第10章 ストリーム


結果を生成するために、キャッシュ内のサブセットまたはすべてのデータを処理したい場合があります。これにより、マップの削減が可能になります。Data Grid を使用すると、ユーザーは非常によく似た操作を実行できますが、標準の JRE API を使用して実行できます。Java 8 では、ユーザーがデータに対して処理を細かく反復するのではなく、コレクションで機能スタイルの操作を可能にする ストリーム の概念が導入されました。ストリーム操作は、MapReduce と似た方法で実装できます。MapReduce と同様、キャッシュ全体で処理を実行できますが、非常に大きなデータセットになりますが、効率的な方法になります。

注記

ストリームは、クラスタートポロジーの変更に自動的に調整されるため、キャッシュに存在するデータを扱う場合に推奨される方法です。

また、エントリーの反復方法を制御できるため、クラスター全体ですべての操作を同時に実行する場合は、分散されたキャッシュで操作をより効率的に実行できます。

ストリームは、stream メソッドまたは parallelStream メソッドを呼び出して、Cache から返される entrySetkeySet、または values コレクションから取得されます。

10.1. 一般的なストリーム操作

本セクションでは、使用している基礎となるキャッシュの種類に関係なく、さまざまなオプションを説明します。

Red Hat logoGithubRedditYoutubeTwitter

詳細情報

試用、購入および販売

コミュニティー

Red Hat ドキュメントについて

Red Hat をお使いのお客様が、信頼できるコンテンツが含まれている製品やサービスを活用することで、イノベーションを行い、目標を達成できるようにします。

多様性を受け入れるオープンソースの強化

Red Hat では、コード、ドキュメント、Web プロパティーにおける配慮に欠ける用語の置き換えに取り組んでいます。このような変更は、段階的に実施される予定です。詳細情報: Red Hat ブログ.

会社概要

Red Hat は、企業がコアとなるデータセンターからネットワークエッジに至るまで、各種プラットフォームや環境全体で作業を簡素化できるように、強化されたソリューションを提供しています。

© 2024 Red Hat, Inc.