5.6. 示例:监控 CPU 使用


要监控实例的性能,可检查 Gnocchi 数据库以确定您可以监控哪些指标,如内存或 CPU 使用量。

流程

  1. 输入 openstack metric resource show 命令和实例 UUID,以识别您可以监控的指标:

    $ openstack metric resource show --type instance d71cdf9a-51dc-4bba-8170-9cd95edd3f66
    +-----------------------+---------------------------------------------------------------------+
    | Field                 | Value                                                               |
    +-----------------------+---------------------------------------------------------------------+
    | created_by_project_id | 44adccdc32614688ae765ed4e484f389                                    |
    | created_by_user_id    | c24fa60e46d14f8d847fca90531b43db                                    |
    | creator               | c24fa60e46d14f8d847fca90531b43db:44adccdc32614688ae765ed4e484f389   |
    | display_name          | test-instance                                                       |
    | ended_at              | None                                                                |
    | flavor_id             | 14c7c918-df24-481c-b498-0d3ec57d2e51                                |
    | flavor_name           | m1.tiny                                                             |
    | host                  | overcloud-compute-0                                                 |
    | id                    | d71cdf9a-51dc-4bba-8170-9cd95edd3f66                                |
    | image_ref             | e75dff7b-3408-45c2-9a02-61fbfbf054d7                                |
    | metrics               | compute.instance.booting.time: c739a70d-2d1e-45c1-8c1b-4d28ff2403ac |
    |                       | cpu.delta: 700ceb7c-4cff-4d92-be2f-6526321548d6                     |
    |                       | cpu: 716d6128-1ea6-430d-aa9c-ceaff2a6bf32                           |
    |                       | cpu_l3_cache: 3410955e-c724-48a5-ab77-c3050b8cbe6e                  |
    |                       | cpu_util: b148c392-37d6-4c8f-8609-e15fc15a4728                      |
    |                       | disk.allocation: 9dd464a3-acf8-40fe-bd7e-3cb5fb12d7cc               |
    |                       | disk.capacity: c183d0da-e5eb-4223-a42e-855675dd1ec6                 |
    |                       | disk.ephemeral.size: 15d1d828-fbb4-4448-b0f2-2392dcfed5b6           |
    |                       | disk.iops: b8009e70-daee-403f-94ed-73853359a087                     |
    |                       | disk.latency: 1c648176-18a6-4198-ac7f-33ee628b82a9                  |
    |                       | disk.read.bytes.rate: eb35828f-312f-41ce-b0bc-cb6505e14ab7          |
    |                       | disk.read.bytes: de463be7-769b-433d-9f22-f3265e146ec8               |
    |                       | disk.read.requests.rate: 588ca440-bd73-4fa9-a00c-8af67262f4fd       |
    |                       | disk.read.requests: 53e5d599-6cad-47de-b814-5cb23e8aaf24            |
    |                       | disk.root.size: cee9d8b1-181e-4974-9427-aa7adb3b96d9                |
    |                       | disk.usage: 4d724c99-7947-4c6d-9816-abbbc166f6f3                    |
    |                       | disk.write.bytes.rate: 45b8da6e-0c89-4a6c-9cce-c95d49d9cc8b         |
    |                       | disk.write.bytes: c7734f1b-b43a-48ee-8fe4-8a31b641b565              |
    |                       | disk.write.requests.rate: 96ba2f22-8dd6-4b89-b313-1e0882c4d0d6      |
    |                       | disk.write.requests: 553b7254-be2d-481b-9d31-b04c93dbb168           |
    |                       | memory.bandwidth.local: 187f29d4-7c70-4ae2-86d1-191d11490aad        |
    |                       | memory.bandwidth.total: eb09a4fc-c202-4bc3-8c94-aa2076df7e39        |
    |                       | memory.resident: 97cfb849-2316-45a6-9545-21b1d48b0052               |
    |                       | memory.swap.in: f0378d8f-6927-4b76-8d34-a5931799a301                |
    |                       | memory.swap.out: c5fba193-1a1b-44c8-82e3-9fdc9ef21f69               |
    |                       | memory.usage: 7958d06d-7894-4ca1-8c7e-72ba572c1260                  |
    |                       | memory: a35c7eab-f714-4582-aa6f-48c92d4b79cd                        |
    |                       | perf.cache.misses: da69636d-d210-4b7b-bea5-18d4959e95c1             |
    |                       | perf.cache.references: e1955a37-d7e4-4b12-8a2a-51de4ec59efd         |
    |                       | perf.cpu.cycles: 5d325d44-b297-407a-b7db-cc9105549193               |
    |                       | perf.instructions: 973d6c6b-bbeb-4a13-96c2-390a63596bfc             |
    |                       | vcpus: 646b53d0-0168-4851-b297-05d96cc03ab2                         |
    | original_resource_id  | d71cdf9a-51dc-4bba-8170-9cd95edd3f66                                |
    | project_id            | 3cee262b907b4040b26b678d7180566b                                    |
    | revision_end          | None                                                                |
    | revision_start        | 2017-11-16T04:00:27.081865+00:00                                    |
    | server_group          | None                                                                |
    | started_at            | 2017-11-16T01:09:20.668344+00:00                                    |
    | type                  | instance                                                            |
    | user_id               | 1dbf5787b2ee46cf9fa6a1dfea9c9996                                    |
    +-----------------------+---------------------------------------------------------------------+

    因此,指标值列出了您可以使用 aodh 警报监控的组件,如 cpu_util

  2. 要监控 CPU 用量,请使用 cpu_util 指标:

    $ openstack metric show --resource-id d71cdf9a-51dc-4bba-8170-9cd95edd3f66 cpu_util
    +------------------------------------+-------------------------------------------------------------------+
    | Field                              | Value                                                             |
    +------------------------------------+-------------------------------------------------------------------+
    | archive_policy/aggregation_methods | std, count, min, max, sum, mean                                   |
    | archive_policy/back_window         | 0                                                                 |
    | archive_policy/definition          | - points: 8640, granularity: 0:05:00, timespan: 30 days, 0:00:00  |
    | archive_policy/name                | low                                                               |
    | created_by_project_id              | 44adccdc32614688ae765ed4e484f389                                  |
    | created_by_user_id                 | c24fa60e46d14f8d847fca90531b43db                                  |
    | creator                            | c24fa60e46d14f8d847fca90531b43db:44adccdc32614688ae765ed4e484f389 |
    | id                                 | b148c392-37d6-4c8f-8609-e15fc15a4728                              |
    | name                               | cpu_util                                                          |
    | resource/created_by_project_id     | 44adccdc32614688ae765ed4e484f389                                  |
    | resource/created_by_user_id        | c24fa60e46d14f8d847fca90531b43db                                  |
    | resource/creator                   | c24fa60e46d14f8d847fca90531b43db:44adccdc32614688ae765ed4e484f389 |
    | resource/ended_at                  | None                                                              |
    | resource/id                        | d71cdf9a-51dc-4bba-8170-9cd95edd3f66                              |
    | resource/original_resource_id      | d71cdf9a-51dc-4bba-8170-9cd95edd3f66                              |
    | resource/project_id                | 3cee262b907b4040b26b678d7180566b                                  |
    | resource/revision_end              | None                                                              |
    | resource/revision_start            | 2017-11-17T00:05:27.516421+00:00                                  |
    | resource/started_at                | 2017-11-16T01:09:20.668344+00:00                                  |
    | resource/type                      | instance                                                          |
    | resource/user_id                   | 1dbf5787b2ee46cf9fa6a1dfea9c9996                                  |
    | unit                               | None                                                              |
    +------------------------------------+-------------------------------------------------------------------+
    • archive_policy:定义计算 std、count、min、max、sum 和 mean 值的聚合间隔。
  3. 使用 aodh 创建查询 cpu_util 的监控任务。此任务会根据您指定的设置触发事件。例如,当实例的 CPU 高峰持续时间超过 80% 时,要引发日志条目,请使用以下命令:

    $ openstack alarm create \
      --project-id 3cee262b907b4040b26b678d7180566b \
      --name high-cpu \
      --type gnocchi_resources_threshold \
      --description 'High CPU usage' \
      --metric cpu_util \
      --threshold 80.0 \
      --comparison-operator ge \
      --aggregation-method mean \
      --granularity 300 \
      --evaluation-periods 1 \
      --alarm-action 'log://' \
      --ok-action 'log://' \
      --resource-type instance \
      --resource-id d71cdf9a-51dc-4bba-8170-9cd95edd3f66
    +---------------------------+--------------------------------------+
    | Field                     | Value                                |
    +---------------------------+--------------------------------------+
    | aggregation_method        | mean                                 |
    | alarm_actions             | [u'log://']                          |
    | alarm_id                  | 1625015c-49b8-4e3f-9427-3c312a8615dd |
    | comparison_operator       | ge                                   |
    | description               | High CPU usage                       |
    | enabled                   | True                                 |
    | evaluation_periods        | 1                                    |
    | granularity               | 300                                  |
    | insufficient_data_actions | []                                   |
    | metric                    | cpu_util                             |
    | name                      | high-cpu                             |
    | ok_actions                | [u'log://']                          |
    | project_id                | 3cee262b907b4040b26b678d7180566b     |
    | repeat_actions            | False                                |
    | resource_id               | d71cdf9a-51dc-4bba-8170-9cd95edd3f66 |
    | resource_type             | instance                             |
    | severity                  | low                                  |
    | state                     | insufficient data                    |
    | state_reason              | Not evaluated yet                    |
    | state_timestamp           | 2017-11-16T05:20:48.891365           |
    | threshold                 | 80.0                                 |
    | time_constraints          | []                                   |
    | timestamp                 | 2017-11-16T05:20:48.891365           |
    | type                      | gnocchi_resources_threshold          |
    | user_id                   | 1dbf5787b2ee46cf9fa6a1dfea9c9996     |
    +---------------------------+--------------------------------------+
    • comparison-operator:如果 CPU 使用率大于或等于 80%,ge 运算符定义了警报触发。
    • granularity:指标关联有一个归档策略,策略可以具有各种粒度。例如,每月 1 小时的 5 分钟聚合为 1 小时聚合。granularity 值必须与归档策略中描述的持续时间匹配。
    • 评估-periods:在警报触发前需要传递的粒度周期数。例如,如果您将此值设置为 2,则在警报触发前,CPU 用量需要超过 80% 才能触发两个轮询周期。
    • [U'log://']:当您将 alarm_actionsok_actions 设置为 [u'log://'] 时,事件会被触发或返回到普通的状态,则会记录到 aodh 日志文件。

      注意

      您可以定义在警报触发时运行的不同操作(alarm_actions),并在返回正常状态(ok_actions) (如 Webhook URL)时运行。

Red Hat logoGithubRedditYoutubeTwitter

学习

尝试、购买和销售

社区

关于红帽文档

通过我们的产品和服务,以及可以信赖的内容,帮助红帽用户创新并实现他们的目标。

让开源更具包容性

红帽致力于替换我们的代码、文档和 Web 属性中存在问题的语言。欲了解更多详情,请参阅红帽博客.

關於紅帽

我们提供强化的解决方案,使企业能够更轻松地跨平台和环境(从核心数据中心到网络边缘)工作。

© 2024 Red Hat, Inc.