Este conteúdo não está disponível no idioma selecionado.
Chapter 6. Using pod topology spread constraints for monitoring
You can use pod topology spread constraints to control how the pods for user-defined monitoring are spread across a network topology when OpenShift Dedicated pods are deployed in multiple availability zones.
Pod topology spread constraints are suitable for controlling pod scheduling within hierarchical topologies in which nodes are spread across different infrastructure levels, such as regions and zones within those regions. Additionally, by being able to schedule pods in different zones, you can improve network latency in certain scenarios.
Additional resources
6.1. Configuring pod topology spread constraints
You can configure pod topology spread constraints for all the pods for user-defined monitoring to control how pod replicas are scheduled to nodes across zones. This ensures that the pods are highly available and run more efficiently, because workloads are spread across nodes in different data centers or hierarchical infrastructure zones.
You can configure pod topology spread constraints for monitoring pods by using the user-workload-monitoring-config
config map.
Prerequisites
-
You have access to the cluster as a user with the
dedicated-admin
role. -
The
user-workload-monitoring-config
ConfigMap
object exists. This object is created by default when the cluster is created. -
You have installed the OpenShift CLI (
oc
).
Procedure
Edit the
user-workload-monitoring-config
config map in theopenshift-user-workload-monitoring
project:$ oc -n openshift-user-workload-monitoring edit configmap user-workload-monitoring-config
Add the following settings under the
data/config.yaml
field to configure pod topology spread constraints:apiVersion: v1 kind: ConfigMap metadata: name: user-workload-monitoring-config namespace: openshift-user-workload-monitoring data: config.yaml: | <component>: 1 topologySpreadConstraints: - maxSkew: <n> 2 topologyKey: <key> 3 whenUnsatisfiable: <value> 4 labelSelector: 5 <match_option>
- 1
- Specify a name of the component for which you want to set up pod topology spread constraints.
- 2
- Specify a numeric value for
maxSkew
, which defines the degree to which pods are allowed to be unevenly distributed. - 3
- Specify a key of node labels for
topologyKey
. Nodes that have a label with this key and identical values are considered to be in the same topology. The scheduler tries to put a balanced number of pods into each domain. - 4
- Specify a value for
whenUnsatisfiable
. Available options areDoNotSchedule
andScheduleAnyway
. SpecifyDoNotSchedule
if you want themaxSkew
value to define the maximum difference allowed between the number of matching pods in the target topology and the global minimum. SpecifyScheduleAnyway
if you want the scheduler to still schedule the pod but to give higher priority to nodes that might reduce the skew. - 5
- Specify
labelSelector
to find matching pods. Pods that match this label selector are counted to determine the number of pods in their corresponding topology domain.
Example configuration for Thanos Ruler
apiVersion: v1 kind: ConfigMap metadata: name: user-workload-monitoring-config namespace: openshift-user-workload-monitoring data: config.yaml: | thanosRuler: topologySpreadConstraints: - maxSkew: 1 topologyKey: monitoring whenUnsatisfiable: ScheduleAnyway labelSelector: matchLabels: app.kubernetes.io/name: thanos-ruler
- Save the file to apply the changes. The pods affected by the new configuration are automatically redeployed.
6.2. Setting log levels for monitoring components
You can configure the log level for Alertmanager, Prometheus Operator, Prometheus, and Thanos Ruler.
The following log levels can be applied to the relevant component in the user-workload-monitoring-config
ConfigMap
objects:
-
debug
. Log debug, informational, warning, and error messages. -
info
. Log informational, warning, and error messages. -
warn
. Log warning and error messages only. -
error
. Log error messages only.
The default log level is info
.
Prerequisites
-
You have access to the cluster as a user with the
dedicated-admin
role. -
The
user-workload-monitoring-config
ConfigMap
object exists. This object is created by default when the cluster is created. -
You have installed the OpenShift CLI (
oc
).
Procedure
Edit the
ConfigMap
object:Edit the
user-workload-monitoring-config
ConfigMap
object in theopenshift-user-workload-monitoring
project:$ oc -n openshift-user-workload-monitoring edit configmap user-workload-monitoring-config
Add
logLevel: <log_level>
for a component underdata/config.yaml
:apiVersion: v1 kind: ConfigMap metadata: name: user-workload-monitoring-config namespace: openshift-user-workload-monitoring data: config.yaml: | <component>: 1 logLevel: <log_level> 2
- 1
- The monitoring stack component for which you are setting a log level. For user workload monitoring, available component values are
alertmanager
,prometheus
,prometheusOperator
, andthanosRuler
. - 2
- The log level to apply to the component. The available values are
error
,warn
,info
, anddebug
. The default value isinfo
.
- Save the file to apply the changes. The pods affected by the new configuration are automatically redeployed.
Confirm that the log-level has been applied by reviewing the deployment or pod configuration in the related project. The following example checks the log level in the
prometheus-operator
deployment in theopenshift-user-workload-monitoring
project:$ oc -n openshift-user-workload-monitoring get deploy prometheus-operator -o yaml | grep "log-level"
Example output
- --log-level=debug
Check that the pods for the component are running. The following example lists the status of pods in the
openshift-user-workload-monitoring
project:$ oc -n openshift-user-workload-monitoring get pods
NoteIf an unrecognized
logLevel
value is included in theConfigMap
object, the pods for the component might not restart successfully.
6.3. Enabling the query log file for Prometheus
You can configure Prometheus to write all queries that have been run by the engine to a log file.
Because log rotation is not supported, only enable this feature temporarily when you need to troubleshoot an issue. After you finish troubleshooting, disable query logging by reverting the changes you made to the ConfigMap
object to enable the feature.
Prerequisites
-
You have access to the cluster as a user with the
dedicated-admin
role. -
The
user-workload-monitoring-config
ConfigMap
object exists. This object is created by default when the cluster is created. -
You have installed the OpenShift CLI (
oc
).
Procedure
Edit the
user-workload-monitoring-config
ConfigMap
object in theopenshift-user-workload-monitoring
project:$ oc -n openshift-user-workload-monitoring edit configmap user-workload-monitoring-config
Add
queryLogFile: <path>
forprometheus
underdata/config.yaml
:apiVersion: v1 kind: ConfigMap metadata: name: user-workload-monitoring-config namespace: openshift-user-workload-monitoring data: config.yaml: | prometheus: queryLogFile: <path> 1
- 1
- The full path to the file in which queries will be logged.
- Save the file to apply the changes. The pods affected by the new configuration are automatically redeployed.
Verify that the pods for the component are running. The following example command lists the status of pods in the
openshift-user-workload-monitoring
project:$ oc -n openshift-user-workload-monitoring get pods
Read the query log:
$ oc -n openshift-user-workload-monitoring exec prometheus-user-workload-0 -- cat <path>
ImportantRevert the setting in the config map after you have examined the logged query information.