Dieser Inhalt ist in der von Ihnen ausgewählten Sprache nicht verfügbar.
Chapter 2. DNS Operator in OpenShift Dedicated
In OpenShift Dedicated, the DNS Operator deploys and manages a CoreDNS instance to provide a name resolution service to pods inside the cluster, enables DNS-based Kubernetes Service discovery, and resolves internal cluster.local
names.
2.1. Checking the status of the DNS Operator
The DNS Operator implements the dns
API from the operator.openshift.io
API group. The Operator deploys CoreDNS using a daemon set, creates a service for the daemon set, and configures the kubelet to instruct pods to use the CoreDNS service IP address for name resolution.
Procedure
The DNS Operator is deployed during installation with a Deployment
object.
Use the
oc get
command to view the deployment status:$ oc get -n openshift-dns-operator deployment/dns-operator
Example output
NAME READY UP-TO-DATE AVAILABLE AGE dns-operator 1/1 1 1 23h
Use the
oc get
command to view the state of the DNS Operator:$ oc get clusteroperator/dns
Example output
NAME VERSION AVAILABLE PROGRESSING DEGRADED SINCE MESSAGE dns 4.1.15-0.11 True False False 92m
AVAILABLE
,PROGRESSING
, andDEGRADED
provide information about the status of the Operator.AVAILABLE
isTrue
when at least 1 pod from the CoreDNS daemon set reports anAvailable
status condition, and the DNS service has a cluster IP address.
2.2. View the default DNS
Every new OpenShift Dedicated installation has a dns.operator
named default
.
Procedure
Use the
oc describe
command to view the defaultdns
:$ oc describe dns.operator/default
Example output
Name: default Namespace: Labels: <none> Annotations: <none> API Version: operator.openshift.io/v1 Kind: DNS ... Status: Cluster Domain: cluster.local 1 Cluster IP: 172.30.0.10 2 ...
2.3. Using DNS forwarding
You can use DNS forwarding to override the default forwarding configuration in the /etc/resolv.conf
file in the following ways:
Specify name servers (
spec.servers
) for every zone. If the forwarded zone is the ingress domain managed by OpenShift Dedicated, then the upstream name server must be authorized for the domain.ImportantYou must specify at least one zone. Otherwise, your cluster can lose functionality.
-
Provide a list of upstream DNS servers (
spec.upstreamResolvers
). - Change the default forwarding policy.
A DNS forwarding configuration for the default domain can have both the default servers specified in the /etc/resolv.conf
file and the upstream DNS servers.
Procedure
Modify the DNS Operator object named
default
:$ oc edit dns.operator/default
After you issue the previous command, the Operator creates and updates the config map named
dns-default
with additional server configuration blocks based onspec.servers
.ImportantWhen specifying values for the
zones
parameter, ensure that you only forward to specific zones, such as your intranet. You must specify at least one zone. Otherwise, your cluster can lose functionality.If none of the servers have a zone that matches the query, then name resolution falls back to the upstream DNS servers.
Configuring DNS forwarding
apiVersion: operator.openshift.io/v1 kind: DNS metadata: name: default spec: cache: negativeTTL: 0s positiveTTL: 0s logLevel: Normal nodePlacement: {} operatorLogLevel: Normal servers: - name: example-server 1 zones: - example.com 2 forwardPlugin: policy: Random 3 upstreams: 4 - 1.1.1.1 - 2.2.2.2:5353 upstreamResolvers: 5 policy: Random 6 protocolStrategy: "" 7 transportConfig: {} 8 upstreams: - type: SystemResolvConf 9 - type: Network address: 1.2.3.4 10 port: 53 11 status: clusterDomain: cluster.local clusterIP: x.y.z.10 conditions: ...
- 1
- Must comply with the
rfc6335
service name syntax. - 2
- Must conform to the definition of a subdomain in the
rfc1123
service name syntax. The cluster domain,cluster.local
, is an invalid subdomain for thezones
field. - 3
- Defines the policy to select upstream resolvers listed in the
forwardPlugin
. Default value isRandom
. You can also use the valuesRoundRobin
, andSequential
. - 4
- A maximum of 15
upstreams
is allowed perforwardPlugin
. - 5
- You can use
upstreamResolvers
to override the default forwarding policy and forward DNS resolution to the specified DNS resolvers (upstream resolvers) for the default domain. If you do not provide any upstream resolvers, the DNS name queries go to the servers declared in/etc/resolv.conf
. - 6
- Determines the order in which upstream servers listed in
upstreams
are selected for querying. You can specify one of these values:Random
,RoundRobin
, orSequential
. The default value isSequential
. - 7
- When omitted, the platform chooses a default, normally the protocol of the original client request. Set to
TCP
to specify that the platform should use TCP for all upstream DNS requests, even if the client request uses UDP. - 8
- Used to configure the transport type, server name, and optional custom CA or CA bundle to use when forwarding DNS requests to an upstream resolver.
- 9
- You can specify two types of
upstreams
:SystemResolvConf
orNetwork
.SystemResolvConf
configures the upstream to use/etc/resolv.conf
andNetwork
defines aNetworkresolver
. You can specify one or both. - 10
- If the specified type is
Network
, you must provide an IP address. Theaddress
field must be a valid IPv4 or IPv6 address. - 11
- If the specified type is
Network
, you can optionally provide a port. Theport
field must have a value between1
and65535
. If you do not specify a port for the upstream, the default port is 853.
Additional resources
- For more information on DNS forwarding, see the CoreDNS forward documentation.
2.4. Checking DNS Operator status
You can inspect the status and view the details of the DNS Operator using the oc describe
command.
Procedure
View the status of the DNS Operator:
$ oc describe clusteroperators/dns
Though the messages and spelling might vary in a specific release, the expected status output looks like:
Status: Conditions: Last Transition Time: <date> Message: DNS "default" is available. Reason: AsExpected Status: True Type: Available Last Transition Time: <date> Message: Desired and current number of DNSes are equal Reason: AsExpected Status: False Type: Progressing Last Transition Time: <date> Reason: DNSNotDegraded Status: False Type: Degraded Last Transition Time: <date> Message: DNS default is upgradeable: DNS Operator can be upgraded Reason: DNSUpgradeable Status: True Type: Upgradeable
2.5. Viewing DNS Operator logs
You can view DNS Operator logs by using the oc logs
command.
Procedure
View the logs of the DNS Operator:
$ oc logs -n openshift-dns-operator deployment/dns-operator -c dns-operator
2.6. Setting the CoreDNS log level
Log levels for CoreDNS and the CoreDNS Operator are set by using different methods. You can configure the CoreDNS log level to determine the amount of detail in logged error messages. The valid values for CoreDNS log level are Normal
, Debug
, and Trace
. The default logLevel
is Normal
.
The CoreDNS error log level is always enabled. The following log level settings report different error responses:
-
logLevel
:Normal
enables the "errors" class:log . { class error }
. -
logLevel
:Debug
enables the "denial" class:log . { class denial error }
. -
logLevel
:Trace
enables the "all" class:log . { class all }
.
Procedure
To set
logLevel
toDebug
, enter the following command:$ oc patch dnses.operator.openshift.io/default -p '{"spec":{"logLevel":"Debug"}}' --type=merge
To set
logLevel
toTrace
, enter the following command:$ oc patch dnses.operator.openshift.io/default -p '{"spec":{"logLevel":"Trace"}}' --type=merge
Verification
To ensure the desired log level was set, check the config map:
$ oc get configmap/dns-default -n openshift-dns -o yaml
For example, after setting the
logLevel
toTrace
, you should see this stanza in each server block:errors log . { class all }
2.7. Setting the CoreDNS Operator log level
Log levels for CoreDNS and CoreDNS Operator are set by using different methods. Cluster administrators can configure the Operator log level to more quickly track down OpenShift DNS issues. The valid values for operatorLogLevel
are Normal
, Debug
, and Trace
. Trace
has the most detailed information. The default operatorlogLevel
is Normal
. There are seven logging levels for Operator issues: Trace, Debug, Info, Warning, Error, Fatal, and Panic. After the logging level is set, log entries with that severity or anything above it will be logged.
-
operatorLogLevel: "Normal"
setslogrus.SetLogLevel("Info")
. -
operatorLogLevel: "Debug"
setslogrus.SetLogLevel("Debug")
. -
operatorLogLevel: "Trace"
setslogrus.SetLogLevel("Trace")
.
Procedure
To set
operatorLogLevel
toDebug
, enter the following command:$ oc patch dnses.operator.openshift.io/default -p '{"spec":{"operatorLogLevel":"Debug"}}' --type=merge
To set
operatorLogLevel
toTrace
, enter the following command:$ oc patch dnses.operator.openshift.io/default -p '{"spec":{"operatorLogLevel":"Trace"}}' --type=merge
Verification
To review the resulting change, enter the following command:
$ oc get dnses.operator -A -oyaml
You should see two log level entries. The
operatorLogLevel
applies to OpenShift DNS Operator issues, and thelogLevel
applies to the daemonset of CoreDNS pods:logLevel: Trace operatorLogLevel: Debug
To review the logs for the daemonset, enter the following command:
$ oc logs -n openshift-dns ds/dns-default
2.8. Tuning the CoreDNS cache
For CoreDNS, you can configure the maximum duration of both successful or unsuccessful caching, also known respectively as positive or negative caching. Tuning the cache duration of DNS query responses can reduce the load for any upstream DNS resolvers.
Setting TTL fields to low values could lead to an increased load on the cluster, any upstream resolvers, or both.
Procedure
Edit the DNS Operator object named
default
by running the following command:$ oc edit dns.operator.openshift.io/default
Modify the time-to-live (TTL) caching values:
Configuring DNS caching
apiVersion: operator.openshift.io/v1 kind: DNS metadata: name: default spec: cache: positiveTTL: 1h 1 negativeTTL: 0.5h10m 2
- 1
- The string value
1h
is converted to its respective number of seconds by CoreDNS. If this field is omitted, the value is assumed to be0s
and the cluster uses the internal default value of900s
as a fallback. - 2
- The string value can be a combination of units such as
0.5h10m
and is converted to its respective number of seconds by CoreDNS. If this field is omitted, the value is assumed to be0s
and the cluster uses the internal default value of30s
as a fallback.
Verification
To review the change, look at the config map again by running the following command:
oc get configmap/dns-default -n openshift-dns -o yaml
Verify that you see entries that look like the following example:
cache 3600 { denial 9984 2400 }
Additional resources
For more information on caching, see CoreDNS cache.
2.9. Advanced tasks
2.9.1. Changing the DNS Operator managementState
The DNS Operator manages the CoreDNS component to provide a name resolution service for pods and services in the cluster. The managementState
of the DNS Operator is set to Managed
by default, which means that the DNS Operator is actively managing its resources. You can change it to Unmanaged
, which means the DNS Operator is not managing its resources.
The following are use cases for changing the DNS Operator managementState
:
-
You are a developer and want to test a configuration change to see if it fixes an issue in CoreDNS. You can stop the DNS Operator from overwriting the configuration change by setting the
managementState
toUnmanaged
. -
You are a cluster administrator and have reported an issue with CoreDNS, but need to apply a workaround until the issue is fixed. You can set the
managementState
field of the DNS Operator toUnmanaged
to apply the workaround.
Procedure
Change
managementState
toUnmanaged
in the DNS Operator:oc patch dns.operator.openshift.io default --type merge --patch '{"spec":{"managementState":"Unmanaged"}}'
Review
managementState
of the DNS Operator using thejsonpath
command line JSON parser:$ oc get dns.operator.openshift.io default -ojsonpath='{.spec.managementState}'
Example output
"Unmanaged"
You cannot upgrade while the managementState
is set to Unmanaged
.
2.9.2. Controlling DNS pod placement
The DNS Operator has two daemon sets: one for CoreDNS called dns-default
and one for managing the /etc/hosts
file called node-resolver
.
You might find a need to control which nodes have CoreDNS pods assigned and running, although this is not a common operation. For example, if the cluster administrator has configured security policies that can prohibit communication between pairs of nodes, that would necessitate restricting the set of nodes on which the daemonset for CoreDNS runs. If DNS pods are running on some nodes in the cluster and the nodes where DNS pods are not running have network connectivity to nodes where DNS pods are running, DNS service will be available to all pods.
The node-resolver
daemon set must run on every node host because it adds an entry for the cluster image registry to support pulling images. The node-resolver
pods have only one job: to look up the image-registry.openshift-image-registry.svc
service’s cluster IP address and add it to /etc/hosts
on the node host so that the container runtime can resolve the service name.
As a cluster administrator, you can use a custom node selector to configure the daemon set for CoreDNS to run or not run on certain nodes.
Prerequisites
-
You installed the
oc
CLI. -
You are logged in to the cluster as a user with
cluster-admin
privileges. -
Your DNS Operator
managementState
is set toManaged
.
Procedure
To allow the daemon set for CoreDNS to run on certain nodes, configure a taint and toleration:
Modify the DNS Operator object named
default
:$ oc edit dns.operator/default
Specify a taint key and a toleration for the taint:
spec: nodePlacement: tolerations: - effect: NoExecute key: "dns-only" operators: Equal value: abc tolerationSeconds: 3600 1
- 1
- If the taint is
dns-only
, it can be tolerated indefinitely. You can omittolerationSeconds
.
2.9.3. Configuring DNS forwarding with TLS
When working in a highly regulated environment, you might need the ability to secure DNS traffic when forwarding requests to upstream resolvers so that you can ensure additional DNS traffic and data privacy.
Be aware that CoreDNS caches forwarded connections for 10 seconds. CoreDNS will hold a TCP connection open for those 10 seconds if no request is issued. With large clusters, ensure that your DNS server is aware that it might get many new connections to hold open because you can initiate a connection per node. Set up your DNS hierarchy accordingly to avoid performance issues.
When specifying values for the zones
parameter, ensure that you only forward to specific zones, such as your intranet. You must specify at least one zone. Otherwise, your cluster can lose functionality.
Procedure
Modify the DNS Operator object named
default
:$ oc edit dns.operator/default
Cluster administrators can configure transport layer security (TLS) for forwarded DNS queries.
Configuring DNS forwarding with TLS
apiVersion: operator.openshift.io/v1 kind: DNS metadata: name: default spec: servers: - name: example-server 1 zones: - example.com 2 forwardPlugin: transportConfig: transport: TLS 3 tls: caBundle: name: mycacert serverName: dnstls.example.com 4 policy: Random 5 upstreams: 6 - 1.1.1.1 - 2.2.2.2:5353 upstreamResolvers: 7 transportConfig: transport: TLS tls: caBundle: name: mycacert serverName: dnstls.example.com upstreams: - type: Network 8 address: 1.2.3.4 9 port: 53 10
- 1
- Must comply with the
rfc6335
service name syntax. - 2
- Must conform to the definition of a subdomain in the
rfc1123
service name syntax. The cluster domain,cluster.local
, is an invalid subdomain for thezones
field. The cluster domain,cluster.local
, is an invalidsubdomain
forzones
. - 3
- When configuring TLS for forwarded DNS queries, set the
transport
field to have the valueTLS
. - 4
- When configuring TLS for forwarded DNS queries, this is a mandatory server name used as part of the server name indication (SNI) to validate the upstream TLS server certificate.
- 5
- Defines the policy to select upstream resolvers. Default value is
Random
. You can also use the valuesRoundRobin
, andSequential
. - 6
- Required. Use it to provide upstream resolvers. A maximum of 15
upstreams
entries are allowed perforwardPlugin
entry. - 7
- Optional. You can use it to override the default policy and forward DNS resolution to the specified DNS resolvers (upstream resolvers) for the default domain. If you do not provide any upstream resolvers, the DNS name queries go to the servers in
/etc/resolv.conf
. - 8
- Only the
Network
type is allowed when using TLS and you must provide an IP address.Network
type indicates that this upstream resolver should handle forwarded requests separately from the upstream resolvers listed in/etc/resolv.conf
. - 9
- The
address
field must be a valid IPv4 or IPv6 address. - 10
- You can optionally provide a port. The
port
must have a value between1
and65535
. If you do not specify a port for the upstream, the default port is 853.
NoteIf
servers
is undefined or invalid, the config map only contains the default server.
Verification
View the config map:
$ oc get configmap/dns-default -n openshift-dns -o yaml
Sample DNS ConfigMap based on TLS forwarding example
apiVersion: v1 data: Corefile: | example.com:5353 { forward . 1.1.1.1 2.2.2.2:5353 } bar.com:5353 example.com:5353 { forward . 3.3.3.3 4.4.4.4:5454 1 } .:5353 { errors health kubernetes cluster.local in-addr.arpa ip6.arpa { pods insecure upstream fallthrough in-addr.arpa ip6.arpa } prometheus :9153 forward . /etc/resolv.conf 1.2.3.4:53 { policy Random } cache 30 reload } kind: ConfigMap metadata: labels: dns.operator.openshift.io/owning-dns: default name: dns-default namespace: openshift-dns
- 1
- Changes to the
forwardPlugin
triggers a rolling update of the CoreDNS daemon set.
Additional resources
- For more information on DNS forwarding, see the CoreDNS forward documentation.