이 콘텐츠는 선택한 언어로 제공되지 않습니다.

Appendix A. Encryption Standards


A.1. Synchronous Encryption

A.1.1. Advanced Encryption Standard - AES

In cryptography, the Advanced Encryption Standard (AES) is an encryption standard adopted by the U.S. Government. The standard comprises three block ciphers, AES-128, AES-192 and AES-256, adopted from a larger collection originally published as Rijndael. Each AES cipher has a 128-bit block size, with key sizes of 128, 192 and 256 bits, respectively. The AES ciphers have been analyzed extensively and are now used worldwide, as was the case with its predecessor, the Data Encryption Standard (DES).[5]

A.1.1.1. AES History

AES was announced by National Institute of Standards and Technology (NIST) as U.S. FIPS PUB 197 (FIPS 197) on November 26, 2001 after a 5-year standardization process. Fifteen competing designs were presented and evaluated before Rijndael was selected as the most suitable. It became effective as a standard May 26, 2002. It is available in many different encryption packages. AES is the first publicly accessible and open cipher approved by the NSA for top secret information.
The Rijndael cipher was developed by two Belgian cryptographers, Joan Daemen and Vincent Rijmen, and submitted by them to the AES selection process. Rijndael is a portmanteau of the names of the two inventors.[6]

A.1.2. Data Encryption Standard - DES

The Data Encryption Standard (DES) is a block cipher (a form of shared secret encryption) that was selected by the National Bureau of Standards as an official Federal Information Processing Standard (FIPS) for the United States in 1976 and which has subsequently enjoyed widespread use internationally. It is based on a symmetric-key algorithm that uses a 56-bit key. The algorithm was initially controversial with classified design elements, a relatively short key length, and suspicions about a National Security Agency (NSA) backdoor. DES consequently came under intense academic scrutiny which motivated the modern understanding of block ciphers and their cryptanalysis.[7]

A.1.2.1. DES History

DES is now considered to be insecure for many applications. This is chiefly due to the 56-bit key size being too small; in January, 1999, distributed.net and the Electronic Frontier Foundation collaborated to publicly break a DES key in 22 hours and 15 minutes. There are also some analytical results which demonstrate theoretical weaknesses in the cipher, although they are unfeasible to mount in practice. The algorithm is believed to be practically secure in the form of Triple DES, although there are theoretical attacks. In recent years, the cipher has been superseded by the Advanced Encryption Standard (AES).[8]
In some documentation, a distinction is made between DES as a standard and DES the algorithm which is referred to as the DEA (the Data Encryption Algorithm).[9]


[5] "Advanced Encryption Standard." Wikipedia. 14 November 2009 http://en.wikipedia.org/wiki/Advanced_Encryption_Standard
[6] "Advanced Encryption Standard." Wikipedia. 14 November 2009 http://en.wikipedia.org/wiki/Advanced_Encryption_Standard
[7] "Data Encryption Standard." Wikipedia. 14 November 2009 http://en.wikipedia.org/wiki/Data_Encryption_Standard
[8] "Data Encryption Standard." Wikipedia. 14 November 2009 http://en.wikipedia.org/wiki/Data_Encryption_Standard
[9] "Data Encryption Standard." Wikipedia. 14 November 2009 http://en.wikipedia.org/wiki/Data_Encryption_Standard
Red Hat logoGithubRedditYoutubeTwitter

자세한 정보

평가판, 구매 및 판매

커뮤니티

Red Hat 문서 정보

Red Hat을 사용하는 고객은 신뢰할 수 있는 콘텐츠가 포함된 제품과 서비스를 통해 혁신하고 목표를 달성할 수 있습니다.

보다 포괄적 수용을 위한 오픈 소스 용어 교체

Red Hat은 코드, 문서, 웹 속성에서 문제가 있는 언어를 교체하기 위해 최선을 다하고 있습니다. 자세한 내용은 다음을 참조하세요.Red Hat 블로그.

Red Hat 소개

Red Hat은 기업이 핵심 데이터 센터에서 네트워크 에지에 이르기까지 플랫폼과 환경 전반에서 더 쉽게 작업할 수 있도록 강화된 솔루션을 제공합니다.

© 2024 Red Hat, Inc.