
OpenShift Container Platform 4.16

Jenkins

Jenkins

Last Updated: 2025-11-22

OpenShift Container Platform 4.16 Jenkins

Jenkins

Legal Notice

Copyright © 2025 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

OpenShift Container Platform 用の Jenkins

. .

. .

. .

. .

Table of Contents

第1章 JENKINS イメージの設定
1.1. 設定とカスタマイズ
1.2. JENKINS 環境変数
1.3. JENKINS へのプロジェクト間のアクセスの提供
1.4. JENKINS のボリューム間のマウントポイント
1.5. SOURCE-TO-IMAGE による JENKINS イメージのカスタマイズ
1.6. JENKINS KUBERNETES プラグインの設定
1.7. JENKINS パーミッション
1.8. テンプレートからの JENKINS サービスの作成
1.9. JENKINS KUBERNETES プラグインの使用
1.10. JENKINS メモリーの要件
1.11. 関連情報

第2章 JENKINS エージェント
2.1. JENKINS エージェントイメージ
2.2. JENKINS エージェントの環境変数
2.3. JENKINS エージェントのメモリー要件
2.4. JENKINS エージェントの GRADLE ビルド
2.5. JENKINS エージェント POD の保持

第3章 JENKINS から OPENSHIFT PIPELINES または TEKTON への移行
3.1. JENKINS と OPENSHIFT PIPELINES のコンセプトの比較
3.2. JENKINS から OPENSHIFT PIPELINES へのサンプルパイプラインの移行
3.3. JENKINS プラグインから TEKTON HUB タスクへの移行
3.4. カスタムタスクとスクリプトを使用した OPENSHIFT PIPELINES 機能の拡張
3.5. JENKINS と OPENSHIFT PIPELINES の実行モデルの比較
3.6. 一般的な使用例の例
3.7. 関連情報

第4章 OPENSHIFT JENKINS イメージに対する重要な変更
4.1. OPENSHIFT JENKINS イメージの再配置
4.2. JENKINS イメージストリームタグのカスタマイズ
4.3. 関連情報

3
3
5
9

10
10
11

16
16
17

20
21

22
22
22
24
24
25

27
27
28
30
31
32
32
35

36
36
38
39

Table of Contents

1

OpenShift Container Platform 4.16 Jenkins

2

第1章 JENKINS イメージの設定
OpenShift Container Platform には、Jenkins 実行用のコンテナーイメージがあります。このイメージ
には Jenkins サーバーインスタンスが含まれており、このインスタンスを使用して継続的なテスト、統
合、デリバリーの基本フローを設定できます。

イメージは、Red Hat Universal Base Images (UBI) に基づいています。

OpenShift Container Platform は、Jenkins の LTS リリースに従います。OpenShift Container Platform
は、Jenkins 2.x を含むイメージを提供します。

OpenShift Container Platform Jenkins イメージは Quay.io または registry.redhat.io で利用できます。

以下に例を示します。

これらのイメージを使用するには、これらのレジストリーから直接アクセスするか、これらを
OpenShift Container Platform コンテナーイメージレジストリーにプッシュできます。さらに、コンテ
ナーイメージレジストリーまたは外部の場所で、対象イメージを参照するイメージストリームを作成す
ることもできます。その後、OpenShift Container Platform リソースがイメージストリームを参照でき
ます。

ただし便宜上、OpenShift Container Platform はコア Jenkins イメージの openshift namespace にイ
メージストリームを提供するほか、OpenShift Container Platform を Jenkins と統合するために提供さ
れるエージェントイメージのサンプルも提供します。

1.1. 設定とカスタマイズ

Jenkins 認証は、以下の 2 つの方法で管理できます。

OpenShift Container Platform ログインプラグインが提供する OpenShift Container Platform
OAuth 認証。

Jenkins が提供する標準認証。

1.1.1. OpenShift Container Platform OAuth 認証

OAuth 認証をアクティブ化するには、Jenkins UI の Configure Global Security パネルでオプションを
設定するか、Jenkins の Deployment configuration の OPENSHIFT_ENABLE_OAUTH 環境変数を
false 以外に設定します。これにより、OpenShift Container Platform ログインプラグインが有効にな
り、Pod データからか、OpenShift Container Platform API サーバーと対話して設定情報を取得しま
す。

有効な認証情報は、OpenShift Container Platform アイデンティティープロバイダーが制御します。

Jenkins はブラウザーおよびブラウザー以外のアクセスの両方をサポートします。

OpenShift Container Platform ロールでユーザーに割り当てられる固有の Jenkins パーミッションが指
定されていると、有効なユーザーは、ログイン時に自動的に Jenkins 認証マトリックスに追加されま
す。デフォルトで使用されるロールは、事前に定義される admin、edit、および view です。ログイン
プラグインは、Jenkins が実行しているプロジェクトまたは namespace のそれらのロールに対して自
己 SAR 要求 (self-SAR request) を実行します。

admin ロールを持つユーザーには、従来の Jenkins 管理ユーザーパーミッションがあります。ユーザー

$ podman pull registry.redhat.io/ocp-tools-4/jenkins-rhel8:<image_tag>

第1章 JENKINS イメージの設定

3

https://jenkins.io/changelog-stable/
https://quay.io
https://registry.redhat.io

admin ロールを持つユーザーには、従来の Jenkins 管理ユーザーパーミッションがあります。ユーザー
のパーミッションは、ロールが edit、view になるほど少なくなります。

OpenShift Container Platform のデフォルトの admin、edit、view のロール、これらのロールが
Jenkins インスタンスに割り当てられている Jenkins パーミッションは設定可能です。

OpenShift Container Platform Pod で Jenkins を実行する場合、ログインプラグインは、Jenkins を実
行している namespace で openshift-jenkins-login-plugin-config という名前の config map を検索し
ます。

ログインプラグインがその config map を検出して読み取ることができる場合は、Jenkins パーミッショ
ンマッピングにロールを定義できます。具体的には以下を実行します。

ログインプラグインは、config map のキーと値のペアを OpenShift Container Platform のロー
ルのマッピングに対する Jenkins パーミッションとして処理します。

キーは Jenkins パーミッショングループの短い ID と Jenkins パーミッションの短い ID で、こ
の 2 つはハイフンで区切られています。

OpenShift Container Platform ロールに Overall Jenkins Administer パーミッションを追加す
る場合、キーは Overall-Administer である必要があります。

パーミッショングループおよびパーミッション ID が利用可能であるかどうかを把握するには、
Jenkins コンソールのマトリックス認証ページに移動し、グループの ID とグループが提供する
テーブルの個々のパーミッションを確認します。

キーと値ペアの値は、パーミッションが適用される必要がある OpenShift Container Platform
ロールのリストで、各ロールはコンマで区切られています。

Overall Jenkins Administer パーミッションをデフォルトの admin および edit ロールの両方
に追加し、作成した新規の jenkins ロールも追加する場合は、キーの Overall-Administer の値
が admin,edit,jenkins になります。

注記

OpenShift Container Platform OAuth が使用されている場合、管理者権限で OpenShift
Container Platform Jenkins イメージに事前に設定されている admin ユーザーにはこれ
らの権限が割り当てられません。これらのパーミッションを付与するには、OpenShift
Container Platform クラスター管理者が OpenShift Container Platform アイデンティ
ティープロバイダーでそのユーザーを明示的に定義し、admin ロールをユーザーに割り
当てる必要があります。

保存される Jenkins ユーザーのパーミッションは、初回のユーザー作成後に変更できます。OpenShift
Container Platform ログインプラグインは、OpenShift Container Platform API サーバーをポーリング
してパーミッションを取得し、ユーザーごとに Jenkins に保存されているパーミッションを、
OpenShift Container Platform から取得したパーミッションに更新します。Jenkins UI を使用して
Jenkins ユーザーのパーミッションを更新する場合は、プラグインが次回に OpenShift Container
Platform をポーリングするタイミングで、パーミッションの変更が上書きされます。

ポーリングの頻度は OPENSHIFT_PERMISSIONS_POLL_INTERVAL 環境変数で制御できます。デ
フォルトのポーリングの間隔は 5 分です。

OAuth 認証を使用して新しい Jenkins サービスを作成するには、テンプレートを使用するのが最も簡単
な方法です。

OpenShift Container Platform 4.16 Jenkins

4

1.1.2. Jenkins 認証

テンプレートを使用せず、イメージが直接実行される場合は、デフォルトで Jenkins 認証が使用されま
す。

Jenkins の初回起動時には、設定、管理ユーザーおよびパスワードが作成されます。デフォルトのユー
ザー認証情報は、admin と password です。標準の Jenkins 認証を使用する場合に限
り、JENKINS_PASSWORD 環境変数を設定してデフォルトのパスワードを設定します。

手順

次のコマンドを実行して、標準の Jenkins 認証を使用する Jenkins アプリケーションを作成し
ます。

1.2. JENKINS 環境変数

Jenkins サーバーは、以下の環境変数で設定できます。

変数 定義 値と設定の例

OPENSHIFT_ENABLE_OAUT
H

Jenkins へのログイン時に
OpenShift Container Platform ロ
グインプラグインが認証を管理す
るかどうかを決定します。有効に
するには、true に設定します。

デフォルト: false

JENKINS_PASSWORD 標準の Jenkins 認証を使用する際
の admin ユーザーのパスワー
ド。OPENSHIFT_ENABLE_O
AUTH が true に設定されている
場合は該当しません。

デフォルト: password

$ oc new-app -e \
 JENKINS_PASSWORD=<password> \
 ocp-tools-4/jenkins-rhel8

第1章 JENKINS イメージの設定

5

JAVA_MAX_HEAP_PARAM、
CONTAINER_HEAP_PERCEN
T、JENKINS_MAX_HEAP_UP
PER_BOUND_MB

これらの値は Jenkins JVM の最
大ヒープサイズを制御しま
す。JAVA_MAX_HEAP_PARA
M が設定されている場合は、その
値が優先されます。設定されてい
ない場合、最大ヒープサイズは、
コンテナーメモリー制限の
CONTAINER_HEAP_PERCE
NT として動的に計算され、オプ
ションで
JENKINS_MAX_HEAP_UPPE
R_BOUND_MB MiB を上限とし
ます。

デフォルトでは Jenkins JVM の
最大ヒープサイズは、上限なしで
コンテナーメモリー制限の 50%
に設定されます。

JAVA_MAX_HEAP_PARAM
の設定例: -Xmx512m

CONTAINER_HEAP_PERCE
NT のデフォルト: 0.5 (50%)

JENKINS_MAX_HEAP_UPPE
R_BOUND_MB の設定例: 512
MiB

JAVA_INITIAL_HEAP_PARA
M、CONTAINER_INITIAL_PE
RCENT

これらの値は Jenkins JVM の初
期ヒープサイズを制御しま
す。JAVA_INITIAL_HEAP_PA
RAM が設定されている場合は、
その値が優先されます。設定され
ていない場合、初期ヒープサイズ
は、動的に計算される最大ヒープ
サイズの
CONTAINER_INITIAL_PERC
ENT として動的に計算されま
す。

デフォルトでは、JVM は初期の
ヒープサイズを設定します。

JAVA_INITIAL_HEAP_PARA
M の設定例: -Xmx32m

CONTAINER_INITIAL_PERC
ENT の設定例: 0.1 (10%)

CONTAINER_CORE_LIMIT 設定されている場合は、内部の
JVM スレッドのサイジング数に
使用するコアの数を整数で指定し
ます。

設定例: 2

JAVA_TOOL_OPTIONS このコンテナーで実行中のすべて
の JVM に適用するオプションを
指定します。この値の上書きは推
奨されません。

デフォルト: -
XX:+UnlockExperimentalVM
Options -
XX:+UseCGroupMemoryLimi
tForHeap -
Dsun.zip.disableMemoryMap
ping=true

変数 定義 値と設定の例

OpenShift Container Platform 4.16 Jenkins

6

JAVA_GC_OPTS Jenkins JVM ガーベッジコレク
ションのパラメーターを指定しま
す。この値の上書きは推奨されま
せん。

デフォルト: -
XX:+UseParallelGC -
XX:MinHeapFreeRatio=5 -
XX:MaxHeapFreeRatio=10 -
XX:GCTimeRatio=4 -
XX:AdaptiveSizePolicyWeigh
t=90

JENKINS_JAVA_OVERRIDES Jenkins JVM の追加オプションを
指定します。これらのオプション
は、上記の Java オプションなど
その他すべてのオプションに追加
され、必要に応じてそれらの値の
いずれかを上書きするのに使用で
きます。追加オプションがある場
合は、スペースで区切ります。オ
プションにスペース文字が含まれ
る場合は、バックスラッシュでエ
スケープしてください。

設定例: -Dfoo -Dbar; -
Dfoo=first\ value -
Dbar=second\ value

JENKINS_OPTS Jenkins への引数を指定します。

INSTALL_PLUGINS コンテナーが初めて実行された場
合
や、OVERRIDE_PV_PLUGINS
_WITH_IMAGE_PLUGINS が
true に設定されている場合に、
インストールする追加の Jenkins
プラグインを指定します。プラグ
インは、名前:バージョンのペアの
コンマ区切りの一覧で指定されま
す。

設定例:
git:3.7.0,subversion:2.10.2

OPENSHIFT_PERMISSIONS_
POLL_INTERVAL

OpenShift Container Platform ロ
グインプラグインが Jenkins に定
義されているユーザーごとに関連
付けられたパーミッションを
OpenShift Container Platform で
ポーリングする間隔をミリ秒単位
で指定します。

デフォルト: 300000 - 5 分

変数 定義 値と設定の例

第1章 JENKINS イメージの設定

7

OVERRIDE_PV_CONFIG_WIT
H_IMAGE_CONFIG

Jenkins 設定ディレクトリー用に
OpenShift Container Platform 永
続ボリューム (PV) を使用してこ
のイメージを実行する場合、PV
は永続ボリューム要求 (PVC) の
作成時に割り当てられるため、イ
メージから PV に設定が転送され
るのは、イメージの初回起動時の
みです。このイメージを拡張し、
初回起動後にカスタムイメージの
設定を更新するカスタムイメージ
を作成する場合、この環境変数を
true に設定しない限り、設定は
コピーされません。

デフォルト: false

OVERRIDE_PV_PLUGINS_WI
TH_IMAGE_PLUGINS

Jenkins 設定ディレクトリー用に
OpenShift Container Platform PV
を使用してこのイメージを実行す
る場合、PV は PVC の作成時に割
り当てられるため、イメージから
PV にプラグインが転送されるの
は、イメージの初回起動時のみで
す。このイメージを拡張し、初回
起動後にカスタムイメージのプラ
グインを更新するカスタムイメー
ジを作成する場合、この環境変数
を true に設定しない限り、プラ
グインはコピーされません。

デフォルト: false

ENABLE_FATAL_ERROR_L
OG_FILE

Jenkins 設定ディレクトリー用に
OpenShift Container Platform
PVC を使用してこのイメージを実
行する場合に、この環境変数は致
命的なエラーが生じる際に致命的
なエラーのログファイルが永続す
ることを可能にします。致命的な
エラーのファイルは
/var/lib/jenkins/logs に保存さ
れます。

デフォルト: false

変数 定義 値と設定の例

OpenShift Container Platform 4.16 Jenkins

8

AGENT_BASE_IMAGE この値を設定すると、このイメー
ジで提供されるサンプルの
Kubernetes プラグイン Pod テン
プレートで jnlp コンテナーに使
用されるイメージが上書きされま
す。それ以外の場合
は、openshift namespace の
jenkins-agent-base-
rhel8:latest イメージストリーム
タグが使用されます。

デフォルト: image-
registry.openshift-image-
registry.svc:5000/openshift/j
enkins-agent-base-
rhel8:latest

JAVA_BUILDER_IMAGE この値を設定すると、このイメー
ジで提供される java-builder サ
ンプルの Kubernetes プラグイン
Pod テンプレートで java-
builder コンテナーに使用される
イメージが上書きされます。それ
以外の場合は、openshift
namespace の java:latest イメー
ジストリームタグからのイメージ
が使用されます。

デフォルト: image-
registry.openshift-image-
registry.svc:5000/openshift/j
ava:latest

JAVA_FIPS_OPTIONS この値を設定すると、FIPS ノー
ドで実行しているときに JVM が
どのように動作するかを制御しま
す。詳細は、FIPS モードでの
Red Hat build of OpenJDK 11 の設
定 を参照してください。

デフォルト: -
Dcom.redhat.fips=false

変数 定義 値と設定の例

1.3. JENKINS へのプロジェクト間のアクセスの提供

同じプロジェクト以外で Jenkins を実行する場合は、プロジェクトにアクセスするために、Jenkins に
アクセストークンを提供する必要があります。

手順

1. 次のコマンドを実行して、Jenkins がアクセスする必要があるプロジェクトにアクセスするた
めの適切な権限を持つサービスアカウントのシークレットを特定します。

出力例

$ oc describe serviceaccount jenkins

Name: default
Labels: <none>
Secrets: { jenkins-token-uyswp }
 { jenkins-dockercfg-xcr3d }
Tokens: jenkins-token-izv1u
 jenkins-token-uyswp

第1章 JENKINS イメージの設定

9

https://access.redhat.com/documentation/ja-jp/red_hat_build_of_openjdk/11/html-single/configuring_red_hat_build_of_openjdk_11_on_rhel_with_fips/index#config-fips-in-openjdk

ここでは、シークレットの名前は jenkins-token-uyswp です。

2. 次のコマンドを実行して、シークレットからトークンを取得します。

出力例

トークンパラメーターには、Jenkins がプロジェクトにアクセスするために必要とするトーク
ンの値が含まれます。

1.4. JENKINS のボリューム間のマウントポイント

Jenkins イメージはマウントしたボリュームで実行して、設定用に永続ストレージを有効にできます。

/var/lib/jenkins - Jenkins がジョブ定義などの設定ファイルを保存するデータディレクトリーで
す。

1.5. SOURCE-TO-IMAGE による JENKINS イメージのカスタマイズ

正式な OpenShift Container Platform Jenkins イメージをカスタマイズするには、イメージを Source-
to-Image (S2I) ビルダーとしてイメージを使用できます。

S2I を使用して、カスタムの Jenkins ジョブ定義をコピーしたり、プラグインを追加したり、同梱の
config.xml ファイルを独自のカスタムの設定に置き換えたりできます。

Jenkins イメージに変更を追加するには、以下のディレクトリー構造の Git リポジトリーが必要です。

plugins

このディレクトリーには、Jenkins にコピーするバイナリーの Jenkins プラグインを含めます。

plugins.txt

このファイルは、以下の構文を使用して、インストールするプラグインを一覧表示します。

pluginId:pluginVersion

configuration/jobs

このディレクトリーには、Jenkins ジョブ定義が含まれます。

configuration/config.xml

このファイルには、カスタムの Jenkins 設定が含まれます。

configuration/ ディレクトリーのコンテンツは /var/lib/jenkins/ ディレクトリーにコピーされるため、

$ oc describe secret <secret name from above>

Name: jenkins-token-uyswp
Labels: <none>
Annotations: kubernetes.io/service-account.name=jenkins,kubernetes.io/service-
account.uid=32f5b661-2a8f-11e5-9528-3c970e3bf0b7
Type: kubernetes.io/service-account-token
Data
====
ca.crt: 1066 bytes
token: eyJhbGc..<content cut>....wRA

OpenShift Container Platform 4.16 Jenkins

10

1

2

3

configuration/ ディレクトリーのコンテンツは /var/lib/jenkins/ ディレクトリーにコピーされるため、
このディレクトリーに credentials.xml などのファイルをさらに追加することもできます。

OpenShift Container Platform で Jenkins イメージをカスタマイズするためのサンプルビル
ド設定

source パラメーターは、上記のレイアウトでソースの Git リポジトリーを定義します。

strategy パラメーターは、ビルドのソースイメージとして使用するための元の Jenkins イメージ
を定義します。

output パラメーターは、結果として生成される、カスタマイズした Jenkins イメージを定義しま
す。これは、公式の Jenkins イメージの代わりに、デプロイメント設定で使用できます。

1.6. JENKINS KUBERNETES プラグインの設定

OpenShift Jenkins イメージにはプリインストールされた Jenkins 用の Kubernetes プラグイン が含ま
れているため、Kubernetes と OpenShift Container Platform を使用して複数のコンテナーホストで
Jenkins エージェントを動的にプロビジョニングできます。

Kubernetes プラグインを使用するために、OpenShift Container Platform は、Jenkins エージェントと
しての使用に適した OpenShift Agent Base イメージを提供します。

重要

apiVersion: build.openshift.io/v1
kind: BuildConfig
metadata:
 name: custom-jenkins-build
spec:
 source: 1
 git:
 uri: https://github.com/custom/repository
 type: Git
 strategy: 2
 sourceStrategy:
 from:
 kind: ImageStreamTag
 name: jenkins:2
 namespace: openshift
 type: Source
 output: 3
 to:
 kind: ImageStreamTag
 name: custom-jenkins:latest

第1章 JENKINS イメージの設定

11

https://wiki.jenkins-ci.org/display/JENKINS/Kubernetes+Plugin

重要

OpenShift Container Platform 4.11 は、Red Hat が OpenShift Container Platform ライフ
サイクル外でイメージを生成および更新できるように、OpenShift Jenkins および
OpenShift Agent Base イメージを registry.redhat.io の ocp-tools-4 リポジトリーに移
動します。以前のバージョンでは、これらのイメージは OpenShift Container Platform
インストールペイロードに使用され、openshift4 リポジトリーは registry.redhat.io に
ありました。

OpenShift Jenkins Maven および NodeJS Agent イメージは、OpenShift Container
Platform 4.11 ペイロードから削除されました。Red Hat はこれらのイメージを生成しな
くなり、registry.redhat.io の ocp-tools-4 リポジトリーから入手できなくなりました。
Red Hat は、OpenShift Container Platform ライフサイクルポリシー に従って、重要な
バグ修正またはセキュリティー CVE のためにこれらのイメージの 4.10 以前のバージョ
ンを維持します。

詳細は、次の「関連情報」セクションの 「OpenShift Jenkins イメージに対する重要な
変更」リンクを参照してください。

Maven および Node.js のエージェントイメージは、Kubernetes プラグイン用の OpenShift Container
Platform Jenkins イメージの設定内で、Kubernetes Pod テンプレートイメージとして自動的に設定さ
れます。この設定には、Restrict where this project can be run 設定で任意の Jenkins ジョブに適用で
きる各イメージのラベルが含まれています。ラベルが適用されている場合、ジョブはそれぞれのエー
ジェントイメージを実行する OpenShift Container Platform Pod の下で実行されます。

重要

OpenShift Container Platform 4.10 以降では、Kubernetes プラグインを使用して
Jenkins エージェントを実行するために推奨されるパターンは、jnlp および sidecar コ
ンテナーの両方で Pod テンプレートを使用することです。jnlp コンテナーは、
OpenShift Container Platform Jenkins Base エージェントイメージを使用して、ビルド
用の別の Pod の起動を容易にします。sidecar コンテナーイメージには、起動した別の
Pod 内の特定の言語でビルドするために必要なツールがあります。Red Hat Container
Catalog の多くのコンテナーイメージは、openshift namespace にあるサンプルイメー
ジストリームで参照されます。OpenShift Container Platform Jenkins イメージには、こ
のアプローチを示すサイドカーコンテナーを含む java-build という名前の Pod テンプ
レートがあります。この Pod テンプレートは、openshift namespace の Java イメージ
ストリームによって提供される最新の Java バージョンを使用します。

Jenkins イメージは、Kubernetes プラグイン向けの追加エージェントイメージの自動検出および自動設
定も提供します。

OpenShift Container Platform 同期プラグインを使用すると、Jenkins の起動時に、Jenkins イメージが
実行中のプロジェクト内、またはプラグインの設定にリストされているプロジェクト内で以下の項目を
検索します。

role ラベルが jenkins-agent に設定されたイメージストリーム。

role アノテーションが jenkins-agent に設定されたイメージストリームタグ。

role ラベルが jenkins-agent に設定された config map。

Jenkins イメージは、適切なラベルを持つイメージストリーム、または適切なアノテーションを持つイ
メージストリームタグを見つけると、対応する Kubernetes プラグイン設定を生成します。このように
して、イメージストリームによって提供されるコンテナーイメージを実行する Pod で実行するように

OpenShift Container Platform 4.16 Jenkins

12

https://access.redhat.com/support/policy/updates/openshift

Jenkins ジョブを割り当てることができます。

イメージストリームまたはイメージストリームタグの名前とイメージ参照は、Kubernetes プラグイン
の Pod テンプレートにある名前およびイメージフィールドにマッピングされます。Kubernetes プラグ
インの Pod テンプレートのラベルフィールドは、agent-label キーを使用してイメージストリームまた
はイメージストリームタグオブジェクトにアノテーションを設定することで制御できます。これらを使
用しない場合には、名前をラベルとして使用します。

注記

Jenkins コンソールにログインして、Pod テンプレート設定を変更しないでください。
Pod テンプレートが作成された後にこれを行い、OpenShift Container Platform 同期プ
ラグインがイメージストリームまたはイメージストリームタグに関連付けられたイメー
ジが変更されたことを検知した場合は、Pod テンプレートを置き換え、これらの設定変
更を上書きします。新しい設定を既存の設定とマージすることはできません。

より複雑な設定が必要な場合は、config map を使用する方法を検討してください。

適切なラベルを持つ config map が見つかると、Jenkins イメージは、config map のキーと値のデータ
ペイロードの任意の値に、Jenkins および Kubernetes プラグイン Pod テンプレートの設定形式と一致
する Extensible Markup Language (XML) が含まれていると想定します。イメージストリームやイメー
ジストリームタグに対する config map の主な利点の 1 つは、すべての Kubernetes プラグイン Pod テ
ンプレートパラメーターを制御できることです。

jenkins-agent の config map の例:

kind: ConfigMap
apiVersion: v1
metadata:
 name: jenkins-agent
 labels:
 role: jenkins-agent
data:
 template1: |-
 <org.csanchez.jenkins.plugins.kubernetes.PodTemplate>
 <inheritFrom></inheritFrom>
 <name>template1</name>
 <instanceCap>2147483647</instanceCap>
 <idleMinutes>0</idleMinutes>
 <label>template1</label>
 <serviceAccount>jenkins</serviceAccount>
 <nodeSelector></nodeSelector>
 <volumes/>
 <containers>
 <org.csanchez.jenkins.plugins.kubernetes.ContainerTemplate>
 <name>jnlp</name>
 
 <privileged>false</privileged>
 <alwaysPullImage>true</alwaysPullImage>
 <workingDir>/tmp</workingDir>
 <command></command>
 <args>${computer.jnlpmac} ${computer.name}</args>
 <ttyEnabled>false</ttyEnabled>
 <resourceRequestCpu></resourceRequestCpu>
 <resourceRequestMemory></resourceRequestMemory>

第1章 JENKINS イメージの設定

13

以下の例は、openshift namespace のイメージストリームを参照する 2 つのコンテナーを示していま
す。1 つのコンテナーが、Pod を Jenkins エージェントとして起動するための JNLP コントラクトを処
理します。もう 1 つのコンテナーは、特定のコーディング言語でコードを構築するためのツールを備え
たイメージを使用します。

 <resourceLimitCpu></resourceLimitCpu>
 <resourceLimitMemory></resourceLimitMemory>
 <envVars/>
 </org.csanchez.jenkins.plugins.kubernetes.ContainerTemplate>
 </containers>
 <envVars/>
 <annotations/>
 <imagePullSecrets/>
 <nodeProperties/>
 </org.csanchez.jenkins.plugins.kubernetes.PodTemplate>

kind: ConfigMap
apiVersion: v1
metadata:
 name: jenkins-agent
 labels:
 role: jenkins-agent
data:
 template2: |-
 <org.csanchez.jenkins.plugins.kubernetes.PodTemplate>
 <inheritFrom></inheritFrom>
 <name>template2</name>
 <instanceCap>2147483647</instanceCap>
 <idleMinutes>0</idleMinutes>
 <label>template2</label>
 <serviceAccount>jenkins</serviceAccount>
 <nodeSelector></nodeSelector>
 <volumes/>
 <containers>
 <org.csanchez.jenkins.plugins.kubernetes.ContainerTemplate>
 <name>jnlp</name>
 
 <privileged>false</privileged>
 <alwaysPullImage>true</alwaysPullImage>
 <workingDir>/home/jenkins/agent</workingDir>
 <command></command>
 <args>\$(JENKINS_SECRET) \$(JENKINS_NAME)</args>
 <ttyEnabled>false</ttyEnabled>
 <resourceRequestCpu></resourceRequestCpu>
 <resourceRequestMemory></resourceRequestMemory>
 <resourceLimitCpu></resourceLimitCpu>
 <resourceLimitMemory></resourceLimitMemory>
 <envVars/>
 </org.csanchez.jenkins.plugins.kubernetes.ContainerTemplate>
 <org.csanchez.jenkins.plugins.kubernetes.ContainerTemplate>
 <name>java</name>
 
 <privileged>false</privileged>
 <alwaysPullImage>true</alwaysPullImage>
 <workingDir>/home/jenkins/agent</workingDir>

OpenShift Container Platform 4.16 Jenkins

14

注記

Jenkins コンソールにログインして、Pod テンプレート設定を変更しないでください。
Pod テンプレートが作成された後にこれを行い、OpenShift Container Platform 同期プ
ラグインがイメージストリームまたはイメージストリームタグに関連付けられたイメー
ジが変更されたことを検知した場合は、Pod テンプレートを置き換え、これらの設定変
更を上書きします。新しい設定を既存の設定とマージすることはできません。

より複雑な設定が必要な場合は、config map を使用する方法を検討してください。

インストールされた後、OpenShift Container Platform 同期プラグインは、イメージストリーム、イ
メージストリームタグ、および config map に更新がないか、OpenShift Container Platform の API
サーバーをモニタリングして、Kubernetes プラグインの設定を調整します。

以下のルールが適用されます。

config map、イメージストリーム、またはイメージストリームタグからラベルまたはアノテー
ションを削除すると、既存の PodTemplate が Kubernetes プラグインの設定から削除されま
す。

これらのオブジェクトが削除されると、対応する設定が Kubernetes プラグインから削除されま
す。

適切なラベルおよびアノテーションが付いた ConfigMap、ImageStream、または
ImageStreamTag オブジェクトを作成するか、最初の作成後にラベルを追加すると、
Kubernetes プラグイン設定で PodTemplate が作成されます。

config map 形式による PodTemplate の場合、PodTemplate の config map データへの変更
は、Kubernetes プラグイン設定の PodTemplate 設定に適用されます。この変更は、config
map への変更と変更の間に Jenkins UI を介して PodTemplate に加えられた変更もオーバーラ
イドします。

Jenkins エージェントとしてコンテナーイメージを使用するには、イメージが、エントリーポイントと
してエージェントを実行する必要があります。詳細は、公式の Jenkins ドキュメント を参照してくださ
い。

関連情報

OpenShift Jenkins イメージに対する重要な変更

 <command>cat</command>
 <args></args>
 <ttyEnabled>true</ttyEnabled>
 <resourceRequestCpu></resourceRequestCpu>
 <resourceRequestMemory></resourceRequestMemory>
 <resourceLimitCpu></resourceLimitCpu>
 <resourceLimitMemory></resourceLimitMemory>
 <envVars/>
 </org.csanchez.jenkins.plugins.kubernetes.ContainerTemplate>
 </containers>
 <envVars/>
 <annotations/>
 <imagePullSecrets/>
 <nodeProperties/>
 </org.csanchez.jenkins.plugins.kubernetes.PodTemplate>

第1章 JENKINS イメージの設定

15

https://wiki.jenkins-ci.org/display/JENKINS/Distributed+builds#Distributedbuilds-Launchslaveagentheadlessly

1.7. JENKINS パーミッション

config map で、Pod テンプレート XML の <serviceAccount> 要素が結果として作成される Pod に使
用される OpenShift Container Platform サービスアカウントである場合は、サービスアカウントの認証
情報が Pod にマウントされます。パーミッションはサービスアカウントに関連付けられ、OpenShift
Container Platform マスターに対するどの操作が Pod から許可されるかを制御します。

Pod に使用されるサービスアカウントについて以下のシナリオを考慮してください。この Pod は、
OpenShift Container Platform Jenkins イメージで実行される Kubernetes プラグインによって起動され
ます。

OpenShift Container Platform で提供される Jenkins のテンプレートサンプルを使用する場合
は、jenkins サービスアカウントが、Jenkins が実行するプロジェクトの edit ロールで定義され、マス
ター Jenkins Pod にサービスアカウントがマウントされます。

Jenkins 設定に挿入される 2 つのデフォルトの Maven および NodeJS Pod テンプレートも、Jenkins
マスターと同じサービスアカウントを使用するように設定します。

イメージストリームまたはイメージストリームタグに必要なラベルまたはアノテーションがあ
るために OpenShift Container Platform 同期プラグインで自動的に検出されるすべての Pod テ
ンプレートは、Jenkins マスターのサービスアカウントをサービスアカウントとして使用する
ように設定されます。

Pod テンプレートの定義を Jenkins と Kubernetes プラグインに渡す他の方法として、使用する
サービスアカウントを明示的に指定する必要があります。他の方法には、Jenkins コンソー
ル、Kubernetes プラグインで提供される podTemplate パイプライン DSL、または Pod テン
プレートの XML 設定をデータとする config map のラベル付けなどが含まれます。

サービスアカウントの値を指定しない場合は、default サービスアカウントを使用します。

使用するサービスアカウントが何であっても、必要なパーミッション、ロールなどを
OpenShift Container Platform 内で定義して、Pod から操作するプロジェクトをすべて操作で
きるようにする必要があります。

1.8. テンプレートからの JENKINS サービスの作成

テンプレートには各種パラメーターフィールドがあり、事前定義されたデフォルト値ですべての環境変
数を定義できます。OpenShift Container Platform では、新規の Jenkins サービスを簡単に作成できる
ようにテンプレートが提供されています。Jenkins テンプレートは、クラスター管理者が、クラスター
の初期設定時に、デフォルトの openshift プロジェクトに登録する必要があります。

使用可能な 2 つのテンプレートは共にデプロイメント設定とサービスを定義します。テンプレートはス
トレージストラテジーに応じて異なります。これは、Jenkins コンテンツが Pod の再起動時に永続する
かどうかに影響を与えます。

注記

Pod は、別のノードへの移動時や、デプロイメント設定の更新で再デプロイメントがト
リガーされた時に再起動される可能性があります。

jenkins-ephemeral は一時ストレージを使用します。Pod が再起動すると、すべてのデータが
失われます。このテンプレートは、開発またはテストにのみ役立ちます。

jenkins-persistent は永続ボリューム (PV) ストアを使用します。データは Pod が再起動され
ても保持されます。

OpenShift Container Platform 4.16 Jenkins

16

PV ストアを使用するには、クラスター管理者は OpenShift Container Platform デプロイメントで PV
プールを定義する必要があります。

必要なテンプレートを選択したら、テンプレートをインスタンス化して Jenkins を使用できるようにす
る必要があります。

手順

以下の方法のいずれかを使用して、新しい Jenkins アプリケーションを作成します。

PV:

または、Pod の再起動で設定が維持されない emptyDir タイプボリューム:

両方のテンプレートで、それらに対して oc describe を実行して、オーバーライドに使用できるすべて
のパラメーターを確認できます。

以下に例を示します。

1.9. JENKINS KUBERNETES プラグインの使用

以下の例では、openshift-jee-sample BuildConfig オブジェクトにより、Jenkins Maven エージェント
Pod が動的にプロビジョニングされます。Pod は Java ソースコードをクローンし、WAR ファイルを作
成して、2 番目の BuildConfig、openshift-jee-sample-docker を実行します。2 番目の BuildConfig
は、新しい WAR ファイルをコンテナーイメージに階層化します。

重要

OpenShift Container Platform 4.11 は、そのペイロードから OpenShift Jenkins Maven お
よび NodeJS Agent イメージを削除しました。Red Hat はこれらのイメージを生成しな
くなり、registry.redhat.io の ocp-tools-4 リポジトリーから入手できなくなりました。
Red Hat は、OpenShift Container Platform ライフサイクルポリシー に従って、重要な
バグ修正またはセキュリティー CVE のためにこれらのイメージの 4.10 以前のバージョ
ンを維持します。

詳細は、次の「関連情報」セクションの 「OpenShift Jenkins イメージに対する重要な
変更」リンクを参照してください。

Jenkins Kubernetes プラグインを使用した BuildConfig の例

$ oc new-app jenkins-persistent

$ oc new-app jenkins-ephemeral

$ oc describe jenkins-ephemeral

kind: List
apiVersion: v1
items:
- kind: ImageStream
 apiVersion: image.openshift.io/v1
 metadata:
 name: openshift-jee-sample

第1章 JENKINS イメージの設定

17

https://access.redhat.com/support/policy/updates/openshift

動的に作成された Jenkins エージェント Pod の仕様を上書きすることも可能です。以下は、コンテナー
メモリーを上書きして、環境変数を指定するように先の例を変更しています。

Jenkins Kubernetes プラグインを使用し、メモリー制限と環境変数を指定するサンプル
BuildConfig

- kind: BuildConfig
 apiVersion: build.openshift.io/v1
 metadata:
 name: openshift-jee-sample-docker
 spec:
 strategy:
 type: Docker
 source:
 type: Docker
 dockerfile: |-
 FROM openshift/wildfly-101-centos7:latest
 COPY ROOT.war /wildfly/standalone/deployments/ROOT.war
 CMD $STI_SCRIPTS_PATH/run
 binary:
 asFile: ROOT.war
 output:
 to:
 kind: ImageStreamTag
 name: openshift-jee-sample:latest
- kind: BuildConfig
 apiVersion: build.openshift.io/v1
 metadata:
 name: openshift-jee-sample
 spec:
 strategy:
 type: JenkinsPipeline
 jenkinsPipelineStrategy:
 jenkinsfile: |-
 node("maven") {
 sh "git clone https://github.com/openshift/openshift-jee-sample.git ."
 sh "mvn -B -Popenshift package"
 sh "oc start-build -F openshift-jee-sample-docker --from-file=target/ROOT.war"
 }
 triggers:
 - type: ConfigChange

kind: BuildConfig
apiVersion: build.openshift.io/v1
metadata:
 name: openshift-jee-sample
spec:
 strategy:
 type: JenkinsPipeline
 jenkinsPipelineStrategy:
 jenkinsfile: |-
 podTemplate(label: "mypod", 1
 cloud: "openshift", 2
 inheritFrom: "maven", 3
 containers: [

OpenShift Container Platform 4.16 Jenkins

18

1

2

3

4

5

6

7

8

9

mypod という名前の新しい Pod テンプレートが動的に定義されます。この新しい Pod テンプ
レート名はノードのスタンザで参照されます。

cloud の値は openshift に設定する必要があります。

新しい Pod テンプレートは、既存の Pod テンプレートから設定を継承できます。この場合、
OpenShift Container Platform で事前定義された Maven Pod テンプレートから継承されます。

この例では、既存のコンテナーの値を上書きし、名前で指定する必要があります。OpenShift
Container Platform に含まれる Jenkins エージェントイメージはすべて、コンテナー名として jnlp
を使用します。

再びコンテナーイメージ名を指定します。これは既知の問題です。

512 Mi のメモリー要求を指定します。

512 Mi のメモリー制限を指定します。

環境変数 CONTAINER_HEAP_PERCENT に値 0.25 を指定します。

ノードスタンザは、定義された Pod テンプレート名を参照します。

デフォルトで、Pod はビルドの完了時に削除されます。この動作は、プラグインを使用して、またはパ
イプライン Jenkinsfile 内で変更できます。

アップストリームの Jenkins では少し前に、パイプラインとインラインで podTemplate パイプライン
DSL を定義するための YAML 宣言型フォーマットが導入されました。OpenShift Container Platform の
Jenkins イメージで定義されているサンプル java-builder Pod テンプレートを使用したこのフォーマッ
トの例は以下のようになります。

 containerTemplate(name: "jnlp", 4
 image: "openshift/jenkins-agent-maven-35-centos7:v3.10", 5
 resourceRequestMemory: "512Mi", 6
 resourceLimitMemory: "512Mi", 7
 envVars: [
 envVar(key: "CONTAINER_HEAP_PERCENT", value: "0.25") 8
])
]) {
 node("mypod") { 9
 sh "git clone https://github.com/openshift/openshift-jee-sample.git ."
 sh "mvn -B -Popenshift package"
 sh "oc start-build -F openshift-jee-sample-docker --from-file=target/ROOT.war"
 }
 }
 triggers:
 - type: ConfigChange

def nodeLabel = 'java-buidler'

pipeline {
 agent {
 kubernetes {
 cloud 'openshift'
 label nodeLabel

第1章 JENKINS イメージの設定

19

関連情報

OpenShift Jenkins イメージに対する重要な変更

1.10. JENKINS メモリーの要件

提供される Jenkins の一時また永続テンプレートでデプロイする場合、デフォルトのメモリー制限は 1
Gi になります。

デフォルトで、Jenkins コンテナーで実行する他のすべてのプロセスは、合計の 512 MiB を超えるメモ
リーを使用することができません。メモリーがさらに必要になると、コンテナーは停止します。そのた
め、パイプラインが可能な場合に、エージェントコンテナーで外部コマンドを実行することが強く推奨
されます。

また、Project クォータがこれを許可する場合は、Jenkins マスターがメモリーの観点から必要とする
ものについて、Jenkins ドキュメントの推奨事項を参照してください。この推奨事項では、Jenkins マ
スターにさらにメモリーを割り当てることを禁止しています。

Jenkins Kubernetes プラグインによって作成されるエージェントコンテナーで、メモリー要求および制
限の値を指定することが推奨されます。管理者ユーザーは、Jenkins 設定を使用して、エージェントの

 yaml """
apiVersion: v1
kind: Pod
metadata:
 labels:
 worker: ${nodeLabel}
spec:
 containers:
 - name: jnlp
 image: image-registry.openshift-image-registry.svc:5000/openshift/jenkins-agent-base-rhel8:latest
 args: ['\$(JENKINS_SECRET)', '\$(JENKINS_NAME)']
 - name: java
 image: image-registry.openshift-image-registry.svc:5000/openshift/java:latest
 command:
 - cat
 tty: true
"""
 }
 }

 options {
 timeout(time: 20, unit: 'MINUTES')
 }

 stages {
 stage('Build App') {
 steps {
 container("java") {
 sh "mvn --version"
 }
 }
 }
 }
}

OpenShift Container Platform 4.16 Jenkins

20

イメージごとにデフォルト値を設定できます。メモリー要求および制限パラメーターは、コンテナーご
とに上書きすることもできます。

Jenkins で利用可能なメモリー量を増やすには、Jenkins の一時テンプレートまたは永続テンプレート
をインスタンス化する際に MEMORY_LIMIT パラメーターを上書きします。

1.11. 関連情報

Red Hat Universal Base Images (UBI) の詳細は、ベースイメージのオプション を参照してくだ
さい。

OpenShift Jenkins イメージに対する重要な変更

第1章 JENKINS イメージの設定

21

https://access.redhat.com/documentation/ja-jp/red_hat_enterprise_linux_atomic_host/7/html-single/getting_started_with_containers/index#using_red_hat_base_container_images_standard_and_minimal
https://docs.redhat.com/en/documentation/openshift_container_platform/4.16/html-single/architecture/#base-image-options

第2章 JENKINS エージェント
OpenShift Container Platform は、Jenkins エージェントとして使用するベースイメージを提供しま
す。

Jenkins エージェントのベースイメージは次のことを行います。

必須のツール (ヘッドレス Java、Jenkins JNLP クライアント) と有用なツール
(git、tar、zip、nss など) の両方を取り入れます。

JNLP エージェントをエントリーポイントとして確立します。

Jenkins ジョブ内からコマンドラインの操作を呼び出す oc クライアントツールが含まれます。

Red Hat Enterprise Linux (RHEL) および localdev イメージの両方の Dockerfile を提供しま
す。

重要

OpenShift Container Platform リリースバージョンに適したバージョンのエージェントイ
メージを使用してください。OpenShift Container Platform バージョンと互換性のない
oc クライアントバージョンを埋め込むと、予期しない動作が発生する可能性がありま
す。

OpenShift Container Platform Jenkins イメージは、Jenkins Kubernetes プラグインでエージェントイ
メージを使用する方法を示すために、次のサンプル java-builder Pod テンプレートも定義します。

java-builder Pod テンプレートは、次の 2 つのコンテナーを使用します。

OpenShift Container Platform Base エージェントイメージを使用し、Jenkins エージェントの
起動と停止のための JNLP 契約を処理する jnlp コンテナー。

java OpenShift Container Platform サンプル ImageStream を使用する java コンテナー。これ
には、コードをビルドするための Maven バイナリー mvn を含むさまざまな Java バイナリー
が含まれています。

2.1. JENKINS エージェントイメージ

OpenShift Container Platform Jenkins エージェントイメージは Quay.io または registry.redhat.io で利
用できます。

Jenkins イメージは、Red Hat レジストリーから入手できます。

これらのイメージを使用するには、Quay.io または registry.redhat.io から直接アクセスするか、これら
を OpenShift Container Platform コンテナーイメージレジストリーにプッシュします。

2.2. JENKINS エージェントの環境変数

各 Jenkins エージェントコンテナーは、以下の環境変数で設定できます。

$ docker pull registry.redhat.io/ocp-tools-4/jenkins-rhel8:<image_tag>

$ docker pull registry.redhat.io/ocp-tools-4/jenkins-agent-base-rhel8:<image_tag>

OpenShift Container Platform 4.16 Jenkins

22

https://quay.io
https://registry.redhat.io
https://quay.io
https://registry.redhat.io

変数 定義 値と設定の例

JAVA_MAX_HEAP_PARAM、
CONTAINER_HEAP_PERCEN
T、JENKINS_MAX_HEAP_UP
PER_BOUND_MB

これらの値は Jenkins JVM の最
大ヒープサイズを制御しま
す。JAVA_MAX_HEAP_PARA
M が設定されている場合は、その
値が優先されます。設定されてい
ない場合、最大ヒープサイズは、
コンテナーメモリー制限の
CONTAINER_HEAP_PERCE
NT として動的に計算され、オプ
ションで
JENKINS_MAX_HEAP_UPPE
R_BOUND_MB MiB を上限とし
ます。

デフォルトでは Jenkins JVM の
最大ヒープサイズは、上限なしで
コンテナーメモリー制限の 50%
に設定されます。

JAVA_MAX_HEAP_PARAM
の設定例: -Xmx512m

CONTAINER_HEAP_PERCE
NT のデフォルト: 0.5 (50%)

JENKINS_MAX_HEAP_UPPE
R_BOUND_MB の設定例: 512
MiB

JAVA_INITIAL_HEAP_PARA
M、CONTAINER_INITIAL_PE
RCENT

これらの値は Jenkins JVM の初
期ヒープサイズを制御しま
す。JAVA_INITIAL_HEAP_PA
RAM が設定されている場合は、
その値が優先されます。設定され
ていない場合、初期ヒープサイズ
は、動的に計算される最大ヒープ
サイズの
CONTAINER_INITIAL_PERC
ENT として動的に計算されま
す。

デフォルトでは、JVM は初期の
ヒープサイズを設定します。

JAVA_INITIAL_HEAP_PARA
M の設定例: -Xmx32m

CONTAINER_INITIAL_PERC
ENT の設定例: 0.1 (10%)

CONTAINER_CORE_LIMIT 設定されている場合は、内部の
JVM スレッドのサイジング数に
使用するコアの数を整数で指定し
ます。

設定例: 2

JAVA_TOOL_OPTIONS このコンテナーで実行中のすべて
の JVM に適用するオプションを
指定します。この値の上書きは推
奨されません。

デフォルト: -
XX:+UnlockExperimentalVM
Options -
XX:+UseCGroupMemoryLimi
tForHeap -
Dsun.zip.disableMemoryMap
ping=true

第2章 JENKINS エージェント

23

JAVA_GC_OPTS Jenkins JVM ガーベッジコレク
ションのパラメーターを指定しま
す。この値の上書きは推奨されま
せん。

デフォルト: -
XX:+UseParallelGC -
XX:MinHeapFreeRatio=5 -
XX:MaxHeapFreeRatio=10 -
XX:GCTimeRatio=4 -
XX:AdaptiveSizePolicyWeigh
t=90

JENKINS_JAVA_OVERRIDES Jenkins JVM の追加オプションを
指定します。これらのオプション
は、上記の Java オプションを含
む、その他すべてのオプションに
追加され、必要に応じてそれらの
いずれかを上書きするために使用
できます。追加オプションがある
場合は、スペースで区切ります。
オプションにスペース文字が含ま
れる場合は、バックスラッシュで
エスケープしてください。

設定例: -Dfoo -Dbar; -
Dfoo=first\ value -
Dbar=second\ value

USE_JAVA_VERSION コンテナーでエージェントを実行
するために使用する Java バー
ジョンのバージョンを指定しま
す。コンテナーの基本イメージに
は、java-11 と java-1.8.0 の 2 つ
のバージョンの Java がインス
トールされています。コンテナー
の基本イメージを拡張する場合
は、関連付けられた接尾辞を使用
して、Java の任意の代替バー
ジョンを指定できます。

デフォルト値は java-11 です。

設定例: java-1.8.0

変数 定義 値と設定の例

2.3. JENKINS エージェントのメモリー要件

JVM はすべての Jenkins エージェントで使用され、Jenkins JNLP エージェントをホストし、javac、
Maven、Gradle などの Java アプリケーションを実行します。

デフォルトで、Jenkins JNLP エージェントの JVM はヒープにコンテナーメモリー制限の 50% を使用
します。この値は、CONTAINER_HEAP_PERCENT の環境変数で変更可能です。上限を指定すること
も、すべて上書きすることも可能です。

デフォルトでは、シェルスクリプトや oc コマンドをパイプラインから実行するなど、Jenkins エー
ジェントコンテナーで実行される他のプロセスはすべて、OOM kill を呼び出さずに残りの 50% メモ
リー制限を超えるメモリーを使用することはできません。

デフォルトでは、Jenkins エージェントコンテナーで実行される他の各 JVM プロセスは、最大でコン
テナーメモリー制限の 25% をヒープに使用します。多くのビルドワークロードにおいて、この制限の
調整が必要になる場合があります。

2.4. JENKINS エージェントの GRADLE ビルド

OpenShift Container Platform 4.16 Jenkins

24

OpenShift Container Platform の Jenkins エージェントで Gradle ビルドをホストすると、Jenkins
JNLP エージェントおよび Gradle JVM に加え、テストが指定されている場合に Gradle が 3 番目の
JVM を起動してテストを実行するので、さらに複雑になります。

以下の設定は、OpenShift Container Platform でメモリーに制約がある Jenkins エージェントの Gradle
ビルドを実行する場合の開始点として推奨されます。必要に応じて、これらの設定を変更することがで
きます。

gradle.properties ファイルに org.gradle.daemon=false を追加して、有効期間の長い (long-
lived) Gradle デーモンを無効にするようにします。

org.gradle.parallel=true が gradle.properties ファイルに設定されておらず、--parallel がコマ
ンドライン引数として設定されていないことを確認して、並列ビルドの実行を無効にします。

java { options.fork = false } を build.gradle ファイルに設定して、プロセス以外で Java がコ
ンパイルされないようにします.

build.gradle ファイルで test { maxParallelForks = 1 } が設定されていることを確認して、複
数の追加テストプロセスを無効にします。

GRADLE_OPTS、JAVA_OPTS、または JAVA_TOOL_OPTIONS 環境変数で、Gradle JVM メ
モリーパラメーターを上書きします。

build.gradle の maxHeapSize および jvmArgs 設定を定義するか、-Dorg.gradle.jvmargs コ
マンドライン引数を使用して、Gradle テスト JVM に最大ヒープサイズと JVM の引数を設定し
ます。

2.5. JENKINS エージェント POD の保持

Jenkins エージェント Pod は、ビルドが完了するか、停止された後にデフォルトで削除されます。この
動作は、Kubernetes プラグイン Pod の保持設定で変更できます。Pod の保持は、すべての Jenkins ビ
ルドについて各 Pod テンプレートの上書きで設定できます。以下の動作がサポートされます。

Always は、ビルドの結果に関係なくビルド Pod を維持します。

Default は、プラグイン値を使用します (Pod テンプレートのみ)。

Never は、常に Pod を削除します。

On Failure は、Pod がビルド時に失敗した場合に Pod を維持します。

Pod の保持はパイプライン Jenkinsfile で上書きできます。

podTemplate(label: "mypod",
 cloud: "openshift",
 inheritFrom: "maven",
 podRetention: onFailure(), 1
 containers: [
 ...
]) {
 node("mypod") {
 ...
 }
}

第2章 JENKINS エージェント

25

1 podRetention に許可される値は、never()、onFailure()、always()、および default() です。

警告

保持される Pod は実行し続け、リソースクォータに対してカウントされる可能性
があります。

OpenShift Container Platform 4.16 Jenkins

26

第3章 JENKINS から OPENSHIFT PIPELINES または TEKTON へ
の移行

CI/CD ワークフローを Jenkins から Red Hat OpenShift Pipelines に移行できます。これは、Tekton プ
ロジェクトに基づくクラウドネイティブの CI/CD エクスペリエンスです。

3.1. JENKINS と OPENSHIFT PIPELINES のコンセプトの比較

Jenkins および OpenShift Pipelines で使用される以下の同等の用語を確認および比較できます。

3.1.1. Jenkins の用語

Jenkins は、共有ライブラリーおよびプラグインを使用して拡張可能な宣言型およびスクリプト化され
たパイプラインを提供します。Jenkins における基本的な用語は以下のとおりです。

Pipeline: Groovy 構文を使用してアプリケーションをビルドし、テストし、デプロイするプロ
セスをすべて自動化します。

ノード: スクリプト化されたパイプラインのオーケストレーションまたは実行できるマシン。

ステージ: パイプラインで実行されるタスクの概念的に異なるサブセット。プラグインまたは
ユーザーインターフェイスは、このブロックを使用してタスクの状態または進捗を表示しま
す。

ステップ: コマンドまたはスクリプトを使用して、実行する正確なアクションを指定する単一タ
スク。

3.1.2. OpenShift Pipelines の用語

OpenShift Pipelines は、宣言型パイプラインに YAML 構文を使用し、タスクで構成されます。
OpenShift Pipelines の基本的な用語は次のとおりです。

パイプライン: 一連のタスク、並行したタスク、またはその両方。

タスク: コマンド、バイナリー、またはスクリプトとしてのステップシーケンス。

PipelineRun: 1 つ以上のタスクを使用したパイプラインの実行。

TaskRun: 1 つ以上のステップを使用したタスクの実行。

注記

パラメーターやワークスペースなどの入力のセットを使用して PipelineRun また
は TaskRun を開始し、実行結果を出力およびアーティファクトのセットで開始
できます。

Workspace: OpenShift Pipelines では、ワークスペースは次の目的に役立つ概念的なブロック
です。

入力、出力、およびビルドアーティファクトのストレージ。

タスク間でデータを共有する一般的な領域。

シークレットに保持される認証情報のマウントポイント、config map に保持される設定、

第3章 JENKINS から OPENSHIFT PIPELINES または TEKTON への移行

27

https://docs.openshift.com/pipelines/latest/about/understanding-openshift-pipelines.html
https://groovy-lang.org/
https://yaml.org/

シークレットに保持される認証情報のマウントポイント、config map に保持される設定、
および組織が共有される共通のツール。

注記

Jenkins には、OpenShift Pipelines ワークスペースに直接相当するものはありま
せん。コントロールノードは、クローン作成したコードリポジトリー、ビルド履
歴、およびアーティファクトを格納するため、ワークスペースと考えることがで
きます。ジョブが別のノードに割り当てられると、クローン化されたコードと生
成されたアーティファクトはそのノードに保存されますが、コントロールノード
はビルド履歴を維持します。

3.1.3. 概念のマッピング

Jenkins と OpenShift Pipelines のビルディングブロックは同等ではなく、特定の比較では技術的に正確
なマッピングは提供されません。Jenkins と OpenShift Pipelines の以下の用語と概念は、一般的に相互
に関連しています。

表3.1 Jenkins と OpenShift Pipelines - 基本的な比較

Jenkins OpenShift Pipeline

パイプライン パイプラインおよび PipelineRun

ステージ タスク

Step タスクのステップ

3.2. JENKINS から OPENSHIFT PIPELINES へのサンプルパイプラインの
移行

以下の同等の例を使用して、Jenkins から OpenShift Pipelines へのパイプラインのビルド、テスト、お
よびデプロイを支援できます。

3.2.1. Jenkins パイプライン

ビルド、テスト、デプロイ用に Groovy で記述された Jenkins パイプラインを検討します。

pipeline {
 agent any
 stages {
 stage('Build') {
 steps {
 sh 'make'
 }
 }
 stage('Test'){
 steps {
 sh 'make check'
 junit 'reports/**/*.xml'
 }
 }

OpenShift Container Platform 4.16 Jenkins

28

3.2.2. OpenShift Pipelines パイプライン

前の Jenkins パイプラインと同等のパイプラインを OpenShift Pipelines で作成するには、次の 3 つの
タスクを作成します。

build タスクの YAML 定義ファイルの例

test タスクの YAML 定義ファイルの例

deploy タスクの YAML 定義ファイルの例

 stage('Deploy') {
 steps {
 sh 'make publish'
 }
 }
 }
}

apiVersion: tekton.dev/v1beta1
kind: Task
metadata:
 name: myproject-build
spec:
 workspaces:
 - name: source
 steps:
 - image: my-ci-image
 command: ["make"]
 workingDir: $(workspaces.source.path)

apiVersion: tekton.dev/v1beta1
kind: Task
metadata:
 name: myproject-test
spec:
 workspaces:
 - name: source
 steps:
 - image: my-ci-image
 command: ["make check"]
 workingDir: $(workspaces.source.path)
 - image: junit-report-image
 script: |
 #!/usr/bin/env bash
 junit-report reports/**/*.xml
 workingDir: $(workspaces.source.path)

apiVersion: tekton.dev/v1beta1
kind: Task
metadata:
 name: myprojectd-deploy
spec:
 workspaces:

第3章 JENKINS から OPENSHIFT PIPELINES または TEKTON への移行

29

3 つのタスクを順番に組み合わせて、OpenShift Pipelines でパイプラインを形成できます。

例: ビルド、テスト、およびデプロイのための OpenShift Pipelines

3.3. JENKINS プラグインから TEKTON HUB タスクへの移行

プラグイン を使用して、Jenkins の機能を拡張できます。OpenShift Pipelines で同様の拡張性を実現す
るには、Tekton Hub から利用可能なタスクのいずれかを使用します。

たとえば、Jenkins の git plug-in に対応する Tekton Hub の git-clone タスクについて考えてみます。

例: Tekton Hub からの git-clone タスク

 - name: source
 steps:
 - image: my-deploy-image
 command: ["make deploy"]
 workingDir: $(workspaces.source.path)

apiVersion: tekton.dev/v1beta1
kind: Pipeline
metadata:
 name: myproject-pipeline
spec:
 workspaces:
 - name: shared-dir
 tasks:
 - name: build
 taskRef:
 name: myproject-build
 workspaces:
 - name: source
 workspace: shared-dir
 - name: test
 taskRef:
 name: myproject-test
 workspaces:
 - name: source
 workspace: shared-dir
 - name: deploy
 taskRef:
 name: myproject-deploy
 workspaces:
 - name: source
 workspace: shared-dir

apiVersion: tekton.dev/v1beta1
kind: Pipeline
metadata:
 name: demo-pipeline
spec:
 params:
 - name: repo_url
 - name: revision
 workspaces:

OpenShift Container Platform 4.16 Jenkins

30

https://plugins.jenkinsci.org
https://hub.tekton.dev
https://plugins.jenkins.io/git/
https://hub.tekton.dev/tekton/task/git-clone

3.4. カスタムタスクとスクリプトを使用した OPENSHIFT PIPELINES 機能
の拡張

OpenShift Pipelines では、Tekton Hub で適切なタスクが見つからない場合、またはタスクをより細か
く制御する必要がある場合は、カスタムタスクとスクリプトを作成して OpenShift Pipelines の機能を
拡張できます。

例: maven test コマンドを実行するカスタムタスク

例: パスを指定してカスタムシェルスクリプトを実行する

例: カスタム Python スクリプトを YAML ファイルに書き込んで実行する

 - name: source
 tasks:
 - name: fetch-from-git
 taskRef:
 name: git-clone
 params:
 - name: url
 value: $(params.repo_url)
 - name: revision
 value: $(params.revision)
 workspaces:
 - name: output
 workspace: source

apiVersion: tekton.dev/v1beta1
kind: Task
metadata:
 name: maven-test
spec:
 workspaces:
 - name: source
 steps:
 - image: my-maven-image
 command: ["mvn test"]
 workingDir: $(workspaces.source.path)

...
steps:
 image: ubuntu
 script: |
 #!/usr/bin/env bash
 /workspace/my-script.sh
...

...
steps:
 image: python
 script: |

第3章 JENKINS から OPENSHIFT PIPELINES または TEKTON への移行

31

3.5. JENKINS と OPENSHIFT PIPELINES の実行モデルの比較

Jenkins と OpenShift Pipelines は同様の機能を提供しますが、アーキテクチャーと実行が異なります。

表3.2 Jenkins と OpenShift Pipelines の実行モデルの比較

Jenkins OpenShift Pipeline

Jenkins にはコントローラーノードがあります。
Jenkins は、パイプラインとステップを一元的に実行
するか、他のノードで実行しているジョブのオーケ
ストレーションを行います。

OpenShift Pipelines はサーバーレスで分散されてお
り、実行のための central 依存関係はありません。

コンテナーは、パイプラインを介して Jenkins コン
トローラーノードによって起動されます。

OpenShift Pipelines は、'コンテナーファースト' アプ
ローチを採用しています。このアプローチでは、す
べてのステップが Pod 内のコンテナーとして実行さ
れます (Jenkins のノードに相当)。

プラグインを使用することで拡張性が実現されま
す。

拡張性は、Tekton Hub のタスクを使用するか、カス
タムタスクおよびスクリプトを作成して実行しま
す。

3.6. 一般的な使用例の例

Jenkins と OpenShift Pipelines はどちらも、次のような一般的な CI/CD ユースケース向けの機能を提
供します。

Apache Maven を使用したイメージのコンパイル、ビルド、およびデプロイ

プラグインを使用してコア機能の拡張

共有可能なライブラリーおよびカスタムスクリプトの再利用

3.6.1. Jenkins および OpenShift Pipelines での Maven パイプラインの実行

Jenkins ワークフローと OpenShift Pipelines ワークフローの両方で Maven を使用して、イメージのコ
ンパイル、ビルド、およびデプロイを行うことができます。既存の Jenkins ワークフローを OpenShift
Pipelines にマッピングするには、以下の例を検討してください。

例: Jenkins の Maven を使用して、イメージをコンパイルおよびビルドし、OpenShift にデプ
ロイする

 #!/usr/bin/env python3
 print(“hello from python!”)
...

#!/usr/bin/groovy
node('maven') {
 stage 'Checkout'
 checkout scm

 stage 'Build'

OpenShift Container Platform 4.16 Jenkins

32

例: OpenShift Pipelines の Maven を使用して、イメージをコンパイルおよびビルドし、
OpenShift にデプロイする

 sh 'cd helloworld && mvn clean'
 sh 'cd helloworld && mvn compile'

 stage 'Run Unit Tests'
 sh 'cd helloworld && mvn test'

 stage 'Package'
 sh 'cd helloworld && mvn package'

 stage 'Archive artifact'
 sh 'mkdir -p artifacts/deployments && cp helloworld/target/*.war artifacts/deployments'
 archive 'helloworld/target/*.war'

 stage 'Create Image'
 sh 'oc login https://kubernetes.default -u admin -p admin --insecure-skip-tls-verify=true'
 sh 'oc new-project helloworldproject'
 sh 'oc project helloworldproject'
 sh 'oc process -f helloworld/jboss-eap70-binary-build.json | oc create -f -'
 sh 'oc start-build eap-helloworld-app --from-dir=artifacts/'

 stage 'Deploy'
 sh 'oc new-app helloworld/jboss-eap70-deploy.json' }

apiVersion: tekton.dev/v1beta1
kind: Pipeline
metadata:
 name: maven-pipeline
spec:
 workspaces:
 - name: shared-workspace
 - name: maven-settings
 - name: kubeconfig-dir
 optional: true
 params:
 - name: repo-url
 - name: revision
 - name: context-path
 tasks:
 - name: fetch-repo
 taskRef:
 name: git-clone
 workspaces:
 - name: output
 workspace: shared-workspace
 params:
 - name: url
 value: "$(params.repo-url)"
 - name: subdirectory
 value: ""
 - name: deleteExisting
 value: "true"
 - name: revision
 value: $(params.revision)

第3章 JENKINS から OPENSHIFT PIPELINES または TEKTON への移行

33

 - name: mvn-build
 taskRef:
 name: maven
 runAfter:
 - fetch-repo
 workspaces:
 - name: source
 workspace: shared-workspace
 - name: maven-settings
 workspace: maven-settings
 params:
 - name: CONTEXT_DIR
 value: "$(params.context-path)"
 - name: GOALS
 value: ["-DskipTests", "clean", "compile"]
 - name: mvn-tests
 taskRef:
 name: maven
 runAfter:
 - mvn-build
 workspaces:
 - name: source
 workspace: shared-workspace
 - name: maven-settings
 workspace: maven-settings
 params:
 - name: CONTEXT_DIR
 value: "$(params.context-path)"
 - name: GOALS
 value: ["test"]
 - name: mvn-package
 taskRef:
 name: maven
 runAfter:
 - mvn-tests
 workspaces:
 - name: source
 workspace: shared-workspace
 - name: maven-settings
 workspace: maven-settings
 params:
 - name: CONTEXT_DIR
 value: "$(params.context-path)"
 - name: GOALS
 value: ["package"]
 - name: create-image-and-deploy
 taskRef:
 name: openshift-client
 runAfter:
 - mvn-package
 workspaces:
 - name: manifest-dir
 workspace: shared-workspace
 - name: kubeconfig-dir
 workspace: kubeconfig-dir
 params:

OpenShift Container Platform 4.16 Jenkins

34

3.6.2. プラグインを使用して Jenkins および OpenShift Pipelines のコア機能を拡張す
る

Jenkins には、その広範なユーザーベースによって長年にわたって開発された多数のプラグインの大規
模なエコシステムという利点があります。Jenkins プラグインインデックス でプラグインを検索および
参照できます。

OpenShift Pipelines には、コミュニティーおよびエンタープライズユーザーによって開発および提供さ
れた多くのタスクもあります。再利用可能な OpenShift Pipelines タスクの公開されているカタログ
は、Tekton Hub で入手できます。

さらに、OpenShift Pipelines は、Jenkins エコシステムのプラグインの多くをコア機能に組み込んでい
ます。たとえば、承認は Jenkins と OpenShift Pipelines の両方で重要な機能です。Jenkins は Role-
based Authorization Strategy プラグインを使用して認可を保証しますが、OpenShift Pipelines は
OpenShift のビルトインロールベースアクセス制御システムを使用します。

3.6.3. Jenkins および OpenShift Pipelines での再利用可能なコードの共有

Jenkins 共有ライブラリー は、Jenkins パイプラインの一部に再利用可能なコードを提供します。ライ
ブラリーは、Jenkinsfiles 間で共有され、コードの繰り返しなしに、高度にモジュール化されたパイプ
ラインを作成します。

OpenShift Pipelines には Jenkins 共有ライブラリーの直接の機能は存在しませんが、カスタムタスクや
スクリプトと組み合わせて Tekton Hub のタスクを使用して同様のワークフローを実行できます。

3.7. 関連情報

OpenShift Pipelines について

ロールベースのアクセス制御

 - name: SCRIPT
 value: |
 cd "$(params.context-path)"
 mkdir -p ./artifacts/deployments && cp ./target/*.war ./artifacts/deployments
 oc new-project helloworldproject
 oc project helloworldproject
 oc process -f jboss-eap70-binary-build.json | oc create -f -
 oc start-build eap-helloworld-app --from-dir=artifacts/
 oc new-app jboss-eap70-deploy.json

第3章 JENKINS から OPENSHIFT PIPELINES または TEKTON への移行

35

https://plugins.jenkins.io/
https://hub.tekton.dev/
https://plugins.jenkins.io/role-strategy/
https://www.jenkins.io/doc/book/pipeline/shared-libraries/
https://www.jenkins.io/doc/book/pipeline/jenkinsfile/
https://hub.tekton.dev/
https://docs.openshift.com/pipelines/latest/about/understanding-openshift-pipelines.html
https://docs.redhat.com/en/documentation/openshift_container_platform/4.16/html-single/authentication_and_authorization/#using-rbac

第4章 OPENSHIFT JENKINS イメージに対する重要な変更
OpenShift Container Platform 4.11 は、OpenShift Jenkins および OpenShift Agent Base イメージを
registry.redhat.io の ocp-tools-4 リポジトリーに移動します。また、ペイロードから OpenShift
Jenkins Maven および NodeJS Agent イメージを削除します。

OpenShift Container Platform 4.11 は、Red Hat が OpenShift Container Platform ライフサイク
ル外でイメージを生成および更新できるように、OpenShift Jenkins および OpenShift Agent
Base イメージを registry.redhat.io の ocp-tools-4 リポジトリーに移動します。以前のバー
ジョンでは、これらのイメージは OpenShift Container Platform インストールペイロードに使
用され、openshift4 リポジトリーは registry.redhat.io にありました。

OpenShift Container Platform 4.10 は、OpenShift Jenkins Maven および NodeJS Agent イ
メージを非推奨にしました。OpenShift Container Platform 4.11 は、これらのイメージをペイ
ロードから削除します。Red Hat はこれらのイメージを生成しなくなり、registry.redhat.io の
ocp-tools-4 リポジトリーから入手できなくなりました。Red Hat は、OpenShift Container
Platform ライフサイクルポリシー に従って、重要なバグ修正またはセキュリティー CVE のた
めにこれらのイメージの 4.10 以前のバージョンを維持します。

これらの変更は、Jenkins Kubernetes Plug-in で複数のコンテナー Pod テンプレート を使用するという
OpenShift Container Platform 4.10 の推奨事項をサポートします。

4.1. OPENSHIFT JENKINS イメージの再配置

OpenShift Container Platform 4.11 では、特定の OpenShift Jenkins イメージの場所と可用性が大幅に変
更されています。さらに、これらのイメージをいつ、どのように更新するかを設定できます。

OpenShift Jenkins イメージの変わらない点

Cluster Samples Operator は、OpenShift Jenkins イメージを操作するための ImageStream お
よび Template オブジェクトを管理します。

デフォルトでは、Jenkins Pod テンプレートの Jenkins DeploymentConfig オブジェクトは、
Jenkins イメージが変更になると、再デプロイをトリガーします。デフォルトでは、このイ
メージは、Samples Operator ペイロードの ImageStream YAML ファイルの openshift
namespace にある Jenkins イメージストリームの jenkins:2 イメージストリームタグによって
参照されます。

OpenShift Container Platform 4.10 以前から 4.11 にアップグレードする場合、非推奨の maven
および nodejs Pod テンプレートはデフォルトのイメージ設定のままです。

OpenShift Container Platform 4.10 以前から 4.11 にアップグレードする場合、jenkins-agent-
maven および jenkins-agent-nodejs イメージストリームは引き続きクラスターに存在しま
す。これらのイメージストリームを維持するには、次のセクション「openshift namespace の
jenkins-agent-maven および jenkins-agent-nodejs イメージストリームはどうなりますか?」
を参照してください。

OpenShift Jenkins イメージのサポートマトリックスの変更点は何ですか?

registry.redhat.io レジストリーの ocp-tools-4 リポジトリーにある新しい各イメージは、OpenShift
Container Platform の複数のバージョンをサポートします。Red Hat がこれらの新しいイメージの 1 つ
を更新すると、すべてのバージョンで同時に利用できるようになります。この可用性は、セキュリ
ティーアドバイザリーに応じて Red Hat がイメージを更新する場合に理想的です。最初は、この変更は
OpenShift Container Platform 4.11 以降に適用されます。この変更は、最終的に OpenShift Container
Platform 4.9 以降に適用される予定です。

OpenShift Container Platform 4.16 Jenkins

36

https://access.redhat.com/support/policy/updates/openshift

以前は、各 Jenkins イメージは OpenShift Container Platform の 1 つのバージョンのみをサポートして
おり、Red Hat はこれらのイメージを時間の経過とともに順次更新する可能性がありました。

OpenShift Jenkins および Jenkins Agent Base ImageStream および ImageStreamTag オブ
ジェクトにはどのような追加機能がありますか?

ペイロード内のイメージストリームから非ペイロードイメージを参照するイメージストリームに移動す
ることで、OpenShift Container Platform は追加のイメージストリームタグを定義できます。Red Hat
は、既存の "value": "jenkins:2" および "value": "image-registry.openshift-image-
registry.svc:5000/openshift/jenkins-agent-base-rhel8:latest" イメージストリームタグは、
OpenShift Container Platform 4.10 以前に存在します。これらの新規イメージストリームタグは、
Jenkins 関連のイメージストリームのメンテナンス方法を改善するための要求の一部に対応します。

新規イメージストリームタグについて以下を実行します。

ocp-upgrade-redeploy

OpenShift Container Platform のアップグレード時に Jenkins イメージを更新するには、Jenkins デ
プロイメント設定でこのイメージストリームタグを使用します。このイメージストリームタグ
は、jenkins イメージストリームの既存の 2 のイメージストリームタグと jenkins-agent-base-
rhel8 イメージストリームの latest イメージストリームタグに対応します。これは 1 つの SHA また
はイメージダイジェストのみに固有のイメージタグを使用します。Jenkins セキュリティーアドバイ
ザリーなどの ocp-tools-4 イメージが変更になると、Red Hat エンジニアリングは Cluster Samples
Operator ペイロードを更新します。

user-maintained-upgrade-redeploy

OpenShift Container Platform をアップグレードした後に Jenkins を手動で再デプロイするには、
Jenkins デプロイメント設定でこのイメージストリームタグを使用します。このイメージストリーム
タグは、利用可能な最も具体的なイメージバージョンインジケーターを使用します。Jenkins を再デ
プロイするときは、$ oc import-image jenkins:user-maintained-upgrade-redeploy -n openshift
コマンドを実行します。このコマンドを発行すると、OpenShift Container Platform ImageStream
コントローラーは registry.redhat.io イメージレジストリーにアクセスし、その Jenkins
ImageStreamTag オブジェクトの OpenShift イメージレジストリーのスロットに更新されたイメー
ジを保存します。それ以外の場合は、このコマンドを実行しないと、Jenkins デプロイ設定によって
再デプロイがトリガーされません。

scheduled-upgrade-redeploy

Jenkins イメージの最新バージョンがリリースされたときに自動的に再デプロイするには、Jenkins
デプロイ設定でこのイメージストリームタグを使用します。このイメージストリームタグは、バッ
キングイメージの変更をチェックする OpenShift Container Platform イメージストリームコント
ローラーのイメージストリームタグ機能の定期的なインポートを使用します。たとえば、最近の
Jenkins セキュリティーアドバイザリーが原因でイメージが変更になると、OpenShift Container
Platform は Jenkins デプロイメント設定の再デプロイメントをトリガーします。次の「関連情報」
の「イメージストリームタグの定期的なインポートの設定」を参照してください。

openshift namespace の jenkins-agent-maven および jenkins-agent-nodejs イメージストリーム
はどうなりますか?

OpenShift Container Platform の OpenShift Jenkins Maven および NodeJS エージェントイメージは、
4.10 で非推奨になり、4.11 で OpenShift Container Platform インストールペイロードから削除されまし
た。それらには、ocp-tools-4 リポジトリーで定義された代替手段がありません。ただし、次の関連情
報セクションで言及されている Jenkins エージェントトピックで説明されているサイドカーパターンを
使用することで、これを回避できます。

ただし、Cluster Samples Operator は、以前のリリースで作成された jenkins-agent-maven および
jenkins-agent-nodejs イメージストリームを削除しません。これらは、registry.redhat.io 上のそれぞ
れの OpenShift Container Platform ペイロードイメージのタグを指しています。したがって、次のコマ

第4章 OPENSHIFT JENKINS イメージに対する重要な変更

37

ンドを実行して、これらのイメージの更新をプルできます。

4.2. JENKINS イメージストリームタグのカスタマイズ

デフォルトのアップグレード動作をオーバーライドし、Jenkins イメージのアップグレード方法を制御
するには、Jenkins デプロイメント設定で使用するイメージストリームタグの値を設定します。

デフォルトのアップグレード動作は、Jenkins イメージがインストールペイロードの一部であったとき
に存在した動作です。jenkins-rhel.json イメージストリームファイル内のイメージストリームタグ名 2
および ocp-upgrade-redeploy は、SHA 固有のイメージ参照を使用します。したがって、これらのタ
グが新しい SHA で更新されると、OpenShift Container Platform イメージ変更コントローラーは、関連
するテンプレート (jenkins-ephemeral.json や jenkins-persistent.json など) から Jenkins デプロイメ
ント設定を自動的に再デプロイします。

新しいデプロイメントの場合、そのデフォルト値をオーバーライドするには、jenkins-ephemeral.json
Jenkins テンプレートの JENKINS_IMAGE_STREAM_TAG の値を変更します。たとえば、"value":
"jenkins:2" の 2 を次のイメージストリームタグのいずれかに置き換えます。

デフォルト値 の ocp-upgrade-redeploy は、OpenShift Container Platform をアップグレード
するときに Jenkins イメージを更新します。

user-maintained-upgrade-redeploy では、OpenShift Container Platform のアップグレード後
に $ oc import-image jenkins:user-maintained-upgrade-redeploy -n openshift を実行し
て、Jenkins を手動で再デプロイする必要があります。

schedule-upgrade-redeploy は、指定された <image>:<tag> の組み合わせの変更を定期的に
チェックし、変更されたときにイメージをアップグレードします。イメージ変更コントロー
ラーは、変更されたイメージをプルし、テンプレートによってプロビジョニングされた Jenkins
デプロイ設定を再デプロイします。このスケジュールされたインポートポリシーの詳細は、次
の関連情報に記載される「イメージストリームへのタグの追加」を参照してください。

注記

既存のデプロイメントの現在のアップグレード値をオーバーライドするには、それらの
テンプレートパラメーターに対応する環境変数の値を変更します。

前提条件

OpenShift Container Platform 4.16 で OpenShift Jenkins を実行している。

OpenShift Jenkins がデプロイされている namespace を知ってる。

手順

<namespace> を OpenShift Jenkins がデプロイされている namespace に置き換
え、<image_stream_tag> をイメージストリームタグに置き換えて、イメージストリームタグ
の値を設定します。

例

$ oc import-image jenkins-agent-nodejs -n openshift

$ oc import-image jenkins-agent-maven -n openshift

OpenShift Container Platform 4.16 Jenkins

38

ヒント

または、Jenkins デプロイメント設定 YAML を編集するには、$ oc edit dc/jenkins -n
<namespace> を入力し、value: 'jenkins:<image_stream_tag>' 行を更新します。

4.3. 関連情報

タグのイメージストリームへの追加

イメージストリームタグの定期的なインポートの設定

Jenkins エージェント

認定済み jenkins イメージ

認定済み jenkins-agent-base イメージ

認定済み jenkins-agent-maven イメージ

認定済み jenkins-agent-nodejs イメージ

$ oc patch dc jenkins -p '{"spec":{"triggers":[{"type":"ImageChange","imageChangeParams":
{"automatic":true,"containerNames":["jenkins"],"from":
{"kind":"ImageStreamTag","namespace":"<namespace>","name":"jenkins:
<image_stream_tag>"}}}]}}'

第4章 OPENSHIFT JENKINS イメージに対する重要な変更

39

https://docs.redhat.com/en/documentation/openshift_container_platform/4.16/html-single/images/#images-add-tags-to-imagestreams_tagging-images
https://docs.redhat.com/en/documentation/openshift_container_platform/4.16/html-single/images/#images-imagestream-import_image-streams-managing
https://catalog.redhat.com/software/containers/search?q=Jenkins 2&p=1
https://catalog.redhat.com/software/containers/search?q=Jenkins Agent Base&p=1
https://catalog.redhat.com/software/containers/search?q=jenkins-agent-maven&p=1
https://catalog.redhat.com/software/containers/search?q=jenkins-agent-nodejs&p=1

	Table of Contents
	第1章 JENKINS イメージの設定
	1.1. 設定とカスタマイズ
	1.1.1. OpenShift Container Platform OAuth 認証
	1.1.2. Jenkins 認証

	1.2. JENKINS 環境変数
	1.3. JENKINS へのプロジェクト間のアクセスの提供
	1.4. JENKINS のボリューム間のマウントポイント
	1.5. SOURCE-TO-IMAGE による JENKINS イメージのカスタマイズ
	1.6. JENKINS KUBERNETES プラグインの設定
	1.7. JENKINS パーミッション
	1.8. テンプレートからの JENKINS サービスの作成
	1.9. JENKINS KUBERNETES プラグインの使用
	1.10. JENKINS メモリーの要件
	1.11. 関連情報

	第2章 JENKINS エージェント
	2.1. JENKINS エージェントイメージ
	2.2. JENKINS エージェントの環境変数
	2.3. JENKINS エージェントのメモリー要件
	2.4. JENKINS エージェントの GRADLE ビルド
	2.5. JENKINS エージェント POD の保持

	第3章 JENKINS から OPENSHIFT PIPELINES または TEKTON への移行
	3.1. JENKINS と OPENSHIFT PIPELINES のコンセプトの比較
	3.1.1. Jenkins の用語
	3.1.2. OpenShift Pipelines の用語
	3.1.3. 概念のマッピング

	3.2. JENKINS から OPENSHIFT PIPELINES へのサンプルパイプラインの移行
	3.2.1. Jenkins パイプライン
	3.2.2. OpenShift Pipelines パイプライン

	3.3. JENKINS プラグインから TEKTON HUB タスクへの移行
	3.4. カスタムタスクとスクリプトを使用した OPENSHIFT PIPELINES 機能の拡張
	3.5. JENKINS と OPENSHIFT PIPELINES の実行モデルの比較
	3.6. 一般的な使用例の例
	3.6.1. Jenkins および OpenShift Pipelines での Maven パイプラインの実行
	3.6.2. プラグインを使用して Jenkins および OpenShift Pipelines のコア機能を拡張する
	3.6.3. Jenkins および OpenShift Pipelines での再利用可能なコードの共有

	3.7. 関連情報

	第4章 OPENSHIFT JENKINS イメージに対する重要な変更
	4.1. OPENSHIFT JENKINS イメージの再配置
	4.2. JENKINS イメージストリームタグのカスタマイズ
	4.3. 関連情報

