Questo contenuto non è disponibile nella lingua selezionata.
Chapter 6. Working with nodes
6.1. Viewing and listing the nodes in your Red Hat OpenShift Service on AWS cluster
You can list all the nodes in your cluster to obtain information such as status, age, memory usage, and details about the nodes.
When you perform node management operations, the CLI interacts with node objects that are representations of actual node hosts. The master uses the information from node objects to validate nodes with health checks.
6.1.1. About listing all the nodes in a cluster
You can get detailed information on the nodes in the cluster.
The following command lists all nodes:
$ oc get nodes
The following example is a cluster with healthy nodes:
$ oc get nodes
Example output
NAME STATUS ROLES AGE VERSION master.example.com Ready master 7h v1.30.3 node1.example.com Ready worker 7h v1.30.3 node2.example.com Ready worker 7h v1.30.3
The following example is a cluster with one unhealthy node:
$ oc get nodes
Example output
NAME STATUS ROLES AGE VERSION master.example.com Ready master 7h v1.30.3 node1.example.com NotReady,SchedulingDisabled worker 7h v1.30.3 node2.example.com Ready worker 7h v1.30.3
The conditions that trigger a
NotReady
status are shown later in this section.The
-o wide
option provides additional information on nodes.$ oc get nodes -o wide
Example output
NAME STATUS ROLES AGE VERSION INTERNAL-IP EXTERNAL-IP OS-IMAGE KERNEL-VERSION CONTAINER-RUNTIME master.example.com Ready master 171m v1.30.3 10.0.129.108 <none> Red Hat Enterprise Linux CoreOS 48.83.202103210901-0 (Ootpa) 4.18.0-240.15.1.el8_3.x86_64 cri-o://1.30.3-30.rhaos4.10.gitf2f339d.el8-dev node1.example.com Ready worker 72m v1.30.3 10.0.129.222 <none> Red Hat Enterprise Linux CoreOS 48.83.202103210901-0 (Ootpa) 4.18.0-240.15.1.el8_3.x86_64 cri-o://1.30.3-30.rhaos4.10.gitf2f339d.el8-dev node2.example.com Ready worker 164m v1.30.3 10.0.142.150 <none> Red Hat Enterprise Linux CoreOS 48.83.202103210901-0 (Ootpa) 4.18.0-240.15.1.el8_3.x86_64 cri-o://1.30.3-30.rhaos4.10.gitf2f339d.el8-dev
The following command lists information about a single node:
$ oc get node <node>
For example:
$ oc get node node1.example.com
Example output
NAME STATUS ROLES AGE VERSION node1.example.com Ready worker 7h v1.30.3
The following command provides more detailed information about a specific node, including the reason for the current condition:
$ oc describe node <node>
For example:
$ oc describe node node1.example.com
The following example contains some values that are specific to Red Hat OpenShift Service on AWS on AWS.
Example output
Name: node1.example.com 1 Roles: worker 2 Labels: kubernetes.io/os=linux kubernetes.io/hostname=ip-10-0-131-14 kubernetes.io/arch=amd64 3 node-role.kubernetes.io/worker= node.kubernetes.io/instance-type=m4.large node.openshift.io/os_id=rhcos node.openshift.io/os_version=4.5 region=east topology.kubernetes.io/region=us-east-1 topology.kubernetes.io/zone=us-east-1a Annotations: cluster.k8s.io/machine: openshift-machine-api/ahardin-worker-us-east-2a-q5dzc 4 machineconfiguration.openshift.io/currentConfig: worker-309c228e8b3a92e2235edd544c62fea8 machineconfiguration.openshift.io/desiredConfig: worker-309c228e8b3a92e2235edd544c62fea8 machineconfiguration.openshift.io/state: Done volumes.kubernetes.io/controller-managed-attach-detach: true CreationTimestamp: Wed, 13 Feb 2019 11:05:57 -0500 Taints: <none> 5 Unschedulable: false Conditions: 6 Type Status LastHeartbeatTime LastTransitionTime Reason Message ---- ------ ----------------- ------------------ ------ ------- OutOfDisk False Wed, 13 Feb 2019 15:09:42 -0500 Wed, 13 Feb 2019 11:05:57 -0500 KubeletHasSufficientDisk kubelet has sufficient disk space available MemoryPressure False Wed, 13 Feb 2019 15:09:42 -0500 Wed, 13 Feb 2019 11:05:57 -0500 KubeletHasSufficientMemory kubelet has sufficient memory available DiskPressure False Wed, 13 Feb 2019 15:09:42 -0500 Wed, 13 Feb 2019 11:05:57 -0500 KubeletHasNoDiskPressure kubelet has no disk pressure PIDPressure False Wed, 13 Feb 2019 15:09:42 -0500 Wed, 13 Feb 2019 11:05:57 -0500 KubeletHasSufficientPID kubelet has sufficient PID available Ready True Wed, 13 Feb 2019 15:09:42 -0500 Wed, 13 Feb 2019 11:07:09 -0500 KubeletReady kubelet is posting ready status Addresses: 7 InternalIP: 10.0.140.16 InternalDNS: ip-10-0-140-16.us-east-2.compute.internal Hostname: ip-10-0-140-16.us-east-2.compute.internal Capacity: 8 attachable-volumes-aws-ebs: 39 cpu: 2 hugepages-1Gi: 0 hugepages-2Mi: 0 memory: 8172516Ki pods: 250 Allocatable: attachable-volumes-aws-ebs: 39 cpu: 1500m hugepages-1Gi: 0 hugepages-2Mi: 0 memory: 7558116Ki pods: 250 System Info: 9 Machine ID: 63787c9534c24fde9a0cde35c13f1f66 System UUID: EC22BF97-A006-4A58-6AF8-0A38DEEA122A Boot ID: f24ad37d-2594-46b4-8830-7f7555918325 Kernel Version: 3.10.0-957.5.1.el7.x86_64 OS Image: Red Hat Enterprise Linux CoreOS 410.8.20190520.0 (Ootpa) Operating System: linux Architecture: amd64 Container Runtime Version: cri-o://1.30.3-0.6.dev.rhaos4.3.git9ad059b.el8-rc2 Kubelet Version: v1.30.3 Kube-Proxy Version: v1.30.3 PodCIDR: 10.128.4.0/24 ProviderID: aws:///us-east-2a/i-04e87b31dc6b3e171 Non-terminated Pods: (12 in total) 10 Namespace Name CPU Requests CPU Limits Memory Requests Memory Limits --------- ---- ------------ ---------- --------------- ------------- openshift-cluster-node-tuning-operator tuned-hdl5q 0 (0%) 0 (0%) 0 (0%) 0 (0%) openshift-dns dns-default-l69zr 0 (0%) 0 (0%) 0 (0%) 0 (0%) openshift-image-registry node-ca-9hmcg 0 (0%) 0 (0%) 0 (0%) 0 (0%) openshift-ingress router-default-76455c45c-c5ptv 0 (0%) 0 (0%) 0 (0%) 0 (0%) openshift-machine-config-operator machine-config-daemon-cvqw9 20m (1%) 0 (0%) 50Mi (0%) 0 (0%) openshift-marketplace community-operators-f67fh 0 (0%) 0 (0%) 0 (0%) 0 (0%) openshift-monitoring alertmanager-main-0 50m (3%) 50m (3%) 210Mi (2%) 10Mi (0%) openshift-monitoring node-exporter-l7q8d 10m (0%) 20m (1%) 20Mi (0%) 40Mi (0%) openshift-monitoring prometheus-adapter-75d769c874-hvb85 0 (0%) 0 (0%) 0 (0%) 0 (0%) openshift-multus multus-kw8w5 0 (0%) 0 (0%) 0 (0%) 0 (0%) openshift-ovn-kubernetes ovnkube-node-t4dsn 80m (0%) 0 (0%) 1630Mi (0%) 0 (0%) Allocated resources: (Total limits may be over 100 percent, i.e., overcommitted.) Resource Requests Limits -------- -------- ------ cpu 380m (25%) 270m (18%) memory 880Mi (11%) 250Mi (3%) attachable-volumes-aws-ebs 0 0 Events: 11 Type Reason Age From Message ---- ------ ---- ---- ------- Normal NodeHasSufficientPID 6d (x5 over 6d) kubelet, m01.example.com Node m01.example.com status is now: NodeHasSufficientPID Normal NodeAllocatableEnforced 6d kubelet, m01.example.com Updated Node Allocatable limit across pods Normal NodeHasSufficientMemory 6d (x6 over 6d) kubelet, m01.example.com Node m01.example.com status is now: NodeHasSufficientMemory Normal NodeHasNoDiskPressure 6d (x6 over 6d) kubelet, m01.example.com Node m01.example.com status is now: NodeHasNoDiskPressure Normal NodeHasSufficientDisk 6d (x6 over 6d) kubelet, m01.example.com Node m01.example.com status is now: NodeHasSufficientDisk Normal NodeHasSufficientPID 6d kubelet, m01.example.com Node m01.example.com status is now: NodeHasSufficientPID Normal Starting 6d kubelet, m01.example.com Starting kubelet. #...
- 1
- The name of the node.
- 2
- The role of the node, either
master
orworker
. - 3
- The labels applied to the node.
- 4
- The annotations applied to the node.
- 5
- The taints applied to the node.
- 6
- The node conditions and status. The
conditions
stanza lists theReady
,PIDPressure
,MemoryPressure
,DiskPressure
andOutOfDisk
status. These condition are described later in this section. - 7
- The IP address and hostname of the node.
- 8
- The pod resources and allocatable resources.
- 9
- Information about the node host.
- 10
- The pods on the node.
- 11
- The events reported by the node.
Among the information shown for nodes, the following node conditions appear in the output of the commands shown in this section:
Condition | Description |
---|---|
|
If |
|
If |
|
If |
|
If |
|
If |
|
If |
|
If |
| Pods cannot be scheduled for placement on the node. |
6.1.2. Listing pods on a node in your cluster
You can list all the pods on a specific node.
Procedure
To list all or selected pods on one or more nodes:
$ oc describe node <node1> <node2>
For example:
$ oc describe node ip-10-0-128-218.ec2.internal
To list all or selected pods on selected nodes:
$ oc describe node --selector=<node_selector>
$ oc describe node --selector=kubernetes.io/os
Or:
$ oc describe node -l=<pod_selector>
$ oc describe node -l node-role.kubernetes.io/worker
To list all pods on a specific node, including terminated pods:
$ oc get pod --all-namespaces --field-selector=spec.nodeName=<nodename>
6.1.3. Viewing memory and CPU usage statistics on your nodes
You can display usage statistics about nodes, which provide the runtime environments for containers. These usage statistics include CPU, memory, and storage consumption.
Prerequisites
-
You must have
cluster-reader
permission to view the usage statistics. - Metrics must be installed to view the usage statistics.
Procedure
To view the usage statistics:
$ oc adm top nodes
Example output
NAME CPU(cores) CPU% MEMORY(bytes) MEMORY% ip-10-0-12-143.ec2.compute.internal 1503m 100% 4533Mi 61% ip-10-0-132-16.ec2.compute.internal 76m 5% 1391Mi 18% ip-10-0-140-137.ec2.compute.internal 398m 26% 2473Mi 33% ip-10-0-142-44.ec2.compute.internal 656m 43% 6119Mi 82% ip-10-0-146-165.ec2.compute.internal 188m 12% 3367Mi 45% ip-10-0-19-62.ec2.compute.internal 896m 59% 5754Mi 77% ip-10-0-44-193.ec2.compute.internal 632m 42% 5349Mi 72%
To view the usage statistics for nodes with labels:
$ oc adm top node --selector=''
You must choose the selector (label query) to filter on. Supports
=
,==
, and!=
.
6.2. Working with nodes
As an administrator, you can perform several tasks to make your clusters more efficient. You can use the oc adm
command to cordon, uncordon, and drain a specific node.
Cordoning and draining are only allowed on worker nodes that are part of Red Hat OpenShift Cluster Manager machine pools.
6.2.1. Understanding how to evacuate pods on nodes
Evacuating pods allows you to migrate all or selected pods from a given node or nodes.
You can only evacuate pods backed by a replication controller. The replication controller creates new pods on other nodes and removes the existing pods from the specified node(s).
Bare pods, meaning those not backed by a replication controller, are unaffected by default. You can evacuate a subset of pods by specifying a pod-selector. Pod selectors are based on labels, so all the pods with the specified label will be evacuated.
Procedure
Mark the nodes unschedulable before performing the pod evacuation.
Mark the node as unschedulable:
$ oc adm cordon <node1>
Example output
node/<node1> cordoned
Check that the node status is
Ready,SchedulingDisabled
:$ oc get node <node1>
Example output
NAME STATUS ROLES AGE VERSION <node1> Ready,SchedulingDisabled worker 1d v1.30.3
Evacuate the pods using one of the following methods:
Evacuate all or selected pods on one or more nodes:
$ oc adm drain <node1> <node2> [--pod-selector=<pod_selector>]
Force the deletion of bare pods using the
--force
option. When set totrue
, deletion continues even if there are pods not managed by a replication controller, replica set, job, daemon set, or stateful set:$ oc adm drain <node1> <node2> --force=true
Set a period of time in seconds for each pod to terminate gracefully, use
--grace-period
. If negative, the default value specified in the pod will be used:$ oc adm drain <node1> <node2> --grace-period=-1
Ignore pods managed by daemon sets using the
--ignore-daemonsets
flag set totrue
:$ oc adm drain <node1> <node2> --ignore-daemonsets=true
Set the length of time to wait before giving up using the
--timeout
flag. A value of0
sets an infinite length of time:$ oc adm drain <node1> <node2> --timeout=5s
Delete pods even if there are pods using
emptyDir
volumes by setting the--delete-emptydir-data
flag totrue
. Local data is deleted when the node is drained:$ oc adm drain <node1> <node2> --delete-emptydir-data=true
List objects that will be migrated without actually performing the evacuation, using the
--dry-run
option set totrue
:$ oc adm drain <node1> <node2> --dry-run=true
Instead of specifying specific node names (for example,
<node1> <node2>
), you can use the--selector=<node_selector>
option to evacuate pods on selected nodes.
Mark the node as schedulable when done.
$ oc adm uncordon <node1>
6.3. Using the Node Tuning Operator
Learn about the Node Tuning Operator and how you can use it to manage node-level tuning by orchestrating the tuned daemon.
Purpose
The Node Tuning Operator helps you manage node-level tuning by orchestrating the TuneD daemon and achieves low latency performance by using the Performance Profile controller. The majority of high-performance applications require some level of kernel tuning. The Node Tuning Operator provides a unified management interface to users of node-level sysctls and more flexibility to add custom tuning specified by user needs.
The Operator manages the containerized TuneD daemon for Red Hat OpenShift Service on AWS as a Kubernetes daemon set. It ensures the custom tuning specification is passed to all containerized TuneD daemons running in the cluster in the format that the daemons understand. The daemons run on all nodes in the cluster, one per node.
Node-level settings applied by the containerized TuneD daemon are rolled back on an event that triggers a profile change or when the containerized TuneD daemon is terminated gracefully by receiving and handling a termination signal.
The Node Tuning Operator uses the Performance Profile controller to implement automatic tuning to achieve low latency performance for Red Hat OpenShift Service on AWS applications.
The cluster administrator configures a performance profile to define node-level settings such as the following:
- Updating the kernel to kernel-rt.
- Choosing CPUs for housekeeping.
- Choosing CPUs for running workloads.
The Node Tuning Operator is part of a standard Red Hat OpenShift Service on AWS installation in version 4.1 and later.
In earlier versions of Red Hat OpenShift Service on AWS, the Performance Addon Operator was used to implement automatic tuning to achieve low latency performance for OpenShift applications. In Red Hat OpenShift Service on AWS 4.11 and later, this functionality is part of the Node Tuning Operator.
6.3.1. Accessing an example Node Tuning Operator specification
Use this process to access an example Node Tuning Operator specification.
Procedure
Run the following command to access an example Node Tuning Operator specification:
oc get tuned.tuned.openshift.io/default -o yaml -n openshift-cluster-node-tuning-operator
The default CR is meant for delivering standard node-level tuning for the Red Hat OpenShift Service on AWS platform and it can only be modified to set the Operator Management state. Any other custom changes to the default CR will be overwritten by the Operator. For custom tuning, create your own Tuned CRs. Newly created CRs will be combined with the default CR and custom tuning applied to Red Hat OpenShift Service on AWS nodes based on node or pod labels and profile priorities.
While in certain situations the support for pod labels can be a convenient way of automatically delivering required tuning, this practice is discouraged and strongly advised against, especially in large-scale clusters. The default Tuned CR ships without pod label matching. If a custom profile is created with pod label matching, then the functionality will be enabled at that time. The pod label functionality will be deprecated in future versions of the Node Tuning Operator.
6.3.2. Custom tuning specification
The custom resource (CR) for the Operator has two major sections. The first section, profile:
, is a list of TuneD profiles and their names. The second, recommend:
, defines the profile selection logic.
Multiple custom tuning specifications can co-exist as multiple CRs in the Operator’s namespace. The existence of new CRs or the deletion of old CRs is detected by the Operator. All existing custom tuning specifications are merged and appropriate objects for the containerized TuneD daemons are updated.
Management state
The Operator Management state is set by adjusting the default Tuned CR. By default, the Operator is in the Managed state and the spec.managementState
field is not present in the default Tuned CR. Valid values for the Operator Management state are as follows:
- Managed: the Operator will update its operands as configuration resources are updated
- Unmanaged: the Operator will ignore changes to the configuration resources
- Removed: the Operator will remove its operands and resources the Operator provisioned
Profile data
The profile:
section lists TuneD profiles and their names.
profile: - name: tuned_profile_1 data: | # TuneD profile specification [main] summary=Description of tuned_profile_1 profile [sysctl] net.ipv4.ip_forward=1 # ... other sysctl's or other TuneD daemon plugins supported by the containerized TuneD # ... - name: tuned_profile_n data: | # TuneD profile specification [main] summary=Description of tuned_profile_n profile # tuned_profile_n profile settings
Recommended profiles
The profile:
selection logic is defined by the recommend:
section of the CR. The recommend:
section is a list of items to recommend the profiles based on a selection criteria.
recommend: <recommend-item-1> # ... <recommend-item-n>
The individual items of the list:
- machineConfigLabels: 1 <mcLabels> 2 match: 3 <match> 4 priority: <priority> 5 profile: <tuned_profile_name> 6 operand: 7 debug: <bool> 8 tunedConfig: reapply_sysctl: <bool> 9
- 1
- Optional.
- 2
- A dictionary of key/value
MachineConfig
labels. The keys must be unique. - 3
- If omitted, profile match is assumed unless a profile with a higher priority matches first or
machineConfigLabels
is set. - 4
- An optional list.
- 5
- Profile ordering priority. Lower numbers mean higher priority (
0
is the highest priority). - 6
- A TuneD profile to apply on a match. For example
tuned_profile_1
. - 7
- Optional operand configuration.
- 8
- Turn debugging on or off for the TuneD daemon. Options are
true
for on orfalse
for off. The default isfalse
. - 9
- Turn
reapply_sysctl
functionality on or off for the TuneD daemon. Options aretrue
for on andfalse
for off.
<match>
is an optional list recursively defined as follows:
- label: <label_name> 1 value: <label_value> 2 type: <label_type> 3 <match> 4
If <match>
is not omitted, all nested <match>
sections must also evaluate to true
. Otherwise, false
is assumed and the profile with the respective <match>
section will not be applied or recommended. Therefore, the nesting (child <match>
sections) works as logical AND operator. Conversely, if any item of the <match>
list matches, the entire <match>
list evaluates to true
. Therefore, the list acts as logical OR operator.
If machineConfigLabels
is defined, machine config pool based matching is turned on for the given recommend:
list item. <mcLabels>
specifies the labels for a machine config. The machine config is created automatically to apply host settings, such as kernel boot parameters, for the profile <tuned_profile_name>
. This involves finding all machine config pools with machine config selector matching <mcLabels>
and setting the profile <tuned_profile_name>
on all nodes that are assigned the found machine config pools. To target nodes that have both master and worker roles, you must use the master role.
The list items match
and machineConfigLabels
are connected by the logical OR operator. The match
item is evaluated first in a short-circuit manner. Therefore, if it evaluates to true
, the machineConfigLabels
item is not considered.
When using machine config pool based matching, it is advised to group nodes with the same hardware configuration into the same machine config pool. Not following this practice might result in TuneD operands calculating conflicting kernel parameters for two or more nodes sharing the same machine config pool.
Example: Node or pod label based matching
- match: - label: tuned.openshift.io/elasticsearch match: - label: node-role.kubernetes.io/master - label: node-role.kubernetes.io/infra type: pod priority: 10 profile: openshift-control-plane-es - match: - label: node-role.kubernetes.io/master - label: node-role.kubernetes.io/infra priority: 20 profile: openshift-control-plane - priority: 30 profile: openshift-node
The CR above is translated for the containerized TuneD daemon into its recommend.conf
file based on the profile priorities. The profile with the highest priority (10
) is openshift-control-plane-es
and, therefore, it is considered first. The containerized TuneD daemon running on a given node looks to see if there is a pod running on the same node with the tuned.openshift.io/elasticsearch
label set. If not, the entire <match>
section evaluates as false
. If there is such a pod with the label, in order for the <match>
section to evaluate to true
, the node label also needs to be node-role.kubernetes.io/master
or node-role.kubernetes.io/infra
.
If the labels for the profile with priority 10
matched, openshift-control-plane-es
profile is applied and no other profile is considered. If the node/pod label combination did not match, the second highest priority profile (openshift-control-plane
) is considered. This profile is applied if the containerized TuneD pod runs on a node with labels node-role.kubernetes.io/master
or node-role.kubernetes.io/infra
.
Finally, the profile openshift-node
has the lowest priority of 30
. It lacks the <match>
section and, therefore, will always match. It acts as a profile catch-all to set openshift-node
profile, if no other profile with higher priority matches on a given node.
Example: Machine config pool based matching
apiVersion: tuned.openshift.io/v1 kind: Tuned metadata: name: openshift-node-custom namespace: openshift-cluster-node-tuning-operator spec: profile: - data: | [main] summary=Custom OpenShift node profile with an additional kernel parameter include=openshift-node [bootloader] cmdline_openshift_node_custom=+skew_tick=1 name: openshift-node-custom recommend: - machineConfigLabels: machineconfiguration.openshift.io/role: "worker-custom" priority: 20 profile: openshift-node-custom
To minimize node reboots, label the target nodes with a label the machine config pool’s node selector will match, then create the Tuned CR above and finally create the custom machine config pool itself.
Cloud provider-specific TuneD profiles
With this functionality, all Cloud provider-specific nodes can conveniently be assigned a TuneD profile specifically tailored to a given Cloud provider on a Red Hat OpenShift Service on AWS cluster. This can be accomplished without adding additional node labels or grouping nodes into machine config pools.
This functionality takes advantage of spec.providerID
node object values in the form of <cloud-provider>://<cloud-provider-specific-id>
and writes the file /var/lib/ocp-tuned/provider
with the value <cloud-provider>
in NTO operand containers. The content of this file is then used by TuneD to load provider-<cloud-provider>
profile if such profile exists.
The openshift
profile that both openshift-control-plane
and openshift-node
profiles inherit settings from is now updated to use this functionality through the use of conditional profile loading. Neither NTO nor TuneD currently include any Cloud provider-specific profiles. However, it is possible to create a custom profile provider-<cloud-provider>
that will be applied to all Cloud provider-specific cluster nodes.
Example GCE Cloud provider profile
apiVersion: tuned.openshift.io/v1 kind: Tuned metadata: name: provider-gce namespace: openshift-cluster-node-tuning-operator spec: profile: - data: | [main] summary=GCE Cloud provider-specific profile # Your tuning for GCE Cloud provider goes here. name: provider-gce
Due to profile inheritance, any setting specified in the provider-<cloud-provider>
profile will be overwritten by the openshift
profile and its child profiles.
6.3.3. Default profiles set on a cluster
The following are the default profiles set on a cluster.
apiVersion: tuned.openshift.io/v1 kind: Tuned metadata: name: default namespace: openshift-cluster-node-tuning-operator spec: profile: - data: | [main] summary=Optimize systems running OpenShift (provider specific parent profile) include=-provider-${f:exec:cat:/var/lib/ocp-tuned/provider},openshift name: openshift recommend: - profile: openshift-control-plane priority: 30 match: - label: node-role.kubernetes.io/master - label: node-role.kubernetes.io/infra - profile: openshift-node priority: 40
Starting with Red Hat OpenShift Service on AWS 4.9, all OpenShift TuneD profiles are shipped with the TuneD package. You can use the oc exec
command to view the contents of these profiles:
$ oc exec $tuned_pod -n openshift-cluster-node-tuning-operator -- find /usr/lib/tuned/openshift{,-control-plane,-node} -name tuned.conf -exec grep -H ^ {} \;
6.3.4. Supported TuneD daemon plugins
Excluding the [main]
section, the following TuneD plugins are supported when using custom profiles defined in the profile:
section of the Tuned CR:
- audio
- cpu
- disk
- eeepc_she
- modules
- mounts
- net
- scheduler
- scsi_host
- selinux
- sysctl
- sysfs
- usb
- video
- vm
- bootloader
There is some dynamic tuning functionality provided by some of these plugins that is not supported. The following TuneD plugins are currently not supported:
- script
- systemd
The TuneD bootloader plugin only supports Red Hat Enterprise Linux CoreOS (RHCOS) worker nodes.
Additional resources