Search

Logging

download PDF
OpenShift Container Platform 4.15

Configuring and using logging in OpenShift Container Platform

Red Hat OpenShift Documentation Team

Abstract

Use logging to collect, visualize, forward, and store log data to troubleshoot issues, identify performance bottlenecks, and detect security threats in OpenShift Container Platform.

Chapter 1. Release notes

1.1. Logging 5.9

Note

Logging is provided as an installable component, with a distinct release cycle from the core OpenShift Container Platform. The Red Hat OpenShift Container Platform Life Cycle Policy outlines release compatibility.

Note

The stable channel only provides updates to the most recent release of logging. To continue receiving updates for prior releases, you must change your subscription channel to stable-x.y, where x.y represents the major and minor version of logging you have installed. For example, stable-5.7.

1.1.1. Logging 5.9.7

This release includes OpenShift Logging Bug Fix Release 5.9.7.

1.1.1.1. Bug fixes
  • Before this update, the clusterlogforwarder.spec.outputs.http.timeout parameter was not applied to the Fluentd configuration when Fluentd was used as the collector type, causing HTTP timeouts to be misconfigured. With this update, the clusterlogforwarder.spec.outputs.http.timeout parameter is now correctly applied, ensuring Fluentd honors the specified timeout and handles HTTP connections according to the user’s configuration. (LOG-6125)
  • Before this update, the TLS section was added without verifying the broker URL schema, resulting in SSL connection errors if the URLs did not start with tls. With this update, the TLS section is now added only if the broker URLs start with tls, preventing SSL connection errors. (LOG-6041)
1.1.1.2. CVEs
Note

For detailed information on Red Hat security ratings, review Severity ratings.

1.1.2. Logging 5.9.6

This release includes OpenShift Logging Bug Fix Release 5.9.6.

1.1.2.1. Bug fixes
  • Before this update, the collector deployment ignored secret changes, causing receivers to reject logs. With this update, the system rolls out a new pod when there is a change in the secret value, ensuring that the collector reloads the updated secrets. (LOG-5525)
  • Before this update, the Vector could not correctly parse field values that included a single dollar sign ($). With this update, field values with a single dollar sign are automatically changed to two dollar signs ($$), ensuring proper parsing by the Vector. (LOG-5602)
  • Before this update, the drop filter could not handle non-string values (e.g., .responseStatus.code: 403). With this update, the drop filter now works properly with these values. (LOG-5815)
  • Before this update, the collector used the default settings to collect audit logs, without handling the backload from output receivers. With this update, the process for collecting audit logs has been improved to better manage file handling and log reading efficiency. (LOG-5866)
  • Before this update, the must-gather tool failed on clusters with non-AMD64 architectures such as Azure Resource Manager (ARM) or PowerPC. With this update, the tool now detects the cluster architecture at runtime and uses architecture-independent paths and dependencies. The detection allows must-gather to run smoothly on platforms like ARM and PowerPC. (LOG-5997)
  • Before this update, the log level was set using a mix of structured and unstructured keywords that were unclear. With this update, the log level follows a clear, documented order, starting with structured keywords. (LOG-6016)
  • Before this update, multiple unnamed pipelines writing to the default output in the ClusterLogForwarder caused a validation error due to duplicate auto-generated names. With this update, the pipeline names are now generated without duplicates. (LOG-6033)
  • Before this update, the collector pods did not have the PreferredScheduling annotation. With this update, the PreferredScheduling annotation is added to the collector daemonset. (LOG-6023)
1.1.2.2. CVEs

1.1.3. Logging 5.9.5

This release includes OpenShift Logging Bug Fix Release 5.9.5

1.1.3.1. Bug Fixes
  • Before this update, duplicate conditions in the LokiStack resource status led to invalid metrics from the Loki Operator. With this update, the Operator removes duplicate conditions from the status. (LOG-5855)
  • Before this update, the Loki Operator did not trigger alerts when it dropped log events due to validation failures. With this update, the Loki Operator includes a new alert definition that triggers an alert if Loki drops log events due to validation failures. (LOG-5895)
  • Before this update, the Loki Operator overwrote user annotations on the LokiStack Route resource, causing customizations to drop. With this update, the Loki Operator no longer overwrites Route annotations, fixing the issue. (LOG-5945)
1.1.3.2. CVEs

None.

1.1.4. Logging 5.9.4

This release includes OpenShift Logging Bug Fix Release 5.9.4

1.1.4.1. Bug Fixes
  • Before this update, an incorrectly formatted timeout configuration caused the OCP plugin to crash. With this update, a validation prevents the crash and informs the user about the incorrect configuration. (LOG-5373)
  • Before this update, workloads with labels containing - caused an error in the collector when normalizing log entries. With this update, the configuration change ensures the collector uses the correct syntax. (LOG-5524)
  • Before this update, an issue prevented selecting pods that no longer existed, even if they had generated logs. With this update, this issue has been fixed, allowing selection of such pods. (LOG-5697)
  • Before this update, the Loki Operator would crash if the CredentialRequest specification was registered in an environment without the cloud-credentials-operator. With this update, the CredentialRequest specification only registers in environments that are cloud-credentials-operator enabled. (LOG-5701)
  • Before this update, the Logging Operator watched and processed all config maps across the cluster. With this update, the dashboard controller only watches the config map for the logging dashboard. (LOG-5702)
  • Before this update, the ClusterLogForwarder introduced an extra space in the message payload which did not follow the RFC3164 specification. With this update, the extra space has been removed, fixing the issue. (LOG-5707)
  • Before this update, removing the seeding for grafana-dashboard-cluster-logging as a part of (LOG-5308) broke new greenfield deployments without dashboards. With this update, the Logging Operator seeds the dashboard at the beginning and continues to update it for changes. (LOG-5747)
  • Before this update, LokiStack was missing a route for the Volume API causing the following error: 404 not found. With this update, LokiStack exposes the Volume API, resolving the issue. (LOG-5749)
1.1.4.2. CVEs

CVE-2024-24790

1.1.5. Logging 5.9.3

This release includes OpenShift Logging Bug Fix Release 5.9.3

1.1.5.1. Bug Fixes
  • Before this update, there was a delay in restarting Ingesters when configuring LokiStack, because the Loki Operator sets the write-ahead log replay_memory_ceiling to zero bytes for the 1x.demo size. With this update, the minimum value used for the replay_memory_ceiling has been increased to avoid delays. (LOG-5614)
  • Before this update, monitoring the Vector collector output buffer state was not possible. With this update, monitoring and alerting the Vector collector output buffer size is possible that improves observability capabilities and helps keep the system running optimally. (LOG-5586)
1.1.5.2. CVEs

1.1.6. Logging 5.9.2

This release includes OpenShift Logging Bug Fix Release 5.9.2

1.1.6.1. Bug Fixes
  • Before this update, changes to the Logging Operator caused an error due to an incorrect configuration in the ClusterLogForwarder CR. As a result, upgrades to logging deleted the daemonset collector. With this update, the Logging Operator re-creates collector daemonsets except when a Not authorized to collect error occurs. (LOG-4910)
  • Before this update, the rotated infrastructure log files were sent to the application index in some scenarios due to an incorrect configuration in the Vector log collector. With this update, the Vector log collector configuration avoids collecting any rotated infrastructure log files. (LOG-5156)
  • Before this update, the Logging Operator did not monitor changes to the grafana-dashboard-cluster-logging config map. With this update, the Logging Operator monitors changes in the ConfigMap objects, ensuring the system stays synchronized and responds effectively to config map modifications. (LOG-5308)
  • Before this update, an issue in the metrics collection code of the Logging Operator caused it to report stale telemetry metrics. With this update, the Logging Operator does not report stale telemetry metrics. (LOG-5426)
  • Before this change, the Fluentd out_http plugin ignored the no_proxy environment variable. With this update, the Fluentd patches the HTTP#start method of ruby to honor the no_proxy environment variable. (LOG-5466)
1.1.6.2. CVEs

1.1.7. Logging 5.9.1

This release includes OpenShift Logging Bug Fix Release 5.9.1

1.1.7.1. Enhancements
  • Before this update, the Loki Operator configured Loki to use path-based style access for the Amazon Simple Storage Service (S3), which has been deprecated. With this update, the Loki Operator defaults to virtual-host style without users needing to change their configuration. (LOG-5401)
  • Before this update, the Loki Operator did not validate the Amazon Simple Storage Service (S3) endpoint used in the storage secret. With this update, the validation process ensures the S3 endpoint is a valid S3 URL, and the LokiStack status updates to indicate any invalid URLs. (LOG-5395)
1.1.7.2. Bug Fixes
  • Before this update, a bug in LogQL parsing left out some line filters from the query. With this update, the parsing now includes all the line filters while keeping the original query unchanged. (LOG-5268)
  • Before this update, a prune filter without a defined pruneFilterSpec would cause a segfault. With this update, there is a validation error if a prune filter is without a defined puneFilterSpec. (LOG-5322)
  • Before this update, a drop filter without a defined dropTestsSpec would cause a segfault. With this update, there is a validation error if a prune filter is without a defined puneFilterSpec. (LOG-5323)
  • Before this update, the Loki Operator did not validate the Amazon Simple Storage Service (S3) endpoint URL format used in the storage secret. With this update, the S3 endpoint URL goes through a validation step that reflects on the status of the LokiStack. (LOG-5397)
  • Before this update, poorly formatted timestamp fields in audit log records led to WARN messages in Red Hat OpenShift Logging Operator logs. With this update, a remap transformation ensures that the timestamp field is properly formatted. (LOG-4672)
  • Before this update, the error message thrown while validating a ClusterLogForwarder resource name and namespace did not correspond to the correct error. With this update, the system checks if a ClusterLogForwarder resource with the same name exists in the same namespace. If not, it corresponds to the correct error. (LOG-5062)
  • Before this update, the validation feature for output config required a TLS URL, even for services such as Amazon CloudWatch or Google Cloud Logging where a URL is not needed by design. With this update, the validation logic for services without URLs are improved, and the error message are more informative. (LOG-5307)
  • Before this update, defining an infrastructure input type did not exclude logging workloads from the collection. With this update, the collection excludes logging services to avoid feedback loops. (LOG-5309)
1.1.7.3. CVEs

No CVEs.

1.1.8. Logging 5.9.0

This release includes OpenShift Logging Bug Fix Release 5.9.0

1.1.8.1. Removal notice

The Logging 5.9 release does not contain an updated version of the OpenShift Elasticsearch Operator. Instances of OpenShift Elasticsearch Operator from prior logging releases, remain supported until the EOL of the logging release. As an alternative to using the OpenShift Elasticsearch Operator to manage the default log storage, you can use the Loki Operator. For more information on the Logging lifecycle dates, see Platform Agnostic Operators.

1.1.8.2. Deprecation notice
  • In Logging 5.9, Fluentd, and Kibana are deprecated and are planned to be removed in Logging 6.0, which is expected to be shipped alongside a future release of OpenShift Container Platform. Red Hat will provide critical and above CVE bug fixes and support for these components during the current release lifecycle, but these components will no longer receive feature enhancements. The Vector-based collector provided by the Red Hat OpenShift Logging Operator and LokiStack provided by the Loki Operator are the preferred Operators for log collection and storage. We encourage all users to adopt the Vector and Loki log stack, as this will be the stack that will be enhanced going forward.
  • In Logging 5.9, the Fields option for the Splunk output type was never implemented and is now deprecated. It will be removed in a future release.
1.1.8.3. Enhancements
1.1.8.3.1. Log Collection
  • This enhancement adds the ability to refine the process of log collection by using a workload’s metadata to drop or prune logs based on their content. Additionally, it allows the collection of infrastructure logs, such as journal or container logs, and audit logs, such as kube api or ovn logs, to only collect individual sources. (LOG-2155)
  • This enhancement introduces a new type of remote log receiver, the syslog receiver. You can configure it to expose a port over a network, allowing external systems to send syslog logs using compatible tools such as rsyslog. (LOG-3527)
  • With this update, the ClusterLogForwarder API now supports log forwarding to Azure Monitor Logs, giving users better monitoring abilities. This feature helps users to maintain optimal system performance and streamline the log analysis processes in Azure Monitor, which speeds up issue resolution and improves operational efficiency. (LOG-4605)
  • This enhancement improves collector resource utilization by deploying collectors as a deployment with two replicas. This occurs when the only input source defined in the ClusterLogForwarder custom resource (CR) is a receiver input instead of using a daemon set on all nodes. Additionally, collectors deployed in this manner do not mount the host file system. To use this enhancement, you need to annotate the ClusterLogForwarder CR with the logging.openshift.io/dev-preview-enable-collector-as-deployment annotation. (LOG-4779)
  • This enhancement introduces the capability for custom tenant configuration across all supported outputs, facilitating the organization of log records in a logical manner. However, it does not permit custom tenant configuration for logging managed storage. (LOG-4843)
  • With this update, the ClusterLogForwarder CR that specifies an application input with one or more infrastructure namespaces like default, openshift*, or kube*, now requires a service account with the collect-infrastructure-logs role. (LOG-4943)
  • This enhancement introduces the capability for tuning some output settings, such as compression, retry duration, and maximum payloads, to match the characteristics of the receiver. Additionally, this feature includes a delivery mode to allow administrators to choose between throughput and log durability. For example, the AtLeastOnce option configures minimal disk buffering of collected logs so that the collector can deliver those logs after a restart. (LOG-5026)
  • This enhancement adds three new Prometheus alerts, warning users about the deprecation of Elasticsearch, Fluentd, and Kibana. (LOG-5055)
1.1.8.3.2. Log Storage
  • This enhancement in LokiStack improves support for OTEL by using the new V13 object storage format and enabling automatic stream sharding by default. This also prepares the collector for future enhancements and configurations. (LOG-4538)
  • This enhancement introduces support for short-lived token workload identity federation with Azure and AWS log stores for STS enabled OpenShift Container Platform 4.14 and later clusters. Local storage requires the addition of a CredentialMode: static annotation under spec.storage.secret in the LokiStack CR. (LOG-4540)
  • With this update, the validation of the Azure storage secret is now extended to give early warning for certain error conditions. (LOG-4571)
  • With this update, Loki now adds upstream and downstream support for GCP workload identity federation mechanism. This allows authenticated and authorized access to the corresponding object storage services. (LOG-4754)
1.1.8.4. Bug Fixes
  • Before this update, the logging must-gather could not collect any logs on a FIPS-enabled cluster. With this update, a new oc client is available in cluster-logging-rhel9-operator, and must-gather works properly on FIPS clusters. (LOG-4403)
  • Before this update, the LokiStack ruler pods could not format the IPv6 pod IP in HTTP URLs used for cross-pod communication. This issue caused querying rules and alerts through the Prometheus-compatible API to fail. With this update, the LokiStack ruler pods encapsulate the IPv6 pod IP in square brackets, resolving the problem. Now, querying rules and alerts through the Prometheus-compatible API works just like in IPv4 environments. (LOG-4709)
  • Before this fix, the YAML content from the logging must-gather was exported in a single line, making it unreadable. With this update, the YAML white spaces are preserved, ensuring that the file is properly formatted. (LOG-4792)
  • Before this update, when the ClusterLogForwarder CR was enabled, the Red Hat OpenShift Logging Operator could run into a nil pointer exception when ClusterLogging.Spec.Collection was nil. With this update, the issue is now resolved in the Red Hat OpenShift Logging Operator. (LOG-5006)
  • Before this update, in specific corner cases, replacing the ClusterLogForwarder CR status field caused the resourceVersion to constantly update due to changing timestamps in Status conditions. This condition led to an infinite reconciliation loop. With this update, all status conditions synchronize, so that timestamps remain unchanged if conditions stay the same. (LOG-5007)
  • Before this update, there was an internal buffering behavior to drop_newest to address high memory consumption by the collector resulting in significant log loss. With this update, the behavior reverts to using the collector defaults. (LOG-5123)
  • Before this update, the Loki Operator ServiceMonitor in the openshift-operators-redhat namespace used static token and CA files for authentication, causing errors in the Prometheus Operator in the User Workload Monitoring spec on the ServiceMonitor configuration. With this update, the Loki Operator ServiceMonitor in openshift-operators-redhat namespace now references a service account token secret by a LocalReference object. This approach allows the User Workload Monitoring spec in the Prometheus Operator to handle the Loki Operator ServiceMonitor successfully, enabling Prometheus to scrape the Loki Operator metrics. (LOG-5165)
  • Before this update, the configuration of the Loki Operator ServiceMonitor could match many Kubernetes services, resulting in the Loki Operator metrics being collected multiple times. With this update, the configuration of ServiceMonitor now only matches the dedicated metrics service. (LOG-5212)
1.1.8.5. Known Issues

None.

1.1.8.6. CVEs

1.2. Logging 5.8

Note

Logging is provided as an installable component, with a distinct release cycle from the core OpenShift Container Platform. The Red Hat OpenShift Container Platform Life Cycle Policy outlines release compatibility.

Note

The stable channel only provides updates to the most recent release of logging. To continue receiving updates for prior releases, you must change your subscription channel to stable-x.y, where x.y represents the major and minor version of logging you have installed. For example, stable-5.7.

1.2.1. Logging 5.8.13

This release includes OpenShift Logging Bug Fix Release 5.8.13 and OpenShift Logging Bug Fix Release 5.8.13.

1.2.1.1. Bug fixes
  • Before this update, the clusterlogforwarder.spec.outputs.http.timeout parameter was not applied to the Fluentd configuration when Fluentd was used as the collector type, causing HTTP timeouts to be misconfigured. With this update, the clusterlogforwarder.spec.outputs.http.timeout parameter is now correctly applied, ensuring that Fluentd honors the specified timeout and handles HTTP connections according to the user’s configuration. (LOG-5210)
  • Before this update, the Elasticsearch Operator did not issue an alert to inform users about the upcoming removal, leaving existing installations unsupported without notice. With this update, the Elasticsearch Operator will trigger a continuous alert on OpenShift Container Platform version 4.16 and later, notifying users of its removal from the catalog in November 2025. (LOG-5966)
  • Before this update, the Red Hat OpenShift Logging Operator was unavailable on OpenShift Container Platform version 4.16 and later, preventing Telco customers from completing their certifications for the upcoming Logging 6.0 release. With this update, the Red Hat OpenShift Logging Operator is now available on OpenShift Container Platform versions 4.16 and 4.17, resolving the issue. (LOG-6103)
  • Before this update, the Elasticsearch Operator was not available in the OpenShift Container Platform versions 4.17 and 4.18, preventing the installation of ServiceMesh, Kiali, and Distributed Tracing. With this update, the Elasticsearch Operator properties have been expanded for OpenShift Container Platform versions 4.17 and 4.18, resolving the issue and allowing ServiceMesh, Kiali, and Distributed Tracing operators to install their stacks. (LOG-6134)
1.2.1.2. CVEs
Note

For detailed information on Red Hat security ratings, review Severity ratings.

1.2.2. Logging 5.8.12

This release includes OpenShift Logging Bug Fix Release 5.8.12 and OpenShift Logging Bug Fix Release 5.8.12.

1.2.2.1. Bug fixes
  • Before this update, the collector used internal buffering with the drop_newest setting to reduce high memory usage, which caused significant log loss. With this update, the collector goes back to its default behavior, where sink<>.buffer is not customized. (LOG-6026)
1.2.2.2. CVEs

1.2.3. Logging 5.8.11

This release includes OpenShift Logging Bug Fix Release 5.8.11 and OpenShift Logging Bug Fix Release 5.8.11.

1.2.3.1. Bug fixes
  • Before this update, the TLS section was added without verifying the broker URL schema, leading to SSL connection errors if the URLs did not start with tls. With this update, the TLS section is added only if broker URLs start with tls, preventing SSL connection errors. (LOG-5139)
  • Before this update, the Loki Operator did not trigger alerts when it dropped log events due to validation failures. With this update, the Loki Operator includes a new alert definition that triggers an alert if Loki drops log events due to validation failures. (LOG-5896)
  • Before this update, the 4.16 GA catalog did not include Elasticsearch Operator 5.8, preventing the installation of products like Service Mesh, Kiali, and Tracing. With this update, Elasticsearch Operator 5.8 is now available on 4.16, resolving the issue and providing support for Elasticsearch storage for these products only. (LOG-5911)
  • Before this update, duplicate conditions in the LokiStack resource status led to invalid metrics from the Loki Operator. With this update, the Operator removes duplicate conditions from the status. (LOG-5857)
  • Before this update, the Loki Operator overwrote user annotations on the LokiStack Route resource, causing customizations to drop. With this update, the Loki Operator no longer overwrites Route annotations, fixing the issue. (LOG-5946)
1.2.3.2. CVEs

1.2.4. Logging 5.8.10

This release includes OpenShift Logging Bug Fix Release 5.8.10 and OpenShift Logging Bug Fix Release 5.8.10.

1.2.4.1. Known issues
  • Before this update, when enabling retention, the Loki Operator produced an invalid configuration. As a result, Loki did not start properly. With this update, Loki pods can set retention. (LOG-5821)
1.2.4.2. Bug fixes
  • Before this update, the ClusterLogForwarder introduced an extra space in the message payload that did not follow the RFC3164 specification. With this update, the extra space has been removed, fixing the issue. (LOG-5647)
1.2.4.3. CVEs

1.2.5. Logging 5.8.9

This release includes OpenShift Logging Bug Fix Release 5.8.9 and OpenShift Logging Bug Fix Release 5.8.9.

1.2.5.1. Bug fixes
  • Before this update, an issue prevented selecting pods that no longer existed, even if they had generated logs. With this update, this issue has been fixed, allowing selection of such pods. (LOG-5698)
  • Before this update, LokiStack was missing a route for the Volume API, which caused the following error: 404 not found. With this update, LokiStack exposes the Volume API, resolving the issue. (LOG-5750)
  • Before this update, the Elasticsearch operator overwrote all service account annotations without considering ownership. As a result, the kube-controller-manager recreated service account secrets because it logged the link to the owning service account. With this update, the Elasticsearch operator merges annotations, resolving the issue. (LOG-5776)
1.2.5.2. CVEs

1.2.6. Logging 5.8.8

This release includes OpenShift Logging Bug Fix Release 5.8.8 and OpenShift Logging Bug Fix Release 5.8.8.

1.2.6.1. Bug fixes
  • Before this update, there was a delay in restarting Ingesters when configuring LokiStack, because the Loki Operator sets the write-ahead log replay_memory_ceiling to zero bytes for the 1x.demo size. With this update, the minimum value used for the replay_memory_ceiling has been increased to avoid delays. (LOG-5615)
1.2.6.2. CVEs

1.2.7. Logging 5.8.7

This release includes OpenShift Logging Bug Fix Release 5.8.7 Security Update and OpenShift Logging Bug Fix Release 5.8.7.

1.2.7.1. Bug fixes
  • Before this update, the elasticsearch-im-<type>-* pods failed if no <type> logs (audit, infrastructure, or application) were collected. With this update, the pods no longer fail when <type> logs are not collected. (LOG-4949)
  • Before this update, the validation feature for output config required an SSL/TLS URL, even for services such as Amazon CloudWatch or Google Cloud Logging where a URL is not needed by design. With this update, the validation logic for services without URLs are improved, and the error message is more informative. (LOG-5467)
  • Before this update, an issue in the metrics collection code of the Logging Operator caused it to report stale telemetry metrics. With this update, the Logging Operator does not report stale telemetry metrics. (LOG-5471)
  • Before this update, changes to the Logging Operator caused an error due to an incorrect configuration in the ClusterLogForwarder CR. As a result, upgrades to logging deleted the daemonset collector. With this update, the Logging Operator re-creates collector daemonsets except when a Not authorized to collect error occurs. (LOG-5514)
1.2.7.2. CVEs

1.2.8. Logging 5.8.6

This release includes OpenShift Logging Bug Fix Release 5.8.6 Security Update and OpenShift Logging Bug Fix Release 5.8.6.

1.2.8.1. Enhancements
  • Before this update, the Loki Operator did not validate the Amazon Simple Storage Service (S3) endpoint used in the storage secret. With this update, the validation process ensures the S3 endpoint is a valid S3 URL, and the LokiStack status updates to indicate any invalid URLs. (LOG-5392)
  • Before this update, the Loki Operator configured Loki to use path-based style access for the Amazon Simple Storage Service (S3), which has been deprecated. With this update, the Loki Operator defaults to virtual-host style without users needing to change their configuration. (LOG-5402)
1.2.8.2. Bug fixes
  • Before this update, the Elastisearch Operator ServiceMonitor in the openshift-operators-redhat namespace used static token and certificate authority (CA) files for authentication, causing errors in the Prometheus Operator in the User Workload Monitoring specification on the ServiceMonitor configuration. With this update, the Elastisearch Operator ServiceMonitor in the openshift-operators-redhat namespace now references a service account token secret by a LocalReference object. This approach allows the User Workload Monitoring specifications in the Prometheus Operator to handle the Elastisearch Operator ServiceMonitor successfully. This enables Prometheus to scrape the Elastisearch Operator metrics. (LOG-5164)
  • Before this update, the Loki Operator did not validate the Amazon Simple Storage Service (S3) endpoint URL format used in the storage secret. With this update, the S3 endpoint URL goes through a validation step that reflects on the status of the LokiStack. (LOG-5398)
1.2.8.3. CVEs

1.2.9. Logging 5.8.5

This release includes OpenShift Logging Bug Fix Release 5.8.5.

1.2.9.1. Bug fixes
  • Before this update, the configuration of the Loki Operator’s ServiceMonitor could match many Kubernetes services, resulting in the Loki Operator’s metrics being collected multiple times. With this update, the configuration of ServiceMonitor now only matches the dedicated metrics service. (LOG-5250)
  • Before this update, the Red Hat build pipeline did not use the existing build details in Loki builds and omitted information such as revision, branch, and version. With this update, the Red Hat build pipeline now adds these details to the Loki builds, fixing the issue. (LOG-5201)
  • Before this update, the Loki Operator checked if the pods were running to decide if the LokiStack was ready. With this update, it also checks if the pods are ready, so that the readiness of the LokiStack reflects the state of its components. (LOG-5171)
  • Before this update, running a query for log metrics caused an error in the histogram. With this update, the histogram toggle function and the chart are disabled and hidden because the histogram doesn’t work with log metrics. (LOG-5044)
  • Before this update, the Loki and Elasticsearch bundle had the wrong maxOpenShiftVersion, resulting in IncompatibleOperatorsInstalled alerts. With this update, including 4.16 as the maxOpenShiftVersion property in the bundle fixes the issue. (LOG-5272)
  • Before this update, the build pipeline did not include linker flags for the build date, causing Loki builds to show empty strings for buildDate and goVersion. With this update, adding the missing linker flags in the build pipeline fixes the issue. (LOG-5274)
  • Before this update, a bug in LogQL parsing left out some line filters from the query. With this update, the parsing now includes all the line filters while keeping the original query unchanged. (LOG-5270)
  • Before this update, the Loki Operator ServiceMonitor in the openshift-operators-redhat namespace used static token and CA files for authentication, causing errors in the Prometheus Operator in the User Workload Monitoring spec on the ServiceMonitor configuration. With this update, the Loki Operator ServiceMonitor in openshift-operators-redhat namespace now references a service account token secret by a LocalReference object. This approach allows the User Workload Monitoring spec in the Prometheus Operator to handle the Loki Operator ServiceMonitor successfully, enabling Prometheus to scrape the Loki Operator metrics. (LOG-5240)
1.2.9.2. CVEs

1.2.10. Logging 5.8.4

This release includes OpenShift Logging Bug Fix Release 5.8.4.

1.2.10.1. Bug fixes
  • Before this update, the developer console’s logs did not account for the current namespace, resulting in query rejection for users without cluster-wide log access. With this update, all supported OCP versions ensure correct namespace inclusion. (LOG-4905)
  • Before this update, the Cluster Logging Operator deployed ClusterRoles supporting LokiStack deployments only when the default log output was LokiStack. With this update, the roles are split into two groups: read and write. The write roles deploys based on the setting of the default log storage, just like all the roles used to do before. The read roles deploys based on whether the logging console plugin is active. (LOG-4987)
  • Before this update, multiple ClusterLogForwarders defining the same input receiver name had their service endlessly reconciled because of changing ownerReferences on one service. With this update, each receiver input will have its own service named with the convention of <CLF.Name>-<input.Name>. (LOG-5009)
  • Before this update, the ClusterLogForwarder did not report errors when forwarding logs to cloudwatch without a secret. With this update, the following error message appears when forwarding logs to cloudwatch without a secret: secret must be provided for cloudwatch output. (LOG-5021)
  • Before this update, the log_forwarder_input_info included application, infrastructure, and audit input metric points. With this update, http is also added as a metric point. (LOG-5043)
1.2.10.2. CVEs

1.2.11. Logging 5.8.3

This release includes Logging Bug Fix 5.8.3 and Logging Security Fix 5.8.3

1.2.11.1. Bug fixes
  • Before this update, when configured to read a custom S3 Certificate Authority the Loki Operator would not automatically update the configuration when the name of the ConfigMap or the contents changed. With this update, the Loki Operator is watching for changes to the ConfigMap and automatically updates the generated configuration. (LOG-4969)
  • Before this update, Loki outputs configured without a valid URL caused the collector pods to crash. With this update, outputs are subject to URL validation, resolving the issue. (LOG-4822)
  • Before this update the Cluster Logging Operator would generate collector configuration fields for outputs that did not specify a secret to use the service account bearer token. With this update, an output does not require authentication, resolving the issue. (LOG-4962)
  • Before this update, the tls.insecureSkipVerify field of an output was not set to a value of true without a secret defined. With this update, a secret is no longer required to set this value. (LOG-4963)
  • Before this update, output configurations allowed the combination of an insecure (HTTP) URL with TLS authentication. With this update, outputs configured for TLS authentication require a secure (HTTPS) URL. (LOG-4893)
1.2.11.2. CVEs

1.2.12. Logging 5.8.2

This release includes OpenShift Logging Bug Fix Release 5.8.2.

1.2.12.1. Bug fixes
  • Before this update, the LokiStack ruler pods would not format the IPv6 pod IP in HTTP URLs used for cross pod communication, causing querying rules and alerts through the Prometheus-compatible API to fail. With this update, the LokiStack ruler pods encapsulate the IPv6 pod IP in square brackets, resolving the issue. (LOG-4890)
  • Before this update, the developer console logs did not account for the current namespace, resulting in query rejection for users without cluster-wide log access. With this update, namespace inclusion has been corrected, resolving the issue. (LOG-4947)
  • Before this update, the logging view plugin of the OpenShift Container Platform web console did not allow for custom node placement and tolerations. With this update, defining custom node placements and tolerations has been added to the logging view plugin of the OpenShift Container Platform web console. (LOG-4912)
1.2.12.2. CVEs

1.2.13. Logging 5.8.1

This release includes OpenShift Logging Bug Fix Release 5.8.1 and OpenShift Logging Bug Fix Release 5.8.1 Kibana.

1.2.13.1. Enhancements
1.2.13.1.1. Log Collection
  • With this update, while configuring Vector as a collector, you can add logic to the Red Hat OpenShift Logging Operator to use a token specified in the secret in place of the token associated with the service account. (LOG-4780)
  • With this update, the BoltDB Shipper Loki dashboards are now renamed to Index dashboards. (LOG-4828)
1.2.13.2. Bug fixes
  • Before this update, the ClusterLogForwarder created empty indices after enabling the parsing of JSON logs, even when the rollover conditions were not met. With this update, the ClusterLogForwarder skips the rollover when the write-index is empty. (LOG-4452)
  • Before this update, the Vector set the default log level incorrectly. With this update, the correct log level is set by improving the enhancement of regular expression, or regexp, for log level detection. (LOG-4480)
  • Before this update, during the process of creating index patterns, the default alias was missing from the initial index in each log output. As a result, Kibana users were unable to create index patterns by using OpenShift Elasticsearch Operator. This update adds the missing aliases to OpenShift Elasticsearch Operator, resolving the issue. Kibana users can now create index patterns that include the {app,infra,audit}-000001 indexes. (LOG-4683)
  • Before this update, Fluentd collector pods were in a CrashLoopBackOff state due to binding of the Prometheus server on IPv6 clusters. With this update, the collectors work properly on IPv6 clusters. (LOG-4706)
  • Before this update, the Red Hat OpenShift Logging Operator would undergo numerous reconciliations whenever there was a change in the ClusterLogForwarder. With this update, the Red Hat OpenShift Logging Operator disregards the status changes in the collector daemonsets that triggered the reconciliations. (LOG-4741)
  • Before this update, the Vector log collector pods were stuck in the CrashLoopBackOff state on IBM Power machines. With this update, the Vector log collector pods start successfully on IBM Power architecture machines. (LOG-4768)
  • Before this update, forwarding with a legacy forwarder to an internal LokiStack would produce SSL certificate errors using Fluentd collector pods. With this update, the log collector service account is used by default for authentication, using the associated token and ca.crt. (LOG-4791)
  • Before this update, forwarding with a legacy forwarder to an internal LokiStack would produce SSL certificate errors using Vector collector pods. With this update, the log collector service account is used by default for authentication and also using the associated token and ca.crt. (LOG-4852)
  • Before this fix, IPv6 addresses would not be parsed correctly after evaluating a host or multiple hosts for placeholders. With this update, IPv6 addresses are correctly parsed. (LOG-4811)
  • Before this update, it was necessary to create a ClusterRoleBinding to collect audit permissions for HTTP receiver inputs. With this update, it is not necessary to create the ClusterRoleBinding because the endpoint already depends upon the cluster certificate authority. (LOG-4815)
  • Before this update, the Loki Operator did not mount a custom CA bundle to the ruler pods. As a result, during the process to evaluate alerting or recording rules, object storage access failed. With this update, the Loki Operator mounts the custom CA bundle to all ruler pods. The ruler pods can download logs from object storage to evaluate alerting or recording rules. (LOG-4836)
  • Before this update, while removing the inputs.receiver section in the ClusterLogForwarder, the HTTP input services and its associated secrets were not deleted. With this update, the HTTP input resources are deleted when not needed. (LOG-4612)
  • Before this update, the ClusterLogForwarder indicated validation errors in the status, but the outputs and the pipeline status did not accurately reflect the specific issues. With this update, the pipeline status displays the validation failure reasons correctly in case of misconfigured outputs, inputs, or filters. (LOG-4821)
  • Before this update, changing a LogQL query that used controls such as time range or severity changed the label matcher operator defining it like a regular expression. With this update, regular expression operators remain unchanged when updating the query. (LOG-4841)
1.2.13.3. CVEs

1.2.14. Logging 5.8.0

This release includes OpenShift Logging Bug Fix Release 5.8.0 and OpenShift Logging Bug Fix Release 5.8.0 Kibana.

1.2.14.1. Deprecation notice

In Logging 5.8, Elasticsearch, Fluentd, and Kibana are deprecated and are planned to be removed in Logging 6.0, which is expected to be shipped alongside a future release of OpenShift Container Platform. Red Hat will provide critical and above CVE bug fixes and support for these components during the current release lifecycle, but these components will no longer receive feature enhancements. The Vector-based collector provided by the Red Hat OpenShift Logging Operator and LokiStack provided by the Loki Operator are the preferred Operators for log collection and storage. We encourage all users to adopt the Vector and Loki log stack, as this will be the stack that will be enhanced going forward.

1.2.14.2. Enhancements
1.2.14.2.1. Log Collection
  • With this update, the LogFileMetricExporter is no longer deployed with the collector by default. You must manually create a LogFileMetricExporter custom resource (CR) to generate metrics from the logs produced by running containers. If you do not create the LogFileMetricExporter CR, you may see a No datapoints found message in the OpenShift Container Platform web console dashboard for Produced Logs. (LOG-3819)
  • With this update, you can deploy multiple, isolated, and RBAC-protected ClusterLogForwarder custom resource (CR) instances in any namespace. This allows independent groups to forward desired logs to any destination while isolating their configuration from other collector deployments. (LOG-1343)

    Important

    In order to support multi-cluster log forwarding in additional namespaces other than the openshift-logging namespace, you must update the Red Hat OpenShift Logging Operator to watch all namespaces. This functionality is supported by default in new Red Hat OpenShift Logging Operator version 5.8 installations.

  • With this update, you can use the flow control or rate limiting mechanism to limit the volume of log data that can be collected or forwarded by dropping excess log records. The input limits prevent poorly-performing containers from overloading the Logging and the output limits put a ceiling on the rate of logs shipped to a given data store. (LOG-884)
  • With this update, you can configure the log collector to look for HTTP connections and receive logs as an HTTP server, also known as a webhook. (LOG-4562)
  • With this update, you can configure audit polices to control which Kubernetes and OpenShift API server events are forwarded by the log collector. (LOG-3982)
1.2.14.2.2. Log Storage
  • With this update, LokiStack administrators can have more fine-grained control over who can access which logs by granting access to logs on a namespace basis. (LOG-3841)
  • With this update, the Loki Operator introduces PodDisruptionBudget configuration on LokiStack deployments to ensure normal operations during OpenShift Container Platform cluster restarts by keeping ingestion and the query path available. (LOG-3839)
  • With this update, the reliability of existing LokiStack installations are seamlessly improved by applying a set of default Affinity and Anti-Affinity policies. (LOG-3840)
  • With this update, you can manage zone-aware data replication as an administrator in LokiStack, in order to enhance reliability in the event of a zone failure. (LOG-3266)
  • With this update, a new supported small-scale LokiStack size of 1x.extra-small is introduced for OpenShift Container Platform clusters hosting a few workloads and smaller ingestion volumes (up to 100GB/day). (LOG-4329)
  • With this update, the LokiStack administrator has access to an official Loki dashboard to inspect the storage performance and the health of each component. (LOG-4327)
1.2.14.2.3. Log Console
  • With this update, you can enable the Logging Console Plugin when Elasticsearch is the default Log Store. (LOG-3856)
  • With this update, OpenShift Container Platform application owners can receive notifications for application log-based alerts on the OpenShift Container Platform web console Developer perspective for OpenShift Container Platform version 4.14 and later. (LOG-3548)
1.2.14.3. Known Issues
  • Currently, Splunk log forwarding might not work after upgrading to version 5.8 of the Red Hat OpenShift Logging Operator. This issue is caused by transitioning from OpenSSL version 1.1.1 to version 3.0.7. In the newer OpenSSL version, there is a default behavior change, where connections to TLS 1.2 endpoints are rejected if they do not expose the RFC 5746 extension.

    As a workaround, enable TLS 1.3 support on the TLS terminating load balancer in front of the Splunk HEC (HTTP Event Collector) endpoint. Splunk is a third-party system and this should be configured from the Splunk end.

  • Currently, there is a flaw in handling multiplexed streams in the HTTP/2 protocol, where you can repeatedly make a request for a new multiplex stream and immediately send an RST_STREAM frame to cancel it. This created extra work for the server set up and tore down the streams, resulting in a denial of service due to server resource consumption. There is currently no workaround for this issue. (LOG-4609)
  • Currently, when using FluentD as the collector, the collector pod cannot start on the OpenShift Container Platform IPv6-enabled cluster. The pod logs produce the fluentd pod [error]: unexpected error error_class=SocketError error="getaddrinfo: Name or service not known error. There is currently no workaround for this issue. (LOG-4706)
  • Currently, the log alert is not available on an IPv6-enabled cluster. There is currently no workaround for this issue. (LOG-4709)
  • Currently, must-gather cannot gather any logs on a FIPS-enabled cluster, because the required OpenSSL library is not available in the cluster-logging-rhel9-operator. There is currently no workaround for this issue. (LOG-4403)
  • Currently, when deploying the logging version 5.8 on a FIPS-enabled cluster, the collector pods cannot start and are stuck in CrashLoopBackOff status, while using FluentD as a collector. There is currently no workaround for this issue. (LOG-3933)
1.2.14.4. CVEs

Chapter 2. Logging 6.0

2.1. Logging 6.0.0

This release includes Logging for Red Hat OpenShift Bug Fix Release 6.0.0

Note

Logging is provided as an installable component, with a distinct release cycle from the core OpenShift Container Platform. The Red Hat OpenShift Container Platform Life Cycle Policy outlines release compatibility.

Table 2.1. Upstream component versions
logging VersionComponent Version

Operator

eventrouter

logfilemetricexporter

loki

lokistack-gateway

opa-openshift

vector

6.0

0.4

1.1

3.1.0

0.1

0.1

0.37.1

2.1.1. Removal notice

  • With this release, logging no longer supports the ClusterLogging.logging.openshift.io and ClusterLogForwarder.logging.openshift.io custom resources. Refer to the product documentation for details on the replacement features. (LOG-5803)
  • With this release, logging no longer manages or deploys log storage (such as Elasticsearch), visualization (such as Kibana), or Fluentd-based log collectors. (LOG-5368)
Note

In order to continue to use Elasticsearch and Kibana managed by the elasticsearch-operator, the administrator must modify those object’s ownerRefs before deleting the ClusterLogging resource.

2.1.2. New features and enhancements

  • This feature introduces a new architecture for logging for Red Hat OpenShift by shifting component responsibilities to their relevant Operators, such as for storage, visualization, and collection. It introduces the ClusterLogForwarder.observability.openshift.io API for log collection and forwarding. Support for the ClusterLogging.logging.openshift.io and ClusterLogForwarder.logging.openshift.io APIs, along with the Red Hat managed Elastic stack (Elasticsearch and Kibana), is removed. Users are encouraged to migrate to the Red Hat LokiStack for log storage. Existing managed Elasticsearch deployments can be used for a limited time. Automated migration for log collection is not provided, so administrators need to create a new ClusterLogForwarder.observability.openshift.io specification to replace their previous custom resources. Refer to the official product documentation for more details. (LOG-3493)
  • With this release, the responsibility for deploying the logging view plugin shifts from the Red Hat OpenShift Logging Operator to the Cluster Observability Operator (COO). For new log storage installations that need visualization, the Cluster Observability Operator and the associated UIPlugin resource must be deployed. Refer to the Cluster Observability Operator Overview product documentation for more details. (LOG-5461)
  • This enhancement sets default requests and limits for Vector collector deployments' memory and CPU usage based on Vector documentation recommendations. (LOG-4745)
  • This enhancement updates Vector to align with the upstream version v0.37.1. (LOG-5296)
  • This enhancement introduces an alert that triggers when log collectors buffer logs to a node’s file system and use over 15% of the available space, indicating potential back pressure issues. (LOG-5381)
  • This enhancement updates the selectors for all components to use common Kubernetes labels. (LOG-5906)
  • This enhancement changes the collector configuration to deploy as a ConfigMap instead of a secret, allowing users to view and edit the configuration when the ClusterLogForwarder is set to Unmanaged. (LOG-5599)
  • This enhancement adds the ability to configure the Vector collector log level using an annotation on the ClusterLogForwarder, with options including trace, debug, info, warn, error, or off. (LOG-5372)
  • This enhancement adds validation to reject configurations where Amazon CloudWatch outputs use multiple AWS roles, preventing incorrect log routing. (LOG-5640)
  • This enhancement removes the Log Bytes Collected and Log Bytes Sent graphs from the metrics dashboard. (LOG-5964)
  • This enhancement updates the must-gather functionality to only capture information for inspecting Logging 6.0 components, including Vector deployments from ClusterLogForwarder.observability.openshift.io resources and the Red Hat managed LokiStack. (LOG-5949)
  • This enhancement improves Azure storage secret validation by providing early warnings for specific error conditions. (LOG-4571)

2.1.3. Technology Preview features

  • This release introduces a Technology Preview feature for log forwarding using OpenTelemetry. A new output type,` OTLP`, allows sending JSON-encoded log records using the OpenTelemetry data model and resource semantic conventions. (LOG-4225)

2.1.4. Bug fixes

  • Before this update, the CollectorHighErrorRate and CollectorVeryHighErrorRate alerts were still present. With this update, both alerts are removed in the logging 6.0 release but might return in a future release. (LOG-3432)

2.1.5. CVEs

2.2. Logging 6.0

The ClusterLogForwarder custom resource (CR) is the central configuration point for log collection and forwarding.

2.2.1. Inputs and Outputs

Inputs specify the sources of logs to be forwarded. Logging provides built-in input types: application, infrastructure, and audit, which select logs from different parts of your cluster. You can also define custom inputs based on namespaces or pod labels to fine-tune log selection.

Outputs define the destinations where logs are sent. Each output type has its own set of configuration options, allowing you to customize the behavior and authentication settings.

2.2.2. Receiver Input Type

The receiver input type enables the Logging system to accept logs from external sources. It supports two formats for receiving logs: http and syslog.

The ReceiverSpec defines the configuration for a receiver input.

2.2.3. Pipelines and Filters

Pipelines determine the flow of logs from inputs to outputs. A pipeline consists of one or more input refs, output refs, and optional filter refs. Filters can be used to transform or drop log messages within a pipeline. The order of filters matters, as they are applied sequentially, and earlier filters can prevent log messages from reaching later stages.

2.2.4. Operator Behavior

The Cluster Logging Operator manages the deployment and configuration of the collector based on the managementState field:

  • When set to Managed (default), the operator actively manages the logging resources to match the configuration defined in the spec.
  • When set to Unmanaged, the operator does not take any action, allowing you to manually manage the logging components.

2.2.5. Validation

Logging includes extensive validation rules and default values to ensure a smooth and error-free configuration experience. The ClusterLogForwarder resource enforces validation checks on required fields, dependencies between fields, and the format of input values. Default values are provided for certain fields, reducing the need for explicit configuration in common scenarios.

2.2.5.1. Quick Start

Prerequisites

  • Cluster administrator permissions

Procedure

  1. Install the OpenShift Logging and Loki Operators from OperatorHub.
  2. Create a LokiStack custom resource (CR) in the openshift-logging namespace:

    apiVersion: loki.grafana.com/v1
    kind: LokiStack
    metadata:
      name: logging-loki
      namespace: openshift-logging
    spec:
      managementState: Managed
      size: 1x.extra-small
      storage:
        schemas:
        - effectiveDate: '2022-06-01'
          version: v13
        secret:
          name: logging-loki-s3
          type: s3
        storageClassName: gp3-csi
      tenants:
        mode: openshift-logging
  3. Create a service account for the collector:

    $ oc create sa collector -n openshift-logging
  4. Create a ClusterRole for the collector:

    apiVersion: rbac.authorization.k8s.io/v1
    kind: ClusterRole
    metadata:
      name: logging-collector-logs-writer
    rules:
    - apiGroups:
      - loki.grafana.com
      resourceNames:
      - logs
      resources:
      - application
      - audit
      - infrastructure
      verbs:
      - create
  5. Bind the ClusterRole to the service account:

    $ oc adm policy add-cluster-role-to-user logging-collector-logs-writer -z collector
  6. Install the Cluster Observability Operator.
  7. Create a UIPlugin to enable the Log section in the Observe tab:

    apiVersion: observability.openshift.io/v1alpha1
    kind: UIPlugin
    metadata:
      name: logging
    spec:
      type: Logging
      logging:
        lokiStack:
          name: logging-loki
  8. Add additional roles to the collector service account:

    $ oc project openshift-logging
    $ oc adm policy add-cluster-role-to-user collect-application-logs -z collector
    $ oc adm policy add-cluster-role-to-user collect-audit-logs -z collector
    $ oc adm policy add-cluster-role-to-user collect-infrastructure-logs -z collector
  9. Create a ClusterLogForwarder CR to configure log forwarding:

    apiVersion: observability.openshift.io/v1
    kind: ClusterLogForwarder
    metadata:
      name: collector
      namespace: openshift-logging
    spec:
      serviceAccount:
        name: collector
      outputs:
      - name: default-lokistack
        type: lokiStack
        lokiStack:
          target:
            name: logging-loki
            namespace: openshift-logging
        authentication:
          token:
            from: serviceAccount
        tls:
          ca:
            key: service-ca.crt
            configMapName: openshift-service-ca.crt
      pipelines:
      - name: default-logstore
        inputRefs:
        - application
        - infrastructure
        outputRefs:
        - default-lokistack
  10. Verify that logs are visible in the Log section of the Observe tab in the OpenShift web console.

2.3. Upgrading to Logging 6.0

Logging v6.0 is a significant upgrade from previous releases, achieving several longstanding goals of Cluster Logging:

  • Introduction of distinct operators to manage logging components (e.g., collectors, storage, visualization).
  • Removal of support for managed log storage and visualization based on Elastic products (i.e., Elasticsearch, Kibana).
  • Deprecation of the Fluentd log collector implementation.
  • Removal of support for ClusterLogging.logging.openshift.io and ClusterLogForwarder.logging.openshift.io resources.
Note

The cluster-logging-operator does not provide an automated upgrade process.

Given the various configurations for log collection, forwarding, and storage, no automated upgrade is provided by the cluster-logging-operator. This documentation assists administrators in converting existing ClusterLogging.logging.openshift.io and ClusterLogForwarder.logging.openshift.io specifications to the new API. Examples of migrated ClusterLogForwarder.observability.openshift.io resources for common use cases are included.

2.3.1. Using the oc explain command

The oc explain command is an essential tool in the OpenShift CLI oc that provides detailed descriptions of the fields within Custom Resources (CRs). This command is invaluable for administrators and developers who are configuring or troubleshooting resources in an OpenShift cluster.

2.3.1.1. Resource Descriptions

oc explain offers in-depth explanations of all fields associated with a specific object. This includes standard resources like pods and services, as well as more complex entities like statefulsets and custom resources defined by Operators.

To view the documentation for the outputs field of the ClusterLogForwarder custom resource, you can use:

$ oc explain clusterlogforwarders.observability.openshift.io.spec.outputs
Note

In place of clusterlogforwarder the short form obsclf can be used.

This will display detailed information about these fields, including their types, default values, and any associated sub-fields.

2.3.1.2. Hierarchical Structure

The command displays the structure of resource fields in a hierarchical format, clarifying the relationships between different configuration options.

For instance, here’s how you can drill down into the storage configuration for a LokiStack custom resource:

$ oc explain lokistacks.loki.grafana.com
$ oc explain lokistacks.loki.grafana.com.spec
$ oc explain lokistacks.loki.grafana.com.spec.storage
$ oc explain lokistacks.loki.grafana.com.spec.storage.schemas

Each command reveals a deeper level of the resource specification, making the structure clear.

2.3.1.3. Type Information

oc explain also indicates the type of each field (such as string, integer, or boolean), allowing you to verify that resource definitions use the correct data types.

For example:

$ oc explain lokistacks.loki.grafana.com.spec.size

This will show that size should be defined using an integer value.

2.3.1.4. Default Values

When applicable, the command shows the default values for fields, providing insights into what values will be used if none are explicitly specified.

Again using lokistacks.loki.grafana.com as an example:

$ oc explain lokistacks.spec.template.distributor.replicas

Example output

GROUP:      loki.grafana.com
KIND:       LokiStack
VERSION:    v1

FIELD: replicas <integer>

DESCRIPTION:
    Replicas defines the number of replica pods of the component.

2.3.2. Log Storage

The only managed log storage solution available in this release is a Lokistack, managed by the loki-operator. This solution, previously available as the preferred alternative to the managed Elasticsearch offering, remains unchanged in its deployment process.

Important

To continue using an existing Red Hat managed Elasticsearch or Kibana deployment provided by the elasticsearch-operator, remove the owner references from the Elasticsearch resource named elasticsearch, and the Kibana resource named kibana in the openshift-logging namespace before removing the ClusterLogging resource named instance in the same namespace.

  1. Temporarily set ClusterLogging to state Unmanaged

    $ oc -n openshift-logging patch clusterlogging/instance -p '{"spec":{"managementState": "Unmanaged"}}' --type=merge
  2. Remove ClusterLogging ownerReferences from the Elasticsearch resource

    The following command ensures that ClusterLogging no longer owns the Elasticsearch resource. Updates to the ClusterLogging resource’s logStore field will no longer affect the Elasticsearch resource.

    $ oc -n openshift-logging patch elasticsearch/elasticsearch -p '{"metadata":{"ownerReferences": []}}' --type=merge
  3. Remove ClusterLogging ownerReferences from the Kibana resource

    The following command ensures that ClusterLogging no longer owns the Kibana resource. Updates to the ClusterLogging resource’s visualization field will no longer affect the Kibana resource.

    $ oc -n openshift-logging patch kibana/kibana -p '{"metadata":{"ownerReferences": []}}' --type=merge
  4. Set ClusterLogging to state Managed
$ oc -n openshift-logging patch clusterlogging/instance -p '{"spec":{"managementState": "Managed"}}' --type=merge

2.3.3. Log Visualization

The OpenShift console UI plugin for log visualization has been moved to the cluster-observability-operator from the cluster-logging-operator.

2.3.4. Log Collection and Forwarding

Log collection and forwarding configurations are now specified under the new API, part of the observability.openshift.io API group. The following sections highlight the differences from the old API resources.

Note

Vector is the only supported collector implementation.

2.3.5. Management, Resource Allocation, and Workload Scheduling

Configuration for management state (e.g., Managed, Unmanaged), resource requests and limits, tolerations, and node selection is now part of the new ClusterLogForwarder API.

Previous Configuration

apiVersion: "logging.openshift.io/v1"
kind: "ClusterLogging"
spec:
  managementState: "Managed"
  collection:
    resources:
      limits: {}
      requests: {}
    nodeSelector: {}
    tolerations: {}

Current Configuration

apiVersion: "observability.openshift.io/v1"
kind: ClusterLogForwarder
spec:
  managementState: Managed
  collector:
    resources:
      limits: {}
      requests: {}
    nodeSelector: {}
    tolerations: {}

2.3.6. Input Specifications

The input specification is an optional part of the ClusterLogForwarder specification. Administrators can continue to use the predefined values of application, infrastructure, and audit to collect these sources.

2.3.6.1. Application Inputs

Namespace and container inclusions and exclusions have been consolidated into a single field.

5.9 Application Input with Namespace and Container Includes and Excludes

apiVersion: "logging.openshift.io/v1"
kind: ClusterLogForwarder
spec:
  inputs:
   - name: application-logs
     type: application
     application:
       namespaces:
       - foo
       - bar
       includes:
       - namespace: my-important
         container: main
       excludes:
       - container: too-verbose

6.0 Application Input with Namespace and Container Includes and Excludes

apiVersion: "observability.openshift.io/v1"
kind: ClusterLogForwarder
spec:
  inputs:
   - name: application-logs
     type: application
     application:
       includes:
       - namespace: foo
       - namespace: bar
       - namespace: my-important
         container: main
       excludes:
       - container: too-verbose

Note

application, infrastructure, and audit are reserved words and cannot be used as names when defining an input.

2.3.6.2. Input Receivers

Changes to input receivers include:

  • Explicit configuration of the type at the receiver level.
  • Port settings moved to the receiver level.

5.9 Input Receivers

apiVersion: "logging.openshift.io/v1"
kind: ClusterLogForwarder
spec:
  inputs:
  - name: an-http
    receiver:
      http:
        port: 8443
        format: kubeAPIAudit
  - name: a-syslog
    receiver:
      type: syslog
      syslog:
        port: 9442

6.0 Input Receivers

apiVersion: "observability.openshift.io/v1"
kind: ClusterLogForwarder
spec:
  inputs:
  - name: an-http
    type: receiver
    receiver:
      type: http
      port: 8443
      http:
        format: kubeAPIAudit
  - name: a-syslog
    type: receiver
    receiver:
      type: syslog
      port: 9442

2.3.7. Output Specifications

High-level changes to output specifications include:

  • URL settings moved to each output type specification.
  • Tuning parameters moved to each output type specification.
  • Separation of TLS configuration from authentication.
  • Explicit configuration of keys and secret/configmap for TLS and authentication.

2.3.8. Secrets and TLS Configuration

Secrets and TLS configurations are now separated into authentication and TLS configuration for each output. They must be explicitly defined in the specification rather than relying on administrators to define secrets with recognized keys. Upgrading TLS and authorization configurations requires administrators to understand previously recognized keys to continue using existing secrets. Examples in the following sections provide details on how to configure ClusterLogForwarder secrets to forward to existing Red Hat managed log storage solutions.

2.3.9. Red Hat Managed Elasticsearch

v5.9 Forwarding to Red Hat Managed Elasticsearch

apiVersion: logging.openshift.io/v1
kind: ClusterLogging
metadata:
  name: instance
  namespace: openshift-logging
spec:
  logStore:
    type: elasticsearch

v6.0 Forwarding to Red Hat Managed Elasticsearch

apiVersion: observability.openshift.io/v1
kind: ClusterLogForwarder
metadata:
  name: instance
  namespace: openshift-logging
spec:
  outputs:
  - name: default-elasticsearch
    type: elasticsearch
    elasticsearch:
      url: https://elasticsearch:9200
      version: 6
      index: <log_type>-write-{+yyyy.MM.dd}
    tls:
      ca:
        key: ca-bundle.crt
        secretName: collector
      certificate:
        key: tls.crt
        secretName: collector
      key:
        key: tls.key
        secretName: collector
  pipelines:
  - outputRefs:
    - default-elasticsearch
  - inputRefs:
    - application
    - infrastructure

Note

In this example, application logs are written to the application-write alias/index instead of app-write.

2.3.10. Red Hat Managed LokiStack

v5.9 Forwarding to Red Hat Managed LokiStack

apiVersion: logging.openshift.io/v1
kind: ClusterLogging
metadata:
  name: instance
  namespace: openshift-logging
spec:
  logStore:
    type: lokistack
    lokistack:
      name: lokistack-dev

v6.0 Forwarding to Red Hat Managed LokiStack

apiVersion: observability.openshift.io/v1
kind: ClusterLogForwarder
metadata:
  name: instance
  namespace: openshift-logging
spec:
  outputs:
  - name: default-lokistack
    type: lokiStack
    lokiStack:
      target:
        name: lokistack-dev
        namespace: openshift-logging
      authentication:
        token:
          from: serviceAccount
    tls:
      ca:
        key: service-ca.crt
        configMapName: openshift-service-ca.crt
  pipelines:
  - outputRefs:
    - default-lokistack
  - inputRefs:
    - application
    - infrastructure

2.3.11. Filters and Pipeline Configuration

Pipeline configurations now define only the routing of input sources to their output destinations, with any required transformations configured separately as filters. All attributes of pipelines from previous releases have been converted to filters in this release. Individual filters are defined in the filters specification and referenced by a pipeline.

5.9 Filters

apiVersion: logging.openshift.io/v1
kind: ClusterLogForwarder
spec:
  pipelines:
   - name: application-logs
     parse: json
     labels:
       foo: bar
     detectMultilineErrors: true

6.0 Filter Configuration

apiVersion: observability.openshift.io/v1
kind: ClusterLogForwarder
spec:
  filters:
  - name: detectexception
    type: detectMultilineException
  - name: parse-json
    type: parse
  - name: labels
    type: openShiftLabels
    openShiftLabels:
      foo: bar
  pipelines:
  - name: application-logs
    filterRefs:
    - detectexception
    - labels
    - parse-json

2.3.12. Validation and Status

Most validations are enforced when a resource is created or updated, providing immediate feedback. This is a departure from previous releases, where validation occurred post-creation and required inspecting the resource status. Some validation still occurs post-creation for cases where it is not possible to validate at creation or update time.

Instances of the ClusterLogForwarder.observability.openshift.io must satisfy the following conditions before the operator will deploy the log collector: Authorized, Valid, Ready. An example of these conditions is:

6.0 Status Conditions

apiVersion: observability.openshift.io/v1
kind: ClusterLogForwarder
status:
  conditions:
  - lastTransitionTime: "2024-09-13T03:28:44Z"
    message: 'permitted to collect log types: [application]'
    reason: ClusterRolesExist
    status: "True"
    type: observability.openshift.io/Authorized
  - lastTransitionTime: "2024-09-13T12:16:45Z"
    message: ""
    reason: ValidationSuccess
    status: "True"
    type: observability.openshift.io/Valid
  - lastTransitionTime: "2024-09-13T12:16:45Z"
    message: ""
    reason: ReconciliationComplete
    status: "True"
    type: Ready
  filterConditions:
  - lastTransitionTime: "2024-09-13T13:02:59Z"
    message: filter "detectexception" is valid
    reason: ValidationSuccess
    status: "True"
    type: observability.openshift.io/ValidFilter-detectexception
  - lastTransitionTime: "2024-09-13T13:02:59Z"
    message: filter "parse-json" is valid
    reason: ValidationSuccess
    status: "True"
    type: observability.openshift.io/ValidFilter-parse-json
  inputConditions:
  - lastTransitionTime: "2024-09-13T12:23:03Z"
    message: input "application1" is valid
    reason: ValidationSuccess
    status: "True"
    type: observability.openshift.io/ValidInput-application1
  outputConditions:
  - lastTransitionTime: "2024-09-13T13:02:59Z"
    message: output "default-lokistack-application1" is valid
    reason: ValidationSuccess
    status: "True"
    type: observability.openshift.io/ValidOutput-default-lokistack-application1
  pipelineConditions:
  - lastTransitionTime: "2024-09-13T03:28:44Z"
    message: pipeline "default-before" is valid
    reason: ValidationSuccess
    status: "True"
    type: observability.openshift.io/ValidPipeline-default-before

Note

Conditions that are satisfied and applicable have a "status" value of "True". Conditions with a status other than "True" provide a reason and a message explaining the issue.

2.4. Configuring log forwarding

The ClusterLogForwarder (CLF) allows users to configure forwarding of logs to various destinations. It provides a flexible way to select log messages from different sources, send them through a pipeline that can transform or filter them, and forward them to one or more outputs.

Key Functions of the ClusterLogForwarder

  • Selects log messages using inputs
  • Forwards logs to external destinations using outputs
  • Filters, transforms, and drops log messages using filters
  • Defines log forwarding pipelines connecting inputs, filters and outputs

2.4.1. Setting up log collection

This release of Cluster Logging requires administrators to explicitly grant log collection permissions to the service account associated with ClusterLogForwarder. This was not required in previous releases for the legacy logging scenario consisting of a ClusterLogging and, optionally, a ClusterLogForwarder.logging.openshift.io resource.

The Red Hat OpenShift Logging Operator provides collect-audit-logs, collect-application-logs, and collect-infrastructure-logs cluster roles, which enable the collector to collect audit logs, application logs, and infrastructure logs respectively.

Setup log collection by binding the required cluster roles to your service account.

2.4.1.1. Legacy service accounts

To use the existing legacy service account logcollector, create the following ClusterRoleBinding:

$ oc adm policy add-cluster-role-to-user collect-application-logs system:serviceaccount:openshift-logging:logcollector
$ oc adm policy add-cluster-role-to-user collect-infrastructure-logs system:serviceaccount:openshift-logging:logcollector

Additionally, create the following ClusterRoleBinding if collecting audit logs:

$ oc adm policy add-cluster-role-to-user collect-audit-logs system:serviceaccount:openshift-logging:logcollector
2.4.1.2. Creating service accounts

Prerequisites

  • The Red Hat OpenShift Logging Operator is installed in the openshift-logging namespace.
  • You have administrator permissions.

Procedure

  1. Create a service account for the collector. If you want to write logs to storage that requires a token for authentication, you must include a token in the service account.
  2. Bind the appropriate cluster roles to the service account:

    Example binding command

    $ oc adm policy add-cluster-role-to-user <cluster_role_name> system:serviceaccount:<namespace_name>:<service_account_name>

2.4.1.2.1. Cluster Role Binding for your Service Account

The role_binding.yaml file binds the ClusterLogging operator’s ClusterRole to a specific ServiceAccount, allowing it to manage Kubernetes resources cluster-wide.

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
  name: manager-rolebinding
roleRef:                                           1
  apiGroup: rbac.authorization.k8s.io              2
  kind: ClusterRole                                3
  name: cluster-logging-operator                   4
subjects:                                          5
  - kind: ServiceAccount                           6
    name: cluster-logging-operator                 7
    namespace: openshift-logging                   8
1
roleRef: References the ClusterRole to which the binding applies.
2
apiGroup: Indicates the RBAC API group, specifying that the ClusterRole is part of Kubernetes' RBAC system.
3
kind: Specifies that the referenced role is a ClusterRole, which applies cluster-wide.
4
name: The name of the ClusterRole being bound to the ServiceAccount, here cluster-logging-operator.
5
subjects: Defines the entities (users or service accounts) that are being granted the permissions from the ClusterRole.
6
kind: Specifies that the subject is a ServiceAccount.
7
Name: The name of the ServiceAccount being granted the permissions.
8
namespace: Indicates the namespace where the ServiceAccount is located.
2.4.1.2.2. Writing application logs

The write-application-logs-clusterrole.yaml file defines a ClusterRole that grants permissions to write application logs to the Loki logging application.

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
  name: cluster-logging-write-application-logs
rules:                                              1
  - apiGroups:                                      2
      - loki.grafana.com                            3
    resources:                                      4
      - application                                 5
    resourceNames:                                  6
      - logs                                        7
    verbs:                                          8
      - create                                      9
Annotations
<1> rules: Specifies the permissions granted by this ClusterRole.
<2> apiGroups: Refers to the API group loki.grafana.com, which relates to the Loki logging system.
<3> loki.grafana.com: The API group for managing Loki-related resources.
<4> resources: The resource type that the ClusterRole grants permission to interact with.
<5> application: Refers to the application resources within the Loki logging system.
<6> resourceNames: Specifies the names of resources that this role can manage.
<7> logs: Refers to the log resources that can be created.
<8> verbs: The actions allowed on the resources.
<9> create: Grants permission to create new logs in the Loki system.
2.4.1.2.3. Writing audit logs

The write-audit-logs-clusterrole.yaml file defines a ClusterRole that grants permissions to create audit logs in the Loki logging system.

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
  name: cluster-logging-write-audit-logs
rules:                                              1
  - apiGroups:                                      2
      - loki.grafana.com                            3
    resources:                                      4
      - audit                                       5
    resourceNames:                                  6
      - logs                                        7
    verbs:                                          8
      - create                                      9
1 1
rules: Defines the permissions granted by this ClusterRole.
2 2
apiGroups: Specifies the API group loki.grafana.com.
3 3
loki.grafana.com: The API group responsible for Loki logging resources.
4 4
resources: Refers to the resource type this role manages, in this case, audit.
5 5
audit: Specifies that the role manages audit logs within Loki.
6 6
resourceNames: Defines the specific resources that the role can access.
7 7
logs: Refers to the logs that can be managed under this role.
8 8
verbs: The actions allowed on the resources.
9 9
create: Grants permission to create new audit logs.
2.4.1.2.4. Writing infrastructure logs

The write-infrastructure-logs-clusterrole.yaml file defines a ClusterRole that grants permission to create infrastructure logs in the Loki logging system.

Sample YAML

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
  name: cluster-logging-write-infrastructure-logs
rules:                                              1
  - apiGroups:                                      2
      - loki.grafana.com                            3
    resources:                                      4
      - infrastructure                              5
    resourceNames:                                  6
      - logs                                        7
    verbs:                                          8
      - create                                      9

1
rules: Specifies the permissions this ClusterRole grants.
2
apiGroups: Specifies the API group for Loki-related resources.
3
loki.grafana.com: The API group managing the Loki logging system.
4
resources: Defines the resource type that this role can interact with.
5
infrastructure: Refers to infrastructure-related resources that this role manages.
6
resourceNames: Specifies the names of resources this role can manage.
7
logs: Refers to the log resources related to infrastructure.
8
verbs: The actions permitted by this role.
9
create: Grants permission to create infrastructure logs in the Loki system.
2.4.1.2.5. ClusterLogForwarder editor role

The clusterlogforwarder-editor-role.yaml file defines a ClusterRole that allows users to manage ClusterLogForwarders in OpenShift.

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
  name: clusterlogforwarder-editor-role
rules:                                              1
  - apiGroups:                                      2
      - observability.openshift.io                  3
    resources:                                      4
      - clusterlogforwarders                        5
    verbs:                                          6
      - create                                      7
      - delete                                      8
      - get                                         9
      - list                                        10
      - patch                                       11
      - update                                      12
      - watch                                       13
1
rules: Specifies the permissions this ClusterRole grants.
2
apiGroups: Refers to the OpenShift-specific API group
3
obervability.openshift.io: The API group for managing observability resources, like logging.
4
resources: Specifies the resources this role can manage.
5
clusterlogforwarders: Refers to the log forwarding resources in OpenShift.
6
verbs: Specifies the actions allowed on the ClusterLogForwarders.
7
create: Grants permission to create new ClusterLogForwarders.
8
delete: Grants permission to delete existing ClusterLogForwarders.
9
get: Grants permission to retrieve information about specific ClusterLogForwarders.
10
list: Allows listing all ClusterLogForwarders.
11
patch: Grants permission to partially modify ClusterLogForwarders.
12
update: Grants permission to update existing ClusterLogForwarders.
13
watch: Grants permission to monitor changes to ClusterLogForwarders.

2.4.2. Modifying log level in collector

To modify the log level in the collector, you can set the observability.openshift.io/log-level annotation to trace, debug, info, warn, error, and off.

Example log level annotation

apiVersion: observability.openshift.io/v1
kind: ClusterLogForwarder
metadata:
  name: collector
  annotations:
    observability.openshift.io/log-level: debug
# ...

2.4.3. Managing the Operator

The ClusterLogForwarder resource has a managementState field that controls whether the operator actively manages its resources or leaves them Unmanaged:

Managed
(default) The operator will drive the logging resources to match the desired state in the CLF spec.
Unmanaged
The operator will not take any action related to the logging components.

This allows administrators to temporarily pause log forwarding by setting managementState to Unmanaged.

2.4.4. Structure of the ClusterLogForwarder

The CLF has a spec section that contains the following key components:

Inputs
Select log messages to be forwarded. Built-in input types application, infrastructure and audit forward logs from different parts of the cluster. You can also define custom inputs.
Outputs
Define destinations to forward logs to. Each output has a unique name and type-specific configuration.
Pipelines
Define the path logs take from inputs, through filters, to outputs. Pipelines have a unique name and consist of a list of input, output and filter names.
Filters
Transform or drop log messages in the pipeline. Users can define filters that match certain log fields and drop or modify the messages. Filters are applied in the order specified in the pipeline.
2.4.4.1. Inputs

Inputs are configured in an array under spec.inputs. There are three built-in input types:

application
Selects logs from all application containers, excluding those in infrastructure namespaces such as default, openshift, or any namespace with the kube- or openshift- prefix.
infrastructure
Selects logs from infrastructure components running in default and openshift namespaces and node logs.
audit
Selects logs from the OpenShift API server audit logs, Kubernetes API server audit logs, ovn audit logs, and node audit logs from auditd.

Users can define custom inputs of type application that select logs from specific namespaces or using pod labels.

2.4.4.2. Outputs

Outputs are configured in an array under spec.outputs. Each output must have a unique name and a type. Supported types are:

azureMonitor
Forwards logs to Azure Monitor.
cloudwatch
Forwards logs to AWS CloudWatch.
elasticsearch
Forwards logs to an external Elasticsearch instance.
googleCloudLogging
Forwards logs to Google Cloud Logging.
http
Forwards logs to a generic HTTP endpoint.
kafka
Forwards logs to a Kafka broker.
loki
Forwards logs to a Loki logging backend.
lokistack
Forwards logs to the logging supported combination of Loki and web proxy with OpenShift Container Platform authentication integration. LokiStack’s proxy uses OpenShift Container Platform authentication to enforce multi-tenancy
otlp
Forwards logs using the OpenTelemetry Protocol.
splunk
Forwards logs to Splunk.
syslog
Forwards logs to an external syslog server.

Each output type has its own configuration fields.

2.4.4.3. Pipelines

Pipelines are configured in an array under spec.pipelines. Each pipeline must have a unique name and consists of:

inputRefs
Names of inputs whose logs should be forwarded to this pipeline.
outputRefs
Names of outputs to send logs to.
filterRefs
(optional) Names of filters to apply.

The order of filterRefs matters, as they are applied sequentially. Earlier filters can drop messages that will not be processed by later filters.

2.4.4.4. Filters

Filters are configured in an array under spec.filters. They can match incoming log messages based on the value of structured fields and modify or drop them.

Administrators can configure the following types of filters:

2.4.4.5. Enabling multi-line exception detection

Enables multi-line error detection of container logs.

Warning

Enabling this feature could have performance implications and may require additional computing resources or alternate logging solutions.

Log parsers often incorrectly identify separate lines of the same exception as separate exceptions. This leads to extra log entries and an incomplete or inaccurate view of the traced information.

Example java exception

java.lang.NullPointerException: Cannot invoke "String.toString()" because "<param1>" is null
    at testjava.Main.handle(Main.java:47)
    at testjava.Main.printMe(Main.java:19)
    at testjava.Main.main(Main.java:10)

  • To enable logging to detect multi-line exceptions and reassemble them into a single log entry, ensure that the ClusterLogForwarder Custom Resource (CR) contains a detectMultilineErrors field under the .spec.filters.

Example ClusterLogForwarder CR

apiVersion: "observability.openshift.io/v1"
kind: ClusterLogForwarder
metadata:
  name: <log_forwarder_name>
  namespace: <log_forwarder_namespace>
spec:
  serviceAccount:
    name: <service_account_name>
  filters:
  - name: <name>
    type: detectMultilineException
  pipelines:
    - inputRefs:
        - <input-name>
      name: <pipeline-name>
      filterRefs:
        - <filter-name>
      outputRefs:
        - <output-name>

2.4.4.5.1. Details

When log messages appear as a consecutive sequence forming an exception stack trace, they are combined into a single, unified log record. The first log message’s content is replaced with the concatenated content of all the message fields in the sequence.

The collector supports the following languages:

  • Java
  • JS
  • Ruby
  • Python
  • Golang
  • PHP
  • Dart
2.4.4.6. Configuring content filters to drop unwanted log records

When the drop filter is configured, the log collector evaluates log streams according to the filters before forwarding. The collector drops unwanted log records that match the specified configuration.

Procedure

  1. Add a configuration for a filter to the filters spec in the ClusterLogForwarder CR.

    The following example shows how to configure the ClusterLogForwarder CR to drop log records based on regular expressions:

    Example ClusterLogForwarder CR

    apiVersion: observability.openshift.io/v1
    kind: ClusterLogForwarder
    metadata:
    # ...
    spec:
      serviceAccount:
        name: <service_account_name>
      filters:
      - name: <filter_name>
        type: drop 1
        drop: 2
        - test: 3
          - field: .kubernetes.labels."foo-bar/baz" 4
            matches: .+ 5
          - field: .kubernetes.pod_name
            notMatches: "my-pod" 6
      pipelines:
      - name: <pipeline_name> 7
        filterRefs: ["<filter_name>"]
    # ...

    1
    Specifies the type of filter. The drop filter drops log records that match the filter configuration.
    2
    Specifies configuration options for applying the drop filter.
    3
    Specifies the configuration for tests that are used to evaluate whether a log record is dropped.
    • If all the conditions specified for a test are true, the test passes and the log record is dropped.
    • When multiple tests are specified for the drop filter configuration, if any of the tests pass, the record is dropped.
    • If there is an error evaluating a condition, for example, the field is missing from the log record being evaluated, that condition evaluates to false.
    4
    Specifies a dot-delimited field path, which is a path to a field in the log record. The path can contain alpha-numeric characters and underscores (a-zA-Z0-9_), for example, .kubernetes.namespace_name. If segments contain characters outside of this range, the segment must be in quotes, for example, .kubernetes.labels."foo.bar-bar/baz". You can include multiple field paths in a single test configuration, but they must all evaluate to true for the test to pass and the drop filter to be applied.
    5
    Specifies a regular expression. If log records match this regular expression, they are dropped. You can set either the matches or notMatches condition for a single field path, but not both.
    6
    Specifies a regular expression. If log records do not match this regular expression, they are dropped. You can set either the matches or notMatches condition for a single field path, but not both.
    7
    Specifies the pipeline that the drop filter is applied to.
  2. Apply the ClusterLogForwarder CR by running the following command:

    $ oc apply -f <filename>.yaml

Additional examples

The following additional example shows how you can configure the drop filter to only keep higher priority log records:

apiVersion: observability.openshift.io/v1
kind: ClusterLogForwarder
metadata:
# ...
spec:
  serviceAccount:
    name: <service_account_name>
  filters:
  - name: important
    type: drop
    drop:
    - test:
      - field: .message
        notMatches: "(?i)critical|error"
      - field: .level
        matches: "info|warning"
# ...

In addition to including multiple field paths in a single test configuration, you can also include additional tests that are treated as OR checks. In the following example, records are dropped if either test configuration evaluates to true. However, for the second test configuration, both field specs must be true for it to be evaluated to true:

apiVersion: observability.openshift.io/v1
kind: ClusterLogForwarder
metadata:
# ...
spec:
  serviceAccount:
    name: <service_account_name>
  filters:
  - name: important
    type: drop
    drop:
    - test:
      - field: .kubernetes.namespace_name
        matches: "^open"
    - test:
      - field: .log_type
        matches: "application"
      - field: .kubernetes.pod_name
        notMatches: "my-pod"
# ...
2.4.4.7. Overview of API audit filter

OpenShift API servers generate audit events for each API call, detailing the request, response, and the identity of the requester, leading to large volumes of data. The API Audit filter uses rules to enable the exclusion of non-essential events and the reduction of event size, facilitating a more manageable audit trail. Rules are checked in order, and checking stops at the first match. The amount of data that is included in an event is determined by the value of the level field:

  • None: The event is dropped.
  • Metadata: Audit metadata is included, request and response bodies are removed.
  • Request: Audit metadata and the request body are included, the response body is removed.
  • RequestResponse: All data is included: metadata, request body and response body. The response body can be very large. For example, oc get pods -A generates a response body containing the YAML description of every pod in the cluster.

The ClusterLogForwarder custom resource (CR) uses the same format as the standard Kubernetes audit policy, while providing the following additional functions:

Wildcards
Names of users, groups, namespaces, and resources can have a leading or trailing * asterisk character. For example, the namespace openshift-\* matches openshift-apiserver or openshift-authentication. Resource \*/status matches Pod/status or Deployment/status.
Default Rules

Events that do not match any rule in the policy are filtered as follows:

  • Read-only system events such as get, list, and watch are dropped.
  • Service account write events that occur within the same namespace as the service account are dropped.
  • All other events are forwarded, subject to any configured rate limits.

To disable these defaults, either end your rules list with a rule that has only a level field or add an empty rule.

Omit Response Codes
A list of integer status codes to omit. You can drop events based on the HTTP status code in the response by using the OmitResponseCodes field, which lists HTTP status codes for which no events are created. The default value is [404, 409, 422, 429]. If the value is an empty list, [], then no status codes are omitted.

The ClusterLogForwarder CR audit policy acts in addition to the OpenShift Container Platform audit policy. The ClusterLogForwarder CR audit filter changes what the log collector forwards and provides the ability to filter by verb, user, group, namespace, or resource. You can create multiple filters to send different summaries of the same audit stream to different places. For example, you can send a detailed stream to the local cluster log store and a less detailed stream to a remote site.

Note

You must have a cluster role collect-audit-logs to collect the audit logs. The following example provided is intended to illustrate the range of rules possible in an audit policy and is not a recommended configuration.

Example audit policy

apiVersion: observability.openshift.io/v1
kind: ClusterLogForwarder
metadata:
  name: <log_forwarder_name>
  namespace: <log_forwarder_namespace>
spec:
  serviceAccount:
    name: <service_account_name>
  pipelines:
    - name: my-pipeline
      inputRefs: audit 1
      filterRefs: my-policy 2
  filters:
    - name: my-policy
      type: kubeAPIAudit
      kubeAPIAudit:
        # Don't generate audit events for all requests in RequestReceived stage.
        omitStages:
          - "RequestReceived"

        rules:
          # Log pod changes at RequestResponse level
          - level: RequestResponse
            resources:
            - group: ""
              resources: ["pods"]

          # Log "pods/log", "pods/status" at Metadata level
          - level: Metadata
            resources:
            - group: ""
              resources: ["pods/log", "pods/status"]

          # Don't log requests to a configmap called "controller-leader"
          - level: None
            resources:
            - group: ""
              resources: ["configmaps"]
              resourceNames: ["controller-leader"]

          # Don't log watch requests by the "system:kube-proxy" on endpoints or services
          - level: None
            users: ["system:kube-proxy"]
            verbs: ["watch"]
            resources:
            - group: "" # core API group
              resources: ["endpoints", "services"]

          # Don't log authenticated requests to certain non-resource URL paths.
          - level: None
            userGroups: ["system:authenticated"]
            nonResourceURLs:
            - "/api*" # Wildcard matching.
            - "/version"

          # Log the request body of configmap changes in kube-system.
          - level: Request
            resources:
            - group: "" # core API group
              resources: ["configmaps"]
            # This rule only applies to resources in the "kube-system" namespace.
            # The empty string "" can be used to select non-namespaced resources.
            namespaces: ["kube-system"]

          # Log configmap and secret changes in all other namespaces at the Metadata level.
          - level: Metadata
            resources:
            - group: "" # core API group
              resources: ["secrets", "configmaps"]

          # Log all other resources in core and extensions at the Request level.
          - level: Request
            resources:
            - group: "" # core API group
            - group: "extensions" # Version of group should NOT be included.

          # A catch-all rule to log all other requests at the Metadata level.
          - level: Metadata

1
The log types that are collected. The value for this field can be audit for audit logs, application for application logs, infrastructure for infrastructure logs, or a named input that has been defined for your application.
2
The name of your audit policy.
2.4.4.8. Filtering application logs at input by including the label expressions or a matching label key and values

You can include the application logs based on the label expressions or a matching label key and its values by using the input selector.

Procedure

  1. Add a configuration for a filter to the input spec in the ClusterLogForwarder CR.

    The following example shows how to configure the ClusterLogForwarder CR to include logs based on label expressions or matched label key/values:

    Example ClusterLogForwarder CR

    apiVersion: observability.openshift.io/v1
    kind: ClusterLogForwarder
    # ...
    spec:
      serviceAccount:
        name: <service_account_name>
      inputs:
        - name: mylogs
          application:
            selector:
              matchExpressions:
              - key: env 1
                operator: In 2
                values: ["prod", "qa"] 3
              - key: zone
                operator: NotIn
                values: ["east", "west"]
              matchLabels: 4
                app: one
                name: app1
          type: application
    # ...

    1
    Specifies the label key to match.
    2
    Specifies the operator. Valid values include: In, NotIn, Exists, and DoesNotExist.
    3
    Specifies an array of string values. If the operator value is either Exists or DoesNotExist, the value array must be empty.
    4
    Specifies an exact key or value mapping.
  2. Apply the ClusterLogForwarder CR by running the following command:

    $ oc apply -f <filename>.yaml
2.4.4.9. Configuring content filters to prune log records

When the prune filter is configured, the log collector evaluates log streams according to the filters before forwarding. The collector prunes log records by removing low value fields such as pod annotations.

Procedure

  1. Add a configuration for a filter to the prune spec in the ClusterLogForwarder CR.

    The following example shows how to configure the ClusterLogForwarder CR to prune log records based on field paths:

    Important

    If both are specified, records are pruned based on the notIn array first, which takes precedence over the in array. After records have been pruned by using the notIn array, they are then pruned by using the in array.

    Example ClusterLogForwarder CR

    apiVersion: observability.openshift.io/v1
    kind: ClusterLogForwarder
    metadata:
    # ...
    spec:
      serviceAccount:
        name: <service_account_name>
      filters:
      - name: <filter_name>
        type: prune 1
        prune: 2
          in: [.kubernetes.annotations, .kubernetes.namespace_id] 3
          notIn: [.kubernetes,.log_type,.message,."@timestamp"] 4
      pipelines:
      - name: <pipeline_name> 5
        filterRefs: ["<filter_name>"]
    # ...

    1
    Specify the type of filter. The prune filter prunes log records by configured fields.
    2
    Specify configuration options for applying the prune filter. The in and notIn fields are specified as arrays of dot-delimited field paths, which are paths to fields in log records. These paths can contain alpha-numeric characters and underscores (a-zA-Z0-9_), for example, .kubernetes.namespace_name. If segments contain characters outside of this range, the segment must be in quotes, for example, .kubernetes.labels."foo.bar-bar/baz".
    3
    Optional: Any fields that are specified in this array are removed from the log record.
    4
    Optional: Any fields that are not specified in this array are removed from the log record.
    5
    Specify the pipeline that the prune filter is applied to.
    Note

    The filters exempts the log_type, .log_source, and .message fields.

  2. Apply the ClusterLogForwarder CR by running the following command:

    $ oc apply -f <filename>.yaml

2.4.5. Filtering the audit and infrastructure log inputs by source

You can define the list of audit and infrastructure sources to collect the logs by using the input selector.

Procedure

  1. Add a configuration to define the audit and infrastructure sources in the ClusterLogForwarder CR.

    The following example shows how to configure the ClusterLogForwarder CR to define audit and infrastructure sources:

    Example ClusterLogForwarder CR

    apiVersion: observability.openshift.io/v1
    kind: ClusterLogForwarder
    # ...
    spec:
      serviceAccount:
        name: <service_account_name>
      inputs:
        - name: mylogs1
          type: infrastructure
          infrastructure:
            sources: 1
              - node
        - name: mylogs2
          type: audit
          audit:
            sources: 2
              - kubeAPI
              - openshiftAPI
              - ovn
    # ...

    1
    Specifies the list of infrastructure sources to collect. The valid sources include:
    • node: Journal log from the node
    • container: Logs from the workloads deployed in the namespaces
    2
    Specifies the list of audit sources to collect. The valid sources include:
    • kubeAPI: Logs from the Kubernetes API servers
    • openshiftAPI: Logs from the OpenShift API servers
    • auditd: Logs from a node auditd service
    • ovn: Logs from an open virtual network service
  2. Apply the ClusterLogForwarder CR by running the following command:

    $ oc apply -f <filename>.yaml

2.4.6. Filtering application logs at input by including or excluding the namespace or container name

You can include or exclude the application logs based on the namespace and container name by using the input selector.

Procedure

  1. Add a configuration to include or exclude the namespace and container names in the ClusterLogForwarder CR.

    The following example shows how to configure the ClusterLogForwarder CR to include or exclude namespaces and container names:

    Example ClusterLogForwarder CR

    apiVersion: observability.openshift.io/v1
    kind: ClusterLogForwarder
    # ...
    spec:
      serviceAccount:
        name: <service_account_name>
      inputs:
        - name: mylogs
          application:
            includes:
              - namespace: "my-project" 1
                container: "my-container" 2
            excludes:
              - container: "other-container*" 3
                namespace: "other-namespace" 4
    # ...

    1
    Specifies that the logs are only collected from these namespaces.
    2
    Specifies that the logs are only collected from these containers.
    3
    Specifies the pattern of namespaces to ignore when collecting the logs.
    4
    Specifies the set of containers to ignore when collecting the logs.
    Note

    The excludes field takes precedence over the includes field.

  2. Apply the ClusterLogForwarder CR by running the following command:

    $ oc apply -f <filename>.yaml

2.5. Storing logs with LokiStack

You can configure a LokiStack CR to store application, audit, and infrastructure-related logs.

2.5.1. Prerequisites

  • You have installed the Loki Operator by using the CLI or web console.
  • You have a serviceAccount in the same namespace in which you create the ClusterLogForwarder.
  • The serviceAccount is assigned collect-audit-logs, collect-application-logs, and collect-infrastructure-logs cluster roles.
2.5.1.1. Core Setup and Configuration

Role-based access controls, basic monitoring, and pod placement to deploy Loki.

2.5.2. Authorizing LokiStack rules RBAC permissions

Administrators can allow users to create and manage their own alerting and recording rules by binding cluster roles to usernames. Cluster roles are defined as ClusterRole objects that contain necessary role-based access control (RBAC) permissions for users.

The following cluster roles for alerting and recording rules are available for LokiStack:

Rule nameDescription

alertingrules.loki.grafana.com-v1-admin

Users with this role have administrative-level access to manage alerting rules. This cluster role grants permissions to create, read, update, delete, list, and watch AlertingRule resources within the loki.grafana.com/v1 API group.

alertingrules.loki.grafana.com-v1-crdview

Users with this role can view the definitions of Custom Resource Definitions (CRDs) related to AlertingRule resources within the loki.grafana.com/v1 API group, but do not have permissions for modifying or managing these resources.

alertingrules.loki.grafana.com-v1-edit

Users with this role have permission to create, update, and delete AlertingRule resources.

alertingrules.loki.grafana.com-v1-view

Users with this role can read AlertingRule resources within the loki.grafana.com/v1 API group. They can inspect configurations, labels, and annotations for existing alerting rules but cannot make any modifications to them.

recordingrules.loki.grafana.com-v1-admin

Users with this role have administrative-level access to manage recording rules. This cluster role grants permissions to create, read, update, delete, list, and watch RecordingRule resources within the loki.grafana.com/v1 API group.

recordingrules.loki.grafana.com-v1-crdview

Users with this role can view the definitions of Custom Resource Definitions (CRDs) related to RecordingRule resources within the loki.grafana.com/v1 API group, but do not have permissions for modifying or managing these resources.

recordingrules.loki.grafana.com-v1-edit

Users with this role have permission to create, update, and delete RecordingRule resources.

recordingrules.loki.grafana.com-v1-view

Users with this role can read RecordingRule resources within the loki.grafana.com/v1 API group. They can inspect configurations, labels, and annotations for existing alerting rules but cannot make any modifications to them.

2.5.2.1. Examples

To apply cluster roles for a user, you must bind an existing cluster role to a specific username.

Cluster roles can be cluster or namespace scoped, depending on which type of role binding you use. When a RoleBinding object is used, as when using the oc adm policy add-role-to-user command, the cluster role only applies to the specified namespace. When a ClusterRoleBinding object is used, as when using the oc adm policy add-cluster-role-to-user command, the cluster role applies to all namespaces in the cluster.

The following example command gives the specified user create, read, update and delete (CRUD) permissions for alerting rules in a specific namespace in the cluster:

Example cluster role binding command for alerting rule CRUD permissions in a specific namespace

$ oc adm policy add-role-to-user alertingrules.loki.grafana.com-v1-admin -n <namespace> <username>

The following command gives the specified user administrator permissions for alerting rules in all namespaces:

Example cluster role binding command for administrator permissions

$ oc adm policy add-cluster-role-to-user alertingrules.loki.grafana.com-v1-admin <username>

2.5.3. Creating a log-based alerting rule with Loki

The AlertingRule CR contains a set of specifications and webhook validation definitions to declare groups of alerting rules for a single LokiStack instance. In addition, the webhook validation definition provides support for rule validation conditions:

  • If an AlertingRule CR includes an invalid interval period, it is an invalid alerting rule
  • If an AlertingRule CR includes an invalid for period, it is an invalid alerting rule.
  • If an AlertingRule CR includes an invalid LogQL expr, it is an invalid alerting rule.
  • If an AlertingRule CR includes two groups with the same name, it is an invalid alerting rule.
  • If none of the above applies, an alerting rule is considered valid.
Table 2.2. AlertingRule definitions
Tenant typeValid namespaces for AlertingRule CRs

application

<your_application_namespace>

audit

openshift-logging

infrastructure

openshift-/*, kube-/\*, default

Procedure

  1. Create an AlertingRule custom resource (CR):

    Example infrastructure AlertingRule CR

      apiVersion: loki.grafana.com/v1
      kind: AlertingRule
      metadata:
        name: loki-operator-alerts
        namespace: openshift-operators-redhat 1
        labels: 2
          openshift.io/<label_name>: "true"
      spec:
        tenantID: "infrastructure" 3
        groups:
          - name: LokiOperatorHighReconciliationError
            rules:
              - alert: HighPercentageError
                expr: | 4
                  sum(rate({kubernetes_namespace_name="openshift-operators-redhat", kubernetes_pod_name=~"loki-operator-controller-manager.*"} |= "error" [1m])) by (job)
                    /
                  sum(rate({kubernetes_namespace_name="openshift-operators-redhat", kubernetes_pod_name=~"loki-operator-controller-manager.*"}[1m])) by (job)
                    > 0.01
                for: 10s
                labels:
                  severity: critical 5
                annotations:
                  summary: High Loki Operator Reconciliation Errors 6
                  description: High Loki Operator Reconciliation Errors 7

    1
    The namespace where this AlertingRule CR is created must have a label matching the LokiStack spec.rules.namespaceSelector definition.
    2
    The labels block must match the LokiStack spec.rules.selector definition.
    3
    AlertingRule CRs for infrastructure tenants are only supported in the openshift-*, kube-\*, or default namespaces.
    4
    The value for kubernetes_namespace_name: must match the value for metadata.namespace.
    5
    The value of this mandatory field must be critical, warning, or info.
    6
    This field is mandatory.
    7
    This field is mandatory.

    Example application AlertingRule CR

      apiVersion: loki.grafana.com/v1
      kind: AlertingRule
      metadata:
        name: app-user-workload
        namespace: app-ns 1
        labels: 2
          openshift.io/<label_name>: "true"
      spec:
        tenantID: "application"
        groups:
          - name: AppUserWorkloadHighError
            rules:
              - alert:
                expr: | 3
                  sum(rate({kubernetes_namespace_name="app-ns", kubernetes_pod_name=~"podName.*"} |= "error" [1m])) by (job)
                for: 10s
                labels:
                  severity: critical 4
                annotations:
                  summary:  5
                  description:  6

    1
    The namespace where this AlertingRule CR is created must have a label matching the LokiStack spec.rules.namespaceSelector definition.
    2
    The labels block must match the LokiStack spec.rules.selector definition.
    3
    Value for kubernetes_namespace_name: must match the value for metadata.namespace.
    4
    The value of this mandatory field must be critical, warning, or info.
    5
    The value of this mandatory field is a summary of the rule.
    6
    The value of this mandatory field is a detailed description of the rule.
  2. Apply the AlertingRule CR:

    $ oc apply -f <filename>.yaml

2.5.4. Configuring Loki to tolerate memberlist creation failure

In an OpenShift Container Platform cluster, administrators generally use a non-private IP network range. As a result, the LokiStack memberlist configuration fails because, by default, it only uses private IP networks.

As an administrator, you can select the pod network for the memberlist configuration. You can modify the LokiStack custom resource (CR) to use the podIP address in the hashRing spec. To configure the LokiStack CR, use the following command:

$ oc patch LokiStack logging-loki -n openshift-logging  --type=merge -p '{"spec": {"hashRing":{"memberlist":{"instanceAddrType":"podIP"},"type":"memberlist"}}}'

Example LokiStack to include podIP

apiVersion: loki.grafana.com/v1
kind: LokiStack
metadata:
  name: logging-loki
  namespace: openshift-logging
spec:
# ...
  hashRing:
    type: memberlist
    memberlist:
      instanceAddrType: podIP
# ...

2.5.5. Enabling stream-based retention with Loki

You can configure retention policies based on log streams. Rules for these may be set globally, per-tenant, or both. If you configure both, tenant rules apply before global rules.

Important

If there is no retention period defined on the s3 bucket or in the LokiStack custom resource (CR), then the logs are not pruned and they stay in the s3 bucket forever, which might fill up the s3 storage.

Note

Schema v13 is recommended.

Procedure

  1. Create a LokiStack CR:

    • Enable stream-based retention globally as shown in the following example:

      Example global stream-based retention for AWS

      apiVersion: loki.grafana.com/v1
      kind: LokiStack
      metadata:
        name: logging-loki
        namespace: openshift-logging
      spec:
        limits:
         global: 1
            retention: 2
              days: 20
              streams:
              - days: 4
                priority: 1
                selector: '{kubernetes_namespace_name=~"test.+"}' 3
              - days: 1
                priority: 1
                selector: '{log_type="infrastructure"}'
        managementState: Managed
        replicationFactor: 1
        size: 1x.small
        storage:
          schemas:
          - effectiveDate: "2020-10-11"
            version: v13
          secret:
            name: logging-loki-s3
            type: aws
        storageClassName: gp3-csi
        tenants:
          mode: openshift-logging

      1
      Sets retention policy for all log streams. Note: This field does not impact the retention period for stored logs in object storage.
      2
      Retention is enabled in the cluster when this block is added to the CR.
      3
      Contains the LogQL query used to define the log stream.spec: limits:
    • Enable stream-based retention per-tenant basis as shown in the following example:

      Example per-tenant stream-based retention for AWS

      apiVersion: loki.grafana.com/v1
      kind: LokiStack
      metadata:
        name: logging-loki
        namespace: openshift-logging
      spec:
        limits:
          global:
            retention:
              days: 20
          tenants: 1
            application:
              retention:
                days: 1
                streams:
                  - days: 4
                    selector: '{kubernetes_namespace_name=~"test.+"}' 2
            infrastructure:
              retention:
                days: 5
                streams:
                  - days: 1
                    selector: '{kubernetes_namespace_name=~"openshift-cluster.+"}'
        managementState: Managed
        replicationFactor: 1
        size: 1x.small
        storage:
          schemas:
          - effectiveDate: "2020-10-11"
            version: v13
          secret:
            name: logging-loki-s3
            type: aws
        storageClassName: gp3-csi
        tenants:
          mode: openshift-logging

      1
      Sets retention policy by tenant. Valid tenant types are application, audit, and infrastructure.
      2
      Contains the LogQL query used to define the log stream.
  2. Apply the LokiStack CR:

    $ oc apply -f <filename>.yaml
    Note

    This is not for managing the retention for stored logs. Global retention periods for stored logs to a supported maximum of 30 days is configured with your object storage.

2.5.6. Loki pod placement

You can control which nodes the Loki pods run on, and prevent other workloads from using those nodes, by using tolerations or node selectors on the pods.

You can apply tolerations to the log store pods with the LokiStack custom resource (CR) and apply taints to a node with the node specification. A taint on a node is a key:value pair that instructs the node to repel all pods that do not allow the taint. Using a specific key:value pair that is not on other pods ensures that only the log store pods can run on that node.

Example LokiStack with node selectors

apiVersion: loki.grafana.com/v1
kind: LokiStack
metadata:
  name: logging-loki
  namespace: openshift-logging
spec:
# ...
  template:
    compactor: 1
      nodeSelector:
        node-role.kubernetes.io/infra: "" 2
    distributor:
      nodeSelector:
        node-role.kubernetes.io/infra: ""
    gateway:
      nodeSelector:
        node-role.kubernetes.io/infra: ""
    indexGateway:
      nodeSelector:
        node-role.kubernetes.io/infra: ""
    ingester:
      nodeSelector:
        node-role.kubernetes.io/infra: ""
    querier:
      nodeSelector:
        node-role.kubernetes.io/infra: ""
    queryFrontend:
      nodeSelector:
        node-role.kubernetes.io/infra: ""
    ruler:
      nodeSelector:
        node-role.kubernetes.io/infra: ""
# ...

1
Specifies the component pod type that applies to the node selector.
2
Specifies the pods that are moved to nodes containing the defined label.

Example LokiStack CR with node selectors and tolerations

apiVersion: loki.grafana.com/v1
kind: LokiStack
metadata:
  name: logging-loki
  namespace: openshift-logging
spec:
# ...
  template:
    compactor:
      nodeSelector:
        node-role.kubernetes.io/infra: ""
      tolerations:
      - effect: NoSchedule
        key: node-role.kubernetes.io/infra
        value: reserved
      - effect: NoExecute
        key: node-role.kubernetes.io/infra
        value: reserved
    distributor:
      nodeSelector:
        node-role.kubernetes.io/infra: ""
      tolerations:
      - effect: NoSchedule
        key: node-role.kubernetes.io/infra
        value: reserved
      - effect: NoExecute
        key: node-role.kubernetes.io/infra
        value: reserved
      nodeSelector:
        node-role.kubernetes.io/infra: ""
      tolerations:
      - effect: NoSchedule
        key: node-role.kubernetes.io/infra
        value: reserved
      - effect: NoExecute
        key: node-role.kubernetes.io/infra
        value: reserved
    indexGateway:
      nodeSelector:
        node-role.kubernetes.io/infra: ""
      tolerations:
      - effect: NoSchedule
        key: node-role.kubernetes.io/infra
        value: reserved
      - effect: NoExecute
        key: node-role.kubernetes.io/infra
        value: reserved
    ingester:
      nodeSelector:
        node-role.kubernetes.io/infra: ""
      tolerations:
      - effect: NoSchedule
        key: node-role.kubernetes.io/infra
        value: reserved
      - effect: NoExecute
        key: node-role.kubernetes.io/infra
        value: reserved
    querier:
      nodeSelector:
        node-role.kubernetes.io/infra: ""
      tolerations:
      - effect: NoSchedule
        key: node-role.kubernetes.io/infra
        value: reserved
      - effect: NoExecute
        key: node-role.kubernetes.io/infra
        value: reserved
    queryFrontend:
      nodeSelector:
        node-role.kubernetes.io/infra: ""
      tolerations:
      - effect: NoSchedule
        key: node-role.kubernetes.io/infra
        value: reserved
      - effect: NoExecute
        key: node-role.kubernetes.io/infra
        value: reserved
    ruler:
      nodeSelector:
        node-role.kubernetes.io/infra: ""
      tolerations:
      - effect: NoSchedule
        key: node-role.kubernetes.io/infra
        value: reserved
      - effect: NoExecute
        key: node-role.kubernetes.io/infra
        value: reserved
    gateway:
      nodeSelector:
        node-role.kubernetes.io/infra: ""
      tolerations:
      - effect: NoSchedule
        key: node-role.kubernetes.io/infra
        value: reserved
      - effect: NoExecute
        key: node-role.kubernetes.io/infra
        value: reserved
# ...

To configure the nodeSelector and tolerations fields of the LokiStack (CR), you can use the oc explain command to view the description and fields for a particular resource:

$ oc explain lokistack.spec.template

Example output

KIND:     LokiStack
VERSION:  loki.grafana.com/v1

RESOURCE: template <Object>

DESCRIPTION:
     Template defines the resource/limits/tolerations/nodeselectors per
     component

FIELDS:
   compactor	<Object>
     Compactor defines the compaction component spec.

   distributor	<Object>
     Distributor defines the distributor component spec.
...

For more detailed information, you can add a specific field:

$ oc explain lokistack.spec.template.compactor

Example output

KIND:     LokiStack
VERSION:  loki.grafana.com/v1

RESOURCE: compactor <Object>

DESCRIPTION:
     Compactor defines the compaction component spec.

FIELDS:
   nodeSelector	<map[string]string>
     NodeSelector defines the labels required by a node to schedule the
     component onto it.
...

2.5.6.1. Enhanced Reliability and Performance

Configurations to ensure Loki’s reliability and efficiency in production.

2.5.7. Enabling authentication to cloud-based log stores using short-lived tokens

Workload identity federation enables authentication to cloud-based log stores using short-lived tokens.

Procedure

  • Use one of the following options to enable authentication:

    • If you use the OpenShift Container Platform web console to install the Loki Operator, clusters that use short-lived tokens are automatically detected. You are prompted to create roles and supply the data required for the Loki Operator to create a CredentialsRequest object, which populates a secret.
    • If you use the OpenShift CLI (oc) to install the Loki Operator, you must manually create a Subscription object using the appropriate template for your storage provider, as shown in the following examples. This authentication strategy is only supported for the storage providers indicated.

      Example Azure sample subscription

      apiVersion: operators.coreos.com/v1alpha1
      kind: Subscription
      metadata:
        name: loki-operator
        namespace: openshift-operators-redhat
      spec:
        channel: "stable-6.0"
        installPlanApproval: Manual
        name: loki-operator
        source: redhat-operators
        sourceNamespace: openshift-marketplace
        config:
          env:
            - name: CLIENTID
              value: <your_client_id>
            - name: TENANTID
              value: <your_tenant_id>
            - name: SUBSCRIPTIONID
              value: <your_subscription_id>
            - name: REGION
              value: <your_region>

      Example AWS sample subscription

      apiVersion: operators.coreos.com/v1alpha1
      kind: Subscription
      metadata:
        name: loki-operator
        namespace: openshift-operators-redhat
      spec:
        channel: "stable-6.0"
        installPlanApproval: Manual
        name: loki-operator
        source: redhat-operators
        sourceNamespace: openshift-marketplace
        config:
          env:
          - name: ROLEARN
            value: <role_ARN>

2.5.8. Configuring Loki to tolerate node failure

The Loki Operator supports setting pod anti-affinity rules to request that pods of the same component are scheduled on different available nodes in the cluster.

Affinity is a property of pods that controls the nodes on which they prefer to be scheduled. Anti-affinity is a property of pods that prevents a pod from being scheduled on a node.

In OpenShift Container Platform, pod affinity and pod anti-affinity allow you to constrain which nodes your pod is eligible to be scheduled on based on the key-value labels on other pods.

The Operator sets default, preferred podAntiAffinity rules for all Loki components, which includes the compactor, distributor, gateway, indexGateway, ingester, querier, queryFrontend, and ruler components.

You can override the preferred podAntiAffinity settings for Loki components by configuring required settings in the requiredDuringSchedulingIgnoredDuringExecution field:

Example user settings for the ingester component

apiVersion: loki.grafana.com/v1
kind: LokiStack
metadata:
  name: logging-loki
  namespace: openshift-logging
spec:
# ...
  template:
    ingester:
      podAntiAffinity:
      # ...
        requiredDuringSchedulingIgnoredDuringExecution: 1
        - labelSelector:
            matchLabels: 2
              app.kubernetes.io/component: ingester
          topologyKey: kubernetes.io/hostname
# ...

1
The stanza to define a required rule.
2
The key-value pair (label) that must be matched to apply the rule.

2.5.9. LokiStack behavior during cluster restarts

When an OpenShift Container Platform cluster is restarted, LokiStack ingestion and the query path continue to operate within the available CPU and memory resources available for the node. This means that there is no downtime for the LokiStack during OpenShift Container Platform cluster updates. This behavior is achieved by using PodDisruptionBudget resources. The Loki Operator provisions PodDisruptionBudget resources for Loki, which determine the minimum number of pods that must be available per component to ensure normal operations under certain conditions.

2.5.9.1. Advanced Deployment and Scalability

Specialized configurations for high availability, scalability, and error handling.

2.5.10. Zone aware data replication

The Loki Operator offers support for zone-aware data replication through pod topology spread constraints. Enabling this feature enhances reliability and safeguards against log loss in the event of a single zone failure. When configuring the deployment size as 1x.extra-small, 1x.small, or 1x.medium, the replication.factor field is automatically set to 2.

To ensure proper replication, you need to have at least as many availability zones as the replication factor specifies. While it is possible to have more availability zones than the replication factor, having fewer zones can lead to write failures. Each zone should host an equal number of instances for optimal operation.

Example LokiStack CR with zone replication enabled

apiVersion: loki.grafana.com/v1
kind: LokiStack
metadata:
 name: logging-loki
 namespace: openshift-logging
spec:
 replicationFactor: 2 1
 replication:
   factor: 2 2
   zones:
   -  maxSkew: 1 3
      topologyKey: topology.kubernetes.io/zone 4

1
Deprecated field, values entered are overwritten by replication.factor.
2
This value is automatically set when deployment size is selected at setup.
3
The maximum difference in number of pods between any two topology domains. The default is 1, and you cannot specify a value of 0.
4
Defines zones in the form of a topology key that corresponds to a node label.

2.5.11. Recovering Loki pods from failed zones

In OpenShift Container Platform a zone failure happens when specific availability zone resources become inaccessible. Availability zones are isolated areas within a cloud provider’s data center, aimed at enhancing redundancy and fault tolerance. If your OpenShift Container Platform cluster is not configured to handle this, a zone failure can lead to service or data loss.

Loki pods are part of a StatefulSet, and they come with Persistent Volume Claims (PVCs) provisioned by a StorageClass object. Each Loki pod and its PVCs reside in the same zone. When a zone failure occurs in a cluster, the StatefulSet controller automatically attempts to recover the affected pods in the failed zone.

Warning

The following procedure will delete the PVCs in the failed zone, and all data contained therein. To avoid complete data loss the replication factor field of the LokiStack CR should always be set to a value greater than 1 to ensure that Loki is replicating.

Prerequisites

  • Verify your LokiStack CR has a replication factor greater than 1.
  • Zone failure detected by the control plane, and nodes in the failed zone are marked by cloud provider integration.

The StatefulSet controller automatically attempts to reschedule pods in a failed zone. Because the associated PVCs are also in the failed zone, automatic rescheduling to a different zone does not work. You must manually delete the PVCs in the failed zone to allow successful re-creation of the stateful Loki Pod and its provisioned PVC in the new zone.

Procedure

  1. List the pods in Pending status by running the following command:

    $ oc get pods --field-selector status.phase==Pending -n openshift-logging

    Example oc get pods output

    NAME                           READY   STATUS    RESTARTS   AGE 1
    logging-loki-index-gateway-1   0/1     Pending   0          17m
    logging-loki-ingester-1        0/1     Pending   0          16m
    logging-loki-ruler-1           0/1     Pending   0          16m

    1
    These pods are in Pending status because their corresponding PVCs are in the failed zone.
  2. List the PVCs in Pending status by running the following command:

    $ oc get pvc -o=json -n openshift-logging | jq '.items[] | select(.status.phase == "Pending") | .metadata.name' -r

    Example oc get pvc output

    storage-logging-loki-index-gateway-1
    storage-logging-loki-ingester-1
    wal-logging-loki-ingester-1
    storage-logging-loki-ruler-1
    wal-logging-loki-ruler-1

  3. Delete the PVC(s) for a pod by running the following command:

    $ oc delete pvc <pvc_name>  -n openshift-logging
  4. Delete the pod(s) by running the following command:

    $ oc delete pod <pod_name>  -n openshift-logging

    Once these objects have been successfully deleted, they should automatically be rescheduled in an available zone.

2.5.11.1. Troubleshooting PVC in a terminating state

The PVCs might hang in the terminating state without being deleted, if PVC metadata finalizers are set to kubernetes.io/pv-protection. Removing the finalizers should allow the PVCs to delete successfully.

  • Remove the finalizer for each PVC by running the command below, then retry deletion.

    $ oc patch pvc <pvc_name> -p '{"metadata":{"finalizers":null}}' -n openshift-logging

2.5.12. Troubleshooting Loki rate limit errors

If the Log Forwarder API forwards a large block of messages that exceeds the rate limit to Loki, Loki generates rate limit (429) errors.

These errors can occur during normal operation. For example, when adding the logging to a cluster that already has some logs, rate limit errors might occur while the logging tries to ingest all of the existing log entries. In this case, if the rate of addition of new logs is less than the total rate limit, the historical data is eventually ingested, and the rate limit errors are resolved without requiring user intervention.

In cases where the rate limit errors continue to occur, you can fix the issue by modifying the LokiStack custom resource (CR).

Important

The LokiStack CR is not available on Grafana-hosted Loki. This topic does not apply to Grafana-hosted Loki servers.

Conditions

  • The Log Forwarder API is configured to forward logs to Loki.
  • Your system sends a block of messages that is larger than 2 MB to Loki. For example:

    "values":[["1630410392689800468","{\"kind\":\"Event\",\"apiVersion\":\
    .......
    ......
    ......
    ......
    \"received_at\":\"2021-08-31T11:46:32.800278+00:00\",\"version\":\"1.7.4 1.6.0\"}},\"@timestamp\":\"2021-08-31T11:46:32.799692+00:00\",\"viaq_index_name\":\"audit-write\",\"viaq_msg_id\":\"MzFjYjJkZjItNjY0MC00YWU4LWIwMTEtNGNmM2E5ZmViMGU4\",\"log_type\":\"audit\"}"]]}]}
  • After you enter oc logs -n openshift-logging -l component=collector, the collector logs in your cluster show a line containing one of the following error messages:

    429 Too Many Requests Ingestion rate limit exceeded

    Example Vector error message

    2023-08-25T16:08:49.301780Z  WARN sink{component_kind="sink" component_id=default_loki_infra component_type=loki component_name=default_loki_infra}: vector::sinks::util::retries: Retrying after error. error=Server responded with an error: 429 Too Many Requests internal_log_rate_limit=true

    Example Fluentd error message

    2023-08-30 14:52:15 +0000 [warn]: [default_loki_infra] failed to flush the buffer. retry_times=2 next_retry_time=2023-08-30 14:52:19 +0000 chunk="604251225bf5378ed1567231a1c03b8b" error_class=Fluent::Plugin::LokiOutput::LogPostError error="429 Too Many Requests Ingestion rate limit exceeded for user infrastructure (limit: 4194304 bytes/sec) while attempting to ingest '4082' lines totaling '7820025' bytes, reduce log volume or contact your Loki administrator to see if the limit can be increased\n"

    The error is also visible on the receiving end. For example, in the LokiStack ingester pod:

    Example Loki ingester error message

    level=warn ts=2023-08-30T14:57:34.155592243Z caller=grpc_logging.go:43 duration=1.434942ms method=/logproto.Pusher/Push err="rpc error: code = Code(429) desc = entry with timestamp 2023-08-30 14:57:32.012778399 +0000 UTC ignored, reason: 'Per stream rate limit exceeded (limit: 3MB/sec) while attempting to ingest for stream

Procedure

  • Update the ingestionBurstSize and ingestionRate fields in the LokiStack CR:

    apiVersion: loki.grafana.com/v1
    kind: LokiStack
    metadata:
      name: logging-loki
      namespace: openshift-logging
    spec:
      limits:
        global:
          ingestion:
            ingestionBurstSize: 16 1
            ingestionRate: 8 2
    # ...
    1
    The ingestionBurstSize field defines the maximum local rate-limited sample size per distributor replica in MB. This value is a hard limit. Set this value to at least the maximum logs size expected in a single push request. Single requests that are larger than the ingestionBurstSize value are not permitted.
    2
    The ingestionRate field is a soft limit on the maximum amount of ingested samples per second in MB. Rate limit errors occur if the rate of logs exceeds the limit, but the collector retries sending the logs. As long as the total average is lower than the limit, the system recovers and errors are resolved without user intervention.

2.6. Visualization for logging

Visualization for logging is provided by installing the Cluster Observability Operator.

Chapter 3. Support

Only the configuration options described in this documentation are supported for logging.

Do not use any other configuration options, as they are unsupported. Configuration paradigms might change across OpenShift Container Platform releases, and such cases can only be handled gracefully if all configuration possibilities are controlled. If you use configurations other than those described in this documentation, your changes will be overwritten, because Operators are designed to reconcile any differences.

Note

If you must perform configurations not described in the OpenShift Container Platform documentation, you must set your Red Hat OpenShift Logging Operator to Unmanaged. An unmanaged logging instance is not supported and does not receive updates until you return its status to Managed.

Note

Logging is provided as an installable component, with a distinct release cycle from the core OpenShift Container Platform. The Red Hat OpenShift Container Platform Life Cycle Policy outlines release compatibility.

Logging for Red Hat OpenShift is an opinionated collector and normalizer of application, infrastructure, and audit logs. It is intended to be used for forwarding logs to various supported systems.

Logging is not:

  • A high scale log collection system
  • Security Information and Event Monitoring (SIEM) compliant
  • Historical or long term log retention or storage
  • A guaranteed log sink
  • Secure storage - audit logs are not stored by default

3.1. Supported API custom resource definitions

LokiStack development is ongoing. Not all APIs are currently supported.

Table 3.1. Loki API support states
CustomResourceDefinition (CRD)ApiVersionSupport state

LokiStack

lokistack.loki.grafana.com/v1

Supported in 5.5

RulerConfig

rulerconfig.loki.grafana/v1

Supported in 5.7

AlertingRule

alertingrule.loki.grafana/v1

Supported in 5.7

RecordingRule

recordingrule.loki.grafana/v1

Supported in 5.7

3.2. Unsupported configurations

You must set the Red Hat OpenShift Logging Operator to the Unmanaged state to modify the following components:

  • The Elasticsearch custom resource (CR)
  • The Kibana deployment
  • The fluent.conf file
  • The Fluentd daemon set

You must set the OpenShift Elasticsearch Operator to the Unmanaged state to modify the Elasticsearch deployment files.

Explicitly unsupported cases include:

  • Configuring default log rotation. You cannot modify the default log rotation configuration.
  • Configuring the collected log location. You cannot change the location of the log collector output file, which by default is /var/log/fluentd/fluentd.log.
  • Throttling log collection. You cannot throttle down the rate at which the logs are read in by the log collector.
  • Configuring the logging collector using environment variables. You cannot use environment variables to modify the log collector.
  • Configuring how the log collector normalizes logs. You cannot modify default log normalization.

3.3. Support policy for unmanaged Operators

The management state of an Operator determines whether an Operator is actively managing the resources for its related component in the cluster as designed. If an Operator is set to an unmanaged state, it does not respond to changes in configuration nor does it receive updates.

While this can be helpful in non-production clusters or during debugging, Operators in an unmanaged state are unsupported and the cluster administrator assumes full control of the individual component configurations and upgrades.

An Operator can be set to an unmanaged state using the following methods:

  • Individual Operator configuration

    Individual Operators have a managementState parameter in their configuration. This can be accessed in different ways, depending on the Operator. For example, the Red Hat OpenShift Logging Operator accomplishes this by modifying a custom resource (CR) that it manages, while the Cluster Samples Operator uses a cluster-wide configuration resource.

    Changing the managementState parameter to Unmanaged means that the Operator is not actively managing its resources and will take no action related to the related component. Some Operators might not support this management state as it might damage the cluster and require manual recovery.

    Warning

    Changing individual Operators to the Unmanaged state renders that particular component and functionality unsupported. Reported issues must be reproduced in Managed state for support to proceed.

  • Cluster Version Operator (CVO) overrides

    The spec.overrides parameter can be added to the CVO’s configuration to allow administrators to provide a list of overrides to the CVO’s behavior for a component. Setting the spec.overrides[].unmanaged parameter to true for a component blocks cluster upgrades and alerts the administrator after a CVO override has been set:

    Disabling ownership via cluster version overrides prevents upgrades. Please remove overrides before continuing.
    Warning

    Setting a CVO override puts the entire cluster in an unsupported state. Reported issues must be reproduced after removing any overrides for support to proceed.

3.4. Collecting logging data for Red Hat Support

When opening a support case, it is helpful to provide debugging information about your cluster to Red Hat Support.

You can use the must-gather tool to collect diagnostic information for project-level resources, cluster-level resources, and each of the logging components.

For prompt support, supply diagnostic information for both OpenShift Container Platform and logging.

Note

Do not use the hack/logging-dump.sh script. The script is no longer supported and does not collect data.

3.4.1. About the must-gather tool

The oc adm must-gather CLI command collects the information from your cluster that is most likely needed for debugging issues.

For your logging, must-gather collects the following information:

  • Project-level resources, including pods, configuration maps, service accounts, roles, role bindings, and events at the project level
  • Cluster-level resources, including nodes, roles, and role bindings at the cluster level
  • OpenShift Logging resources in the openshift-logging and openshift-operators-redhat namespaces, including health status for the log collector, the log store, and the log visualizer

When you run oc adm must-gather, a new pod is created on the cluster. The data is collected on that pod and saved in a new directory that starts with must-gather.local. This directory is created in the current working directory.

3.4.2. Collecting logging data

You can use the oc adm must-gather CLI command to collect information about logging.

Procedure

To collect logging information with must-gather:

  1. Navigate to the directory where you want to store the must-gather information.
  2. Run the oc adm must-gather command against the logging image:

    $ oc adm must-gather --image=$(oc -n openshift-logging get deployment.apps/cluster-logging-operator -o jsonpath='{.spec.template.spec.containers[?(@.name == "cluster-logging-operator")].image}')

    The must-gather tool creates a new directory that starts with must-gather.local within the current directory. For example: must-gather.local.4157245944708210408.

  3. Create a compressed file from the must-gather directory that was just created. For example, on a computer that uses a Linux operating system, run the following command:

    $ tar -cvaf must-gather.tar.gz must-gather.local.4157245944708210408
  4. Attach the compressed file to your support case on the Red Hat Customer Portal.

Chapter 4. Troubleshooting logging

4.1. Viewing Logging status

You can view the status of the Red Hat OpenShift Logging Operator and other logging components.

4.1.1. Viewing the status of the Red Hat OpenShift Logging Operator

You can view the status of the Red Hat OpenShift Logging Operator.

Prerequisites

  • The Red Hat OpenShift Logging Operator and OpenShift Elasticsearch Operator are installed.

Procedure

  1. Change to the openshift-logging project by running the following command:

    $ oc project openshift-logging
  2. Get the ClusterLogging instance status by running the following command:

    $ oc get clusterlogging instance -o yaml

    Example output

    apiVersion: logging.openshift.io/v1
    kind: ClusterLogging
    # ...
    status:  1
      collection:
        logs:
          fluentdStatus:
            daemonSet: fluentd  2
            nodes:
              collector-2rhqp: ip-10-0-169-13.ec2.internal
              collector-6fgjh: ip-10-0-165-244.ec2.internal
              collector-6l2ff: ip-10-0-128-218.ec2.internal
              collector-54nx5: ip-10-0-139-30.ec2.internal
              collector-flpnn: ip-10-0-147-228.ec2.internal
              collector-n2frh: ip-10-0-157-45.ec2.internal
            pods:
              failed: []
              notReady: []
              ready:
              - collector-2rhqp
              - collector-54nx5
              - collector-6fgjh
              - collector-6l2ff
              - collector-flpnn
              - collector-n2frh
      logstore: 3
        elasticsearchStatus:
        - ShardAllocationEnabled:  all
          cluster:
            activePrimaryShards:    5
            activeShards:           5
            initializingShards:     0
            numDataNodes:           1
            numNodes:               1
            pendingTasks:           0
            relocatingShards:       0
            status:                 green
            unassignedShards:       0
          clusterName:             elasticsearch
          nodeConditions:
            elasticsearch-cdm-mkkdys93-1:
          nodeCount:  1
          pods:
            client:
              failed:
              notReady:
              ready:
              - elasticsearch-cdm-mkkdys93-1-7f7c6-mjm7c
            data:
              failed:
              notReady:
              ready:
              - elasticsearch-cdm-mkkdys93-1-7f7c6-mjm7c
            master:
              failed:
              notReady:
              ready:
              - elasticsearch-cdm-mkkdys93-1-7f7c6-mjm7c
    visualization:  4
        kibanaStatus:
        - deployment: kibana
          pods:
            failed: []
            notReady: []
            ready:
            - kibana-7fb4fd4cc9-f2nls
          replicaSets:
          - kibana-7fb4fd4cc9
          replicas: 1

    1
    In the output, the cluster status fields appear in the status stanza.
    2
    Information on the Fluentd pods.
    3
    Information on the Elasticsearch pods, including Elasticsearch cluster health, green, yellow, or red.
    4
    Information on the Kibana pods.
4.1.1.1. Example condition messages

The following are examples of some condition messages from the Status.Nodes section of the ClusterLogging instance.

A status message similar to the following indicates a node has exceeded the configured low watermark and no shard will be allocated to this node:

Example output

  nodes:
  - conditions:
    - lastTransitionTime: 2019-03-15T15:57:22Z
      message: Disk storage usage for node is 27.5gb (36.74%). Shards will be not
        be allocated on this node.
      reason: Disk Watermark Low
      status: "True"
      type: NodeStorage
    deploymentName: example-elasticsearch-clientdatamaster-0-1
    upgradeStatus: {}

A status message similar to the following indicates a node has exceeded the configured high watermark and shards will be relocated to other nodes:

Example output

  nodes:
  - conditions:
    - lastTransitionTime: 2019-03-15T16:04:45Z
      message: Disk storage usage for node is 27.5gb (36.74%). Shards will be relocated
        from this node.
      reason: Disk Watermark High
      status: "True"
      type: NodeStorage
    deploymentName: cluster-logging-operator
    upgradeStatus: {}

A status message similar to the following indicates the Elasticsearch node selector in the CR does not match any nodes in the cluster:

Example output

    Elasticsearch Status:
      Shard Allocation Enabled:  shard allocation unknown
      Cluster:
        Active Primary Shards:  0
        Active Shards:          0
        Initializing Shards:    0
        Num Data Nodes:         0
        Num Nodes:              0
        Pending Tasks:          0
        Relocating Shards:      0
        Status:                 cluster health unknown
        Unassigned Shards:      0
      Cluster Name:             elasticsearch
      Node Conditions:
        elasticsearch-cdm-mkkdys93-1:
          Last Transition Time:  2019-06-26T03:37:32Z
          Message:               0/5 nodes are available: 5 node(s) didn't match node selector.
          Reason:                Unschedulable
          Status:                True
          Type:                  Unschedulable
        elasticsearch-cdm-mkkdys93-2:
      Node Count:  2
      Pods:
        Client:
          Failed:
          Not Ready:
            elasticsearch-cdm-mkkdys93-1-75dd69dccd-f7f49
            elasticsearch-cdm-mkkdys93-2-67c64f5f4c-n58vl
          Ready:
        Data:
          Failed:
          Not Ready:
            elasticsearch-cdm-mkkdys93-1-75dd69dccd-f7f49
            elasticsearch-cdm-mkkdys93-2-67c64f5f4c-n58vl
          Ready:
        Master:
          Failed:
          Not Ready:
            elasticsearch-cdm-mkkdys93-1-75dd69dccd-f7f49
            elasticsearch-cdm-mkkdys93-2-67c64f5f4c-n58vl
          Ready:

A status message similar to the following indicates that the requested PVC could not bind to PV:

Example output

      Node Conditions:
        elasticsearch-cdm-mkkdys93-1:
          Last Transition Time:  2019-06-26T03:37:32Z
          Message:               pod has unbound immediate PersistentVolumeClaims (repeated 5 times)
          Reason:                Unschedulable
          Status:                True
          Type:                  Unschedulable

A status message similar to the following indicates that the Fluentd pods cannot be scheduled because the node selector did not match any nodes:

Example output

Status:
  Collection:
    Logs:
      Fluentd Status:
        Daemon Set:  fluentd
        Nodes:
        Pods:
          Failed:
          Not Ready:
          Ready:

4.1.2. Viewing the status of logging components

You can view the status for a number of logging components.

Prerequisites

  • The Red Hat OpenShift Logging Operator and OpenShift Elasticsearch Operator are installed.

Procedure

  1. Change to the openshift-logging project.

    $ oc project openshift-logging
  2. View the status of logging environment:

    $ oc describe deployment cluster-logging-operator

    Example output

    Name:                   cluster-logging-operator
    
    ....
    
    Conditions:
      Type           Status  Reason
      ----           ------  ------
      Available      True    MinimumReplicasAvailable
      Progressing    True    NewReplicaSetAvailable
    
    ....
    
    Events:
      Type    Reason             Age   From                   Message
      ----    ------             ----  ----                   -------
      Normal  ScalingReplicaSet  62m   deployment-controller  Scaled up replica set cluster-logging-operator-574b8987df to 1----

  3. View the status of the logging replica set:

    1. Get the name of a replica set:

      Example output

      $ oc get replicaset

      Example output

      NAME                                      DESIRED   CURRENT   READY   AGE
      cluster-logging-operator-574b8987df       1         1         1       159m
      elasticsearch-cdm-uhr537yu-1-6869694fb    1         1         1       157m
      elasticsearch-cdm-uhr537yu-2-857b6d676f   1         1         1       156m
      elasticsearch-cdm-uhr537yu-3-5b6fdd8cfd   1         1         1       155m
      kibana-5bd5544f87                         1         1         1       157m

    2. Get the status of the replica set:

      $ oc describe replicaset cluster-logging-operator-574b8987df

      Example output

      Name:           cluster-logging-operator-574b8987df
      
      ....
      
      Replicas:       1 current / 1 desired
      Pods Status:    1 Running / 0 Waiting / 0 Succeeded / 0 Failed
      
      ....
      
      Events:
        Type    Reason            Age   From                   Message
        ----    ------            ----  ----                   -------
        Normal  SuccessfulCreate  66m   replicaset-controller  Created pod: cluster-logging-operator-574b8987df-qjhqv----

4.2. Troubleshooting log forwarding

4.2.1. Redeploying Fluentd pods

When you create a ClusterLogForwarder custom resource (CR), if the Red Hat OpenShift Logging Operator does not redeploy the Fluentd pods automatically, you can delete the Fluentd pods to force them to redeploy.

Prerequisites

  • You have created a ClusterLogForwarder custom resource (CR) object.

Procedure

  • Delete the Fluentd pods to force them to redeploy by running the following command:

    $ oc delete pod --selector logging-infra=collector

4.2.2. Troubleshooting Loki rate limit errors

If the Log Forwarder API forwards a large block of messages that exceeds the rate limit to Loki, Loki generates rate limit (429) errors.

These errors can occur during normal operation. For example, when adding the logging to a cluster that already has some logs, rate limit errors might occur while the logging tries to ingest all of the existing log entries. In this case, if the rate of addition of new logs is less than the total rate limit, the historical data is eventually ingested, and the rate limit errors are resolved without requiring user intervention.

In cases where the rate limit errors continue to occur, you can fix the issue by modifying the LokiStack custom resource (CR).

Important

The LokiStack CR is not available on Grafana-hosted Loki. This topic does not apply to Grafana-hosted Loki servers.

Conditions

  • The Log Forwarder API is configured to forward logs to Loki.
  • Your system sends a block of messages that is larger than 2 MB to Loki. For example:

    "values":[["1630410392689800468","{\"kind\":\"Event\",\"apiVersion\":\
    .......
    ......
    ......
    ......
    \"received_at\":\"2021-08-31T11:46:32.800278+00:00\",\"version\":\"1.7.4 1.6.0\"}},\"@timestamp\":\"2021-08-31T11:46:32.799692+00:00\",\"viaq_index_name\":\"audit-write\",\"viaq_msg_id\":\"MzFjYjJkZjItNjY0MC00YWU4LWIwMTEtNGNmM2E5ZmViMGU4\",\"log_type\":\"audit\"}"]]}]}
  • After you enter oc logs -n openshift-logging -l component=collector, the collector logs in your cluster show a line containing one of the following error messages:

    429 Too Many Requests Ingestion rate limit exceeded

    Example Vector error message

    2023-08-25T16:08:49.301780Z  WARN sink{component_kind="sink" component_id=default_loki_infra component_type=loki component_name=default_loki_infra}: vector::sinks::util::retries: Retrying after error. error=Server responded with an error: 429 Too Many Requests internal_log_rate_limit=true

    Example Fluentd error message

    2023-08-30 14:52:15 +0000 [warn]: [default_loki_infra] failed to flush the buffer. retry_times=2 next_retry_time=2023-08-30 14:52:19 +0000 chunk="604251225bf5378ed1567231a1c03b8b" error_class=Fluent::Plugin::LokiOutput::LogPostError error="429 Too Many Requests Ingestion rate limit exceeded for user infrastructure (limit: 4194304 bytes/sec) while attempting to ingest '4082' lines totaling '7820025' bytes, reduce log volume or contact your Loki administrator to see if the limit can be increased\n"

    The error is also visible on the receiving end. For example, in the LokiStack ingester pod:

    Example Loki ingester error message

    level=warn ts=2023-08-30T14:57:34.155592243Z caller=grpc_logging.go:43 duration=1.434942ms method=/logproto.Pusher/Push err="rpc error: code = Code(429) desc = entry with timestamp 2023-08-30 14:57:32.012778399 +0000 UTC ignored, reason: 'Per stream rate limit exceeded (limit: 3MB/sec) while attempting to ingest for stream

Procedure

  • Update the ingestionBurstSize and ingestionRate fields in the LokiStack CR:

    apiVersion: loki.grafana.com/v1
    kind: LokiStack
    metadata:
      name: logging-loki
      namespace: openshift-logging
    spec:
      limits:
        global:
          ingestion:
            ingestionBurstSize: 16 1
            ingestionRate: 8 2
    # ...
    1
    The ingestionBurstSize field defines the maximum local rate-limited sample size per distributor replica in MB. This value is a hard limit. Set this value to at least the maximum logs size expected in a single push request. Single requests that are larger than the ingestionBurstSize value are not permitted.
    2
    The ingestionRate field is a soft limit on the maximum amount of ingested samples per second in MB. Rate limit errors occur if the rate of logs exceeds the limit, but the collector retries sending the logs. As long as the total average is lower than the limit, the system recovers and errors are resolved without user intervention.

4.3. Troubleshooting logging alerts

You can use the following procedures to troubleshoot logging alerts on your cluster.

4.3.1. Elasticsearch cluster health status is red

At least one primary shard and its replicas are not allocated to a node. Use the following procedure to troubleshoot this alert.

Tip

Some commands in this documentation reference an Elasticsearch pod by using a $ES_POD_NAME shell variable. If you want to copy and paste the commands directly from this documentation, you must set this variable to a value that is valid for your Elasticsearch cluster.

You can list the available Elasticsearch pods by running the following command:

$ oc -n openshift-logging get pods -l component=elasticsearch

Choose one of the pods listed and set the $ES_POD_NAME variable, by running the following command:

$ export ES_POD_NAME=<elasticsearch_pod_name>

You can now use the $ES_POD_NAME variable in commands.

Procedure

  1. Check the Elasticsearch cluster health and verify that the cluster status is red by running the following command:

    $ oc exec -n openshift-logging -c elasticsearch $ES_POD_NAME -- health
  2. List the nodes that have joined the cluster by running the following command:

    $ oc exec -n openshift-logging -c elasticsearch $ES_POD_NAME \
      -- es_util --query=_cat/nodes?v
  3. List the Elasticsearch pods and compare them with the nodes in the command output from the previous step, by running the following command:

    $ oc -n openshift-logging get pods -l component=elasticsearch
  4. If some of the Elasticsearch nodes have not joined the cluster, perform the following steps.

    1. Confirm that Elasticsearch has an elected master node by running the following command and observing the output:

      $ oc exec -n openshift-logging -c elasticsearch $ES_POD_NAME \
        -- es_util --query=_cat/master?v
    2. Review the pod logs of the elected master node for issues by running the following command and observing the output:

      $ oc logs <elasticsearch_master_pod_name> -c elasticsearch -n openshift-logging
    3. Review the logs of nodes that have not joined the cluster for issues by running the following command and observing the output:

      $ oc logs <elasticsearch_node_name> -c elasticsearch -n openshift-logging
  5. If all the nodes have joined the cluster, check if the cluster is in the process of recovering by running the following command and observing the output:

    $ oc exec -n openshift-logging -c elasticsearch $ES_POD_NAME \
      -- es_util --query=_cat/recovery?active_only=true

    If there is no command output, the recovery process might be delayed or stalled by pending tasks.

  6. Check if there are pending tasks by running the following command and observing the output:

    $ oc exec -n openshift-logging -c elasticsearch $ES_POD_NAME \
      -- health | grep number_of_pending_tasks
  7. If there are pending tasks, monitor their status. If their status changes and indicates that the cluster is recovering, continue waiting. The recovery time varies according to the size of the cluster and other factors. Otherwise, if the status of the pending tasks does not change, this indicates that the recovery has stalled.
  8. If it seems like the recovery has stalled, check if the cluster.routing.allocation.enable value is set to none, by running the following command and observing the output:

    $ oc exec -n openshift-logging -c elasticsearch $ES_POD_NAME \
      -- es_util --query=_cluster/settings?pretty
  9. If the cluster.routing.allocation.enable value is set to none, set it to all, by running the following command:

    $ oc exec -n openshift-logging -c elasticsearch $ES_POD_NAME \
      -- es_util --query=_cluster/settings?pretty \
      -X PUT -d '{"persistent": {"cluster.routing.allocation.enable":"all"}}'
  10. Check if any indices are still red by running the following command and observing the output:

    $ oc exec -n openshift-logging -c elasticsearch $ES_POD_NAME \
      -- es_util --query=_cat/indices?v
  11. If any indices are still red, try to clear them by performing the following steps.

    1. Clear the cache by running the following command:

      $ oc exec -n openshift-logging -c elasticsearch $ES_POD_NAME \
        -- es_util --query=<elasticsearch_index_name>/_cache/clear?pretty
    2. Increase the max allocation retries by running the following command:

      $ oc exec -n openshift-logging -c elasticsearch $ES_POD_NAME \
        -- es_util --query=<elasticsearch_index_name>/_settings?pretty \
        -X PUT -d '{"index.allocation.max_retries":10}'
    3. Delete all the scroll items by running the following command:

      $ oc exec -n openshift-logging -c elasticsearch $ES_POD_NAME \
        -- es_util --query=_search/scroll/_all -X DELETE
    4. Increase the timeout by running the following command:

      $ oc exec -n openshift-logging -c elasticsearch $ES_POD_NAME \
        -- es_util --query=<elasticsearch_index_name>/_settings?pretty \
        -X PUT -d '{"index.unassigned.node_left.delayed_timeout":"10m"}'
  12. If the preceding steps do not clear the red indices, delete the indices individually.

    1. Identify the red index name by running the following command:

      $ oc exec -n openshift-logging -c elasticsearch $ES_POD_NAME \
        -- es_util --query=_cat/indices?v
    2. Delete the red index by running the following command:

      $ oc exec -n openshift-logging -c elasticsearch $ES_POD_NAME \
        -- es_util --query=<elasticsearch_red_index_name> -X DELETE
  13. If there are no red indices and the cluster status is red, check for a continuous heavy processing load on a data node.

    1. Check if the Elasticsearch JVM Heap usage is high by running the following command:

      $ oc exec -n openshift-logging -c elasticsearch $ES_POD_NAME \
        -- es_util --query=_nodes/stats?pretty

      In the command output, review the node_name.jvm.mem.heap_used_percent field to determine the JVM Heap usage.

    2. Check for high CPU utilization. For more information about CPU utilitzation, see the OpenShift Container Platform "Reviewing monitoring dashboards" documentation.

4.3.2. Elasticsearch cluster health status is yellow

Replica shards for at least one primary shard are not allocated to nodes. Increase the node count by adjusting the nodeCount value in the ClusterLogging custom resource (CR).

4.3.3. Elasticsearch node disk low watermark reached

Elasticsearch does not allocate shards to nodes that reach the low watermark.

Tip

Some commands in this documentation reference an Elasticsearch pod by using a $ES_POD_NAME shell variable. If you want to copy and paste the commands directly from this documentation, you must set this variable to a value that is valid for your Elasticsearch cluster.

You can list the available Elasticsearch pods by running the following command:

$ oc -n openshift-logging get pods -l component=elasticsearch

Choose one of the pods listed and set the $ES_POD_NAME variable, by running the following command:

$ export ES_POD_NAME=<elasticsearch_pod_name>

You can now use the $ES_POD_NAME variable in commands.

Procedure

  1. Identify the node on which Elasticsearch is deployed by running the following command:

    $ oc -n openshift-logging get po -o wide
  2. Check if there are unassigned shards by running the following command:

    $ oc exec -n openshift-logging -c elasticsearch $ES_POD_NAME \
      -- es_util --query=_cluster/health?pretty | grep unassigned_shards
  3. If there are unassigned shards, check the disk space on each node, by running the following command:

    $ for pod in `oc -n openshift-logging get po -l component=elasticsearch -o jsonpath='{.items[*].metadata.name}'`; \
      do echo $pod; oc -n openshift-logging exec -c elasticsearch $pod \
      -- df -h /elasticsearch/persistent; done
  4. In the command output, check the Use column to determine the used disk percentage on that node.

    Example output

    elasticsearch-cdm-kcrsda6l-1-586cc95d4f-h8zq8
    Filesystem      Size  Used Avail Use% Mounted on
    /dev/nvme1n1     19G  522M   19G   3% /elasticsearch/persistent
    elasticsearch-cdm-kcrsda6l-2-5b548fc7b-cwwk7
    Filesystem      Size  Used Avail Use% Mounted on
    /dev/nvme2n1     19G  522M   19G   3% /elasticsearch/persistent
    elasticsearch-cdm-kcrsda6l-3-5dfc884d99-59tjw
    Filesystem      Size  Used Avail Use% Mounted on
    /dev/nvme3n1     19G  528M   19G   3% /elasticsearch/persistent

    If the used disk percentage is above 85%, the node has exceeded the low watermark, and shards can no longer be allocated to this node.

  5. To check the current redundancyPolicy, run the following command:

    $ oc -n openshift-logging get es elasticsearch \
      -o jsonpath='{.spec.redundancyPolicy}'

    If you are using a ClusterLogging resource on your cluster, run the following command:

    $ oc -n openshift-logging get cl \
      -o jsonpath='{.items[*].spec.logStore.elasticsearch.redundancyPolicy}'

    If the cluster redundancyPolicy value is higher than the SingleRedundancy value, set it to the SingleRedundancy value and save this change.

  6. If the preceding steps do not fix the issue, delete the old indices.

    1. Check the status of all indices on Elasticsearch by running the following command:

      $ oc exec -n openshift-logging -c elasticsearch $ES_POD_NAME -- indices
    2. Identify an old index that can be deleted.
    3. Delete the index by running the following command:

      $ oc exec -n openshift-logging -c elasticsearch $ES_POD_NAME \
        -- es_util --query=<elasticsearch_index_name> -X DELETE

4.3.4. Elasticsearch node disk high watermark reached

Elasticsearch attempts to relocate shards away from a node that has reached the high watermark to a node with low disk usage that has not crossed any watermark threshold limits.

To allocate shards to a particular node, you must free up some space on that node. If increasing the disk space is not possible, try adding a new data node to the cluster, or decrease the total cluster redundancy policy.

Tip

Some commands in this documentation reference an Elasticsearch pod by using a $ES_POD_NAME shell variable. If you want to copy and paste the commands directly from this documentation, you must set this variable to a value that is valid for your Elasticsearch cluster.

You can list the available Elasticsearch pods by running the following command:

$ oc -n openshift-logging get pods -l component=elasticsearch

Choose one of the pods listed and set the $ES_POD_NAME variable, by running the following command:

$ export ES_POD_NAME=<elasticsearch_pod_name>

You can now use the $ES_POD_NAME variable in commands.

Procedure

  1. Identify the node on which Elasticsearch is deployed by running the following command:

    $ oc -n openshift-logging get po -o wide
  2. Check the disk space on each node:

    $ for pod in `oc -n openshift-logging get po -l component=elasticsearch -o jsonpath='{.items[*].metadata.name}'`; \
      do echo $pod; oc -n openshift-logging exec -c elasticsearch $pod \
      -- df -h /elasticsearch/persistent; done
  3. Check if the cluster is rebalancing:

    $ oc exec -n openshift-logging -c elasticsearch $ES_POD_NAME \
      -- es_util --query=_cluster/health?pretty | grep relocating_shards

    If the command output shows relocating shards, the high watermark has been exceeded. The default value of the high watermark is 90%.

  4. Increase the disk space on all nodes. If increasing the disk space is not possible, try adding a new data node to the cluster, or decrease the total cluster redundancy policy.
  5. To check the current redundancyPolicy, run the following command:

    $ oc -n openshift-logging get es elasticsearch \
      -o jsonpath='{.spec.redundancyPolicy}'

    If you are using a ClusterLogging resource on your cluster, run the following command:

    $ oc -n openshift-logging get cl \
      -o jsonpath='{.items[*].spec.logStore.elasticsearch.redundancyPolicy}'

    If the cluster redundancyPolicy value is higher than the SingleRedundancy value, set it to the SingleRedundancy value and save this change.

  6. If the preceding steps do not fix the issue, delete the old indices.

    1. Check the status of all indices on Elasticsearch by running the following command:

      $ oc exec -n openshift-logging -c elasticsearch $ES_POD_NAME -- indices
    2. Identify an old index that can be deleted.
    3. Delete the index by running the following command:

      $ oc exec -n openshift-logging -c elasticsearch $ES_POD_NAME \
        -- es_util --query=<elasticsearch_index_name> -X DELETE

4.3.5. Elasticsearch node disk flood watermark reached

Elasticsearch enforces a read-only index block on every index that has both of these conditions:

  • One or more shards are allocated to the node.
  • One or more disks exceed the flood stage.

Use the following procedure to troubleshoot this alert.

Tip

Some commands in this documentation reference an Elasticsearch pod by using a $ES_POD_NAME shell variable. If you want to copy and paste the commands directly from this documentation, you must set this variable to a value that is valid for your Elasticsearch cluster.

You can list the available Elasticsearch pods by running the following command:

$ oc -n openshift-logging get pods -l component=elasticsearch

Choose one of the pods listed and set the $ES_POD_NAME variable, by running the following command:

$ export ES_POD_NAME=<elasticsearch_pod_name>

You can now use the $ES_POD_NAME variable in commands.

Procedure

  1. Get the disk space of the Elasticsearch node:

    $ for pod in `oc -n openshift-logging get po -l component=elasticsearch -o jsonpath='{.items[*].metadata.name}'`; \
      do echo $pod; oc -n openshift-logging exec -c elasticsearch $pod \
      -- df -h /elasticsearch/persistent; done
  2. In the command output, check the Avail column to determine the free disk space on that node.

    Example output

    elasticsearch-cdm-kcrsda6l-1-586cc95d4f-h8zq8
    Filesystem      Size  Used Avail Use% Mounted on
    /dev/nvme1n1     19G  522M   19G   3% /elasticsearch/persistent
    elasticsearch-cdm-kcrsda6l-2-5b548fc7b-cwwk7
    Filesystem      Size  Used Avail Use% Mounted on
    /dev/nvme2n1     19G  522M   19G   3% /elasticsearch/persistent
    elasticsearch-cdm-kcrsda6l-3-5dfc884d99-59tjw
    Filesystem      Size  Used Avail Use% Mounted on
    /dev/nvme3n1     19G  528M   19G   3% /elasticsearch/persistent

  3. Increase the disk space on all nodes. If increasing the disk space is not possible, try adding a new data node to the cluster, or decrease the total cluster redundancy policy.
  4. To check the current redundancyPolicy, run the following command:

    $ oc -n openshift-logging get es elasticsearch \
      -o jsonpath='{.spec.redundancyPolicy}'

    If you are using a ClusterLogging resource on your cluster, run the following command:

    $ oc -n openshift-logging get cl \
      -o jsonpath='{.items[*].spec.logStore.elasticsearch.redundancyPolicy}'

    If the cluster redundancyPolicy value is higher than the SingleRedundancy value, set it to the SingleRedundancy value and save this change.

  5. If the preceding steps do not fix the issue, delete the old indices.

    1. Check the status of all indices on Elasticsearch by running the following command:

      $ oc exec -n openshift-logging -c elasticsearch $ES_POD_NAME -- indices
    2. Identify an old index that can be deleted.
    3. Delete the index by running the following command:

      $ oc exec -n openshift-logging -c elasticsearch $ES_POD_NAME \
        -- es_util --query=<elasticsearch_index_name> -X DELETE
  6. Continue freeing up and monitoring the disk space. After the used disk space drops below 90%, unblock writing to this node by running the following command:

    $ oc exec -n openshift-logging -c elasticsearch $ES_POD_NAME \
      -- es_util --query=_all/_settings?pretty \
      -X PUT -d '{"index.blocks.read_only_allow_delete": null}'

4.3.6. Elasticsearch JVM heap usage is high

The Elasticsearch node Java virtual machine (JVM) heap memory used is above 75%. Consider increasing the heap size.

4.3.7. Aggregated logging system CPU is high

System CPU usage on the node is high. Check the CPU of the cluster node. Consider allocating more CPU resources to the node.

4.3.8. Elasticsearch process CPU is high

Elasticsearch process CPU usage on the node is high. Check the CPU of the cluster node. Consider allocating more CPU resources to the node.

4.3.9. Elasticsearch disk space is running low

Elasticsearch is predicted to run out of disk space within the next 6 hours based on current disk usage. Use the following procedure to troubleshoot this alert.

Procedure

  1. Get the disk space of the Elasticsearch node:

    $ for pod in `oc -n openshift-logging get po -l component=elasticsearch -o jsonpath='{.items[*].metadata.name}'`; \
      do echo $pod; oc -n openshift-logging exec -c elasticsearch $pod \
      -- df -h /elasticsearch/persistent; done
  2. In the command output, check the Avail column to determine the free disk space on that node.

    Example output

    elasticsearch-cdm-kcrsda6l-1-586cc95d4f-h8zq8
    Filesystem      Size  Used Avail Use% Mounted on
    /dev/nvme1n1     19G  522M   19G   3% /elasticsearch/persistent
    elasticsearch-cdm-kcrsda6l-2-5b548fc7b-cwwk7
    Filesystem      Size  Used Avail Use% Mounted on
    /dev/nvme2n1     19G  522M   19G   3% /elasticsearch/persistent
    elasticsearch-cdm-kcrsda6l-3-5dfc884d99-59tjw
    Filesystem      Size  Used Avail Use% Mounted on
    /dev/nvme3n1     19G  528M   19G   3% /elasticsearch/persistent

  3. Increase the disk space on all nodes. If increasing the disk space is not possible, try adding a new data node to the cluster, or decrease the total cluster redundancy policy.
  4. To check the current redundancyPolicy, run the following command:

    $ oc -n openshift-logging get es elasticsearch -o jsonpath='{.spec.redundancyPolicy}'

    If you are using a ClusterLogging resource on your cluster, run the following command:

    $ oc -n openshift-logging get cl \
      -o jsonpath='{.items[*].spec.logStore.elasticsearch.redundancyPolicy}'

    If the cluster redundancyPolicy value is higher than the SingleRedundancy value, set it to the SingleRedundancy value and save this change.

  5. If the preceding steps do not fix the issue, delete the old indices.

    1. Check the status of all indices on Elasticsearch by running the following command:

      $ oc exec -n openshift-logging -c elasticsearch $ES_POD_NAME -- indices
    2. Identify an old index that can be deleted.
    3. Delete the index by running the following command:

      $ oc exec -n openshift-logging -c elasticsearch $ES_POD_NAME \
        -- es_util --query=<elasticsearch_index_name> -X DELETE

4.3.10. Elasticsearch FileDescriptor usage is high

Based on current usage trends, the predicted number of file descriptors on the node is insufficient. Check the value of max_file_descriptors for each node as described in the Elasticsearch File Descriptors documentation.

4.4. Viewing the status of the Elasticsearch log store

You can view the status of the OpenShift Elasticsearch Operator and for a number of Elasticsearch components.

4.4.1. Viewing the status of the Elasticsearch log store

You can view the status of the Elasticsearch log store.

Prerequisites

  • The Red Hat OpenShift Logging Operator and OpenShift Elasticsearch Operator are installed.

Procedure

  1. Change to the openshift-logging project by running the following command:

    $ oc project openshift-logging
  2. To view the status:

    1. Get the name of the Elasticsearch log store instance by running the following command:

      $ oc get Elasticsearch

      Example output

      NAME            AGE
      elasticsearch   5h9m

    2. Get the Elasticsearch log store status by running the following command:

      $ oc get Elasticsearch <Elasticsearch-instance> -o yaml

      For example:

      $ oc get Elasticsearch elasticsearch -n openshift-logging -o yaml

      The output includes information similar to the following:

      Example output

      status: 1
        cluster: 2
          activePrimaryShards: 30
          activeShards: 60
          initializingShards: 0
          numDataNodes: 3
          numNodes: 3
          pendingTasks: 0
          relocatingShards: 0
          status: green
          unassignedShards: 0
        clusterHealth: ""
        conditions: [] 3
        nodes: 4
        - deploymentName: elasticsearch-cdm-zjf34ved-1
          upgradeStatus: {}
        - deploymentName: elasticsearch-cdm-zjf34ved-2
          upgradeStatus: {}
        - deploymentName: elasticsearch-cdm-zjf34ved-3
          upgradeStatus: {}
        pods: 5
          client:
            failed: []
            notReady: []
            ready:
            - elasticsearch-cdm-zjf34ved-1-6d7fbf844f-sn422
            - elasticsearch-cdm-zjf34ved-2-dfbd988bc-qkzjz
            - elasticsearch-cdm-zjf34ved-3-c8f566f7c-t7zkt
          data:
            failed: []
            notReady: []
            ready:
            - elasticsearch-cdm-zjf34ved-1-6d7fbf844f-sn422
            - elasticsearch-cdm-zjf34ved-2-dfbd988bc-qkzjz
            - elasticsearch-cdm-zjf34ved-3-c8f566f7c-t7zkt
          master:
            failed: []
            notReady: []
            ready:
            - elasticsearch-cdm-zjf34ved-1-6d7fbf844f-sn422
            - elasticsearch-cdm-zjf34ved-2-dfbd988bc-qkzjz
            - elasticsearch-cdm-zjf34ved-3-c8f566f7c-t7zkt
        shardAllocationEnabled: all

      1
      In the output, the cluster status fields appear in the status stanza.
      2
      The status of the Elasticsearch log store:
      • The number of active primary shards.
      • The number of active shards.
      • The number of shards that are initializing.
      • The number of Elasticsearch log store data nodes.
      • The total number of Elasticsearch log store nodes.
      • The number of pending tasks.
      • The Elasticsearch log store status: green, red, yellow.
      • The number of unassigned shards.
      3
      Any status conditions, if present. The Elasticsearch log store status indicates the reasons from the scheduler if a pod could not be placed. Any events related to the following conditions are shown:
      • Container Waiting for both the Elasticsearch log store and proxy containers.
      • Container Terminated for both the Elasticsearch log store and proxy containers.
      • Pod unschedulable. Also, a condition is shown for a number of issues; see Example condition messages.
      4
      The Elasticsearch log store nodes in the cluster, with upgradeStatus.
      5
      The Elasticsearch log store client, data, and master pods in the cluster, listed under failed, notReady, or ready state.
4.4.1.1. Example condition messages

The following are examples of some condition messages from the Status section of the Elasticsearch instance.

The following status message indicates that a node has exceeded the configured low watermark, and no shard will be allocated to this node.

status:
  nodes:
  - conditions:
    - lastTransitionTime: 2019-03-15T15:57:22Z
      message: Disk storage usage for node is 27.5gb (36.74%). Shards will be not
        be allocated on this node.
      reason: Disk Watermark Low
      status: "True"
      type: NodeStorage
    deploymentName: example-elasticsearch-cdm-0-1
    upgradeStatus: {}

The following status message indicates that a node has exceeded the configured high watermark, and shards will be relocated to other nodes.

status:
  nodes:
  - conditions:
    - lastTransitionTime: 2019-03-15T16:04:45Z
      message: Disk storage usage for node is 27.5gb (36.74%). Shards will be relocated
        from this node.
      reason: Disk Watermark High
      status: "True"
      type: NodeStorage
    deploymentName: example-elasticsearch-cdm-0-1
    upgradeStatus: {}

The following status message indicates that the Elasticsearch log store node selector in the custom resource (CR) does not match any nodes in the cluster:

status:
    nodes:
    - conditions:
      - lastTransitionTime: 2019-04-10T02:26:24Z
        message: '0/8 nodes are available: 8 node(s) didn''t match node selector.'
        reason: Unschedulable
        status: "True"
        type: Unschedulable

The following status message indicates that the Elasticsearch log store CR uses a non-existent persistent volume claim (PVC).

status:
   nodes:
   - conditions:
     - last Transition Time:  2019-04-10T05:55:51Z
       message:               pod has unbound immediate PersistentVolumeClaims (repeated 5 times)
       reason:                Unschedulable
       status:                True
       type:                  Unschedulable

The following status message indicates that your Elasticsearch log store cluster does not have enough nodes to support the redundancy policy.

status:
  clusterHealth: ""
  conditions:
  - lastTransitionTime: 2019-04-17T20:01:31Z
    message: Wrong RedundancyPolicy selected. Choose different RedundancyPolicy or
      add more nodes with data roles
    reason: Invalid Settings
    status: "True"
    type: InvalidRedundancy

This status message indicates your cluster has too many control plane nodes:

status:
  clusterHealth: green
  conditions:
    - lastTransitionTime: '2019-04-17T20:12:34Z'
      message: >-
        Invalid master nodes count. Please ensure there are no more than 3 total
        nodes with master roles
      reason: Invalid Settings
      status: 'True'
      type: InvalidMasters

The following status message indicates that Elasticsearch storage does not support the change you tried to make.

For example:

status:
  clusterHealth: green
  conditions:
    - lastTransitionTime: "2021-05-07T01:05:13Z"
      message: Changing the storage structure for a custom resource is not supported
      reason: StorageStructureChangeIgnored
      status: 'True'
      type: StorageStructureChangeIgnored

The reason and type fields specify the type of unsupported change:

StorageClassNameChangeIgnored
Unsupported change to the storage class name.
StorageSizeChangeIgnored
Unsupported change the storage size.
StorageStructureChangeIgnored

Unsupported change between ephemeral and persistent storage structures.

Important

If you try to configure the ClusterLogging CR to switch from ephemeral to persistent storage, the OpenShift Elasticsearch Operator creates a persistent volume claim (PVC) but does not create a persistent volume (PV). To clear the StorageStructureChangeIgnored status, you must revert the change to the ClusterLogging CR and delete the PVC.

4.4.2. Viewing the status of the log store components

You can view the status for a number of the log store components.

Elasticsearch indices

You can view the status of the Elasticsearch indices.

  1. Get the name of an Elasticsearch pod:

    $ oc get pods --selector component=elasticsearch -o name

    Example output

    pod/elasticsearch-cdm-1godmszn-1-6f8495-vp4lw
    pod/elasticsearch-cdm-1godmszn-2-5769cf-9ms2n
    pod/elasticsearch-cdm-1godmszn-3-f66f7d-zqkz7

  2. Get the status of the indices:

    $ oc exec elasticsearch-cdm-4vjor49p-2-6d4d7db474-q2w7z -- indices

    Example output

    Defaulting container name to elasticsearch.
    Use 'oc describe pod/elasticsearch-cdm-4vjor49p-2-6d4d7db474-q2w7z -n openshift-logging' to see all of the containers in this pod.
    
    green  open   infra-000002                                                     S4QANnf1QP6NgCegfnrnbQ   3   1     119926            0        157             78
    green  open   audit-000001                                                     8_EQx77iQCSTzFOXtxRqFw   3   1          0            0          0              0
    green  open   .security                                                        iDjscH7aSUGhIdq0LheLBQ   1   1          5            0          0              0
    green  open   .kibana_-377444158_kubeadmin                                     yBywZ9GfSrKebz5gWBZbjw   3   1          1            0          0              0
    green  open   infra-000001                                                     z6Dpe__ORgiopEpW6Yl44A   3   1     871000            0        874            436
    green  open   app-000001                                                       hIrazQCeSISewG3c2VIvsQ   3   1       2453            0          3              1
    green  open   .kibana_1                                                        JCitcBMSQxKOvIq6iQW6wg   1   1          0            0          0              0
    green  open   .kibana_-1595131456_user1                                        gIYFIEGRRe-ka0W3okS-mQ   3   1          1            0          0              0

Log store pods

You can view the status of the pods that host the log store.

  1. Get the name of a pod:

    $ oc get pods --selector component=elasticsearch -o name

    Example output

    pod/elasticsearch-cdm-1godmszn-1-6f8495-vp4lw
    pod/elasticsearch-cdm-1godmszn-2-5769cf-9ms2n
    pod/elasticsearch-cdm-1godmszn-3-f66f7d-zqkz7

  2. Get the status of a pod:

    $ oc describe pod elasticsearch-cdm-1godmszn-1-6f8495-vp4lw

    The output includes the following status information:

    Example output

    ....
    Status:             Running
    
    ....
    
    Containers:
      elasticsearch:
        Container ID:   cri-o://b7d44e0a9ea486e27f47763f5bb4c39dfd2
        State:          Running
          Started:      Mon, 08 Jun 2020 10:17:56 -0400
        Ready:          True
        Restart Count:  0
        Readiness:  exec [/usr/share/elasticsearch/probe/readiness.sh] delay=10s timeout=30s period=5s #success=1 #failure=3
    
    ....
    
      proxy:
        Container ID:  cri-o://3f77032abaddbb1652c116278652908dc01860320b8a4e741d06894b2f8f9aa1
        State:          Running
          Started:      Mon, 08 Jun 2020 10:18:38 -0400
        Ready:          True
        Restart Count:  0
    
    ....
    
    Conditions:
      Type              Status
      Initialized       True
      Ready             True
      ContainersReady   True
      PodScheduled      True
    
    ....
    
    Events:          <none>

Log storage pod deployment configuration

You can view the status of the log store deployment configuration.

  1. Get the name of a deployment configuration:

    $ oc get deployment --selector component=elasticsearch -o name

    Example output

    deployment.extensions/elasticsearch-cdm-1gon-1
    deployment.extensions/elasticsearch-cdm-1gon-2
    deployment.extensions/elasticsearch-cdm-1gon-3

  2. Get the deployment configuration status:

    $ oc describe deployment elasticsearch-cdm-1gon-1

    The output includes the following status information:

    Example output

    ....
      Containers:
       elasticsearch:
        Image:      registry.redhat.io/openshift-logging/elasticsearch6-rhel8
        Readiness:  exec [/usr/share/elasticsearch/probe/readiness.sh] delay=10s timeout=30s period=5s #success=1 #failure=3
    
    ....
    
    Conditions:
      Type           Status   Reason
      ----           ------   ------
      Progressing    Unknown  DeploymentPaused
      Available      True     MinimumReplicasAvailable
    
    ....
    
    Events:          <none>

Log store replica set

You can view the status of the log store replica set.

  1. Get the name of a replica set:

    $ oc get replicaSet --selector component=elasticsearch -o name
    
    replicaset.extensions/elasticsearch-cdm-1gon-1-6f8495
    replicaset.extensions/elasticsearch-cdm-1gon-2-5769cf
    replicaset.extensions/elasticsearch-cdm-1gon-3-f66f7d
  2. Get the status of the replica set:

    $ oc describe replicaSet elasticsearch-cdm-1gon-1-6f8495

    The output includes the following status information:

    Example output

    ....
      Containers:
       elasticsearch:
        Image:      registry.redhat.io/openshift-logging/elasticsearch6-rhel8@sha256:4265742c7cdd85359140e2d7d703e4311b6497eec7676957f455d6908e7b1c25
        Readiness:  exec [/usr/share/elasticsearch/probe/readiness.sh] delay=10s timeout=30s period=5s #success=1 #failure=3
    
    ....
    
    Events:          <none>

4.4.3. Elasticsearch cluster status

A dashboard in the Observe section of the OpenShift Container Platform web console displays the status of the Elasticsearch cluster.

To get the status of the OpenShift Elasticsearch cluster, visit the dashboard in the Observe section of the OpenShift Container Platform web console at <cluster_url>/monitoring/dashboards/grafana-dashboard-cluster-logging.

Elasticsearch status fields

eo_elasticsearch_cr_cluster_management_state

Shows whether the Elasticsearch cluster is in a managed or unmanaged state. For example:

eo_elasticsearch_cr_cluster_management_state{state="managed"} 1
eo_elasticsearch_cr_cluster_management_state{state="unmanaged"} 0
eo_elasticsearch_cr_restart_total

Shows the number of times the Elasticsearch nodes have restarted for certificate restarts, rolling restarts, or scheduled restarts. For example:

eo_elasticsearch_cr_restart_total{reason="cert_restart"} 1
eo_elasticsearch_cr_restart_total{reason="rolling_restart"} 1
eo_elasticsearch_cr_restart_total{reason="scheduled_restart"} 3
es_index_namespaces_total

Shows the total number of Elasticsearch index namespaces. For example:

Total number of Namespaces.
es_index_namespaces_total 5
es_index_document_count

Shows the number of records for each namespace. For example:

es_index_document_count{namespace="namespace_1"} 25
es_index_document_count{namespace="namespace_2"} 10
es_index_document_count{namespace="namespace_3"} 5

The "Secret Elasticsearch fields are either missing or empty" message

If Elasticsearch is missing the admin-cert, admin-key, logging-es.crt, or logging-es.key files, the dashboard shows a status message similar to the following example:

message": "Secret \"elasticsearch\" fields are either missing or empty: [admin-cert, admin-key, logging-es.crt, logging-es.key]",
"reason": "Missing Required Secrets",

Chapter 5. About Logging

As a cluster administrator, you can deploy logging on an OpenShift Container Platform cluster, and use it to collect and aggregate node system audit logs, application container logs, and infrastructure logs. You can forward logs to your chosen log outputs, including on-cluster, Red Hat managed log storage. You can also visualize your log data in the OpenShift Container Platform web console, or the Kibana web console, depending on your deployed log storage solution.

Note

The Kibana web console is now deprecated is planned to be removed in a future logging release.

OpenShift Container Platform cluster administrators can deploy logging by using Operators. For information, see Installing logging.

The Operators are responsible for deploying, upgrading, and maintaining logging. After the Operators are installed, you can create a ClusterLogging custom resource (CR) to schedule logging pods and other resources necessary to support logging. You can also create a ClusterLogForwarder CR to specify which logs are collected, how they are transformed, and where they are forwarded to.

Note

Because the internal OpenShift Container Platform Elasticsearch log store does not provide secure storage for audit logs, audit logs are not stored in the internal Elasticsearch instance by default. If you want to send the audit logs to the default internal Elasticsearch log store, for example to view the audit logs in Kibana, you must use the Log Forwarding API as described in Forward audit logs to the log store.

5.1. Logging architecture

The major components of the logging are:

Collector

The collector is a daemonset that deploys pods to each OpenShift Container Platform node. It collects log data from each node, transforms the data, and forwards it to configured outputs. You can use the Vector collector or the legacy Fluentd collector.

Note

Fluentd is deprecated and is planned to be removed in a future release. Red Hat provides bug fixes and support for this feature during the current release lifecycle, but this feature no longer receives enhancements. As an alternative to Fluentd, you can use Vector instead.

Log store

The log store stores log data for analysis and is the default output for the log forwarder. You can use the default LokiStack log store, the legacy Elasticsearch log store, or forward logs to additional external log stores.

Note

The Logging 5.9 release does not contain an updated version of the OpenShift Elasticsearch Operator. If you currently use the OpenShift Elasticsearch Operator released with Logging 5.8, it will continue to work with Logging until the EOL of Logging 5.8. As an alternative to using the OpenShift Elasticsearch Operator to manage the default log storage, you can use the Loki Operator. For more information on the Logging lifecycle dates, see Platform Agnostic Operators.

Visualization

You can use a UI component to view a visual representation of your log data. The UI provides a graphical interface to search, query, and view stored logs. The OpenShift Container Platform web console UI is provided by enabling the OpenShift Container Platform console plugin.

Note

The Kibana web console is now deprecated is planned to be removed in a future logging release.

Logging collects container logs and node logs. These are categorized into types:

Application logs
Container logs generated by user applications running in the cluster, except infrastructure container applications.
Infrastructure logs
Container logs generated by infrastructure namespaces: openshift*, kube*, or default, as well as journald messages from nodes.
Audit logs
Logs generated by auditd, the node audit system, which are stored in the /var/log/audit/audit.log file, and logs from the auditd, kube-apiserver, openshift-apiserver services, as well as the ovn project if enabled.

5.2. About deploying logging

Administrators can deploy the logging by using the OpenShift Container Platform web console or the OpenShift CLI (oc) to install the logging Operators. The Operators are responsible for deploying, upgrading, and maintaining the logging.

Administrators and application developers can view the logs of the projects for which they have view access.

5.2.1. Logging custom resources

You can configure your logging deployment with custom resource (CR) YAML files implemented by each Operator.

Red Hat OpenShift Logging Operator:

  • ClusterLogging (CL) - After the Operators are installed, you create a ClusterLogging custom resource (CR) to schedule logging pods and other resources necessary to support the logging. The ClusterLogging CR deploys the collector and forwarder, which currently are both implemented by a daemonset running on each node. The Red Hat OpenShift Logging Operator watches the ClusterLogging CR and adjusts the logging deployment accordingly.
  • ClusterLogForwarder (CLF) - Generates collector configuration to forward logs per user configuration.

Loki Operator:

  • LokiStack - Controls the Loki cluster as log store and the web proxy with OpenShift Container Platform authentication integration to enforce multi-tenancy.

OpenShift Elasticsearch Operator:

Note

These CRs are generated and managed by the OpenShift Elasticsearch Operator. Manual changes cannot be made without being overwritten by the Operator.

  • ElasticSearch - Configure and deploy an Elasticsearch instance as the default log store.
  • Kibana - Configure and deploy Kibana instance to search, query and view logs.

5.2.2. About JSON OpenShift Container Platform Logging

You can use JSON logging to configure the Log Forwarding API to parse JSON strings into a structured object. You can perform the following tasks:

  • Parse JSON logs
  • Configure JSON log data for Elasticsearch
  • Forward JSON logs to the Elasticsearch log store

5.2.3. About collecting and storing Kubernetes events

The OpenShift Container Platform Event Router is a pod that watches Kubernetes events and logs them for collection by OpenShift Container Platform Logging. You must manually deploy the Event Router.

For information, see About collecting and storing Kubernetes events.

5.2.4. About troubleshooting OpenShift Container Platform Logging

You can troubleshoot the logging issues by performing the following tasks:

  • Viewing logging status
  • Viewing the status of the log store
  • Understanding logging alerts
  • Collecting logging data for Red Hat Support
  • Troubleshooting for critical alerts

5.2.5. About exporting fields

The logging system exports fields. Exported fields are present in the log records and are available for searching from Elasticsearch and Kibana.

For information, see About exporting fields.

5.2.6. About event routing

The Event Router is a pod that watches OpenShift Container Platform events so they can be collected by logging. The Event Router collects events from all projects and writes them to STDOUT. Fluentd collects those events and forwards them into the OpenShift Container Platform Elasticsearch instance. Elasticsearch indexes the events to the infra index.

You must manually deploy the Event Router.

For information, see Collecting and storing Kubernetes events.

Chapter 6. Installing Logging

OpenShift Container Platform Operators use custom resources (CR) to manage applications and their components. High-level configuration and settings are provided by the user within a CR. The Operator translates high-level directives into low-level actions, based on best practices embedded within the Operator’s logic. A custom resource definition (CRD) defines a CR and lists all the configurations available to users of the Operator. Installing an Operator creates the CRDs, which are then used to generate CRs.

Important

You must install the Red Hat OpenShift Logging Operator after the log store Operator.

You deploy logging by installing the Loki Operator or OpenShift Elasticsearch Operator to manage your log store, followed by the Red Hat OpenShift Logging Operator to manage the components of logging. You can use either the OpenShift Container Platform web console or the OpenShift Container Platform CLI to install or configure logging.

Note

The Logging 5.9 release does not contain an updated version of the OpenShift Elasticsearch Operator. If you currently use the OpenShift Elasticsearch Operator released with Logging 5.8, it will continue to work with Logging until the EOL of Logging 5.8. As an alternative to using the OpenShift Elasticsearch Operator to manage the default log storage, you can use the Loki Operator. For more information on the Logging lifecycle dates, see Platform Agnostic Operators.

Tip

You can alternatively apply all example objects.

6.1. Installing Logging with Elasticsearch using the web console

You can use the OpenShift Container Platform web console to install the OpenShift Elasticsearch and Red Hat OpenShift Logging Operators. Elasticsearch is a memory-intensive application. By default, OpenShift Container Platform installs three Elasticsearch nodes with memory requests and limits of 16 GB. This initial set of three OpenShift Container Platform nodes might not have enough memory to run Elasticsearch within your cluster. If you experience memory issues that are related to Elasticsearch, add more Elasticsearch nodes to your cluster rather than increasing the memory on existing nodes.

Note

If you do not want to use the default Elasticsearch log store, you can remove the internal Elasticsearch logStore and Kibana visualization components from the ClusterLogging custom resource (CR). Removing these components is optional but saves resources.

Prerequisites

  • Ensure that you have the necessary persistent storage for Elasticsearch. Note that each Elasticsearch node requires its own storage volume.

    Note

    If you use a local volume for persistent storage, do not use a raw block volume, which is described with volumeMode: block in the LocalVolume object. Elasticsearch cannot use raw block volumes.

Procedure

To install the OpenShift Elasticsearch Operator and Red Hat OpenShift Logging Operator using the OpenShift Container Platform web console:

  1. Install the OpenShift Elasticsearch Operator:

    1. In the OpenShift Container Platform web console, click OperatorsOperatorHub.
    2. Choose OpenShift Elasticsearch Operator from the list of available Operators, and click Install.
    3. Ensure that the All namespaces on the cluster is selected under Installation Mode.
    4. Ensure that openshift-operators-redhat is selected under Installed Namespace.

      You must specify the openshift-operators-redhat namespace. The openshift-operators namespace might contain Community Operators, which are untrusted and could publish a metric with the same name as an OpenShift Container Platform metric, which would cause conflicts.

    5. Select Enable Operator recommended cluster monitoring on this namespace.

      This option sets the openshift.io/cluster-monitoring: "true" label in the Namespace object. You must select this option to ensure that cluster monitoring scrapes the openshift-operators-redhat namespace.

    6. Select stable-5.y as the Update Channel.

      Note

      The stable channel only provides updates to the most recent release of logging. To continue receiving updates for prior releases, you must change your subscription channel to stable-x.y, where x.y represents the major and minor version of logging you have installed. For example, stable-5.7.

    7. Select an Approval Strategy.

      • The Automatic strategy allows Operator Lifecycle Manager (OLM) to automatically update the Operator when a new version is available.
      • The Manual strategy requires a user with appropriate credentials to approve the Operator update.
    8. Click Install.
    9. Verify that the OpenShift Elasticsearch Operator installed by switching to the OperatorsInstalled Operators page.
    10. Ensure that OpenShift Elasticsearch Operator is listed in all projects with a Status of Succeeded.
  2. Install the Red Hat OpenShift Logging Operator:

    1. In the OpenShift Container Platform web console, click OperatorsOperatorHub.
    2. Choose Red Hat OpenShift Logging from the list of available Operators, and click Install.
    3. Ensure that the A specific namespace on the cluster is selected under Installation Mode.
    4. Ensure that Operator recommended namespace is openshift-logging under Installed Namespace.
    5. Select Enable Operator recommended cluster monitoring on this namespace.

      This option sets the openshift.io/cluster-monitoring: "true" label in the Namespace object. You must select this option to ensure that cluster monitoring scrapes the openshift-logging namespace.

    6. Select stable-5.y as the Update Channel.
    7. Select an Approval Strategy.

      • The Automatic strategy allows Operator Lifecycle Manager (OLM) to automatically update the Operator when a new version is available.
      • The Manual strategy requires a user with appropriate credentials to approve the Operator update.
    8. Click Install.
    9. Verify that the Red Hat OpenShift Logging Operator installed by switching to the OperatorsInstalled Operators page.
    10. Ensure that Red Hat OpenShift Logging is listed in the openshift-logging project with a Status of Succeeded.

      If the Operator does not appear as installed, to troubleshoot further:

      • Switch to the OperatorsInstalled Operators page and inspect the Status column for any errors or failures.
      • Switch to the WorkloadsPods page and check the logs in any pods in the openshift-logging project that are reporting issues.
  3. Create an OpenShift Logging instance:

    1. Switch to the AdministrationCustom Resource Definitions page.
    2. On the Custom Resource Definitions page, click ClusterLogging.
    3. On the Custom Resource Definition details page, select View Instances from the Actions menu.
    4. On the ClusterLoggings page, click Create ClusterLogging.

      You might have to refresh the page to load the data.

    5. In the YAML field, replace the code with the following:

      Note

      This default OpenShift Logging configuration should support a wide array of environments. Review the topics on tuning and configuring logging components for information on modifications you can make to your OpenShift Logging cluster.

      apiVersion: logging.openshift.io/v1
      kind: ClusterLogging
      metadata:
        name: instance 1
        namespace: openshift-logging
      spec:
        managementState: Managed 2
        logStore:
          type: elasticsearch 3
          retentionPolicy: 4
            application:
              maxAge: 1d
            infra:
              maxAge: 7d
            audit:
              maxAge: 7d
          elasticsearch:
            nodeCount: 3 5
            storage:
              storageClassName: <storage_class_name> 6
              size: 200G
            resources: 7
                limits:
                  memory: 16Gi
                requests:
                  memory: 16Gi
            proxy: 8
              resources:
                limits:
                  memory: 256Mi
                requests:
                  memory: 256Mi
            redundancyPolicy: SingleRedundancy
        visualization:
          type: kibana 9
          kibana:
            replicas: 1
        collection:
          type: fluentd 10
          fluentd: {}
      1
      The name must be instance.
      2
      The OpenShift Logging management state. In some cases, if you change the OpenShift Logging defaults, you must set this to Unmanaged. However, an unmanaged deployment does not receive updates until OpenShift Logging is placed back into a managed state.
      3
      Settings for configuring Elasticsearch. Using the CR, you can configure shard replication policy and persistent storage.
      4
      Specify the length of time that Elasticsearch should retain each log source. Enter an integer and a time designation: weeks(w), hours(h/H), minutes(m) and seconds(s). For example, 7d for seven days. Logs older than the maxAge are deleted. You must specify a retention policy for each log source or the Elasticsearch indices will not be created for that source.
      5
      Specify the number of Elasticsearch nodes. See the note that follows this list.
      6
      Enter the name of an existing storage class for Elasticsearch storage. For best performance, specify a storage class that allocates block storage. If you do not specify a storage class, OpenShift Logging uses ephemeral storage.
      7
      Specify the CPU and memory requests for Elasticsearch as needed. If you leave these values blank, the OpenShift Elasticsearch Operator sets default values that should be sufficient for most deployments. The default values are 16Gi for the memory request and 1 for the CPU request.
      8
      Specify the CPU and memory requests for the Elasticsearch proxy as needed. If you leave these values blank, the OpenShift Elasticsearch Operator sets default values that should be sufficient for most deployments. The default values are 256Mi for the memory request and 100m for the CPU request.
      9
      Settings for configuring Kibana. Using the CR, you can scale Kibana for redundancy and configure the CPU and memory for your Kibana nodes. For more information, see Configuring the log visualizer.
      10
      Settings for configuring Fluentd. Using the CR, you can configure Fluentd CPU and memory limits. For more information, see "Configuring Fluentd".
      Note

      The maximum number of master nodes is three. If you specify a nodeCount greater than 3, OpenShift Container Platform creates three Elasticsearch nodes that are Master-eligible nodes, with the master, client, and data roles. The additional Elasticsearch nodes are created as Data-only nodes, using client and data roles. Master nodes perform cluster-wide actions such as creating or deleting an index, shard allocation, and tracking nodes. Data nodes hold the shards and perform data-related operations such as CRUD, search, and aggregations. Data-related operations are I/O-, memory-, and CPU-intensive. It is important to monitor these resources and to add more Data nodes if the current nodes are overloaded.

      For example, if nodeCount=4, the following nodes are created:

      $ oc get deployment

      Example output

      cluster-logging-operator-66f77ffccb-ppzbg       1/1    Running 0 7m
      elasticsearch-cd-tuhduuw-1-f5c885dbf-dlqws      1/1    Running 0 2m4s
      elasticsearch-cdm-ftuhduuw-1-ffc4b9566-q6bhp    2/2    Running 0 2m40s
      elasticsearch-cdm-ftuhduuw-2-7b4994dbfc-rd2gc   2/2    Running 0 2m36s
      elasticsearch-cdm-ftuhduuw-3-84b5ff7ff8-gqnm2   2/2    Running 0 2m4s

    6. Click Create. This creates the logging components, the Elasticsearch custom resource and components, and the Kibana interface.
  4. Verify the install:

    1. Switch to the WorkloadsPods page.
    2. Select the openshift-logging project.

      You should see several pods for OpenShift Logging, Elasticsearch, your collector, and Kibana similar to the following list:

      Example output

      cluster-logging-operator-66f77ffccb-ppzbg       1/1     Running   0          7m
      elasticsearch-cdm-ftuhduuw-1-ffc4b9566-q6bhp    2/2     Running   0          2m40s
      elasticsearch-cdm-ftuhduuw-2-7b4994dbfc-rd2gc   2/2     Running   0          2m36s
      elasticsearch-cdm-ftuhduuw-3-84b5ff7ff8-gqnm2   2/2     Running   0          2m4s
      collector-587vb                                   1/1     Running   0          2m26s
      collector-7mpb9                                   1/1     Running   0          2m30s
      collector-flm6j                                   1/1     Running   0          2m33s
      collector-gn4rn                                   1/1     Running   0          2m26s
      collector-nlgb6                                   1/1     Running   0          2m30s
      collector-snpkt                                   1/1     Running   0          2m28s
      kibana-d6d5668c5-rppqm                          2/2     Running   0          2m39s

6.2. Installing Logging with Elasticsearch using the CLI

Elasticsearch is a memory-intensive application. By default, OpenShift Container Platform installs three Elasticsearch nodes with memory requests and limits of 16 GB. This initial set of three OpenShift Container Platform nodes might not have enough memory to run Elasticsearch within your cluster. If you experience memory issues that are related to Elasticsearch, add more Elasticsearch nodes to your cluster rather than increasing the memory on existing nodes.

Prerequisites

  • Ensure that you have the necessary persistent storage for Elasticsearch. Note that each Elasticsearch node requires its own storage volume.

    Note

    If you use a local volume for persistent storage, do not use a raw block volume, which is described with volumeMode: block in the LocalVolume object. Elasticsearch cannot use raw block volumes.

Procedure

  1. Create a Namespace object for the OpenShift Elasticsearch Operator:

    Example Namespace object

    apiVersion: v1
    kind: Namespace
    metadata:
      name: openshift-operators-redhat 1
      annotations:
        openshift.io/node-selector: ""
      labels:
        openshift.io/cluster-monitoring: "true" 2

    1
    You must specify the openshift-operators-redhat namespace. The openshift-operators namespace might contain Community Operators, which are untrusted and could publish a metric with the same name as an OpenShift Container Platform metric, which would cause conflicts.
    2
    A string value that specifies the label as shown to ensure that cluster monitoring scrapes the openshift-operators-redhat namespace.
  2. Apply the Namespace object by running the following command:

    $ oc apply -f <filename>.yaml
  3. Create a Namespace object for the Red Hat OpenShift Logging Operator:

    Example Namespace object

    apiVersion: v1
    kind: Namespace
    metadata:
      name: openshift-logging 1
      annotations:
        openshift.io/node-selector: ""
      labels:
        openshift.io/cluster-monitoring: "true"

    1
    You must specify openshift-logging as the namespace for logging versions 5.7 and earlier. For logging 5.8 and later, you can use any namespace.
  4. Apply the Namespace object by running the following command:

    $ oc apply -f <filename>.yaml
  5. Create an OperatorGroup object for the OpenShift Elasticsearch Operator:

    Example OperatorGroup object

    apiVersion: operators.coreos.com/v1
    kind: OperatorGroup
    metadata:
      name: openshift-operators-redhat
      namespace: openshift-operators-redhat 1
    spec: {}

    1
    You must specify the openshift-operators-redhat namespace.
  6. Apply the OperatorGroup object by running the following command:

    $ oc apply -f <filename>.yaml
  7. Create a Subscription object to subscribe a namespace to the OpenShift Elasticsearch Operator:

    Note

    The stable channel only provides updates to the most recent release of logging. To continue receiving updates for prior releases, you must change your subscription channel to stable-x.y, where x.y represents the major and minor version of logging you have installed. For example, stable-5.7.

    Example Subscription object

    apiVersion: operators.coreos.com/v1alpha1
    kind: Subscription
    metadata:
      name: elasticsearch-operator
      namespace: openshift-operators-redhat 1
    spec:
      channel: <channel> 2
      installPlanApproval: Automatic 3
      source: redhat-operators 4
      sourceNamespace: openshift-marketplace
      name: elasticsearch-operator

    1
    You must specify the openshift-operators-redhat namespace.
    2
    Specify stable, or stable-<x.y> as the channel.
    3
    Automatic allows the Operator Lifecycle Manager (OLM) to automatically update the Operator when a new version is available. Manual requires a user with appropriate credentials to approve the Operator update.
    4
    Specify redhat-operators. If your OpenShift Container Platform cluster is installed on a restricted network, also known as a disconnected cluster, specify the name of the CatalogSource object you created when you configured the Operator Lifecycle Manager (OLM)
  8. Apply the subscription by running the following command:

    $ oc apply -f <filename>.yaml
  9. Verify the Operator installation by running the following command:

    $ oc get csv --all-namespaces

    Example output

    NAMESPACE                                          NAME                            DISPLAY                            VERSION          REPLACES                        PHASE
    default                                            elasticsearch-operator.v5.8.3   OpenShift Elasticsearch Operator   5.8.3            elasticsearch-operator.v5.8.2   Succeeded
    kube-node-lease                                    elasticsearch-operator.v5.8.3   OpenShift Elasticsearch Operator   5.8.3            elasticsearch-operator.v5.8.2   Succeeded
    kube-public                                        elasticsearch-operator.v5.8.3   OpenShift Elasticsearch Operator   5.8.3            elasticsearch-operator.v5.8.2   Succeeded
    kube-system                                        elasticsearch-operator.v5.8.3   OpenShift Elasticsearch Operator   5.8.3            elasticsearch-operator.v5.8.2   Succeeded
    openshift-apiserver-operator                       elasticsearch-operator.v5.8.3   OpenShift Elasticsearch Operator   5.8.3            elasticsearch-operator.v5.8.2   Succeeded
    openshift-apiserver                                elasticsearch-operator.v5.8.3   OpenShift Elasticsearch Operator   5.8.3            elasticsearch-operator.v5.8.2   Succeeded
    openshift-authentication-operator                  elasticsearch-operator.v5.8.3   OpenShift Elasticsearch Operator   5.8.3            elasticsearch-operator.v5.8.2   Succeeded
    openshift-authentication                           elasticsearch-operator.v5.8.3   OpenShift Elasticsearch Operator   5.8.3            elasticsearch-operator.v5.8.2   Succeeded
    openshift-cloud-controller-manager-operator        elasticsearch-operator.v5.8.3   OpenShift Elasticsearch Operator   5.8.3            elasticsearch-operator.v5.8.2   Succeeded
    openshift-cloud-controller-manager                 elasticsearch-operator.v5.8.3   OpenShift Elasticsearch Operator   5.8.3            elasticsearch-operator.v5.8.2   Succeeded
    openshift-cloud-credential-operator                elasticsearch-operator.v5.8.3   OpenShift Elasticsearch Operator   5.8.3            elasticsearch-operator.v5.8.2   Succeeded

  10. Create an OperatorGroup object for the Red Hat OpenShift Logging Operator:

    Example OperatorGroup object

    apiVersion: operators.coreos.com/v1
    kind: OperatorGroup
    metadata:
      name: cluster-logging
      namespace: openshift-logging 1
    spec:
      targetNamespaces:
      - openshift-logging 2

    1
    You must specify openshift-logging as the namespace for logging versions 5.7 and earlier. For logging 5.8 and later, you can use any namespace.
    2
    You must specify openshift-logging as the namespace for logging versions 5.7 and earlier. For logging 5.8 and later, you can use any namespace.
  11. Apply the OperatorGroup object by running the following command:

    $ oc apply -f <filename>.yaml
  12. Create a Subscription object to subscribe the namespace to the Red Hat OpenShift Logging Operator:

    Example Subscription object

    apiVersion: operators.coreos.com/v1alpha1
    kind: Subscription
    metadata:
      name: cluster-logging
      namespace: openshift-logging 1
    spec:
      channel: stable 2
      name: cluster-logging
      source: redhat-operators 3
      sourceNamespace: openshift-marketplace

    1
    You must specify the openshift-logging namespace for logging versions 5.7 and older. For logging 5.8 and later versions, you can use any namespace.
    2
    Specify stable or stable-x.y as the channel.
    3
    Specify redhat-operators. If your OpenShift Container Platform cluster is installed on a restricted network, also known as a disconnected cluster, specify the name of the CatalogSource object you created when you configured the Operator Lifecycle Manager (OLM).
  13. Apply the subscription object by running the following command:

    $ oc apply -f <filename>.yaml
  14. Create a ClusterLogging object as a YAML file:

    Example ClusterLogging object

    apiVersion: logging.openshift.io/v1
    kind: ClusterLogging
    metadata:
      name: instance 1
      namespace: openshift-logging
    spec:
      managementState: Managed 2
      logStore:
        type: elasticsearch 3
        retentionPolicy: 4
          application:
            maxAge: 1d
          infra:
            maxAge: 7d
          audit:
            maxAge: 7d
        elasticsearch:
          nodeCount: 3 5
          storage:
            storageClassName: <storage_class_name> 6
            size: 200G
          resources: 7
              limits:
                memory: 16Gi
              requests:
                memory: 16Gi
          proxy: 8
            resources:
              limits:
                memory: 256Mi
              requests:
                memory: 256Mi
          redundancyPolicy: SingleRedundancy
      visualization:
        type: kibana 9
        kibana:
          replicas: 1
      collection:
        type: fluentd 10
        fluentd: {}

    1
    The name must be instance.
    2
    The OpenShift Logging management state. In some cases, if you change the OpenShift Logging defaults, you must set this to Unmanaged. However, an unmanaged deployment does not receive updates until OpenShift Logging is placed back into a managed state.
    3
    Settings for configuring Elasticsearch. Using the CR, you can configure shard replication policy and persistent storage.
    4
    Specify the length of time that Elasticsearch should retain each log source. Enter an integer and a time designation: weeks(w), hours(h/H), minutes(m) and seconds(s). For example, 7d for seven days. Logs older than the maxAge are deleted. You must specify a retention policy for each log source or the Elasticsearch indices will not be created for that source.
    5
    Specify the number of Elasticsearch nodes.
    6
    Enter the name of an existing storage class for Elasticsearch storage. For best performance, specify a storage class that allocates block storage. If you do not specify a storage class, OpenShift Logging uses ephemeral storage.
    7
    Specify the CPU and memory requests for Elasticsearch as needed. If you leave these values blank, the OpenShift Elasticsearch Operator sets default values that should be sufficient for most deployments. The default values are 16Gi for the memory request and 1 for the CPU request.
    8
    Specify the CPU and memory requests for the Elasticsearch proxy as needed. If you leave these values blank, the OpenShift Elasticsearch Operator sets default values that should be sufficient for most deployments. The default values are 256Mi for the memory request and 100m for the CPU request.
    9
    Settings for configuring Kibana. Using the CR, you can scale Kibana for redundancy and configure the CPU and memory for your Kibana nodes.
    10
    Settings for configuring Fluentd. Using the CR, you can configure Fluentd CPU and memory limits.
    Note

    The maximum number of master nodes is three. If you specify a nodeCount greater than 3, OpenShift Container Platform creates three Elasticsearch nodes that are Master-eligible nodes, with the master, client, and data roles. The additional Elasticsearch nodes are created as Data-only nodes, using client and data roles. Master nodes perform cluster-wide actions such as creating or deleting an index, shard allocation, and tracking nodes. Data nodes hold the shards and perform data-related operations such as CRUD, search, and aggregations. Data-related operations are I/O-, memory-, and CPU-intensive. It is important to monitor these resources and to add more Data nodes if the current nodes are overloaded.

    For example, if nodeCount=4, the following nodes are created:

    $ oc get deployment

    Example output

    cluster-logging-operator-66f77ffccb-ppzbg       1/1     Running   0          7m
    elasticsearch-cdm-ftuhduuw-1-ffc4b9566-q6bhp    2/2     Running   0          2m40s
    elasticsearch-cdm-ftuhduuw-2-7b4994dbfc-rd2gc   2/2     Running   0          2m36s
    elasticsearch-cdm-ftuhduuw-3-84b5ff7ff8-gqnm2   2/2     Running   0          2m4s

  15. Apply the ClusterLogging CR by running the following command:

    $ oc apply -f <filename>.yaml
  16. Verify the installation by running the following command:

    $ oc get pods -n openshift-logging

    Example output

    NAME                                            READY   STATUS    RESTARTS   AGE
    cluster-logging-operator-66f77ffccb-ppzbg       1/1     Running   0          7m
    elasticsearch-cdm-ftuhduuw-1-ffc4b9566-q6bhp    2/2     Running   0          2m40s
    elasticsearch-cdm-ftuhduuw-2-7b4994dbfc-rd2gc   2/2     Running   0          2m36s
    elasticsearch-cdm-ftuhduuw-3-84b5ff7ff8-gqnm2   2/2     Running   0          2m4s
    collector-587vb                                 1/1     Running   0          2m26s
    collector-7mpb9                                 1/1     Running   0          2m30s
    collector-flm6j                                 1/1     Running   0          2m33s
    collector-gn4rn                                 1/1     Running   0          2m26s
    collector-nlgb6                                 1/1     Running   0          2m30s
    collector-snpkt                                 1/1     Running   0          2m28s
    kibana-d6d5668c5-rppqm                          2/2     Running   0          2m39s

Important

If there is no retention period defined on the s3 bucket or in the LokiStack custom resource (CR), then the logs are not pruned and they stay in the s3 bucket forever, which might fill up the s3 storage.

6.3. Installing Logging and the Loki Operator using the CLI

To install and configure logging on your OpenShift Container Platform cluster, an Operator such as Loki Operator for log storage must be installed first. This can be done from the OpenShift Container Platform CLI.

Prerequisites

  • You have administrator permissions.
  • You installed the OpenShift CLI (oc).
  • You have access to a supported object store. For example: AWS S3, Google Cloud Storage, Azure, Swift, Minio, or OpenShift Data Foundation.
Note

The stable channel only provides updates to the most recent release of logging. To continue receiving updates for prior releases, you must change your subscription channel to stable-x.y, where x.y represents the major and minor version of logging you have installed. For example, stable-5.7.

  1. Create a Namespace object for Loki Operator:

    Example Namespace object

    apiVersion: v1
    kind: Namespace
    metadata:
      name: openshift-operators-redhat 1
      annotations:
        openshift.io/node-selector: ""
      labels:
        openshift.io/cluster-monitoring: "true" 2

    1
    You must specify the openshift-operators-redhat namespace. To prevent possible conflicts with metrics, you should configure the Prometheus Cluster Monitoring stack to scrape metrics from the openshift-operators-redhat namespace and not the openshift-operators namespace. The openshift-operators namespace might contain community Operators, which are untrusted and could publish a metric with the same name as an OpenShift Container Platform metric, which would cause conflicts.
    2
    A string value that specifies the label as shown to ensure that cluster monitoring scrapes the openshift-operators-redhat namespace.
  2. Apply the Namespace object by running the following command:

    $ oc apply -f <filename>.yaml
  3. Create a Subscription object for Loki Operator:

    Example Subscription object

    apiVersion: operators.coreos.com/v1alpha1
    kind: Subscription
    metadata:
      name: loki-operator
      namespace: openshift-operators-redhat 1
    spec:
      channel: stable 2
      name: loki-operator
      source: redhat-operators 3
      sourceNamespace: openshift-marketplace

    1
    You must specify the openshift-operators-redhat namespace.
    2
    Specify stable, or stable-5.<y> as the channel.
    3
    Specify redhat-operators. If your OpenShift Container Platform cluster is installed on a restricted network, also known as a disconnected cluster, specify the name of the CatalogSource object you created when you configured the Operator Lifecycle Manager (OLM).
  4. Apply the Subscription object by running the following command:

    $ oc apply -f <filename>.yaml
  5. Create a namespace object for the Red Hat OpenShift Logging Operator:

    Example namespace object

    apiVersion: v1
    kind: Namespace
    metadata:
    name: openshift-logging 1
    annotations:
        openshift.io/node-selector: ""
    labels:
        openshift.io/cluster-logging: "true"
        openshift.io/cluster-monitoring: "true" 2

    1
    The Red Hat OpenShift Logging Operator is only deployable to the openshift-logging namespace.
    2
    A string value that specifies the label as shown to ensure that cluster monitoring scrapes the openshift-operators-redhat namespace.
  6. Apply the namespace object by running the following command:

    $ oc apply -f <filename>.yaml
  7. Create an OperatorGroup object

    Example OperatorGroup object

    apiVersion: operators.coreos.com/v1
    kind: OperatorGroup
    metadata:
      name: cluster-logging
      namespace: openshift-logging 1
    spec:
      targetNamespaces:
      - openshift-logging

    1
    You must specify the openshift-logging namespace.
  8. Apply the OperatorGroup object by running the following command:

    $ oc apply -f <filename>.yaml
  9. Create a Subscription object:

    apiVersion: operators.coreos.com/v1alpha1
    kind: Subscription
    metadata:
      name: cluster-logging
      namespace: openshift-logging 1
    spec:
      channel: stable 2
      name: cluster-logging
      source: redhat-operators 3
      sourceNamespace: openshift-marketplace
    1
    You must specify the openshift-logging namespace.
    2
    Specify stable, or stable-5.<y> as the channel.
    3
    Specify redhat-operators. If your OpenShift Container Platform cluster is installed on a restricted network, also known as a disconnected cluster, specify the name of the CatalogSource object you created when you configured the Operator Lifecycle Manager (OLM).
  10. Apply the Subscription object by running the following command:

    $ oc apply -f <filename>.yaml
  11. Create a LokiStack CR:

    Example LokiStack CR

    apiVersion: loki.grafana.com/v1
    kind: LokiStack
    metadata:
      name: logging-loki 1
      namespace: openshift-logging 2
    spec:
      size: 1x.small 3
      storage:
        schemas:
        - version: v12
          effectiveDate: "2022-06-01"
        secret:
          name: logging-loki-s3 4
          type: s3 5
          credentialMode: 6
      storageClassName: <storage_class_name> 7
      tenants:
        mode: openshift-logging 8

    1
    Use the name logging-loki.
    2
    You must specify the openshift-logging namespace.
    3
    Specify the deployment size. In the logging 5.8 and later versions, the supported size options for production instances of Loki are 1x.extra-small, 1x.small, or 1x.medium.
    4
    Specify the name of your log store secret.
    5
    Specify the corresponding storage type.
    6
    Optional field, logging 5.9 and later. Supported user configured values are as follows: static is the default authentication mode available for all supported object storage types using credentials stored in a Secret. token for short-lived tokens retrieved from a credential source. In this mode the static configuration does not contain credentials needed for the object storage. Instead, they are generated during runtime using a service, which allows for shorter-lived credentials and much more granular control. This authentication mode is not supported for all object storage types. token-cco is the default value when Loki is running on managed STS mode and using CCO on STS/WIF clusters.
    7
    Specify the name of a storage class for temporary storage. For best performance, specify a storage class that allocates block storage. Available storage classes for your cluster can be listed by using the oc get storageclasses command.
    8
    LokiStack defaults to running in multi-tenant mode, which cannot be modified. One tenant is provided for each log type: audit, infrastructure, and application logs. This enables access control for individual users and user groups to different log streams.
  12. Apply the LokiStack CR object by running the following command:

    $ oc apply -f <filename>.yaml
  13. Create a ClusterLogging CR object:

    Example ClusterLogging CR object

    apiVersion: logging.openshift.io/v1
    kind: ClusterLogging
    metadata:
      name: instance 1
      namespace: openshift-logging 2
    spec:
      collection:
        type: vector
      logStore:
        lokistack:
          name: logging-loki
        retentionPolicy:
          application:
            maxAge: 7d
          audit:
            maxAge: 7d
          infra:
            maxAge: 7d
        type: lokistack
      visualization:
        type: ocp-console
        ocpConsole:
          logsLimit: 15
      managementState: Managed

    1
    Name must be instance.
    2
    Namespace must be openshift-logging.
  14. Apply the ClusterLogging CR object by running the following command:

    $ oc apply -f <filename>.yaml
  15. Verify the installation by running the following command:

    $ oc get pods -n openshift-logging

    Example output

    $ oc get pods -n openshift-logging
    NAME                                               READY   STATUS    RESTARTS   AGE
    cluster-logging-operator-fb7f7cf69-8jsbq           1/1     Running   0          98m
    collector-222js                                    2/2     Running   0          18m
    collector-g9ddv                                    2/2     Running   0          18m
    collector-hfqq8                                    2/2     Running   0          18m
    collector-sphwg                                    2/2     Running   0          18m
    collector-vv7zn                                    2/2     Running   0          18m
    collector-wk5zz                                    2/2     Running   0          18m
    logging-view-plugin-6f76fbb78f-n2n4n               1/1     Running   0          18m
    lokistack-sample-compactor-0                       1/1     Running   0          42m
    lokistack-sample-distributor-7d7688bcb9-dvcj8      1/1     Running   0          42m
    lokistack-sample-gateway-5f6c75f879-bl7k9          2/2     Running   0          42m
    lokistack-sample-gateway-5f6c75f879-xhq98          2/2     Running   0          42m
    lokistack-sample-index-gateway-0                   1/1     Running   0          42m
    lokistack-sample-ingester-0                        1/1     Running   0          42m
    lokistack-sample-querier-6b7b56bccc-2v9q4          1/1     Running   0          42m
    lokistack-sample-query-frontend-84fb57c578-gq2f7   1/1     Running   0          42m

6.4. Installing Logging and the Loki Operator using the web console

To install and configure logging on your OpenShift Container Platform cluster, an Operator such as Loki Operator for log storage must be installed first. This can be done from the OperatorHub within the web console.

Prerequisites

  • You have access to a supported object store (AWS S3, Google Cloud Storage, Azure, Swift, Minio, OpenShift Data Foundation).
  • You have administrator permissions.
  • You have access to the OpenShift Container Platform web console.

Procedure

  1. In the OpenShift Container Platform web console Administrator perspective, go to OperatorsOperatorHub.
  2. Type Loki Operator in the Filter by keyword field. Click Loki Operator in the list of available Operators, and then click Install.

    Important

    The Community Loki Operator is not supported by Red Hat.

  3. Select stable or stable-x.y as the Update channel.

    Note

    The stable channel only provides updates to the most recent release of logging. To continue receiving updates for prior releases, you must change your subscription channel to stable-x.y, where x.y represents the major and minor version of logging you have installed. For example, stable-5.7.

    The Loki Operator must be deployed to the global operator group namespace openshift-operators-redhat, so the Installation mode and Installed Namespace are already selected. If this namespace does not already exist, it is created for you.

  4. Select Enable Operator-recommended cluster monitoring on this namespace.

    This option sets the openshift.io/cluster-monitoring: "true" label in the Namespace object. You must select this option to ensure that cluster monitoring scrapes the openshift-operators-redhat namespace.

  5. For Update approval select Automatic, then click Install.

    If the approval strategy in the subscription is set to Automatic, the update process initiates as soon as a new Operator version is available in the selected channel. If the approval strategy is set to Manual, you must manually approve pending updates.

  6. Install the Red Hat OpenShift Logging Operator:

    1. In the OpenShift Container Platform web console, click OperatorsOperatorHub.
    2. Choose Red Hat OpenShift Logging from the list of available Operators, and click Install.
    3. Ensure that the A specific namespace on the cluster is selected under Installation Mode.
    4. Ensure that Operator recommended namespace is openshift-logging under Installed Namespace.
    5. Select Enable Operator recommended cluster monitoring on this namespace.

      This option sets the openshift.io/cluster-monitoring: "true" label in the Namespace object. You must select this option to ensure that cluster monitoring scrapes the openshift-logging namespace.

    6. Select stable-5.y as the Update Channel.
    7. Select an Approval Strategy.

      • The Automatic strategy allows Operator Lifecycle Manager (OLM) to automatically update the Operator when a new version is available.
      • The Manual strategy requires a user with appropriate credentials to approve the Operator update.
    8. Click Install.
  7. Go to the OperatorsInstalled Operators page. Click the All instances tab.
  8. From the Create new drop-down list, select LokiStack.
  9. Select YAML view, and then use the following template to create a LokiStack CR:

    Example LokiStack CR

    apiVersion: loki.grafana.com/v1
    kind: LokiStack
    metadata:
      name: logging-loki 1
      namespace: openshift-logging 2
    spec:
      size: 1x.small 3
      storage:
        schemas:
        - version: v12
          effectiveDate: "2022-06-01"
        secret:
          name: logging-loki-s3 4
          type: s3 5
          credentialMode: 6
      storageClassName: <storage_class_name> 7
      tenants:
        mode: openshift-logging 8

    1
    Use the name logging-loki.
    2
    You must specify the openshift-logging namespace.
    3
    Specify the deployment size. In the logging 5.8 and later versions, the supported size options for production instances of Loki are 1x.extra-small, 1x.small, or 1x.medium.
    4
    Specify the name of your log store secret.
    5
    Specify the corresponding storage type.
    6
    Optional field, logging 5.9 and later. Supported user configured values are as follows: static is the default authentication mode available for all supported object storage types using credentials stored in a Secret. token for short-lived tokens retrieved from a credential source. In this mode the static configuration does not contain credentials needed for the object storage. Instead, they are generated during runtime using a service, which allows for shorter-lived credentials and much more granular control. This authentication mode is not supported for all object storage types. token-cco is the default value when Loki is running on managed STS mode and using CCO on STS/WIF clusters.
    7
    Specify the name of a storage class for temporary storage. For best performance, specify a storage class that allocates block storage. Available storage classes for your cluster can be listed by using the oc get storageclasses command.
    8
    LokiStack defaults to running in multi-tenant mode, which cannot be modified. One tenant is provided for each log type: audit, infrastructure, and application logs. This enables access control for individual users and user groups to different log streams.
    Important

    It is not possible to change the number 1x for the deployment size.

  10. Click Create.
  11. Create an OpenShift Logging instance:

    1. Switch to the AdministrationCustom Resource Definitions page.
    2. On the Custom Resource Definitions page, click ClusterLogging.
    3. On the Custom Resource Definition details page, select View Instances from the Actions menu.
    4. On the ClusterLoggings page, click Create ClusterLogging.

      You might have to refresh the page to load the data.

    5. In the YAML field, replace the code with the following:

      apiVersion: logging.openshift.io/v1
      kind: ClusterLogging
      metadata:
        name: instance 1
        namespace: openshift-logging 2
      spec:
        collection:
          type: vector
        logStore:
          lokistack:
            name: logging-loki
          retentionPolicy:
            application:
              maxAge: 7d
            audit:
              maxAge: 7d
            infra:
              maxAge: 7d
          type: lokistack
        visualization:
          type: ocp-console
          ocpConsole:
            logsLimit: 15
      
        managementState: Managed
      1
      Name must be instance.
      2
      Namespace must be openshift-logging.

Verification

  1. Go to OperatorsInstalled Operators.
  2. Make sure the openshift-logging project is selected.
  3. In the Status column, verify that you see green checkmarks with InstallSucceeded and the text Up to date.
Note

An Operator might display a Failed status before the installation finishes. If the Operator install completes with an InstallSucceeded message, refresh the page.

Chapter 7. Updating Logging

There are two types of logging updates: minor release updates (5.y.z) and major release updates (5.y).

7.1. Minor release updates

If you installed the logging Operators using the Automatic update approval option, your Operators receive minor version updates automatically. You do not need to complete any manual update steps.

If you installed the logging Operators using the Manual update approval option, you must manually approve minor version updates. For more information, see Manually approving a pending Operator update.

7.2. Major release updates

For major version updates you must complete some manual steps.

For major release version compatibility and support information, see OpenShift Operator Life Cycles.

7.3. Upgrading the Red Hat OpenShift Logging Operator to watch all namespaces

In logging 5.7 and older versions, the Red Hat OpenShift Logging Operator only watches the openshift-logging namespace. If you want the Red Hat OpenShift Logging Operator to watch all namespaces on your cluster, you must redeploy the Operator. You can complete the following procedure to redeploy the Operator without deleting your logging components.

Prerequisites

  • You have installed the OpenShift CLI (oc).
  • You have administrator permissions.

Procedure

  1. Delete the subscription by running the following command:

    $ oc -n openshift-logging delete subscription <subscription>
  2. Delete the Operator group by running the following command:

    $ oc -n openshift-logging delete operatorgroup <operator_group_name>
  3. Delete the cluster service version (CSV) by running the following command:

    $ oc delete clusterserviceversion cluster-logging.<version>
  4. Redeploy the Red Hat OpenShift Logging Operator by following the "Installing Logging" documentation.

Verification

  • Check that the targetNamespaces field in the OperatorGroup resource is not present or is set to an empty string.

    To do this, run the following command and inspect the output:

    $ oc get operatorgroup <operator_group_name> -o yaml

    Example output

    apiVersion: operators.coreos.com/v1
    kind: OperatorGroup
    metadata:
      name: openshift-logging-f52cn
      namespace: openshift-logging
    spec:
      upgradeStrategy: Default
    status:
      namespaces:
      - ""
    # ...

7.4. Updating the Red Hat OpenShift Logging Operator

To update the Red Hat OpenShift Logging Operator to a new major release version, you must modify the update channel for the Operator subscription.

Prerequisites

  • You have installed the Red Hat OpenShift Logging Operator.
  • You have administrator permissions.
  • You have access to the OpenShift Container Platform web console and are viewing the Administrator perspective.

Procedure

  1. Navigate to OperatorsInstalled Operators.
  2. Select the openshift-logging project.
  3. Click the Red Hat OpenShift Logging Operator.
  4. Click Subscription. In the Subscription details section, click the Update channel link. This link text might be stable or stable-5.y, depending on your current update channel.
  5. In the Change Subscription Update Channel window, select the latest major version update channel, stable-5.y, and click Save. Note the cluster-logging.v5.y.z version.

Verification

  1. Wait for a few seconds, then click OperatorsInstalled Operators. Verify that the Red Hat OpenShift Logging Operator version matches the latest cluster-logging.v5.y.z version.
  2. On the OperatorsInstalled Operators page, wait for the Status field to report Succeeded.

7.5. Updating the Loki Operator

To update the Loki Operator to a new major release version, you must modify the update channel for the Operator subscription.

Prerequisites

  • You have installed the Loki Operator.
  • You have administrator permissions.
  • You have access to the OpenShift Container Platform web console and are viewing the Administrator perspective.

Procedure

  1. Navigate to OperatorsInstalled Operators.
  2. Select the openshift-operators-redhat project.
  3. Click the Loki Operator.
  4. Click Subscription. In the Subscription details section, click the Update channel link. This link text might be stable or stable-5.y, depending on your current update channel.
  5. In the Change Subscription Update Channel window, select the latest major version update channel, stable-5.y, and click Save. Note the loki-operator.v5.y.z version.

Verification

  1. Wait for a few seconds, then click OperatorsInstalled Operators. Verify that the Loki Operator version matches the latest loki-operator.v5.y.z version.
  2. On the OperatorsInstalled Operators page, wait for the Status field to report Succeeded.

7.6. Updating the OpenShift Elasticsearch Operator

To update the OpenShift Elasticsearch Operator to the current version, you must modify the subscription.

Note

The Logging 5.9 release does not contain an updated version of the OpenShift Elasticsearch Operator. If you currently use the OpenShift Elasticsearch Operator released with Logging 5.8, it will continue to work with Logging until the EOL of Logging 5.8. As an alternative to using the OpenShift Elasticsearch Operator to manage the default log storage, you can use the Loki Operator. For more information on the Logging lifecycle dates, see Platform Agnostic Operators.

Prerequisites

  • If you are using Elasticsearch as the default log store, and Kibana as the UI, update the OpenShift Elasticsearch Operator before you update the Red Hat OpenShift Logging Operator.

    Important

    If you update the Operators in the wrong order, Kibana does not update and the Kibana custom resource (CR) is not created. To fix this issue, delete the Red Hat OpenShift Logging Operator pod. When the Red Hat OpenShift Logging Operator pod redeploys, it creates the Kibana CR and Kibana becomes available again.

  • The Logging status is healthy:

    • All pods have a ready status.
    • The Elasticsearch cluster is healthy.
  • Your Elasticsearch and Kibana data is backed up.
  • You have administrator permissions.
  • You have installed the OpenShift CLI (oc) for the verification steps.

Procedure

  1. In the OpenShift Container Platform web console, click OperatorsInstalled Operators.
  2. Select the openshift-operators-redhat project.
  3. Click OpenShift Elasticsearch Operator.
  4. Click SubscriptionChannel.
  5. In the Change Subscription Update Channel window, select stable-5.y and click Save. Note the elasticsearch-operator.v5.y.z version.
  6. Wait for a few seconds, then click OperatorsInstalled Operators. Verify that the OpenShift Elasticsearch Operator version matches the latest elasticsearch-operator.v5.y.z version.
  7. On the OperatorsInstalled Operators page, wait for the Status field to report Succeeded.

Verification

  1. Verify that all Elasticsearch pods have a Ready status by entering the following command and observing the output:

    $ oc get pod -n openshift-logging --selector component=elasticsearch

    Example output

    NAME                                            READY   STATUS    RESTARTS   AGE
    elasticsearch-cdm-1pbrl44l-1-55b7546f4c-mshhk   2/2     Running   0          31m
    elasticsearch-cdm-1pbrl44l-2-5c6d87589f-gx5hk   2/2     Running   0          30m
    elasticsearch-cdm-1pbrl44l-3-88df5d47-m45jc     2/2     Running   0          29m

  2. Verify that the Elasticsearch cluster status is green by entering the following command and observing the output:

    $ oc exec -n openshift-logging -c elasticsearch elasticsearch-cdm-1pbrl44l-1-55b7546f4c-mshhk -- health

    Example output

    {
      "cluster_name" : "elasticsearch",
      "status" : "green",
    }

  3. Verify that the Elasticsearch cron jobs are created by entering the following commands and observing the output:

    $ oc project openshift-logging
    $ oc get cronjob

    Example output

    NAME                     SCHEDULE       SUSPEND   ACTIVE   LAST SCHEDULE   AGE
    elasticsearch-im-app     */15 * * * *   False     0        <none>          56s
    elasticsearch-im-audit   */15 * * * *   False     0        <none>          56s
    elasticsearch-im-infra   */15 * * * *   False     0        <none>          56s

  4. Verify that the log store is updated to the correct version and the indices are green by entering the following command and observing the output:

    $ oc exec -c elasticsearch <any_es_pod_in_the_cluster> -- indices

    Verify that the output includes the app-00000x, infra-00000x, audit-00000x, .security indices:

    Example 7.1. Sample output with indices in a green status

    Tue Jun 30 14:30:54 UTC 2020
    health status index                                                                 uuid                   pri rep docs.count docs.deleted store.size pri.store.size
    green  open   infra-000008                                                          bnBvUFEXTWi92z3zWAzieQ   3 1       222195            0        289            144
    green  open   infra-000004                                                          rtDSzoqsSl6saisSK7Au1Q   3 1       226717            0        297            148
    green  open   infra-000012                                                          RSf_kUwDSR2xEuKRZMPqZQ   3 1       227623            0        295            147
    green  open   .kibana_7                                                             1SJdCqlZTPWlIAaOUd78yg   1 1            4            0          0              0
    green  open   infra-000010                                                          iXwL3bnqTuGEABbUDa6OVw   3 1       248368            0        317            158
    green  open   infra-000009                                                          YN9EsULWSNaxWeeNvOs0RA   3 1       258799            0        337            168
    green  open   infra-000014                                                          YP0U6R7FQ_GVQVQZ6Yh9Ig   3 1       223788            0        292            146
    green  open   infra-000015                                                          JRBbAbEmSMqK5X40df9HbQ   3 1       224371            0        291            145
    green  open   .orphaned.2020.06.30                                                  n_xQC2dWQzConkvQqei3YA   3 1            9            0          0              0
    green  open   infra-000007                                                          llkkAVSzSOmosWTSAJM_hg   3 1       228584            0        296            148
    green  open   infra-000005                                                          d9BoGQdiQASsS3BBFm2iRA   3 1       227987            0        297            148
    green  open   infra-000003                                                          1-goREK1QUKlQPAIVkWVaQ   3 1       226719            0        295            147
    green  open   .security                                                             zeT65uOuRTKZMjg_bbUc1g   1 1            5            0          0              0
    green  open   .kibana-377444158_kubeadmin                                           wvMhDwJkR-mRZQO84K0gUQ   3 1            1            0          0              0
    green  open   infra-000006                                                          5H-KBSXGQKiO7hdapDE23g   3 1       226676            0        295            147
    green  open   infra-000001                                                          eH53BQ-bSxSWR5xYZB6lVg   3 1       341800            0        443            220
    green  open   .kibana-6                                                             RVp7TemSSemGJcsSUmuf3A   1 1            4            0          0              0
    green  open   infra-000011                                                          J7XWBauWSTe0jnzX02fU6A   3 1       226100            0        293            146
    green  open   app-000001                                                            axSAFfONQDmKwatkjPXdtw   3 1       103186            0        126             57
    green  open   infra-000016                                                          m9c1iRLtStWSF1GopaRyCg   3 1        13685            0         19              9
    green  open   infra-000002                                                          Hz6WvINtTvKcQzw-ewmbYg   3 1       228994            0        296            148
    green  open   infra-000013                                                          KR9mMFUpQl-jraYtanyIGw   3 1       228166            0        298            148
    green  open   audit-000001                                                          eERqLdLmQOiQDFES1LBATQ   3 1            0            0          0              0
  5. Verify that the log visualizer is updated to the correct version by entering the following command and observing the output:

    $ oc get kibana kibana -o json

    Verify that the output includes a Kibana pod with the ready status:

    Example 7.2. Sample output with a ready Kibana pod

    [
    {
    "clusterCondition": {
    "kibana-5fdd766ffd-nb2jj": [
    {
    "lastTransitionTime": "2020-06-30T14:11:07Z",
    "reason": "ContainerCreating",
    "status": "True",
    "type": ""
    },
    {
    "lastTransitionTime": "2020-06-30T14:11:07Z",
    "reason": "ContainerCreating",
    "status": "True",
    "type": ""
    }
    ]
    },
    "deployment": "kibana",
    "pods": {
    "failed": [],
    "notReady": []
    "ready": []
    },
    "replicaSets": [
    "kibana-5fdd766ffd"
    ],
    "replicas": 1
    }
    ]

Chapter 8. Visualizing logs

8.1. About log visualization

You can visualize your log data in the OpenShift Container Platform web console, or the Kibana web console, depending on your deployed log storage solution. The Kibana console can be used with ElasticSearch log stores, and the OpenShift Container Platform web console can be used with the ElasticSearch log store or the LokiStack.

Note

The Kibana web console is now deprecated is planned to be removed in a future logging release.

8.1.1. Configuring the log visualizer

You can configure which log visualizer type your logging uses by modifying the ClusterLogging custom resource (CR).

Prerequisites

  • You have administrator permissions.
  • You have installed the OpenShift CLI (oc).
  • You have installed the Red Hat OpenShift Logging Operator.
  • You have created a ClusterLogging CR.
Important

If you want to use the OpenShift Container Platform web console for visualization, you must enable the logging Console Plugin. See the documentation about "Log visualization with the web console".

Procedure

  1. Modify the ClusterLogging CR visualization spec:

    ClusterLogging CR example

    apiVersion: logging.openshift.io/v1
    kind: ClusterLogging
    metadata:
    # ...
    spec:
    # ...
      visualization:
        type: <visualizer_type> 1
        kibana: 2
          resources: {}
          nodeSelector: {}
          proxy: {}
          replicas: {}
          tolerations: {}
        ocpConsole: 3
          logsLimit: {}
          timeout: {}
    # ...

    1
    The type of visualizer you want to use for your logging. This can be either kibana or ocp-console. The Kibana console is only compatible with deployments that use Elasticsearch log storage, while the OpenShift Container Platform console is only compatible with LokiStack deployments.
    2
    Optional configurations for the Kibana console.
    3
    Optional configurations for the OpenShift Container Platform web console.
  2. Apply the ClusterLogging CR by running the following command:

    $ oc apply -f <filename>.yaml

8.1.2. Viewing logs for a resource

Resource logs are a default feature that provides limited log viewing capability. You can view the logs for various resources, such as builds, deployments, and pods by using the OpenShift CLI (oc) and the web console.

Tip

To enhance your log retrieving and viewing experience, install the logging. The logging aggregates all the logs from your OpenShift Container Platform cluster, such as node system audit logs, application container logs, and infrastructure logs, into a dedicated log store. You can then query, discover, and visualize your log data through the Kibana console or the OpenShift Container Platform web console. Resource logs do not access the logging log store.

8.1.2.1. Viewing resource logs

You can view the log for various resources in the OpenShift CLI (oc) and web console. Logs read from the tail, or end, of the log.

Prerequisites

  • Access to the OpenShift CLI (oc).

Procedure (UI)

  1. In the OpenShift Container Platform console, navigate to WorkloadsPods or navigate to the pod through the resource you want to investigate.

    Note

    Some resources, such as builds, do not have pods to query directly. In such instances, you can locate the Logs link on the Details page for the resource.

  2. Select a project from the drop-down menu.
  3. Click the name of the pod you want to investigate.
  4. Click Logs.

Procedure (CLI)

  • View the log for a specific pod:

    $ oc logs -f <pod_name> -c <container_name>

    where:

    -f
    Optional: Specifies that the output follows what is being written into the logs.
    <pod_name>
    Specifies the name of the pod.
    <container_name>
    Optional: Specifies the name of a container. When a pod has more than one container, you must specify the container name.

    For example:

    $ oc logs ruby-58cd97df55-mww7r
    $ oc logs -f ruby-57f7f4855b-znl92 -c ruby

    The contents of log files are printed out.

  • View the log for a specific resource:

    $ oc logs <object_type>/<resource_name> 1
    1
    Specifies the resource type and name.

    For example:

    $ oc logs deployment/ruby

    The contents of log files are printed out.

8.2. Log visualization with the web console

You can use the OpenShift Container Platform web console to visualize log data by configuring the logging Console Plugin. Options for configuration are available during installation of logging on the web console.

If you have already installed logging and want to configure the plugin, use one of the following procedures.

8.2.1. Enabling the logging Console Plugin after you have installed the Red Hat OpenShift Logging Operator

You can enable the logging Console Plugin as part of the Red Hat OpenShift Logging Operator installation, but you can also enable the plugin if you have already installed the Red Hat OpenShift Logging Operator with the plugin disabled.

Prerequisites

  • You have administrator permissions.
  • You have installed the Red Hat OpenShift Logging Operator and selected Disabled for the Console plugin.
  • You have access to the OpenShift Container Platform web console.

Procedure

  1. In the OpenShift Container Platform web console Administrator perspective, navigate to OperatorsInstalled Operators.
  2. Click Red Hat OpenShift Logging. This takes you to the Operator Details page.
  3. In the Details page, click Disabled for the Console plugin option.
  4. In the Console plugin enablement dialog, select Enable.
  5. Click Save.
  6. Verify that the Console plugin option now shows Enabled.
  7. The web console displays a pop-up window when changes have been applied. The window prompts you to reload the web console. Refresh the browser when you see the pop-up window to apply the changes.