesh Operator version 2.1.1 or higher installed.
  • ServiceMeshControlPlane resource updated to version 2.1 or higher.

Procedure

  1. In the Red Hat OpenShift Service on AWS web console, click OperatorsInstalled Operators.
  2. Select the project where you installed the Service Mesh control plane, for example istio-system, from the Project menu.
  3. Click the Red Hat OpenShift Service Mesh Operator. In the Istio Service Mesh Control Plane column, click the name of your ServiceMeshControlPlane, for example basic-install.
  4. On the Create ServiceMeshControlPlane Details page, click YAML to modify your configuration.
  5. Set the ServiceMeshControlPlane field spec.security.manageNetworkPolicy to false, as shown in this example.

    apiVersion: maistra.io/v2
    kind: ServiceMeshControlPlane
    spec:
      security:
          manageNetworkPolicy: false
  6. Click Save.

1.14.7. Configuring sidecars for traffic management

By default, Red Hat OpenShift Service Mesh configures every Envoy proxy to accept traffic on all the ports of its associated workload, and to reach every workload in the mesh when forwarding traffic. You can use a sidecar configuration to do the following:

  • Fine-tune the set of ports and protocols that an Envoy proxy accepts.
  • Limit the set of services that the Envoy proxy can reach.
Note

To optimize performance of your service mesh, consider limiting Envoy proxy configurations.

In the Bookinfo sample application, configure a Sidecar so all services can reach other services running in the same namespace and control plane. This Sidecar configuration is required for using Red Hat OpenShift Service Mesh policy and telemetry features.

Procedure

  1. Create a YAML file using the following example to specify that you want a sidecar configuration to apply to all workloads in a particular namespace. Otherwise, choose specific workloads using a workloadSelector.

    Example sidecar.yaml

    apiVersion: networking.istio.io/v1alpha3
    kind: Sidecar
    metadata:
      name: default
      namespace: bookinfo
    spec:
      egress:
      - hosts:
        - "./*"
        - "istio-system/*"

  2. Run the following command to apply sidecar.yaml, where sidecar.yaml is the path to the file.

    $ oc apply -f sidecar.yaml
  3. Run the following command to verify that the sidecar was created successfully.

    $ oc get sidecar

1.14.8. Routing Tutorial

This guide references the Bookinfo sample application to provide examples of routing in an example application. Install the Bookinfo application to learn how these routing examples work.

1.14.8.1. Bookinfo routing tutorial

The Service Mesh Bookinfo sample application consists of four separate microservices, each with multiple versions. After installing the Bookinfo sample application, three different versions of the reviews microservice run concurrently.

When you access the Bookinfo app /product page in a browser and refresh several times, sometimes the book review output contains star ratings and other times it does not. Without an explicit default service version to route to, Service Mesh routes requests to all available versions one after the other.

This tutorial helps you apply rules that route all traffic to v1 (version 1) of the microservices. Later, you can apply a rule to route traffic based on the value of an HTTP request header.

Prerequisites

  • Deploy the Bookinfo sample application to work with the following examples.
1.14.8.2. Applying a virtual service

In the following procedure, the virtual service routes all traffic to v1 of each micro-service by applying virtual services that set the default version for the micro-services.

Procedure

  1. Apply the virtual services.

    $ oc apply -f https://raw.githubusercontent.com/Maistra/istio/maistra-2.6/samples/bookinfo/networking/virtual-service-all-v1.yaml
  2. To verify that you applied the virtual services, display the defined routes with the following command:

    $ oc get virtualservices -o yaml

    That command returns a resource of kind: VirtualService in YAML format.

You have configured Service Mesh to route to the v1 version of the Bookinfo microservices including the reviews service version 1.

1.14.8.3. Testing the new route configuration

Test the new configuration by refreshing the /productpage of the Bookinfo application.

Procedure

  1. Set the value for the GATEWAY_URL parameter. You can use this variable to find the URL for your Bookinfo product page later. In this example, istio-system is the name of the control plane project.

    export GATEWAY_URL=$(oc -n istio-system get route istio-ingressgateway -o jsonpath='{.spec.host}')
  2. Run the following command to retrieve the URL for the product page.

    echo "http://$GATEWAY_URL/productpage"
  3. Open the Bookinfo site in your browser.

The reviews part of the page displays with no rating stars, no matter how many times you refresh. This is because you configured Service Mesh to route all traffic for the reviews service to the version reviews:v1 and this version of the service does not access the star ratings service.

Your service mesh now routes traffic to one version of a service.

1.14.8.4. Route based on user identity

Change the route configuration so that all traffic from a specific user is routed to a specific service version. In this case, all traffic from a user named jason will be routed to the service reviews:v2.

Service Mesh does not have any special, built-in understanding of user identity. This example is enabled by the fact that the productpage service adds a custom end-user header to all outbound HTTP requests to the reviews service.

Procedure

  1. Run the following command to enable user-based routing in the Bookinfo sample application.

    $ oc apply -f https://raw.githubusercontent.com/Maistra/istio/maistra-2.6/samples/bookinfo/networking/virtual-service-reviews-test-v2.yaml
  2. Run the following command to confirm the rule is created. This command returns all resources of kind: VirtualService in YAML format.

    $ oc get virtualservice reviews -o yaml
  3. On the /productpage of the Bookinfo app, log in as user jason with no password.
  4. Refresh the browser. The star ratings appear next to each review.
  5. Log in as another user (pick any name you want). Refresh the browser. Now the stars are gone. Traffic is now routed to reviews:v1 for all users except Jason.

You have successfully configured the Bookinfo sample application to route traffic based on user identity.

1.15. Metrics, logs, and traces

Once you have added your application to the mesh, you can observe the data flow through your application. If you do not have your own application installed, you can see how observability works in Red Hat OpenShift Service Mesh by installing the Bookinfo sample application.

1.15.1. Discovering console addresses

Red Hat OpenShift Service Mesh provides the following consoles to view your service mesh data:

  • Kiali console - Kiali is the management console for Red Hat OpenShift Service Mesh.
  • Jaeger console - Jaeger is the management console for Red Hat OpenShift distributed tracing platform.
  • Grafana console - Grafana provides mesh administrators with advanced query and metrics analysis and dashboards for Istio data. Optionally, Grafana can be used to analyze service mesh metrics.
  • Prometheus console - Red Hat OpenShift Service Mesh uses Prometheus to store telemetry information from services.

When you install the Service Mesh control plane, it automatically generates routes for each of the installed components. Once you have the route address, you can access the Kiali, Jaeger, Prometheus, or Grafana console to view and manage your service mesh data.

Prerequisite

  • The component must be enabled and installed. For example, if you did not install distributed tracing, you will not be able to access the Jaeger console.

Procedure from OpenShift console

  1. Log in to the Red Hat OpenShift Service on AWS web console as a user with cluster-admin rights. If you use Red Hat OpenShift Dedicated, you must have an account with the dedicated-admin role.
  2. Navigate to NetworkingRoutes.
  3. On the Routes page, select the Service Mesh control plane project, for example istio-system, from the Namespace menu.

    The Location column displays the linked address for each route.

  4. If necessary, use the filter to find the component console whose route you want to access. Click the route Location to launch the console.
  5. Click Log In With OpenShift.

Procedure from the CLI

  1. Log in to the Red Hat OpenShift Service on AWS CLI as a user with the cluster-admin role. If you use Red Hat OpenShift Dedicated, you must have an account with the dedicated-admin role.

    $ oc login --username=<NAMEOFUSER> https://<HOSTNAME>:6443
  2. Switch to the Service Mesh control plane project. In this example, istio-system is the Service Mesh control plane project. Run the following command:

    $ oc project istio-system
  3. To get the routes for the various Red Hat OpenShift Service Mesh consoles, run the folowing command:

    $ oc get routes

    This command returns the URLs for the Kiali, Jaeger, Prometheus, and Grafana web consoles, and any other routes in your service mesh. You should see output similar to the following:

    NAME                    HOST/PORT                         SERVICES              PORT    TERMINATION
    bookinfo-gateway        bookinfo-gateway-yourcompany.com  istio-ingressgateway          http2
    grafana                 grafana-yourcompany.com           grafana               <all>   reencrypt/Redirect
    istio-ingressgateway    istio-ingress-yourcompany.com     istio-ingressgateway  8080
    jaeger                  jaeger-yourcompany.com            jaeger-query          <all>   reencrypt
    kiali                   kiali-yourcompany.com             kiali                 20001   reencrypt/Redirect
    prometheus              prometheus-yourcompany.com        prometheus            <all>   reencrypt/Redirect
  4. Copy the URL for the console you want to access from the HOST/PORT column into a browser to open the console.
  5. Click Log In With OpenShift.

1.15.2. Accessing the Kiali console

You can view your application’s topology, health, and metrics in the Kiali console. If your service is experiencing problems, the Kiali console lets you view the data flow through your service. You can view insights about the mesh components at different levels, including abstract applications, services, and workloads. Kiali also provides an interactive graph view of your namespace in real time.

To access the Kiali console you must have Red Hat OpenShift Service Mesh installed, Kiali installed and configured.

The installation process creates a route to access the Kiali console.

If you know the URL for the Kiali console, you can access it directly. If you do not know the URL, use the following directions.

Procedure for administrators

  1. Log in to the Red Hat OpenShift Service on AWS web console with an administrator role.
  2. Click HomeProjects.
  3. On the Projects page, if necessary, use the filter to find the name of your project.
  4. Click the name of your project, for example, bookinfo.
  5. On the Project details page, in the Launcher section, click the Kiali link.
  6. Log in to the Kiali console with the same user name and password that you use to access the Red Hat OpenShift Service on AWS console.

    When you first log in to the Kiali Console, you see the Overview page which displays all the namespaces in your service mesh that you have permission to view.

    If you are validating the console installation and namespaces have not yet been added to the mesh, there might not be any data to display other than istio-system.

Procedure for developers

  1. Log in to the Red Hat OpenShift Service on AWS web console with a developer role.
  2. Click Project.
  3. On the Project Details page, if necessary, use the filter to find the name of your project.
  4. Click the name of your project, for example, bookinfo.
  5. On the Project page, in the Launcher section, click the Kiali link.
  6. Click Log In With OpenShift.

1.15.3. Viewing service mesh data in the Kiali console

The Kiali Graph offers a powerful visualization of your mesh traffic. The topology combines real-time request traffic with your Istio configuration information to present immediate insight into the behavior of your service mesh, letting you quickly pinpoint issues. Multiple Graph Types let you visualize traffic as a high-level service topology, a low-level workload topology, or as an application-level topology.

There are several graphs to choose from:

  • The App graph shows an aggregate workload for all applications that are labeled the same.
  • The Service graph shows a node for each service in your mesh but excludes all applications and workloads from the graph. It provides a high level view and aggregates all traffic for defined services.
  • The Versioned App graph shows a node for each version of an application. All versions of an application are grouped together.
  • The Workload graph shows a node for each workload in your service mesh. This graph does not require you to use the application and version labels. If your application does not use version labels, use this the graph.

Graph nodes are decorated with a variety of information, pointing out various route routing options like virtual services and service entries, as well as special configuration like fault-injection and circuit breakers. It can identify mTLS issues, latency issues, error traffic and more. The Graph is highly configurable, can show traffic animation, and has powerful Find and Hide abilities.

Click the Legend button to view information about the shapes, colors, arrows, and badges displayed in the graph.

To view a summary of metrics, select any node or edge in the graph to display its metric details in the summary details panel.

1.15.3.1. Changing graph layouts in Kiali

The layout for the Kiali graph can render differently depending on your application architecture and the data to display. For example, the number of graph nodes and their interactions can determine how the Kiali graph is rendered. Because it is not possible to create a single layout that renders nicely for every situation, Kiali offers a choice of several different layouts.

Prerequisites

  • If you do not have your own application installed, install the Bookinfo sample application. Then generate traffic for the Bookinfo application by entering the following command several times.

    $ curl "http://$GATEWAY_URL/productpage"

    This command simulates a user visiting the productpage microservice of the application.

Procedure

  1. Launch the Kiali console.
  2. Click Log In With OpenShift.
  3. In Kiali console, click Graph to view a namespace graph.
  4. From the Namespace menu, select your application namespace, for example, bookinfo.
  5. To choose a different graph layout, do either or both of the following:

    • Select different graph data groupings from the menu at the top of the graph.

      • App graph
      • Service graph
      • Versioned App graph (default)
      • Workload graph
    • Select a different graph layout from the Legend at the bottom of the graph.

      • Layout default dagre
      • Layout 1 cose-bilkent
      • Layout 2 cola
1.15.3.2. Viewing logs in the Kiali console

You can view logs for your workloads in the Kiali console. The Workload Detail page includes a Logs tab which displays a unified logs view that displays both application and proxy logs. You can select how often you want the log display in Kiali to be refreshed.

To change the logging level on the logs displayed in Kiali, you change the logging configuration for the workload or the proxy.

Prerequisites

  • Service Mesh installed and configured.
  • Kiali installed and configured.
  • The address for the Kiali console.
  • Application or Bookinfo sample application added to the mesh.

Procedure

  1. Launch the Kiali console.
  2. Click Log In With OpenShift.

    The Kiali Overview page displays namespaces that have been added to the mesh that you have permissions to view.

  3. Click Workloads.
  4. On the Workloads page, select the project from the Namespace menu.
  5. If necessary, use the filter to find the workload whose logs you want to view. Click the workload Name. For example, click ratings-v1.
  6. On the Workload Details page, click the Logs tab to view the logs for the workload.
Tip

If you do not see any log entries, you may need to adjust either the Time Range or the Refresh interval.

1.15.3.3. Viewing metrics in the Kiali console

You can view inbound and outbound metrics for your applications, workloads, and services in the Kiali console. The Detail pages include the following tabs:

  • inbound Application metrics
  • outbound Application metrics
  • inbound Workload metrics
  • outbound Workload metrics
  • inbound Service metrics

These tabs display predefined metrics dashboards, tailored to the relevant application, workload or service level. The application and workload detail views show request and response metrics such as volume, duration, size, or TCP traffic. The service detail view shows request and response metrics for inbound traffic only.

Kiali lets you customize the charts by choosing the charted dimensions. Kiali can also present metrics reported by either source or destination proxy metrics. And for troubleshooting, Kiali can overlay trace spans on the metrics.

Prerequisites

  • Service Mesh installed and configured.
  • Kiali installed and configured.
  • The address for the Kiali console.
  • (Optional) Distributed tracing installed and configured.

Procedure

  1. Launch the Kiali console.
  2. Click Log In With OpenShift.

    The Kiali Overview page displays namespaces that have been added to the mesh that you have permissions to view.

  3. Click either Applications, Workloads, or Services.
  4. On the Applications, Workloads, or Services page, select the project from the Namespace menu.
  5. If necessary, use the filter to find the application, workload, or service whose logs you want to view. Click the Name.
  6. On the Application Detail, Workload Details, or Service Details page, click either the Inbound Metrics or Outbound Metrics tab to view the metrics.

1.15.4. Distributed tracing

Distributed tracing is the process of tracking the performance of individual services in an application by tracing the path of the service calls in the application. Each time a user takes action in an application, a request is executed that might require many services to interact to produce a response. The path of this request is called a distributed transaction.

Red Hat OpenShift Service Mesh uses Red Hat OpenShift distributed tracing platform to allow developers to view call flows in a microservice application.

1.15.4.1. Configuring the Red Hat OpenShift distributed tracing platform (Tempo) and the Red Hat build of OpenTelemetry

You can expose tracing data to the Red Hat OpenShift distributed tracing platform (Tempo) by appending a named element and the opentelemetry provider to the spec.meshConfig.extensionProviders specification in the ServiceMeshControlPlane. Then, a telemetry custom resource configures Istio proxies to collect trace spans and send them to the OpenTelemetry Collector endpoint.

You can create a Red Hat build of OpenTelemetry instance in a mesh namespace and configure it to send tracing data to a tracing platform backend service.

Prerequisites

  • You created a TempoStack instance using the Red Hat Tempo Operator in the tracing-system namespace. For more information, see "Installing Red Hat OpenShift distributed tracing platform (Tempo)".
  • You installed the Red Hat build of OpenTelemetry Operator in either the recommended namespace or the openshift-operators namespace. For more information, see "Installing the Red Hat build of OpenTelemetry".
  • If using Red Hat OpenShift Service Mesh 2.5 or earlier, set the spec.tracing.type parameter of the ServiceMeshControlPlane resource to None so tracing data can be sent to the OpenTelemetry Collector.

Procedure

  1. Create an OpenTelemetry Collector instance in a mesh namespace. This example uses the bookinfo namespace:

    Example OpenTelemetry Collector configuration

    apiVersion: opentelemetry.io/v1alpha1
    kind: OpenTelemetryCollector
    metadata:
      name: otel
      namespace: bookinfo  1
    spec:
      mode: deployment
      config: |
        receivers:
          otlp:
            protocols:
              grpc:
                endpoint: 0.0.0.0:4317
        exporters:
          otlp:
            endpoint: "tempo-sample-distributor.tracing-system.svc.cluster.local:4317" 2
            tls:
              insecure: true
        service:
          pipelines:
            traces:
              receivers: [otlp]
              processors: []
              exporters: [otlp]

    1
    Include the namespace in the ServiceMeshMemberRoll member list.
    2
    In this example, a TempoStack instance is running in the tracing-system namespace. You do not have to include the TempoStack namespace, such as`tracing-system`, in the ServiceMeshMemberRoll member list.
    Note
    • Create a single instance of the OpenTelemetry Collector in one of the ServiceMeshMemberRoll member namespaces.
    • You can add an otel-collector as a part of the mesh by adding sidecar.istio.io/inject: 'true' to the OpenTelemetryCollector resource.
  2. Check the otel-collector pod log and verify that the pod is running:

    Example otel-collector pod log check

    $ oc logs -n bookinfo  -l app.kubernetes.io/name=otel-collector

  3. Create or update an existing ServiceMeshControlPlane custom resource (CR) in the istio-system namespace:

    Example SMCP custom resource

    kind: ServiceMeshControlPlane
    apiVersion: maistra.io/v2
    metadata:
      name: basic
      namespace: istio-system
    spec:
      addons:
        grafana:
          enabled: false
        kiali:
          enabled: true
        prometheus:
          enabled: true
      meshConfig:
        extensionProviders:
          - name: otel
            opentelemetry:
              port: 4317
              service: otel-collector.bookinfo.svc.cluster.local
      policy:
        type: Istiod
      telemetry:
        type: Istiod
      version: v2.6

    Note

    When upgrading from SMCP 2.5 to 2.6, set the spec.tracing.type parameter to None:

    Example SMCP spec.tracing.type parameter

    spec:
      tracing:
        type: None

  4. Create a Telemetry resource in the istio-system namespace:

    Example Telemetry resource

    apiVersion: telemetry.istio.io/v1alpha1
    kind: Telemetry
    metadata:
      name: mesh-default
      namespace: istio-system
    spec:
      tracing:
      - providers:
        - name: otel
        randomSamplingPercentage: 100

  5. Verify the istiod log.
  6. Configure the Kiali resource specification to enable a Kiali workload traces dashboard. You can use the dashboard to view tracing query results.

    Example Kiali resource

    apiVersion: kiali.io/v1alpha1
    kind: Kiali
    # ...
    spec:
      external_services:
        tracing:
          query_timeout: 30 1
          enabled: true
          in_cluster_url: 'http://tempo-sample-query-frontend.tracing-system.svc.cluster.local:16685'
          url: '[Tempo query frontend Route url]'
          use_grpc: true 2

    1
    The default query_timeout integer value is 30 seconds. If you set the value to greater than 30 seconds, you must update .spec.server.write_timeout in the Kiali CR and add the annotation haproxy.router.openshift.io/timeout=50s to the Kiali route. Both .spec.server.write_timeout and haproxy.router.openshift.io/timeout= must be greater than query_timeout.
    2
    If you are not using the default HTTP or gRPC port, replace the in_cluster_url: port with your custom port.
    Note

    Kiali 1.73 uses the Jaeger Query API, which causes a longer response time depending on Tempo resource limits. If you see a Could not fetch spans error message in the Kiali UI, then check your Tempo configuration or reduce the limit per query in Kiali.

  7. Send requests to your application.
  8. Verify the istiod pod logs and the otel-collector pod logs.
1.15.4.1.1. Configuring the OpenTelemetryCollector in a mTLS encrypted Service Mesh member namespace

All traffic is TLS encrypted when you enable Service Mesh dataPlane mTLS encryption.

To enable the mesh to communicate with the OpenTelemetryCollector service, disable the TLS trafficPolicy by applying a DestinationRule for the OpenTelemetryCollector service:

Example DestinationRule Tempo CR

apiVersion: networking.istio.io/v1alpha3
kind: DestinationRule
metadata:
  name: otel-disable-tls
spec:
  host: "otel-collector.bookinfo.svc.cluster.local"
  trafficPolicy:
    tls:
      mode: DISABLE

1.15.4.1.2. Configuring the Red Hat OpenShift distributed tracing platform (Tempo) in a mTLS encrypted Service Mesh member namespace
Note

You don’t need this additional DestinationRule configuration if you created a TempoStack instance in a namespace that is not a Service Mesh member namespace.

All traffic is TLS encrypted when you enable Service Mesh dataPlane mTLS encryption and you create a TempoStack instance in a Service Mesh member namespace such as tracing-system-mtls. This encryption is not expected from the Tempo distributed service and returns a TLS error.

To fix the TLS error, disable the TLS trafficPolicy by applying a DestinationRule for Tempo and Kiali:

Example DestinationRule Tempo

apiVersion: networking.istio.io/v1alpha3
kind: DestinationRule
metadata:
  name: tempo
  namespace: tracing-system-mtls
spec:
  host: "*.tracing-system-mtls.svc.cluster.local"
  trafficPolicy:
    tls:
      mode: DISABLE

Example DestinationRule Kiali

apiVersion: networking.istio.io/v1alpha3
kind: DestinationRule
metadata:
  name: kiali
  namespace: istio-system
spec:
  host: kiali.istio-system.svc.cluster.local
  trafficPolicy:
    tls:
      mode: DISABLE

1.15.4.2. Connecting an existing distributed tracing Jaeger instance

If you already have an existing Red Hat OpenShift distributed tracing platform (Jaeger) instance in Red Hat OpenShift Service on AWS, you can configure your ServiceMeshControlPlane resource to use that instance for distributed tracing platform.

Important

Starting with Red Hat OpenShift Service Mesh 2.5, Red Hat OpenShift distributed tracing platform (Jaeger) and OpenShift Elasticsearch Operator are deprecated and will be removed in a future release. Red Hat will provide bug fixes and support for these features during the current release lifecycle, but these features will no longer receive enhancements and will be removed. As an alternative to Red Hat OpenShift distributed tracing platform (Jaeger), you can use Red Hat OpenShift distributed tracing platform (Tempo) instead.

Prerequisites

  • Red Hat OpenShift distributed tracing platform instance installed and configured.

Procedure

  1. In the Red Hat OpenShift Service on AWS web console, click OperatorsInstalled Operators.
  2. Click the Project menu and select the project where you installed the Service Mesh control plane, for example istio-system.
  3. Click the Red Hat OpenShift Service Mesh Operator. In the Istio Service Mesh Control Plane column, click the name of your ServiceMeshControlPlane resource, for example basic.
  4. Add the name of your distributed tracing platform (Jaeger) instance to the ServiceMeshControlPlane.

    1. Click the YAML tab.
    2. Add the name of your distributed tracing platform (Jaeger) instance to spec.addons.jaeger.name in your ServiceMeshControlPlane resource. In the following example, distr-tracing-production is the name of the distributed tracing platform (Jaeger) instance.

      Example distributed tracing configuration

      spec:
        addons:
          jaeger:
            name: distr-tracing-production

    3. Click Save.
  5. Click Reload to verify the ServiceMeshControlPlane resource was configured correctly.
1.15.4.3. Adjusting the sampling rate

A trace is an execution path between services in the service mesh. A trace is comprised of one or more spans. A span is a logical unit of work that has a name, start time, and duration. The sampling rate determines how often a trace is persisted.

The Envoy proxy sampling rate is set to sample 100% of traces in your service mesh by default. A high sampling rate consumes cluster resources and performance but is useful when debugging issues. Before you deploy Red Hat OpenShift Service Mesh in production, set the value to a smaller proportion of traces. For example, set spec.tracing.sampling to 100 to sample 1% of traces.

Configure the Envoy proxy sampling rate as a scaled integer representing 0.01% increments.

In a basic installation, spec.tracing.sampling is set to 10000, which samples 100% of traces. For example:

  • Setting the value to 10 samples 0.1% of traces.
  • Setting the value to 500 samples 5% of traces.
Note

The Envoy proxy sampling rate applies for applications that are available to a Service Mesh, and use the Envoy proxy. This sampling rate determines how much data the Envoy proxy collects and tracks.

The Jaeger remote sampling rate applies to applications that are external to the Service Mesh, and do not use the Envoy proxy, such as a database. This sampling rate determines how much data the distributed tracing system collects and stores.

Procedure

  1. In the Red Hat OpenShift Service on AWS web console, click OperatorsInstalled Operators.
  2. Click the Project menu and select the project where you installed the control plane, for example istio-system.
  3. Click the Red Hat OpenShift Service Mesh Operator. In the Istio Service Mesh Control Plane column, click the name of your ServiceMeshControlPlane resource, for example basic.
  4. To adjust the sampling rate, set a different value for spec.tracing.sampling.

    1. Click the YAML tab.
    2. Set the value for spec.tracing.sampling in your ServiceMeshControlPlane resource. In the following example, set it to 100.

      Jaeger sampling example

      spec:
        tracing:
          sampling: 100

    3. Click Save.
  5. Click Reload to verify the ServiceMeshControlPlane resource was configured correctly.

1.15.5. Accessing the Jaeger console

To access the Jaeger console you must have Red Hat OpenShift Service Mesh installed, Red Hat OpenShift distributed tracing platform (Jaeger) installed and configured.

The installation process creates a route to access the Jaeger console.

If you know the URL for the Jaeger console, you can access it directly. If you do not know the URL, use the following directions.

Important

Starting with Red Hat OpenShift Service Mesh 2.5, Red Hat OpenShift distributed tracing platform (Jaeger) and OpenShift Elasticsearch Operator have been deprecated and will be removed in a future release. Red Hat will provide bug fixes and support for this feature during the current release lifecycle, but this feature will no longer receive enhancements and will be removed. As an alternative to Red Hat OpenShift distributed tracing platform (Jaeger), you can use Red Hat OpenShift distributed tracing platform (Tempo) instead.

Procedure from OpenShift console

  1. Log in to the Red Hat OpenShift Service on AWS web console as a user with cluster-admin rights. If you use Red Hat OpenShift Dedicated, you must have an account with the dedicated-admin role.
  2. Navigate to NetworkingRoutes.
  3. On the Routes page, select the Service Mesh control plane project, for example istio-system, from the Namespace