此内容没有您所选择的语言版本。

Chapter 4. Blue-Green Deployments


4.1. Overview

Note

This topic serves as an alternative approach for node host upgrades to the in-place upgrade method.

The blue-green deployment upgrade method follows a similar flow to the in-place method: masters and etcd servers are still upgraded first, however a parallel environment is created for new node hosts instead of upgrading them in-place.

This method allows administrators to switch traffic from the old set of node hosts (e.g., the blue deployment) to the new set (e.g., the green deployment) after the new deployment has been verified. If a problem is detected, it is also then easy to rollback to the old deployment quickly.

While blue-green is a proven and valid strategy for deploying just about any software, there are always trade-offs. Not all environments have the same uptime requirements or the resources to properly perform blue-green deployments.

In an OpenShift Container Platform environment, the most suitable candidate for blue-green deployments are the node hosts. All user processes run on these systems and even critical pieces of OpenShift Container Platform infrastructure are self-hosted on these resources. Uptime is most important for these workloads and the additional complexity of blue-green deployments can be justified.

The exact implementation of this approach varies based on your requirements. Often the main challenge is having the excess capacity to facilitate such an approach.

Figure 4.1. Blue-Green Deployment

Blue-Green Deployment Upgrade

4.2. Preparing for a Blue-Green Upgrade

After you have upgraded your master and etcd hosts using method described for In-place Upgrades, use the following sections to prepare your environment for a blue-green upgrade of the remaining node hosts.

4.2.1. Sharing Software Entitlements

Administrators must temporarily share the Red Hat software entitlements between the blue-green deployments or provide access to the installation content by means of a system such as Red Hat Satellite. This can be accomplished by sharing the consumer ID from the previous node host:

  1. On each old node host that will be upgraded, note its system identity value, which is the consumer ID:

    # subscription-manager identity | grep system
    system identity: 6699375b-06db-48c4-941e-689efd6ce3aa
  2. On each new RHEL 7 or RHEL Atomic Host 7 system that is going to replace an old node host, register using the respective consumer ID from the previous step:

    # subscription-manager register --consumerid=6699375b-06db-48c4-941e-689efd6ce3aa
Important

After a successful deployment, remember to unregister the old host with subscription-manager clean to prevent the environment from being out of compliance.

4.2.2. Labeling Blue Nodes

You must ensure that your current node hosts in production are labeled either blue or green. In this example, the current production environment will be blue and the new environment will be green.

  1. Get the current list of node names known to the cluster:

    $ oc get nodes
  2. Ensure that all hosts have appropriate node labels. Consider that by default, all master hosts are also configured as unschedulable node hosts (so that they are joined to the pod network). To improve cluster management, add a label to each host that describes its type, such as type=master or type=node.

    For example, to label node hosts that are also masters as type=master, run the following for each relevant <node_name>:

    $ oc label node <node_name> type=master

    To label non-master node hosts as type=node, run the following for each relevant <node_name>:

    $ oc label node <node_name> type=node

    Alternatively, if you have already finished labeling certain nodes with type=master and just want to label all remaining nodes as type=node, you can use the --all option and any hosts that already had a type= set will not be overwritten:

    $ oc label node --all type=node
  3. Label all non-master node hosts in your current production environment to color=blue. For example, using the labels described in the previous step:

    $ oc label node -l type=node color=blue

    In the above command, the -l flag is used to match a subset of the environment using the selector type=node, and all matches are labeled with color=blue.

4.2.3. Creating and Labeling Green Nodes

Create the new green environment for any node hosts that are to be replaced by adding an equal number of new node hosts to the existing cluster. You can use either the quick installer or advanced install method as described in Adding Hosts to an Existing Cluster.

When adding these new nodes, use the following Ansible variables:

  • Apply the color=green label automatically during the installation of these hosts by setting the openshift_node_labels variable for each node host. You can always adjust the labels after installation as well, if needed, using the oc label node command.
  • In order to delay workload scheduling until the nodes are deemed healthy (which you will verify in later steps), set the openshift_schedulable=False variable for each node host to ensure they are unschedulable initially.

Example new_nodes Host Group

Add the following to your existing inventory. Everything that was in your inventory previously should remain.

[new_nodes]
node4.example.com openshift_node_labels="{'region': 'primary', 'color':'green'}" openshift_schedulable=False
node5.example.com openshift_node_labels="{'region': 'primary', 'color':'green'}" openshift_schedulable=False
node6.example.com openshift_node_labels="{'region': 'primary', 'color':'green'}" openshift_schedulable=False
infra-node3.example.com openshift_node_labels="{'region': 'infra', 'color':'green'}" openshift_schedulable=False
infra-node4.example.com openshift_node_labels="{'region': 'infra', 'color':'green'}" openshift_schedulable=False

4.2.4. Verifying Green Nodes

Verify that your new green nodes are in a healthy state. Perform the following checklist:

  1. Verify that new nodes are detected in the cluster and are in Ready state:

    $ oc get nodes
    
    ip-172-31-49-10.ec2.internal    Ready                      3d
  2. Verify that the green nodes have proper labels:

    $ oc get nodes -o wide --show-labels
    
    ip-172-31-49-10.ec2.internal    Ready                      4d        beta.kubernetes.io/arch=amd64,beta.kubernetes.io/instance-type=m4.large,beta.kubernetes.io/os=linux,color=green,failure-domain.beta.kubernetes.io/region=us-east-1,failure-domain.beta.kubernetes.io/zone=us-east-1c,hostname=openshift-cluster-1d005,kubernetes.io/hostname=ip-172-31-49-10.ec2.internal,region=us-east-1,type=infra
  3. Perform a diagnostic check for the cluster:

    $ oc adm diagnostics
    
    [Note] Determining if client configuration exists for client/cluster diagnostics
    Info:  Successfully read a client config file at '/root/.kube/config'
    Info:  Using context for cluster-admin access: 'default/internal-api-upgradetest-openshift-com:443/system:admin'
    [Note] Performing systemd discovery
    
    [Note] Running diagnostic: ConfigContexts[default/api-upgradetest-openshift-com:443/system:admin]
           Description: Validate client config context is complete and has connectivity
    ...
             [Note] Running diagnostic: CheckExternalNetwork
                  Description: Check that external network is accessible within a pod
    
           [Note] Running diagnostic: CheckNodeNetwork
                  Description: Check that pods in the cluster can access its own node.
    
           [Note] Running diagnostic: CheckPodNetwork
                  Description: Check pod to pod communication in the cluster. In case of ovs-subnet network plugin, all pods
    should be able to communicate with each other and in case of multitenant network plugin, pods in non-global projects
    should be isolated and pods in global projects should be able to access any pod in the cluster and vice versa.
    
           [Note] Running diagnostic: CheckServiceNetwork
                  Description: Check pod to service communication in the cluster. In case of ovs-subnet network plugin, all
    pods should be able to communicate with all services and in case of multitenant network plugin, services in non-global
    projects should be isolated and pods in global projects should be able to access any service in the cluster.
    ...

4.3. Registry and Router Canary Deployments

A common practice is to scale the registry and router pods until they are migrated to new (green) infrastructure node hosts. For these pods, a canary deployment approach is commonly used.

Scaling these pods up will make them immediately active on the new infrastructure nodes. Pointing their deployment configuration to the new image initiates a rolling update. However, because of node anti-affinity, and the fact that the blue nodes are still unschedulable, the deployments to the old nodes will fail.

At this point, the registry and router deployments can be scaled down to the original number of pods. At any given point, the original number of pods is still available so no capacity is lost and downtime should be avoided.

4.4. Warming the Green Nodes

In order for pods to be migrated from the blue environment to the green, the required container images must be pulled. Network latency and load on the registry can cause delays if there is not sufficient capacity built in to the environment.

Often, the best way to minimize impact to the running system is to trigger new pod deployments that will land on the new nodes. Accomplish this by importing new image streams.

Major releases of OpenShift Container Platform (and sometimes asynchronous errata updates) introduce new image streams for builder images for users of Source-to-Image (S2I). Upon import, any builds or deployments configured with image change triggers are automatically created.

Another benefit of triggering the builds is that it does a fairly good job of fetching the majority of the ancillary images to all node hosts such as the various builder images, the pod infrastructure image, and deployers. The green nodes are then considered warmed (that is, ready for the expected load increase), and everything else can be migrated over using node evacuation in a later step, proceeding more quickly as a result.

When you are ready to continue with the upgrade process, follow these steps to warm the green nodes:

  1. Set the green nodes to schedulable so that new pods only land on them:

    $ oc adm manage-node --schedulable=true --selector=color=green
  2. Disable the blue nodes so that no new pods are run on them by setting them unschedulable:

    $ oc adm manage-node --schedulable=false --selector=color=blue
  3. Update the default image streams and templates as described in Manual In-place Upgrades.
  4. Import the latest images as described in Manual In-place Upgrades.

    It is important to realize that this process can trigger a large number of builds. The good news is that the builds are performed on the green nodes and, therefore, do not impact any traffic on the blue deployment.

  5. To monitor build progress across all namespaces (projects) in the cluster:

    $ oc get events -w --all-namespaces

    In large environments, builds rarely completely stop. However, you should see a large increase and decrease caused by the administrative image import.

4.5. Evacuating and Decommissioning Blue Nodes

For larger deployments, it is possible to have other labels that help determine how evacuation can be coordinated. The most conservative approach for avoiding downtime is to evacuate one node host at a time.

If services are composed of pods using zone anti-affinity, then an entire zone can be evacuated at once. It is important to ensure that the storage volumes used are available in the new zone as this detail can vary among cloud providers.

In OpenShift Container Platform 3.2 and later, a node host evacuation is triggered whenever the node service is stopped. Node labeling is very important and can cause issues if nodes are mislabeled or commands are run on nodes with generalized labels. Exercise caution if master hosts are also labeled with color=blue.

When you are ready to continue with the upgrade process, follow these steps.

  1. Evacuate and delete all blue nodes by following one of the following options:

    1. Option A Manually evacuate then delete all the color=blue nodes with the following commands:

      $ oc adm manage-node --selector=color=blue --evacuate
      $ oc delete node --selector=color=blue
    2. Option B Filter out the masters before running the delete command:

      1. Verify the list of blue node hosts to delete by running the following command. The output of this command includes a list of all node hosts that have the color=blue label but do not have the type=master label. All of the hosts in your cluster must be assigned both the color and type labels. You can change the command to apply more filters if you need to further limit the list of nodes.

        $ oc get nodes -o go-template='{{ range .items }}{{ if (eq .metadata.labels.color "blue") and (ne .metadata.labels.type "master") }}{{ .metadata.name }}{{ "\n" }}{{end}}{{ end }}'
      2. After you confirm the list of blue nodes to delete, run this command to delete that list of nodes:

        $ for i in $(oc get nodes -o \
            go-template='{{ range .items }}{{ if (eq .metadata.labels.color "blue") and (ne .metadata.labels.type "master") }}{{ .metadata.name }}{{ "\n" }}{{end}}{{ end }}'); \
        do
            oc delete node $i
        done
  2. After the blue node hosts no longer contain pods and have been removed from OpenShift Container Platform they are safe to power off. As a safety precaution, leaving the hosts around for a short period of time can prove beneficial if the upgrade has issues.
  3. Ensure that any desired scripts or files are captured before terminating these hosts. After a determined time period and capacity is not an issue, remove these hosts.
Red Hat logoGithubRedditYoutubeTwitter

学习

尝试、购买和销售

社区

关于红帽文档

通过我们的产品和服务,以及可以信赖的内容,帮助红帽用户创新并实现他们的目标。

让开源更具包容性

红帽致力于替换我们的代码、文档和 Web 属性中存在问题的语言。欲了解更多详情,请参阅红帽博客.

關於紅帽

我们提供强化的解决方案,使企业能够更轻松地跨平台和环境(从核心数据中心到网络边缘)工作。

© 2024 Red Hat, Inc.