Ce contenu n'est pas disponible dans la langue sélectionnée.

8.10. Load Balancer


Overview

The load balancer pattern allows you to delegate message processing to one of several endpoints, using a variety of different load-balancing policies.

Java DSL example

The following route distributes incoming messages between the target endpoints, mock:x, mock:y, mock:z, using a round robin load-balancing policy:
from("direct:start").loadBalance().roundRobin().to("mock:x", "mock:y", "mock:z");

XML configuration example

The following example shows how to configure the same route in XML:
<camelContext xmlns="http://camel.apache.org/schema/spring">
  <route>
    <from uri="direct:start"/>
    <loadBalance>
        <roundRobin/>
        <to uri="mock:x"/>
        <to uri="mock:y"/>
        <to uri="mock:z"/>
    </loadBalance>
  </route>
</camelContext>

Load-balancing policies

The Apache Camel load balancer supports the following load-balancing policies:

Round robin

The round robin load-balancing policy cycles through all of the target endpoints, sending each incoming message to the next endpoint in the cycle. For example, if the list of target endpoints is, mock:x, mock:y, mock:z, then the incoming messages are sent to the following sequence of endpoints: mock:x, mock:y, mock:z, mock:x, mock:y, mock:z, and so on.
You can specify the round robin load-balancing policy in Java DSL, as follows:
from("direct:start").loadBalance().roundRobin().to("mock:x", "mock:y", "mock:z");
Alternatively, you can configure the same route in XML, as follows:
<camelContext xmlns="http://camel.apache.org/schema/spring">
  <route>
    <from uri="direct:start"/>
    <loadBalance>
        <roundRobin/>
        <to uri="mock:x"/>        
        <to uri="mock:y"/>       
        <to uri="mock:z"/>          
    </loadBalance>
  </route>
</camelContext>

Random

The random load-balancing policy chooses the target endpoint randomly from the specified list.
You can specify the random load-balancing policy in Java DSL, as follows:
from("direct:start").loadBalance().random().to("mock:x", "mock:y", "mock:z");
Alternatively, you can configure the same route in XML, as follows:
<camelContext xmlns="http://camel.apache.org/schema/spring">
  <route>
    <from uri="direct:start"/>
    <loadBalance>
        <random/>
        <to uri="mock:x"/>        
        <to uri="mock:y"/>       
        <to uri="mock:z"/>          
    </loadBalance>
  </route>
</camelContext>

Sticky

The sticky load-balancing policy directs the In message to an endpoint that is chosen by calculating a hash value from a specified expression. The advantage of this load-balancing policy is that expressions of the same value are always sent to the same server. For example, by calculating the hash value from a header that contains a username, you ensure that messages from a particular user are always sent to the same target endpoint. Another useful approach is to specify an expression that extracts the session ID from an incoming message. This ensures that all messages belonging to the same session are sent to the same target endpoint.
You can specify the sticky load-balancing policy in Java DSL, as follows:
from("direct:start").loadBalance().sticky(header("username")).to("mock:x", "mock:y", "mock:z");
Alternatively, you can configure the same route in XML, as follows:
<camelContext xmlns="http://camel.apache.org/schema/spring">
  <route>
    <from uri="direct:start"/>
    <loadBalance>
      <sticky>
        <correlationExpression>
          <simple>header.username</simple>
        </correlationExpression>
      </sticky>
      <to uri="mock:x"/>        
      <to uri="mock:y"/>       
      <to uri="mock:z"/>          
    </loadBalance>
  </route>
</camelContext>
Note
When you add the sticky option to the failover load balancer, the load balancer starts from the last known good endpoint.

Topic

The topic load-balancing policy sends a copy of each In message to all of the listed destination endpoints (effectively broadcasting the message to all of the destinations, like a JMS topic).
You can use the Java DSL to specify the topic load-balancing policy, as follows:
from("direct:start").loadBalance().topic().to("mock:x", "mock:y", "mock:z");
Alternatively, you can configure the same route in XML, as follows:
<camelContext xmlns="http://camel.apache.org/schema/spring">
  <route>
    <from uri="direct:start"/>
    <loadBalance>
        <topic/>
        <to uri="mock:x"/>        
        <to uri="mock:y"/>       
        <to uri="mock:z"/>          
    </loadBalance>
  </route>
</camelContext>

Failover

Available as of Apache Camel 2.0 The failover load balancer is capable of trying the next processor in case an Exchange failed with an exception during processing. You can configure the failover with a list of specific exceptions that trigger failover. If you do not specify any exceptions, failover is triggered by any exception. The failover load balancer uses the same strategy for matching exceptions as the onException exception clause.
Enable stream caching if using streams
If you use streaming, you should enable Stream Caching when using the failover load balancer. This is needed so the stream can be re-read when failing over.
The failover load balancer supports the following options:
Option Type Default Description
inheritErrorHandler boolean true
Camel 2.3: Specifies whether to use the errorHandler configured on the route. If you want to fail over immediately to the next endpoint, you should disable this option (value of false). If you enable this option, Apache Camel will first attempt to process the message using the errorHandler.
For example, the errorHandler might be configured to redeliver messages and use delays between attempts. Apache Camel will initially try to redeliver to the original endpoint, and only fail over to the next endpoint when the errorHandler is exhausted.
maximumFailoverAttempts int -1
Camel 2.3: Specifies the maximum number of attempts to fail over to a new endpoint. The value, 0, implies that no failover attempts are made and the value, -1, implies an infinite number of failover attempts.
roundRobin boolean false
Camel 2.3: Specifies whether the failover load balancer should operate in round robin mode or not. If not, it will always start from the first endpoint when a new message is to be processed. In other words it restarts from the top for every message. If round robin is enabled, it keeps state and continues with the next endpoint in a round robin fashion. When using round robin it will not stick to last known good endpoint, it will always pick the next endpoint to use.
The following example is configured to fail over, only if an IOException exception is thrown:
from("direct:start")
    // here we will load balance if IOException was thrown
    // any other kind of exception will result in the Exchange as failed
    // to failover over any kind of exception we can just omit the exception
    // in the failOver DSL
    .loadBalance().failover(IOException.class)
        .to("direct:x", "direct:y", "direct:z");
You can optionally specify multiple exceptions to fail over, as follows:
// enable redelivery so failover can react
errorHandler(defaultErrorHandler().maximumRedeliveries(5));

from("direct:foo")
    .loadBalance()
    .failover(IOException.class, MyOtherException.class)
    .to("direct:a", "direct:b");
You can configure the same route in XML, as follows:
<route errorHandlerRef="myErrorHandler">
    <from uri="direct:foo"/>
    <loadBalance>
        <failover>
            <exception>java.io.IOException</exception>
            <exception>com.mycompany.MyOtherException</exception>
        </failover>
        <to uri="direct:a"/>
        <to uri="direct:b"/>
    </loadBalance>
</route>
The following example shows how to fail over in round robin mode:
from("direct:start")
    // Use failover load balancer in stateful round robin mode,
    // which means it will fail over immediately in case of an exception
    // as it does NOT inherit error handler. It will also keep retrying, as
    // it is configured to retry indefinitely.
    .loadBalance().failover(-1, false, true)
    .to("direct:bad", "direct:bad2", "direct:good", "direct:good2");
You can configure the same route in XML, as follows:
<route>
    <from uri="direct:start"/>
    <loadBalance>
        <!-- failover using stateful round robin,
        which will keep retrying the 4 endpoints indefinitely.
        You can set the maximumFailoverAttempt to break out after X attempts -->
        <failover roundRobin="true"/>
        <to uri="direct:bad"/>
        <to uri="direct:bad2"/>
        <to uri="direct:good"/>
        <to uri="direct:good2"/>
    </loadBalance>
</route>

Weighted round robin and weighted random

In many enterprise environments, where server nodes of unequal processing power are hosting services, it is usually preferable to distribute the load in accordance with the individual server processing capacities. A weighted round robin algorithm or a weighted random algorithm can be used to address this problem.
The weighted load balancing policy allows you to specify a processing load distribution ratio for each server with respect to the others. You can specify this value as a positive processing weight for each server. A larger number indicates that the server can handle a larger load. The processing weight is used to determine the payload distribution ratio of each processing endpoint with respect to the others.
The parameters that can be used are described in the following table.
Table 8.5. Weighted Options
Option Type Default Description
roundRobin boolean false The default value for round-robin is false. In the absence of this setting or parameter, the load-balancing algorithm used is random.
distributionRatioDelimiter String , The distributionRatioDelimiter is the delimiter used to specify the distributionRatio. If this attribute is not specified, comma , is the default delimiter.
The following Java DSL examples show how to define a weighted round-robin route and a weighted random route:
// Java
// round-robin
from("direct:start")
  .loadBalance().weighted(true, "4:2:1" distributionRatioDelimiter=":")
  .to("mock:x", "mock:y", "mock:z");

//random
from("direct:start")
  .loadBalance().weighted(false, "4,2,1")
  .to("mock:x", "mock:y", "mock:z");
You can configure the round-robin route in XML, as follows:
<!-- round-robin -->
<route>
  <from uri="direct:start"/>
  <loadBalance>
    <weighted roundRobin="true" distributionRatio="4:2:1" distributionRatioDelimiter=":" />
    <to uri="mock:x"/>
    <to uri="mock:y"/>
    <to uri="mock:z"/>
  </loadBalance>
</route>

Custom Load Balancer

You can use a custom load balancer (eg your own implementation) also.
An example using Java DSL:
from("direct:start")
     // using our custom load balancer
     .loadBalance(new MyLoadBalancer())
     .to("mock:x", "mock:y", "mock:z");
And the same example using XML DSL:
<!-- this is the implementation of our custom load balancer -->
 <bean id="myBalancer" class="org.apache.camel.processor.CustomLoadBalanceTest$MyLoadBalancer"/>
 
 <camelContext xmlns="http://camel.apache.org/schema/spring">
   <route>
     <from uri="direct:start"/>
     <loadBalance>
       <!-- refer to my custom load balancer -->
       <custom ref="myBalancer"/>
       <!-- these are the endpoints to balancer -->
       <to uri="mock:x"/>
       <to uri="mock:y"/>
       <to uri="mock:z"/>
     </loadBalance>
   </route>
 </camelContext>
Notice in the XML DSL above we use <custom> which is only available in Camel 2.8 onwards. In older releases you would have to do as follows instead:
       <loadBalance ref="myBalancer">
         <!-- these are the endpoints to balancer -->
         <to uri="mock:x"/>
         <to uri="mock:y"/>
         <to uri="mock:z"/>
       </loadBalance>
To implement a custom load balancer you can extend some support classes such as LoadBalancerSupport and SimpleLoadBalancerSupport. The former supports the asynchronous routing engine, and the latter does not. Here is an example:
public static class MyLoadBalancer extends LoadBalancerSupport {
 
     public boolean process(Exchange exchange, AsyncCallback callback) {
         String body = exchange.getIn().getBody(String.class);
         try {
             if ("x".equals(body)) {
                 getProcessors().get(0).process(exchange);
             } else if ("y".equals(body)) {
                 getProcessors().get(1).process(exchange);
             } else {
                 getProcessors().get(2).process(exchange);
             }
         } catch (Throwable e) {
             exchange.setException(e);
         }
         callback.done(true);
         return true;
     }
 }

Circuit Breaker

The Circuit Breaker load balancer is a stateful pattern that is used to monitor all calls for certain exceptions. Initially, the Circuit Breaker is in closed state and passes all messages. If there are failures and the threshold is reached, it moves to open state and rejects all calls until halfOpenAfter timeout is reached. After the timeout, if there is a new call, the Circuit Breaker passes all the messages. If the result is success, the Circuit Breaker moves to a closed state, if not, it moves back to open state.
Java DSL example:
from("direct:start").loadBalance()
    .circuitBreaker(2, 1000L, MyCustomException.class)
    .to("mock:result");

Spring XML example:
<camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">
    <route>
    <from uri="direct:start"/>
    <loadBalance>
        <circuitBreaker threshold="2" halfOpenAfter="1000">
            <exception>MyCustomException</exception>
        </circuitBreaker>
        <to uri="mock:result"/>
    </loadBalance>
</route>
</camelContext>

Red Hat logoGithubRedditYoutubeTwitter

Apprendre

Essayez, achetez et vendez

Communautés

À propos de la documentation Red Hat

Nous aidons les utilisateurs de Red Hat à innover et à atteindre leurs objectifs grâce à nos produits et services avec un contenu auquel ils peuvent faire confiance.

Rendre l’open source plus inclusif

Red Hat s'engage à remplacer le langage problématique dans notre code, notre documentation et nos propriétés Web. Pour plus de détails, consultez leBlog Red Hat.

À propos de Red Hat

Nous proposons des solutions renforcées qui facilitent le travail des entreprises sur plusieurs plates-formes et environnements, du centre de données central à la périphérie du réseau.

© 2024 Red Hat, Inc.