第4章 AI Inference Server のメトリクスの表示


vLLM は、AI Inference Server OpenAI 互換 API サーバーの /metrics エンドポイントを介してさまざまなメトリクスを公開します。

Python または Docker を使用してサーバーを起動できます。

手順

  1. AI Inference Server サーバーを起動し、次の例に示すようにモデルを読み込みます。このコマンドは、OpenAI 互換 API も公開します。

    $ vllm serve unsloth/Llama-3.2-1B-Instruct
    Copy to Clipboard Toggle word wrap
  2. OpenAI 互換 API の /metrics エンドポイントをクエリーして、サーバーから最新のメトリクスを取得します。

    $ curl http://0.0.0.0:8000/metrics
    Copy to Clipboard Toggle word wrap

    出力例

    # HELP vllm:iteration_tokens_total Histogram of number of tokens per engine_step.
    # TYPE vllm:iteration_tokens_total histogram
    vllm:iteration_tokens_total_sum{model_name="unsloth/Llama-3.2-1B-Instruct"} 0.0
    vllm:iteration_tokens_total_bucket{le="1.0",model_name="unsloth/Llama-3.2-1B-Instruct"} 3.0
    vllm:iteration_tokens_total_bucket{le="8.0",model_name="unsloth/Llama-3.2-1B-Instruct"} 3.0
    vllm:iteration_tokens_total_bucket{le="16.0",model_name="unsloth/Llama-3.2-1B-Instruct"} 3.0
    vllm:iteration_tokens_total_bucket{le="32.0",model_name="unsloth/Llama-3.2-1B-Instruct"} 3.0
    vllm:iteration_tokens_total_bucket{le="64.0",model_name="unsloth/Llama-3.2-1B-Instruct"} 3.0
    vllm:iteration_tokens_total_bucket{le="128.0",model_name="unsloth/Llama-3.2-1B-Instruct"} 3.0
    vllm:iteration_tokens_total_bucket{le="256.0",model_name="unsloth/Llama-3.2-1B-Instruct"} 3.0
    vllm:iteration_tokens_total_bucket{le="512.0",model_name="unsloth/Llama-3.2-1B-Instruct"} 3.0
    #...
    Copy to Clipboard Toggle word wrap

トップに戻る
Red Hat logoGithubredditYoutubeTwitter

詳細情報

試用、購入および販売

コミュニティー

Red Hat ドキュメントについて

Red Hat をお使いのお客様が、信頼できるコンテンツが含まれている製品やサービスを活用することで、イノベーションを行い、目標を達成できるようにします。 最新の更新を見る.

多様性を受け入れるオープンソースの強化

Red Hat では、コード、ドキュメント、Web プロパティーにおける配慮に欠ける用語の置き換えに取り組んでいます。このような変更は、段階的に実施される予定です。詳細情報: Red Hat ブログ.

会社概要

Red Hat は、企業がコアとなるデータセンターからネットワークエッジに至るまで、各種プラットフォームや環境全体で作業を簡素化できるように、強化されたソリューションを提供しています。

Theme

© 2025 Red Hat