Hosted control planes


OpenShift Container Platform 4.17

Using hosted control planes with OpenShift Container Platform

Red Hat OpenShift Documentation Team

Abstract

This document provides instructions for managing hosted control planes for OpenShift Container Platform. With hosted control planes, you create control planes as pods on a hosting cluster without the need for dedicated physical or virtual machines for each control plane.

Chapter 1. Hosted control planes release notes

Release notes contain information about new and deprecated features, changes, and known issues.

1.1. Hosted control planes release notes for OpenShift Container Platform 4.17

With this release, hosted control planes for OpenShift Container Platform 4.17 is available. Hosted control planes for OpenShift Container Platform 4.17 supports the multicluster engine for Kubernetes Operator version 2.7.

1.1.1. New features and enhancements

This release adds improvements related to the following concepts:

1.1.1.1. Custom taints and tolerations (Technology Preview)

For hosted control planes on OpenShift Virtualization, you can now apply tolerations to hosted control plane pods by using the hcp CLI -tolerations argument or by using the hc.Spec.Tolerations API file. This feature is available as a Technology Preview feature. For more information, see Custom taints and tolerations.

1.1.1.2. Support for NVIDIA GPU devices on OpenShift Virtualization (Technology Preview)

For hosted control planes on OpenShift Virtualization, you can attach one or more NVIDIA graphics processing unit (GPU) devices to node pools. This feature is available as a Technology Preview feature. For more information, see Attaching NVIDIA GPU devices by using the hcp CLI and Attaching NVIDIA GPU devices by using the NodePool resource.

1.1.1.3. Support for tenancy on AWS

When you create a hosted cluster on AWS, you can indicate whether the EC2 instance should run on shared or single-tenant hardware. For more information, see Creating a hosted cluster on AWS.

1.1.1.4. Support for OpenShift Container Platform versions in hosted clusters

You can deploy a range of supported OpenShift Container Platform versions in a hosted cluster. For more information, see Supported OpenShift Container Platform versions in a hosted cluster.

1.1.1.5. Hosted control planes on OpenShift Virtualization in a disconnected environment is Generally Available

In this release, hosted control planes on OpenShift Virtualization in a disconnected environment is Generally Available. For more information, see Deploying hosted control planes on OpenShift Virtualization in a disconnected environment.

1.1.1.6. Hosted control planes for an ARM64 OpenShift Container Platform cluster on AWS is Generally Available

In this release, hosted control planes for an ARM64 OpenShift Container Platform cluster on AWS is Generally Available. For more information, see Running hosted clusters on an ARM64 architecture.

1.1.1.7. Hosted control planes on IBM Z is Generally Available

In this release, hosted control planes on IBM Z is Generally Available. For more information, see Deploying hosted control planes on IBM Z.

1.1.1.8. Hosted control planes on IBM Power is Generally Available

In this release, hosted control planes on IBM Power is Generally Available. For more information, see Deploying hosted control planes on IBM Power.

1.1.2. Bug fixes

  • Previously, when a hosted cluster proxy was configured and it used an identity provider (IDP) that had an HTTP or HTTPS endpoint, the hostname of the IDP was unresolved before sending it through the proxy. Consequently, hostnames that could only be resolved by the data plane failed to resolve for IDPs. With this update, a DNS lookup is performed before sending IPD traffic through the konnectivity tunnel. As a result, IDPs with hostnames that can only be resolved by the data plane can be verified by the Control Plane Operator. (OCPBUGS-41371)
  • Previously, when the hosted cluster controllerAvailabilityPolicy was set to SingleReplica, podAntiAffinity on networking components blocked the availability of the components. With this release, the issue is resolved. (OCPBUGS-39313)
  • Previously, the AdditionalTrustedCA that was specified in the hosted cluster image configuration was not reconciled into the openshift-config namespace, as expected by the image-registry-operator, and the component did not become available. With this release, the issue is resolved. (OCPBUGS-39225)
  • Previously, Red Hat HyperShift periodic conformance jobs failed because of changes to the core operating system. These failed jobs caused the OpenShift API deployment to fail. With this release, an update recursively copies individual trusted certificate authority (CA) certificates instead of copying a single file, so that the periodic conformance jobs succeed and the OpenShift API runs as expected. (OCPBUGS-38941)
  • Previously, the Konnectivity proxy agent in a hosted cluster always sent all TCP traffic through an HTTP/S proxy. It also ignored host names in the NO_PROXY configuration because it only received resolved IP addresses in its traffic. As a consequence, traffic that was not meant to be proxied, such as LDAP traffic, was proxied regardless of configuration. With this release, proxying is completed at the source (control plane) and the Konnectivity agent proxying configuration is removed. As a result, traffic that is not meant to be proxied, such as LDAP traffic, is not proxied anymore. The NO_PROXY configuration that includes host names is honored. (OCPBUGS-38637)
  • Previously, the azure-disk-csi-driver-controller image was not getting appropriate override values when using registryOverride. This was intentional so as to avoid propagating the values to the azure-disk-csi-driver data plane images. With this update, the issue is resolved by adding a separate image override value. As a result, the azure-disk-csi-driver-controller can be used with registryOverride and no longer affects azure-disk-csi-driver data plane images. (OCPBUGS-38183)
  • Previously, the AWS cloud controller manager within a hosted control plane that was running on a proxied management cluster would not use the proxy for cloud API communication. With this release, the issue is fixed. (OCPBUGS-37832)
  • Previously, proxying for Operators that run in the control plane of a hosted cluster was performed through proxy settings on the Konnectivity agent pod that runs in the data plane. It was not possible to distinguish if proxying was needed based on application protocol.

    For parity with OpenShift Container Platform, IDP communication via HTTPS or HTTP should be proxied, but LDAP communication should not be proxied. This type of proxying also ignores NO_PROXY entries that rely on host names because by the time traffic reaches the Konnectivity agent, only the destination IP address is available.

    With this release, in hosted clusters, proxy is invoked in the control plane through konnectivity-https-proxy and konnectivity-socks5-proxy, and proxying traffic is stopped from the Konnectivity agent. As a result, traffic that is destined for LDAP servers is no longer proxied. Other HTTPS or HTTPS traffic is proxied correctly. The NO_PROXY setting is honored when you specify hostnames. (OCPBUGS-37052)

  • Previously, proxying for IDP communication occurred in the Konnectivity agent. By the time traffic reached Konnectivity, its protocol and hostname were no longer available. As a consequence, proxying was not done correctly for the OAUTH server pod. It did not distinguish between protocols that require proxying (http/s) and protocols that do not (ldap://). In addition, it did not honor the no_proxy variable that is configured in the HostedCluster.spec.configuration.proxy spec.

    With this release, you can configure the proxy on the Konnectivity sidecar of the OAUTH server so that traffic is routed appropriately, honoring your no_proxy settings. As a result, the OAUTH server can communicate properly with identity providers when a proxy is configured for the hosted cluster. (OCPBUGS-36932)

  • Previously, the Hosted Cluster Config Operator (HCCO) did not delete the ImageDigestMirrorSet CR (IDMS) after you removed the ImageContentSources field from the HostedCluster object. As a consequence, the IDMS persisted in the HostedCluster object when it should not. With this release, the HCCO manages the deletion of IDMS resources from the HostedCluster object. (OCPBUGS-34820)
  • Previously, deploying a hostedCluster in a disconnected environment required setting the hypershift.openshift.io/control-plane-operator-image annotation. With this update, the annotation is no longer needed. Additionally, the metadata inspector works as expected during the hosted Operator reconciliation, and OverrideImages is populated as expected. (OCPBUGS-34734)
  • Previously, hosted clusters on AWS leveraged their VPC’s primary CIDR range to generate security group rules on the data plane. As a consequence, if you installed a hosted cluster into an AWS VPC with multiple CIDR ranges, the generated security group rules could be insufficient. With this update, security group rules are generated based on the provided machine CIDR range to resolve this issue. (OCPBUGS-34274)
  • Previously, the OpenShift Cluster Manager container did not have the right TLS certificates. As a consequence, you could not use image streams in disconnected deployments. With this release, the TLS certificates are added as projected volumes to resolve this issue. (OCPBUGS-31446)
  • Previously, the bulk destroy option in the multicluster engine for Kubernetes Operator console for OpenShift Virtualization did not destroy a hosted cluster. With this release, this issue is resolved. (ACM-10165)

1.1.3. Known issues

  • If the annotation and the ManagedCluster resource name do not match, the multicluster engine for Kubernetes Operator console displays the cluster as Pending import. The cluster cannot be used by the multicluster engine Operator. The same issue happens when there is no annotation and the ManagedCluster name does not match the Infra-ID value of the HostedCluster resource.
  • When you use the multicluster engine for Kubernetes Operator console to add a new node pool to an existing hosted cluster, the same version of OpenShift Container Platform might appear more than once in the list of options. You can select any instance in the list for the version that you want.
  • When a node pool is scaled down to 0 workers, the list of hosts in the console still shows nodes in a Ready state. You can verify the number of nodes in two ways:

    • In the console, go to the node pool and verify that it has 0 nodes.
    • On the command-rline interface, run the following commands:

      • Verify that 0 nodes are in the node pool by running the following command:

        $ oc get nodepool -A
      • Verify that 0 nodes are in the cluster by running the following command:

        $ oc get nodes --kubeconfig
      • Verify that 0 agents are reported as bound to the cluster by running the following command:

        $ oc get agents -A
  • When you create a hosted cluster in an environment that uses the dual-stack network, you might encounter the following DNS-related issues:

    • CrashLoopBackOff state in the service-ca-operator pod: When the pod tries to reach the Kubernetes API server through the hosted control plane, the pod cannot reach the server because the data plane proxy in the kube-system namespace cannot resolve the request. This issue occurs because in the HAProxy setup, the front end uses an IP address and the back end uses a DNS name that the pod cannot resolve.
    • Pods stuck in ContainerCreating state: This issue occurs because the openshift-service-ca-operator cannot generate the metrics-tls secret that the DNS pods need for DNS resolution. As a result, the pods cannot resolve the Kubernetes API server. To resolve these issues, configure the DNS server settings for a dual stack network.
  • On the Agent platform, the hosted control planes feature periodically rotates the token that the Agent uses to pull ignition. As a result, if you have an Agent resource that was created some time ago, it might fail to pull ignition. As a workaround, in the Agent specification, delete the secret of the IgnitionEndpointTokenReference property then add or modify any label on the Agent resource. The system re-creates the secret with the new token.
  • If you created a hosted cluster in the same namespace as its managed cluster, detaching the managed hosted cluster deletes everything in the managed cluster namespace including the hosted cluster. The following situations can create a hosted cluster in the same namespace as its managed cluster:

    • You created a hosted cluster on the Agent platform through the multicluster engine for Kubernetes Operator console by using the default hosted cluster cluster namespace.
    • You created a hosted cluster through the command-line interface or API by specifying the hosted cluster namespace to be the same as the hosted cluster name.

1.1.4. Generally Available and Technology Preview features

Features which are Generally Available (GA) are fully supported and are suitable for production use. Technology Preview (TP) features are experimental features and are not intended for production use. For more information about TP features, see the Technology Preview scope of support on the Red Hat Customer Portal.

See the following table to know about hosted control planes GA and TP features:

Table 1.1. Hosted control planes GA and TP tracker
Feature4.154.164.17

Hosted control planes for OpenShift Container Platform on Amazon Web Services (AWS)

Technology Preview

Generally Available

Generally Available

Hosted control planes for OpenShift Container Platform on bare metal

General Availability

General Availability

General Availability

Hosted control planes for OpenShift Container Platform on OpenShift Virtualization

Generally Available

Generally Available

Generally Available

Hosted control planes for OpenShift Container Platform using non-bare-metal agent machines

Technology Preview

Technology Preview

Technology Preview

Hosted control planes for an ARM64 OpenShift Container Platform cluster on Amazon Web Services

Technology Preview

Technology Preview

Generally Available

Hosted control planes for OpenShift Container Platform on IBM Power

Technology Preview

Technology Preview

Generally Available

Hosted control planes for OpenShift Container Platform on IBM Z

Technology Preview

Technology Preview

Generally Available

Hosted control planes for OpenShift Container Platform on RHOSP

Not Available

Not Available

Developer Preview

Chapter 2. Hosted control planes overview

You can deploy OpenShift Container Platform clusters by using two different control plane configurations: standalone or hosted control planes. The standalone configuration uses dedicated virtual machines or physical machines to host the control plane. With hosted control planes for OpenShift Container Platform, you create control planes as pods on a management cluster without the need for dedicated virtual or physical machines for each control plane.

2.1. Introduction to hosted control planes

Hosted control planes is available by using a supported version of multicluster engine for Kubernetes Operator on the following platforms:

  • Bare metal by using the Agent provider
  • Non-bare-metal Agent machines, as a Technology Preview feature
  • OpenShift Virtualization
  • Amazon Web Services (AWS)
  • IBM Z
  • IBM Power

The hosted control planes feature is enabled by default.

2.1.1. Architecture of hosted control planes

OpenShift Container Platform is often deployed in a coupled, or standalone, model, where a cluster consists of a control plane and a data plane. The control plane includes an API endpoint, a storage endpoint, a workload scheduler, and an actuator that ensures state. The data plane includes compute, storage, and networking where workloads and applications run.

The standalone control plane is hosted by a dedicated group of nodes, which can be physical or virtual, with a minimum number to ensure quorum. The network stack is shared. Administrator access to a cluster offers visibility into the cluster’s control plane, machine management APIs, and other components that contribute to the state of a cluster.

Although the standalone model works well, some situations require an architecture where the control plane and data plane are decoupled. In those cases, the data plane is on a separate network domain with a dedicated physical hosting environment. The control plane is hosted by using high-level primitives such as deployments and stateful sets that are native to Kubernetes. The control plane is treated as any other workload.

Diagram that compares the hosted control plane model against OpenShift with a coupled control plane and workers

2.1.2. Benefits of hosted control planes

With hosted control planes, you can pave the way for a true hybrid-cloud approach and enjoy several other benefits.

  • The security boundaries between management and workloads are stronger because the control plane is decoupled and hosted on a dedicated hosting service cluster. As a result, you are less likely to leak credentials for clusters to other users. Because infrastructure secret account management is also decoupled, cluster infrastructure administrators cannot accidentally delete control plane infrastructure.
  • With hosted control planes, you can run many control planes on fewer nodes. As a result, clusters are more affordable.
  • Because the control planes consist of pods that are launched on OpenShift Container Platform, control planes start quickly. The same principles apply to control planes and workloads, such as monitoring, logging, and auto-scaling.
  • From an infrastructure perspective, you can push registries, HAProxy, cluster monitoring, storage nodes, and other infrastructure components to the tenant’s cloud provider account, isolating usage to the tenant.
  • From an operational perspective, multicluster management is more centralized, which results in fewer external factors that affect the cluster status and consistency. Site reliability engineers have a central place to debug issues and navigate to the cluster data plane, which can lead to shorter Time to Resolution (TTR) and greater productivity.

2.2. Relationship between hosted control planes, multicluster engine Operator, and RHACM

You can configure hosted control planes by using the multicluster engine for Kubernetes Operator. The multicluster engine is an integral part of Red Hat Advanced Cluster Management (RHACM) and is enabled by default with RHACM. The multicluster engine Operator cluster lifecycle defines the process of creating, importing, managing, and destroying Kubernetes clusters across various infrastructure cloud providers, private clouds, and on-premises data centers.

The multicluster engine Operator is the cluster lifecycle Operator that provides cluster management capabilities for OpenShift Container Platform and RHACM hub clusters. The multicluster engine Operator enhances cluster fleet management and supports OpenShift Container Platform cluster lifecycle management across clouds and data centers.

Figure 2.1. Cluster life cycle and foundation

Cluster life cycle and foundation

You can use the multicluster engine Operator with OpenShift Container Platform as a standalone cluster manager or as part of a RHACM hub cluster.

Tip

A management cluster is also known as the hosting cluster.

You can deploy OpenShift Container Platform clusters by using two different control plane configurations: standalone or hosted control planes. The standalone configuration uses dedicated virtual machines or physical machines to host the control plane. With hosted control planes for OpenShift Container Platform, you create control planes as pods on a management cluster without the need for dedicated virtual or physical machines for each control plane.

Figure 2.2. RHACM and the multicluster engine Operator introduction diagram

RHACM and the multicluster engine Operator introduction diagram

2.2.1. Discovering multicluster engine Operator hosted clusters in RHACM

If you want to bring hosted clusters to a Red Hat Advanced Cluster Management (RHACM) hub cluster to manage them with RHACM management components, see the instructions in the Red Hat Advanced Cluster Management official documentation.

2.3. Versioning for hosted control planes

The hosted control planes feature includes the following components, which might require independent versioning and support levels:

  • Management cluster
  • HyperShift Operator
  • Hosted control planes (hcp) command-line interface (CLI)
  • hypershift.openshift.io API
  • Control Plane Operator

2.3.1. Management cluster

In management clusters for production use, you need multicluster engine for Kubernetes Operator, which is available through OperatorHub. The multicluster engine Operator bundles a supported build of the HyperShift Operator. For your management clusters to remain supported, you must use the version of OpenShift Container Platform that multicluster engine Operator runs on. In general, a new release of multicluster engine Operator runs on the following versions of OpenShift Container Platform:

  • The latest General Availability version of OpenShift Container Platform
  • Two versions before the latest General Availability version of OpenShift Container Platform

The full list of OpenShift Container Platform versions that you can install through the HyperShift Operator on a management cluster depends on the version of your HyperShift Operator. However, the list always includes at least the same OpenShift Container Platform version as the management cluster and two previous minor versions relative to the management cluster. For example, if the management cluster is running 4.17 and a supported version of multicluster engine Operator, the HyperShift Operator can install 4.17, 4.16, 4.15, and 4.14 hosted clusters.

With each major, minor, or patch version release of OpenShift Container Platform, two components of hosted control planes are released:

  • The HyperShift Operator
  • The hcp command-line interface (CLI)

2.3.2. HyperShift Operator

The HyperShift Operator manages the lifecycle of hosted clusters that are represented by the HostedCluster API resources. The HyperShift Operator is released with each OpenShift Container Platform release. The HyperShift Operator creates the supported-versions config map in the hypershift namespace. The config map contains the supported hosted cluster versions.

You can host different versions of control planes on the same management cluster.

Example supported-versions config map object

    apiVersion: v1
    data:
      supported-versions: '{"versions":["4.17"]}'
    kind: ConfigMap
    metadata:
      labels:
        hypershift.openshift.io/supported-versions: "true"
      name: supported-versions
      namespace: hypershift

2.3.3. hosted control planes CLI

You can use the hcp CLI to create hosted clusters. You can download the CLI from multicluster engine Operator. When you run the hcp version command, the output shows the latest OpenShift Container Platform that the CLI supports against your kubeconfig file.

2.3.4. hypershift.openshift.io API

You can use the hypershift.openshift.io API resources, such as, HostedCluster and NodePool, to create and manage OpenShift Container Platform clusters at scale. A HostedCluster resource contains the control plane and common data plane configuration. When you create a HostedCluster resource, you have a fully functional control plane with no attached nodes. A NodePool resource is a scalable set of worker nodes that is attached to a HostedCluster resource.

The API version policy generally aligns with the policy for Kubernetes API versioning.

Updates for hosted control planes involve updating the hosted cluster and the node pools. For more information, see "Updates for hosted control planes".

2.3.5. Control Plane Operator

The Control Plane Operator is released as part of each OpenShift Container Platform payload release image for the following architectures:

  • amd64
  • arm64
  • multi-arch

2.4. Glossary of common concepts and personas for hosted control planes

When you use hosted control planes for OpenShift Container Platform, it is important to understand its key concepts and the personas that are involved.

2.4.1. Concepts

hosted cluster
An OpenShift Container Platform cluster with its control plane and API endpoint hosted on a management cluster. The hosted cluster includes the control plane and its corresponding data plane.
hosted cluster infrastructure
Network, compute, and storage resources that exist in the tenant or end-user cloud account.
hosted control plane
An OpenShift Container Platform control plane that runs on the management cluster, which is exposed by the API endpoint of a hosted cluster. The components of a control plane include etcd, the Kubernetes API server, the Kubernetes controller manager, and a VPN.
hosting cluster
See management cluster.
managed cluster
A cluster that the hub cluster manages. This term is specific to the cluster lifecycle that the multicluster engine for Kubernetes Operator manages in Red Hat Advanced Cluster Management. A managed cluster is not the same thing as a management cluster. For more information, see Managed cluster.
management cluster
An OpenShift Container Platform cluster where the HyperShift Operator is deployed and where the control planes for hosted clusters are hosted. The management cluster is synonymous with the hosting cluster.
management cluster infrastructure
Network, compute, and storage resources of the management cluster.
node pool
A resource that contains the compute nodes. The control plane contains node pools. The compute nodes run applications and workloads.

2.4.2. Personas

cluster instance administrator
Users who assume this role are the equivalent of administrators in standalone OpenShift Container Platform. This user has the cluster-admin role in the provisioned cluster, but might not have power over when or how the cluster is updated or configured. This user might have read-only access to see some configuration projected into the cluster.
cluster instance user
Users who assume this role are the equivalent of developers in standalone OpenShift Container Platform. This user does not have a view into OperatorHub or machines.
cluster service consumer
Users who assume this role can request control planes and worker nodes, drive updates, or modify externalized configurations. Typically, this user does not manage or access cloud credentials or infrastructure encryption keys. The cluster service consumer persona can request hosted clusters and interact with node pools. Users who assume this role have RBAC to create, read, update, or delete hosted clusters and node pools within a logical boundary.
cluster service provider

Users who assume this role typically have the cluster-admin role on the management cluster and have RBAC to monitor and own the availability of the HyperShift Operator as well as the control planes for the tenant’s hosted clusters. The cluster service provider persona is responsible for several activities, including the following examples:

  • Owning service-level objects for control plane availability, uptime, and stability
  • Configuring the cloud account for the management cluster to host control planes
  • Configuring the user-provisioned infrastructure, which includes the host awareness of available compute resources

Chapter 3. Preparing to deploy hosted control planes

3.1. Requirements for hosted control planes

In the context of hosted control planes, a management cluster is an OpenShift Container Platform cluster where the HyperShift Operator is deployed and where the control planes for hosted clusters are hosted. The management cluster and workers must run on the same infrastructure. For example, you cannot run your management cluster on bare metal and your workers on the cloud. However, the management cluster and workers do not need to run on the same platform. For example, you might run your management cluster on bare metal and workers on OpenShift Virtualization.

The control plane is associated with a hosted cluster and runs as pods in a single namespace. When the cluster service consumer creates a hosted cluster, it creates a worker node that is independent of the control plane.

3.1.1. Support matrix for hosted control planes

Because multicluster engine for Kubernetes Operator includes the HyperShift Operator, releases of hosted control planes align with releases of multicluster engine Operator. For more information, see OpenShift Operator Life Cycles.

3.1.1.1. Management cluster support

Any supported standalone OpenShift Container Platform cluster can be a management cluster. The following table maps multicluster engine Operator versions to the management cluster versions that support them:

Table 3.1. Supported multicluster engine Operator versions for OpenShift Container Platform management clusters
Management cluster versionSupported multicluster engine Operator version

4.14 - 4.15

2.4

4.14 - 4.16

2.5

4.14 - 4.17

2.6

4.15 - 4.17

2.7

3.1.1.2. Hosted cluster support

For hosted clusters, no direct relationship exists between the management cluster version and the hosted cluster version. The hosted cluster version depends on the HyperShift Operator that is included with your multicluster engine Operator version.

Note

Ensure a minimum latency of 200 ms between the management cluster and hosted clusters.

The following table maps multicluster engine Operator versions to the hosted cluster versions that you can create by using the HyperShift Operator that is associated with that version of multicluster engine Operator:

Table 3.2. Hosted cluster versions that can be created by multicluster engine Operator versions
Hosted cluster versionmulticluster engine Operator 2.4multicluster engine Operator 2.5multicluster engine Operator 2.6multicluster engine Operator 2.7

4.14

Yes

Yes

Yes

Yes

4.15

No

Yes

Yes

Yes

4.16

No

No

Yes

Yes

4.17

No

No

No

Yes

3.1.1.3. Hosted cluster platform support

The following table indicates which OpenShift Container Platform versions are supported for each platform of hosted control planes. In the table, Management cluster version refers to the OpenShift Container Platform version where the multicluster engine Operator is enabled:

Table 3.3. Required OpenShift Container Platform versions for platforms
Hosted cluster platformManagement cluster versionHosted cluster version

Amazon Web Services

4.16 - 4.17

4.16 - 4.17

IBM Power

4.17

4.17

IBM Z

4.17

4.17

OpenShift Virtualization

4.14 - 4.17

4.14 - 4.17

Bare metal

4.14 - 4.17

4.14 - 4.17

Non-bare-metal agent machines (Technology Preview)

4.16 - 4.17

4.16 - 4.17

3.1.1.4. Updates of multicluster engine Operator

When you update to another version of the multicluster engine Operator, your hosted cluster can continue to run if the HyperShift Operator that is included in the version of multicluster engine Operator supports the hosted cluster version. The following table shows which hosted cluster versions are supported on which updated multicluster engine Operator versions:

Table 3.4. Updated multicluster engine Operator version support for hosted clusters
Updated multicluster engine Operator versionSupported hosted cluster version

Updated from 2.4 to 2.5

OpenShift Container Platform 4.14

Updated from 2.5 to 2.6

OpenShift Container Platform 4.14 - 4.15

Updated from 2.6 to 2.7

OpenShift Container Platform 4.14 - 4.16

For example, if you have an OpenShift Container Platform 4.14 hosted cluster on the management cluster and you update from multicluster engine Operator 2.4 to 2.5, the hosted cluster can continue to run.

3.1.1.5. Technology Preview features

The following list indicates Technology Preview features for this release:

  • Hosted control planes on IBM Z in a disconnected environment
  • Custom taints and tolerations for hosted control planes on OpenShift Virtualization
  • NVIDIA GPU devices on hosted control planes for OpenShift Virtualization

3.2. Sizing guidance for hosted control planes

Many factors, including hosted cluster workload and worker node count, affect how many hosted clusters can fit within a certain number of control-plane nodes. Use this sizing guide to help with hosted cluster capacity planning. This guidance assumes a highly available hosted control planes topology. The load-based sizing examples were measured on a bare-metal cluster. Cloud-based instances might have different limiting factors, such as memory size.

You can override the following resource utilization sizing measurements and disable the metric service monitoring.

See the following highly available hosted control planes requirements, which were tested with OpenShift Container Platform version 4.12.9 and later:

  • 78 pods
  • Three 8 GiB PVs for etcd
  • Minimum vCPU: approximately 5.5 cores
  • Minimum memory: approximately 19 GiB

3.2.1. Pod limits

The maxPods setting for each node affects how many hosted clusters can fit in a control-plane node. It is important to note the maxPods value on all control-plane nodes. Plan for about 75 pods for each highly available hosted control plane.

For bare-metal nodes, the default maxPods setting of 250 is likely to be a limiting factor because roughly three hosted control planes fit for each node given the pod requirements, even if the machine has plenty of resources to spare. Setting the maxPods value to 500 by configuring the KubeletConfig value allows for greater hosted control plane density, which can help you take advantage of additional compute resources.

3.2.2. Request-based resource limit

The maximum number of hosted control planes that the cluster can host is calculated based on the hosted control plane CPU and memory requests from the pods.

A highly available hosted control plane consists of 78 pods that request 5 vCPUs and 18 GB memory. These baseline numbers are compared to the cluster worker node resource capacities to estimate the maximum number of hosted control planes.

3.2.3. Load-based limit

The maximum number of hosted control planes that the cluster can host is calculated based on the hosted control plane pods CPU and memory utilizations when some workload is put on the hosted control plane Kubernetes API server.

The following method is used to measure the hosted control plane resource utilizations as the workload increases:

  • A hosted cluster with 9 workers that use 8 vCPU and 32 GiB each, while using the KubeVirt platform
  • The workload test profile that is configured to focus on API control-plane stress, based on the following definition:

    • Created objects for each namespace, scaling up to 100 namespaces total
    • Additional API stress with continuous object deletion and creation
    • Workload queries-per-second (QPS) and Burst settings set high to remove any client-side throttling

As the load increases by 1000 QPS, the hosted control plane resource utilization increases by 9 vCPUs and 2.5 GB memory.

For general sizing purposes, consider the 1000 QPS API rate that is a medium hosted cluster load, and a 2000 QPS API that is a heavy hosted cluster load.

Note

This test provides an estimation factor to increase the compute resource utilization based on the expected API load. Exact utilization rates can vary based on the type and pace of the cluster workload.

Table 3.5. Load table
Hosted control plane resource utilization scalingvCPUsMemory (GiB)

Resource utilization with no load

2.9

11.1

Resource utilization with 1000 QPS

9.0

2.5

As the load increases by 1000 QPS, the hosted control plane resource utilization increases by 9 vCPUs and 2.5 GB memory.

For general sizing purposes, consider a 1000 QPS API rate to be a medium hosted cluster load and a 2000 QPS API to be a heavy hosted cluster load.

The following example shows hosted control plane resource scaling for the workload and API rate definitions:

Table 3.6. API rate table
QPS (API rate)vCPU usageMemory usage (GiB)

Low load (Less than 50 QPS)

2.9

11.1

Medium load (1000 QPS)

11.9

13.6

High load (2000 QPS)

20.9

16.1

The hosted control plane sizing is about control-plane load and workloads that cause heavy API activity, etcd activity, or both. Hosted pod workloads that focus on data-plane loads, such as running a database, might not result in high API rates.

3.2.4. Sizing calculation example

This example provides sizing guidance for the following scenario:

  • Three bare-metal workers that are labeled as hypershift.openshift.io/control-plane nodes
  • maxPods value set to 500
  • The expected API rate is medium or about 1000, according to the load-based limits
Table 3.7. Limit inputs
Limit descriptionServer 1Server 2

Number of vCPUs on worker node

64

128

Memory on worker node (GiB)

128

256

Maximum pods per worker

500

500

Number of workers used to host control planes

3

3

Maximum QPS target rate (API requests per second)

1000

1000

Table 3.8. Sizing calculation example

Calculated values based on worker node size and API rate

Server 1

Server 2

Calculation notes

Maximum hosted control planes per worker based on vCPU requests

12.8

25.6

Number of worker vCPUs ÷ 5 total vCPU requests per hosted control plane

Maximum hosted control planes per worker based on vCPU usage

5.4

10.7

Number of vCPUS ÷ (2.9 measured idle vCPU usage + (QPS target rate ÷ 1000) × 9.0 measured vCPU usage per 1000 QPS increase)

Maximum hosted control planes per worker based on memory requests

7.1

14.2

Worker memory GiB ÷ 18 GiB total memory request per hosted control plane

Maximum hosted control planes per worker based on memory usage

9.4

18.8

Worker memory GiB ÷ (11.1 measured idle memory usage + (QPS target rate ÷ 1000) × 2.5 measured memory usage per 1000 QPS increase)

Maximum hosted control planes per worker based on per node pod limit

6.7

6.7

500 maxPods ÷ 75 pods per hosted control plane

Minimum of previously mentioned maximums

5.4

6.7

 
 

vCPU limiting factor

maxPods limiting factor

 

Maximum number of hosted control planes within a management cluster

16

20

Minimum of previously mentioned maximums × 3 control-plane workers

Table 3.9. Hosted control planes capacity metrics

Name

Description

mce_hs_addon_request_based_hcp_capacity_gauge

Estimated maximum number of hosted control planes the cluster can host based on a highly available hosted control planes resource request.

mce_hs_addon_low_qps_based_hcp_capacity_gauge

Estimated maximum number of hosted control planes the cluster can host if all hosted control planes make around 50 QPS to the clusters Kube API server.

mce_hs_addon_medium_qps_based_hcp_capacity_gauge

Estimated maximum number of hosted control planes the cluster can host if all hosted control planes make around 1000 QPS to the clusters Kube API server.

mce_hs_addon_high_qps_based_hcp_capacity_gauge

Estimated maximum number of hosted control planes the cluster can host if all hosted control planes make around 2000 QPS to the clusters Kube API server.

mce_hs_addon_average_qps_based_hcp_capacity_gauge

Estimated maximum number of hosted control planes the cluster can host based on the existing average QPS of hosted control planes. If you do not have an active hosted control planes, you can expect low QPS.

3.2.5. Shared infrastructure between hosted and standalone control planes

As a service provider, you can more effectively use your resources by sharing infrastructure between a standalone OpenShift Container Platform control plane and hosted control planes. A 3-node OpenShift Container Platform cluster can be a management cluster for a hosted cluster.

Sharing infrastructure can be beneficial in constrained environments, such as in small-scale deployments where you need resource efficiency.

Before you share infrastructure, ensure that your infrastructure has enough resources to support hosted control planes. On the OpenShift Container Platform management cluster, nothing else can be deployed except hosted control planes. Ensure that the management cluster has enough CPU, memory, storage, and network resources to handle the combined load of the hosted clusters. For more information, see "Sizing guidance for hosted control planes".

Workload must not be demanding, and it must fall within a low queries-per-second (QPS) profile. To maintain a reasonable risk profile, you can share up to 3 hosted clusters.

3.3. Overriding resource utilization measurements

The set of baseline measurements for resource utilization can vary in each hosted cluster.

3.3.1. Overriding resource utilization measurements for a hosted cluster

You can override resource utilization measurements based on the type and pace of your cluster workload.

Procedure

  1. Create the ConfigMap resource by running the following command:

    $ oc create -f <your-config-map-file.yaml>

    Replace <your-config-map-file.yaml> with the name of your YAML file that contains your hcp-sizing-baseline config map.

  2. Create the hcp-sizing-baseline config map in the local-cluster namespace to specify the measurements you want to override. Your config map might resemble the following YAML file:

    kind: ConfigMap
    apiVersion: v1
    metadata:
      name: hcp-sizing-baseline
      namespace: local-cluster
    data:
      incrementalCPUUsagePer1KQPS: "9.0"
      memoryRequestPerHCP: "18"
      minimumQPSPerHCP: "50.0"
  3. Delete the hypershift-addon-agent deployment to restart the hypershift-addon-agent pod by running the following command:

    $ oc delete deployment hypershift-addon-agent -n open-cluster-management-agent-addon

Verification

  • Observe the hypershift-addon-agent pod logs. Verify that the overridden measurements are updated in the config map by running the following command:

    $ oc logs hypershift-addon-agent -n open-cluster-management-agent-addon

    Your logs might resemble the following output:

    Example output

    2024-01-05T19:41:05.392Z	INFO	agent.agent-reconciler	agent/agent.go:793	setting cpuRequestPerHCP to 5
    2024-01-05T19:41:05.392Z	INFO	agent.agent-reconciler	agent/agent.go:802	setting memoryRequestPerHCP to 18
    2024-01-05T19:53:54.070Z	INFO	agent.agent-reconciler	agent/hcp_capacity_calculation.go:141	The worker nodes have 12.000000 vCPUs
    2024-01-05T19:53:54.070Z	INFO	agent.agent-reconciler	agent/hcp_capacity_calculation.go:142	The worker nodes have 49.173369 GB memory

    If the overridden measurements are not updated properly in the hcp-sizing-baseline config map, you might see the following error message in the hypershift-addon-agent pod logs:

    Example error

    2024-01-05T19:53:54.052Z	ERROR	agent.agent-reconciler	agent/agent.go:788	failed to get configmap from the hub. Setting the HCP sizing baseline with default values.	{"error": "configmaps \"hcp-sizing-baseline\" not found"}

3.3.2. Disabling the metric service monitoring

After you enable the hypershift-addon managed cluster add-on, metric service monitoring is configured by default so that OpenShift Container Platform monitoring can gather metrics from hypershift-addon.

Procedure

You can disable metric service monitoring by completing the following steps:

  1. Log in to your hub cluster by running the following command:

    $ oc login
  2. Edit the hypershift-addon-deploy-config add-on deployment configuration specification by running the following command:

    $ oc edit addondeploymentconfig hypershift-addon-deploy-config -n multicluster-engine
  3. Add the disableMetrics=true customized variable to the specification, as shown in the following example:

    apiVersion: addon.open-cluster-management.io/v1alpha1
    kind: AddOnDeploymentConfig
    metadata:
      name: hypershift-addon-deploy-config
      namespace: multicluster-engine
    spec:
      customizedVariables:
      - name: hcMaxNumber
        value: "80"
      - name: hcThresholdNumber
        value: "60"
      - name: disableMetrics 1
        value: "true"
    1
    The disableMetrics=true customized variable disables metric service monitoring for both new and existing hypershift-addon managed cluster add-ons.
  4. Apply the changes to the configuration specification by running the following command:

    $ oc apply -f <filename>.yaml

3.4. Installing the hosted control planes command-line interface

The hosted control planes command-line interface, hcp, is a tool that you can use to get started with hosted control planes. For Day 2 operations, such as management and configuration, use GitOps or your own automation tool.

3.4.1. Installing the hosted control planes command-line interface from the terminal

You can install the hosted control planes command-line interface (CLI), hcp, from the terminal.

Procedure

  1. Get the URL to download the hcp binary by running the following command:

    $ oc get ConsoleCLIDownload hcp-cli-download -o json | jq -r ".spec"
  2. Download the hcp binary by running the following command:

    $ wget <hcp_cli_download_url> 1
    1
    Replace hcp_cli_download_url with the URL that you obtained from the previous step.
  3. Unpack the downloaded archive by running the following command:

    $ tar xvzf hcp.tar.gz
  4. Make the hcp binary file executable by running the following command:

    $ chmod +x hcp
  5. Move the hcp binary file to a directory in your path by running the following command:

    $ sudo mv hcp /usr/local/bin/.
Note

If you download the CLI on a Mac computer, you might see a warning about the hcp binary file. You need to adjust your security settings to allow the binary file to be run.

Verification

  • Verify that you see the list of available parameters by running the following command:

    $ hcp create cluster <platform> --help 1
    1
    You can use the hcp create cluster command to create and manage hosted clusters. The supported platforms are aws, agent, and kubevirt.

3.4.2. Installing the hosted control planes command-line interface by using the web console

You can install the hosted control planes command-line interface (CLI), hcp, by using the OpenShift Container Platform web console.

Procedure

  1. From the OpenShift Container Platform web console, click the Help iconCommand Line Tools.
  2. Click Download hcp CLI for your platform.
  3. Unpack the downloaded archive by running the following command:

    $ tar xvzf hcp.tar.gz
  4. Run the following command to make the binary file executable:

    $ chmod +x hcp
  5. Run the following command to move the binary file to a directory in your path:

    $ sudo mv hcp /usr/local/bin/.
Note

If you download the CLI on a Mac computer, you might see a warning about the hcp binary file. You need to adjust your security settings to allow the binary file to be run.

Verification

  • Verify that you see the list of available parameters by running the following command:

    $ hcp create cluster <platform> --help 1
    1
    You can use the hcp create cluster command to create and manage hosted clusters. The supported platforms are aws, agent, and kubevirt.

3.4.3. Installing the hosted control planes command-line interface by using the content gateway

You can install the hosted control planes command-line interface (CLI), hcp, by using the content gateway.

Procedure

  1. Navigate to the content gateway and download the hcp binary.
  2. Unpack the downloaded archive by running the following command:

    $ tar xvzf hcp.tar.gz
  3. Make the hcp binary file executable by running the following command:

    $ chmod +x hcp
  4. Move the hcp binary file to a directory in your path by running the following command:

    $ sudo mv hcp /usr/local/bin/.
Note

If you download the CLI on a Mac computer, you might see a warning about the hcp binary file. You need to adjust your security settings to allow the binary file to be run.

Verification

  • Verify that you see the list of available parameters by running the following command:

    $ hcp create cluster <platform> --help 1
    1
    You can use the hcp create cluster command to create and manage hosted clusters. The supported platforms are aws, agent, and kubevirt.

3.5. Distributing hosted cluster workloads

Before you get started with hosted control planes for OpenShift Container Platform, you must properly label nodes so that the pods of hosted clusters can be scheduled into infrastructure nodes. Node labeling is also important for the following reasons:

  • To ensure high availability and proper workload deployment. For example, you can set the node-role.kubernetes.io/infra label to avoid having the control-plane workload count toward your OpenShift Container Platform subscription.
  • To ensure that control plane workloads are separate from other workloads in the management cluster.
Important

Do not use the management cluster for your workload. Workloads must not run on nodes where control planes run.

3.5.1. Labeling management cluster nodes

Proper node labeling is a prerequisite to deploying hosted control planes.

As a management cluster administrator, you use the following labels and taints in management cluster nodes to schedule a control plane workload:

  • hypershift.openshift.io/control-plane: true: Use this label and taint to dedicate a node to running hosted control plane workloads. By setting a value of true, you avoid sharing the control plane nodes with other components, for example, the infrastructure components of the management cluster or any other mistakenly deployed workload.
  • hypershift.openshift.io/cluster: ${HostedControlPlane Namespace}: Use this label and taint when you want to dedicate a node to a single hosted cluster.

Apply the following labels on the nodes that host control-plane pods:

  • node-role.kubernetes.io/infra: Use this label to avoid having the control-plane workload count toward your subscription.
  • topology.kubernetes.io/zone: Use this label on the management cluster nodes to deploy highly available clusters across failure domains. The zone might be a location, rack name, or the hostname of the node where the zone is set. For example, a management cluster has the following nodes: worker-1a, worker-1b, worker-2a, and worker-2b. The worker-1a and worker-1b nodes are in rack1, and the worker-2a and worker-2b nodes are in rack2. To use each rack as an availability zone, enter the following commands:

    $ oc label node/worker-1a node/worker-1b topology.kubernetes.io/zone=rack1
    $ oc label node/worker-2a node/worker-2b topology.kubernetes.io/zone=rack2

Pods for a hosted cluster have tolerations, and the scheduler uses affinity rules to schedule them. Pods tolerate taints for control-plane and the cluster for the pods. The scheduler prioritizes the scheduling of pods into nodes that are labeled with hypershift.openshift.io/control-plane and hypershift.openshift.io/cluster: ${HostedControlPlane Namespace}.

For the ControllerAvailabilityPolicy option, use HighlyAvailable, which is the default value that the hosted control planes command line interface, hcp, deploys. When you use that option, you can schedule pods for each deployment within a hosted cluster across different failure domains by setting topology.kubernetes.io/zone as the topology key. Control planes that are not highly available are not supported.

Procedure

To enable a hosted cluster to require its pods to be scheduled into infrastructure nodes, set HostedCluster.spec.nodeSelector, as shown in the following example:

  spec:
    nodeSelector:
      role.kubernetes.io/infra: ""

This way, hosted control planes for each hosted cluster are eligible infrastructure node workloads, and you do not need to entitle the underlying OpenShift Container Platform nodes.

3.5.2. Priority classes

Four built-in priority classes influence the priority and preemption of the hosted cluster pods. You can create the pods in the management cluster in the following order from highest to lowest:

  • hypershift-operator: HyperShift Operator pods.
  • hypershift-etcd: Pods for etcd.
  • hypershift-api-critical: Pods that are required for API calls and resource admission to succeed. These pods include pods such as kube-apiserver, aggregated API servers, and web hooks.
  • hypershift-control-plane: Pods in the control plane that are not API-critical but still need elevated priority, such as the cluster version Operator.

3.5.3. Custom taints and tolerations

For hosted control planes on OpenShift Virtualization, by default, pods for a hosted cluster tolerate the control-plane and cluster taints. However, you can also use custom taints on nodes so that hosted clusters can tolerate those taints on a per-hosted-cluster basis by setting HostedCluster.spec.tolerations.

Important

Passing tolerations for a hosted cluster is a Technology Preview feature only. Technology Preview features are not supported with Red Hat production service level agreements (SLAs) and might not be functionally complete. Red Hat does not recommend using them in production. These features provide early access to upcoming product features, enabling customers to test functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features, see Technology Preview Features Support Scope.

Example configuration

  spec:
    tolerations:
    - effect: NoSchedule
      key: kubernetes.io/custom
      operator: Exists

You can also set tolerations on the hosted cluster while you create a cluster by using the --tolerations hcp CLI argument.

Example CLI argument

--toleration="key=kubernetes.io/custom,operator=Exists,effect=NoSchedule"

For fine granular control of hosted cluster pod placement on a per-hosted-cluster basis, use custom tolerations with nodeSelectors. You can co-locate groups of hosted clusters and isolate them from other hosted clusters. You can also place hosted clusters in infra and control plane nodes.

Tolerations on the hosted cluster spread only to the pods of the control plane. To configure other pods that run on the management cluster and infrastructure-related pods, such as the pods to run virtual machines, you need to use a different process.

3.6. Enabling or disabling the hosted control planes feature

The hosted control planes feature, as well as the hypershift-addon managed cluster add-on, are enabled by default. If you want to disable the feature, or if you disabled it and want to manually enable it, see the following procedures.

3.6.1. Manually enabling the hosted control planes feature

If you need to manually enable hosted control planes, complete the following steps.

Procedure

  1. Run the following command to enable the feature:

    $ oc patch mce multiclusterengine --type=merge -p '{"spec":{"overrides":{"components":[{"name":"hypershift","enabled": true}]}}}' 1
    1
    The default MultiClusterEngine resource instance name is multiclusterengine, but you can get the MultiClusterEngine name from your cluster by running the following command: $ oc get mce.
  2. Run the following command to verify that the hypershift and hypershift-local-hosting features are enabled in the MultiClusterEngine custom resource:

    $ oc get mce multiclusterengine -o yaml 1
    1
    The default MultiClusterEngine resource instance name is multiclusterengine, but you can get the MultiClusterEngine name from your cluster by running the following command: $ oc get mce.

    Example output

    apiVersion: multicluster.openshift.io/v1
    kind: MultiClusterEngine
    metadata:
      name: multiclusterengine
    spec:
      overrides:
        components:
        - name: hypershift
          enabled: true
        - name: hypershift-local-hosting
          enabled: true

3.6.1.1. Manually enabling the hypershift-addon managed cluster add-on for local-cluster

Enabling the hosted control planes feature automatically enables the hypershift-addon managed cluster add-on. If you need to enable the hypershift-addon managed cluster add-on manually, complete the following steps to use the hypershift-addon to install the HyperShift Operator on local-cluster.

Procedure

  1. Create the ManagedClusterAddon HyperShift add-on by creating a file that resembles the following example:

    apiVersion: addon.open-cluster-management.io/v1alpha1
    kind: ManagedClusterAddOn
    metadata:
      name: hypershift-addon
      namespace: local-cluster
    spec:
      installNamespace: open-cluster-management-agent-addon
  2. Apply the file by running the following command:

    $ oc apply -f <filename>

    Replace filename with the name of the file that you created.

  3. Confirm that the hypershift-addon is installed by running the following command:

    $ oc get managedclusteraddons -n local-cluster hypershift-addon

    If the add-on is installed, the output resembles the following example:

    NAME               AVAILABLE   DEGRADED   PROGRESSING
    hypershift-addon   True

Your HyperShift add-on is installed and the hosting cluster is available to create and manage hosted clusters.

3.6.2. Disabling the hosted control planes feature

You can uninstall the HyperShift Operator and disable the hosted control planes feature. When you disable the hosted control planes feature, you must destroy the hosted cluster and the managed cluster resource on multicluster engine Operator, as described in the Managing hosted clusters topics.

3.6.2.1. Uninstalling the HyperShift Operator

To uninstall the HyperShift Operator and disable the hypershift-addon from the local-cluster, complete the following steps:

Procedure

  1. Run the following command to ensure that there is no hosted cluster running:

    $ oc get hostedcluster -A
    Important

    If a hosted cluster is running, the HyperShift Operator does not uninstall, even if the hypershift-addon is disabled.

  2. Disable the hypershift-addon by running the following command:

    $ oc patch mce multiclusterengine --type=merge -p '{"spec":{"overrides":{"components":[{"name":"hypershift-local-hosting","enabled": false}]}}}' 1
    1
    The default MultiClusterEngine resource instance name is multiclusterengine, but you can get the MultiClusterEngine name from your cluster by running the following command: $ oc get mce.
    Note

    You can also disable the hypershift-addon for the local-cluster from the multicluster engine Operator console after disabling the hypershift-addon.

3.6.2.2. Disabling the hosted control planes feature

To disable the hosted control planes feature, complete the following steps.

Prerequisites

  • You uninstalled the HyperShift Operator. For more information, see "Uninstalling the HyperShift Operator".

Procedure

  1. Run the following command to disable the hosted control planes feature:

    $ oc patch mce multiclusterengine --type=merge -p '{"spec":{"overrides":{"components":[{"name":"hypershift","enabled": false}]}}}' 1
    1
    The default MultiClusterEngine resource instance name is multiclusterengine, but you can get the MultiClusterEngine name from your cluster by running the following command: $ oc get mce.
  2. You can verify that the hypershift and hypershift-local-hosting features are disabled in the MultiClusterEngine custom resource by running the following command:

    $ oc get mce multiclusterengine -o yaml 1
    1
    The default MultiClusterEngine resource instance name is multiclusterengine, but you can get the MultiClusterEngine name from your cluster by running the following command: $ oc get mce.

    See the following example where hypershift and hypershift-local-hosting have their enabled: flags set to false:

    apiVersion: multicluster.openshift.io/v1
    kind: MultiClusterEngine
    metadata:
      name: multiclusterengine
    spec:
      overrides:
        components:
        - name: hypershift
          enabled: false
        - name: hypershift-local-hosting
          enabled: false

Chapter 4. Deploying hosted control planes

4.1. Deploying hosted control planes on AWS

A hosted cluster is an OpenShift Container Platform cluster with its API endpoint and control plane that are hosted on the management cluster. The hosted cluster includes the control plane and its corresponding data plane. To configure hosted control planes on premises, you must install multicluster engine for Kubernetes Operator in a management cluster. By deploying the HyperShift Operator on an existing managed cluster by using the hypershift-addon managed cluster add-on, you can enable that cluster as a management cluster and start to create the hosted cluster. The hypershift-addon managed cluster add-on is enabled by default for the local-cluster managed cluster.

You can use the multicluster engine Operator console or the hosted control plane command-line interface (CLI), hcp, to create a hosted cluster. The hosted cluster is automatically imported as a managed cluster. However, you can disable this automatic import feature into multicluster engine Operator.

4.1.1. Preparing to deploy hosted control planes on AWS

As you prepare to deploy hosted control planes on Amazon Web Services (AWS), consider the following information:

  • Each hosted cluster must have a cluster-wide unique name. A hosted cluster name cannot be the same as any existing managed cluster in order for multicluster engine Operator to manage it.
  • Do not use clusters as a hosted cluster name.
  • Run the hub cluster and workers on the same platform for hosted control planes.
  • A hosted cluster cannot be created in the namespace of a multicluster engine Operator managed cluster.
4.1.1.1. Prerequisites to configure a management cluster

You must have the following prerequisites to configure the management cluster:

  • You have installed the multicluster engine for Kubernetes Operator 2.5 and later on an OpenShift Container Platform cluster. The multicluster engine Operator is automatically installed when you install Red Hat Advanced Cluster Management (RHACM). The multicluster engine Operator can also be installed without RHACM as an Operator from the OpenShift Container Platform OperatorHub.
  • You have at least one managed OpenShift Container Platform cluster for the multicluster engine Operator. The local-cluster is automatically imported in the multicluster engine Operator version 2.5 and later. You can check the status of your hub cluster by running the following command:

    $ oc get managedclusters local-cluster
  • You have installed the aws command-line interface (CLI).
  • You have installed the hosted control plane CLI, hcp.

4.1.2. Creating the Amazon Web Services S3 bucket and S3 OIDC secret

Before you can create and manage hosted clusters on Amazon Web Services (AWS), you must create the S3 bucket and S3 OIDC secret.

Procedure

  1. Create an S3 bucket that has public access to host OIDC discovery documents for your clusters by running the following commands:

    $ aws s3api create-bucket --bucket <bucket_name> \1
      --create-bucket-configuration LocationConstraint=<region> \2
      --region <region> 3
    1
    Replace <bucket_name> with the name of the S3 bucket you are creating.
    2 3
    To create the bucket in a region other than the us-east-1 region, include this line and replace <region> with the region you want to use. To create a bucket in the us-east-1 region, omit this line.
    $ aws s3api delete-public-access-block --bucket <bucket_name> 1
    1
    Replace <bucket_name> with the name of the S3 bucket you are creating.
    $ echo '{
        "Version": "2012-10-17",
        "Statement": [
            {
                "Effect": "Allow",
                "Principal": "*",
                "Action": "s3:GetObject",
                "Resource": "arn:aws:s3:::<bucket_name>/*" 1
            }
        ]
    }' | envsubst > policy.json
    1
    Replace <bucket_name> with the name of the S3 bucket you are creating.
    $ aws s3api put-bucket-policy --bucket <bucket_name> --policy file://policy.json 1
    1
    Replace <bucket_name> with the name of the S3 bucket you are creating.
    Note

    If you are using a Mac computer, you must export the bucket name in order for the policy to work.

  2. Create an OIDC S3 secret named hypershift-operator-oidc-provider-s3-credentials for the HyperShift Operator.
  3. Save the secret in the local-cluster namespace.
  4. See the following table to verify that the secret contains the following fields:

    Table 4.1. Required fields for the AWS secret
    Field nameDescription

    bucket

    Contains an S3 bucket with public access to host OIDC discovery documents for your hosted clusters.

    credentials

    A reference to a file that contains the credentials of the default profile that can access the bucket. By default, HyperShift only uses the default profile to operate the bucket.

    region

    Specifies the region of the S3 bucket.

  5. To create an AWS secret, run the following command:

    $ oc create secret generic <secret_name> --from-file=credentials=<path>/.aws/credentials --from-literal=bucket=<s3_bucket> --from-literal=region=<region> -n local-cluster
    Note

    Disaster recovery backup for the secret is not automatically enabled. To add the label that enables the hypershift-operator-oidc-provider-s3-credentials secret to be backed up for disaster recovery, run the following command:

    $ oc label secret hypershift-operator-oidc-provider-s3-credentials -n local-cluster cluster.open-cluster-management.io/backup=true

4.1.3. Creating a routable public zone for hosted clusters

To access applications in your hosted clusters, you must configure the routable public zone. If the public zone exists, skip this step. Otherwise, the public zone affects the existing functions.

Procedure

  • To create a routable public zone for DNS records, enter the following command:

    $ aws route53 create-hosted-zone --name <basedomain> --caller-reference $(whoami)-$(date --rfc-3339=date) 1
    1
    Replace <basedomain> with your base domain, for example, www.example.com.

4.1.4. Creating an AWS IAM role and STS credentials

Before creating a hosted cluster on Amazon Web Services (AWS), you must create an AWS IAM role and STS credentials.

Procedure

  1. Get the Amazon Resource Name (ARN) of your user by running the following command:

    $ aws sts get-caller-identity --query "Arn" --output text

    Example output

    arn:aws:iam::1234567890:user/<aws_username>

    Use this output as the value for <arn> in the next step.

  2. Create a JSON file that contains the trust relationship configuration for your role. See the following example:

    {
        "Version": "2012-10-17",
        "Statement": [
            {
                "Effect": "Allow",
                "Principal": {
                    "AWS": "<arn>" 1
                },
                "Action": "sts:AssumeRole"
            }
        ]
    }
    1
    Replace <arn> with the ARN of your user that you noted in the previous step.
  3. Create the Identity and Access Management (IAM) role by running the following command:

    $ aws iam create-role \
    --role-name <name> \1
    --assume-role-policy-document file://<file_name>.json \2
    --query "Role.Arn"
    1
    Replace <name> with the role name, for example, hcp-cli-role.
    2
    Replace <file_name> with the name of the JSON file you created in the previous step.

    Example output

    arn:aws:iam::820196288204:role/myrole

  4. Create a JSON file named policy.json that contains the following permission policies for your role:

    {
        "Version": "2012-10-17",
        "Statement": [
            {
                "Sid": "EC2",
                "Effect": "Allow",
                "Action": [
                    "ec2:CreateDhcpOptions",
                    "ec2:DeleteSubnet",
                    "ec2:ReplaceRouteTableAssociation",
                    "ec2:DescribeAddresses",
                    "ec2:DescribeInstances",
                    "ec2:DeleteVpcEndpoints",
                    "ec2:CreateNatGateway",
                    "ec2:CreateVpc",
                    "ec2:DescribeDhcpOptions",
                    "ec2:AttachInternetGateway",
                    "ec2:DeleteVpcEndpointServiceConfigurations",
                    "ec2:DeleteRouteTable",
                    "ec2:AssociateRouteTable",
                    "ec2:DescribeInternetGateways",
                    "ec2:DescribeAvailabilityZones",
                    "ec2:CreateRoute",
                    "ec2:CreateInternetGateway",
                    "ec2:RevokeSecurityGroupEgress",
                    "ec2:ModifyVpcAttribute",
                    "ec2:DeleteInternetGateway",
                    "ec2:DescribeVpcEndpointConnections",
                    "ec2:RejectVpcEndpointConnections",
                    "ec2:DescribeRouteTables",
                    "ec2:ReleaseAddress",
                    "ec2:AssociateDhcpOptions",
                    "ec2:TerminateInstances",
                    "ec2:CreateTags",
                    "ec2:DeleteRoute",
                    "ec2:CreateRouteTable",
                    "ec2:DetachInternetGateway",
                    "ec2:DescribeVpcEndpointServiceConfigurations",
                    "ec2:DescribeNatGateways",
                    "ec2:DisassociateRouteTable",
                    "ec2:AllocateAddress",
                    "ec2:DescribeSecurityGroups",
                    "ec2:RevokeSecurityGroupIngress",
                    "ec2:CreateVpcEndpoint",
                    "ec2:DescribeVpcs",
                    "ec2:DeleteSecurityGroup",
                    "ec2:DeleteDhcpOptions",
                    "ec2:DeleteNatGateway",
                    "ec2:DescribeVpcEndpoints",
                    "ec2:DeleteVpc",
                    "ec2:CreateSubnet",
                    "ec2:DescribeSubnets"
                ],
                "Resource": "*"
            },
            {
                "Sid": "ELB",
                "Effect": "Allow",
                "Action": [
                    "elasticloadbalancing:DeleteLoadBalancer",
                    "elasticloadbalancing:DescribeLoadBalancers",
                    "elasticloadbalancing:DescribeTargetGroups",
                    "elasticloadbalancing:DeleteTargetGroup"
                ],
                "Resource": "*"
            },
            {
                "Sid": "IAMPassRole",
                "Effect": "Allow",
                "Action": "iam:PassRole",
                "Resource": "arn:*:iam::*:role/*-worker-role",
                "Condition": {
                    "ForAnyValue:StringEqualsIfExists": {
                        "iam:PassedToService": "ec2.amazonaws.com"
                    }
                }
            },
            {
                "Sid": "IAM",
                "Effect": "Allow",
                "Action": [
                    "iam:CreateInstanceProfile",
                    "iam:DeleteInstanceProfile",
                    "iam:GetRole",
                    "iam:UpdateAssumeRolePolicy",
                    "iam:GetInstanceProfile",
                    "iam:TagRole",
                    "iam:RemoveRoleFromInstanceProfile",
                    "iam:CreateRole",
                    "iam:DeleteRole",
                    "iam:PutRolePolicy",
                    "iam:AddRoleToInstanceProfile",
                    "iam:CreateOpenIDConnectProvider",
                    "iam:ListOpenIDConnectProviders",
                    "iam:DeleteRolePolicy",
                    "iam:UpdateRole",
                    "iam:DeleteOpenIDConnectProvider",
                    "iam:GetRolePolicy"
                ],
                "Resource": "*"
            },
            {
                "Sid": "Route53",
                "Effect": "Allow",
                "Action": [
                    "route53:ListHostedZonesByVPC",
                    "route53:CreateHostedZone",
                    "route53:ListHostedZones",
                    "route53:ChangeResourceRecordSets",
                    "route53:ListResourceRecordSets",
                    "route53:DeleteHostedZone",
                    "route53:AssociateVPCWithHostedZone",
                    "route53:ListHostedZonesByName"
                ],
                "Resource": "*"
            },
            {
                "Sid": "S3",
                "Effect": "Allow",
                "Action": [
                    "s3:ListAllMyBuckets",
                    "s3:ListBucket",
                    "s3:DeleteObject",
                    "s3:DeleteBucket"
                ],
                "Resource": "*"
            }
        ]
    }
  5. Attach the policy.json file to your role by running the following command:

    $ aws iam put-role-policy \
      --role-name <role_name> \1
      --policy-name <policy_name> \2
      --policy-document file://policy.json 3
    1
    Replace <role_name> with the name of your role.
    2
    Replace <policy_name> with your policy name.
    3
    The policy.json file contains the permission policies for your role.
  6. Retrieve STS credentials in a JSON file named sts-creds.json by running the following command:

    $ aws sts get-session-token --output json > sts-creds.json

    Example sts-creds.json file

    {
                  "Credentials": {
                      "AccessKeyId": "ASIA1443CE0GN2ATHWJU",
                      "SecretAccessKey": "XFLN7cZ5AP0d66KhyI4gd8Mu0UCQEDN9cfelW1”,
                      "SessionToken": "IQoJb3JpZ2luX2VjEEAaCXVzLWVhc3QtMiJHMEUCIDyipkM7oPKBHiGeI0pMnXst1gDLfs/TvfskXseKCbshAiEAnl1l/Html7Iq9AEIqf////KQburfkq4A3TuppHMr/9j1TgCj1z83SO261bHqlJUazKoy7vBFR/a6LHt55iMBqtKPEsIWjBgj/jSdRJI3j4Gyk1//luKDytcfF/tb9YrxDTPLrACS1lqAxSIFZ82I/jDhbDs=",
                      "Expiration": "2025-05-16T04:19:32+00:00"
                  }
              }

4.1.6. Enabling external DNS for hosted control planes on AWS

The control plane and the data plane are separate in hosted control planes. You can configure DNS in two independent areas:

  • Ingress for workloads within the hosted cluster, such as the following domain: *.apps.service-consumer-domain.com.
  • Ingress for service endpoints within the management cluster, such as API or OAuth endpoints through the service provider domain: *.service-provider-domain.com.

The input for hostedCluster.spec.dns manages the ingress for workloads within the hosted cluster. The input for hostedCluster.spec.services.servicePublishingStrategy.route.hostname manages the ingress for service endpoints within the management cluster.

External DNS creates name records for hosted cluster Services that specify a publishing type of LoadBalancer or Route and provide a hostname for that publishing type. For hosted clusters with Private or PublicAndPrivate endpoint access types, only the APIServer and OAuth services support hostnames. For Private hosted clusters, the DNS record resolves to a private IP address of a Virtual Private Cloud (VPC) endpoint in your VPC.

A hosted control plane exposes the following services:

  • APIServer
  • OIDC

You can expose these services by using the servicePublishingStrategy field in the HostedCluster specification. By default, for the LoadBalancer and Route types of servicePublishingStrategy, you can publish the service in one of the following ways:

  • By using the hostname of the load balancer that is in the status of the Service with the LoadBalancer type.
  • By using the status.host field of the Route resource.

However, when you deploy hosted control planes in a managed service context, those methods can expose the ingress subdomain of the underlying management cluster and limit options for the management cluster lifecycle and disaster recovery.

When a DNS indirection is layered on the LoadBalancer and Route publishing types, a managed service operator can publish all public hosted cluster services by using a service-level domain. This architecture allows remapping on the DNS name to a new LoadBalancer or Route and does not expose the ingress domain of the management cluster. Hosted control planes uses external DNS to achieve that indirection layer.

You can deploy external-dns alongside the HyperShift Operator in the hypershift namespace of the management cluster. External DNS watches for Services or Routes that have the external-dns.alpha.kubernetes.io/hostname annotation. That annotation is used to create a DNS record that points to the Service, such as a record, or the Route, such as a CNAME record.

You can use external DNS on cloud environments only. For the other environments, you need to manually configure DNS and services.

For more information about external DNS, see external DNS.

4.1.6.1. Prerequisites

Before you can set up external DNS for hosted control planes on Amazon Web Services (AWS), you must meet the following prerequisites:

  • You created an external public domain.
  • You have access to the AWS Route53 Management console.
  • You enabled AWS PrivateLink for hosted control planes.
4.1.6.2. Setting up external DNS for hosted control planes

You can provision hosted control planes with external DNS or service-level DNS.

  1. Create an Amazon Web Services (AWS) credential secret for the HyperShift Operator and name it hypershift-operator-external-dns-credentials in the local-cluster namespace.
  2. See the following table to verify that the secret has the required fields:

    Table 4.3. Required fields for the AWS secret
    Field nameDescription

    Optional or required

    provider

    The DNS provider that manages the service-level DNS zone.

    Required

    domain-filter

    The service-level domain.

    Required

    credentials

    The credential file that supports all external DNS types.

    Optional when you use AWS keys

    aws-access-key-id

    The credential access key id.

    Optional when you use the AWS DNS service

    aws-secret-access-key

    The credential access key secret.

    Optional when you use the AWS DNS service

  3. To create an AWS secret, run the following command:

    $ oc create secret generic <secret_name> --from-literal=provider=aws --from-literal=domain-filter=<domain_name> --from-file=credentials=<path_to_aws_credentials_file> -n local-cluster
    Note

    Disaster recovery backup for the secret is not automatically enabled. To back up the secret for disaster recovery, add the hypershift-operator-external-dns-credentials by entering the following command:

    $ oc label secret hypershift-operator-external-dns-credentials -n local-cluster cluster.open-cluster-management.io/backup=""
4.1.6.3. Creating the public DNS hosted zone

The External DNS Operator uses the public DNS hosted zone to create your public hosted cluster.

You can create the public DNS hosted zone to use as the external DNS domain-filter. Complete the following steps in the AWS Route 53 management console.

Procedure

  1. In the Route 53 management console, click Create hosted zone.
  2. On the Hosted zone configuration page, type a domain name, verify that Publish hosted zone is selected as the type, and click Create hosted zone.
  3. After the zone is created, on the Records tab, note the values in the Value/Route traffic to column.
  4. In the main domain, create an NS record to redirect the DNS requests to the delegated zone. In the Value field, enter the values that you noted in the previous step.
  5. Click Create records.
  6. Verify that the DNS hosted zone is working by creating a test entry in the new subzone and testing it with a dig command, such as in the following example:

    $ dig +short test.user-dest-public.aws.kerberos.com

    Example output

    192.168.1.1

  7. To create a hosted cluster that sets the hostname for the LoadBalancer and Route services, enter the following command:

    $ hcp create cluster aws --name=<hosted_cluster_name> --endpoint-access=PublicAndPrivate --external-dns-domain=<public_hosted_zone> ... 1
    1
    Replace <public_hosted_zone> with the public hosted zone that you created.

    Example services block for the hosted cluster

      platform:
        aws:
          endpointAccess: PublicAndPrivate
    ...
      services:
      - service: APIServer
        servicePublishingStrategy:
          route:
            hostname: api-example.service-provider-domain.com
          type: Route
      - service: OAuthServer
        servicePublishingStrategy:
          route:
            hostname: oauth-example.service-provider-domain.com
          type: Route
      - service: Konnectivity
        servicePublishingStrategy:
          type: Route
      - service: Ignition
        servicePublishingStrategy:
          type: Route

The Control Plane Operator creates the Services and Routes resources and annotates them with the external-dns.alpha.kubernetes.io/hostname annotation. For Services and Routes, the Control Plane Operator uses a value of the hostname parameter in the servicePublishingStrategy field for the service endpoints. To create the DNS records, you can use a mechanism, such as the external-dns deployment.

You can configure service-level DNS indirection for public services only. You cannot set hostname for private services because they use the hypershift.local private zone.

The following table shows when it is valid to set hostname for a service and endpoint combinations:

Table 4.4. Service and endpoint combinations to set hostname
ServicePublic

PublicAndPrivate

Private

APIServer

Y

Y

N

OAuthServer

Y

Y

N

Konnectivity

Y

N

N

Ignition

Y

N

N

4.1.6.4. Creating a hosted cluster by using the external DNS on AWS

To create a hosted cluster by using the PublicAndPrivate or Public publishing strategy on Amazon Web Services (AWS), you must have the following artifacts configured in your management cluster:

  • The public DNS hosted zone
  • The External DNS Operator
  • The HyperShift Operator

You can deploy a hosted cluster, by using the hcp command-line interface (CLI).

Procedure

  1. To access your management cluster, enter the following command:

    $ export KUBECONFIG=<path_to_management_cluster_kubeconfig>
  2. Verify that the External DNS Operator is running by entering the following command:

    $ oc get pod -n hypershift -lapp=external-dns

    Example output

    NAME                            READY   STATUS    RESTARTS   AGE
    external-dns-7c89788c69-rn8gp   1/1     Running   0          40s

  3. To create a hosted cluster by using external DNS, enter the following command:

    $ hcp create cluster aws \
        --role-arn <arn_role> \ 1
        --instance-type <instance_type> \ 2
        --region <region> \ 3
        --auto-repair \
        --generate-ssh \
        --name <hosted_cluster_name> \ 4
        --namespace clusters \
        --base-domain <service_consumer_domain> \ 5
        --node-pool-replicas <node_replica_count> \ 6
        --pull-secret <path_to_your_pull_secret> \ 7
        --release-image quay.io/openshift-release-dev/ocp-release:<ocp_release_image> \ 8
        --external-dns-domain=<service_provider_domain> \ 9
        --endpoint-access=PublicAndPrivate 10
        --sts-creds <path_to_sts_credential_file> 11
    1
    Specify the Amazon Resource Name (ARN), for example, arn:aws:iam::820196288204:role/myrole.
    2
    Specify the instance type, for example, m6i.xlarge.
    3
    Specify the AWS region, for example, us-east-1.
    4
    Specify your hosted cluster name, for example, my-external-aws.
    5
    Specify the public hosted zone that the service consumer owns, for example, service-consumer-domain.com.
    6
    Specify the node replica count, for example, 2.
    7
    Specify the path to your pull secret file.
    8
    Specify the supported OpenShift Container Platform version that you want to use, for example, 4.17.0-multi.
    9
    Specify the public hosted zone that the service provider owns, for example, service-provider-domain.com.
    10
    Set as PublicAndPrivate. You can use external DNS with Public or PublicAndPrivate configurations only.
    11
    Specify the path to your AWS STS credentials file, for example, /home/user/sts-creds/sts-creds.json.

4.1.7. Creating a hosted cluster on AWS

You can create a hosted cluster on Amazon Web Services (AWS) by using the hcp command-line interface (CLI).

By default for hosted control planes on Amazon Web Services (AWS), you use an AMD64 hosted cluster. However, you can enable hosted control planes to run on an ARM64 hosted cluster. For more information, see "Running hosted clusters on an ARM64 architecture".

For compatible combinations of node pools and hosted clusters, see the following table:

Table 4.5. Compatible architectures for node pools and hosted clusters
Hosted clusterNode pools

AMD64

AMD64 or ARM64

ARM64

ARM64 or AMD64

Prerequisites

  • You have set up the hosted control plane CLI, hcp.
  • You have enabled the local-cluster managed cluster as the management cluster.
  • You created an AWS Identity and Access Management (IAM) role and AWS Security Token Service (STS) credentials.

Procedure

  1. To create a hosted cluster on AWS, run the following command:

    $ hcp create cluster aws \
        --name <hosted_cluster_name> \1
        --infra-id <infra_id> \2
        --base-domain <basedomain> \3
        --sts-creds <path_to_sts_credential_file> \4
        --pull-secret <path_to_pull_secret> \5
        --region <region> \6
        --generate-ssh \
        --node-pool-replicas <node_pool_replica_count> \7
        --namespace <hosted_cluster_namespace> \8
        --role-arn <role_name> \9
        --render-into <file_name>.yaml 10
    1
    Specify the name of your hosted cluster, for instance, example.
    2
    Specify your infrastructure name. You must provide the same value for <hosted_cluster_name> and <infra_id>. Otherwise the cluster might not appear correctly in the multicluster engine for Kubernetes Operator console.
    3
    Specify your base domain, for example, example.com.
    4
    Specify the path to your AWS STS credentials file, for example, /home/user/sts-creds/sts-creds.json.
    5
    Specify the path to your pull secret, for example, /user/name/pullsecret.
    6
    Specify the AWS region name, for example, us-east-1.
    7
    Specify the node pool replica count, for example, 3.
    8
    By default, all HostedCluster and NodePool custom resources are created in the clusters namespace. You can use the --namespace <namespace> parameter, to create the HostedCluster and NodePool custom resources in a specific namespace.
    9
    Specify the Amazon Resource Name (ARN), for example, arn:aws:iam::820196288204:role/myrole.
    10
    If you want to indicate whether the EC2 instance runs on shared or single tenant hardware, include this field. The --render-into flag renders Kubernetes resources into the YAML file that you specify in this field. Then, continue to the next step to edit the YAML file.
  2. If you included the --render-into flag in the previous command, edit the specified YAML file. Edit the NodePool specification in the YAML file to indicate whether the EC2 instance should run on shared or single-tenant hardware, similar to the following example:

    Example YAML file

    apiVersion: hypershift.openshift.io/v1beta1
    kind: NodePool
    metadata:
      name: <nodepool_name> 1
    spec:
      platform:
        aws:
          placement:
            tenancy: "default" 2

    1
    Specify the name of the NodePool resource.
    2
    Specify a valid value for tenancy: "default", "dedicated", or "host". Use "default" when node pool instances run on shared hardware. Use "dedicated" when each node pool instance runs on single-tenant hardware. Use "host" when node pool instances run on your pre-allocated dedicated hosts.

Verification

  1. Verify the status of your hosted cluster to check that the value of AVAILABLE is True. Run the following command:

    $ oc get hostedclusters -n <hosted_cluster_namespace>
  2. Get a list of your node pools by running the following command:

    $ oc get nodepools --namespace <hosted_cluster_namespace>
4.1.7.1. Accessing a hosted cluster on AWS by using the kubeadmin credentials

After creating a hosted cluster on Amazon Web Services (AWS), you can access a hosted cluster by getting the kubeconfig file, access secrets, and the kubeadmin credentials.

The hosted cluster namespace contains hosted cluster resources and the access secrets. The hosted control plane runs in the hosted control plane namespace.

The secret name formats are as follows:

  • The kubeconfig secret: <hosted_cluster_namespace>-<name>-admin-kubeconfig. For example, clusters-hypershift-demo-admin-kubeconfig.
  • The kubeadmin password secret: <hosted_cluster_namespace>-<name>-kubeadmin-password. For example, clusters-hypershift-demo-kubeadmin-password.
Note

The kubeadmin password secret is Base64-encoded and the kubeconfig secret contains a Base64-encoded kubeconfig configuration. You must decode the Base64-encoded kubeconfig configuration and save it into a <hosted_cluster_name>.kubeconfig file.

Procedure

  • Use your <hosted_cluster_name>.kubeconfig file that contains the decoded kubeconfig configuration to access the hosted cluster. Enter the following command:

    $ oc --kubeconfig <hosted_cluster_name>.kubeconfig get nodes

    You must decode the kubeadmin password secret to log in to the API server or the console of the hosted cluster.

4.1.7.2. Accessing a hosted cluster on AWS by using the hcp CLI

You can access the hosted cluster by using the hcp command-line interface (CLI).

Procedure

  1. Generate the kubeconfig file by entering the following command:

    $ hcp create kubeconfig --namespace <hosted_cluster_namespace> --name <hosted_cluster_name> > <hosted_cluster_name>.kubeconfig
  2. After you save the kubeconfig file, access the hosted cluster by entering the following command:

    $ oc --kubeconfig <hosted_cluster_name>.kubeconfig get nodes

4.1.8. Creating a hosted cluster in multiple zones on AWS

You can create a hosted cluster in multiple zones on Amazon Web Services (AWS) by using the hcp command-line interface (CLI).

Prerequisites

  • You created an AWS Identity and Access Management (IAM) role and AWS Security Token Service (STS) credentials.

Procedure

  • Create a hosted cluster in multiple zones on AWS by running the following command:

    $ hcp create cluster aws \
      --name <hosted_cluster_name> \1
      --node-pool-replicas=<node_pool_replica_count> \2
      --base-domain <basedomain> \3
      --pull-secret <path_to_pull_secret> \4
      --role-arn <arn_role> \5
      --region <region> \6
      --zones <zones> \7
      --sts-creds <path_to_sts_credential_file> 8
    1
    Specify the name of your hosted cluster, for instance, example.
    2
    Specify the node pool replica count, for example, 2.
    3
    Specify your base domain, for example, example.com.
    4
    Specify the path to your pull secret, for example, /user/name/pullsecret.
    5
    Specify the Amazon Resource Name (ARN), for example, arn:aws:iam::820196288204:role/myrole.
    6
    Specify the AWS region name, for example, us-east-1.
    7
    Specify availability zones within your AWS region, for example, us-east-1a, and us-east-1b.
    8
    Specify the path to your AWS STS credentials file, for example, /home/user/sts-creds/sts-creds.json.

For each specified zone, the following infrastructure is created:

  • Public subnet
  • Private subnet
  • NAT gateway
  • Private route table

A public route table is shared across public subnets.

One NodePool resource is created for each zone. The node pool name is suffixed by the zone name. The private subnet for zone is set in spec.platform.aws.subnet.id.

4.1.8.1. Creating a hosted cluster by providing AWS STS credentials

When you create a hosted cluster by using the hcp create cluster aws command, you must provide an Amazon Web Services (AWS) account credentials that have permissions to create infrastructure resources for your hosted cluster.

Infrastructure resources include the following examples:

  • Virtual Private Cloud (VPC)
  • Subnets
  • Network address translation (NAT) gateways

You can provide the AWS credentials by using the either of the following ways:

  • The AWS Security Token Service (STS) credentials
  • The AWS cloud provider secret from multicluster engine Operator

Procedure

  • To create a hosted cluster on AWS by providing AWS STS credentials, enter the following command:

    $ hcp create cluster aws \
      --name <hosted_cluster_name> \1
      --node-pool-replicas <node_pool_replica_count> \2
      --base-domain <basedomain> \3
      --pull-secret <path_to_pull_secret> \4
      --sts-creds <path_to_sts_credential_file> \5
      --region <region> \6
      --role-arn <arn_role>  7
    1
    Specify the name of your hosted cluster, for instance, example.
    2
    Specify the node pool replica count, for example, 2.
    3
    Specify your base domain, for example, example.com.
    4
    Specify the path to your pull secret, for example, /user/name/pullsecret.
    5
    Specify the path to your AWS STS credentials file, for example, /home/user/sts-creds/sts-creds.json.
    6
    Specify the AWS region name, for example, us-east-1.
    7
    Specify the Amazon Resource Name (ARN), for example, arn:aws:iam::820196288204:role/myrole.

4.1.9. Running hosted clusters on an ARM64 architecture

By default for hosted control planes on Amazon Web Services (AWS), you use an AMD64 hosted cluster. However, you can enable hosted control planes to run on an ARM64 hosted cluster.

For compatible combinations of node pools and hosted clusters, see the following table:

Table 4.6. Compatible architectures for node pools and hosted clusters
Hosted clusterNode pools

AMD64

AMD64 or ARM64

ARM64

ARM64 or AMD64

4.1.9.1. Creating a hosted cluster on an ARM64 OpenShift Container Platform cluster

You can run a hosted cluster on an ARM64 OpenShift Container Platform cluster for Amazon Web Services (AWS) by overriding the default release image with a multi-architecture release image.

If you do not use a multi-architecture release image, the compute nodes in the node pool are not created and reconciliation of the node pool stops until you either use a multi-architecture release image in the hosted cluster or update the NodePool custom resource based on the release image.

Prerequisites

  • You must have an OpenShift Container Platform cluster with a 64-bit ARM infrastructure that is installed on AWS. For more information, see Create an OpenShift Container Platform Cluster: AWS (ARM).
  • You must create an AWS Identity and Access Management (IAM) role and AWS Security Token Service (STS) credentials. For more information, see "Creating an AWS IAM role and STS credentials".

Procedure

  1. Create a hosted cluster on an ARM64 OpenShift Container Platform cluster by entering the following command:

    $ hcp create cluster aws \
      --name <hosted_cluster_name> \1
      --node-pool-replicas <node_pool_replica_count> \2
      --base-domain <basedomain> \3
      --pull-secret <path_to_pull_secret> \4
      --sts-creds <path_to_sts_credential_file> \5
      --region <region> \6
      --release-image quay.io/openshift-release-dev/ocp-release:<ocp_release_image> \7
      --role-arn <role_name> 8
    1
    Specify the name of your hosted cluster, for instance, example.
    2
    Specify the node pool replica count, for example, 3.
    3
    Specify your base domain, for example, example.com.
    4
    Specify the path to your pull secret, for example, /user/name/pullsecret.
    5
    Specify the path to your AWS STS credentials file, for example, /home/user/sts-creds/sts-creds.json.
    6
    Specify the AWS region name, for example, us-east-1.
    7
    Specify the supported OpenShift Container Platform version that you want to use, for example, 4.17.0-multi. If you are using a disconnected environment, replace <ocp_release_image> with the digest image. To extract the OpenShift Container Platform release image digest, see "Extracting the OpenShift Container Platform release image digest".
    8
    Specify the Amazon Resource Name (ARN), for example, arn:aws:iam::820196288204:role/myrole.
  2. Add a NodePool object to the hosted cluster by running the following command:

    $ hcp create nodepool aws \
      --cluster-name <hosted_cluster_name> \1
      --name <nodepool_name> \2
      --node-count <node_pool_replica_count> 3
    1
    Specify the name of your hosted cluster, for instance, example.
    2
    Specify the node pool name.
    3
    Specify the node pool replica count, for example, 3.
4.1.9.2. Creating an ARM or AMD NodePool object on AWS hosted clusters

You can schedule application workloads that is the NodePool objects on 64-bit ARM and AMD from the same hosted control plane. You can define the arch field in the NodePool specification to set the required processor architecture for the NodePool object. The valid values for the arch field are as follows:

  • arm64
  • amd64

Prerequisites

Procedure

  • Add an ARM or AMD NodePool object to the hosted cluster on AWS by running the following command:

    $ hcp create nodepool aws \
      --cluster-name <hosted_cluster_name> \1
      --name <node_pool_name> \2
      --node-count <node_pool_replica_count> \3
      --arch <architecture> 4
    1
    Specify the name of your hosted cluster, for instance, example.
    2
    Specify the node pool name.
    3
    Specify the node pool replica count, for example, 3.
    4
    Specify the architecture type, such as arm64 or amd64. If you do not specify a value for the --arch flag, the amd64 value is used by default.

4.1.10. Creating a private hosted cluster on AWS

After you enable the local-cluster as the hosting cluster, you can deploy a hosted cluster or a private hosted cluster on Amazon Web Services (AWS).

By default, hosted clusters are publicly accessible through public DNS and the default router for the management cluster.

For private clusters on AWS, all communication with the hosted cluster occurs over AWS PrivateLink.

Prerequisites

  • You enabled AWS PrivateLink. For more information, see "Enabling AWS PrivateLink".
  • You created an AWS Identity and Access Management (IAM) role and AWS Security Token Service (STS) credentials. For more information, see "Creating an AWS IAM role and STS credentials" and "Identity and Access Management (IAM) permissions".
  • You configured a bastion instance on AWS.

Procedure

  • Create a private hosted cluster on AWS by entering the following command:

    $ hcp create cluster aws \
      --name <hosted_cluster_name> \1
      --node-pool-replicas=<node_pool_replica_count> \2
      --base-domain <basedomain> \3
      --pull-secret <path_to_pull_secret> \4
      --sts-creds <path_to_sts_credential_file> \5
      --region <region> \6
      --endpoint-access Private \7
      --role-arn <role_name> 8
    1
    Specify the name of your hosted cluster, for instance, example.
    2
    Specify the node pool replica count, for example, 3.
    3
    Specify your base domain, for example, example.com.
    4
    Specify the path to your pull secret, for example, /user/name/pullsecret.
    5
    Specify the path to your AWS STS credentials file, for example, /home/user/sts-creds/sts-creds.json.
    6
    Specify the AWS region name, for example, us-east-1.
    7
    Defines whether a cluster is public or private.
    8
    Specify the Amazon Resource Name (ARN), for example, arn:aws:iam::820196288204:role/myrole. For more information about ARN roles, see "Identity and Access Management (IAM) permissions".

    The following API endpoints for the hosted cluster are accessible through a private DNS zone:

  • api.<hosted_cluster_name>.hypershift.local
  • *.apps.<hosted_cluster_name>.hypershift.local
4.1.10.1. Accessing a private management cluster on AWS

Additional resources

You can access your private management cluster by using the command-line interface (CLI).

Procedure

  1. Find the private IPs of nodes by entering the following command:

    $ aws ec2 describe-instances --filter="Name=tag:kubernetes.io/cluster/<infra_id>,Values=owned" | jq '.Reservations[] | .Instances[] | select(.PublicDnsName=="") | .PrivateIpAddress'
  2. Create a kubeconfig file for the hosted cluster that you can copy to a node by entering the following command:

    $ hcp create kubeconfig > <hosted_cluster_kubeconfig>
  3. To SSH into one of the nodes through the bastion, enter the following command:

    $ ssh -o ProxyCommand="ssh ec2-user@<bastion_ip> -W %h:%p" core@<node_ip>
  4. From the SSH shell, copy the kubeconfig file contents to a file on the node by entering the following command:

    $ mv <path_to_kubeconfig_file> <new_file_name>
  5. Export the kubeconfig file by entering the following command:

    $ export KUBECONFIG=<path_to_kubeconfig_file>
  6. Observe the hosted cluster status by entering the following command:

    $ oc get clusteroperators clusterversion

4.2. Deploying hosted control planes on bare metal

You can deploy hosted control planes by configuring a cluster to function as a management cluster. The management cluster is the OpenShift Container Platform cluster where the control planes are hosted. In some contexts, the management cluster is also known as the hosting cluster.

Note

The management cluster is not the same thing as the managed cluster. A managed cluster is a cluster that the hub cluster manages.

The hosted control planes feature is enabled by default.

The multicluster engine Operator supports only the default local-cluster, which is a hub cluster that is managed, and the hub cluster as the management cluster. If you have Red Hat Advanced Cluster Management installed, you can use the managed hub cluster, also known as the local-cluster, as the management cluster.

A hosted cluster is an OpenShift Container Platform cluster with its API endpoint and control plane that are hosted on the management cluster. The hosted cluster includes the control plane and its corresponding data plane. You can use the multicluster engine Operator console or the hosted control plane command line interface, hcp, to create a hosted cluster.

The hosted cluster is automatically imported as a managed cluster. If you want to disable this automatic import feature, see Disabling the automatic import of hosted clusters into multicluster engine Operator.

4.2.1. Preparing to deploy hosted control planes on bare metal

As you prepare to deploy hosted control planes on bare metal, consider the following information:

  • Run the hub cluster and workers on the same platform for hosted control planes.
  • All bare metal hosts require a manual start with a Discovery Image ISO that the central infrastructure management provides. You can start the hosts manually or through automation by using Cluster-Baremetal-Operator. After each host starts, it runs an Agent process to discover the host details and complete the installation. An Agent custom resource represents each host.
  • When you configure storage for hosted control planes, consider the recommended etcd practices. To ensure that you meet the latency requirements, dedicate a fast storage device to all hosted control plane etcd instances that run on each control-plane node. You can use LVM storage to configure a local storage class for hosted etcd pods. For more information, see Recommended etcd practices and Persistent storage using logical volume manager storage.
4.2.1.1. Prerequisites to configure a management cluster
  • You need the multicluster engine for Kubernetes Operator 2.2 and later installed on an OpenShift Container Platform cluster. You can install multicluster engine Operator as an Operator from the OpenShift Container Platform OperatorHub.
  • The multicluster engine Operator must have at least one managed OpenShift Container Platform cluster. The local-cluster is automatically imported in multicluster engine Operator 2.2 and later. For more information about the local-cluster, see Advanced configuration in the Red Hat Advanced Cluster Management documentation. You can check the status of your hub cluster by running the following command:

    $ oc get managedclusters local-cluster
  • You must add the topology.kubernetes.io/zone label to your bare metal hosts on your management cluster. Otherwise, all of the hosted control plane pods are scheduled on a single node, causing single point of failure.
  • To provision hosted control planes on bare metal, you can use the Agent platform. The Agent platform uses the central infrastructure management service to add worker nodes to a hosted cluster. For more information, see Enabling the central infrastructure management service.
  • You need to install the hosted control plane command line interface.
4.2.1.2. Bare metal firewall, port, and service requirements

You must meet the firewall, port, and service requirements so that ports can communicate between the management cluster, the control plane, and hosted clusters.

Note

Services run on their default ports. However, if you use the NodePort publishing strategy, services run on the port that is assigned by the NodePort service.

Use firewall rules, security groups, or other access controls to restrict access to only required sources. Avoid exposing ports publicly unless necessary. For production deployments, use a load balancer to simplify access through a single IP address.

If your hub cluster has a proxy configuration, ensure that it can reach the hosted cluster API endpoint by adding all hosted cluster API endpoints to the noProxy field on the Proxy object. For more information, see "Configuring the cluster-wide proxy".

A hosted control plane exposes the following services on bare metal:

  • APIServer

    • The APIServer service runs on port 6443 by default and requires ingress access for communication between the control plane components.
    • If you use MetalLB load balancing, allow ingress access to the IP range that is used for load balancer IP addresses.
  • OAuthServer

    • The OAuthServer service runs on port 443 by default when you use the route and ingress to expose the service.
    • If you use the NodePort publishing strategy, use a firewall rule for the OAuthServer service.
  • Konnectivity

    • The Konnectivity service runs on port 443 by default when you use the route and ingress to expose the service.
    • The Konnectivity agent establishes a reverse tunnel to allow the control plane to access the network for the hosted cluster. The agent uses egress to connect to the Konnectivity server. The server is exposed by using either a route on port 443 or a manually assigned NodePort.
    • If the cluster API server address is an internal IP address, allow access from the workload subnets to the IP address on port 6443.
    • If the address is an external IP address, allow egress on port 6443 to that external IP address from the nodes.
  • Ignition

    • The Ignition service runs on port 443 by default when you use the route and ingress to expose the service.
    • If you use the NodePort publishing strategy, use a firewall rule for the Ignition service.

You do not need the following services on bare metal:

  • OVNSbDb
  • OIDC
4.2.1.3. Bare metal infrastructure requirements

The Agent platform does not create any infrastructure, but it does have the following requirements for infrastructure:

  • Agents: An Agent represents a host that is booted with a discovery image and is ready to be provisioned as an OpenShift Container Platform node.
  • DNS: The API and ingress endpoints must be routable.

4.2.2. DNS configurations on bare metal

The API Server for the hosted cluster is exposed as a NodePort service. A DNS entry must exist for api.<hosted_cluster_name>.<base_domain> that points to destination where the API Server can be reached.

The DNS entry can be as simple as a record that points to one of the nodes in the managed cluster that is running the hosted control plane. The entry can also point to a load balancer that is deployed to redirect incoming traffic to the ingress pods.

Example DNS configuration

api.example.krnl.es.    IN A 192.168.122.20
api.example.krnl.es.    IN A 192.168.122.21
api.example.krnl.es.    IN A 192.168.122.22
api-int.example.krnl.es.    IN A 192.168.122.20
api-int.example.krnl.es.    IN A 192.168.122.21
api-int.example.krnl.es.    IN A 192.168.122.22
`*`.apps.example.krnl.es. IN A 192.168.122.23

If you are configuring DNS for a disconnected environment on an IPv6 network, the configuration looks like the following example.

Example DNS configuration for an IPv6 network

api.example.krnl.es.    IN A 2620:52:0:1306::5
api.example.krnl.es.    IN A 2620:52:0:1306::6
api.example.krnl.es.    IN A 2620:52:0:1306::7
api-int.example.krnl.es.    IN A 2620:52:0:1306::5
api-int.example.krnl.es.    IN A 2620:52:0:1306::6
api-int.example.krnl.es.    IN A 2620:52:0:1306::7
`*`.apps.example.krnl.es. IN A 2620:52:0:1306::10

If you are configuring DNS for a disconnected environment on a dual stack network, be sure to include DNS entries for both IPv4 and IPv6.

Example DNS configuration for a dual stack network

host-record=api-int.hub-dual.dns.base.domain.name,192.168.126.10
host-record=api.hub-dual.dns.base.domain.name,192.168.126.10
address=/apps.hub-dual.dns.base.domain.name/192.168.126.11
dhcp-host=aa:aa:aa:aa:10:01,ocp-master-0,192.168.126.20
dhcp-host=aa:aa:aa:aa:10:02,ocp-master-1,192.168.126.21
dhcp-host=aa:aa:aa:aa:10:03,ocp-master-2,192.168.126.22
dhcp-host=aa:aa:aa:aa:10:06,ocp-installer,192.168.126.25
dhcp-host=aa:aa:aa:aa:10:07,ocp-bootstrap,192.168.126.26

host-record=api-int.hub-dual.dns.base.domain.name,2620:52:0:1306::2
host-record=api.hub-dual.dns.base.domain.name,2620:52:0:1306::2
address=/apps.hub-dual.dns.base.domain.name/2620:52:0:1306::3
dhcp-host=aa:aa:aa:aa:10:01,ocp-master-0,[2620:52:0:1306::5]
dhcp-host=aa:aa:aa:aa:10:02,ocp-master-1,[2620:52:0:1306::6]
dhcp-host=aa:aa:aa:aa:10:03,ocp-master-2,[2620:52:0:1306::7]
dhcp-host=aa:aa:aa:aa:10:06,ocp-installer,[2620:52:0:1306::8]
dhcp-host=aa:aa:aa:aa:10:07,ocp-bootstrap,[2620:52:0:1306::9]

4.2.3. Creating a hosted cluster on bare metal

When you create a hosted cluster with the Agent platform, HyperShift installs the Agent Cluster API provider in the hosted control plane namespace. You can create a hosted cluster on bare metal or import one.

As you create a hosted cluster, keep the following guidelines in mind:

  • Each hosted cluster must have a cluster-wide unique name. A hosted cluster name cannot be the same as any existing managed cluster in order for multicluster engine Operator to manage it.
  • Do not use clusters as a hosted cluster name.
  • A hosted cluster cannot be created in the namespace of a multicluster engine Operator managed cluster.

Procedure

  1. Create the hosted control plane namespace by entering the following command:

    $ oc create ns <hosted_cluster_namespace>-<hosted_cluster_name>

    Replace <hosted_cluster_namespace> with your hosted cluster namespace name, for example, clusters. Replace <hosted_cluster_name> with your hosted cluster name.

  2. Verify that you have a default storage class configured for your cluster. Otherwise, you might see pending PVCs. Run the following command:

    $ hcp create cluster agent \
        --name=<hosted_cluster_name> \1
        --pull-secret=<path_to_pull_secret> \2
        --agent-namespace=<hosted_control_plane_namespace> \3
        --base-domain=<basedomain> \4
        --api-server-address=api.<hosted_cluster_name>.<basedomain> \5
        --etcd-storage-class=<etcd_storage_class> \6
        --ssh-key  <path_to_ssh_public_key> \7
        --namespace <hosted_cluster_namespace> \8
        --control-plane-availability-policy HighlyAvailable \9
        --release-image=quay.io/openshift-release-dev/ocp-release:<ocp_release_image> 10
    1
    Specify the name of your hosted cluster, for instance, example.
    2
    Specify the path to your pull secret, for example, /user/name/pullsecret.
    3
    Specify your hosted control plane namespace, for example, clusters-example. Ensure that agents are available in this namespace by using the oc get agent -n <hosted_control_plane_namespace> command.
    4
    Specify your base domain, for example, krnl.es.
    5
    The --api-server-address flag defines the IP address that is used for the Kubernetes API communication in the hosted cluster. If you do not set the --api-server-address flag, you must log in to connect to the management cluster.
    6
    Specify the etcd storage class name, for example, lvm-storageclass.
    7
    Specify the path to your SSH public key. The default file path is ~/.ssh/id_rsa.pub.
    8
    Specify your hosted cluster namespace.
    9
    The default value for the control plane availability policy is HighlyAvailable.
    10
    Specify the supported OpenShift Container Platform version that you want to use, for example, 4.17.0-multi. If you are using a disconnected environment, replace <ocp_release_image> with the digest image. To extract the OpenShift Container Platform release image digest, see Extracting the OpenShift Container Platform release image digest.
  3. After a few moments, verify that your hosted control plane pods are up and running by entering the following command:

    $ oc -n <hosted_control_plane_namespace> get pods

    Example output

    NAME                                             READY   STATUS    RESTARTS   AGE
    capi-provider-7dcf5fc4c4-nr9sq                   1/1     Running   0          4m32s
    catalog-operator-6cd867cc7-phb2q                 2/2     Running   0          2m50s
    certified-operators-catalog-884c756c4-zdt64      1/1     Running   0          2m51s
    cluster-api-f75d86f8c-56wfz                      1/1     Running   0          4m32s

4.2.3.1. Creating a hosted cluster on bare metal by using the console

To create a hosted cluster by using the console, complete the following steps.

Procedure

  1. Open the OpenShift Container Platform web console and log in by entering your administrator credentials. For instructions to open the console, see Accessing the web console.
  2. In the console header, ensure that All Clusters is selected.
  3. Click Infrastructure → Clusters.
  4. Click Create cluster → Host inventory → Hosted control plane.

    The Create cluster page is displayed.

  5. On the Create cluster page, follow the prompts to enter details about the cluster, node pools, networking, and automation.

    Note

    As you enter details about the cluster, you might find the following tips useful:

    • If you want to use predefined values to automatically populate fields in the console, you can create a host inventory credential. For more information, see Creating a credential for an on-premises environment.
    • On the Cluster details page, the pull secret is your OpenShift Container Platform pull secret that you use to access OpenShift Container Platform resources. If you selected a host inventory credential, the pull secret is automatically populated.
    • On the Node pools page, the namespace contains the hosts for the node pool. If you created a host inventory by using the console, the console creates a dedicated namespace.
    • On the Networking page, you select an API server publishing strategy. The API server for the hosted cluster can be exposed either by using an existing load balancer or as a service of the NodePort type. A DNS entry must exist for the api.<hosted_cluster_name>.<base_domain> setting that points to the destination where the API server can be reached. This entry can be a record that points to one of the nodes in the management cluster or a record that points to a load balancer that redirects incoming traffic to the Ingress pods.
  6. Review your entries and click Create.

    The Hosted cluster view is displayed.

  7. Monitor the deployment of the hosted cluster in the Hosted cluster view.
  8. If you do not see information about the hosted cluster, ensure that All Clusters is selected, then click the cluster name.
  9. Wait until the control plane components are ready. This process can take a few minutes.
  10. To view the node pool status, scroll to the NodePool section. The process to install the nodes takes about 10 minutes. You can also click Nodes to confirm whether the nodes joined the hosted cluster.

Next steps

4.2.3.2. Creating a hosted cluster on bare metal by using a mirror registry

You can use a mirror registry to create a hosted cluster on bare metal by specifying the --image-content-sources flag in the hcp create cluster command.

Procedure

  1. Create a YAML file to define Image Content Source Policies (ICSP). See the following example:

    - mirrors:
      - brew.registry.redhat.io
      source: registry.redhat.io
    - mirrors:
      - brew.registry.redhat.io
      source: registry.stage.redhat.io
    - mirrors:
      - brew.registry.redhat.io
      source: registry-proxy.engineering.redhat.com
  2. Save the file as icsp.yaml. This file contains your mirror registries.
  3. To create a hosted cluster by using your mirror registries, run the following command:

    $ hcp create cluster agent \
        --name=<hosted_cluster_name> \1
        --pull-secret=<path_to_pull_secret> \2
        --agent-namespace=<hosted_control_plane_namespace> \3
        --base-domain=<basedomain> \4
        --api-server-address=api.<hosted_cluster_name>.<basedomain> \5
        --image-content-sources icsp.yaml  \6
        --ssh-key  <path_to_ssh_key> \7
        --namespace <hosted_cluster_namespace> \8
        --release-image=quay.io/openshift-release-dev/ocp-release:<ocp_release_image> 9
    1
    Specify the name of your hosted cluster, for instance, example.
    2
    Specify the path to your pull secret, for example, /user/name/pullsecret.
    3
    Specify your hosted control plane namespace, for example, clusters-example. Ensure that agents are available in this namespace by using the oc get agent -n <hosted-control-plane-namespace> command.
    4
    Specify your base domain, for example, krnl.es.
    5
    The --api-server-address flag defines the IP address that is used for the Kubernetes API communication in the hosted cluster. If you do not set the --api-server-address flag, you must log in to connect to the management cluster.
    6
    Specify the icsp.yaml file that defines ICSP and your mirror registries.
    7
    Specify the path to your SSH public key. The default file path is ~/.ssh/id_rsa.pub.
    8
    Specify your hosted cluster namespace.
    9
    Specify the supported OpenShift Container Platform version that you want to use, for example, 4.17.0-multi. If you are using a disconnected environment, replace <ocp_release_image> with the digest image. To extract the OpenShift Container Platform release image digest, see Extracting the OpenShift Container Platform release image digest.

Next steps

4.2.4. Verifying hosted cluster creation

After the deployment process is complete, you can verify that the hosted cluster was created successfully. Follow these steps a few minutes after you create the hosted cluster.

Procedure

  1. Obtain the kubeconfig for your new hosted cluster by entering the extract command:

    $ oc extract -n <hosted-control-plane-namespace> secret/admin-kubeconfig --to=- > kubeconfig-<hosted-cluster-name>
  2. Use the kubeconfig to view the cluster Operators of the hosted cluster. Enter the following command:

    $ oc get co --kubeconfig=kubeconfig-<hosted-cluster-name>

    Example output

    NAME                                       VERSION   AVAILABLE   PROGRESSING   DEGRADED   SINCE   MESSAGE
    console                                    4.10.26   True        False         False      2m38s
    dns                                        4.10.26   True        False         False      2m52s
    image-registry                             4.10.26   True        False         False      2m8s
    ingress                                    4.10.26   True        False         False      22m

  3. You can also view the running pods on your hosted cluster by entering the following command:

    $ oc get pods -A --kubeconfig=kubeconfig-<hosted-cluster-name>

    Example output

    NAMESPACE                                          NAME                                                      READY   STATUS             RESTARTS        AGE
    kube-system                                        konnectivity-agent-khlqv                                  0/1     Running            0               3m52s
    openshift-cluster-node-tuning-operator             tuned-dhw5p                                               1/1     Running            0               109s
    openshift-cluster-storage-operator                 cluster-storage-operator-5f784969f5-vwzgz                 1/1     Running            1 (113s ago)    20m
    openshift-cluster-storage-operator                 csi-snapshot-controller-6b7687b7d9-7nrfw                  1/1     Running            0               3m8s
    openshift-console                                  console-5cbf6c7969-6gk6z                                  1/1     Running            0               119s
    openshift-console                                  downloads-7bcd756565-6wj5j                                1/1     Running            0               4m3s
    openshift-dns-operator                             dns-operator-77d755cd8c-xjfbn                             2/2     Running            0               21m
    openshift-dns                                      dns-default-kfqnh                                         2/2     Running            0               113s

4.3. Deploying hosted control planes on OpenShift Virtualization

With hosted control planes and OpenShift Virtualization, you can create OpenShift Container Platform clusters with worker nodes that are hosted by KubeVirt virtual machines. Hosted control planes on OpenShift Virtualization provides several benefits:

  • Enhances resource usage by packing hosted control planes and hosted clusters in the same underlying bare metal infrastructure
  • Separates hosted control planes and hosted clusters to provide strong isolation
  • Reduces cluster provision time by eliminating the bare metal node bootstrapping process
  • Manages many releases under the same base OpenShift Container Platform cluster

The hosted control planes feature is enabled by default.

You can use the hosted control plane command line interface, hcp, to create an OpenShift Container Platform hosted cluster. The hosted cluster is automatically imported as a managed cluster. If you want to disable this automatic import feature, see "Disabling the automatic import of hosted clusters into multicluster engine operator".

4.3.1. Requirements to deploy hosted control planes on OpenShift Virtualization

As you prepare to deploy hosted control planes on OpenShift Virtualization, consider the following information:

  • Run the hub cluster and workers on the same platform for hosted control planes.
  • Each hosted cluster must have a cluster-wide unique name. A hosted cluster name cannot be the same as any existing managed cluster in order for multicluster engine Operator to manage it.
  • Do not use clusters as a hosted cluster name.
  • A hosted cluster cannot be created in the namespace of a multicluster engine Operator managed cluster.
  • When you configure storage for hosted control planes, consider the recommended etcd practices. To ensure that you meet the latency requirements, dedicate a fast storage device to all hosted control plane etcd instances that run on each control-plane node. You can use LVM storage to configure a local storage class for hosted etcd pods. For more information, see "Recommended etcd practices" and "Persistent storage using Logical Volume Manager storage".
4.3.1.1. Prerequisites

You must meet the following prerequisites to create an OpenShift Container Platform cluster on OpenShift Virtualization:

  • You have administrator access to an OpenShift Container Platform cluster, version 4.14 or later, specified in the KUBECONFIG environment variable.
  • The OpenShift Container Platform management cluster has wildcard DNS routes enabled, as shown in the following DNS:

    $ oc patch ingresscontroller -n openshift-ingress-operator default --type=json -p '[{ "op": "add", "path": "/spec/routeAdmission", "value": {wildcardPolicy: "WildcardsAllowed"}}]'
  • The OpenShift Container Platform management cluster has OpenShift Virtualization, version 4.14 or later, installed on it. For more information, see "Installing OpenShift Virtualization using the web console".
  • The OpenShift Container Platform management cluster is on-premise bare metal.
  • The OpenShift Container Platform management cluster is configured with OVNKubernetes as the default pod network CNI.
  • The OpenShift Container Platform management cluster has a default storage class. For more information, see "Postinstallation storage configuration". The following example shows how to set a default storage class:

    $ oc patch storageclass ocs-storagecluster-ceph-rbd -p '{"metadata": {"annotations":{"storageclass.kubernetes.io/is-default-class":"true"}}}'
  • You have a valid pull secret file for the quay.io/openshift-release-dev repository. For more information, see "Install OpenShift on any x86_64 platform with user-provisioned infrastructure".
  • You have installed the hosted control plane command line interface.
  • You have configured a load balancer. For more information, see "Configuring MetalLB".
  • For optimal network performance, you are using a network maximum transmission unit (MTU) of 9000 or greater on the OpenShift Container Platform cluster that hosts the KubeVirt virtual machines. If you use a lower MTU setting, network latency and the throughput of the hosted pods are affected. Enable multiqueue on node pools only when the MTU is 9000 or greater.
  • The multicluster engine Operator has at least one managed OpenShift Container Platform cluster. The local-cluster is automatically imported. For more information about the local-cluster, see "Advanced configuration" in the multicluster engine Operator documentation. You can check the status of your hub cluster by running the following command:

    $ oc get managedclusters local-cluster
  • On the OpenShift Container Platform cluster that hosts the OpenShift Virtualization virtual machines, you are using a ReadWriteMany (RWX) storage class so that live migration can be enabled.
4.3.1.2. Firewall and port requirements

Ensure that you meet the firewall and port requirements so that ports can communicate between the management cluster, the control plane, and hosted clusters:

  • The kube-apiserver service runs on port 6443 by default and requires ingress access for communication between the control plane components.

    • If you use the NodePort publishing strategy, ensure that the node port that is assigned to the kube-apiserver service is exposed.
    • If you use MetalLB load balancing, allow ingress access to the IP range that is used for load balancer IP addresses.
  • If you use the NodePort publishing strategy, use a firewall rule for the ignition-server and Oauth-server settings.
  • The konnectivity agent, which establishes a reverse tunnel to allow bi-directional communication on the hosted cluster, requires egress access to the cluster API server address on port 6443. With that egress access, the agent can reach the kube-apiserver service.

    • If the cluster API server address is an internal IP address, allow access from the workload subnets to the IP address on port 6443.
    • If the address is an external IP address, allow egress on port 6443 to that external IP address from the nodes.
  • If you change the default port of 6443, adjust the rules to reflect that change.
  • Ensure that you open any ports that are required by the workloads that run in the clusters.
  • Use firewall rules, security groups, or other access controls to restrict access to only required sources. Avoid exposing ports publicly unless necessary.
  • For production deployments, use a load balancer to simplify access through a single IP address.

4.3.2. Live migration for compute nodes

While the management cluster for hosted cluster virtual machines (VMs) is undergoing updates or maintenance, the hosted cluster VMs can be automatically live migrated to prevent disrupting hosted cluster workloads. As a result, the management cluster can be updated without affecting the availability and operation of the KubeVirt platform hosted clusters.

Important

The live migration of KubeVirt VMs is enabled by default provided that the VMs use ReadWriteMany (RWX) storage for both the root volume and the storage classes that are mapped to the kubevirt-csi CSI provider.

You can verify that the VMs in a node pool are capable of live migration by checking the KubeVirtNodesLiveMigratable condition in the status section of a NodePool object.

In the following example, the VMs cannot be live migrated because RWX storage is not used.

Example configuration where VMs cannot be live migrated

    - lastTransitionTime: "2024-10-08T15:38:19Z"
      message: |
        3 of 3 machines are not live migratable
        Machine user-np-ngst4-gw2hz: DisksNotLiveMigratable: user-np-ngst4-gw2hz is not a live migratable machine: cannot migrate VMI: PVC user-np-ngst4-gw2hz-rhcos is not shared, live migration requires that all PVCs must be shared (using ReadWriteMany access mode)
        Machine user-np-ngst4-npq7x: DisksNotLiveMigratable: user-np-ngst4-npq7x is not a live migratable machine: cannot migrate VMI: PVC user-np-ngst4-npq7x-rhcos is not shared, live migration requires that all PVCs must be shared (using ReadWriteMany access mode)
        Machine user-np-ngst4-q5nkb: DisksNotLiveMigratable: user-np-ngst4-q5nkb is not a live migratable machine: cannot migrate VMI: PVC user-np-ngst4-q5nkb-rhcos is not shared, live migration requires that all PVCs must be shared (using ReadWriteMany access mode)
      observedGeneration: 1
      reason: DisksNotLiveMigratable
      status: "False"
      type: KubeVirtNodesLiveMigratable

In the next example, the VMs meet the requirements to be live migrated.

Example configuration where VMs can be live migrated

    - lastTransitionTime: "2024-10-08T15:38:19Z"
      message: "All is well"
      observedGeneration: 1
      reason: AsExpected
      status: "True"
      type: KubeVirtNodesLiveMigratable

While live migration can protect VMs from disruption in normal circumstances, events such as infrastructure node failure can result in a hard restart of any VMs that are hosted on the failed node. For live migration to be successful, the source node that a VM is hosted on must be working correctly.

When the VMs in a node pool cannot be live migrated, workload disruption might occur on the hosted cluster during maintenance on the management cluster. By default, the hosted control planes controllers try to drain the workloads that are hosted on KubeVirt VMs that cannot be live migrated before the VMs are stopped. Draining the hosted cluster nodes before stopping the VMs allows pod disruption budgets to protect workload availability within the hosted cluster.

4.3.3. Creating a hosted cluster with the KubeVirt platform

With OpenShift Container Platform 4.14 and later, you can create a cluster with KubeVirt, to include creating with an external infrastructure.

4.3.3.1. Creating a hosted cluster with the KubeVirt platform by using the CLI

To create a hosted cluster, you can use the hosted control plane command line interface, hcp.

Procedure

  1. Enter the following command:

    $ hcp create cluster kubevirt \
      --name <hosted-cluster-name> \ 1
      --node-pool-replicas <worker-count> \ 2
      --pull-secret <path-to-pull-secret> \ 3
      --memory <value-for-memory> \ 4
      --cores <value-for-cpu> \ 5
      --etcd-storage-class=<etcd-storage-class> 6
    1
    Specify the name of your hosted cluster, for instance, example.
    2
    Specify the worker count, for example, 2.
    3
    Specify the path to your pull secret, for example, /user/name/pullsecret.
    4
    Specify a value for memory, for example, 6Gi.
    5
    Specify a value for CPU, for example, 2.
    6
    Specify the etcd storage class name, for example, lvm-storageclass.
    Note

    You can use the --release-image flag to set up the hosted cluster with a specific OpenShift Container Platform release.

    A default node pool is created for the cluster with two virtual machine worker replicas according to the --node-pool-replicas flag.

  2. After a few moments, verify that the hosted control plane pods are running by entering the following command:

    $ oc -n clusters-<hosted-cluster-name> get pods

    Example output

    NAME                                                  READY   STATUS    RESTARTS   AGE
    capi-provider-5cc7b74f47-n5gkr                        1/1     Running   0          3m
    catalog-operator-5f799567b7-fd6jw                     2/2     Running   0          69s
    certified-operators-catalog-784b9899f9-mrp6p          1/1     Running   0          66s
    cluster-api-6bbc867966-l4dwl                          1/1     Running   0          66s
    .
    .
    .
    redhat-operators-catalog-9d5fd4d44-z8qqk              1/1     Running   0          66s

    A hosted cluster that has worker nodes that are backed by KubeVirt virtual machines typically takes 10-15 minutes to be fully provisioned.

  3. To check the status of the hosted cluster, see the corresponding HostedCluster resource by entering the following command:

    $ oc get --namespace clusters hostedclusters

    See the following example output, which illustrates a fully provisioned HostedCluster object:

    NAMESPACE   NAME      VERSION   KUBECONFIG                 PROGRESS    AVAILABLE   PROGRESSING   MESSAGE
    clusters    example   4.x.0     example-admin-kubeconfig   Completed   True        False         The hosted control plane is available

    Replace 4.x.0 with the supported OpenShift Container Platform version that you want to use.

4.3.3.2. Creating a hosted cluster with the KubeVirt platform by using external infrastructure

By default, the HyperShift Operator hosts both the control plane pods of the hosted cluster and the KubeVirt worker VMs within the same cluster. With the external infrastructure feature, you can place the worker node VMs on a separate cluster from the control plane pods.

  • The management cluster is the OpenShift Container Platform cluster that runs the HyperShift Operator and hosts the control plane pods for a hosted cluster.
  • The infrastructure cluster is the OpenShift Container Platform cluster that runs the KubeVirt worker VMs for a hosted cluster.
  • By default, the management cluster also acts as the infrastructure cluster that hosts VMs. However, for external infrastructure, the management and infrastructure clusters are different.

Prerequisites

  • You must have a namespace on the external infrastructure cluster for the KubeVirt nodes to be hosted in.
  • You must have a kubeconfig file for the external infrastructure cluster.

Procedure

You can create a hosted cluster by using the hcp command line interface.

  • To place the KubeVirt worker VMs on the infrastructure cluster, use the --infra-kubeconfig-file and --infra-namespace arguments, as shown in the following example:

    $ hcp create cluster kubevirt \
      --name <hosted-cluster-name> \ 1
      --node-pool-replicas <worker-count> \ 2
      --pull-secret <path-to-pull-secret> \ 3
      --memory <value-for-memory> \ 4
      --cores <value-for-cpu> \ 5
      --infra-namespace=<hosted-cluster-namespace>-<hosted-cluster-name> \ 6
      --infra-kubeconfig-file=<path-to-external-infra-kubeconfig> 7
    1
    Specify the name of your hosted cluster, for instance, example.
    2
    Specify the worker count, for example, 2.
    3
    Specify the path to your pull secret, for example, /user/name/pullsecret.
    4
    Specify a value for memory, for example, 6Gi.
    5
    Specify a value for CPU, for example, 2.
    6
    Specify the infrastructure namespace, for example, clusters-example.
    7
    Specify the path to your kubeconfig file for the infrastructure cluster, for example, /user/name/external-infra-kubeconfig.

    After you enter that command, the control plane pods are hosted on the management cluster that the HyperShift Operator runs on, and the KubeVirt VMs are hosted on a separate infrastructure cluster.

4.3.3.3. Creating a hosted cluster by using the console

To create a hosted cluster with the KubeVirt platform by using the console, complete the following steps.

Procedure

  1. Open the OpenShift Container Platform web console and log in by entering your administrator credentials.
  2. In the console header, ensure that All Clusters is selected.
  3. Click Infrastructure > Clusters.
  4. Click Create cluster > Red Hat OpenShift Virtualization > Hosted.
  5. On the Create cluster page, follow the prompts to enter details about the cluster and node pools.

    Note
    • If you want to use predefined values to automatically populate fields in the console, you can create a OpenShift Virtualization credential. For more information, see Creating a credential for an on-premises environment.
    • On the Cluster details page, the pull secret is your OpenShift Container Platform pull secret that you use to access OpenShift Container Platform resources. If you selected a OpenShift Virtualization credential, the pull secret is automatically populated.
  6. Review your entries and click Create.

    The Hosted cluster view is displayed.

  7. Monitor the deployment of the hosted cluster in the Hosted cluster view. If you do not see information about the hosted cluster, ensure that All Clusters is selected, and click the cluster name.
  8. Wait until the control plane components are ready. This process can take a few minutes.
  9. To view the node pool status, scroll to the NodePool section. The process to install the nodes takes about 10 minutes. You can also click Nodes to confirm whether the nodes joined the hosted cluster.

Additional resources

4.3.4. Configuring the default ingress and DNS for hosted control planes on OpenShift Virtualization

Every OpenShift Container Platform cluster includes a default application Ingress Controller, which must have an wildcard DNS record associated with it. By default, hosted clusters that are created by using the HyperShift KubeVirt provider automatically become a subdomain of the OpenShift Container Platform cluster that the KubeVirt virtual machines run on.

For example, your OpenShift Container Platform cluster might have the following default ingress DNS entry:

*.apps.mgmt-cluster.example.com

As a result, a KubeVirt hosted cluster that is named guest and that runs on that underlying OpenShift Container Platform cluster has the following default ingress:

*.apps.guest.apps.mgmt-cluster.example.com

Procedure

For the default ingress DNS to work properly, the cluster that hosts the KubeVirt virtual machines must allow wildcard DNS routes.

  • You can configure this behavior by entering the following command:

    $ oc patch ingresscontroller -n openshift-ingress-operator default --type=json -p '[{ "op": "add", "path": "/spec/routeAdmission", "value": {wildcardPolicy: "WildcardsAllowed"}}]'
Note

When you use the default hosted cluster ingress, connectivity is limited to HTTPS traffic over port 443. Plain HTTP traffic over port 80 is rejected. This limitation applies to only the default ingress behavior.

4.3.5. Customizing ingress and DNS behavior

If you do not want to use the default ingress and DNS behavior, you can configure a KubeVirt hosted cluster with a unique base domain at creation time. This option requires manual configuration steps during creation and involves three main steps: cluster creation, load balancer creation, and wildcard DNS configuration.

4.3.5.1. Deploying a hosted cluster that specifies the base domain

To create a hosted cluster that specifies a base domain, complete the following steps.

Procedure

  1. Enter the following command:

    $ hcp create cluster kubevirt \
      --name <hosted_cluster_name> \ 1
      --node-pool-replicas <worker_count> \ 2
      --pull-secret <path_to_pull_secret> \ 3
      --memory <value_for_memory> \ 4
      --cores <value_for_cpu> \ 5
      --base-domain <basedomain> 6
    1
    Specify the name of your hosted cluster.
    2
    Specify the worker count, for example, 2.
    3
    Specify the path to your pull secret, for example, /user/name/pullsecret.
    4
    Specify a value for memory, for example, 6Gi.
    5
    Specify a value for CPU, for example, 2.
    6
    Specify the base domain, for example, hypershift.lab.

    As a result, the hosted cluster has an ingress wildcard that is configured for the cluster name and the base domain, for example, .apps.example.hypershift.lab. The hosted cluster remains in Partial status because after you create a hosted cluster with unique base domain, you must configure the required DNS records and load balancer.

  2. View the status of your hosted cluster by entering the following command:

    $ oc get --namespace clusters hostedclusters

    Example output

    NAME            VERSION   KUBECONFIG                       PROGRESS   AVAILABLE   PROGRESSING   MESSAGE
    example                   example-admin-kubeconfig         Partial    True        False         The hosted control plane is available

  3. Access the cluster by entering the following commands:

    $ hcp create kubeconfig --name <hosted_cluster_name> > <hosted_cluster_name>-kubeconfig
    $ oc --kubeconfig <hosted_cluster_name>-kubeconfig get co

    Example output

    NAME                                       VERSION   AVAILABLE   PROGRESSING   DEGRADED   SINCE   MESSAGE
    console                                    4.x.0     False       False         False      30m     RouteHealthAvailable: failed to GET route (https://console-openshift-console.apps.example.hypershift.lab): Get "https://console-openshift-console.apps.example.hypershift.lab": dial tcp: lookup console-openshift-console.apps.example.hypershift.lab on 172.31.0.10:53: no such host
    ingress                                    4.x.0     True        False         True       28m     The "default" ingress controller reports Degraded=True: DegradedConditions: One or more other status conditions indicate a degraded state: CanaryChecksSucceeding=False (CanaryChecksRepetitiveFailures: Canary route checks for the default ingress controller are failing)

    Replace 4.x.0 with the supported OpenShift Container Platform version that you want to use.

Next steps

To fix the errors in the output, complete the steps in "Setting up the load balancer" and "Setting up a wildcard DNS".

Note

If your hosted cluster is on bare metal, you might need MetalLB to set up load balancer services. For more information, see "Configuring MetalLB".

4.3.5.2. Setting up the load balancer

Set up the load balancer service that routes ingress traffic to the KubeVirt VMs and assigns a wildcard DNS entry to the load balancer IP address.

Procedure

  1. A NodePort service that exposes the hosted cluster ingress already exists. You can export the node ports and create the load balancer service that targets those ports.

    1. Get the HTTP node port by entering the following command:

      $ oc --kubeconfig <hosted_cluster_name>-kubeconfig get services -n openshift-ingress router-nodeport-default -o jsonpath='{.spec.ports[?(@.name=="http")].nodePort}'

      Note the HTTP node port value to use in the next step.

    2. Get the HTTPS node port by entering the following command:

      $ oc --kubeconfig <hosted_cluster_name>-kubeconfig get services -n openshift-ingress router-nodeport-default -o jsonpath='{.spec.ports[?(@.name=="https")].nodePort}'

      Note the HTTPS node port value to use in the next step.

  2. Create the load balancer service by entering the following command:

    oc apply -f -
    apiVersion: v1
    kind: Service
    metadata:
      labels:
        app: <hosted_cluster_name>
      name: <hosted_cluster_name>-apps
      namespace: clusters-<hosted_cluster_name>
    spec:
      ports:
      - name: https-443
        port: 443
        protocol: TCP
        targetPort: <https_node_port> 1
      - name: http-80
        port: 80
        protocol: TCP
        targetPort: <http-node-port> 2
      selector:
        kubevirt.io: virt-launcher
      type: LoadBalancer
    1
    Specify the HTTPS node port value that you noted in the previous step.
    2
    Specify the HTTP node port value that you noted in the previous step.
4.3.5.3. Setting up a wildcard DNS

Set up a wildcard DNS record or CNAME that references the external IP of the load balancer service.

Procedure

  1. Get the external IP address by entering the following command:

    $ oc -n clusters-<hosted_cluster_name> get service <hosted-cluster-name>-apps -o jsonpath='{.status.loadBalancer.ingress[0].ip}'

    Example output

    192.168.20.30

  2. Configure a wildcard DNS entry that references the external IP address. View the following example DNS entry:

    *.apps.<hosted_cluster_name\>.<base_domain\>.

    The DNS entry must be able to route inside and outside of the cluster.

    DNS resolutions example

    dig +short test.apps.example.hypershift.lab
    
    192.168.20.30

  3. Check that hosted cluster status has moved from Partial to Completed by entering the following command:

    $ oc get --namespace clusters hostedclusters

    Example output

    NAME            VERSION   KUBECONFIG                       PROGRESS    AVAILABLE   PROGRESSING   MESSAGE
    example         4.x.0     example-admin-kubeconfig         Completed   True        False         The hosted control plane is available

    Replace 4.x.0 with the supported OpenShift Container Platform version that you want to use.

4.3.6. Configuring MetalLB

You must install the MetalLB Operator before you configure MetalLB.

Procedure

Complete the following steps to configure MetalLB on your hosted cluster:

  1. Create a MetalLB resource by saving the following sample YAML content in the configure-metallb.yaml file:

    apiVersion: metallb.io/v1beta1
    kind: MetalLB
    metadata:
      name: metallb
      namespace: metallb-system
  2. Apply the YAML content by entering the following command:

    $ oc apply -f configure-metallb.yaml

    Example output

    metallb.metallb.io/metallb created

  3. Create a IPAddressPool resource by saving the following sample YAML content in the create-ip-address-pool.yaml file:

    apiVersion: metallb.io/v1beta1
    kind: IPAddressPool
    metadata:
      name: metallb
      namespace: metallb-system
    spec:
      addresses:
      - 192.168.216.32-192.168.216.122 1
    1
    Create an address pool with an available range of IP addresses within the node network. Replace the IP address range with an unused pool of available IP addresses in your network.
  4. Apply the YAML content by entering the following command:

    $ oc apply -f create-ip-address-pool.yaml

    Example output

    ipaddresspool.metallb.io/metallb created

  5. Create a L2Advertisement resource by saving the following sample YAML content in the l2advertisement.yaml file:

    apiVersion: metallb.io/v1beta1
    kind: L2Advertisement
    metadata:
      name: l2advertisement
      namespace: metallb-system
    spec:
      ipAddressPools:
       - metallb
  6. Apply the YAML content by entering the following command:

    $ oc apply -f l2advertisement.yaml

    Example output

    l2advertisement.metallb.io/metallb created

Additional resources

4.3.7. Configuring additional networks, guaranteed CPUs, and VM scheduling for node pools

If you need to configure additional networks for node pools, request a guaranteed CPU access for Virtual Machines (VMs), or manage scheduling of KubeVirt VMs, see the following procedures.

4.3.7.1. Adding multiple networks to a node pool

By default, nodes generated by a node pool are attached to the pod network. You can attach additional networks to the nodes by using Multus and NetworkAttachmentDefinitions.

Procedure

To add multiple networks to nodes, use the --additional-network argument by running the following command:

$ hcp create cluster kubevirt \
  --name <hosted_cluster_name> \ 1
  --node-pool-replicas <worker_node_count> \ 2
  --pull-secret <path_to_pull_secret> \ 3
  --memory <memory> \ 4
  --cores <cpu> \ 5
  --additional-network name:<namespace/name> \ 6
  –-additional-network name:<namespace/name>
1
Specify the name of your hosted cluster, for instance, example.
2
Specify your worker node count, for example, 2.
3
Specify the path to your pull secret, for example, /user/name/pullsecret.
4
Specify the memory value, for example, 8Gi.
5
Specify the CPU value, for example, 2.
6
Set the value of the –additional-network argument to name:<namespace/name>. Replace <namespace/name> with a namespace and name of your NetworkAttachmentDefinitions.
4.3.7.1.1. Using an additional network as default

You can add your additional network as a default network for the nodes by disabling the default pod network.

Procedure

  • To add an additional network as default to your nodes, run the following command:

    $ hcp create cluster kubevirt \
      --name <hosted_cluster_name> \ 1
      --node-pool-replicas <worker_node_count> \ 2
      --pull-secret <path_to_pull_secret> \ 3
      --memory <memory> \ 4
      --cores <cpu> \ 5
      --attach-default-network false \ 6
      --additional-network name:<namespace>/<network_name> 7
    1
    Specify the name of your hosted cluster, for instance, example.
    2
    Specify your worker node count, for example, 2.
    3
    Specify the path to your pull secret, for example, /user/name/pullsecret.
    4
    Specify the memory value, for example, 8Gi.
    5
    Specify the CPU value, for example, 2.
    6
    The --attach-default-network false argument disables the default pod network.
    7
    Specify the additional network that you want to add to your nodes, for example, name:my-namespace/my-network.
4.3.7.2. Requesting guaranteed CPU resources

By default, KubeVirt VMs might share its CPUs with other workloads on a node. This might impact performance of a VM. To avoid the performance impact, you can request a guaranteed CPU access for VMs.

Procedure

  • To request guaranteed CPU resources, set the --qos-class argument to Guaranteed by running the following command:

    $ hcp create cluster kubevirt \
      --name <hosted_cluster_name> \ 1
      --node-pool-replicas <worker_node_count> \ 2
      --pull-secret <path_to_pull_secret> \ 3
      --memory <memory> \ 4
      --cores <cpu> \ 5
      --qos-class Guaranteed 6
    1
    Specify the name of your hosted cluster, for instance, example.
    2
    Specify your worker node count, for example, 2.
    3
    Specify the path to your pull secret, for example, /user/name/pullsecret.
    4
    Specify the memory value, for example, 8Gi.
    5
    Specify the CPU value, for example, 2.
    6
    The --qos-class Guaranteed argument guarantees that the specified number of CPU resources are assigned to VMs.
4.3.7.3. Scheduling KubeVirt VMs on a set of nodes

By default, KubeVirt VMs created by a node pool are scheduled to any available nodes. You can schedule KubeVirt VMs on a specific set of nodes that has enough capacity to run the VM.

Procedure

  • To schedule KubeVirt VMs within a node pool on a specific set of nodes, use the --vm-node-selector argument by running the following command:

    $ hcp create cluster kubevirt \
      --name <hosted_cluster_name> \ 1
      --node-pool-replicas <worker_node_count> \ 2
      --pull-secret <path_to_pull_secret> \ 3
      --memory <memory> \ 4
      --cores <cpu> \ 5
      --vm-node-selector <label_key>=<label_value>,<label_key>=<label_value> 6
    1
    Specify the name of your hosted cluster, for instance, example.
    2
    Specify your worker node count, for example, 2.
    3
    Specify the path to your pull secret, for example, /user/name/pullsecret.
    4
    Specify the memory value, for example, 8Gi.
    5
    Specify the CPU value, for example, 2.
    6
    The --vm-node-selector flag defines a specific set of nodes that contains the key-value pairs. Replace <label_key> and <label_value> with the key and value of your labels respectively.

4.3.8. Scaling a node pool

You can manually scale a node pool by using the oc scale command.

Procedure

  1. Run the following command:

    NODEPOOL_NAME=${CLUSTER_NAME}-work
    NODEPOOL_REPLICAS=5
    
    $ oc scale nodepool/$NODEPOOL_NAME --namespace clusters --replicas=$NODEPOOL_REPLICAS
  2. After a few moments, enter the following command to see the status of the node pool:

    $ oc --kubeconfig $CLUSTER_NAME-kubeconfig get nodes

    Example output

    NAME                  STATUS   ROLES    AGE     VERSION
    example-9jvnf         Ready    worker   97s     v1.27.4+18eadca
    example-n6prw         Ready    worker   116m    v1.27.4+18eadca
    example-nc6g4         Ready    worker   117m    v1.27.4+18eadca
    example-thp29         Ready    worker   4m17s   v1.27.4+18eadca
    example-twxns         Ready    worker   88s     v1.27.4+18eadca

4.3.8.1. Adding node pools

You can create node pools for a hosted cluster by specifying a name, number of replicas, and any additional information, such as memory and CPU requirements.

Procedure

  1. To create a node pool, enter the following information. In this example, the node pool has more CPUs assigned to the VMs:

    export NODEPOOL_NAME=${CLUSTER_NAME}-extra-cpu
    export WORKER_COUNT="2"
    export MEM="6Gi"
    export CPU="4"
    export DISK="16"
    
    $ hcp create nodepool kubevirt \
      --cluster-name $CLUSTER_NAME \
      --name $NODEPOOL_NAME \
      --node-count $WORKER_COUNT \
      --memory $MEM \
      --cores $CPU \
      --root-volume-size $DISK
  2. Check the status of the node pool by listing nodepool resources in the clusters namespace:

    $ oc get nodepools --namespace clusters

    Example output

    NAME                      CLUSTER         DESIRED NODES   CURRENT NODES   AUTOSCALING   AUTOREPAIR   VERSION   UPDATINGVERSION   UPDATINGCONFIG   MESSAGE
    example                   example         5               5               False         False        4.x.0
    example-extra-cpu         example         2                               False         False                  True              True             Minimum availability requires 2 replicas, current 0 available

    Replace 4.x.0 with the supported OpenShift Container Platform version that you want to use.

  3. After some time, you can check the status of the node pool by entering the following command:

    $ oc --kubeconfig $CLUSTER_NAME-kubeconfig get nodes

    Example output

    NAME                      STATUS   ROLES    AGE     VERSION
    example-9jvnf             Ready    worker   97s     v1.27.4+18eadca
    example-n6prw             Ready    worker   116m    v1.27.4+18eadca
    example-nc6g4             Ready    worker   117m    v1.27.4+18eadca
    example-thp29             Ready    worker   4m17s   v1.27.4+18eadca
    example-twxns             Ready    worker   88s     v1.27.4+18eadca
    example-extra-cpu-zh9l5   Ready    worker   2m6s    v1.27.4+18eadca
    example-extra-cpu-zr8mj   Ready    worker   102s    v1.27.4+18eadca

  4. Verify that the node pool is in the status that you expect by entering this command:

    $ oc get nodepools --namespace clusters

    Example output

    NAME                      CLUSTER         DESIRED NODES   CURRENT NODES   AUTOSCALING   AUTOREPAIR   VERSION   UPDATINGVERSION   UPDATINGCONFIG   MESSAGE
    example                   example         5               5               False         False        4.x.0
    example-extra-cpu         example         2               2               False         False        4.x.0

    Replace 4.x.0 with the supported OpenShift Container Platform version that you want to use.

Additional resources

4.3.9. Verifying hosted cluster creation on OpenShift Virtualization

To verify that your hosted cluster was successfully created, complete the following steps.

Procedure

  1. Verify that the HostedCluster resource transitioned to the completed state by entering the following command:

    $ oc get --namespace clusters hostedclusters <hosted_cluster_name>

    Example output

    NAMESPACE   NAME      VERSION   KUBECONFIG                 PROGRESS    AVAILABLE   PROGRESSING   MESSAGE
    clusters    example   4.12.2    example-admin-kubeconfig   Completed   True        False         The hosted control plane is available

  2. Verify that all the cluster operators in the hosted cluster are online by entering the following commands:

    $ hcp create kubeconfig --name <hosted_cluster_name> > <hosted_cluster_name>-kubeconfig
    $ oc get co --kubeconfig=<hosted_cluster_name>-kubeconfig

    Example output

    NAME                                       VERSION   AVAILABLE   PROGRESSING   DEGRADED   SINCE   MESSAGE
    console                                    4.12.2   True        False         False      2m38s
    csi-snapshot-controller                    4.12.2   True        False         False      4m3s
    dns                                        4.12.2   True        False         False      2m52s
    image-registry                             4.12.2   True        False         False      2m8s
    ingress                                    4.12.2   True        False         False      22m
    kube-apiserver                             4.12.2   True        False         False      23m
    kube-controller-manager                    4.12.2   True        False         False      23m
    kube-scheduler                             4.12.2   True        False         False      23m
    kube-storage-version-migrator              4.12.2   True        False         False      4m52s
    monitoring                                 4.12.2   True        False         False      69s
    network                                    4.12.2   True        False         False      4m3s
    node-tuning                                4.12.2   True        False         False      2m22s
    openshift-apiserver                        4.12.2   True        False         False      23m
    openshift-controller-manager               4.12.2   True        False         False      23m
    openshift-samples                          4.12.2   True        False         False      2m15s
    operator-lifecycle-manager                 4.12.2   True        False         False      22m
    operator-lifecycle-manager-catalog         4.12.2   True        False         False      23m
    operator-lifecycle-manager-packageserver   4.12.2   True        False         False      23m
    service-ca                                 4.12.2   True        False         False      4m41s
    storage                                    4.12.2   True        False         False      4m43s

4.4. Deploying hosted control planes on non-bare metal agent machines

You can deploy hosted control planes by configuring a cluster to function as a hosting cluster. The hosting cluster is an OpenShift Container Platform cluster where the control planes are hosted. The hosting cluster is also known as the management cluster.

Important

Hosted control planes on non-bare-metal agent machines is a Technology Preview feature only. Technology Preview features are not supported with Red Hat production service level agreements (SLAs) and might not be functionally complete. Red Hat does not recommend using them in production. These features provide early access to upcoming product features, enabling customers to test functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features, see Technology Preview Features Support Scope.

Note

The management cluster is not the same thing as the managed cluster. A managed cluster is a cluster that the hub cluster manages.

The hosted control planes feature is enabled by default.

The multicluster engine Operator supports only the default local-cluster managed hub cluster. On Red Hat Advanced Cluster Management (RHACM) 2.10, you can use the local-cluster managed hub cluster as the hosting cluster.

A hosted cluster is an OpenShift Container Platform cluster with its API endpoint and control plane that are hosted on the hosting cluster. The hosted cluster includes the control plane and its corresponding data plane. You can use the multicluster engine Operator console or the hcp command-line interface (CLI) to create a hosted cluster.

The hosted cluster is automatically imported as a managed cluster. If you want to disable this automatic import feature, see "Disabling the automatic import of hosted clusters into multicluster engine Operator".

4.4.1. Preparing to deploy hosted control planes on non-bare metal agent machines

As you prepare to deploy hosted control planes on bare metal, consider the following information:

  • You can add agent machines as a worker node to a hosted cluster by using the Agent platform. Agent machine represents a host booted with a Discovery Image and ready to be provisioned as an OpenShift Container Platform node. The Agent platform is part of the central infrastructure management service. For more information, see Enabling the central infrastructure management service.
  • All hosts that are not bare metal require a manual boot with a Discovery Image ISO that the central infrastructure management provides.
  • When you scale up the node pool, a machine is created for every replica. For every machine, the Cluster API provider finds and installs an Agent that is approved, is passing validations, is not currently in use, and meets the requirements that are specified in the node pool specification. You can monitor the installation of an Agent by checking its status and conditions.
  • When you scale down a node pool, Agents are unbound from the corresponding cluster. Before you can reuse the Agents, you must restart them by using the Discovery image.
  • When you configure storage for hosted control planes, consider the recommended etcd practices. To ensure that you meet the latency requirements, dedicate a fast storage device to all hosted control planes etcd instances that run on each control-plane node. You can use LVM storage to configure a local storage class for hosted etcd pods. For more information, see "Recommended etcd practices" and "Persistent storage using logical volume manager storage" in the OpenShift Container Platform documentation.
4.4.1.1. Prerequisites for deploying hosted control planes on non-bare metal agent machines

You must review the following prerequisites before deploying hosted control planes on non-bare metal agent machines:

  • You need the multicluster engine for Kubernetes Operator 2.5 and later installed on an OpenShift Container Platform cluster. The multicluster engine Operator is automatically installed when you install Red Hat Advanced Cluster Management (RHACM). You can also install the multicluster engine Operator without RHACM as an Operator from the OpenShift Container Platform OperatorHub.
  • You have at least one managed OpenShift Container Platform cluster for the multicluster engine Operator. The local-cluster managed hub cluster is automatically imported. See Advanced configuration for more information about the local-cluster. You can check the status of your hub cluster by running the following command:

    $ oc get managedclusters local-cluster
  • You enabled central infrastructure management. For more information, see Enabling the central infrastructure management service.
  • You installed the hcp command-line interface.
  • Your hosted cluster has a cluster-wide unique name. A hosted cluster name cannot be the same as any existing managed cluster in order for the multicluster engine Operator to manage it.
  • You run the hub cluster and workers on the same platform for hosted control planes.
4.4.1.2. Firewall, port, and service requirements for non-bare metal agent machines

You must meet the firewall and port requirements so that ports can communicate between the management cluster, the control plane, and hosted clusters.

Note

Services run on their default ports. However, if you use the NodePort publishing strategy, services run on the port that is assigned by the NodePort service.

Use firewall rules, security groups, or other access controls to restrict access to only required sources. Avoid exposing ports publicly unless necessary. For production deployments, use a load balancer to simplify access through a single IP address.

A hosted control plane exposes the following services on non-bare metal agent machines:

  • APIServer

    • The APIServer service runs on port 6443 by default and requires ingress access for communication between the control plane components.
    • If you use MetalLB load balancing, allow ingress access to the IP range that is used for load balancer IP addresses.
  • OAuthServer

    • The OAuthServer service runs on port 443 by default when you use the route and ingress to expose the service.
    • If you use the NodePort publishing strategy, use a firewall rule for the OAuthServer service.
  • Konnectivity

    • The Konnectivity service runs on port 443 by default when you use the route and ingress to expose the service.
    • The Konnectivity agent establishes a reverse tunnel to allow the control plane to access the network for the hosted cluster. The agent uses egress to connect to the Konnectivity server. The server is exposed by using either a route on port 443 or a manually assigned NodePort.
    • If the cluster API server address is an internal IP address, allow access from the workload subnets to the IP address on port 6443.
    • If the address is an external IP address, allow egress on port 6443 to that external IP address from the nodes.
  • Ignition

    • The Ignition service runs on port 443 by default when you use the route and ingress to expose the service.
    • If you use the NodePort publishing strategy, use a firewall rule for the Ignition service.

You do not need the following services on non-bare metal agent machines:

  • OVNSbDb
  • OIDC
4.4.1.3. Infrastructure requirements for non-bare metal agent machines

The Agent platform does not create any infrastructure, but it has the following infrastructure requirements:

  • Agents: An Agent represents a host that is booted with a discovery image and is ready to be provisioned as an OpenShift Container Platform node.
  • DNS: The API and ingress endpoints must be routable.

4.4.2. Configuring DNS on non-bare metal agent machines

The API Server for the hosted cluster is exposed as a NodePort service. A DNS entry must exist for api.<hosted_cluster_name>.<basedomain> that points to destination where the API Server can be reached.

The DNS entry can be as simple as a record that points to one of the nodes in the managed cluster that is running the hosted control plane. The entry can also point to a load balancer that is deployed to redirect incoming traffic to the ingress pods.

  • If you are configuring DNS for a connected environment on an IPv4 network, see the following example DNS configuration:

    api-int.example.krnl.es.    IN A 192.168.122.22
    `*`.apps.example.krnl.es.   IN A 192.168.122.23
  • If you are configuring DNS for a disconnected environment on an IPv6 network, see the following example DNS configuration:

    api-int.example.krnl.es.    IN A 2620:52:0:1306::7
    `*`.apps.example.krnl.es.   IN A 2620:52:0:1306::10
  • If you are configuring DNS for a disconnected environment on a dual stack network, be sure to include DNS entries for both IPv4 and IPv6. See the following example DNS configuration:

    host-record=api-int.hub-dual.dns.base.domain.name,2620:52:0:1306::2
    address=/apps.hub-dual.dns.base.domain.name/2620:52:0:1306::3
    dhcp-host=aa:aa:aa:aa:10:01,ocp-master-0,[2620:52:0:1306::5]

4.4.3. Creating a hosted cluster on non-bare metal agent machines by using the CLI

When you create a hosted cluster with the Agent platform, the HyperShift Operator installs the Agent Cluster API provider in the hosted control plane namespace. You can create a hosted cluster on bare metal or import one.

As you create a hosted cluster, review the following guidelines:

  • Each hosted cluster must have a cluster-wide unique name. A hosted cluster name cannot be the same as any existing managed cluster in order for multicluster engine Operator to manage it.
  • Do not use clusters as a hosted cluster name.
  • A hosted cluster cannot be created in the namespace of a multicluster engine Operator managed cluster.

Procedure

  1. Create the hosted control plane namespace by entering the following command:

    $ oc create ns <hosted_cluster_namespace>-<hosted_cluster_name> 1
    1
    Replace <hosted_cluster_namespace> with your hosted cluster namespace name, for example, clusters. Replace <hosted_cluster_name> with your hosted cluster name.
  2. Create a hosted cluster by entering the following command:

    $ hcp create cluster agent \
      --name=<hosted_cluster_name> \1
      --pull-secret=<path_to_pull_secret> \2
      --agent-namespace=<hosted_control_plane_namespace> \3
      --base-domain=<basedomain> \4
      --api-server-address=api.<hosted_cluster_name>.<basedomain> \5
      --etcd-storage-class=<etcd_storage_class> \6
      --ssh-key  <path_to_ssh_key> \7
      --namespace <hosted_cluster_namespace> \8
      --control-plane-availability-policy HighlyAvailable \9
      --release-image=quay.io/openshift-release-dev/ocp-release:<ocp_release> 10
    1
    Specify the name of your hosted cluster, for instance, example.
    2
    Specify the path to your pull secret, for example, /user/name/pullsecret.
    3
    Specify your hosted control plane namespace, for example, clusters-example. Ensure that agents are available in this namespace by using the oc get agent -n <hosted-control-plane-namespace> command.
    4
    Specify your base domain, for example, krnl.es.
    5
    The --api-server-address flag defines the IP address that is used for the Kubernetes API communication in the hosted cluster. If you do not set the --api-server-address flag, you must log in to connect to the management cluster.
    6
    Verify that you have a default storage class configured for your cluster. Otherwise, you might end up with pending PVCs. Specify the etcd storage class name, for example, lvm-storageclass.
    7
    Specify the path to your SSH public key. The default file path is ~/.ssh/id_rsa.pub.
    8
    Specify your hosted cluster namespace.
    9
    The default value for the control plane availability policy is HighlyAvailable.
    10
    Specify the supported OpenShift Container Platform version that you want to use, for example, 4.17.0-multi.

Verification

  • After a few moments, verify that your hosted control plane pods are up and running by entering the following command:

    $ oc -n <hosted_control_plane_namespace> get pods

    Example output

    NAME                                             READY   STATUS    RESTARTS   AGE
    catalog-operator-6cd867cc7-phb2q                 2/2     Running   0          2m50s
    control-plane-operator-f6b4c8465-4k5dh           1/1     Running   0          4m32s

4.4.3.1. Creating a hosted cluster on non-bare metal agent machines by using the web console

You can create a hosted cluster on non-bare metal agent machines by using the OpenShift Container Platform web console.

Prerequisites

  • You have access to the cluster with cluster-admin privileges.
  • You have access to the OpenShift Container Platform web console.

Procedure

  1. Open the OpenShift Container Platform web console and log in by entering your administrator credentials.
  2. In the console header, select All Clusters.
  3. Click Infrastructure → Clusters.
  4. Click Create cluster Host inventory → Hosted control plane.

    The Create cluster page is displayed.

  5. On the Create cluster page, follow the prompts to enter details about the cluster, node pools, networking, and automation.

As you enter details about the cluster, you might find the following tips useful:

  • If you want to use predefined values to automatically populate fields in the console, you can create a host inventory credential. For more information, see Creating a credential for an on-premises environment.
  • On the Cluster details page, the pull secret is your OpenShift Container Platform pull secret that you use to access OpenShift Container Platform resources. If you selected a host inventory credential, the pull secret is automatically populated.
  • On the Node pools page, the namespace contains the hosts for the node pool. If you created a host inventory by using the console, the console creates a dedicated namespace.
  • On the Networking page, you select an API server publishing strategy. The API server for the hosted cluster can be exposed either by using an existing load balancer or as a service of the NodePort type. A DNS entry must exist for the api.<hosted_cluster_name>.<basedomain> setting that points to the destination where the API server can be reached. This entry can be a record that points to one of the nodes in the management cluster or a record that points to a load balancer that redirects incoming traffic to the Ingress pods.

    1. Review your entries and click Create.

    The Hosted cluster view is displayed.

    1. Monitor the deployment of the hosted cluster in the Hosted cluster view. If you do not see information about the hosted cluster, ensure that All Clusters is selected, and click the cluster name. Wait until the control plane components are ready. This process can take a few minutes.
    2. To view the node pool status, scroll to the NodePool section. The process to install the nodes takes about 10 minutes. You can also click Nodes to confirm whether the nodes joined the hosted cluster.

Next steps

4.4.3.2. Creating a hosted cluster on bare metal by using a mirror registry

You can use a mirror registry to create a hosted cluster on bare metal by specifying the --image-content-sources flag in the hcp create cluster command.

Procedure

  1. Create a YAML file to define Image Content Source Policies (ICSP). See the following example:

    - mirrors:
      - brew.registry.redhat.io
      source: registry.redhat.io
    - mirrors:
      - brew.registry.redhat.io
      source: registry.stage.redhat.io
    - mirrors:
      - brew.registry.redhat.io
      source: registry-proxy.engineering.redhat.com
  2. Save the file as icsp.yaml. This file contains your mirror registries.
  3. To create a hosted cluster by using your mirror registries, run the following command:

    $ hcp create cluster agent \
        --name=<hosted_cluster_name> \1
        --pull-secret=<path_to_pull_secret> \2
        --agent-namespace=<hosted_control_plane_namespace> \3
        --base-domain=<basedomain> \4
        --api-server-address=api.<hosted_cluster_name>.<basedomain> \5
        --image-content-sources icsp.yaml  \6
        --ssh-key  <path_to_ssh_key> \7
        --namespace <hosted_cluster_namespace> \8
        --release-image=quay.io/openshift-release-dev/ocp-release:<ocp_release_image> 9
    1
    Specify the name of your hosted cluster, for instance, example.
    2
    Specify the path to your pull secret, for example, /user/name/pullsecret.
    3
    Specify your hosted control plane namespace, for example, clusters-example. Ensure that agents are available in this namespace by using the oc get agent -n <hosted-control-plane-namespace> command.
    4
    Specify your base domain, for example, krnl.es.
    5
    The --api-server-address flag defines the IP address that is used for the Kubernetes API communication in the hosted cluster. If you do not set the --api-server-address flag, you must log in to connect to the management cluster.
    6
    Specify the icsp.yaml file that defines ICSP and your mirror registries.
    7
    Specify the path to your SSH public key. The default file path is ~/.ssh/id_rsa.pub.
    8
    Specify your hosted cluster namespace.
    9
    Specify the supported OpenShift Container Platform version that you want to use, for example, 4.17.0-multi. If you are using a disconnected environment, replace <ocp_release_image> with the digest image. To extract the OpenShift Container Platform release image digest, see Extracting the OpenShift Container Platform release image digest.

Next steps

4.4.4. Verifying hosted cluster creation on non-bare metal agent machines

After the deployment process is complete, you can verify that the hosted cluster was created successfully. Follow these steps a few minutes after you create the hosted cluster.

Procedure

  1. Obtain the kubeconfig file for your new hosted cluster by entering the following command:

    $ oc extract -n <hosted_cluster_namespace> secret/<hosted_cluster_name>-admin-kubeconfig --to=- > kubeconfig-<hosted_cluster_name>
  2. Use the kubeconfig file to view the cluster Operators of the hosted cluster. Enter the following command:

    $ oc get co --kubeconfig=kubeconfig-<hosted_cluster_name>

    Example output

    NAME                                       VERSION   AVAILABLE   PROGRESSING   DEGRADED   SINCE   MESSAGE
    console                                    4.10.26   True        False         False      2m38s
    csi-snapshot-controller                    4.10.26   True        False         False      4m3s
    dns                                        4.10.26   True        False         False      2m52s

  3. View the running pods on your hosted cluster by entering the following command:

    $ oc get pods -A --kubeconfig=kubeconfig-<hosted_cluster_name>

    Example output

    NAMESPACE                                          NAME                                                      READY   STATUS             RESTARTS        AGE
    kube-system                                        konnectivity-agent-khlqv                                  0/1     Running            0               3m52s
    openshift-cluster-samples-operator                 cluster-samples-operator-6b5bcb9dff-kpnbc                 2/2     Running            0               20m
    openshift-monitoring                               alertmanager-main-0                                       6/6     Running            0               100s
    openshift-monitoring                               openshift-state-metrics-677b9fb74f-qqp6g                  3/3     Running            0               104s

4.5. Deploying hosted control planes on IBM Z

You can deploy hosted control planes by configuring a cluster to function as a management cluster. The management cluster is the OpenShift Container Platform cluster where the control planes are hosted. The management cluster is also known as the hosting cluster.

Note

The management cluster is not the managed cluster. A managed cluster is a cluster that the hub cluster manages.

You can convert a managed cluster to a management cluster by using the hypershift add-on to deploy the HyperShift Operator on that cluster. Then, you can start to create the hosted cluster.

The multicluster engine Operator supports only the default local-cluster, which is a hub cluster that is managed, and the hub cluster as the management cluster.

To provision hosted control planes on bare metal, you can use the Agent platform. The Agent platform uses the central infrastructure management service to add worker nodes to a hosted cluster. For more information, see "Enabling the central infrastructure management service".

Each IBM Z system host must be started with the PXE images provided by the central infrastructure management. After each host starts, it runs an Agent process to discover the details of the host and completes the installation. An Agent custom resource represents each host.

When you create a hosted cluster with the Agent platform, HyperShift Operator installs the Agent Cluster API provider in the hosted control plane namespace.

4.5.1. Prerequisites to configure hosted control planes on IBM Z

  • The multicluster engine for Kubernetes Operator version 2.5 or later must be installed on an OpenShift Container Platform cluster. You can install multicluster engine Operator as an Operator from the OpenShift Container Platform OperatorHub.
  • The multicluster engine Operator must have at least one managed OpenShift Container Platform cluster. The local-cluster is automatically imported in multicluster engine Operator 2.5 and later. For more information about the local-cluster, see Advanced configuration in the Red Hat Advanced Cluster Management documentation. You can check the status of your hub cluster by running the following command:

    $ oc get managedclusters local-cluster
  • You need a hosting cluster with at least three worker nodes to run the HyperShift Operator.
  • You need to enable the central infrastructure management service. For more information, see Enabling the central infrastructure management service.
  • You need to install the hosted control plane command line interface. For more information, see Installing the hosted control plane command line interface.

4.5.2. IBM Z infrastructure requirements

The Agent platform does not create any infrastructure, but requires the following resources for infrastructure:

  • Agents: An Agent represents a host that is booted with a discovery image, or PXE image and is ready to be provisioned as an OpenShift Container Platform node.
  • DNS: The API and Ingress endpoints must be routable.

The hosted control planes feature is enabled by default. If you disabled the feature and want to manually enable it, or if you need to disable the feature, see Enabling or disabling the hosted control planes feature.

4.5.3. DNS configuration for hosted control planes on IBM Z

The API server for the hosted cluster is exposed as a NodePort service. A DNS entry must exist for the api.<hosted_cluster_name>.<base_domain> that points to the destination where the API server is reachable.

The DNS entry can be as simple as a record that points to one of the nodes in the managed cluster that is running the hosted control plane.

The entry can also point to a load balancer deployed to redirect incoming traffic to the Ingress pods.

See the following example of a DNS configuration:

$ cat /var/named/<example.krnl.es.zone>

Example output

$ TTL 900
@ IN  SOA bastion.example.krnl.es.com. hostmaster.example.krnl.es.com. (
      2019062002
      1D 1H 1W 3H )
  IN NS bastion.example.krnl.es.com.
;
;
api                   IN A 1xx.2x.2xx.1xx 1
api-int               IN A 1xx.2x.2xx.1xx
;
;
*.apps        IN A 1xx.2x.2xx.1xx
;
;EOF

1
The record refers to the IP address of the API load balancer that handles ingress and egress traffic for hosted control planes.

For IBM z/VM, add IP addresses that correspond to the IP address of the agent.

compute-0              IN A 1xx.2x.2xx.1yy
compute-1              IN A 1xx.2x.2xx.1yy

4.5.4. Creating a hosted cluster on bare metal

When you create a hosted cluster with the Agent platform, HyperShift installs the Agent Cluster API provider in the hosted control plane namespace. You can create a hosted cluster on bare metal or import one.

As you create a hosted cluster, keep the following guidelines in mind:

  • Each hosted cluster must have a cluster-wide unique name. A hosted cluster name cannot be the same as any existing managed cluster in order for multicluster engine Operator to manage it.
  • Do not use clusters as a hosted cluster name.
  • A hosted cluster cannot be created in the namespace of a multicluster engine Operator managed cluster.

Procedure

  1. Create the hosted control plane namespace by entering the following command:

    $ oc create ns <hosted_cluster_namespace>-<hosted_cluster_name>

    Replace <hosted_cluster_namespace> with your hosted cluster namespace name, for example, clusters. Replace <hosted_cluster_name> with your hosted cluster name.

  2. Verify that you have a default storage class configured for your cluster. Otherwise, you might see pending PVCs. Run the following command:

    $ hcp create cluster agent \
        --name=<hosted_cluster_name> \1
        --pull-secret=<path_to_pull_secret> \2
        --agent-namespace=<hosted_control_plane_namespace> \3
        --base-domain=<basedomain> \4
        --api-server-address=api.<hosted_cluster_name>.<basedomain> \5
        --etcd-storage-class=<etcd_storage_class> \6
        --ssh-key  <path_to_ssh_public_key> \7
        --namespace <hosted_cluster_namespace> \8
        --control-plane-availability-policy HighlyAvailable \9
        --release-image=quay.io/openshift-release-dev/ocp-release:<ocp_release_image> 10
    1
    Specify the name of your hosted cluster, for instance, example.
    2
    Specify the path to your pull secret, for example, /user/name/pullsecret.
    3
    Specify your hosted control plane namespace, for example, clusters-example. Ensure that agents are available in this namespace by using the oc get agent -n <hosted_control_plane_namespace> command.
    4
    Specify your base domain, for example, krnl.es.
    5
    The --api-server-address flag defines the IP address that is used for the Kubernetes API communication in the hosted cluster. If you do not set the --api-server-address flag, you must log in to connect to the management cluster.
    6
    Specify the etcd storage class name, for example, lvm-storageclass.
    7
    Specify the path to your SSH public key. The default file path is ~/.ssh/id_rsa.pub.
    8
    Specify your hosted cluster namespace.
    9
    The default value for the control plane availability policy is HighlyAvailable.
    10
    Specify the supported OpenShift Container Platform version that you want to use, for example, 4.17.0-multi. If you are using a disconnected environment, replace <ocp_release_image> with the digest image. To extract the OpenShift Container Platform release image digest, see Extracting the OpenShift Container Platform release image digest.
  3. After a few moments, verify that your hosted control plane pods are up and running by entering the following command:

    $ oc -n <hosted_control_plane_namespace> get pods

    Example output

    NAME                                             READY   STATUS    RESTARTS   AGE
    capi-provider-7dcf5fc4c4-nr9sq                   1/1     Running   0          4m32s
    catalog-operator-6cd867cc7-phb2q                 2/2     Running   0          2m50s
    certified-operators-catalog-884c756c4-zdt64      1/1     Running   0          2m51s
    cluster-api-f75d86f8c-56wfz                      1/1     Running   0          4m32s

4.5.5. Creating an InfraEnv resource for hosted control planes on IBM Z

An InfraEnv is an environment where hosts that are booted with PXE images can join as agents. In this case, the agents are created in the same namespace as your hosted control plane.

Procedure

  1. Create a YAML file to contain the configuration. See the following example:

    apiVersion: agent-install.openshift.io/v1beta1
    kind: InfraEnv
    metadata:
      name: <hosted_cluster_name>
      namespace: <hosted_control_plane_namespace>
    spec:
      cpuArchitecture: s390x
      pullSecretRef:
        name: pull-secret
      sshAuthorizedKey: <ssh_public_key>
  2. Save the file as infraenv-config.yaml.
  3. Apply the configuration by entering the following command:

    $ oc apply -f infraenv-config.yaml
  4. To fetch the URL to download the PXE images, such as, initrd.img, kernel.img, or rootfs.img, which allows IBM Z machines to join as agents, enter the following command:

    $ oc -n <hosted_control_plane_namespace> get InfraEnv <hosted_cluster_name> -o json

4.5.6. Adding IBM Z agents to the InfraEnv resource

To attach compute nodes to a hosted control plane, create agents that help you to scale the node pool. Adding agents in an IBM Z environment requires additional steps, which are described in detail in this section.

Unless stated otherwise, these procedures apply to both z/VM and RHEL KVM installations on IBM Z and IBM LinuxONE.

4.5.6.1. Adding IBM Z KVM as agents

For IBM Z with KVM, run the following command to start your IBM Z environment with the downloaded PXE images from the InfraEnv resource. After the Agents are created, the host communicates with the Assisted Service and registers in the same namespace as the InfraEnv resource on the management cluster.

Procedure

  1. Run the following command:

    virt-install \
       --name "<vm_name>" \ 1
       --autostart \
       --ram=16384 \
       --cpu host \
       --vcpus=4 \
       --location "<path_to_kernel_initrd_image>,kernel=kernel.img,initrd=initrd.img" \ 2
       --disk <qcow_image_path> \ 3
       --network network:macvtap-net,mac=<mac_address> \ 4
       --graphics none \
       --noautoconsole \
       --wait=-1
       --extra-args "rd.neednet=1 nameserver=<nameserver>   coreos.live.rootfs_url=http://<http_server>/rootfs.img random.trust_cpu=on rd.luks.options=discard ignition.firstboot ignition.platform.id=metal console=tty1 console=ttyS1,115200n8 coreos.inst.persistent-kargs=console=tty1 console=ttyS1,115200n8" 5
    1
    Specify the name of the virtual machine.
    2
    Specify the location of the kernel_initrd_image file.
    3
    Specify the disk image path.
    4
    Specify the Mac address.
    5
    Specify the server name of the agents.
  2. For ISO boot, download ISO from the InfraEnv resource and boot the nodes by running the following command:

    virt-install \
      --name "<vm_name>" \ 1
      --autostart \
      --memory=16384 \
      --cpu host \
      --vcpus=4 \
      --network network:macvtap-net,mac=<mac_address> \ 2
      --cdrom "<path_to_image.iso>" \ 3
      --disk <qcow_image_path> \
      --graphics none \
      --noautoconsole \
      --os-variant <os_version> \ 4
      --wait=-1
    1
    Specify the name of the virtual machine.
    2
    Specify the Mac address.
    3
    Specify the location of the image.iso file.
    4
    Specify the operating system version that you are using.
4.5.6.2. Adding IBM Z LPAR as agents

You can add the Logical Partition (LPAR) on IBM Z or IBM LinuxONE as a compute node to a hosted control plane.

Procedure

  1. Create a boot parameter file for the agents:

    Example parameter file

    rd.neednet=1 cio_ignore=all,!condev \
    console=ttysclp0 \
    ignition.firstboot ignition.platform.id=metal
    coreos.live.rootfs_url=http://<http_server>/rhcos-<version>-live-rootfs.<architecture>.img \1
    coreos.inst.persistent-kargs=console=ttysclp0
    ip=<ip>::<gateway>:<netmask>:<hostname>::none nameserver=<dns> \2
    rd.znet=qeth,<network_adaptor_range>,layer2=1
    rd.<disk_type>=<adapter> \3
    zfcp.allow_lun_scan=0
    ai.ip_cfg_override=1 \4
    random.trust_cpu=on rd.luks.options=discard

    1
    For the coreos.live.rootfs_url artifact, specify the matching rootfs artifact for the kernel and initramfs that you are starting. Only HTTP and HTTPS protocols are supported.
    2
    For the ip parameter, manually assign the IP address, as described in Installing a cluster with z/VM on IBM Z and IBM LinuxONE.
    3
    For installations on DASD-type disks, use rd.dasd to specify the DASD where Red Hat Enterprise Linux CoreOS (RHCOS) is to be installed. For installations on FCP-type disks, use rd.zfcp=<adapter>,<wwpn>,<lun> to specify the FCP disk where RHCOS is to be installed.
    4
    Specify this parameter when you use an Open Systems Adapter (OSA) or HiperSockets.
  2. Download the .ins and initrd.img.addrsize files from the InfraEnv resource.

    By default, the URL for the .ins and initrd.img.addrsize files is not available in the InfraEnv resource. You must edit the URL to fetch those artifacts.

    1. Update the kernel URL endpoint to include ins-file by running the following command:

      $ curl -k -L -o generic.ins "< url for ins-file >"

      Example URL

      https://…/boot-artifacts/ins-file?arch=s390x&version=4.17.0

    2. Update the initrd URL endpoint to include s390x-initrd-addrsize:

      Example URL

      https://…./s390x-initrd-addrsize?api_key=<api-key>&arch=s390x&version=4.17.0

  3. Transfer the initrd, kernel, generic.ins, and initrd.img.addrsize parameter files to the file server. For more information about how to transfer the files with FTP and boot, see "Installing in an LPAR".
  4. Start the machine.
  5. Repeat the procedure for all other machines in the cluster.

Additional resources

4.5.6.3. Adding IBM z/VM as agents

If you want to use a static IP for z/VM guest, you must configure the NMStateConfig attribute for the z/VM agent so that the IP parameter persists in the second start.

Complete the following steps to start your IBM Z environment with the downloaded PXE images from the InfraEnv resource. After the Agents are created, the host communicates with the Assisted Service and registers in the same namespace as the InfraEnv resource on the management cluster.

Procedure

  1. Update the parameter file to add the rootfs_url, network_adaptor and disk_type values.

    Example parameter file

    rd.neednet=1 cio_ignore=all,!condev \
    console=ttysclp0  \
    ignition.firstboot ignition.platform.id=metal \
    coreos.live.rootfs_url=http://<http_server>/rhcos-<version>-live-rootfs.<architecture>.img \1
    coreos.inst.persistent-kargs=console=ttysclp0
    ip=<ip>::<gateway>:<netmask>:<hostname>::none nameserver=<dns> \2
    rd.znet=qeth,<network_adaptor_range>,layer2=1
    rd.<disk_type>=<adapter> \3
    zfcp.allow_lun_scan=0
    ai.ip_cfg_override=1 \4

    1
    For the coreos.live.rootfs_url artifact, specify the matching rootfs artifact for the kernel and initramfs that you are starting. Only HTTP and HTTPS protocols are supported.
    2
    For the ip parameter, manually assign the IP address, as described in Installing a cluster with z/VM on IBM Z and IBM LinuxONE.
    3
    For installations on DASD-type disks, use rd.dasd to specify the DASD where Red Hat Enterprise Linux CoreOS (RHCOS) is to be installed. For installations on FCP-type disks, use rd.zfcp=<adapter>,<wwpn>,<lun> to specify the FCP disk where RHCOS is to be installed.
    4
    Specify this parameter when you use an Open Systems Adapter (OSA) or HiperSockets.
  2. Move initrd, kernel images, and the parameter file to the guest VM by running the following commands:

    vmur pun -r -u -N kernel.img $INSTALLERKERNELLOCATION/<image name>
    vmur pun -r -u -N generic.parm $PARMFILELOCATION/paramfilename
    vmur pun -r -u -N initrd.img $INSTALLERINITRAMFSLOCATION/<image name>
  3. Run the following command from the guest VM console:

    cp ipl c
  4. To list the agents and their properties, enter the following command:

    $ oc -n <hosted_control_plane_namespace> get agents

    Example output

    NAME    CLUSTER APPROVED    ROLE    STAGE
    50c23cda-cedc-9bbd-bcf1-9b3a5c75804d    auto-assign
    5e498cd3-542c-e54f-0c58-ed43e28b568a    auto-assign

  5. Run the following command to approve the agent.

    $ oc -n <hosted_control_plane_namespace> patch agent \
      50c23cda-cedc-9bbd-bcf1-9b3a5c75804d -p \
      '{"spec":{"installation_disk_id":"/dev/sda","approved":true,"hostname":"worker-zvm-0.hostedn.example.com"}}' \1
      --type merge
    1
    Optionally, you can set the agent ID <installation_disk_id> and <hostname> in the specification.
  6. Run the following command to verify that the agents are approved:

    $ oc -n <hosted_control_plane_namespace> get agents

    Example output

    NAME                                            CLUSTER     APPROVED   ROLE          STAGE
    50c23cda-cedc-9bbd-bcf1-9b3a5c75804d             true       auto-assign
    5e498cd3-542c-e54f-0c58-ed43e28b568a             true       auto-assign

4.5.7. Scaling the NodePool object for a hosted cluster on IBM Z

The NodePool object is created when you create a hosted cluster. By scaling the NodePool object, you can add more compute nodes to the hosted control plane.

When you scale up a node pool, a machine is created. The Cluster API provider finds an Agent that is approved, is passing validations, is not currently in use, and meets the requirements that are specified in the node pool specification. You can monitor the installation of an Agent by checking its status and conditions.

When you scale down a node pool, Agents are unbound from the corresponding cluster. Before you reuse the clusters, you must boot the clusters by using the PXE image to update the number of nodes.

Procedure

  1. Run the following command to scale the NodePool object to two nodes:

    $ oc -n <clusters_namespace> scale nodepool <nodepool_name> --replicas 2

    The Cluster API agent provider randomly picks two agents that are then assigned to the hosted cluster. Those agents go through different states and finally join the hosted cluster as OpenShift Container Platform nodes. The agents pass through the transition phases in the following order:

    • binding
    • discovering
    • insufficient
    • installing
    • installing-in-progress
    • added-to-existing-cluster
  2. Run the following command to see the status of a specific scaled agent:

    $ oc -n <hosted_control_plane_namespace> get agent -o \
      jsonpath='{range .items[*]}BMH: {@.metadata.labels.agent-install\.openshift\.io/bmh} \
      Agent: {@.metadata.name} State: {@.status.debugInfo.state}{"\n"}{end}'

    Example output

    BMH: Agent: 50c23cda-cedc-9bbd-bcf1-9b3a5c75804d State: known-unbound
    BMH: Agent: 5e498cd3-542c-e54f-0c58-ed43e28b568a State: insufficient

  3. Run the following command to see the transition phases:

    $ oc -n <hosted_control_plane_namespace> get agent

    Example output

    NAME                                   CLUSTER           APPROVED       ROLE        STAGE
    50c23cda-cedc-9bbd-bcf1-9b3a5c75804d   hosted-forwarder   true          auto-assign
    5e498cd3-542c-e54f-0c58-ed43e28b568a                      true          auto-assign
    da503cf1-a347-44f2-875c-4960ddb04091   hosted-forwarder   true          auto-assign

  4. Run the following command to generate the kubeconfig file to access the hosted cluster:

    $ hcp create kubeconfig --namespace <clusters_namespace> --name <hosted_cluster_namespace> > <hosted_cluster_name>.kubeconfig
  5. After the agents reach the added-to-existing-cluster state, verify that you can see the OpenShift Container Platform nodes by entering the following command:

    $ oc --kubeconfig <hosted_cluster_name>.kubeconfig get nodes

    Example output

    NAME                             STATUS   ROLES    AGE      VERSION
    worker-zvm-0.hostedn.example.com Ready    worker   5m41s    v1.24.0+3882f8f
    worker-zvm-1.hostedn.example.com Ready    worker   6m3s     v1.24.0+3882f8f

    Cluster Operators start to reconcile by adding workloads to the nodes.

  6. Enter the following command to verify that two machines were created when you scaled up the NodePool object:

    $ oc -n <hosted_control_plane_namespace> get machine.cluster.x-k8s.io

    Example output

    NAME                                CLUSTER  NODENAME PROVIDERID     PHASE     AGE   VERSION
    hosted-forwarder-79558597ff-5tbqp   hosted-forwarder-crqq5   worker-zvm-0.hostedn.example.com   agent://50c23cda-cedc-9bbd-bcf1-9b3a5c75804d   Running   41h   4.15.0
    hosted-forwarder-79558597ff-lfjfk   hosted-forwarder-crqq5   worker-zvm-1.hostedn.example.com   agent://5e498cd3-542c-e54f-0c58-ed43e28b568a   Running   41h   4.15.0

  7. Run the following command to check the cluster version:

    $ oc --kubeconfig <hosted_cluster_name>.kubeconfig get clusterversion,co

    Example output

    NAME                                         VERSION       AVAILABLE   PROGRESSING   SINCE   STATUS
    clusterversion.config.openshift.io/version   4.15.0-ec.2   True        False         40h     Cluster version is 4.15.0-ec.2

  8. Run the following command to check the cluster operator status:

    $ oc --kubeconfig <hosted_cluster_name>.kubeconfig get clusteroperators

For each component of your cluster, the output shows the following cluster operator statuses: NAME, VERSION, AVAILABLE, PROGRESSING, DEGRADED, SINCE, and MESSAGE.

For an output example, see Initial Operator configuration.

Additional resources

4.6. Deploying hosted control planes on IBM Power

You can deploy hosted control planes by configuring a cluster to function as a hosting cluster. The hosting cluster is an OpenShift Container Platform cluster where the control planes are hosted. The hosting cluster is also known as the management cluster.

Note

The management cluster is not the managed cluster. A managed cluster is a cluster that the hub cluster manages.

The multicluster engine Operator supports only the default local-cluster, which is a hub cluster that is managed, and the hub cluster as the hosting cluster.

To provision hosted control planes on bare metal, you can use the Agent platform. The Agent platform uses the central infrastructure management service to add worker nodes to a hosted cluster. For more information, see "Enabling the central infrastructure management service".

Each IBM Power host must be started with a Discovery Image that the central infrastructure management provides. After each host starts, it runs an Agent process to discover the details of the host and completes the installation. An Agent custom resource represents each host.

When you create a hosted cluster with the Agent platform, HyperShift installs the Agent Cluster API provider in the hosted control plane namespace.

4.6.1. Prerequisites to configure hosted control planes on IBM Power

  • The multicluster engine for Kubernetes Operator version 2.7 and later installed on an OpenShift Container Platform cluster. The multicluster engine Operator is automatically installed when you install Red Hat Advanced Cluster Management (RHACM). You can also install the multicluster engine Operator without RHACM as an Operator from the OpenShift Container Platform OperatorHub.
  • The multicluster engine Operator must have at least one managed OpenShift Container Platform cluster. The local-cluster managed hub cluster is automatically imported in the multicluster engine Operator version 2.7 and later. For more information about local-cluster, see Advanced configuration in the RHACM documentation. You can check the status of your hub cluster by running the following command:

    $ oc get managedclusters local-cluster
  • You need a hosting cluster with at least 3 worker nodes to run the HyperShift Operator.
  • You need to enable the central infrastructure management service. For more information, see "Enabling the central infrastructure management service".
  • You need to install the hosted control plane command-line interface. For more information, see "Installing the hosted control plane command-line interface".

The hosted control planes feature is enabled by default. If you disabled the feature and want to manually enable it, see "Manually enabling the hosted control planes feature". If you need to disable the feature, see "Disabling the hosted control planes feature".

4.6.2. IBM Power infrastructure requirements

The Agent platform does not create any infrastructure, but requires the following resources for infrastructure:

  • Agents: An Agent represents a host that is booted with a discovery image and is ready to be provisioned as an OpenShift Container Platform node.
  • DNS: The API and Ingress endpoints must be routable.

4.6.3. DNS configuration for hosted control planes on IBM Power

The API server for the hosted cluster is exposed. A DNS entry must exist for the api.<hosted_cluster_name>.<basedomain> entry that points to the destination where the API server is reachable.

The DNS entry can be as simple as a record that points to one of the nodes in the managed cluster that is running the hosted control plane.

The entry can also point to a load balancer that is deployed to redirect incoming traffic to the ingress pods.

See the following example of a DNS configuration:

$ cat /var/named/<example.krnl.es.zone>

Example output

$ TTL 900
@ IN  SOA bastion.example.krnl.es.com. hostmaster.example.krnl.es.com. (
      2019062002
      1D 1H 1W 3H )
  IN NS bastion.example.krnl.es.com.
;
;
api                   IN A 1xx.2x.2xx.1xx 1
api-int               IN A 1xx.2x.2xx.1xx
;
;
*.apps.<hosted-cluster-name>.<basedomain>           IN A 1xx.2x.2xx.1xx
;
;EOF

1
The record refers to the IP address of the API load balancer that handles ingress and egress traffic for hosted control planes.

For IBM Power, add IP addresses that correspond to the IP address of the agent.

Example configuration

compute-0              IN A 1xx.2x.2xx.1yy
compute-1              IN A 1xx.2x.2xx.1yy

4.6.4. Creating a hosted cluster on bare metal

When you create a hosted cluster with the Agent platform, HyperShift installs the Agent Cluster API provider in the hosted control plane namespace. You can create a hosted cluster on bare metal or import one.

As you create a hosted cluster, keep the following guidelines in mind:

  • Each hosted cluster must have a cluster-wide unique name. A hosted cluster name cannot be the same as any existing managed cluster in order for multicluster engine Operator to manage it.
  • Do not use clusters as a hosted cluster name.
  • A hosted cluster cannot be created in the namespace of a multicluster engine Operator managed cluster.

Procedure

  1. Create the hosted control plane namespace by entering the following command:

    $ oc create ns <hosted_cluster_namespace>-<hosted_cluster_name>

    Replace <hosted_cluster_namespace> with your hosted cluster namespace name, for example, clusters. Replace <hosted_cluster_name> with your hosted cluster name.

  2. Verify that you have a default storage class configured for your cluster. Otherwise, you might see pending PVCs. Run the following command:

    $ hcp create cluster agent \
        --name=<hosted_cluster_name> \1
        --pull-secret=<path_to_pull_secret> \2
        --agent-namespace=<hosted_control_plane_namespace> \3
        --base-domain=<basedomain> \4
        --api-server-address=api.<hosted_cluster_name>.<basedomain> \5
        --etcd-storage-class=<etcd_storage_class> \6
        --ssh-key  <path_to_ssh_public_key> \7
        --namespace <hosted_cluster_namespace> \8
        --control-plane-availability-policy HighlyAvailable \9
        --release-image=quay.io/openshift-release-dev/ocp-release:<ocp_release_image> 10
    1
    Specify the name of your hosted cluster, for instance, example.
    2
    Specify the path to your pull secret, for example, /user/name/pullsecret.
    3
    Specify your hosted control plane namespace, for example, clusters-example. Ensure that agents are available in this namespace by using the oc get agent -n <hosted_control_plane_namespace> command.
    4
    Specify your base domain, for example, krnl.es.
    5
    The --api-server-address flag defines the IP address that is used for the Kubernetes API communication in the hosted cluster. If you do not set the --api-server-address flag, you must log in to connect to the management cluster.
    6
    Specify the etcd storage class name, for example, lvm-storageclass.
    7
    Specify the path to your SSH public key. The default file path is ~/.ssh/id_rsa.pub.
    8
    Specify your hosted cluster namespace.
    9
    The default value for the control plane availability policy is HighlyAvailable.
    10
    Specify the supported OpenShift Container Platform version that you want to use, for example, 4.17.0-multi. If you are using a disconnected environment, replace <ocp_release_image> with the digest image. To extract the OpenShift Container Platform release image digest, see Extracting the OpenShift Container Platform release image digest.
  3. After a few moments, verify that your hosted control plane pods are up and running by entering the following command:

    $ oc -n <hosted_control_plane_namespace> get pods

    Example output

    NAME                                             READY   STATUS    RESTARTS   AGE
    capi-provider-7dcf5fc4c4-nr9sq                   1/1     Running   0          4m32s
    catalog-operator-6cd867cc7-phb2q                 2/2     Running   0          2m50s
    certified-operators-catalog-884c756c4-zdt64      1/1     Running   0          2m51s
    cluster-api-f75d86f8c-56wfz                      1/1     Running   0          4m32s

Chapter 5. Managing hosted control planes

5.1. Managing hosted control planes on AWS

When you use hosted control planes for OpenShift Container Platform on Amazon Web Services (AWS), the infrastructure requirements vary based on your setup.

5.1.1. Prerequisites to manage AWS infrastructure and IAM permissions

To configure hosted control planes for OpenShift Container Platform on Amazon Web Services (AWS), you must meet the following the infrastructure requirements:

  • You configured hosted control planes before you can create hosted clusters.
  • You created an AWS Identity and Access Management (IAM) role and AWS Security Token Service (STS) credentials.
5.1.1.1. Infrastructure requirements for AWS

When you use hosted control planes on Amazon Web Services (AWS), the infrastructure requirements fit in the following categories:

  • Prerequired and unmanaged infrastructure for the HyperShift Operator in an arbitrary AWS account
  • Prerequired and unmanaged infrastructure in a hosted cluster AWS account
  • Hosted control planes-managed infrastructure in a management AWS account
  • Hosted control planes-managed infrastructure in a hosted cluster AWS account
  • Kubernetes-managed infrastructure in a hosted cluster AWS account

Prerequired means that hosted control planes requires AWS infrastructure to properly work. Unmanaged means that no Operator or controller creates the infrastructure for you.

5.1.1.2. Unmanaged infrastructure for the HyperShift Operator in an AWS account

An arbitrary Amazon Web Services (AWS) account depends on the provider of the hosted control planes service.

In self-managed hosted control planes, the cluster service provider controls the AWS account. The cluster service provider is the administrator who hosts cluster control planes and is responsible for uptime. In managed hosted control planes, the AWS account belongs to Red Hat.

In a prerequired and unmanaged infrastructure for the HyperShift Operator, the following infrastructure requirements apply for a management cluster AWS account:

  • One S3 Bucket

    • OpenID Connect (OIDC)
  • Route 53 hosted zones

    • A domain to host private and public entries for hosted clusters
5.1.1.3. Unmanaged infrastructure requirements for a management AWS account

When your infrastructure is prerequired and unmanaged in a hosted cluster Amazon Web Services (AWS) account, the infrastructure requirements for all access modes are as follows:

  • One VPC
  • One DHCP Option
  • Two subnets

    • A private subnet that is an internal data plane subnet
    • A public subnet that enables access to the internet from the data plane
  • One internet gateway
  • One elastic IP
  • One NAT gateway
  • One security group (worker nodes)
  • Two route tables (one private and one public)
  • Two Route 53 hosted zones
  • Enough quota for the following items:

    • One Ingress service load balancer for public hosted clusters
    • One private link endpoint for private hosted clusters
Note

For private link networking to work, the endpoint zone in the hosted cluster AWS account must match the zone of the instance that is resolved by the service endpoint in the management cluster AWS account. In AWS, the zone names are aliases, such as us-east-2b, which do not necessarily map to the same zone in different accounts. As a result, for private link to work, the management cluster must have subnets or workers in all zones of its region.

5.1.1.4. Infrastructure requirements for a management AWS account

When your infrastructure is managed by hosted control planes in a management AWS account, the infrastructure requirements differ depending on whether your clusters are public, private, or a combination.

For accounts with public clusters, the infrastructure requirements are as follows:

  • Network load balancer: a load balancer Kube API server

    • Kubernetes creates a security group
  • Volumes

    • For etcd (one or three depending on high availability)
    • For OVN-Kube

For accounts with private clusters, the infrastructure requirements are as follows:

  • Network load balancer: a load balancer private router
  • Endpoint service (private link)

For accounts with public and private clusters, the infrastructure requirements are as follows:

  • Network load balancer: a load balancer public router
  • Network load balancer: a load balancer private router
  • Endpoint service (private link)
  • Volumes

    • For etcd (one or three depending on high availability)
    • For OVN-Kube
5.1.1.5. Infrastructure requirements for an AWS account in a hosted cluster

When your infrastructure is managed by hosted control planes in a hosted cluster Amazon Web Services (AWS) account, the infrastructure requirements differ depending on whether your clusters are public, private, or a combination.

For accounts with public clusters, the infrastructure requirements are as follows:

  • Node pools must have EC2 instances that have Role and RolePolicy defined.

For accounts with private clusters, the infrastructure requirements are as follows:

  • One private link endpoint for each availability zone
  • EC2 instances for node pools

For accounts with public and private clusters, the infrastructure requirements are as follows:

  • One private link endpoint for each availability zone
  • EC2 instances for node pools
5.1.1.6. Kubernetes-managed infrastructure in a hosted cluster AWS account

When Kubernetes manages your infrastructure in a hosted cluster Amazon Web Services (AWS) account, the infrastructure requirements are as follows:

  • A network load balancer for default Ingress
  • An S3 bucket for registry

5.1.2. Identity and Access Management (IAM) permissions

In the context of hosted control planes, the consumer is responsible to create the Amazon Resource Name (ARN) roles. The consumer is an automated process to generate the permissions files. The consumer might be the CLI or OpenShift Cluster Manager. Hosted control planes can enable granularity to honor the principle of least-privilege components, which means that every component uses its own role to operate or create Amazon Web Services (AWS) objects, and the roles are limited to what is required for the product to function normally.

The hosted cluster receives the ARN roles as input and the consumer creates an AWS permission configuration for each component. As a result, the component can authenticate through STS and preconfigured OIDC IDP.

The following roles are consumed by some of the components from hosted control planes that run on the control plane and operate on the data plane:

  • controlPlaneOperatorARN
  • imageRegistryARN
  • ingressARN
  • kubeCloudControllerARN
  • nodePoolManagementARN
  • storageARN
  • networkARN

The following example shows a reference to the IAM roles from the hosted cluster:

...
endpointAccess: Public
  region: us-east-2
  resourceTags:
  - key: kubernetes.io/cluster/example-cluster-bz4j5
    value: owned
rolesRef:
    controlPlaneOperatorARN: arn:aws:iam::820196288204:role/example-cluster-bz4j5-control-plane-operator
    imageRegistryARN: arn:aws:iam::820196288204:role/example-cluster-bz4j5-openshift-image-registry
    ingressARN: arn:aws:iam::820196288204:role/example-cluster-bz4j5-openshift-ingress
    kubeCloudControllerARN: arn:aws:iam::820196288204:role/example-cluster-bz4j5-cloud-controller
    networkARN: arn:aws:iam::820196288204:role/example-cluster-bz4j5-cloud-network-config-controller
    nodePoolManagementARN: arn:aws:iam::820196288204:role/example-cluster-bz4j5-node-pool
    storageARN: arn:aws:iam::820196288204:role/example-cluster-bz4j5-aws-ebs-csi-driver-controller
type: AWS
...

The roles that hosted control planes uses are shown in the following examples:

  • ingressARN

    {
        "Version": "2012-10-17",
        "Statement": [
            {
                "Effect": "Allow",
                "Action": [
                    "elasticloadbalancing:DescribeLoadBalancers",
                    "tag:GetResources",
                    "route53:ListHostedZones"
                ],
                "Resource": "\*"
            },
            {
                "Effect": "Allow",
                "Action": [
                    "route53:ChangeResourceRecordSets"
                ],
                "Resource": [
                    "arn:aws:route53:::PUBLIC_ZONE_ID",
                    "arn:aws:route53:::PRIVATE_ZONE_ID"
                ]
            }
        ]
    }
  • imageRegistryARN

    {
        "Version": "2012-10-17",
        "Statement": [
            {
                "Effect": "Allow",
                "Action": [
                    "s3:CreateBucket",
                    "s3:DeleteBucket",
                    "s3:PutBucketTagging",
                    "s3:GetBucketTagging",
                    "s3:PutBucketPublicAccessBlock",
                    "s3:GetBucketPublicAccessBlock",
                    "s3:PutEncryptionConfiguration",
                    "s3:GetEncryptionConfiguration",
                    "s3:PutLifecycleConfiguration",
                    "s3:GetLifecycleConfiguration",
                    "s3:GetBucketLocation",
                    "s3:ListBucket",
                    "s3:GetObject",
                    "s3:PutObject",
                    "s3:DeleteObject",
                    "s3:ListBucketMultipartUploads",
                    "s3:AbortMultipartUpload",
                    "s3:ListMultipartUploadParts"
                ],
                "Resource": "\*"
            }
        ]
    }
  • storageARN

    {
        "Version": "2012-10-17",
        "Statement": [
            {
                "Effect": "Allow",
                "Action": [
                    "ec2:AttachVolume",
                    "ec2:CreateSnapshot",
                    "ec2:CreateTags",
                    "ec2:CreateVolume",
                    "ec2:DeleteSnapshot",
                    "ec2:DeleteTags",
                    "ec2:DeleteVolume",
                    "ec2:DescribeInstances",
                    "ec2:DescribeSnapshots",
                    "ec2:DescribeTags",
                    "ec2:DescribeVolumes",
                    "ec2:DescribeVolumesModifications",
                    "ec2:DetachVolume",
                    "ec2:ModifyVolume"
                ],
                "Resource": "\*"
            }
        ]
    }
  • networkARN

    {
        "Version": "2012-10-17",
        "Statement": [
            {
                "Effect": "Allow",
                "Action": [
                    "ec2:DescribeInstances",
                    "ec2:DescribeInstanceStatus",
                    "ec2:DescribeInstanceTypes",
                    "ec2:UnassignPrivateIpAddresses",
                    "ec2:AssignPrivateIpAddresses",
                    "ec2:UnassignIpv6Addresses",
                    "ec2:AssignIpv6Addresses",
                    "ec2:DescribeSubnets",
                    "ec2:DescribeNetworkInterfaces"
                ],
                "Resource": "\*"
            }
        ]
    }
  • kubeCloudControllerARN

    {
        "Version": "2012-10-17",
        "Statement": [
            {
                "Action": [
                    "ec2:DescribeInstances",
                    "ec2:DescribeImages",
                    "ec2:DescribeRegions",
                    "ec2:DescribeRouteTables",
                    "ec2:DescribeSecurityGroups",
                    "ec2:DescribeSubnets",
                    "ec2:DescribeVolumes",
                    "ec2:CreateSecurityGroup",
                    "ec2:CreateTags",
                    "ec2:CreateVolume",
                    "ec2:ModifyInstanceAttribute",
                    "ec2:ModifyVolume",
                    "ec2:AttachVolume",
                    "ec2:AuthorizeSecurityGroupIngress",
                    "ec2:CreateRoute",
                    "ec2:DeleteRoute",
                    "ec2:DeleteSecurityGroup",
                    "ec2:DeleteVolume",
                    "ec2:DetachVolume",
                    "ec2:RevokeSecurityGroupIngress",
                    "ec2:DescribeVpcs",
                    "elasticloadbalancing:AddTags",
                    "elasticloadbalancing:AttachLoadBalancerToSubnets",
                    "elasticloadbalancing:ApplySecurityGroupsToLoadBalancer",
                    "elasticloadbalancing:CreateLoadBalancer",
                    "elasticloadbalancing:CreateLoadBalancerPolicy",
                    "elasticloadbalancing:CreateLoadBalancerListeners",
                    "elasticloadbalancing:ConfigureHealthCheck",
                    "elasticloadbalancing:DeleteLoadBalancer",
                    "elasticloadbalancing:DeleteLoadBalancerListeners",
                    "elasticloadbalancing:DescribeLoadBalancers",
                    "elasticloadbalancing:DescribeLoadBalancerAttributes",
                    "elasticloadbalancing:DetachLoadBalancerFromSubnets",
                    "elasticloadbalancing:DeregisterInstancesFromLoadBalancer",
                    "elasticloadbalancing:ModifyLoadBalancerAttributes",
                    "elasticloadbalancing:RegisterInstancesWithLoadBalancer",
                    "elasticloadbalancing:SetLoadBalancerPoliciesForBackendServer",
                    "elasticloadbalancing:AddTags",
                    "elasticloadbalancing:CreateListener",
                    "elasticloadbalancing:CreateTargetGroup",
                    "elasticloadbalancing:DeleteListener",
                    "elasticloadbalancing:DeleteTargetGroup",
                    "elasticloadbalancing:DescribeListeners",
                    "elasticloadbalancing:DescribeLoadBalancerPolicies",
                    "elasticloadbalancing:DescribeTargetGroups",
                    "elasticloadbalancing:DescribeTargetHealth",
                    "elasticloadbalancing:ModifyListener",
                    "elasticloadbalancing:ModifyTargetGroup",
                    "elasticloadbalancing:RegisterTargets",
                    "elasticloadbalancing:SetLoadBalancerPoliciesOfListener",
                    "iam:CreateServiceLinkedRole",
                    "kms:DescribeKey"
                ],
                "Resource": [
                    "\*"
                ],
                "Effect": "Allow"
            }
        ]
    }
  • nodePoolManagementARN

    {
        "Version": "2012-10-17",
        "Statement": [
            {
                "Action": [
                    "ec2:AllocateAddress",
                    "ec2:AssociateRouteTable",
                    "ec2:AttachInternetGateway",
                    "ec2:AuthorizeSecurityGroupIngress",
                    "ec2:CreateInternetGateway",
                    "ec2:CreateNatGateway",
                    "ec2:CreateRoute",
                    "ec2:CreateRouteTable",
                    "ec2:CreateSecurityGroup",
                    "ec2:CreateSubnet",
                    "ec2:CreateTags",
                    "ec2:DeleteInternetGateway",
                    "ec2:DeleteNatGateway",
                    "ec2:DeleteRouteTable",
                    "ec2:DeleteSecurityGroup",
                    "ec2:DeleteSubnet",
                    "ec2:DeleteTags",
                    "ec2:DescribeAccountAttributes",
                    "ec2:DescribeAddresses",
                    "ec2:DescribeAvailabilityZones",
                    "ec2:DescribeImages",
                    "ec2:DescribeInstances",
                    "ec2:DescribeInternetGateways",
                    "ec2:DescribeNatGateways",
                    "ec2:DescribeNetworkInterfaces",
                    "ec2:DescribeNetworkInterfaceAttribute",
                    "ec2:DescribeRouteTables",
                    "ec2:DescribeSecurityGroups",
                    "ec2:DescribeSubnets",
                    "ec2:DescribeVpcs",
                    "ec2:DescribeVpcAttribute",
                    "ec2:DescribeVolumes",
                    "ec2:DetachInternetGateway",
                    "ec2:DisassociateRouteTable",
                    "ec2:DisassociateAddress",
                    "ec2:ModifyInstanceAttribute",
                    "ec2:ModifyNetworkInterfaceAttribute",
                    "ec2:ModifySubnetAttribute",
                    "ec2:ReleaseAddress",
                    "ec2:RevokeSecurityGroupIngress",
                    "ec2:RunInstances",
                    "ec2:TerminateInstances",
                    "tag:GetResources",
                    "ec2:CreateLaunchTemplate",
                    "ec2:CreateLaunchTemplateVersion",
                    "ec2:DescribeLaunchTemplates",
                    "ec2:DescribeLaunchTemplateVersions",
                    "ec2:DeleteLaunchTemplate",
                    "ec2:DeleteLaunchTemplateVersions"
                ],
                "Resource": [
                    "\*"
                ],
                "Effect": "Allow"
            },
            {
                "Condition": {
                    "StringLike": {
                        "iam:AWSServiceName": "elasticloadbalancing.amazonaws.com"
                    }
                },
                "Action": [
                    "iam:CreateServiceLinkedRole"
                ],
                "Resource": [
                    "arn:*:iam::*:role/aws-service-role/elasticloadbalancing.amazonaws.com/AWSServiceRoleForElasticLoadBalancing"
                ],
                "Effect": "Allow"
            },
            {
                "Action": [
                    "iam:PassRole"
                ],
                "Resource": [
                    "arn:*:iam::*:role/*-worker-role"
                ],
                "Effect": "Allow"
            }
        ]
    }
  • controlPlaneOperatorARN

    {
        "Version": "2012-10-17",
        "Statement": [
            {
                "Effect": "Allow",
                "Action": [
                    "ec2:CreateVpcEndpoint",
                    "ec2:DescribeVpcEndpoints",
                    "ec2:ModifyVpcEndpoint",
                    "ec2:DeleteVpcEndpoints",
                    "ec2:CreateTags",
                    "route53:ListHostedZones"
                ],
                "Resource": "\*"
            },
            {
                "Effect": "Allow",
                "Action": [
                    "route53:ChangeResourceRecordSets",
                    "route53:ListResourceRecordSets"
                ],
                "Resource": "arn:aws:route53:::%s"
            }
        ]
    }

5.1.3. Creating AWS infrastructure and IAM resources separate

By default, the hcp create cluster aws command creates cloud infrastructure with the hosted cluster and applies it. You can create the cloud infrastructure portion separately so that you can use the hcp create cluster aws command only to create the cluster, or render it to modify it before you apply it.

To create the cloud infrastructure portion separately, you need to create the Amazon Web Services (AWS) infrastructure, create the AWS Identity and Access (IAM) resources, and create the cluster.

5.1.3.1. Creating the AWS infrastructure separately

To create the Amazon Web Services (AWS) infrastructure, you need to create a Virtual Private Cloud (VPC) and other resources for your cluster. You can use the AWS console or an infrastructure automation and provisioning tool. For instructions to use the AWS console, see Create a VPC plus other VPC resources in the AWS Documentation.

The VPC must include private and public subnets and resources for external access, such as a network address translation (NAT) gateway and an internet gateway. In addition to the VPC, you need a private hosted zone for the ingress of your cluster. If you are creating clusters that use PrivateLink (Private or PublicAndPrivate access modes), you need an additional hosted zone for PrivateLink.

Create the AWS infrastructure for your hosted cluster by using the following example configuration:

---
apiVersion: v1
kind: Namespace
metadata:
  creationTimestamp: null
  name: clusters
spec: {}
status: {}
---
apiVersion: v1
data:
  .dockerconfigjson: xxxxxxxxxxx
kind: Secret
metadata:
  creationTimestamp: null
  labels:
    hypershift.openshift.io/safe-to-delete-with-cluster: "true"
  name: <pull_secret_name> 1
  namespace: clusters
---
apiVersion: v1
data:
  key: xxxxxxxxxxxxxxxxx
kind: Secret
metadata:
  creationTimestamp: null
  labels:
    hypershift.openshift.io/safe-to-delete-with-cluster: "true"
  name: <etcd_encryption_key_name> 2
  namespace: clusters
type: Opaque
---
apiVersion: v1
data:
  id_rsa: xxxxxxxxx
  id_rsa.pub: xxxxxxxxx
kind: Secret
metadata:
  creationTimestamp: null
  labels:
    hypershift.openshift.io/safe-to-delete-with-cluster: "true"
  name: <ssh-key-name> 3
  namespace: clusters
---
apiVersion: hypershift.openshift.io/v1beta1
kind: HostedCluster
metadata:
  creationTimestamp: null
  name: <hosted_cluster_name> 4
  namespace: clusters
spec:
  autoscaling: {}
  configuration: {}
  controllerAvailabilityPolicy: SingleReplica
  dns:
    baseDomain: <dns_domain> 5
    privateZoneID: xxxxxxxx
    publicZoneID: xxxxxxxx
  etcd:
    managed:
      storage:
        persistentVolume:
          size: 8Gi
          storageClassName: gp3-csi
        type: PersistentVolume
    managementType: Managed
  fips: false
  infraID: <infra_id> 6
  issuerURL: <issuer_url> 7
  networking:
    clusterNetwork:
    - cidr: 10.132.0.0/14
    machineNetwork:
    - cidr: 10.0.0.0/16
    networkType: OVNKubernetes
    serviceNetwork:
    - cidr: 172.31.0.0/16
  olmCatalogPlacement: management
  platform:
    aws:
      cloudProviderConfig:
        subnet:
          id: <subnet_xxx> 8
        vpc: <vpc_xxx> 9
        zone: us-west-1b
      endpointAccess: Public
      multiArch: false
      region: us-west-1
      rolesRef:
        controlPlaneOperatorARN: arn:aws:iam::820196288204:role/<infra_id>-control-plane-operator
        imageRegistryARN: arn:aws:iam::820196288204:role/<infra_id>-openshift-image-registry
        ingressARN: arn:aws:iam::820196288204:role/<infra_id>-openshift-ingress
        kubeCloudControllerARN: arn:aws:iam::820196288204:role/<infra_id>-cloud-controller
        networkARN: arn:aws:iam::820196288204:role/<infra_id>-cloud-network-config-controller
        nodePoolManagementARN: arn:aws:iam::820196288204:role/<infra_id>-node-pool
        storageARN: arn:aws:iam::820196288204:role/<infra_id>-aws-ebs-csi-driver-controller
    type: AWS
  pullSecret:
    name: <pull_secret_name>
  release:
    image: quay.io/openshift-release-dev/ocp-release:4.16-x86_64
  secretEncryption:
    aescbc:
      activeKey:
        name: <etcd_encryption_key_name>
    type: aescbc
  services:
  - service: APIServer
    servicePublishingStrategy:
      type: LoadBalancer
  - service: OAuthServer
    servicePublishingStrategy:
      type: Route
  - service: Konnectivity
    servicePublishingStrategy:
      type: Route
  - service: Ignition
    servicePublishingStrategy:
      type: Route
  - service: OVNSbDb
    servicePublishingStrategy:
      type: Route
  sshKey:
    name: <ssh_key_name>
status:
  controlPlaneEndpoint:
    host: ""
    port: 0
---
apiVersion: hypershift.openshift.io/v1beta1
kind: NodePool
metadata:
  creationTimestamp: null
  name: <node_pool_name> 10
  namespace: clusters
spec:
  arch: amd64
  clusterName: <hosted_cluster_name>
  management:
    autoRepair: true
    upgradeType: Replace
  nodeDrainTimeout: 0s
  platform:
    aws:
      instanceProfile: <instance_profile_name> 11
      instanceType: m6i.xlarge
      rootVolume:
        size: 120
        type: gp3
      subnet:
        id: <subnet_xxx>
    type: AWS
  release:
    image: quay.io/openshift-release-dev/ocp-release:4.16-x86_64
  replicas: 2
status:
  replicas: 0
1
Replace <pull_secret_name> with the name of your pull secret.
2
Replace <etcd_encryption_key_name> with the name of your etcd encryption key.
3
Replace <ssh_key_name> with the name of your SSH key.
4
Replace <hosted_cluster_name> with the name of your hosted cluster.
5
Replace <dns_domain> with your base DNS domain, such as example.com.
6
Replace <infra_id> with the value that identifies the IAM resources that are associated with the hosted cluster.
7
Replace <issuer_url> with your issuer URL, which ends with your infra_id value. For example, https://example-hosted-us-west-1.s3.us-west-1.amazonaws.com/example-hosted-infra-id.
8
Replace <subnet_xxx> with your subnet ID. Both private and public subnets need to be tagged. For public subnets, use kubernetes.io/role/elb=1. For private subnets, use kubernetes.io/role/internal-elb=1.
9
Replace <vpc_xxx> with your VPC ID.
10
Replace <node_pool_name> with the name of your NodePool resource.
11
Replace <instance_profile_name> with the name of your AWS instance.
5.1.3.2. Creating the AWS IAM resources

In Amazon Web Services (AWS), you must create the following IAM resources:

5.1.3.3. Creating a hosted cluster separately

You can create a hosted cluster separately on Amazon Web Services (AWS).

To create a hosted cluster separately, enter the following command:

$ hcp create cluster aws \
    --infra-id <infra_id> \1
    --name <hosted_cluster_name> \2
    --sts-creds <path_to_sts_credential_file> \3
    --pull-secret <path_to_pull_secret> \4
    --generate-ssh \5
    --node-pool-replicas 3
    --role-arn <role_name> 6
1
Replace <infra_id> with the same ID that you specified in the create infra aws command. This value identifies the IAM resources that are associated with the hosted cluster.
2
Replace <hosted_cluster_name> with the name of your hosted cluster.
3
Replace <path_to_sts_credential_file> with the same name that you specified in the create infra aws command.
4
Replace <path_to_pull_secret> with the name of the file that contains a valid OpenShift Container Platform pull secret.
5
The --generate-ssh flag is optional, but is good to include in case you need to SSH to your workers. An SSH key is generated for you and is stored as a secret in the same namespace as the hosted cluster.
6
Replace <role_name> with the Amazon Resource Name (ARN), for example, arn:aws:iam::820196288204:role/myrole. Specify the Amazon Resource Name (ARN), for example, arn:aws:iam::820196288204:role/myrole. For more information about ARN roles, see "Identity and Access Management (IAM) permissions".

You can also add the --render flag to the command and redirect output to a file where you can edit the resources before you apply them to the cluster.

After you run the command, the following resources are applied to your cluster:

  • A namespace
  • A secret with your pull secret
  • A HostedCluster
  • A NodePool
  • Three AWS STS secrets for control plane components
  • One SSH key secret if you specified the --generate-ssh flag.

5.2. Managing hosted control planes on bare metal

After you deploy hosted control planes on bare metal, you can manage a hosted cluster by completing the following tasks.

5.2.1. Accessing the hosted cluster

You can access the hosted cluster by either getting the kubeconfig file and kubeadmin credential directly from resources, or by using the hcp command line interface to generate a kubeconfig file.

Prerequisites

To access the hosted cluster by getting the kubeconfig file and credentials directly from resources, you must be familiar with the access secrets for hosted clusters. The hosted cluster (hosting) namespace contains hosted cluster resources and the access secrets. The hosted control plane namespace is where the hosted control plane runs.

The secret name formats are as follows:

  • kubeconfig secret: <hosted_cluster_namespace>-<name>-admin-kubeconfig. For example, clusters-hypershift-demo-admin-kubeconfig.
  • kubeadmin password secret: <hosted_cluster_namespace>-<name>-kubeadmin-password. For example, clusters-hypershift-demo-kubeadmin-password.

The kubeconfig secret contains a Base64-encoded kubeconfig field, which you can decode and save into a file to use with the following command:

$ oc --kubeconfig <hosted_cluster_name>.kubeconfig get nodes

The kubeadmin password secret is also Base64-encoded. You can decode it and use the password to log in to the API server or console of the hosted cluster.

Procedure

  • To access the hosted cluster by using the hcp CLI to generate the kubeconfig file, take the following steps:

    1. Generate the kubeconfig file by entering the following command:

      $ hcp create kubeconfig --namespace <hosted_cluster_namespace> --name <hosted_cluster_name> > <hosted_cluster_name>.kubeconfig
    2. After you save the kubeconfig file, you can access the hosted cluster by entering the following example command:

      $ oc --kubeconfig <hosted_cluster_name>.kubeconfig get nodes

5.2.2. Scaling the NodePool object for a hosted cluster

You can scale up the NodePool object by adding nodes to your hosted cluster. When you scale a node pool, consider the following information:

  • When you scale a replica by the node pool, a machine is created. For every machine, the Cluster API provider finds and installs an Agent that meets the requirements that are specified in the node pool specification. You can monitor the installation of an Agent by checking its status and conditions.
  • When you scale down a node pool, Agents are unbound from the corresponding cluster. Before you can reuse the Agents, you must restart them by using the Discovery image.

Procedure

  1. Scale the NodePool object to two nodes:

    $ oc -n <hosted_cluster_namespace> scale nodepool <nodepool_name> --replicas 2

    The Cluster API agent provider randomly picks two agents that are then assigned to the hosted cluster. Those agents go through different states and finally join the hosted cluster as OpenShift Container Platform nodes. The agents pass through states in the following order:

    • binding
    • discovering
    • insufficient
    • installing
    • installing-in-progress
    • added-to-existing-cluster
  2. Enter the following command:

    $ oc -n <hosted_control_plane_namespace> get agent

    Example output

    NAME                                   CLUSTER         APPROVED   ROLE          STAGE
    4dac1ab2-7dd5-4894-a220-6a3473b67ee6   hypercluster1   true       auto-assign
    d9198891-39f4-4930-a679-65fb142b108b                   true       auto-assign
    da503cf1-a347-44f2-875c-4960ddb04091   hypercluster1   true       auto-assign

  3. Enter the following command:

    $ oc -n <hosted_control_plane_namespace> get agent -o jsonpath='{range .items[*]}BMH: {@.metadata.labels.agent-install\.openshift\.io/bmh} Agent: {@.metadata.name} State: {@.status.debugInfo.state}{"\n"}{end}'

    Example output

    BMH: ocp-worker-2 Agent: 4dac1ab2-7dd5-4894-a220-6a3473b67ee6 State: binding
    BMH: ocp-worker-0 Agent: d9198891-39f4-4930-a679-65fb142b108b State: known-unbound
    BMH: ocp-worker-1 Agent: da503cf1-a347-44f2-875c-4960ddb04091 State: insufficient

  4. Obtain the kubeconfig for your new hosted cluster by entering the extract command:

    $ oc extract -n <hosted_cluster_namespace> secret/<hosted_cluster_name>-admin-kubeconfig --to=- > kubeconfig-<hosted_cluster_name>
  5. After the agents reach the added-to-existing-cluster state, verify that you can see the OpenShift Container Platform nodes in the hosted cluster by entering the following command:

    $ oc --kubeconfig kubeconfig-<hosted_cluster_name> get nodes

    Example output

    NAME           STATUS   ROLES    AGE     VERSION
    ocp-worker-1   Ready    worker   5m41s   v1.24.0+3882f8f
    ocp-worker-2   Ready    worker   6m3s    v1.24.0+3882f8f

    Cluster Operators start to reconcile by adding workloads to the nodes.

  6. Enter the following command to verify that two machines were created when you scaled up the NodePool object:

    $ oc -n <hosted_control_plane_namespace> get machines

    Example output

    NAME                            CLUSTER               NODENAME       PROVIDERID                                     PHASE     AGE   VERSION
    hypercluster1-c96b6f675-m5vch   hypercluster1-b2qhl   ocp-worker-1   agent://da503cf1-a347-44f2-875c-4960ddb04091   Running   15m   4.x.z
    hypercluster1-c96b6f675-tl42p   hypercluster1-b2qhl   ocp-worker-2   agent://4dac1ab2-7dd5-4894-a220-6a3473b67ee6   Running   15m   4.x.z

    The clusterversion reconcile process eventually reaches a point where only Ingress and Console cluster operators are missing.

  7. Enter the following command:

    $ oc --kubeconfig kubeconfig-<hosted_cluster_name> get clusterversion,co

    Example output

    NAME                                         VERSION   AVAILABLE   PROGRESSING   SINCE   STATUS
    clusterversion.config.openshift.io/version             False       True          40m     Unable to apply 4.x.z: the cluster operator console has not yet successfully rolled out
    
    NAME                                                                             VERSION   AVAILABLE   PROGRESSING   DEGRADED   SINCE   MESSAGE
    clusteroperator.config.openshift.io/console                                      4.12z     False       False         False      11m     RouteHealthAvailable: failed to GET route (https://console-openshift-console.apps.hypercluster1.domain.com): Get "https://console-openshift-console.apps.hypercluster1.domain.com": dial tcp 10.19.3.29:443: connect: connection refused
    clusteroperator.config.openshift.io/csi-snapshot-controller                      4.12z     True        False         False      10m
    clusteroperator.config.openshift.io/dns                                          4.12z     True        False         False      9m16s

5.2.2.1. Adding node pools

You can create node pools for a hosted cluster by specifying a name, number of replicas, and any additional information, such as an agent label selector.

Procedure

  1. To create a node pool, enter the following information:

    $ hcp create nodepool agent \
      --cluster-name <hosted_cluster_name> \1
      --name <nodepool_name> \2
      --node-count <worker_node_count> \3
      --agentLabelSelector size=medium 4
    1
    Replace <hosted_cluster_name> with your hosted cluster name.
    2
    Replace <nodepool_name> with the name of your node pool, for example, <hosted_cluster_name>-extra-cpu.
    3
    Replace <worker_node_count> with the worker node count, for example, 2.
    4
    The --agentLabelSelector flag is optional. The node pool uses agents with the size=medium label.
  2. Check the status of the node pool by listing nodepool resources in the clusters namespace:

    $ oc get nodepools --namespace clusters
  3. Extract the admin-kubeconfig secret by entering the following command:

    $ oc extract -n <hosted_control_plane_namespace> secret/admin-kubeconfig --to=./hostedcluster-secrets --confirm

    Example output

    hostedcluster-secrets/kubeconfig

  4. After some time, you can check the status of the node pool by entering the following command:

    $ oc --kubeconfig ./hostedcluster-secrets get nodes

Verification

  • Verify that the number of available node pools match the number of expected node pools by entering this command:

    $ oc get nodepools --namespace clusters
5.2.2.2. Enabling node auto-scaling for the hosted cluster

When you need more capacity in your hosted cluster and spare agents are available, you can enable auto-scaling to install new worker nodes.

Procedure

  1. To enable auto-scaling, enter the following command:

    $ oc -n <hosted_cluster_namespace> patch nodepool <hosted_cluster_name> --type=json -p '[{"op": "remove", "path": "/spec/replicas"},{"op":"add", "path": "/spec/autoScaling", "value": { "max": 5, "min": 2 }}]'
    Note

    In the example, the minimum number of nodes is 2, and the maximum is 5. The maximum number of nodes that you can add might be bound by your platform. For example, if you use the Agent platform, the maximum number of nodes is bound by the number of available agents.

  2. Create a workload that requires a new node.

    1. Create a YAML file that contains the workload configuration, by using the following example:

      apiVersion: apps/v1
      kind: Deployment
      metadata:
        creationTimestamp: null
        labels:
          app: reversewords
        name: reversewords
        namespace: default
      spec:
        replicas: 40
        selector:
          matchLabels:
            app: reversewords
        strategy: {}
        template:
          metadata:
            creationTimestamp: null
            labels:
              app: reversewords
          spec:
            containers:
            - image: quay.io/mavazque/reversewords:latest
              name: reversewords
              resources:
                requests:
                  memory: 2Gi
      status: {}
    2. Save the file as workload-config.yaml.
    3. Apply the YAML by entering the following command:

      $ oc apply -f workload-config.yaml
  3. Extract the admin-kubeconfig secret by entering the following command:

    $ oc extract -n <hosted_cluster_namespace> secret/<hosted_cluster_name>-admin-kubeconfig --to=./hostedcluster-secrets --confirm

    Example output

    hostedcluster-secrets/kubeconfig

  4. You can check if new nodes are in the Ready status by entering the following command:

    $ oc --kubeconfig ./hostedcluster-secrets get nodes
  5. To remove the node, delete the workload by entering the following command:

    $ oc --kubeconfig ./hostedcluster-secrets -n <namespace> delete deployment <deployment_name>
  6. Wait for several minutes to pass without requiring the additional capacity. On the Agent platform, the agent is decommissioned and can be reused. You can confirm that the node was removed by entering the following command:

    $ oc --kubeconfig ./hostedcluster-secrets get nodes
Note

For IBM Z agents, compute nodes are detached from the cluster only for IBM Z with KVM agents. For z/VM and LPAR, you must delete the compute nodes manually.

Agents can be reused only for IBM Z with KVM. For z/VM and LPAR, re-create the agents to use them as compute nodes.

5.2.2.3. Disabling node auto-scaling for the hosted cluster

To disable node auto-scaling, complete the following procedure.

Procedure

  • Enter the following command to disable node auto-scaling for the hosted cluster:

    $ oc -n <hosted_cluster_namespace> patch nodepool <hosted_cluster_name> --type=json -p '[\{"op":"remove", "path": "/spec/autoScaling"}, \{"op": "add", "path": "/spec/replicas", "value": <specify_value_to_scale_replicas>]'

    The command removes "spec.autoScaling" from the YAML file, adds "spec.replicas", and sets "spec.replicas" to the integer value that you specify.

5.2.3. Handling ingress in a hosted cluster on bare metal

Every OpenShift Container Platform cluster has a default application Ingress Controller that typically has an external DNS record associated with it. For example, if you create a hosted cluster named example with the base domain krnl.es, you can expect the wildcard domain *.apps.example.krnl.es to be routable.

Procedure

To set up a load balancer and wildcard DNS record for the *.apps domain, perform the following actions on your guest cluster:

  1. Deploy MetalLB by creating a YAML file that contains the configuration for the MetalLB Operator:

    apiVersion: v1
    kind: Namespace
    metadata:
      name: metallb
      labels:
        openshift.io/cluster-monitoring: "true"
      annotations:
        workload.openshift.io/allowed: management
    ---
    apiVersion: operators.coreos.com/v1
    kind: OperatorGroup
    metadata:
      name: metallb-operator-operatorgroup
      namespace: metallb
    ---
    apiVersion: operators.coreos.com/v1alpha1
    kind: Subscription
    metadata:
      name: metallb-operator
      namespace: metallb
    spec:
      channel: "stable"
      name: metallb-operator
      source: redhat-operators
      sourceNamespace: openshift-marketplace
  2. Save the file as metallb-operator-config.yaml.
  3. Enter the following command to apply the configuration:

    $ oc apply -f metallb-operator-config.yaml
  4. After the Operator is running, create the MetalLB instance:

    1. Create a YAML file that contains the configuration for the MetalLB instance:

      apiVersion: metallb.io/v1beta1
      kind: MetalLB
      metadata:
        name: metallb
        namespace: metallb
    2. Save the file as metallb-instance-config.yaml.
    3. Create the MetalLB instance by entering this command:

      $ oc apply -f metallb-instance-config.yaml
  5. Create an IPAddressPool resource with a single IP address. This IP address must be on the same subnet as the network that the cluster nodes use.

    1. Create a file, such as ipaddresspool.yaml, with content like the following example:

      apiVersion: metallb.io/v1beta1
      kind: IPAddressPool
      metadata:
        namespace: metallb
        name: <ip_address_pool_name> 1
      spec:
        addresses:
          - <ingress_ip>-<ingress_ip> 2
        autoAssign: false
      1
      Specify the IPAddressPool resource name.
      2
      Specify the IP address for your environment. For example, 192.168.122.23.
    2. Apply the configuration for the IP address pool by entering the following command:

      $ oc apply -f ipaddresspool.yaml
  6. Create a L2 advertisement.

    1. Create a file, such as l2advertisement.yaml, with content like the following example:

      apiVersion: metallb.io/v1beta1
      kind: L2Advertisement
      metadata:
        name: <l2_advertisement_name> 1
        namespace: metallb
      spec:
        ipAddressPools:
         - <ip_address_pool_name> 2
      1
      Specify the L2Advertisement resource name.
      2
      Specify the IPAddressPool resource name.
    2. Apply the configuration by entering the following command:

      $ oc apply -f l2advertisement.yaml
  7. After creating a service of the LoadBalancer type, MetalLB adds an external IP address for the service.

    1. Configure a new load balancer service that routes ingress traffic to the ingress deployment by creating a YAML file named metallb-loadbalancer-service.yaml:

      kind: Service
      apiVersion: v1
      metadata:
        annotations:
          metallb.universe.tf/address-pool: ingress-public-ip
        name: metallb-ingress
        namespace: openshift-ingress
      spec:
        ports:
          - name: http
            protocol: TCP
            port: 80
            targetPort: 80
          - name: https
            protocol: TCP
            port: 443
            targetPort: 443
        selector:
          ingresscontroller.operator.openshift.io/deployment-ingresscontroller: default
        type: LoadBalancer
    2. Save the metallb-loadbalancer-service.yaml file.
    3. Enter the following command to apply the YAML configuration:

      $ oc apply -f metallb-loadbalancer-service.yaml
    4. Enter the following command to reach the OpenShift Container Platform console:

      $ curl -kI https://console-openshift-console.apps.example.krnl.es

      Example output

      HTTP/1.1 200 OK

    5. Check the clusterversion and clusteroperator values to verify that everything is running. Enter the following command:

      $ oc --kubeconfig <hosted_cluster_name>.kubeconfig get clusterversion,co

      Example output

      NAME                                         VERSION   AVAILABLE   PROGRESSING   SINCE   STATUS
      clusterversion.config.openshift.io/version   4.x.y      True        False        3m32s   Cluster version is 4.x.y
      
      NAME                                                                             VERSION   AVAILABLE   PROGRESSING   DEGRADED   SINCE   MESSAGE
      clusteroperator.config.openshift.io/console                                      4.x.y     True        False         False      3m50s
      clusteroperator.config.openshift.io/ingress                                      4.x.y     True        False         False      53m

      Replace <4.x.y> with the supported OpenShift Container Platform version that you want to use, for example, 4.17.0-multi.

5.2.4. Enabling machine health checks on bare metal

You can enable machine health checks on bare metal to repair and replace unhealthy managed cluster nodes automatically. You must have additional agent machines that are ready to install in the managed cluster.

Consider the following limitations before enabling machine health checks:

  • You cannot modify the MachineHealthCheck object.
  • Machine health checks replace nodes only when at least two nodes stay in the False or Unknown status for more than 8 minutes.

After you enable machine health checks for the managed cluster nodes, the MachineHealthCheck object is created in your hosted cluster.

Procedure

To enable machine health checks in your hosted cluster, modify the NodePool resource. Complete the following steps:

  1. Verify that the spec.nodeDrainTimeout value in your NodePool resource is greater than 0s. Replace <hosted_cluster_namespace> with the name of your hosted cluster namespace and <nodepool_name> with the node pool name. Run the following command:

    $ oc get nodepool -n <hosted_cluster_namespace> <nodepool_name> -o yaml | grep nodeDrainTimeout

    Example output

    nodeDrainTimeout: 30s

  2. If the spec.nodeDrainTimeout value is not greater than 0s, modify the value by running the following command:

    $ oc patch nodepool -n <hosted_cluster_namespace> <nodepool_name> -p '{"spec":{"nodeDrainTimeout": "30m"}}' --type=merge
  3. Enable machine health checks by setting the spec.management.autoRepair field to true in the NodePool resource. Run the following command:

    $ oc patch nodepool -n <hosted_cluster_namespace> <nodepool_name> -p '{"spec": {"management": {"autoRepair":true}}}' --type=merge
  4. Verify that the NodePool resource is updated with the autoRepair: true value by running the following command:

    $ oc get nodepool -n <hosted_cluster_namespace> <nodepool_name> -o yaml | grep autoRepair

5.2.5. Disabling machine health checks on bare metal

To disable machine health checks for the managed cluster nodes, modify the NodePool resource.

Procedure

  1. Disable machine health checks by setting the spec.management.autoRepair field to false in the NodePool resource. Run the following command:

    $ oc patch nodepool -n <hosted_cluster_namespace> <nodepool_name> -p '{"spec": {"management": {"autoRepair":false}}}' --type=merge
  2. Verify that the NodePool resource is updated with the autoRepair: false value by running the following command:

    $ oc get nodepool -n <hosted_cluster_namespace> <nodepool_name> -o yaml | grep autoRepair

Additional resources

5.3. Managing hosted control planes on OpenShift Virtualization

After you deploy a hosted cluster on OpenShift Virtualization, you can manage the cluster by completing the following procedures.

5.3.1. Accessing the hosted cluster

You can access the hosted cluster by either getting the kubeconfig file and kubeadmin credential directly from resources, or by using the hcp command line interface to generate a kubeconfig file.

Prerequisites

To access the hosted cluster by getting the kubeconfig file and credentials directly from resources, you must be familiar with the access secrets for hosted clusters. The hosted cluster (hosting) namespace contains hosted cluster resources and the access secrets. The hosted control plane namespace is where the hosted control plane runs.

The secret name formats are as follows:

  • kubeconfig secret: <hosted_cluster_namespace>-<name>-admin-kubeconfig (clusters-hypershift-demo-admin-kubeconfig)
  • kubeadmin password secret: <hosted_cluster_namespace>-<name>-kubeadmin-password (clusters-hypershift-demo-kubeadmin-password)

The kubeconfig secret contains a Base64-encoded kubeconfig field, which you can decode and save into a file to use with the following command:

$ oc --kubeconfig <hosted_cluster_name>.kubeconfig get nodes

The kubeadmin password secret is also Base64-encoded. You can decode it and use the password to log in to the API server or console of the hosted cluster.

Procedure

  • To access the hosted cluster by using the hcp CLI to generate the kubeconfig file, take the following steps:

    1. Generate the kubeconfig file by entering the following command:

      $ hcp create kubeconfig --namespace <hosted_cluster_namespace> --name <hosted_cluster_name> > <hosted_cluster_name>.kubeconfig
    2. After you save the kubeconfig file, you can access the hosted cluster by entering the following example command:

      $ oc --kubeconfig <hosted_cluster_name>.kubeconfig get nodes

5.3.2. Configuring storage for hosted control planes on OpenShift Virtualization

If you do not provide any advanced storage configuration, the default storage class is used for the KubeVirt virtual machine (VM) images, the KubeVirt Container Storage Interface (CSI) mapping, and the etcd volumes.

The following table lists the capabilities that the infrastructure must provide to support persistent storage in a hosted cluster:

Table 5.1. Persistent storage modes in a hosted cluster
Infrastructure CSI providerHosted cluster CSI providerHosted cluster capabilitiesNotes

Any RWX Block CSI provider

kubevirt-csi

Basic: RWO Block and File, RWX Block and Snapshot

Recommended

Any RWX Block CSI provider

Red Hat OpenShift Data Foundation external mode

Red Hat OpenShift Data Foundation feature set

 

Any RWX Block CSI provider

Red Hat OpenShift Data Foundation internal mode

Red Hat OpenShift Data Foundation feature set

Do not use

5.3.2.1. Mapping KubeVirt CSI storage classes

KubeVirt CSI supports mapping a infrastructure storage class that is capable of ReadWriteMany (RWX) access. You can map the infrastructure storage class to hosted storage class during cluster creation.

Procedure

  • To map the infrastructure storage class to the hosted storage class, use the --infra-storage-class-mapping argument by running the following command:

    $ hcp create cluster kubevirt \
      --name <hosted_cluster_name> \ 1
      --node-pool-replicas <worker_node_count> \ 2
      --pull-secret <path_to_pull_secret> \ 3
      --memory <memory> \ 4
      --cores <cpu> \ 5
      --infra-storage-class-mapping=<infrastructure_storage_class>/<hosted_storage_class> \ 6
    1
    Specify the name of your hosted cluster, for instance, example.
    2
    Specify the worker count, for example, 2.
    3
    Specify the path to your pull secret, for example, /user/name/pullsecret.
    4
    Specify a value for memory, for example, 8Gi.
    5
    Specify a value for CPU, for example, 2.
    6
    Replace <infrastructure_storage_class> with the infrastructure storage class name and <hosted_storage_class> with the hosted cluster storage class name. You can use the --infra-storage-class-mapping argument multiple times within the hcp create cluster command.

After you create the hosted cluster, the infrastructure storage class is visible within the hosted cluster. When you create a Persistent Volume Claim (PVC) within the hosted cluster that uses one of those storage classes, KubeVirt CSI provisions that volume by using the infrastructure storage class mapping that you configured during cluster creation.

Note

KubeVirt CSI supports mapping only an infrastructure storage class that is capable of RWX access.

The following table shows how volume and access mode capabilities map to KubeVirt CSI storage classes:

Table 5.2. Mapping KubeVirt CSI storage classes to access and volume modes
Infrastructure CSI capabilityHosted cluster CSI capabilityVM live migration supportNotes

RWX: Block or Filesystem

ReadWriteOnce (RWO) Block or Filesystem RWX Block only

Supported

Use Block mode because Filesystem volume mode results in degraded hosted Block mode performance. RWX Block volume mode is supported only when the hosted cluster is OpenShift Container Platform 4.16 or later.

RWO Block storage

RWO Block storage or Filesystem

Not supported

Lack of live migration support affects the ability to update the underlying infrastructure cluster that hosts the KubeVirt VMs.

RWO FileSystem

RWO Block or Filesystem

Not supported

Lack of live migration support affects the ability to update the underlying infrastructure cluster that hosts the KubeVirt VMs. Use of the infrastructure Filesystem volume mode results in degraded hosted Block mode performance.

5.3.2.2. Mapping a single KubeVirt CSI volume snapshot class

You can expose your infrastructure volume snapshot class to the hosted cluster by using KubeVirt CSI.

Procedure

  • To map your volume snapshot class to the hosted cluster, use the --infra-volumesnapshot-class-mapping argument when creating a hosted cluster. Run the following command:

    $ hcp create cluster kubevirt \
      --name <hosted_cluster_name> \ 1
      --node-pool-replicas <worker_node_count> \ 2
      --pull-secret <path_to_pull_secret> \ 3
      --memory <memory> \ 4
      --cores <cpu> \ 5
      --infra-storage-class-mapping=<infrastructure_storage_class>/<hosted_storage_class> \ 6
      --infra-volumesnapshot-class-mapping=<infrastructure_volume_snapshot_class>/<hosted_volume_snapshot_class> 7
    1
    Specify the name of your hosted cluster, for instance, example.
    2
    Specify the worker count, for example, 2.
    3
    Specify the path to your pull secret, for example, /user/name/pullsecret.
    4
    Specify a value for memory, for example, 8Gi.
    5
    Specify a value for CPU, for example, 2.
    6
    Replace <infrastructure_storage_class> with the storage class present in the infrastructure cluster. Replace <hosted_storage_class> with the storage class present in the hosted cluster.
    7
    Replace <infrastructure_volume_snapshot_class> with the volume snapshot class present in the infrastructure cluster. Replace <hosted_volume_snapshot_class> with the volume snapshot class present in the hosted cluster.
    Note

    If you do not use the --infra-storage-class-mapping and --infra-volumesnapshot-class-mapping arguments, a hosted cluster is created with the default storage class and the volume snapshot class. Therefore, you must set the default storage class and the volume snapshot class in the infrastructure cluster.

5.3.2.3. Mapping multiple KubeVirt CSI volume snapshot classes

You can map multiple volume snapshot classes to the hosted cluster by assigning them to a specific group. The infrastructure storage class and the volume snapshot class are compatible with each other only if they belong to a same group.

Procedure

  • To map multiple volume snapshot classes to the hosted cluster, use the group option when creating a hosted cluster. Run the following command:

    $ hcp create cluster kubevirt \
      --name <hosted_cluster_name> \ 1
      --node-pool-replicas <worker_node_count> \ 2
      --pull-secret <path_to_pull_secret> \ 3
      --memory <memory> \ 4
      --cores <cpu> \ 5
      --infra-storage-class-mapping=<infrastructure_storage_class>/<hosted_storage_class>,group=<group_name> \ 6
      --infra-storage-class-mapping=<infrastructure_storage_class>/<hosted_storage_class>,group=<group_name> \
      --infra-storage-class-mapping=<infrastructure_storage_class>/<hosted_storage_class>,group=<group_name> \
      --infra-volumesnapshot-class-mapping=<infrastructure_volume_snapshot_class>/<hosted_volume_snapshot_class>,group=<group_name> \ 7
      --infra-volumesnapshot-class-mapping=<infrastructure_volume_snapshot_class>/<hosted_volume_snapshot_class>,group=<group_name>
    1
    Specify the name of your hosted cluster, for instance, example.
    2
    Specify the worker count, for example, 2.
    3
    Specify the path to your pull secret, for example, /user/name/pullsecret.
    4
    Specify a value for memory, for example, 8Gi.
    5
    Specify a value for CPU, for example, 2.
    6
    Replace <infrastructure_storage_class> with the storage class present in the infrastructure cluster. Replace <hosted_storage_class> with the storage class present in the hosted cluster. Replace <group_name> with the group name. For example, infra-storage-class-mygroup/hosted-storage-class-mygroup,group=mygroup and infra-storage-class-mymap/hosted-storage-class-mymap,group=mymap.
    7
    Replace <infrastructure_volume_snapshot_class> with the volume snapshot class present in the infrastructure cluster. Replace <hosted_volume_snapshot_class> with the volume snapshot class present in the hosted cluster. For example, infra-vol-snap-mygroup/hosted-vol-snap-mygroup,group=mygroup and infra-vol-snap-mymap/hosted-vol-snap-mymap,group=mymap.
5.3.2.4. Configuring KubeVirt VM root volume

At cluster creation time, you can configure the storage class that is used to host the KubeVirt VM root volumes by using the --root-volume-storage-class argument.

Procedure

  • To set a custom storage class and volume size for KubeVirt VMs, run the following command:

    $ hcp create cluster kubevirt \
      --name <hosted_cluster_name> \ 1
      --node-pool-replicas <worker_node_count> \ 2
      --pull-secret <path_to_pull_secret> \ 3
      --memory <memory> \ 4
      --cores <cpu> \ 5
      --root-volume-storage-class <root_volume_storage_class> \ 6
      --root-volume-size <volume_size> 7
    1
    Specify the name of your hosted cluster, for instance, example.
    2
    Specify the worker count, for example, 2.
    3
    Specify the path to your pull secret, for example, /user/name/pullsecret.
    4
    Specify a value for memory, for example, 8Gi.
    5
    Specify a value for CPU, for example, 2.
    6
    Specify a name of the storage class to host the KubeVirt VM root volumes, for example, ocs-storagecluster-ceph-rbd.
    7
    Specify the volume size, for example, 64.

    As a result, you get a hosted cluster created with VMs hosted on PVCs.

5.3.2.5. Enabling KubeVirt VM image caching

You can use KubeVirt VM image caching to optimize both cluster startup time and storage usage. KubeVirt VM image caching supports the use of a storage class that is capable of smart cloning and the ReadWriteMany access mode. For more information about smart cloning, see Cloning a data volume using smart-cloning.

Image caching works as follows:

  1. The VM image is imported to a PVC that is associated with the hosted cluster.
  2. A unique clone of that PVC is created for every KubeVirt VM that is added as a worker node to the cluster.

Image caching reduces VM startup time by requiring only a single image import. It can further reduce overall cluster storage usage when the storage class supports copy-on-write cloning.

Procedure

  • To enable image caching, during cluster creation, use the --root-volume-cache-strategy=PVC argument by running the following command:

    $ hcp create cluster kubevirt \
      --name <hosted_cluster_name> \ 1
      --node-pool-replicas <worker_node_count> \ 2
      --pull-secret <path_to_pull_secret> \ 3
      --memory <memory> \ 4
      --cores <cpu> \ 5
      --root-volume-cache-strategy=PVC 6
    1
    Specify the name of your hosted cluster, for instance, example.
    2
    Specify the worker count, for example, 2.
    3
    Specify the path to your pull secret, for example, /user/name/pullsecret.
    4
    Specify a value for memory, for example, 8Gi.
    5
    Specify a value for CPU, for example, 2.
    6
    Specify a strategy for image caching, for example, PVC.
5.3.2.6. KubeVirt CSI storage security and isolation

KubeVirt Container Storage Interface (CSI) extends the storage capabilities of the underlying infrastructure cluster to hosted clusters. The CSI driver ensures secure and isolated access to the infrastructure storage classes and hosted clusters by using the following security constraints:

  • The storage of a hosted cluster is isolated from the other hosted clusters.
  • Worker nodes in a hosted cluster do not have a direct API access to the infrastructure cluster. The hosted cluster can provision storage on the infrastructure cluster only through the controlled KubeVirt CSI interface.
  • The hosted cluster does not have access to the KubeVirt CSI cluster controller. As a result, the hosted cluster cannot access arbitrary storage volumes on the infrastructure cluster that are not associated with the hosted cluster. The KubeVirt CSI cluster controller runs in a pod in the hosted control plane namespace.
  • Role-based access control (RBAC) of the KubeVirt CSI cluster controller limits the persistent volume claim (PVC) access to only the hosted control plane namespace. Therefore, KubeVirt CSI components cannot access storage from the other namespaces.
5.3.2.7. Configuring etcd storage

At cluster creation time, you can configure the storage class that is used to host etcd data by using the --etcd-storage-class argument.

Procedure

  • To configure a storage class for etcd, run the following command:

    $ hcp create cluster kubevirt \
      --name <hosted_cluster_name> \ 1
      --node-pool-replicas <worker_node_count> \ 2
      --pull-secret <path_to_pull_secret> \ 3
      --memory <memory> \ 4
      --cores <cpu> \ 5
      --etcd-storage-class=<etcd_storage_class_name> 6
    1
    Specify the name of your hosted cluster, for instance, example.
    2
    Specify the worker count, for example, 2.
    3
    Specify the path to your pull secret, for example, /user/name/pullsecret.
    4
    Specify a value for memory, for example, 8Gi.
    5
    Specify a value for CPU, for example, 2.
    6
    Specify the etcd storage class name, for example, lvm-storageclass. If you do not provide an --etcd-storage-class argument, the default storage class is used.

5.3.3. Attaching NVIDIA GPU devices by using the hcp CLI

You can attach one or more NVIDIA graphics processing unit (GPU) devices to node pools by using the hcp command-line interface (CLI) in a hosted cluster on OpenShift Virtualization.

Important

Attaching NVIDIA GPU devices to node pools is a Technology Preview feature only. Technology Preview features are not supported with Red Hat production service level agreements (SLAs) and might not be functionally complete. Red Hat does not recommend using them in production. These features provide early access to upcoming product features, enabling customers to test functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features, see Technology Preview Features Support Scope.

Prerequisites

Procedure

  • You can attach the GPU device to node pools during cluster creation by running the following command:

    $ hcp create cluster kubevirt \
      --name <hosted_cluster_name> \1
      --node-pool-replicas <worker_node_count> \2
      --pull-secret <path_to_pull_secret> \3
      --memory <memory> \4
      --cores <cpu> \5
      --host-device-name="<gpu_device_name>,count:<value>" 6
    1
    Specify the name of your hosted cluster, for instance, example.
    2
    Specify the worker count, for example, 3.
    3
    Specify the path to your pull secret, for example, /user/name/pullsecret.
    4
    Specify a value for memory, for example, 16Gi.
    5
    Specify a value for CPU, for example, 2.
    6
    Specify the GPU device name and the count, for example, --host-device-name="nvidia-a100,count:2". The --host-device-name argument takes the name of the GPU device from the infrastructure node and an optional count that represents the number of GPU devices you want to attach to each virtual machine (VM) in node pools. The default count is 1. For example, if you attach 2 GPU devices to 3 node pool replicas, all 3 VMs in the node pool are attached to the 2 GPU devices.
    Tip

    You can use the --host-device-name argument multiple times to attach multiple devices of different types.

5.3.4. Attaching NVIDIA GPU devices by using the NodePool resource

You can attach one or more NVIDIA graphics processing unit (GPU) devices to node pools by configuring the nodepool.spec.platform.kubevirt.hostDevices field in the NodePool resource.

Important

Attaching NVIDIA GPU devices to node pools is a Technology Preview feature only. Technology Preview features are not supported with Red Hat production service level agreements (SLAs) and might not be functionally complete. Red Hat does not recommend using them in production. These features provide early access to upcoming product features, enabling customers to test functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features, see Technology Preview Features Support Scope.

Procedure

  • Attach one or more GPU devices to node pools:

    • To attach a single GPU device, configure the NodePool resource by using the following example configuration:

      apiVersion: hypershift.openshift.io/v1beta1
      kind: NodePool
      metadata:
        name: <hosted_cluster_name> 1
        namespace: <hosted_cluster_namespace> 2
      spec:
        arch: amd64
        clusterName: <hosted_cluster_name>
        management:
          autoRepair: false
          upgradeType: Replace
        nodeDrainTimeout: 0s
        nodeVolumeDetachTimeout: 0s
        platform:
          kubevirt:
            attachDefaultNetwork: true
            compute:
              cores: <cpu> 3
              memory: <memory> 4
            hostDevices: 5
            - count: <count> 6
              deviceName: <gpu_device_name> 7
            networkInterfaceMultiqueue: Enable
            rootVolume:
              persistent:
                size: 32Gi
              type: Persistent
          type: KubeVirt
        replicas: <worker_node_count> 8
      1
      Specify the name of your hosted cluster, for instance, example.
      2
      Specify the name of the hosted cluster namespace, for example, clusters.
      3
      Specify a value for CPU, for example, 2.
      4
      Specify a value for memory, for example, 16Gi.
      5
      The hostDevices field defines a list of different types of GPU devices that you can attach to node pools.
      6
      Specify the number of GPU devices you want to attach to each virtual machine (VM) in node pools. For example, if you attach 2 GPU devices to 3 node pool replicas, all 3 VMs in the node pool are attached to the 2 GPU devices. The default count is 1.
      7
      Specify the GPU device name, for example,nvidia-a100.
      8
      Specify the worker count, for example, 3.
    • To attach multiple GPU devices, configure the NodePool resource by using the following example configuration:

      apiVersion: hypershift.openshift.io/v1beta1
      kind: NodePool
      metadata:
        name: <hosted_cluster_name>
        namespace: <hosted_cluster_namespace>
      spec:
        arch: amd64
        clusterName: <hosted_cluster_name>
        management:
          autoRepair: false
          upgradeType: Replace
        nodeDrainTimeout: 0s
        nodeVolumeDetachTimeout: 0s
        platform:
          kubevirt:
            attachDefaultNetwork: true
            compute:
              cores: <cpu>
              memory: <memory>
            hostDevices:
            - count: <count>
              deviceName: <gpu_device_name>
            - count: <count>
              deviceName: <gpu_device_name>
            - count: <count>
              deviceName: <gpu_device_name>
            - count: <count>
              deviceName: <gpu_device_name>
            networkInterfaceMultiqueue: Enable
            rootVolume:
              persistent:
                size: 32Gi
              type: Persistent
          type: KubeVirt
        replicas: <worker_node_count>

5.4. Managing hosted control planes on non-bare metal agent machines

After you deploy hosted control planes on non-bare metal agent machines, you can manage a hosted cluster by completing the following tasks.

5.4.1. Accessing the hosted cluster

You can access the hosted cluster by either getting the kubeconfig file and kubeadmin credential directly from resources, or by using the hcp command line interface to generate a kubeconfig file.

Prerequisites

To access the hosted cluster by getting the kubeconfig file and credentials directly from resources, you must be familiar with the access secrets for hosted clusters. The hosted cluster (hosting) namespace contains hosted cluster resources and the access secrets. The hosted control plane namespace is where the hosted control plane runs.

The secret name formats are as follows:

  • kubeconfig secret: <hosted_cluster_namespace>-<name>-admin-kubeconfig. For example, clusters-hypershift-demo-admin-kubeconfig.
  • kubeadmin password secret: <hosted_cluster_namespace>-<name>-kubeadmin-password. For example, clusters-hypershift-demo-kubeadmin-password.

The kubeconfig secret contains a Base64-encoded kubeconfig field, which you can decode and save into a file to use with the following command:

$ oc --kubeconfig <hosted_cluster_name>.kubeconfig get nodes

The kubeadmin password secret is also Base64-encoded. You can decode it and use the password to log in to the API server or console of the hosted cluster.

Procedure

  • To access the hosted cluster by using the hcp CLI to generate the kubeconfig file, take the following steps:

    1. Generate the kubeconfig file by entering the following command:

      $ hcp create kubeconfig --namespace <hosted_cluster_namespace> --name <hosted_cluster_name> > <hosted_cluster_name>.kubeconfig
    2. After you save the kubeconfig file, you can access the hosted cluster by entering the following example command:

      $ oc --kubeconfig <hosted_cluster_name>.kubeconfig get nodes

5.4.2. Scaling the NodePool object for a hosted cluster

You can scale up the NodePool object by adding nodes to your hosted cluster. When you scale a node pool, consider the following information:

  • When you scale a replica by the node pool, a machine is created. For every machine, the Cluster API provider finds and installs an Agent that meets the requirements that are specified in the node pool specification. You can monitor the installation of an Agent by checking its status and conditions.
  • When you scale down a node pool, Agents are unbound from the corresponding cluster. Before you can reuse the Agents, you must restart them by using the Discovery image.

Procedure

  1. Scale the NodePool object to two nodes:

    $ oc -n <hosted_cluster_namespace> scale nodepool <nodepool_name> --replicas 2

    The Cluster API agent provider randomly picks two agents that are then assigned to the hosted cluster. Those agents go through different states and finally join the hosted cluster as OpenShift Container Platform nodes. The agents pass through states in the following order:

    • binding
    • discovering
    • insufficient
    • installing
    • installing-in-progress
    • added-to-existing-cluster
  2. Enter the following command:

    $ oc -n <hosted_control_plane_namespace> get agent

    Example output

    NAME                                   CLUSTER         APPROVED   ROLE          STAGE
    4dac1ab2-7dd5-4894-a220-6a3473b67ee6   hypercluster1   true       auto-assign
    d9198891-39f4-4930-a679-65fb142b108b                   true       auto-assign
    da503cf1-a347-44f2-875c-4960ddb04091   hypercluster1   true       auto-assign

  3. Enter the following command:

    $ oc -n <hosted_control_plane_namespace> get agent -o jsonpath='{range .items[*]}BMH: {@.metadata.labels.agent-install\.openshift\.io/bmh} Agent: {@.metadata.name} State: {@.status.debugInfo.state}{"\n"}{end}'

    Example output

    BMH: ocp-worker-2 Agent: 4dac1ab2-7dd5-4894-a220-6a3473b67ee6 State: binding
    BMH: ocp-worker-0 Agent: d9198891-39f4-4930-a679-65fb142b108b State: known-unbound
    BMH: ocp-worker-1 Agent: da503cf1-a347-44f2-875c-4960ddb04091 State: insufficient

  4. Obtain the kubeconfig for your new hosted cluster by entering the extract command:

    $ oc extract -n <hosted_cluster_namespace> secret/<hosted_cluster_name>-admin-kubeconfig --to=- > kubeconfig-<hosted_cluster_name>
  5. After the agents reach the added-to-existing-cluster state, verify that you can see the OpenShift Container Platform nodes in the hosted cluster by entering the following command:

    $ oc --kubeconfig kubeconfig-<hosted_cluster_name> get nodes

    Example output

    NAME           STATUS   ROLES    AGE     VERSION
    ocp-worker-1   Ready    worker   5m41s   v1.24.0+3882f8f
    ocp-worker-2   Ready    worker   6m3s    v1.24.0+3882f8f

    Cluster Operators start to reconcile by adding workloads to the nodes.

  6. Enter the following command to verify that two machines were created when you scaled up the NodePool object:

    $ oc -n <hosted_control_plane_namespace> get machines

    Example output

    NAME                            CLUSTER               NODENAME       PROVIDERID                                     PHASE     AGE   VERSION
    hypercluster1-c96b6f675-m5vch   hypercluster1-b2qhl   ocp-worker-1   agent://da503cf1-a347-44f2-875c-4960ddb04091   Running   15m   4.x.z
    hypercluster1-c96b6f675-tl42p   hypercluster1-b2qhl   ocp-worker-2   agent://4dac1ab2-7dd5-4894-a220-6a3473b67ee6   Running   15m   4.x.z

    The clusterversion reconcile process eventually reaches a point where only Ingress and Console cluster operators are missing.

  7. Enter the following command:

    $ oc --kubeconfig kubeconfig-<hosted_cluster_name> get clusterversion,co

    Example output

    NAME                                         VERSION   AVAILABLE   PROGRESSING   SINCE   STATUS
    clusterversion.config.openshift.io/version             False       True          40m     Unable to apply 4.x.z: the cluster operator console has not yet successfully rolled out
    
    NAME                                                                             VERSION   AVAILABLE   PROGRESSING   DEGRADED   SINCE   MESSAGE
    clusteroperator.config.openshift.io/console                                      4.12z     False       False         False      11m     RouteHealthAvailable: failed to GET route (https://console-openshift-console.apps.hypercluster1.domain.com): Get "https://console-openshift-console.apps.hypercluster1.domain.com": dial tcp 10.19.3.29:443: connect: connection refused
    clusteroperator.config.openshift.io/csi-snapshot-controller                      4.12z     True        False         False      10m
    clusteroperator.config.openshift.io/dns                                          4.12z     True        False         False      9m16s

5.4.2.1. Adding node pools

You can create node pools for a hosted cluster by specifying a name, number of replicas, and any additional information, such as an agent label selector.

Procedure

  1. To create a node pool, enter the following information:

    $ hcp create nodepool agent \
      --cluster-name <hosted_cluster_name> \1
      --name <nodepool_name> \2
      --node-count <worker_node_count> \3
      --agentLabelSelector size=medium 4
    1
    Replace <hosted_cluster_name> with your hosted cluster name.
    2
    Replace <nodepool_name> with the name of your node pool, for example, <hosted_cluster_name>-extra-cpu.
    3
    Replace <worker_node_count> with the worker node count, for example, 2.
    4
    The --agentLabelSelector flag is optional. The node pool uses agents with the size=medium label.
  2. Check the status of the node pool by listing nodepool resources in the clusters namespace:

    $ oc get nodepools --namespace clusters
  3. Extract the admin-kubeconfig secret by entering the following command:

    $ oc extract -n <hosted_control_plane_namespace> secret/admin-kubeconfig --to=./hostedcluster-secrets --confirm

    Example output

    hostedcluster-secrets/kubeconfig

  4. After some time, you can check the status of the node pool by entering the following command:

    $ oc --kubeconfig ./hostedcluster-secrets get nodes

Verification

  • Verify that the number of available node pools match the number of expected node pools by entering this command:

    $ oc get nodepools --namespace clusters
5.4.2.2. Enabling node auto-scaling for the hosted cluster

When you need more capacity in your hosted cluster and spare agents are available, you can enable auto-scaling to install new worker nodes.

Procedure

  1. To enable auto-scaling, enter the following command:

    $ oc -n <hosted_cluster_namespace> patch nodepool <hosted_cluster_name> --type=json -p '[{"op": "remove", "path": "/spec/replicas"},{"op":"add", "path": "/spec/autoScaling", "value": { "max": 5, "min": 2 }}]'
    Note

    In the example, the minimum number of nodes is 2, and the maximum is 5. The maximum number of nodes that you can add might be bound by your platform. For example, if you use the Agent platform, the maximum number of nodes is bound by the number of available agents.

  2. Create a workload that requires a new node.

    1. Create a YAML file that contains the workload configuration, by using the following example:

      apiVersion: apps/v1
      kind: Deployment
      metadata:
        creationTimestamp: null
        labels:
          app: reversewords
        name: reversewords
        namespace: default
      spec:
        replicas: 40
        selector:
          matchLabels:
            app: reversewords
        strategy: {}
        template:
          metadata:
            creationTimestamp: null
            labels:
              app: reversewords
          spec:
            containers:
            - image: quay.io/mavazque/reversewords:latest
              name: reversewords
              resources:
                requests:
                  memory: 2Gi
      status: {}
    2. Save the file as workload-config.yaml.
    3. Apply the YAML by entering the following command:

      $ oc apply -f workload-config.yaml
  3. Extract the admin-kubeconfig secret by entering the following command:

    $ oc extract -n <hosted_cluster_namespace> secret/<hosted_cluster_name>-admin-kubeconfig --to=./hostedcluster-secrets --confirm

    Example output

    hostedcluster-secrets/kubeconfig

  4. You can check if new nodes are in the Ready status by entering the following command:

    $ oc --kubeconfig ./hostedcluster-secrets get nodes
  5. To remove the node, delete the workload by entering the following command:

    $ oc --kubeconfig ./hostedcluster-secrets -n <namespace> delete deployment <deployment_name>
  6. Wait for several minutes to pass without requiring the additional capacity. On the Agent platform, the agent is decommissioned and can be reused. You can confirm that the node was removed by entering the following command:

    $ oc --kubeconfig ./hostedcluster-secrets get nodes
Note

For IBM Z agents, compute nodes are detached from the cluster only for IBM Z with KVM agents. For z/VM and LPAR, you must delete the compute nodes manually.

Agents can be reused only for IBM Z with KVM. For z/VM and LPAR, re-create the agents to use them as compute nodes.

5.4.2.3. Disabling node auto-scaling for the hosted cluster

To disable node auto-scaling, complete the following procedure.

Procedure

  • Enter the following command to disable node auto-scaling for the hosted cluster:

    $ oc -n <hosted_cluster_namespace> patch nodepool <hosted_cluster_name> --type=json -p '[\{"op":"remove", "path": "/spec/autoScaling"}, \{"op": "add", "path": "/spec/replicas", "value": <specify_value_to_scale_replicas>]'

    The command removes "spec.autoScaling" from the YAML file, adds "spec.replicas", and sets "spec.replicas" to the integer value that you specify.

5.4.3. Handling ingress in a hosted cluster on bare metal

Every OpenShift Container Platform cluster has a default application Ingress Controller that typically has an external DNS record associated with it. For example, if you create a hosted cluster named example with the base domain krnl.es, you can expect the wildcard domain *.apps.example.krnl.es to be routable.

Procedure

To set up a load balancer and wildcard DNS record for the *.apps domain, perform the following actions on your guest cluster:

  1. Deploy MetalLB by creating a YAML file that contains the configuration for the MetalLB Operator:

    apiVersion: v1
    kind: Namespace
    metadata:
      name: metallb
      labels:
        openshift.io/cluster-monitoring: "true"
      annotations:
        workload.openshift.io/allowed: management
    ---
    apiVersion: operators.coreos.com/v1
    kind: OperatorGroup
    metadata:
      name: metallb-operator-operatorgroup
      namespace: metallb
    ---
    apiVersion: operators.coreos.com/v1alpha1
    kind: Subscription
    metadata:
      name: metallb-operator
      namespace: metallb
    spec:
      channel: "stable"
      name: metallb-operator
      source: redhat-operators
      sourceNamespace: openshift-marketplace
  2. Save the file as metallb-operator-config.yaml.
  3. Enter the following command to apply the configuration:

    $ oc apply -f metallb-operator-config.yaml
  4. After the Operator is running, create the MetalLB instance:

    1. Create a YAML file that contains the configuration for the MetalLB instance:

      apiVersion: metallb.io/v1beta1
      kind: MetalLB
      metadata:
        name: metallb
        namespace: metallb
    2. Save the file as metallb-instance-config.yaml.
    3. Create the MetalLB instance by entering this command:

      $ oc apply -f metallb-instance-config.yaml
  5. Create an IPAddressPool resource with a single IP address. This IP address must be on the same subnet as the network that the cluster nodes use.

    1. Create a file, such as ipaddresspool.yaml, with content like the following example:

      apiVersion: metallb.io/v1beta1
      kind: IPAddressPool
      metadata:
        namespace: metallb
        name: <ip_address_pool_name> 1
      spec:
        addresses:
          - <ingress_ip>-<ingress_ip> 2
        autoAssign: false
      1
      Specify the IPAddressPool resource name.
      2
      Specify the IP address for your environment. For example, 192.168.122.23.
    2. Apply the configuration for the IP address pool by entering the following command:

      $ oc apply -f ipaddresspool.yaml
  6. Create a L2 advertisement.

    1. Create a file, such as l2advertisement.yaml, with content like the following example:

      apiVersion: metallb.io/v1beta1
      kind: L2Advertisement
      metadata:
        name: <l2_advertisement_name> 1
        namespace: metallb
      spec:
        ipAddressPools:
         - <ip_address_pool_name> 2
      1
      Specify the L2Advertisement resource name.
      2
      Specify the IPAddressPool resource name.
    2. Apply the configuration by entering the following command:

      $ oc apply -f l2advertisement.yaml
  7. After creating a service of the LoadBalancer type, MetalLB adds an external IP address for the service.

    1. Configure a new load balancer service that routes ingress traffic to the ingress deployment by creating a YAML file named metallb-loadbalancer-service.yaml:

      kind: Service
      apiVersion: v1
      metadata:
        annotations:
          metallb.universe.tf/address-pool: ingress-public-ip
        name: metallb-ingress
        namespace: openshift-ingress
      spec:
        ports:
          - name: http
            protocol: TCP
            port: 80
            targetPort: 80
          - name: https
            protocol: TCP
            port: 443
            targetPort: 443
        selector:
          ingresscontroller.operator.openshift.io/deployment-ingresscontroller: default
        type: LoadBalancer
    2. Save the metallb-loadbalancer-service.yaml file.
    3. Enter the following command to apply the YAML configuration:

      $ oc apply -f metallb-loadbalancer-service.yaml
    4. Enter the following command to reach the OpenShift Container Platform console:

      $ curl -kI https://console-openshift-console.apps.example.krnl.es

      Example output

      HTTP/1.1 200 OK

    5. Check the clusterversion and clusteroperator values to verify that everything is running. Enter the following command:

      $ oc --kubeconfig <hosted_cluster_name>.kubeconfig get clusterversion,co

      Example output

      NAME                                         VERSION   AVAILABLE   PROGRESSING   SINCE   STATUS
      clusterversion.config.openshift.io/version   4.x.y      True        False        3m32s   Cluster version is 4.x.y
      
      NAME                                                                             VERSION   AVAILABLE   PROGRESSING   DEGRADED   SINCE   MESSAGE
      clusteroperator.config.openshift.io/console                                      4.x.y     True        False         False      3m50s
      clusteroperator.config.openshift.io/ingress                                      4.x.y     True        False         False      53m

      Replace <4.x.y> with the supported OpenShift Container Platform version that you want to use, for example, 4.17.0-multi.

5.4.4. Enabling machine health checks on bare metal

You can enable machine health checks on bare metal to repair and replace unhealthy managed cluster nodes automatically. You must have additional agent machines that are ready to install in the managed cluster.

Consider the following limitations before enabling machine health checks:

  • You cannot modify the MachineHealthCheck object.
  • Machine health checks replace nodes only when at least two nodes stay in the False or Unknown status for more than 8 minutes.

After you enable machine health checks for the managed cluster nodes, the MachineHealthCheck object is created in your hosted cluster.

Procedure

To enable machine health checks in your hosted cluster, modify the NodePool resource. Complete the following steps:

  1. Verify that the spec.nodeDrainTimeout value in your NodePool resource is greater than 0s. Replace <hosted_cluster_namespace> with the name of your hosted cluster namespace and <nodepool_name> with the node pool name. Run the following command:

    $ oc get nodepool -n <hosted_cluster_namespace> <nodepool_name> -o yaml | grep nodeDrainTimeout

    Example output

    nodeDrainTimeout: 30s

  2. If the spec.nodeDrainTimeout value is not greater than 0s, modify the value by running the following command:

    $ oc patch nodepool -n <hosted_cluster_namespace> <nodepool_name> -p '{"spec":{"nodeDrainTimeout": "30m"}}' --type=merge
  3. Enable machine health checks by setting the spec.management.autoRepair field to true in the NodePool resource. Run the following command:

    $ oc patch nodepool -n <hosted_cluster_namespace> <nodepool_name> -p '{"spec": {"management": {"autoRepair":true}}}' --type=merge
  4. Verify that the NodePool resource is updated with the autoRepair: true value by running the following command:

    $ oc get nodepool -n <hosted_cluster_namespace> <nodepool_name> -o yaml | grep autoRepair

5.4.5. Disabling machine health checks on bare metal

To disable machine health checks for the managed cluster nodes, modify the NodePool resource.

Procedure

  1. Disable machine health checks by setting the spec.management.autoRepair field to false in the NodePool resource. Run the following command:

    $ oc patch nodepool -n <hosted_cluster_namespace> <nodepool_name> -p '{"spec": {"management": {"autoRepair":false}}}' --type=merge
  2. Verify that the NodePool resource is updated with the autoRepair: false value by running the following command:

    $ oc get nodepool -n <hosted_cluster_namespace> <nodepool_name> -o yaml | grep autoRepair

Additional resources

5.5. Managing hosted control planes on IBM Power

After you deploy hosted control planes on IBM Power, you can manage a hosted cluster by completing the following tasks.

5.5.1. Creating an InfraEnv resource for hosted control planes on IBM Power

An InfraEnv is a environment where hosts that are starting the live ISO can join as agents. In this case, the agents are created in the same namespace as your hosted control plane.

You can create an InfraEnv resource for hosted control planes on 64-bit x86 bare metal for IBM Power compute nodes.

Procedure

  1. Create a YAML file to configure an InfraEnv resource. See the following example:

    apiVersion: agent-install.openshift.io/v1beta1
    kind: InfraEnv
    metadata:
      name: <hosted_cluster_name> \1
      namespace: <hosted_control_plane_namespace> \2
    spec:
      cpuArchitecture: ppc64le
      pullSecretRef:
        name: pull-secret
      sshAuthorizedKey: <path_to_ssh_public_key> 3
    1
    Replace <hosted_cluster_name> with the name of your hosted cluster.
    2
    Replace <hosted_control_plane_namespace> with the name of the hosted control plane namespace, for example, clusters-hosted.
    3
    Replace <path_to_ssh_public_key> with the path to your SSH public key. The default file path is ~/.ssh/id_rsa.pub.
  2. Save the file as infraenv-config.yaml.
  3. Apply the configuration by entering the following command:

    $ oc apply -f infraenv-config.yaml
  4. To fetch the URL to download the live ISO, which allows IBM Power machines to join as agents, enter the following command:

    $ oc -n <hosted_control_plane_namespace> get InfraEnv <hosted_cluster_name> -o json

5.5.2. Adding IBM Power agents to the InfraEnv resource

You can add agents by manually configuring the machine to start with the live ISO.

Procedure

  1. Download the live ISO and use it to start a bare metal or a virtual machine (VM) host. You can find the URL for the live ISO in the status.isoDownloadURL field, in the InfraEnv resource. At startup, the host communicates with the Assisted Service and registers as an agent in the same namespace as the InfraEnv resource.
  2. To list the agents and some of their properties, enter the following command:

    $ oc -n <hosted_control_plane_namespace> get agents

    Example output

    NAME                                   CLUSTER   APPROVED   ROLE          STAGE
    86f7ac75-4fc4-4b36-8130-40fa12602218                        auto-assign
    e57a637f-745b-496e-971d-1abbf03341ba                        auto-assign

  3. After each agent is created, you can optionally set the installation_disk_id and hostname for an agent:

    1. To set the installation_disk_id field for an agent, enter the following command:

      $ oc -n <hosted_control_plane_namespace> patch agent <agent_name> -p '{"spec":{"installation_disk_id":"<installation_disk_id>","approved":true}}' --type merge
    2. To set the hostname field for an agent, enter the following command:

      $ oc -n <hosted_control_plane_namespace> patch agent <agent_name> -p '{"spec":{"hostname":"<hostname>","approved":true}}' --type merge

Verification

  • To verify that the agents are approved for use, enter the following command:

    $ oc -n <hosted_control_plane_namespace> get agents

    Example output

    NAME                                   CLUSTER   APPROVED   ROLE          STAGE
    86f7ac75-4fc4-4b36-8130-40fa12602218             true       auto-assign
    e57a637f-745b-496e-971d-1abbf03341ba             true       auto-assign

5.5.3. Scaling the NodePool object for a hosted cluster on IBM Power

The NodePool object is created when you create a hosted cluster. By scaling the NodePool object, you can add more compute nodes to hosted control planes.

Procedure

  1. Run the following command to scale the NodePool object to two nodes:

    $ oc -n <hosted_cluster_namespace> scale nodepool <nodepool_name> --replicas 2

    The Cluster API agent provider randomly picks two agents that are then assigned to the hosted cluster. Those agents go through different states and finally join the hosted cluster as OpenShift Container Platform nodes. The agents pass through the transition phases in the following order:

    • binding
    • discovering
    • insufficient
    • installing
    • installing-in-progress
    • added-to-existing-cluster
  2. Run the following command to see the status of a specific scaled agent:

    $ oc -n <hosted_control_plane_namespace> get agent -o jsonpath='{range .items[*]}BMH: {@.metadata.labels.agent-install\.openshift\.io/bmh} Agent: {@.metadata.name} State: {@.status.debugInfo.state}{"\n"}{end}'

    Example output

    BMH: Agent: 50c23cda-cedc-9bbd-bcf1-9b3a5c75804d State: known-unbound
    BMH: Agent: 5e498cd3-542c-e54f-0c58-ed43e28b568a State: insufficient

  3. Run the following command to see the transition phases:

    $ oc -n <hosted_control_plane_namespace> get agent

    Example output

    NAME                                   CLUSTER            APPROVED       ROLE          STAGE
    50c23cda-cedc-9bbd-bcf1-9b3a5c75804d   hosted-forwarder   true           auto-assign
    5e498cd3-542c-e54f-0c58-ed43e28b568a                      true           auto-assign
    da503cf1-a347-44f2-875c-4960ddb04091   hosted-forwarder   true           auto-assign

  4. Run the following command to generate the kubeconfig file to access the hosted cluster:

    $ hcp create kubeconfig --namespace <hosted_cluster_namespace> --name <hosted_cluster_name> > <hosted_cluster_name>.kubeconfig
  5. After the agents reach the added-to-existing-cluster state, verify that you can see the OpenShift Container Platform nodes by entering the following command:

    $ oc --kubeconfig <hosted_cluster_name>.kubeconfig get nodes

    Example output

    NAME                             STATUS   ROLES    AGE      VERSION
    worker-zvm-0.hostedn.example.com Ready    worker   5m41s    v1.24.0+3882f8f
    worker-zvm-1.hostedn.example.com Ready    worker   6m3s     v1.24.0+3882f8f

  6. Enter the following command to verify that two machines were created when you scaled up the NodePool object:

    $ oc -n <hosted_control_plane_namespace> get machine.cluster.x-k8s.io

    Example output

    NAME                                CLUSTER                  NODENAME                           PROVIDERID                                     PHASE     AGE   VERSION
    hosted-forwarder-79558597ff-5tbqp   hosted-forwarder-crqq5   worker-zvm-0.hostedn.example.com   agent://50c23cda-cedc-9bbd-bcf1-9b3a5c75804d   Running   41h   4.15.0
    hosted-forwarder-79558597ff-lfjfk   hosted-forwarder-crqq5   worker-zvm-1.hostedn.example.com   agent://5e498cd3-542c-e54f-0c58-ed43e28b568a   Running   41h   4.15.0

  7. Run the following command to check the cluster version:

    $ oc --kubeconfig <hosted_cluster_name>.kubeconfig get clusterversion

    Example output

    NAME                                         VERSION       AVAILABLE   PROGRESSING   SINCE   STATUS
    clusterversion.config.openshift.io/version   4.15.0        True        False         40h     Cluster version is 4.15.0

  8. Run the following command to check the Cluster Operator status:

    $ oc --kubeconfig <hosted_cluster_name>.kubeconfig get clusteroperators

    For each component of your cluster, the output shows the following Cluster Operator statuses:

    • NAME
    • VERSION
    • AVAILABLE
    • PROGRESSING
    • DEGRADED
    • SINCE
    • MESSAGE

Chapter 6. Deploying hosted control planes in a disconnected environment

6.1. Introduction to hosted control planes in a disconnected environment

In the context of hosted control planes, a disconnected environment is an OpenShift Container Platform deployment that is not connected to the internet and that uses hosted control planes as a base. You can deploy hosted control planes in a disconnected environment on bare metal or OpenShift Virtualization.

Hosted control planes in disconnected environments function differently than in standalone OpenShift Container Platform:

  • The control plane is in the management cluster. The control plane is where the pods of the hosted control plane are run and managed by the Control Plane Operator.
  • The data plane is in the workers of the hosted cluster. The data plane is where the workloads and other pods run, all managed by the HostedClusterConfig Operator.

Depending on where the pods are running, they are affected by the ImageDigestMirrorSet (IDMS) or ImageContentSourcePolicy (ICSP) that is created in the management cluster or by the ImageContentSource that is set in the spec field of the manifest for the hosted cluster. The spec field is translated into an IDMS object on the hosted cluster.

You can deploy hosted control planes in a disconnected environment on IPv4, IPv6, and dual-stack networks. IPv4 is one of the simplest network configurations to deploy hosted control planes in a disconnected environment. IPv4 ranges require fewer external components than IPv6 or dual-stack setups. For hosted control planes on OpenShift Virtualization in a disconnected environment, use either an IPv4 or a dual-stack network.

Important

Hosted control planes in a disconnected environment on a dual-stack network is a Technology Preview feature only. Technology Preview features are not supported with Red Hat production service level agreements (SLAs) and might not be functionally complete. Red Hat does not recommend using them in production. These features provide early access to upcoming product features, enabling customers to test functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features, see Technology Preview Features Support Scope.

6.2. Deploying hosted control planes on OpenShift Virtualization in a disconnected environment

When you deploy hosted control planes in a disconnected environment, some of the steps differ depending on the platform you use. The following procedures are specific to deployments on OpenShift Virtualization.

6.2.1. Prerequisites

  • You have a disconnected OpenShift Container Platform environment serving as your management cluster.
  • You have an internal registry to mirror images on. For more information, see About disconnected installation mirroring.

6.2.2. Configuring image mirroring for hosted control planes in a disconnected environment

Image mirroring is the process of fetching images from external registries, such as registry.redhat.com or quay.io, and storing them in your private registry.

In the following procedures, the oc-mirror tool is used, which is a binary that uses the ImageSetConfiguration object. In the file, you can specify the following information:

  • The OpenShift Container Platform versions to mirror. The versions are in quay.io.
  • The additional Operators to mirror. Select packages individually.
  • The extra images that you want to add to the repository.

Prerequisites

Ensure that the registry server is running before you start the mirroring process.

Procedure

To configure image mirroring, complete the following steps:

  1. Ensure that your ${HOME}/.docker/config.json file is updated with the registries that you are going to mirror from and with the private registry that you plan to push the images to.
  2. By using the following example, create an ImageSetConfiguration object to use for mirroring. Replace values as needed to match your environment:

    apiVersion: mirror.openshift.io/v1alpha2
    kind: ImageSetConfiguration
    storageConfig:
      registry:
        imageURL: registry.<dns.base.domain.name>:5000/openshift/release/metadata:latest 1
    mirror:
      platform:
        channels:
        - name: candidate-4.17
          minVersion: 4.x.y-build  2
          maxVersion: 4.x.y-build 3
          type: ocp
        kubeVirtContainer: true 4
        graph: true
      additionalImages:
      - name: quay.io/karmab/origin-keepalived-ipfailover:latest
      - name: quay.io/karmab/kubectl:latest
      - name: quay.io/karmab/haproxy:latest
      - name: quay.io/karmab/mdns-publisher:latest
      - name: quay.io/karmab/origin-coredns:latest
      - name: quay.io/karmab/curl:latest
      - name: quay.io/karmab/kcli:latest
      - name: quay.io/user-name/trbsht:latest
      - name: quay.io/user-name/hypershift:BMSelfManage-v4.17
      - name: registry.redhat.io/openshift4/ose-kube-rbac-proxy:v4.10
      operators:
      - catalog: registry.redhat.io/redhat/redhat-operator-index:v4.17
        packages:
        - name: lvms-operator
        - name: local-storage-operator
        - name: odf-csi-addons-operator
        - name: odf-operator
        - name: mcg-operator
        - name: ocs-operator
        - name: metallb-operator
        - name: kubevirt-hyperconverged 5
    1
    Replace <dns.base.domain.name> with the DNS base domain name.
    2 3
    Replace 4.x.y-build with the supported OpenShift Container Platform version you want to use.
    4
    Set this optional flag to true if you want to also mirror the container disk image for the Red Hat Enterprise Linux CoreOS (RHCOS) boot image for the KubeVirt provider. This flag is available with oc-mirror v2 only.
    5
    For deployments that use the KubeVirt provider, include this line.
  3. Start the mirroring process by entering the following command:

    $ oc-mirror --v2 --config imagesetconfig.yaml docker://${REGISTRY}

    After the mirroring process is finished, you have a new folder named oc-mirror-workspace/results-XXXXXX/, which contains the IDMS and the catalog sources to apply on the hosted cluster.

  4. Mirror the nightly or CI versions of OpenShift Container Platform by configuring the imagesetconfig.yaml file as follows:

    apiVersion: mirror.openshift.io/v2alpha1
    kind: ImageSetConfiguration
    mirror:
      platform:
        graph: true
        release: registry.ci.openshift.org/ocp/release:4.x.y-build 1
        kubeVirtContainer: true 2
    # ...
    1
    Replace 4.x.y-build with the supported OpenShift Container Platform version you want to use.
    2
    Set this optional flag to true if you want to also mirror the container disk image for the Red Hat Enterprise Linux CoreOS (RHCOS) boot image for the KubeVirt provider. This flag is available with oc-mirror v2 only.
  5. Apply the changes to the file by entering the following command:

    $ oc-mirror --v2 --config imagesetconfig.yaml docker://${REGISTRY}
  6. Mirror the latest multicluster engine Operator images by following the steps in Install on disconnected networks.

6.2.3. Applying objects in the management cluster

After the mirroring process is complete, you need to apply two objects in the management cluster:

  • ImageContentSourcePolicy (ICSP) or ImageDigestMirrorSet (IDMS)
  • Catalog sources

When you use the oc-mirror tool, the output artifacts are in a folder named oc-mirror-workspace/results-XXXXXX/.

The ICSP or IDMS initiates a MachineConfig change that does not restart your nodes but restarts the kubelet on each of them. After the nodes are marked as READY, you need to apply the newly generated catalog sources.

The catalog sources initiate actions in the openshift-marketplace Operator, such as downloading the catalog image and processing it to retrieve all the PackageManifests that are included in that image.

Procedure

  1. To check the new sources, run the following command by using the new CatalogSource as a source:

    $ oc get packagemanifest
  2. To apply the artifacts, complete the following steps:

    1. Create the ICSP or IDMS artifacts by entering the following command:

      $ oc apply -f oc-mirror-workspace/results-XXXXXX/imageContentSourcePolicy.yaml
    2. Wait for the nodes to become ready, and then enter the following command:

      $ oc apply -f catalogSource-XXXXXXXX-index.yaml
  3. Mirror the OLM catalogs and configure the hosted cluster to point to the mirror.

    When you use the management (default) OLMCatalogPlacement mode, the image stream that is used for OLM catalogs is not automatically amended with override information from the ICSP on the management cluster.

    1. If the OLM catalogs are properly mirrored to an internal registry by using the original name and tag, add the hypershift.openshift.io/olm-catalogs-is-registry-overrides annotation to the HostedCluster resource. The format is "sr1=dr1,sr2=dr2", where the source registry string is a key and the destination registry is a value.
    2. To bypass the OLM catalog image stream mechanism, use the following four annotations on the HostedCluster resource to directly specify the addresses of the four images to use for OLM Operator catalogs:

      • hypershift.openshift.io/certified-operators-catalog-image
      • hypershift.openshift.io/community-operators-catalog-image
      • hypershift.openshift.io/redhat-marketplace-catalog-image
      • hypershift.openshift.io/redhat-operators-catalog-image

In this case, the image stream is not created, and you must update the value of the annotations when the internal mirror is refreshed to pull in Operator updates.

Next steps

Deploy the multicluster engine Operator by completing the steps in Deploying multicluster engine Operator for a disconnected installation of hosted control planes.

6.2.4. Deploying multicluster engine Operator for a disconnected installation of hosted control planes

The multicluster engine for Kubernetes Operator plays a crucial role in deploying clusters across providers. If you do not have multicluster engine Operator installed, review the following documentation to understand the prerequisites and steps to install it:

6.2.5. Configuring TLS certificates for a disconnected installation of hosted control planes

To ensure proper function in a disconnected deployment, you need to configure the registry CA certificates in the management cluster and the worker nodes for the hosted cluster.

6.2.5.1. Adding the registry CA to the management cluster

To add the registry CA to the management cluster, complete the following steps.

Procedure

  1. Create a config map that resembles the following example:

    apiVersion: v1
    kind: ConfigMap
    metadata:
      name: <config_map_name> 1
      namespace: <config_map_namespace> 2
    data: 3
      <registry_name>..<port>: | 4
        -----BEGIN CERTIFICATE-----
        -----END CERTIFICATE-----
      <registry_name>..<port>: |
        -----BEGIN CERTIFICATE-----
        -----END CERTIFICATE-----
      <registry_name>..<port>: |
        -----BEGIN CERTIFICATE-----
        -----END CERTIFICATE-----
    1
    Specify the name of the config map.
    2
    Specify the namespace for the config map.
    3
    In the data field, specify the registry names and the registry certificate content. Replace <port> with the port where the registry server is running; for example, 5000.
    4
    Ensure that the data in the config map is defined by using | only instead of other methods, such as | -. If you use other methods, issues can occur when the pod reads the certificates.
  2. Patch the cluster-wide object, image.config.openshift.io to include the following specification:

    spec:
      additionalTrustedCA:
        - name: registry-config

    As a result of this patch, the control plane nodes can retrieve images from the private registry and the HyperShift Operator can extract the OpenShift Container Platform payload for hosted cluster deployments.

    The process to patch the object might take several minutes to be completed.

6.2.5.2. Adding the registry CA to the worker nodes for the hosted cluster

In order for the data plane workers in the hosted cluster to be able to retrieve images from the private registry, you need to add the registry CA to the worker nodes.

Procedure

  1. In the hc.spec.additionalTrustBundle file, add the following specification:

    spec:
      additionalTrustBundle:
        - name: user-ca-bundle 1
    1
    The user-ca-bundle entry is a config map that you create in the next step.
  2. In the same namespace where the HostedCluster object is created, create the user-ca-bundle config map. The config map resembles the following example:

    apiVersion: v1
    data:
      ca-bundle.crt: |
        // Registry1 CA
        -----BEGIN CERTIFICATE-----
        -----END CERTIFICATE-----
    
        // Registry2 CA
        -----BEGIN CERTIFICATE-----
        -----END CERTIFICATE-----
    
        // Registry3 CA
        -----BEGIN CERTIFICATE-----
        -----END CERTIFICATE-----
    
    kind: ConfigMap
    metadata:
      name: user-ca-bundle
      namespace: <hosted_cluster_namespace> 1
    1
    Specify the namespace where the HostedCluster object is created.

6.2.6. Creating a hosted cluster on OpenShift Virtualization

A hosted cluster is an OpenShift Container Platform cluster with its control plane and API endpoint hosted on a management cluster. The hosted cluster includes the control plane and its corresponding data plane.

6.2.6.1. Requirements to deploy hosted control planes on OpenShift Virtualization

As you prepare to deploy hosted control planes on OpenShift Virtualization, consider the following information:

  • Run the hub cluster and workers on the same platform for hosted control planes.
  • Each hosted cluster must have a cluster-wide unique name. A hosted cluster name cannot be the same as any existing managed cluster in order for multicluster engine Operator to manage it.
  • Do not use clusters as a hosted cluster name.
  • A hosted cluster cannot be created in the namespace of a multicluster engine Operator managed cluster.
  • When you configure storage for hosted control planes, consider the recommended etcd practices. To ensure that you meet the latency requirements, dedicate a fast storage device to all hosted control plane etcd instances that run on each control-plane node. You can use LVM storage to configure a local storage class for hosted etcd pods. For more information, see "Recommended etcd practices" and "Persistent storage using Logical Volume Manager storage".
6.2.6.2. Creating a hosted cluster with the KubeVirt platform by using the CLI

To create a hosted cluster, you can use the hosted control plane command line interface, hcp.

Procedure

  1. Enter the following command:

    $ hcp create cluster kubevirt \
      --name <hosted-cluster-name> \ 1
      --node-pool-replicas <worker-count> \ 2
      --pull-secret <path-to-pull-secret> \ 3
      --memory <value-for-memory> \ 4
      --cores <value-for-cpu> \ 5
      --etcd-storage-class=<etcd-storage-class> 6
    1
    Specify the name of your hosted cluster, for instance, example.
    2
    Specify the worker count, for example, 2.
    3
    Specify the path to your pull secret, for example, /user/name/pullsecret.
    4
    Specify a value for memory, for example, 6Gi.
    5
    Specify a value for CPU, for example, 2.
    6
    Specify the etcd storage class name, for example, lvm-storageclass.
    Note

    You can use the --release-image flag to set up the hosted cluster with a specific OpenShift Container Platform release.

    A default node pool is created for the cluster with two virtual machine worker replicas according to the --node-pool-replicas flag.

  2. After a few moments, verify that the hosted control plane pods are running by entering the following command:

    $ oc -n clusters-<hosted-cluster-name> get pods

    Example output

    NAME                                                  READY   STATUS    RESTARTS   AGE
    capi-provider-5cc7b74f47-n5gkr                        1/1     Running   0          3m
    catalog-operator-5f799567b7-fd6jw                     2/2     Running   0          69s
    certified-operators-catalog-784b9899f9-mrp6p          1/1     Running   0          66s
    cluster-api-6bbc867966-l4dwl                          1/1     Running   0          66s
    .
    .
    .
    redhat-operators-catalog-9d5fd4d44-z8qqk              1/1     Running   0          66s

    A hosted cluster that has worker nodes that are backed by KubeVirt virtual machines typically takes 10-15 minutes to be fully provisioned.

  3. To check the status of the hosted cluster, see the corresponding HostedCluster resource by entering the following command:

    $ oc get --namespace clusters hostedclusters

    See the following example output, which illustrates a fully provisioned HostedCluster object:

    NAMESPACE   NAME      VERSION   KUBECONFIG                 PROGRESS    AVAILABLE   PROGRESSING   MESSAGE
    clusters    example   4.x.0     example-admin-kubeconfig   Completed   True        False         The hosted control plane is available

    Replace 4.x.0 with the supported OpenShift Container Platform version that you want to use.

6.2.6.3. Configuring the default ingress and DNS for hosted control planes on OpenShift Virtualization

Every OpenShift Container Platform cluster includes a default application Ingress Controller, which must have an wildcard DNS record associated with it. By default, hosted clusters that are created by using the HyperShift KubeVirt provider automatically become a subdomain of the OpenShift Container Platform cluster that the KubeVirt virtual machines run on.

For example, your OpenShift Container Platform cluster might have the following default ingress DNS entry:

*.apps.mgmt-cluster.example.com

As a result, a KubeVirt hosted cluster that is named guest and that runs on that underlying OpenShift Container Platform cluster has the following default ingress:

*.apps.guest.apps.mgmt-cluster.example.com

Procedure

For the default ingress DNS to work properly, the cluster that hosts the KubeVirt virtual machines must allow wildcard DNS routes.

  • You can configure this behavior by entering the following command:

    $ oc patch ingresscontroller -n openshift-ingress-operator default --type=json -p '[{ "op": "add", "path": "/spec/routeAdmission", "value": {wildcardPolicy: "WildcardsAllowed"}}]'
Note

When you use the default hosted cluster ingress, connectivity is limited to HTTPS traffic over port 443. Plain HTTP traffic over port 80 is rejected. This limitation applies to only the default ingress behavior.

6.2.6.4. Customizing ingress and DNS behavior

If you do not want to use the default ingress and DNS behavior, you can configure a KubeVirt hosted cluster with a unique base domain at creation time. This option requires manual configuration steps during creation and involves three main steps: cluster creation, load balancer creation, and wildcard DNS configuration.

6.2.6.4.1. Deploying a hosted cluster that specifies the base domain

To create a hosted cluster that specifies a base domain, complete the following steps.

Procedure

  1. Enter the following command:

    $ hcp create cluster kubevirt \
      --name <hosted_cluster_name> \ 1
      --node-pool-replicas <worker_count> \ 2
      --pull-secret <path_to_pull_secret> \ 3
      --memory <value_for_memory> \ 4
      --cores <value_for_cpu> \ 5
      --base-domain <basedomain> 6
    1
    Specify the name of your hosted cluster.
    2
    Specify the worker count, for example, 2.
    3
    Specify the path to your pull secret, for example, /user/name/pullsecret.
    4
    Specify a value for memory, for example, 6Gi.
    5
    Specify a value for CPU, for example, 2.
    6
    Specify the base domain, for example, hypershift.lab.

    As a result, the hosted cluster has an ingress wildcard that is configured for the cluster name and the base domain, for example, .apps.example.hypershift.lab. The hosted cluster remains in Partial status because after you create a hosted cluster with unique base domain, you must configure the required DNS records and load balancer.

  2. View the status of your hosted cluster by entering the following command:

    $ oc get --namespace clusters hostedclusters

    Example output

    NAME            VERSION   KUBECONFIG                       PROGRESS   AVAILABLE   PROGRESSING   MESSAGE
    example                   example-admin-kubeconfig         Partial    True        False         The hosted control plane is available

  3. Access the cluster by entering the following commands:

    $ hcp create kubeconfig --name <hosted_cluster_name> > <hosted_cluster_name>-kubeconfig
    $ oc --kubeconfig <hosted_cluster_name>-kubeconfig get co

    Example output

    NAME                                       VERSION   AVAILABLE   PROGRESSING   DEGRADED   SINCE   MESSAGE
    console                                    4.x.0     False       False         False      30m     RouteHealthAvailable: failed to GET route (https://console-openshift-console.apps.example.hypershift.lab): Get "https://console-openshift-console.apps.example.hypershift.lab": dial tcp: lookup console-openshift-console.apps.example.hypershift.lab on 172.31.0.10:53: no such host
    ingress                                    4.x.0     True        False         True       28m     The "default" ingress controller reports Degraded=True: DegradedConditions: One or more other status conditions indicate a degraded state: CanaryChecksSucceeding=False (CanaryChecksRepetitiveFailures: Canary route checks for the default ingress controller are failing)

    Replace 4.x.0 with the supported OpenShift Container Platform version that you want to use.

Next steps

To fix the errors in the output, complete the steps in "Setting up the load balancer" and "Setting up a wildcard DNS".

Note

If your hosted cluster is on bare metal, you might need MetalLB to set up load balancer services. For more information, see "Configuring MetalLB".

6.2.6.4.2. Setting up the load balancer

Set up the load balancer service that routes ingress traffic to the KubeVirt VMs and assigns a wildcard DNS entry to the load balancer IP address.

Procedure

  1. A NodePort service that exposes the hosted cluster ingress already exists. You can export the node ports and create the load balancer service that targets those ports.

    1. Get the HTTP node port by entering the following command:

      $ oc --kubeconfig <hosted_cluster_name>-kubeconfig get services -n openshift-ingress router-nodeport-default -o jsonpath='{.spec.ports[?(@.name=="http")].nodePort}'

      Note the HTTP node port value to use in the next step.

    2. Get the HTTPS node port by entering the following command:

      $ oc --kubeconfig <hosted_cluster_name>-kubeconfig get services -n openshift-ingress router-nodeport-default -o jsonpath='{.spec.ports[?(@.name=="https")].nodePort}'

      Note the HTTPS node port value to use in the next step.

  2. Create the load balancer service by entering the following command:

    oc apply -f -
    apiVersion: v1
    kind: Service
    metadata:
      labels:
        app: <hosted_cluster_name>
      name: <hosted_cluster_name>-apps
      namespace: clusters-<hosted_cluster_name>
    spec:
      ports:
      - name: https-443
        port: 443
        protocol: TCP
        targetPort: <https_node_port> 1
      - name: http-80
        port: 80
        protocol: TCP
        targetPort: <http-node-port> 2
      selector:
        kubevirt.io: virt-launcher
      type: LoadBalancer
    1
    Specify the HTTPS node port value that you noted in the previous step.
    2
    Specify the HTTP node port value that you noted in the previous step.
6.2.6.4.3. Setting up a wildcard DNS

Set up a wildcard DNS record or CNAME that references the external IP of the load balancer service.

Procedure

  1. Get the external IP address by entering the following command:

    $ oc -n clusters-<hosted_cluster_name> get service <hosted-cluster-name>-apps -o jsonpath='{.status.loadBalancer.ingress[0].ip}'

    Example output

    192.168.20.30

  2. Configure a wildcard DNS entry that references the external IP address. View the following example DNS entry:

    *.apps.<hosted_cluster_name\>.<base_domain\>.

    The DNS entry must be able to route inside and outside of the cluster.

    DNS resolutions example

    dig +short test.apps.example.hypershift.lab
    
    192.168.20.30

  3. Check that hosted cluster status has moved from Partial to Completed by entering the following command:

    $ oc get --namespace clusters hostedclusters

    Example output

    NAME            VERSION   KUBECONFIG                       PROGRESS    AVAILABLE   PROGRESSING   MESSAGE
    example         4.x.0     example-admin-kubeconfig         Completed   True        False         The hosted control plane is available

    Replace 4.x.0 with the supported OpenShift Container Platform version that you want to use.

6.2.7. Finishing the deployment

You can monitor the deployment of a hosted cluster from two perspectives: the control plane and the data plane.

6.2.7.1. Monitoring the control plane

While the deployment proceeds, you can monitor the control plane by gathering information about the following artifacts:

  • The HyperShift Operator
  • The HostedControlPlane pod
  • The bare metal hosts
  • The agents
  • The InfraEnv resource
  • The HostedCluster and NodePool resources

Procedure

  • Enter the following commands to monitor the control plane:

    $ export KUBECONFIG=/root/.kcli/clusters/hub-ipv4/auth/kubeconfig
    $ watch "oc get pod -n hypershift;echo;echo;oc get pod -n clusters-hosted-ipv4;echo;echo;oc get bmh -A;echo;echo;oc get agent -A;echo;echo;oc get infraenv -A;echo;echo;oc get hostedcluster -A;echo;echo;oc get nodepool -A;echo;echo;"
6.2.7.2. Monitoring the data plane

While the deployment proceeds, you can monitor the data plane by gathering information about the following artifacts:

  • The cluster version
  • The nodes, specifically, about whether the nodes joined the cluster
  • The cluster Operators

Procedure

  • Enter the following commands:

    $ oc get secret -n clusters-hosted-ipv4 admin-kubeconfig -o jsonpath='{.data.kubeconfig}' |base64 -d > /root/hc_admin_kubeconfig.yaml
    $ export KUBECONFIG=/root/hc_admin_kubeconfig.yaml
    $ watch "oc get clusterversion,nodes,co"

6.3. Deploying hosted control planes on bare metal in a disconnected environment

When you provision hosted control planes on bare metal, you use the Agent platform. The Agent platform and multicluster engine for Kubernetes Operator work together to enable disconnected deployments. The Agent platform uses the central infrastructure management service to add worker nodes to a hosted cluster. For an introduction to the central infrastructure management service, see Enabling the central infrastructure management service.

6.3.1. Disconnected environment architecture for bare metal

The following diagram illustrates an example architecture of a disconnected environment:

Disconnected architecture diagram

  1. Configure infrastructure services, including the registry certificate deployment with TLS support, web server, and DNS, to ensure that the disconnected deployment works.
  2. Create a config map in the openshift-config namespace. In this example, the config map is named registry-config. The content of the config map is the Registry CA certificate. The data field of the config map must contain the following key/value:

    • Key: <registry_dns_domain_name>..<port>, for example, registry.hypershiftdomain.lab..5000:. Ensure that you place .. after the registry DNS domain name when you specify a port.
    • Value: The certificate content

      For more information about creating a config map, see Configuring TLS certificates for a disconnected installation of hosted control planes.

  3. Modify the images.config.openshift.io custom resource (CR) specification and adds a new field named additionalTrustedCA with a value of name: registry-config.
  4. Create a config map that contains two data fields. One field contains the registries.conf file in RAW format, and the other field contains the Registry CA and is named ca-bundle.crt. The config map belongs to the multicluster-engine namespace, and the config map name is referenced in other objects. For an example of a config map, see the following sample configuration:

    apiVersion: v1
    kind: ConfigMap
    metadata:
      name: custom-registries
      namespace: multicluster-engine
      labels:
        app: assisted-service
    data:
      ca-bundle.crt: |
        -----BEGIN CERTIFICATE-----
        # ...
        -----END CERTIFICATE-----
      registries.conf: |
        unqualified-search-registries = ["registry.access.redhat.com", "docker.io"]
    
        [[registry]]
        prefix = ""
        location = "registry.redhat.io/openshift4"
        mirror-by-digest-only = true
    
        [[registry.mirror]]
          location = "registry.ocp-edge-cluster-0.qe.lab.redhat.com:5000/openshift4"
    
        [[registry]]
        prefix = ""
        location = "registry.redhat.io/rhacm2"
        mirror-by-digest-only = true
    # ...
    # ...
  5. In the multicluster engine Operator namespace, you create the multiclusterengine CR, which enables both the Agent and hypershift-addon add-ons. The multicluster engine Operator namespace must contain the config maps to modify behavior in a disconnected deployment. The namespace also contains the multicluster-engine, assisted-service, and hypershift-addon-manager pods.
  6. Create the following objects that are necessary to deploy the hosted cluster:

    • Secrets: Secrets contain the pull secret, SSH key, and etcd encryption key.
    • Config map: The config map contains the CA certificate of the private registry.
    • HostedCluster: The HostedCluster resource defines the configuration of the cluster that the user intends to create.
    • NodePool: The NodePool resource identifies the node pool that references the machines to use for the data plane.
  7. After you create the hosted cluster objects, the HyperShift Operator establishes the HostedControlPlane namespace to accommodate control plane pods. The namespace also hosts components such as Agents, bare metal hosts (BMHs), and the InfraEnv resource. Later, you create the InfraEnv resource, and after ISO creation, you create the BMHs and their secrets that contain baseboard management controller (BMC) credentials.
  8. The Metal3 Operator in the openshift-machine-api namespace inspects the new BMHs. Then, the Metal3 Operator tries to connect to the BMCs to start them by using the configured LiveISO and RootFS values that are specified through the AgentServiceConfig CR in the multicluster engine Operator namespace.
  9. After the worker nodes of the HostedCluster resource are started, an Agent container is started. This agent establishes contact with the Assisted Service, which orchestrates the actions to complete the deployment. Initially, you need to scale the NodePool resource to the number of worker nodes for the HostedCluster resource. The Assisted Service manages the remaining tasks.
  10. At this point, you wait for the deployment process to be completed.

6.3.2. Requirements to deploy hosted control planes on bare metal in a disconnected environment

To configure hosted control planes in a disconnected environment, you must meet the following prerequisites:

  • CPU: The number of CPUs provided determines how many hosted clusters can run concurrently. In general, use 16 CPUs for each node for 3 nodes. For minimal development, you can use 12 CPUs for each node for 3 nodes.
  • Memory: The amount of RAM affects how many hosted clusters can be hosted. Use 48 GB of RAM for each node. For minimal development, 18 GB of RAM might be sufficient.
  • Storage: Use SSD storage for multicluster engine Operator.

    • Management cluster: 250 GB.
    • Registry: The storage needed depends on the number of releases, operators, and images that are hosted. An acceptable number might be 500 GB, preferably separated from the disk that hosts the hosted cluster.
    • Web server: The storage needed depends on the number of ISOs and images that are hosted. An acceptable number might be 500 GB.
  • Production: For a production environment, separate the management cluster, the registry, and the web server on different disks. This example illustrates a possible configuration for production:

    • Registry: 2 TB
    • Management cluster: 500 GB
    • Web server: 2 TB

6.3.3. Extracting the release image digest

You can extract the OpenShift Container Platform release image digest by using the tagged image.

Procedure

  • Obtain the image digest by running the following command:

    $ oc adm release info <tagged_openshift_release_image> | grep "Pull From"

    Replace <tagged_openshift_release_image> with the tagged image for the supported OpenShift Container Platform version, for example, quay.io/openshift-release-dev/ocp-release:4.14.0-x8_64.

    Example output

    Pull From: quay.io/openshift-release-dev/ocp-release@sha256:69d1292f64a2b67227c5592c1a7d499c7d00376e498634ff8e1946bc9ccdddfe

6.3.4. Configuring the hypervisor for a disconnected installation of hosted control planes

The following information applies to virtual machine environments only.

Procedure

  1. To deploy a virtual management cluster, access the required packages by entering the following command:

    $ sudo dnf install dnsmasq radvd vim golang podman bind-utils net-tools httpd-tools tree htop strace tmux -y
  2. Enable and start the Podman service by entering the following command:

    $ systemctl enable --now podman
  3. To use kcli to deploy the management cluster and other virtual components, install and configure the hypervisor by entering the following commands:

    $ sudo yum -y install libvirt libvirt-daemon-driver-qemu qemu-kvm
    $ sudo usermod -aG qemu,libvirt $(id -un)
    $ sudo newgrp libvirt
    $ sudo systemctl enable --now libvirtd
    $ sudo dnf -y copr enable karmab/kcli
    $ sudo dnf -y install kcli
    $ sudo kcli create pool -p /var/lib/libvirt/images default
    $ kcli create host kvm -H 127.0.0.1 local
    $ sudo setfacl -m u:$(id -un):rwx /var/lib/libvirt/images
    $ kcli create network  -c 192.168.122.0/24 default
  4. Enable the network manager dispatcher to ensure that virtual machines can resolve the required domains, routes, and registries. To enable the network manager dispatcher, in the /etc/NetworkManager/dispatcher.d/ directory, create a script named forcedns that contains the following content:

    #!/bin/bash
    
    export IP="192.168.126.1" 1
    export BASE_RESOLV_CONF="/run/NetworkManager/resolv.conf"
    
    if ! [[ `grep -q "$IP" /etc/resolv.conf` ]]; then
    export TMP_FILE=$(mktemp /etc/forcedns_resolv.conf.XXXXXX)
    cp $BASE_RESOLV_CONF $TMP_FILE
    chmod --reference=$BASE_RESOLV_CONF $TMP_FILE
    sed -i -e "s/dns.base.domain.name//" -e "s/search /& dns.base.domain.name /" -e "0,/nameserver/s/nameserver/& $IP\n&/" $TMP_FILE 2
    mv $TMP_FILE /etc/resolv.conf
    fi
    echo "ok"
    1
    Modify the IP variable to point to the IP address of the hypervisor interface that hosts the OpenShift Container Platform management cluster.
    2
    Replace dns.base.domain.name with the DNS base domain name.
  5. After you create the file, add permissions by entering the following command:

    $ chmod 755 /etc/NetworkManager/dispatcher.d/forcedns
  6. Run the script and verify that the output returns ok.
  7. Configure ksushy to simulate baseboard management controllers (BMCs) for the virtual machines. Enter the following commands:

    $ sudo dnf install python3-pyOpenSSL.noarch python3-cherrypy -y
    $ kcli create sushy-service --ssl --ipv6 --port 9000
    $ sudo systemctl daemon-reload
    $ systemctl enable --now ksushy
  8. Test whether the service is correctly functioning by entering the following command:

    $ systemctl status ksushy
  9. If you are working in a development environment, configure the hypervisor system to allow various types of connections through different virtual networks within the environment.

    Note

    If you are working in a production environment, you must establish proper rules for the firewalld service and configure SELinux policies to maintain a secure environment.

    • For SELinux, enter the following command:

      $ sed -i s/^SELINUX=.*$/SELINUX=permissive/ /etc/selinux/config; setenforce 0
    • For firewalld, enter the following command:

      $ systemctl disable --now firewalld
    • For libvirtd, enter the following commands:

      $ systemctl restart libvirtd
      $ systemctl enable --now libvirtd

6.3.5. DNS configurations on bare metal

The API Server for the hosted cluster is exposed as a NodePort service. A DNS entry must exist for api.<hosted_cluster_name>.<base_domain> that points to destination where the API Server can be reached.

The DNS entry can be as simple as a record that points to one of the nodes in the managed cluster that is running the hosted control plane. The entry can also point to a load balancer that is deployed to redirect incoming traffic to the ingress pods.

Example DNS configuration

api.example.krnl.es.    IN A 192.168.122.20
api.example.krnl.es.    IN A 192.168.122.21
api.example.krnl.es.    IN A 192.168.122.22
api-int.example.krnl.es.    IN A 192.168.122.20
api-int.example.krnl.es.    IN A 192.168.122.21
api-int.example.krnl.es.    IN A 192.168.122.22
`*`.apps.example.krnl.es. IN A 192.168.122.23

If you are configuring DNS for a disconnected environment on an IPv6 network, the configuration looks like the following example.

Example DNS configuration for an IPv6 network

api.example.krnl.es.    IN A 2620:52:0:1306::5
api.example.krnl.es.    IN A 2620:52:0:1306::6
api.example.krnl.es.    IN A 2620:52:0:1306::7
api-int.example.krnl.es.    IN A 2620:52:0:1306::5
api-int.example.krnl.es.    IN A 2620:52:0:1306::6
api-int.example.krnl.es.    IN A 2620:52:0:1306::7
`*`.apps.example.krnl.es. IN A 2620:52:0:1306::10

If you are configuring DNS for a disconnected environment on a dual stack network, be sure to include DNS entries for both IPv4 and IPv6.

Example DNS configuration for a dual stack network

host-record=api-int.hub-dual.dns.base.domain.name,192.168.126.10
host-record=api.hub-dual.dns.base.domain.name,192.168.126.10
address=/apps.hub-dual.dns.base.domain.name/192.168.126.11
dhcp-host=aa:aa:aa:aa:10:01,ocp-master-0,192.168.126.20
dhcp-host=aa:aa:aa:aa:10:02,ocp-master-1,192.168.126.21
dhcp-host=aa:aa:aa:aa:10:03,ocp-master-2,192.168.126.22
dhcp-host=aa:aa:aa:aa:10:06,ocp-installer,192.168.126.25
dhcp-host=aa:aa:aa:aa:10:07,ocp-bootstrap,192.168.126.26

host-record=api-int.hub-dual.dns.base.domain.name,2620:52:0:1306::2
host-record=api.hub-dual.dns.base.domain.name,2620:52:0:1306::2
address=/apps.hub-dual.dns.base.domain.name/2620:52:0:1306::3
dhcp-host=aa:aa:aa:aa:10:01,ocp-master-0,[2620:52:0:1306::5]
dhcp-host=aa:aa:aa:aa:10:02,ocp-master-1,[2620:52:0:1306::6]
dhcp-host=aa:aa:aa:aa:10:03,ocp-master-2,[2620:52:0:1306::7]
dhcp-host=aa:aa:aa:aa:10:06,ocp-installer,[2620:52:0:1306::8]
dhcp-host=aa:aa:aa:aa:10:07,ocp-bootstrap,[2620:52:0:1306::9]

6.3.6. Deploying a registry for hosted control planes in a disconnected environment

For development environments, deploy a small, self-hosted registry by using a Podman container. For production environments, deploy an enterprise-hosted registry, such as Red Hat Quay, Nexus, or Artifactory.

Procedure

To deploy a small registry by using Podman, complete the following steps:

  1. As a privileged user, access the ${HOME} directory and create the following script:

    #!/usr/bin/env bash
    
    set -euo pipefail
    
    PRIMARY_NIC=$(ls -1 /sys/class/net | grep -v podman | head -1)
    export PATH=/root/bin:$PATH
    export PULL_SECRET="/root/baremetal/hub/openshift_pull.json" 1
    
    if [[ ! -f $PULL_SECRET ]];then
      echo "Pull Secret not found, exiting..."
      exit 1
    fi
    
    dnf -y install podman httpd httpd-tools jq skopeo libseccomp-devel
    export IP=$(ip -o addr show $PRIMARY_NIC | head -1 | awk '{print $4}' | cut -d'/' -f1)
    REGISTRY_NAME=registry.$(hostname --long)
    REGISTRY_USER=dummy
    REGISTRY_PASSWORD=dummy
    KEY=$(echo -n $REGISTRY_USER:$REGISTRY_PASSWORD | base64)
    echo "{\"auths\": {\"$REGISTRY_NAME:5000\": {\"auth\": \"$KEY\", \"email\": \"sample-email@domain.ltd\"}}}" > /root/disconnected_pull.json
    mv ${PULL_SECRET} /root/openshift_pull.json.old
    jq ".auths += {\"$REGISTRY_NAME:5000\": {\"auth\": \"$KEY\",\"email\": \"sample-email@domain.ltd\"}}" < /root/openshift_pull.json.old > $PULL_SECRET
    mkdir -p /opt/registry/{auth,certs,data,conf}
    cat <<EOF > /opt/registry/conf/config.yml
    version: 0.1
    log:
      fields:
        service: registry
    storage:
      cache:
        blobdescriptor: inmemory
      filesystem:
        rootdirectory: /var/lib/registry
      delete:
        enabled: true
    http:
      addr: :5000
      headers:
        X-Content-Type-Options: [nosniff]
    health:
      storagedriver:
        enabled: true
        interval: 10s
        threshold: 3
    compatibility:
      schema1:
        enabled: true
    EOF
    openssl req -newkey rsa:4096 -nodes -sha256 -keyout /opt/registry/certs/domain.key -x509 -days 3650 -out /opt/registry/certs/domain.crt -subj "/C=US/ST=Madrid/L=San Bernardo/O=Karmalabs/OU=Guitar/CN=$REGISTRY_NAME" -addext "subjectAltName=DNS:$REGISTRY_NAME"
    cp /opt/registry/certs/domain.crt /etc/pki/ca-trust/source/anchors/
    update-ca-trust extract
    htpasswd -bBc /opt/registry/auth/htpasswd $REGISTRY_USER $REGISTRY_PASSWORD
    podman create --name registry --net host --security-opt label=disable --replace -v /opt/registry/data:/var/lib/registry:z -v /opt/registry/auth:/auth:z -v /opt/registry/conf/config.yml:/etc/docker/registry/config.yml -e "REGISTRY_AUTH=htpasswd" -e "REGISTRY_AUTH_HTPASSWD_REALM=Registry" -e "REGISTRY_HTTP_SECRET=ALongRandomSecretForRegistry" -e REGISTRY_AUTH_HTPASSWD_PATH=/auth/htpasswd -v /opt/registry/certs:/certs:z -e REGISTRY_HTTP_TLS_CERTIFICATE=/certs/domain.crt -e REGISTRY_HTTP_TLS_KEY=/certs/domain.key docker.io/library/registry:latest
    [ "$?" == "0" ] || !!
    systemctl enable --now registry
    1
    Replace the location of the PULL_SECRET with the appropriate location for your setup.
  2. Name the script file registry.sh and save it. When you run the script, it pulls in the following information:

    • The registry name, based on the hypervisor hostname
    • The necessary credentials and user access details
  3. Adjust permissions by adding the execution flag as follows:

    $ chmod u+x ${HOME}/registry.sh
  4. To run the script without any parameters, enter the following command:

    $ ${HOME}/registry.sh

    The script starts the server. The script uses a systemd service for management purposes.

  5. If you need to manage the script, you can use the following commands:

    $ systemctl status
    $ systemctl start
    $ systemctl stop

The root folder for the registry is in the /opt/registry directory and contains the following subdirectories:

  • certs contains the TLS certificates.
  • auth contains the credentials.
  • data contains the registry images.
  • conf contains the registry configuration.

6.3.7. Setting up a management cluster for hosted control planes in a disconnected environment

To set up an OpenShift Container Platform management cluster, you can use dev-scripts, or if you are based on virtual machines, you can use the kcli tool. The following instructions are specific to the kcli tool.

Procedure

  1. Ensure that the right networks are prepared for use in the hypervisor. The networks will host both the management and hosted clusters. Enter the following kcli command:

    $ kcli create network -c 192.168.126.0/24 -P dhcp=false -P dns=false -d 2620:52:0:1306::0/64 --domain dns.base.domain.name --nodhcp dual

    where:

    • -c specifies the CIDR for the network.
    • -P dhcp=false configures the network to disable the DHCP, which is handled by the dnsmasq that you configured.
    • -P dns=false configures the network to disable the DNS, which is also handled by the dnsmasq that you configured.
    • --domain sets the domain to search.
    • dns.base.domain.name is the DNS base domain name.
    • dual is the name of the network that you are creating.
  2. After the network is created, review the following output:

    [root@hypershiftbm ~]# kcli list network
    Listing Networks...
    +---------+--------+---------------------+-------+------------------+------+
    | Network |  Type  |         Cidr        |  Dhcp |      Domain      | Mode |
    +---------+--------+---------------------+-------+------------------+------+
    | default | routed |   192.168.122.0/24  |  True |     default      | nat  |
    | ipv4    | routed | 2620:52:0:1306::/64 | False | dns.base.domain.name | nat  |
    | ipv4    | routed |   192.168.125.0/24  | False | dns.base.domain.name | nat  |
    | ipv6    | routed | 2620:52:0:1305::/64 | False | dns.base.domain.name | nat  |
    +---------+--------+---------------------+-------+------------------+------+
    [root@hypershiftbm ~]# kcli info network ipv6
    Providing information about network ipv6...
    cidr: 2620:52:0:1306::/64
    dhcp: false
    domain: dns.base.domain.name
    mode: nat
    plan: kvirt
    type: routed
  3. Ensure that the pull secret and kcli plan files are in place so that you can deploy the OpenShift Container Platform management cluster:

    1. Confirm that the pull secret is in the same folder as the kcli plan, and that the pull secret file is named openshift_pull.json.
    2. Add the kcli plan, which contains the OpenShift Container Platform definition, in the mgmt-compact-hub-dual.yaml file. Ensure that you update the file contents to match your environment:

      plan: hub-dual
      force: true
      version: stable
      tag: "4.x.y-x86_64" 1
      cluster: "hub-dual"
      dualstack: true
      domain: dns.base.domain.name
      api_ip: 192.168.126.10
      ingress_ip: 192.168.126.11
      service_networks:
      - 172.30.0.0/16
      - fd02::/112
      cluster_networks:
      - 10.132.0.0/14
      - fd01::/48
      disconnected_url: registry.dns.base.domain.name:5000
      disconnected_update: true
      disconnected_user: dummy
      disconnected_password: dummy
      disconnected_operators_version: v4.14
      disconnected_operators:
      - name: metallb-operator
      - name: lvms-operator
        channels:
        - name: stable-4.14
      disconnected_extra_images:
      - quay.io/user-name/trbsht:latest
      - quay.io/user-name/hypershift:BMSelfManage-v4.14-rc-v3
      - registry.redhat.io/openshift4/ose-kube-rbac-proxy:v4.10
      dualstack: true
      disk_size: 200
      extra_disks: [200]
      memory: 48000
      numcpus: 16
      ctlplanes: 3
      workers: 0
      manifests: extra-manifests
      metal3: true
      network: dual
      users_dev: developer
      users_devpassword: developer
      users_admin: admin
      users_adminpassword: admin
      metallb_pool: dual-virtual-network
      metallb_ranges:
      - 192.168.126.150-192.168.126.190
      metallb_autoassign: true
      apps:
      - users
      - lvms-operator
      - metallb-operator
      vmrules:
      - hub-bootstrap:
          nets:
          - name: ipv6
            mac: aa:aa:aa:aa:10:07
      - hub-ctlplane-0:
          nets:
          - name: ipv6
            mac: aa:aa:aa:aa:10:01
      - hub-ctlplane-1:
          nets:
          - name: ipv6
            mac: aa:aa:aa:aa:10:02
      - hub-ctlplane-2:
          nets:
          - name: ipv6
            mac: aa:aa:aa:aa:10:03
      1
      Replace 4.x.y with the supported OpenShift Container Platform version you want to use.
  4. To provision the management cluster, enter the following command:

    $ kcli create cluster openshift --pf mgmt-compact-hub-dual.yaml

Next steps

Next, configure the web server.

6.3.8. Configuring the web server for hosted control planes in a disconnected environment

You need to configure an additional web server to host the Red Hat Enterprise Linux CoreOS (RHCOS) images that are associated with the OpenShift Container Platform release that you are deploying as a hosted cluster.

Procedure

To configure the web server, complete the following steps:

  1. Extract the openshift-install binary from the OpenShift Container Platform release that you want to use by entering the following command:

    $ oc adm -a ${LOCAL_SECRET_JSON} release extract --command=openshift-install "${LOCAL_REGISTRY}/${LOCAL_REPOSITORY}:${OCP_RELEASE}-${ARCHITECTURE}"
  2. Run the following script. The script creates a folder in the /opt/srv directory. The folder contains the RHCOS images to provision the worker nodes.

    #!/bin/bash
    
    WEBSRV_FOLDER=/opt/srv
    ROOTFS_IMG_URL="$(./openshift-install coreos print-stream-json | jq -r '.architectures.x86_64.artifacts.metal.formats.pxe.rootfs.location')" 1
    LIVE_ISO_URL="$(./openshift-install coreos print-stream-json | jq -r '.architectures.x86_64.artifacts.metal.formats.iso.disk.location')" 2
    
    mkdir -p ${WEBSRV_FOLDER}/images
    curl -Lk ${ROOTFS_IMG_URL} -o ${WEBSRV_FOLDER}/images/${ROOTFS_IMG_URL##*/}
    curl -Lk ${LIVE_ISO_URL} -o ${WEBSRV_FOLDER}/images/${LIVE_ISO_URL##*/}
    chmod -R 755 ${WEBSRV_FOLDER}/*
    
    ## Run Webserver
    podman ps --noheading | grep -q websrv-ai
    if [[ $? == 0 ]];then
        echo "Launching Registry pod..."
        /usr/bin/podman run --name websrv-ai --net host -v /opt/srv:/usr/local/apache2/htdocs:z quay.io/alosadag/httpd:p8080
    fi
    1
    You can find the ROOTFS_IMG_URL value on the OpenShift CI Release page.
    2
    You can find the LIVE_ISO_URL value on the OpenShift CI Release page.

After the download is completed, a container runs to host the images on a web server. The container uses a variation of the official HTTPd image, which also enables it to work with IPv6 networks.

6.3.9. Configuring image mirroring for hosted control planes in a disconnected environment

Image mirroring is the process of fetching images from external registries, such as registry.redhat.com or quay.io, and storing them in your private registry.

In the following procedures, the oc-mirror tool is used, which is a binary that uses the ImageSetConfiguration object. In the file, you can specify the following information:

  • The OpenShift Container Platform versions to mirror. The versions are in quay.io.
  • The additional Operators to mirror. Select packages individually.
  • The extra images that you want to add to the repository.

Prerequisites

Ensure that the registry server is running before you start the mirroring process.

Procedure

To configure image mirroring, complete the following steps:

  1. Ensure that your ${HOME}/.docker/config.json file is updated with the registries that you are going to mirror from and with the private registry that you plan to push the images to.
  2. By using the following example, create an ImageSetConfiguration object to use for mirroring. Replace values as needed to match your environment:

    apiVersion: mirror.openshift.io/v1alpha2
    kind: ImageSetConfiguration
    storageConfig:
      registry:
        imageURL: registry.<dns.base.domain.name>:5000/openshift/release/metadata:latest 1
    mirror:
      platform:
        channels:
        - name: candidate-4.17
          minVersion: 4.x.y-build  2
          maxVersion: 4.x.y-build 3
          type: ocp
        kubeVirtContainer: true 4
        graph: true
      additionalImages:
      - name: quay.io/karmab/origin-keepalived-ipfailover:latest
      - name: quay.io/karmab/kubectl:latest
      - name: quay.io/karmab/haproxy:latest
      - name: quay.io/karmab/mdns-publisher:latest
      - name: quay.io/karmab/origin-coredns:latest
      - name: quay.io/karmab/curl:latest
      - name: quay.io/karmab/kcli:latest
      - name: quay.io/user-name/trbsht:latest
      - name: quay.io/user-name/hypershift:BMSelfManage-v4.17
      - name: registry.redhat.io/openshift4/ose-kube-rbac-proxy:v4.10
      operators:
      - catalog: registry.redhat.io/redhat/redhat-operator-index:v4.17
        packages:
        - name: lvms-operator
        - name: local-storage-operator
        - name: odf-csi-addons-operator
        - name: odf-operator
        - name: mcg-operator
        - name: ocs-operator
        - name: metallb-operator
        - name: kubevirt-hyperconverged 5
    1
    Replace <dns.base.domain.name> with the DNS base domain name.
    2 3
    Replace 4.x.y-build with the supported OpenShift Container Platform version you want to use.
    4
    Set this optional flag to true if you want to also mirror the container disk image for the Red Hat Enterprise Linux CoreOS (RHCOS) boot image for the KubeVirt provider. This flag is available with oc-mirror v2 only.
    5
    For deployments that use the KubeVirt provider, include this line.
  3. Start the mirroring process by entering the following command:

    $ oc-mirror --v2 --config imagesetconfig.yaml docker://${REGISTRY}

    After the mirroring process is finished, you have a new folder named oc-mirror-workspace/results-XXXXXX/, which contains the IDMS and the catalog sources to apply on the hosted cluster.

  4. Mirror the nightly or CI versions of OpenShift Container Platform by configuring the imagesetconfig.yaml file as follows:

    apiVersion: mirror.openshift.io/v2alpha1
    kind: ImageSetConfiguration
    mirror:
      platform:
        graph: true
        release: registry.ci.openshift.org/ocp/release:4.x.y-build 1
        kubeVirtContainer: true 2
    # ...
    1
    Replace 4.x.y-build with the supported OpenShift Container Platform version you want to use.
    2
    Set this optional flag to true if you want to also mirror the container disk image for the Red Hat Enterprise Linux CoreOS (RHCOS) boot image for the KubeVirt provider. This flag is available with oc-mirror v2 only.
  5. Apply the changes to the file by entering the following command:

    $ oc-mirror --v2 --config imagesetconfig.yaml docker://${REGISTRY}
  6. Mirror the latest multicluster engine Operator images by following the steps in Install on disconnected networks.

6.3.10. Applying objects in the management cluster

After the mirroring process is complete, you need to apply two objects in the management cluster:

  • ImageContentSourcePolicy (ICSP) or ImageDigestMirrorSet (IDMS)
  • Catalog sources

When you use the oc-mirror tool, the output artifacts are in a folder named oc-mirror-workspace/results-XXXXXX/.

The ICSP or IDMS initiates a MachineConfig change that does not restart your nodes but restarts the kubelet on each of them. After the nodes are marked as READY, you need to apply the newly generated catalog sources.

The catalog sources initiate actions in the openshift-marketplace Operator, such as downloading the catalog image and processing it to retrieve all the PackageManifests that are included in that image.

Procedure

  1. To check the new sources, run the following command by using the new CatalogSource as a source:

    $ oc get packagemanifest
  2. To apply the artifacts, complete the following steps:

    1. Create the ICSP or IDMS artifacts by entering the following command:

      $ oc apply -f oc-mirror-workspace/results-XXXXXX/imageContentSourcePolicy.yaml
    2. Wait for the nodes to become ready, and then enter the following command:

      $ oc apply -f catalogSource-XXXXXXXX-index.yaml
  3. Mirror the OLM catalogs and configure the hosted cluster to point to the mirror.

    When you use the management (default) OLMCatalogPlacement mode, the image stream that is used for OLM catalogs is not automatically amended with override information from the ICSP on the management cluster.

    1. If the OLM catalogs are properly mirrored to an internal registry by using the original name and tag, add the hypershift.openshift.io/olm-catalogs-is-registry-overrides annotation to the HostedCluster resource. The format is "sr1=dr1,sr2=dr2", where the source registry string is a key and the destination registry is a value.
    2. To bypass the OLM catalog image stream mechanism, use the following four annotations on the HostedCluster resource to directly specify the addresses of the four images to use for OLM Operator catalogs:

      • hypershift.openshift.io/certified-operators-catalog-image
      • hypershift.openshift.io/community-operators-catalog-image
      • hypershift.openshift.io/redhat-marketplace-catalog-image
      • hypershift.openshift.io/redhat-operators-catalog-image

In this case, the image stream is not created, and you must update the value of the annotations when the internal mirror is refreshed to pull in Operator updates.

Next steps

Deploy the multicluster engine Operator by completing the steps in Deploying multicluster engine Operator for a disconnected installation of hosted control planes.

6.3.11. Deploying multicluster engine Operator for a disconnected installation of hosted control planes

The multicluster engine for Kubernetes Operator plays a crucial role in deploying clusters across providers. If you do not have multicluster engine Operator installed, review the following documentation to understand the prerequisites and steps to install it:

6.3.11.1. Deploying AgentServiceConfig resources

The AgentServiceConfig custom resource is an essential component of the Assisted Service add-on that is part of multicluster engine Operator. It is responsible for bare metal cluster deployment. When the add-on is enabled, you deploy the AgentServiceConfig resource to configure the add-on.

In addition to configuring the AgentServiceConfig resource, you need to include additional config maps to ensure that multicluster engine Operator functions properly in a disconnected environment.

Procedure

  1. Configure the custom registries by adding the following config map, which contains the disconnected details to customize the deployment:

    apiVersion: v1
    kind: ConfigMap
    metadata:
      name: custom-registries
      namespace: multicluster-engine
      labels:
        app: assisted-service
    data:
      ca-bundle.crt: |
        -----BEGIN CERTIFICATE-----
        -----END CERTIFICATE-----
      registries.conf: |
        unqualified-search-registries = ["registry.access.redhat.com", "docker.io"]
    
        [[registry]]
        prefix = ""
        location = "registry.redhat.io/openshift4"
        mirror-by-digest-only = true
    
        [[registry.mirror]]
          location = "registry.dns.base.domain.name:5000/openshift4" 1
    
        [[registry]]
        prefix = ""
        location = "registry.redhat.io/rhacm2"
        mirror-by-digest-only = true
        # ...
        # ...
    1
    Replace dns.base.domain.name with the DNS base domain name.

    The object contains two fields:

    • Custom CAs: This field contains the Certificate Authorities (CAs) that are loaded into the various processes of the deployment.
    • Registries: The Registries.conf field contains information about images and namespaces that need to be consumed from a mirror registry rather than the original source registry.
  2. Configure the Assisted Service by adding the AssistedServiceConfig object, as shown in the following example:

    apiVersion: agent-install.openshift.io/v1beta1
    kind: AgentServiceConfig
    metadata:
      annotations:
        unsupported.agent-install.openshift.io/assisted-service-configmap: assisted-service-config 1
      name: agent
      namespace: multicluster-engine
    spec:
      mirrorRegistryRef:
        name: custom-registries 2
      databaseStorage:
        storageClassName: lvms-vg1
        accessModes:
        - ReadWriteOnce
        resources:
          requests:
            storage: 10Gi
      filesystemStorage:
        storageClassName: lvms-vg1
        accessModes:
        - ReadWriteOnce
        resources:
          requests:
            storage: 20Gi
      osImages: 3
      - cpuArchitecture: x86_64 4
        openshiftVersion: "4.14"
        rootFSUrl: http://registry.dns.base.domain.name:8080/images/rhcos-414.92.202308281054-0-live-rootfs.x86_64.img 5
        url: http://registry.dns.base.domain.name:8080/images/rhcos-414.92.202308281054-0-live.x86_64.iso
        version: 414.92.202308281054-0
      - cpuArchitecture: x86_64
       openshiftVersion: "4.15"
       rootFSUrl: http://registry.dns.base.domain.name:8080/images/rhcos-415.92.202403270524-0-live-rootfs.x86_64.img
       url: http://registry.dns.base.domain.name:8080/images/rhcos-415.92.202403270524-0-live.x86_64.iso
       version: 415.92.202403270524-0
    1
    The metadata.annotations["unsupported.agent-install.openshift.io/assisted-service-configmap"] annotation references the config map name that the Operator consumes to customize behavior.
    2
    The spec.mirrorRegistryRef.name annotation points to the config map that contains disconnected registry information that the Assisted Service Operator consumes. This config map adds those resources during the deployment process.
    3
    The spec.osImages field contains different versions available for deployment by this Operator. This field is mandatory. This example assumes that you already downloaded the RootFS and LiveISO files.
    4
    Add a cpuArchitecture subsection for every OpenShift Container Platform release that you want to deploy. In this example, cpuArchitecture subsections are included for 4.14 and 4.15.
    5
    In the rootFSUrl and url fields, replace dns.base.domain.name with the DNS base domain name.
  3. Deploy all of the objects by concatenating them into a single file and applying them to the management cluster. To do so, enter the following command:

    $ oc apply -f agentServiceConfig.yaml

    The command triggers two pods.

    Example output

    assisted-image-service-0                               1/1     Running   2             11d 1
    assisted-service-668b49548-9m7xw                       2/2     Running   5             11d 2

    1
    The assisted-image-service pod is responsible for creating the Red Hat Enterprise Linux CoreOS (RHCOS) boot image template, which is customized for each cluster that you deploy.
    2
    The assisted-service refers to the Operator.

Next steps

Configure TLS certificates by completing the steps in Configuring TLS certificates for a disconnected installation of hosted control planes.

6.3.12. Configuring TLS certificates for a disconnected installation of hosted control planes

To ensure proper function in a disconnected deployment, you need to configure the registry CA certificates in the management cluster and the worker nodes for the hosted cluster.

6.3.12.1. Adding the registry CA to the management cluster

To add the registry CA to the management cluster, complete the following steps.

Procedure

  1. Create a config map that resembles the following example:

    apiVersion: v1
    kind: ConfigMap
    metadata:
      name: <config_map_name> 1
      namespace: <config_map_namespace> 2
    data: 3
      <registry_name>..<port>: | 4
        -----BEGIN CERTIFICATE-----
        -----END CERTIFICATE-----
      <registry_name>..<port>: |
        -----BEGIN CERTIFICATE-----
        -----END CERTIFICATE-----
      <registry_name>..<port>: |
        -----BEGIN CERTIFICATE-----
        -----END CERTIFICATE-----
    1
    Specify the name of the config map.
    2
    Specify the namespace for the config map.
    3
    In the data field, specify the registry names and the registry certificate content. Replace <port> with the port where the registry server is running; for example, 5000.
    4
    Ensure that the data in the config map is defined by using | only instead of other methods, such as | -. If you use other methods, issues can occur when the pod reads the certificates.
  2. Patch the cluster-wide object, image.config.openshift.io to include the following specification:

    spec:
      additionalTrustedCA:
        - name: registry-config

    As a result of this patch, the control plane nodes can retrieve images from the private registry and the HyperShift Operator can extract the OpenShift Container Platform payload for hosted cluster deployments.

    The process to patch the object might take several minutes to be completed.

6.3.12.2. Adding the registry CA to the worker nodes for the hosted cluster

In order for the data plane workers in the hosted cluster to be able to retrieve images from the private registry, you need to add the registry CA to the worker nodes.

Procedure

  1. In the hc.spec.additionalTrustBundle file, add the following specification:

    spec:
      additionalTrustBundle:
        - name: user-ca-bundle 1
    1
    The user-ca-bundle entry is a config map that you create in the next step.
  2. In the same namespace where the HostedCluster object is created, create the user-ca-bundle config map. The config map resembles the following example:

    apiVersion: v1
    data:
      ca-bundle.crt: |
        // Registry1 CA
        -----BEGIN CERTIFICATE-----
        -----END CERTIFICATE-----
    
        // Registry2 CA
        -----BEGIN CERTIFICATE-----
        -----END CERTIFICATE-----
    
        // Registry3 CA
        -----BEGIN CERTIFICATE-----
        -----END CERTIFICATE-----
    
    kind: ConfigMap
    metadata:
      name: user-ca-bundle
      namespace: <hosted_cluster_namespace> 1
    1
    Specify the namespace where the HostedCluster object is created.

6.3.13. Creating a hosted cluster on bare metal

A hosted cluster is an OpenShift Container Platform cluster with its control plane and API endpoint hosted on a management cluster. The hosted cluster includes the control plane and its corresponding data plane.

6.3.13.1. Deploying hosted cluster objects

Typically, the HyperShift Operator creates the HostedControlPlane namespace. However, in this case, you want to include all the objects before the HyperShift Operator begins to reconcile the HostedCluster object. Then, when the Operator starts the reconciliation process, it can find all of the objects in place.

Procedure

  1. Create a YAML file with the following information about the namespaces:

    ---
    apiVersion: v1
    kind: Namespace
    metadata:
      creationTimestamp: null
      name: <hosted_cluster_namespace>-<hosted_cluster_name> 1
    spec: {}
    status: {}
    ---
    apiVersion: v1
    kind: Namespace
    metadata:
      creationTimestamp: null
      name: <hosted_cluster_namespace> 2
    spec: {}
    status: {}
    1
    Replace <hosted_cluster_name> with your hosted cluster.
    2
    Replace <hosted_cluster_namespace> with the name of your hosted cluster namespace.
  2. Create a YAML file with the following information about the config maps and secrets to include in the HostedCluster deployment:

    ---
    apiVersion: v1
    data:
      ca-bundle.crt: |
        -----BEGIN CERTIFICATE-----
        -----END CERTIFICATE-----
    kind: ConfigMap
    metadata:
      name: user-ca-bundle
      namespace: <hosted_cluster_namespace> 1
    ---
    apiVersion: v1
    data:
      .dockerconfigjson: xxxxxxxxx
    kind: Secret
    metadata:
      creationTimestamp: null
      name: <hosted_cluster_name>-pull-secret 2
      namespace: <hosted_cluster_namespace> 3
    ---
    apiVersion: v1
    kind: Secret
    metadata:
      name: sshkey-cluster-<hosted_cluster_name> 4
      namespace: <hosted_cluster_namespace> 5
    stringData:
      id_rsa.pub: ssh-rsa xxxxxxxxx
    ---
    apiVersion: v1
    data:
      key: nTPtVBEt03owkrKhIdmSW8jrWRxU57KO/fnZa8oaG0Y=
    kind: Secret
    metadata:
      creationTimestamp: null
      name: <hosted_cluster_name>-etcd-encryption-key 6
      namespace: <hosted_cluster_namespace> 7
    type: Opaque
    1 3 5 7
    Replace <hosted_cluster_namespace> with the name of your hosted cluster namespace.
    2 4 6
    Replace <hosted_cluster_name> with your hosted cluster.
  3. Create a YAML file that contains the RBAC roles so that Assisted Service agents can be in the same HostedControlPlane namespace as the hosted control plane and still be managed by the cluster API:

    apiVersion: rbac.authorization.k8s.io/v1
    kind: Role
    metadata:
      creationTimestamp: null
      name: capi-provider-role
      namespace: <hosted_cluster_namespace>-<hosted_cluster_name> 1 2
    rules:
    - apiGroups:
      - agent-install.openshift.io
      resources:
      - agents
      verbs:
      - '*'
    1
    Replace <hosted_cluster_namespace> with the name of your hosted cluster namespace.
    2
    Replace <hosted_cluster_name> with your hosted cluster.
  4. Create a YAML file with information about the HostedCluster object, replacing values as necessary:

    apiVersion: hypershift.openshift.io/v1beta1
    kind: HostedCluster
    metadata:
      name: <hosted_cluster_name> 1
      namespace: <hosted_cluster_namespace> 2
    spec:
      additionalTrustBundle:
        name: "user-ca-bundle"
      olmCatalogPlacement: guest
      imageContentSources: 3
      - source: quay.io/openshift-release-dev/ocp-v4.0-art-dev
        mirrors:
        - registry.<dns.base.domain.name>:5000/openshift/release 4
      - source: quay.io/openshift-release-dev/ocp-release
        mirrors:
        - registry.<dns.base.domain.name>:5000/openshift/release-images 5
      - mirrors:
      ...
      ...
      autoscaling: {}
      controllerAvailabilityPolicy: SingleReplica
      dns:
        baseDomain: <dns.base.domain.name> 6
      etcd:
        managed:
          storage:
            persistentVolume:
              size: 8Gi
            restoreSnapshotURL: null
            type: PersistentVolume
        managementType: Managed
      fips: false
      networking:
        clusterNetwork:
        - cidr: 10.132.0.0/14
        - cidr: fd01::/48
        networkType: OVNKubernetes
        serviceNetwork:
        - cidr: 172.31.0.0/16
        - cidr: fd02::/112
      platform:
        agent:
          agentNamespace: <hosted_cluster_namespace>-<hosted_cluster_name> 7 8
        type: Agent
      pullSecret:
        name: <hosted_cluster_name>-pull-secret 9
      release:
        image: registry.<dns.base.domain.name>:5000/openshift/release-images:4.x.y-x86_64 10 11
      secretEncryption:
        aescbc:
          activeKey:
            name: <hosted_cluster_name>-etcd-encryption-key 12
        type: aescbc
      services:
      - service: APIServer
        servicePublishingStrategy:
          type: LoadBalancer
      - service: OAuthServer
        servicePublishingStrategy:
          type: Route
      - service: OIDC
        servicePublishingStrategy:
          type: Route
      - service: Konnectivity
        servicePublishingStrategy:
          type: Route
      - service: Ignition
        servicePublishingStrategy:
          type: Route
      sshKey:
        name: sshkey-cluster-<hosted_cluster_name> 13
    status:
      controlPlaneEndpoint:
        host: ""
        port: 0
    1 7 9 12 13
    Replace <hosted_cluster_name> with your hosted cluster.
    2 8
    Replace <hosted_cluster_namespace> with the name of your hosted cluster namespace.
    3
    The imageContentSources section contains mirror references for user workloads within the hosted cluster.
    4 5 6 10
    Replace <dns.base.domain.name> with the DNS base domain name.
    11
    Replace 4.x.y with the supported OpenShift Container Platform version you want to use.
  5. Add an annotation in the HostedCluster object that points to the HyperShift Operator release in the OpenShift Container Platform release:

    1. Obtain the image payload by entering the following command:

      $ oc adm release info registry.<dns.base.domain.name>:5000/openshift-release-dev/ocp-release:4.x.y-x86_64 | grep hypershift

      where <dns.base.domain.name> is the DNS base domain name and 4.x.y is the supported OpenShift Container Platform version you want to use.

      Example output

      hypershift        sha256:31149e3e5f8c5e5b5b100ff2d89975cf5f7a73801b2c06c639bf6648766117f8

    2. By using the OpenShift Container Platform Images namespace, check the digest by entering the following command:

      podman pull registry.<dns.base.domain.name>:5000/openshift-release-dev/ocp-v4.0-art-dev@sha256:31149e3e5f8c5e5b5b100ff2d89975cf5f7a73801b2c06c639bf6648766117f8

      where <dns.base.domain.name> is the DNS base domain name.

      Example output

      podman pull registry.dns.base.domain.name:5000/openshift/release@sha256:31149e3e5f8c5e5b5b100ff2d89975cf5f7a73801b2c06c639bf6648766117f8
      Trying to pull registry.dns.base.domain.name:5000/openshift/release@sha256:31149e3e5f8c5e5b5b100ff2d89975cf5f7a73801b2c06c639bf6648766117f8...
      Getting image source signatures
      Copying blob d8190195889e skipped: already exists
      Copying blob c71d2589fba7 skipped: already exists
      Copying blob d4dc6e74b6ce skipped: already exists
      Copying blob 97da74cc6d8f skipped: already exists
      Copying blob b70007a560c9 done
      Copying config 3a62961e6e done
      Writing manifest to image destination
      Storing signatures
      3a62961e6ed6edab46d5ec8429ff1f41d6bb68de51271f037c6cb8941a007fde

      The release image that is set in the HostedCluster object must use the digest rather than the tag; for example, quay.io/openshift-release-dev/ocp-release@sha256:e3ba11bd1e5e8ea5a0b36a75791c90f29afb0fdbe4125be4e48f69c76a5c47a0.

  6. Create all of the objects that you defined in the YAML files by concatenating them into a file and applying them against the management cluster. To do so, enter the following command:

    $ oc apply -f 01-4.14-hosted_cluster-nodeport.yaml

    Example output

    NAME                                                  READY   STATUS    RESTARTS   AGE
    capi-provider-5b57dbd6d5-pxlqc                        1/1     Running   0          3m57s
    catalog-operator-9694884dd-m7zzv                      2/2     Running   0          93s
    cluster-api-f98b9467c-9hfrq                           1/1     Running   0          3m57s
    cluster-autoscaler-d7f95dd5-d8m5d                     1/1     Running   0          93s
    cluster-image-registry-operator-5ff5944b4b-648ht      1/2     Running   0          93s
    cluster-network-operator-77b896ddc-wpkq8              1/1     Running   0          94s
    cluster-node-tuning-operator-84956cd484-4hfgf         1/1     Running   0          94s
    cluster-policy-controller-5fd8595d97-rhbwf            1/1     Running   0          95s
    cluster-storage-operator-54dcf584b5-xrnts             1/1     Running   0          93s
    cluster-version-operator-9c554b999-l22s7              1/1     Running   0          95s
    control-plane-operator-6fdc9c569-t7hr4                1/1     Running   0          3m57s
    csi-snapshot-controller-785c6dc77c-8ljmr              1/1     Running   0          77s
    csi-snapshot-controller-operator-7c6674bc5b-d9dtp     1/1     Running   0          93s
    csi-snapshot-webhook-5b8584875f-2492j                 1/1     Running   0          77s
    dns-operator-6874b577f-9tc6b                          1/1     Running   0          94s
    etcd-0                                                3/3     Running   0          3m39s
    hosted-cluster-config-operator-f5cf5c464-4nmbh        1/1     Running   0          93s
    ignition-server-6b689748fc-zdqzk                      1/1     Running   0          95s
    ignition-server-proxy-54d4bb9b9b-6zkg7                1/1     Running   0          95s
    ingress-operator-6548dc758b-f9gtg                     1/2     Running   0          94s
    konnectivity-agent-7767cdc6f5-tw782                   1/1     Running   0          95s
    kube-apiserver-7b5799b6c8-9f5bp                       4/4     Running   0          3m7s
    kube-controller-manager-5465bc4dd6-zpdlk              1/1     Running   0          44s
    kube-scheduler-5dd5f78b94-bbbck                       1/1     Running   0          2m36s
    machine-approver-846c69f56-jxvfr                      1/1     Running   0          92s
    oauth-openshift-79c7bf44bf-j975g                      2/2     Running   0          62s
    olm-operator-767f9584c-4lcl2                          2/2     Running   0          93s
    openshift-apiserver-5d469778c6-pl8tj                  3/3     Running   0          2m36s
    openshift-controller-manager-6475fdff58-hl4f7         1/1     Running   0          95s
    openshift-oauth-apiserver-dbbc5cc5f-98574             2/2     Running   0          95s
    openshift-route-controller-manager-5f6997b48f-s9vdc   1/1     Running   0          95s
    packageserver-67c87d4d4f-kl7qh                        2/2     Running   0          93s

    When the hosted cluster is available, the output looks like the following example.

    Example output

    NAMESPACE   NAME         VERSION   KUBECONFIG                PROGRESS   AVAILABLE   PROGRESSING   MESSAGE
    clusters    hosted-dual            hosted-admin-kubeconfig   Partial    True          False         The hosted control plane is available

6.3.13.2. Creating a NodePool object for the hosted cluster

A NodePool is a scalable set of worker nodes that is associated with a hosted cluster. NodePool machine architectures remain consistent within a specific pool and are independent of the machine architecture of the control plane.

Procedure

  1. Create a YAML file with the following information about the NodePool object, replacing values as necessary:

    apiVersion: hypershift.openshift.io/v1beta1
    kind: NodePool
    metadata:
      creationTimestamp: null
      name: <hosted_cluster_name> \1
      namespace: <hosted_cluster_namespace> \2
    spec:
      arch: amd64
      clusterName: <hosted_cluster_name>
      management:
        autoRepair: false \3
        upgradeType: InPlace \4
      nodeDrainTimeout: 0s
      platform:
        type: Agent
      release:
        image: registry.<dns.base.domain.name>:5000/openshift/release-images:4.x.y-x86_64 \5
      replicas: 2 6
    status:
      replicas: 2
    1
    Replace <hosted_cluster_name> with your hosted cluster.
    2
    Replace <hosted_cluster_namespace> with the name of your hosted cluster namespace.
    3
    The autoRepair field is set to false because the node will not be re-created if it is removed.
    4
    The upgradeType is set to InPlace, which indicates that the same bare metal node is reused during an upgrade.
    5
    All of the nodes included in this NodePool are based on the following OpenShift Container Platform version: 4.x.y-x86_64. Replace the <dns.base.domain.name> value with your DNS base domain name and the 4.x.y value with the supported OpenShift Container Platform version you want to use.
    6
    You can set the replicas value to 2 to create two node pool replicas in your hosted cluster.
  2. Create the NodePool object by entering the following command:

    $ oc apply -f 02-nodepool.yaml

    Example output

    NAMESPACE   NAME          CLUSTER   DESIRED NODES   CURRENT NODES   AUTOSCALING   AUTOREPAIR   VERSION                              UPDATINGVERSION   UPDATINGCONFIG   MESSAGE
    clusters    hosted-dual   hosted    0                               False         False        4.x.y-x86_64

6.3.13.3. Creating an InfraEnv resource for the hosted cluster

The InfraEnv resource is an Assisted Service object that includes essential details, such as the pullSecretRef and the sshAuthorizedKey. Those details are used to create the Red Hat Enterprise Linux CoreOS (RHCOS) boot image that is customized for the hosted cluster.

You can host more than one InfraEnv resource, and each one can adopt certain types of hosts. For example, you might want to divide your server farm between a host that has greater RAM capacity.

Procedure

  1. Create a YAML file with the following information about the InfraEnv resource, replacing values as necessary:

    apiVersion: agent-install.openshift.io/v1beta1
    kind: InfraEnv
    metadata:
      name: <hosted_cluster_name>
      namespace: <hosted-cluster-namespace>-<hosted_cluster_name> 1 2
    spec:
      pullSecretRef: 3
        name: pull-secret
      sshAuthorizedKey: ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAABgQDk7ICaUE+/k4zTpxLk4+xFdHi4ZuDi5qjeF52afsNkw0w/glILHhwpL5gnp5WkRuL8GwJuZ1VqLC9EKrdmegn4MrmUlq7WTsP0VFOZFBfq2XRUxo1wrRdor2z0Bbh93ytR+ZsDbbLlGngXaMa0Vbt+z74FqlcajbHTZ6zBmTpBVq5RHtDPgKITdpE1fongp7+ZXQNBlkaavaqv8bnyrP4BWahLP4iO9/xJF9lQYboYwEEDzmnKLMW1VtCE6nJzEgWCufACTbxpNS7GvKtoHT/OVzw8ArEXhZXQUS1UY8zKsX2iXwmyhw5Sj6YboA8WICs4z+TrFP89LmxXY0j6536TQFyRz1iB4WWvCbH5n6W+ABV2e8ssJB1AmEy8QYNwpJQJNpSxzoKBjI73XxvPYYC/IjPFMySwZqrSZCkJYqQ023ySkaQxWZT7in4KeMu7eS2tC+Kn4deJ7KwwUycx8n6RHMeD8Qg9flTHCv3gmab8JKZJqN3hW1D378JuvmIX4V0= 4
    1
    Replace <hosted_cluster_name> with your hosted cluster.
    2
    Replace <hosted_cluster_namespace> with the name of your hosted cluster namespace.
    3
    The pullSecretRef refers to the config map reference in the same namespace as the InfraEnv, where the pull secret is used.
    4
    The sshAuthorizedKey represents the SSH public key that is placed in the boot image. The SSH key allows access to the worker nodes as the core user.
  2. Create the InfraEnv resource by entering the following command:

    $ oc apply -f 03-infraenv.yaml

    Example output

    NAMESPACE              NAME     ISO CREATED AT
    clusters-hosted-dual   hosted   2023-09-11T15:14:10Z

6.3.13.4. Creating worker nodes for the hosted cluster

If you are working on a bare metal platform, creating worker nodes is crucial to ensure that the details in the BareMetalHost are correctly configured.

If you are working with virtual machines, you can complete the following steps to create empty worker nodes for the Metal3 Operator to consume. To do so, you use the kcli tool.

Procedure

  1. If this is not your first attempt to create worker nodes, you must first delete your previous setup. To do so, delete the plan by entering the following command:

    $ kcli delete plan <hosted_cluster_name> 1
    1
    Replace <hosted_cluster_name> with the name of your hosted cluster.
    1. When you are prompted to confirm whether you want to delete the plan, type y.
    2. Confirm that you see a message stating that the plan was deleted.
  2. Create the virtual machines by entering the following commands:

    1. Enter the following command to create the first virtual machine:

      $ kcli create vm \
        -P start=False \1
        -P uefi_legacy=true \2
        -P plan=<hosted_cluster_name> \3
        -P memory=8192 -P numcpus=16 \4
        -P disks=[200,200] \5
        -P nets=["{\"name\": \"<network>\", \"mac\": \"aa:aa:aa:aa:11:01\"}"] \6
        -P uuid=aaaaaaaa-aaaa-aaaa-aaaa-aaaaaaaa1101 \
        -P name=<hosted_cluster_name>-worker0 7
      1
      Include start=False if you do not want the virtual machine (VM) to automatically start upon creation.
      2
      Include uefi_legacy=true to indicate that you will use UEFI legacy boot to ensure compatibility with previous UEFI implementations.
      3
      Replace <hosted_cluster_name> with the name of your hosted cluster. The plan=<hosted_cluster_name> statement indicates the plan name, which identifies a group of machines as a cluster.
      4
      Include the memory=8192 and numcpus=16 parameters to specify the resources for the VM, including the RAM and CPU.
      5
      Include disks=[200,200] to indicate that you are creating two thin-provisioned disks in the VM.
      6
      Include nets=[{"name": "<network>", "mac": "aa:aa:aa:aa:02:13"}] to provide network details, including the network name to connect to, the type of network (ipv4, ipv6, or dual), and the MAC address of the primary interface.
      7
      Replace <hosted_cluster_name> with the name of your hosted cluster.
    2. Enter the following command to create the second virtual machine:

      $ kcli create vm \
        -P start=False \1
        -P uefi_legacy=true \2
        -P plan=<hosted_cluster_name> \3
        -P memory=8192 -P numcpus=16 \4
        -P disks=[200,200] \5
        -P nets=["{\"name\": \"<network>\", \"mac\": \"aa:aa:aa:aa:11:02\"}"] \6
        -P uuid=aaaaaaaa-aaaa-aaaa-aaaa-aaaaaaaa1102
        -P name=<hosted_cluster_name>-worker1 7
      1
      Include start=False if you do not want the virtual machine (VM) to automatically start upon creation.
      2
      Include uefi_legacy=true to indicate that you will use UEFI legacy boot to ensure compatibility with previous UEFI implementations.
      3
      Replace <hosted_cluster_name> with the name of your hosted cluster. The plan=<hosted_cluster_name> statement indicates the plan name, which identifies a group of machines as a cluster.
      4
      Include the memory=8192 and numcpus=16 parameters to specify the resources for the VM, including the RAM and CPU.
      5
      Include disks=[200,200] to indicate that you are creating two thin-provisioned disks in the VM.
      6
      Include nets=[{"name": "<network>", "mac": "aa:aa:aa:aa:02:13"}] to provide network details, including the network name to connect to, the type of network (ipv4, ipv6, or dual), and the MAC address of the primary interface.
      7
      Replace <hosted_cluster_name> with the name of your hosted cluster.
    3. Enter the following command to create the third virtual machine:

      $ kcli create vm \
        -P start=False \1
        -P uefi_legacy=true \2
        -P plan=<hosted_cluster_name> \3
        -P memory=8192 -P numcpus=16 \4
        -P disks=[200,200] \5
        -P nets=["{\"name\": \"<network>\", \"mac\": \"aa:aa:aa:aa:11:03\"}"] \6
        -P uuid=aaaaaaaa-aaaa-aaaa-aaaa-aaaaaaaa1103
        -P name=<hosted_cluster_name>-worker2 7
      1
      Include start=False if you do not want the virtual machine (VM) to automatically start upon creation.
      2
      Include uefi_legacy=true to indicate that you will use UEFI legacy boot to ensure compatibility with previous UEFI implementations.
      3
      Replace <hosted_cluster_name> with the name of your hosted cluster. The plan=<hosted_cluster_name> statement indicates the plan name, which identifies a group of machines as a cluster.
      4
      Include the memory=8192 and numcpus=16 parameters to specify the resources for the VM, including the RAM and CPU.
      5
      Include disks=[200,200] to indicate that you are creating two thin-provisioned disks in the VM.
      6
      Include nets=[{"name": "<network>", "mac": "aa:aa:aa:aa:02:13"}] to provide network details, including the network name to connect to, the type of network (ipv4, ipv6, or dual), and the MAC address of the primary interface.
      7
      Replace <hosted_cluster_name> with the name of your hosted cluster.
  3. Enter the restart ksushy command to restart the ksushy tool to ensure that the tool detects the VMs that you added:

    $ systemctl restart ksushy

    Example output

    +---------------------+--------+-------------------+----------------------------------------------------+-------------+---------+
    |         Name        | Status |         Ip        |                       Source                       |     Plan    | Profile |
    +---------------------+--------+-------------------+----------------------------------------------------+-------------+---------+
    |    hosted-worker0   |  down  |                   |                                                    | hosted-dual |  kvirt  |
    |    hosted-worker1   |  down  |                   |                                                    | hosted-dual |  kvirt  |
    |    hosted-worker2   |  down  |                   |                                                    | hosted-dual |  kvirt  |
    +---------------------+--------+-------------------+----------------------------------------------------+-------------+---------+

6.3.13.5. Creating bare metal hosts for the hosted cluster

A bare metal host is an openshift-machine-api object that encompasses physical and logical details so that it can be identified by a Metal3 Operator. Those details are associated with other Assisted Service objects, known as agents.

Prerequisites

Before you create the bare metal host and destination nodes, you must have the destination machines ready.

Procedure

To create a bare metal host, complete the following steps:

  1. Create a YAML file with the following information:

    Because you have at least one secret that holds the bare metal host credentials, you need to create at least two objects for each worker node.

    apiVersion: v1
    kind: Secret
    metadata:
      name: <hosted_cluster_name>-worker0-bmc-secret \1
      namespace: <hosted_cluster_namespace>-<hosted_cluster_name> \2
    data:
      password: YWRtaW4= \3
      username: YWRtaW4= \4
    type: Opaque
    # ...
    apiVersion: metal3.io/v1alpha1
    kind: BareMetalHost
    metadata:
      name: <hosted_cluster_name>-worker0
      namespace: <hosted_cluster_namespace>-<hosted_cluster_name> \5
      labels:
        infraenvs.agent-install.openshift.io: <hosted_cluster_name> \6
      annotations:
        inspect.metal3.io: disabled
        bmac.agent-install.openshift.io/hostname: <hosted_cluster_name>-worker0 \7
    spec:
      automatedCleaningMode: disabled \8
      bmc:
        disableCertificateVerification: true \9
        address: redfish-virtualmedia://[192.168.126.1]:9000/redfish/v1/Systems/local/<hosted_cluster_name>-worker0 \10
        credentialsName: <hosted_cluster_name>-worker0-bmc-secret \11
      bootMACAddress: aa:aa:aa:aa:02:11 \12
      online: true 13
    1
    Replace <hosted_cluster_name> with your hosted cluster.
    2 5
    Replace <hosted_cluster_name> with your hosted cluster. Replace <hosted_cluster_namespace> with the name of your hosted cluster namespace.
    3
    Specify the password of the baseboard management controller (BMC) in Base64 format.
    4
    Specify the user name of the BMC in Base64 format.
    6
    Replace <hosted_cluster_name> with your hosted cluster. The infraenvs.agent-install.openshift.io field serves as the link between the Assisted Installer and the BareMetalHost objects.
    7
    Replace <hosted_cluster_name> with your hosted cluster. The bmac.agent-install.openshift.io/hostname field represents the node name that is adopted during deployment.
    8
    The automatedCleaningMode field prevents the node from being erased by the Metal3 Operator.
    9
    The disableCertificateVerification field is set to true to bypass certificate validation from the client.
    10
    Replace <hosted_cluster_name> with your hosted cluster. The address field denotes the BMC address of the worker node.
    11
    Replace <hosted_cluster_name> with your hosted cluster. The credentialsName field points to the secret where the user and password credentials are stored.
    12
    The bootMACAddress field indicates the interface MAC address that the node starts from.
    13
    The online field defines the state of the node after the BareMetalHost object is created.
  2. Deploy the BareMetalHost object by entering the following command:

    $ oc apply -f 04-bmh.yaml

    During the process, you can view the following output:

    • This output indicates that the process is trying to reach the nodes:

      Example output

      NAMESPACE         NAME             STATE         CONSUMER   ONLINE   ERROR   AGE
      clusters-hosted   hosted-worker0   registering              true             2s
      clusters-hosted   hosted-worker1   registering              true             2s
      clusters-hosted   hosted-worker2   registering              true             2s

    • This output indicates that the nodes are starting:

      Example output

      NAMESPACE         NAME             STATE          CONSUMER   ONLINE   ERROR   AGE
      clusters-hosted   hosted-worker0   provisioning              true             16s
      clusters-hosted   hosted-worker1   provisioning              true             16s
      clusters-hosted   hosted-worker2   provisioning              true             16s

    • This output indicates that the nodes started successfully:

      Example output

      NAMESPACE         NAME             STATE         CONSUMER   ONLINE   ERROR   AGE
      clusters-hosted   hosted-worker0   provisioned              true             67s
      clusters-hosted   hosted-worker1   provisioned              true             67s
      clusters-hosted   hosted-worker2   provisioned              true             67s

  3. After the nodes start, notice the agents in the namespace, as shown in this example:

    Example output

    NAMESPACE         NAME                                   CLUSTER   APPROVED   ROLE          STAGE
    clusters-hosted   aaaaaaaa-aaaa-aaaa-aaaa-aaaaaaaa0411             true       auto-assign
    clusters-hosted   aaaaaaaa-aaaa-aaaa-aaaa-aaaaaaaa0412             true       auto-assign
    clusters-hosted   aaaaaaaa-aaaa-aaaa-aaaa-aaaaaaaa0413             true       auto-assign

    The agents represent nodes that are available for installation. To assign the nodes to a hosted cluster, scale up the node pool.

6.3.13.6. Scaling up the node pool

After you create the bare metal hosts, their statuses change from Registering to Provisioning to Provisioned. The nodes start with the LiveISO of the agent and a default pod that is named agent. That agent is responsible for receiving instructions from the Assisted Service Operator to install the OpenShift Container Platform payload.

Procedure

  1. To scale up the node pool, enter the following command:

    $ oc -n <hosted_cluster_namespace> scale nodepool <hosted_cluster_name> --replicas 3

    where:

    • <hosted_cluster_namespace> is the name of the hosted cluster namespace.
    • <hosted_cluster_name> is the name of the hosted cluster.
  2. After the scaling process is complete, notice that the agents are assigned to a hosted cluster:

    Example output

    NAMESPACE         NAME                                   CLUSTER   APPROVED   ROLE          STAGE
    clusters-hosted   aaaaaaaa-aaaa-aaaa-aaaa-aaaaaaaa0411   hosted    true       auto-assign
    clusters-hosted   aaaaaaaa-aaaa-aaaa-aaaa-aaaaaaaa0412   hosted    true       auto-assign
    clusters-hosted   aaaaaaaa-aaaa-aaaa-aaaa-aaaaaaaa0413   hosted    true       auto-assign

  3. Also notice that the node pool replicas are set:

    Example output

    NAMESPACE   NAME     CLUSTER   DESIRED NODES   CURRENT NODES   AUTOSCALING   AUTOREPAIR   VERSION       UPDATINGVERSION   UPDATINGCONFIG   MESSAGE
    clusters    hosted   hosted    3                               False         False        4.x.y-x86_64                                     Minimum availability requires 3 replicas, current 0 available

    Replace 4.x.y with the supported OpenShift Container Platform version that you want to use.

  4. Wait until the nodes join the cluster. During the process, the agents provide updates on their stage and status.

6.4. Deploying hosted control planes on IBM Z in a disconnected environment

Hosted control planes deployments in disconnected environments function differently than in a standalone OpenShift Container Platform.

Hosted control planes involves two distinct environments:

  • Control plane: Located in the management cluster, where the hosted control planes pods are run and managed by the Control Plane Operator.
  • Data plane: Located in the workers of the hosted cluster, where the workload and a few other pods run, managed by the Hosted Cluster Config Operator.

The ImageContentSourcePolicy (ICSP) custom resource for the data plane is managed through the ImageContentSources API in the hosted cluster manifest.

For the control plane, ICSP objects are managed in the management cluster. These objects are parsed by the HyperShift Operator and are shared as registry-overrides entries with the Control Plane Operator. These entries are injected into any one of the available deployments in the hosted control planes namespace as an argument.

To work with disconnected registries in the hosted control planes, you must first create the appropriate ICSP in the management cluster. Then, to deploy disconnected workloads in the data plane, you need to add the entries that you want into the ImageContentSources field in the hosted cluster manifest.

6.4.1. Prerequisites to deploy hosted control planes on IBM Z in a disconnected environment

  • A mirror registry. For more information, see "Creating a mirror registry with mirror registry for Red Hat OpenShift".
  • A mirrored image for a disconnected installation. For more information, see "Mirroring images for a disconnected installation using the oc-mirror plugin".

6.4.2. Adding credentials and the registry certificate authority to the management cluster

To pull the mirror registry images from the management cluster, you must first add credentials and the certificate authority of the mirror registry to the management cluster. Use the following procedure:

Procedure

  1. Create a ConfigMap with the certificate of the mirror registry by running the following command:

    $ oc apply -f registry-config.yaml

    Example registry-config.yaml file

    apiVersion: v1
    kind: ConfigMap
    metadata:
      name: registry-config
      namespace: openshift-config
    data:
      <mirror_registry>: |
        -----BEGIN CERTIFICATE-----
        -----END CERTIFICATE-----

  2. Patch the image.config.openshift.io cluster-wide object to include the following entries:

    spec:
      additionalTrustedCA:
        - name: registry-config
  3. Update the management cluster pull secret to add the credentials of the mirror registry.

    1. Fetch the pull secret from the cluster in a JSON format by running the following command:

      $ oc get secret/pull-secret -n openshift-config -o json | jq -r '.data.".dockerconfigjson"' | base64 -d > authfile
    2. Edit the fetched secret JSON file to include a section with the credentials of the certificate authority:

        "auths": {
          "<mirror_registry>": { 1
            "auth": "<credentials>", 2
            "email": "you@example.com"
          }
        },
      1
      Provide the name of the mirror registry.
      2
      Provide the credentials for the mirror registry to allow fetch of images.
    3. Update the pull secret on the cluster by running the following command:

      $ oc set data secret/pull-secret -n openshift-config --from-file=.dockerconfigjson=authfile

6.4.3. Update the registry certificate authority in the AgentServiceConfig resource with the mirror registry

When you use a mirror registry for images, agents need to trust the registry’s certificate to securely pull images. You can add the certificate authority of the mirror registry to the AgentServiceConfig custom resource by creating a ConfigMap.

Prerequisites

  • You must have installed multicluster engine for Kubernetes Operator.

Procedure

  1. In the same namespace where you installed multicluster engine Operator, create a ConfigMap resource with the mirror registry details. This ConfigMap resource ensures that you grant the hosted cluster workers the capability to retrieve images from the mirror registry.

    Example ConfigMap file

    apiVersion: v1
    kind: ConfigMap
    metadata:
      name: mirror-config
      namespace: multicluster-engine
      labels:
        app: assisted-service
    data:
      ca-bundle.crt: |
        -----BEGIN CERTIFICATE-----
        -----END CERTIFICATE-----
      registries.conf: |
    
        [[registry]]
          location = "registry.stage.redhat.io"
          insecure = false
          blocked = false
          mirror-by-digest-only = true
          prefix = ""
    
          [[registry.mirror]]
            location = "<mirror_registry>"
            insecure = false
    
        [[registry]]
          location = "registry.redhat.io/multicluster-engine"
          insecure = false
          blocked = false
          mirror-by-digest-only = true
          prefix = ""
    
          [[registry.mirror]]
            location = "<mirror_registry>/multicluster-engine" 1
            insecure = false

    1
    Where: <mirror_registry> is the name of the mirror registry.
  2. Patch the AgentServiceConfig resource to include the ConfigMap resource that you created. If the AgentServiceConfig resource is not present, create the AgentServiceConfig resource with the following content embedded into it:

    spec:
      mirrorRegistryRef:
        name: mirror-config

6.4.4. Adding the registry certificate authority to the hosted cluster

When you are deploying hosted control planes on IBM Z in a disconnected environment, include the additional-trust-bundle and image-content-sources resources. Those resources allow the hosted cluster to inject the certificate authority into the data plane workers so that the images are pulled from the registry.

  1. Create the icsp.yaml file with the image-content-sources information.

    The image-content-sources information is available in the ImageContentSourcePolicy YAML file that is generated after you mirror the images by using oc-mirror.

    Example ImageContentSourcePolicy file

    # cat icsp.yaml
    - mirrors:
      - <mirror_registry>/openshift/release
      source: quay.io/openshift-release-dev/ocp-v4.0-art-dev
    - mirrors:
      - <mirror_registry>/openshift/release-images
      source: quay.io/openshift-release-dev/ocp-release

  2. Create a hosted cluster and provide the additional-trust-bundle certificate to update the compute nodes with the certificates as in the following example:

    $ hcp create cluster agent \
        --name=<hosted_cluster_name> \ 1
        --pull-secret=<path_to_pull_secret> \ 2
        --agent-namespace=<hosted_control_plane_namespace> \ 3
        --base-domain=<basedomain> \ 4
        --api-server-address=api.<hosted_cluster_name>.<basedomain> \
        --etcd-storage-class=<etcd_storage_class> \ 5
        --ssh-key  <path_to_ssh_public_key> \ 6
        --namespace <hosted_cluster_namespace> \ 7
        --control-plane-availability-policy SingleReplica \
        --release-image=quay.io/openshift-release-dev/ocp-release:<ocp_release_image> \ 8
        --additional-trust-bundle <path for cert> \ 9
        --image-content-sources icsp.yaml
    1
    Replace <hosted_cluster_name> with the name of your hosted cluster.
    2
    Replace the path to your pull secret, for example, /user/name/pullsecret.
    3
    Replace <hosted_control_plane_namespace> with the name of the hosted control plane namespace, for example, clusters-hosted.
    4
    Replace the name with your base domain, for example, example.com.
    5
    Replace the etcd storage class name, for example, lvm-storageclass.
    6
    Replace the path to your SSH public key. The default file path is ~/.ssh/id_rsa.pub.
    7 8
    Replace with the supported OpenShift Container Platform version that you want to use, for example, 4.17.0-multi.
    9
    Replace the path to Certificate Authority of mirror registry.

6.5. Monitoring user workload in a disconnected environment

The hypershift-addon managed cluster add-on enables the --enable-uwm-telemetry-remote-write option in the HyperShift Operator. By enabling that option, you ensure that user workload monitoring is enabled and that it can remotely write telemetry metrics from control planes.

6.5.1. Resolving user workload monitoring issues

If you installed multicluster engine Operator on OpenShift Container Platform clusters that are not connected to the internet, when you try to run the user workload monitoring feature of the HyperShift Operator by entering the following command, the feature fails with an error:

$ oc get events -n hypershift

Example error

LAST SEEN   TYPE      REASON           OBJECT                MESSAGE
4m46s       Warning   ReconcileError   deployment/operator   Failed to ensure UWM telemetry remote write: cannot get telemeter client secret: Secret "telemeter-client" not found

To resolve the error, you must disable the user workload monitoring option by creating a config map in the local-cluster namespace. You can create the config map either before or after you enable the add-on. The add-on agent reconfigures the HyperShift Operator.

Procedure

  1. Create the following config map:

    kind: ConfigMap
    apiVersion: v1
    metadata:
      name: hypershift-operator-install-flags
      namespace: local-cluster
    data:
      installFlagsToAdd: ""
      installFlagsToRemove: "--enable-uwm-telemetry-remote-write"
  2. Apply the config map by running the following command:

    $ oc apply -f <filename>.yaml

6.5.2. Verifying the status of the hosted control plane feature

The hosted control plane feature is enabled by default.

Procedure

  1. If the feature is disabled and you want to enable it, enter the following command. Replace <multiclusterengine> with the name of your multicluster engine Operator instance:

    $ oc patch mce <multiclusterengine> --type=merge -p '{"spec":{"overrides":{"components":[{"name":"hypershift","enabled": true}]}}}'

    When you enable the feature, the hypershift-addon managed cluster add-on is installed in the local-cluster managed cluster, and the add-on agent installs the HyperShift Operator on the multicluster engine Operator hub cluster.

  2. Confirm that the hypershift-addon managed cluster add-on is installed by entering the following command:

    $ oc get managedclusteraddons -n local-cluster hypershift-addon

    Example output

    NAME               AVAILABLE   DEGRADED   PROGRESSING
    hypershift-addon   True        False

  3. To avoid a timeout during this process, enter the following commands:

    $ oc wait --for=condition=Degraded=True managedclusteraddons/hypershift-addon -n local-cluster --timeout=5m
    $ oc wait --for=condition=Available=True managedclusteraddons/hypershift-addon -n local-cluster --timeout=5m

    When the process is complete, the hypershift-addon managed cluster add-on and the HyperShift Operator are installed, and the local-cluster managed cluster is available to host and manage hosted clusters.

6.5.3. Configuring the hypershift-addon managed cluster add-on to run on an infrastructure node

By default, no node placement preference is specified for the hypershift-addon managed cluster add-on. Consider running the add-ons on the infrastructure nodes, because by doing so, you can prevent incurring billing costs against subscription counts and separate maintenance and management tasks.

Procedure

  1. Log in to the hub cluster.
  2. Open the hypershift-addon-deploy-config add-on deployment configuration specification for editing by entering the following command:

    $ oc edit addondeploymentconfig hypershift-addon-deploy-config -n multicluster-engine
  3. Add the nodePlacement field to the specification, as shown in the following example:

    apiVersion: addon.open-cluster-management.io/v1alpha1
    kind: AddOnDeploymentConfig
    metadata:
      name: hypershift-addon-deploy-config
      namespace: multicluster-engine
    spec:
      nodePlacement:
        nodeSelector:
          node-role.kubernetes.io/infra: ""
        tolerations:
        - effect: NoSchedule
          key: node-role.kubernetes.io/infra
          operator: Exists
  4. Save the changes. The hypershift-addon managed cluster add-on is deployed on an infrastructure node for new and existing managed clusters.

Chapter 7. Updating hosted control planes

Updates for hosted control planes involve updating the hosted cluster and the node pools. For a cluster to remain fully operational during an update process, you must meet the requirements of the Kubernetes version skew policy while completing the control plane and node updates.

7.1. Requirements to upgrade hosted control planes

The multicluster engine for Kubernetes Operator can manage one or more OpenShift Container Platform clusters. After you create a hosted cluster on OpenShift Container Platform, you must import your hosted cluster in the multicluster engine Operator as a managed cluster. Then, you can use the OpenShift Container Platform cluster as a management cluster.

Consider the following requirements before you start updating hosted control planes:

  • You must use the bare metal platform for an OpenShift Container Platform cluster when using OpenShift Virtualization as a provider.
  • You must use bare metal or OpenShift Virtualization as the cloud platform for the hosted cluster. You can find the platform type of your hosted cluster in the spec.Platform.type specification of the HostedCluster custom resource (CR).
Important

You must update hosted control planes in the following order:

  1. Upgrade an OpenShift Container Platform cluster to the latest version. For more information, see "Updating a cluster using the web console" or "Updating a cluster using the CLI".
  2. Upgrade the multicluster engine Operator to the latest version. For more information, see "Updating installed Operators".
  3. Upgrade the hosted cluster and node pools from the previous OpenShift Container Platform version to the latest version. For more information, see "Updating a control plane in a hosted cluster" and "Updating node pools in a hosted cluster".

7.2. Setting channels in a hosted cluster

You can see available updates in the HostedCluster.Status field of the HostedCluster custom resource (CR).

The available updates are not fetched from the Cluster Version Operator (CVO) of a hosted cluster. The list of the available updates can be different from the available updates from the following fields of the HostedCluster custom resource (CR):

  • status.version.availableUpdates
  • status.version.conditionalUpdates

The initial HostedCluster CR does not have any information in the status.version.availableUpdates and status.version.conditionalUpdates fields. After you set the spec.channel field to the stable OpenShift Container Platform release version, the HyperShift Operator reconciles the HostedCluster CR and updates the status.version field with the available and conditional updates.

See the following example of the HostedCluster CR that contains the channel configuration:

spec:
  autoscaling: {}
  channel: stable-4.y 1
  clusterID: d6d42268-7dff-4d37-92cf-691bd2d42f41
  configuration: {}
  controllerAvailabilityPolicy: SingleReplica
  dns:
    baseDomain: dev11.red-chesterfield.com
    privateZoneID: Z0180092I0DQRKL55LN0
    publicZoneID: Z00206462VG6ZP0H2QLWK
1
Replace <4.y> with the OpenShift Container Platform release version you specified in spec.release. For example, if you set the spec.release to ocp-release:4.16.4-multi, you must set spec.channel to stable-4.16.

After you configure the channel in the HostedCluster CR, to view the output of the status.version.availableUpdates and status.version.conditionalUpdates fields, run the following command:

$ oc get -n <hosted_cluster_namespace> hostedcluster <hosted_cluster_name> -o yaml

Example output

version:
  availableUpdates:
  - channels:
    - candidate-4.16
    - candidate-4.17
    - eus-4.16
    - fast-4.16
    - stable-4.16
    image: quay.io/openshift-release-dev/ocp-release@sha256:b7517d13514c6308ae16c5fd8108133754eb922cd37403ed27c846c129e67a9a
    url: https://access.redhat.com/errata/RHBA-2024:6401
    version: 4.16.11
  - channels:
    - candidate-4.16
    - candidate-4.17
    - eus-4.16
    - fast-4.16
    - stable-4.16
    image: quay.io/openshift-release-dev/ocp-release@sha256:d08e7c8374142c239a07d7b27d1170eae2b0d9f00ccf074c3f13228a1761c162
    url: https://access.redhat.com/errata/RHSA-2024:6004
    version: 4.16.10
  - channels:
    - candidate-4.16
    - candidate-4.17
    - eus-4.16
    - fast-4.16
    - stable-4.16
    image: quay.io/openshift-release-dev/ocp-release@sha256:6a80ac72a60635a313ae511f0959cc267a21a89c7654f1c15ee16657aafa41a0
    url: https://access.redhat.com/errata/RHBA-2024:5757
    version: 4.16.9
  - channels:
    - candidate-4.16
    - candidate-4.17
    - eus-4.16
    - fast-4.16
    - stable-4.16
    image: quay.io/openshift-release-dev/ocp-release@sha256:ea624ae7d91d3f15094e9e15037244679678bdc89e5a29834b2ddb7e1d9b57e6
    url: https://access.redhat.com/errata/RHSA-2024:5422
    version: 4.16.8
  - channels:
    - candidate-4.16
    - candidate-4.17
    - eus-4.16
    - fast-4.16
    - stable-4.16
    image: quay.io/openshift-release-dev/ocp-release@sha256:e4102eb226130117a0775a83769fe8edb029f0a17b6cbca98a682e3f1225d6b7
    url: https://access.redhat.com/errata/RHSA-2024:4965
    version: 4.16.6
  - channels:
    - candidate-4.16
    - candidate-4.17
    - eus-4.16
    - fast-4.16
    - stable-4.16
    image: quay.io/openshift-release-dev/ocp-release@sha256:f828eda3eaac179e9463ec7b1ed6baeba2cd5bd3f1dd56655796c86260db819b
    url: https://access.redhat.com/errata/RHBA-2024:4855
    version: 4.16.5
  conditionalUpdates:
  - conditions:
    - lastTransitionTime: "2024-09-23T22:33:38Z"
      message: |-
        Could not evaluate exposure to update risk SRIOVFailedToConfigureVF (creating PromQL round-tripper: unable to load specified CA cert /etc/tls/service-ca/service-ca.crt: open /etc/tls/service-ca/service-ca.crt: no such file or directory)
          SRIOVFailedToConfigureVF description: OCP Versions 4.14.34, 4.15.25, 4.16.7 and ALL subsequent versions include kernel datastructure changes which are not compatible with older versions of the SR-IOV operator. Please update SR-IOV operator to versions dated 20240826 or newer before updating OCP.
          SRIOVFailedToConfigureVF URL: https://issues.redhat.com/browse/NHE-1171
      reason: EvaluationFailed
      status: Unknown
      type: Recommended
    release:
      channels:
      - candidate-4.16
      - candidate-4.17
      - eus-4.16
      - fast-4.16
      - stable-4.16
      image: quay.io/openshift-release-dev/ocp-release@sha256:fb321a3f50596b43704dbbed2e51fdefd7a7fd488ee99655d03784d0cd02283f
      url: https://access.redhat.com/errata/RHSA-2024:5107
      version: 4.16.7
    risks:
    - matchingRules:
      - promql:
          promql: |
            group(csv_succeeded{_id="d6d42268-7dff-4d37-92cf-691bd2d42f41", name=~"sriov-network-operator[.].*"})
            or
            0 * group(csv_count{_id="d6d42268-7dff-4d37-92cf-691bd2d42f41"})
        type: PromQL
      message: OCP Versions 4.14.34, 4.15.25, 4.16.7 and ALL subsequent versions
        include kernel datastructure changes which are not compatible with older
        versions of the SR-IOV operator. Please update SR-IOV operator to versions
        dated 20240826 or newer before updating OCP.
      name: SRIOVFailedToConfigureVF
      url: https://issues.redhat.com/browse/NHE-1171

7.3. Updating the OpenShift Container Platform version in a hosted cluster

Hosted control planes enables the decoupling of updates between the control plane and the data plane.

As a cluster service provider or cluster administrator, you can manage the control plane and the data separately.

You can update a control plane by modifying the HostedCluster custom resource (CR) and a node by modifying its NodePool CR. Both the HostedCluster and NodePool CRs specify an OpenShift Container Platform release image in a .release field.

To keep your hosted cluster fully operational during an update process, the control plane and the node updates must follow the Kubernetes version skew policy.

7.3.1. The multicluster engine Operator hub management cluster

The multicluster engine for Kubernetes Operator requires a specific OpenShift Container Platform version for the management cluster to remain in a supported state. You can install the multicluster engine Operator from OperatorHub in the OpenShift Container Platform web console.

See the following support matrices for the multicluster engine Operator versions:

The multicluster engine Operator supports the following OpenShift Container Platform versions:

  • The latest unreleased version
  • The latest released version
  • Two versions before the latest released version

You can also get the multicluster engine Operator version as a part of Red Hat Advanced Cluster Management (RHACM).

7.3.2. Supported OpenShift Container Platform versions in a hosted cluster

When deploying a hosted cluster, the OpenShift Container Platform version of the management cluster does not affect the OpenShift Container Platform version of a hosted cluster.

The HyperShift Operator creates the supported-versions ConfigMap in the hypershift namespace. The supported-versions ConfigMap describes the range of supported OpenShift Container Platform versions that you can deploy.

See the following example of the supported-versions ConfigMap:

apiVersion: v1
data:
    server-version: 2f6cfe21a0861dea3130f3bed0d3ae5553b8c28b
    supported-versions: '{"versions":["4.17","4.16","4.15","4.14"]}'
kind: ConfigMap
metadata:
    creationTimestamp: "2024-06-20T07:12:31Z"
    labels:
        hypershift.openshift.io/supported-versions: "true"
    name: supported-versions
    namespace: hypershift
    resourceVersion: "927029"
    uid: f6336f91-33d3-472d-b747-94abae725f70
Important

To create a hosted cluster, you must use the OpenShift Container Platform version from the support version range. However, the multicluster engine Operator can manage only between n+1 and n-2 OpenShift Container Platform versions, where n defines the current minor version. You can check the multicluster engine Operator support matrix to ensure the hosted clusters managed by the multicluster engine Operator are within the supported OpenShift Container Platform range.

To deploy a higher version of a hosted cluster on OpenShift Container Platform, you must update the multicluster engine Operator to a new minor version release to deploy a new version of the Hypershift Operator. Upgrading the multicluster engine Operator to a new patch, or z-stream, release does not update the HyperShift Operator to the next version.

See the following example output of the hcp version command that shows the supported OpenShift Container Platform versions for OpenShift Container Platform 4.16 in the management cluster:

Client Version: openshift/hypershift: fe67b47fb60e483fe60e4755a02b3be393256343. Latest supported OCP: 4.17.0
Server Version: 05864f61f24a8517731664f8091cedcfc5f9b60d
Server Supports OCP Versions: 4.17, 4.16, 4.15, 4.14

7.4. Updates for the hosted cluster

The spec.release value dictates the version of the control plane. The HostedCluster object transmits the intended spec.release value to the HostedControlPlane.spec.release value and runs the appropriate Control Plane Operator version.

The hosted control plane manages the rollout of the new version of the control plane components along with any OpenShift Container Platform components through the new version of the Cluster Version Operator (CVO).

7.5. Updates for node pools

With node pools, you can configure the software that is running in the nodes by exposing the spec.release and spec.config values. You can start a rolling node pool update in the following ways:

  • Changing the spec.release or spec.config values.
  • Changing any platform-specific field, such as the AWS instance type. The result is a set of new instances with the new type.
  • Changing the cluster configuration, if the change propagates to the node.

Node pools support replace updates and in-place updates. The nodepool.spec.release value dictates the version of any particular node pool. A NodePool object completes a replace or an in-place rolling update according to the .spec.management.upgradeType value.

After you create a node pool, you cannot change the update type. If you want to change the update type, you must create a node pool and delete the other one.

7.5.1. Replace updates for node pools

A replace update creates instances in the new version while it removes old instances from the previous version. This update type is effective in cloud environments where this level of immutability is cost effective.

Replace updates do not preserve any manual changes because the node is entirely re-provisioned.

7.5.2. In place updates for node pools

An in-place update directly updates the operating systems of the instances. This type is suitable for environments where the infrastructure constraints are higher, such as bare metal.

In-place updates can preserve manual changes, but will report errors if you make manual changes to any file system or operating system configuration that the cluster directly manages, such as kubelet certificates.

7.6. Updating node pools in a hosted cluster

You can update your version of OpenShift Container Platform by updating the node pools in your hosted cluster. The node pool version must not surpass the hosted control plane version.

The .spec.release field in the NodePool custom resource (CR) shows the version of a node pool.

Procedure

  • Change the spec.release.image value in the node pool by entering the following command:

    $ oc patch nodepool <node_pool_name> -n <hosted_cluster_namespace> --type=merge -p '{"spec":{"nodeDrainTimeout":"60s","release":{"image":"<openshift_release_image>"}}}' 1 2
    1
    Replace <node_pool_name> and <hosted_cluster_namespace> with your node pool name and hosted cluster namespace, respectively.
    2
    The <openshift_release_image> variable specifies the new OpenShift Container Platform release image that you want to upgrade to, for example, quay.io/openshift-release-dev/ocp-release:4.y.z-x86_64. Replace <4.y.z> with the supported OpenShift Container Platform version.

Verification

  • To verify that the new version was rolled out, check the .status.conditions value in the node pool by running the following command:

    $ oc get -n <hosted_cluster_namespace> nodepool <node_pool_name> -o yaml

    Example output

    status:
     conditions:
     - lastTransitionTime: "2024-05-20T15:00:40Z"
           message: 'Using release image: quay.io/openshift-release-dev/ocp-release:4.y.z-x86_64' 1
           reason: AsExpected
           status: "True"
           type: ValidReleaseImage

    1
    Replace <4.y.z> with the supported OpenShift Container Platform version.

7.7. Updating a control plane in a hosted cluster

On hosted control planes, you can upgrade your version of OpenShift Container Platform by updating the hosted cluster. The .spec.release in the HostedCluster custom resource (CR) shows the version of the control plane. The HostedCluster updates the .spec.release field to the HostedControlPlane.spec.release and runs the appropriate Control Plane Operator version.

The HostedControlPlane resource orchestrates the rollout of the new version of the control plane components along with the OpenShift Container Platform component in the data plane through the new version of the Cluster Version Operator (CVO). The HostedControlPlane includes the following artifacts:

  • CVO
  • Cluster Network Operator (CNO)
  • Cluster Ingress Operator
  • Manifests for the Kube API server, scheduler, and manager
  • Machine approver
  • Autoscaler
  • Infrastructure resources to enable ingress for control plane endpoints such as the Kube API server, ignition, and konnectivity

You can set the .spec.release field in the HostedCluster CR to update the control plane by using the information from the status.version.availableUpdates and status.version.conditionalUpdates fields.

Procedure

  1. Add the hypershift.openshift.io/force-upgrade-to=<openshift_release_image> annotation to the hosted cluster by entering the following command:

    $ oc annotate hostedcluster -n <hosted_cluster_namespace> <hosted_cluster_name> "hypershift.openshift.io/force-upgrade-to=<openshift_release_image>" --overwrite 1 2
    1
    Replace <hosted_cluster_name> and <hosted_cluster_namespace> with your hosted cluster name and hosted cluster namespace, respectively.
    2
    The <openshift_release_image> variable specifies the new OpenShift Container Platform release image that you want to upgrade to, for example, quay.io/openshift-release-dev/ocp-release:4.y.z-x86_64. Replace <4.y.z> with the supported OpenShift Container Platform version.
  2. Change the spec.release.image value in the hosted cluster by entering the following command:

    $ oc patch hostedcluster <hosted_cluster_name> -n <hosted_cluster_namespace> --type=merge -p '{"spec":{"release":{"image":"<openshift_release_image>"}}}'

Verification

  • To verify that the new version was rolled out, check the .status.conditions and .status.version values in the hosted cluster by running the following command:

    $ oc get -n <hosted_cluster_namespace> hostedcluster <hosted_cluster_name> -o yaml

    Example output

    status:
     conditions:
     - lastTransitionTime: "2024-05-20T15:01:01Z"
            message: Payload loaded version="4.y.z" image="quay.io/openshift-release-dev/ocp-release:4.y.z-x86_64" 1
            status: "True"
            type: ClusterVersionReleaseAccepted
    #...
    version:
          availableUpdates: null
          desired:
          image: quay.io/openshift-release-dev/ocp-release:4.y.z-x86_64 2
          version: 4.y.z

    1 2
    Replace <4.y.z> with the supported OpenShift Container Platform version.

7.8. Updating a hosted cluster by using the multicluster engine Operator console

You can update your hosted cluster by using the multicluster engine Operator console.

Important

Before updating a hosted cluster, you must refer to the available and conditional updates of a hosted cluster. Choosing a wrong release version might break the hosted cluster.

Procedure

  1. Select All clusters.
  2. Navigate to InfrastructureClusters to view managed hosted clusters.
  3. Click the Upgrade available link to update the control plane and node pools.

Chapter 8. High availability for hosted control planes

8.1. About high availability for hosted control planes

You can maintain high availability (HA) of hosted control planes by implementing the following actions:

  • Recover etcd members for a hosted cluster.
  • Back up and restore etcd for a hosted cluster.
  • Perform a disaster recovery process for a hosted cluster.

8.1.1. Impact of the failed management cluster component

If the management cluster component fails, your workload remains unaffected. In the OpenShift Container Platform management cluster, the control plane is decoupled from the data plane to provide resiliency.

The following table covers the impact of a failed management cluster component on the control plane and the data plane. However, the table does not cover all scenarios for the management cluster component failures.

Table 8.1. Impact of the failed component on hosted control planes
Name of the failed componentHosted control plane API statusHosted cluster data plane status

Worker node

Available

Available

Availability zone

Available

Available

Management cluster control plane

Available

Available

Management cluster control plane and worker nodes

Not available

Available

8.2. Recovering an unhealthy etcd cluster

In a highly available control plane, three etcd pods run as a part of a stateful set in an etcd cluster. To recover an etcd cluster, identify unhealthy etcd pods by checking the etcd cluster health.

8.2.1. Checking the status of an etcd cluster

You can check the status of the etcd cluster health by logging into any etcd pod.

Procedure

  1. Log in to an etcd pod by entering the following command:

    $ oc rsh -n openshift-etcd -c etcd <etcd_pod_name>
  2. Print the health status of an etcd cluster by entering the following command:

    sh-4.4# etcdctl endpoint status -w table

    Example output

    +------------------------------+-----------------+---------+---------+-----------+------------+-----------+------------+--------------------+--------+
    |          ENDPOINT            |       ID        | VERSION | DB SIZE | IS LEADER | IS LEARNER | RAFT TERM | RAFT INDEX | RAFT APPLIED INDEX | ERRORS |
    +------------------------------+-----------------+---------+---------+-----------+------------+-----------+------------+--------------------+--------+
    | https://192.168.1xxx.20:2379 | 8fxxxxxxxxxx    |  3.5.12 |  123 MB |     false |      false |        10 |     180156 |             180156 |        |
    | https://192.168.1xxx.21:2379 | a5xxxxxxxxxx    |  3.5.12 |  122 MB |     false |      false |        10 |     180156 |             180156 |        |
    | https://192.168.1xxx.22:2379 | 7cxxxxxxxxxx    |  3.5.12 |  124 MB |      true |      false |        10 |     180156 |             180156 |        |
    +-----------------------------+------------------+---------+---------+-----------+------------+-----------+------------+--------------------+--------+

8.2.2. Recovering a failing etcd pod

Each etcd pod of a 3-node cluster has its own persistent volume claim (PVC) to store its data. An etcd pod might fail because of corrupted or missing data. You can recover a failing etcd pod and its PVC.

Procedure

  1. To confirm that the etcd pod is failing, enter the following command:

    $ oc get pods -l app=etcd -n openshift-etcd

    Example output

    NAME     READY   STATUS             RESTARTS     AGE
    etcd-0   2/2     Running            0            64m
    etcd-1   2/2     Running            0            45m
    etcd-2   1/2     CrashLoopBackOff   1 (5s ago)   64m

    The failing etcd pod might have the CrashLoopBackOff or Error status.

  2. Delete the failing pod and its PVC by entering the following command:

    $ oc delete pods etcd-2 -n openshift-etcd

Verification

  • Verify that a new etcd pod is up and running by entering the following command:

    $ oc get pods -l app=etcd -n openshift-etcd

    Example output

    NAME     READY   STATUS    RESTARTS   AGE
    etcd-0   2/2     Running   0          67m
    etcd-1   2/2     Running   0          48m
    etcd-2   2/2     Running   0          2m2s

8.3. Backing up and restoring etcd in an on-premise environment

You can back up and restore etcd on a hosted cluster in an on-premise environment to fix failures.

8.3.1. Backing up and restoring etcd on a hosted cluster in an on-premise environment

By backing up and restoring etcd on a hosted cluster, you can fix failures, such as corrupted or missing data in an etcd member of a three node cluster. If multiple members of the etcd cluster encounter data loss or have a CrashLoopBackOff status, this approach helps prevent an etcd quorum loss.

Important

This procedure requires API downtime.

Prerequisites

  • The oc and jq binaries have been installed.

Procedure

  1. First, set up your environment variables and scale down the API servers:

    1. Set up environment variables for your hosted cluster by entering the following commands, replacing values as necessary:

      $ CLUSTER_NAME=my-cluster
      $ HOSTED_CLUSTER_NAMESPACE=clusters
      $ CONTROL_PLANE_NAMESPACE="${HOSTED_CLUSTER_NAMESPACE}-${CLUSTER_NAME}"
    2. Pause reconciliation of the hosted cluster by entering the following command, replacing values as necessary:

      $ oc patch -n ${HOSTED_CLUSTER_NAMESPACE} hostedclusters/${CLUSTER_NAME} -p '{"spec":{"pausedUntil":"true"}}' --type=merge
    3. Scale down the API servers by entering the following commands:

      1. Scale down the kube-apiserver:

        $ oc scale -n ${CONTROL_PLANE_NAMESPACE} deployment/kube-apiserver --replicas=0
      2. Scale down the openshift-apiserver:

        $ oc scale -n ${CONTROL_PLANE_NAMESPACE} deployment/openshift-apiserver --replicas=0
      3. Scale down the openshift-oauth-apiserver:

        $ oc scale -n ${CONTROL_PLANE_NAMESPACE} deployment/openshift-oauth-apiserver --replicas=0
  2. Next, take a snapshot of etcd by using one of the following methods:

    1. Use a previously backed-up snapshot of etcd.
    2. If you have an available etcd pod, take a snapshot from the active etcd pod by completing the following steps:

      1. List etcd pods by entering the following command:

        $ oc get -n ${CONTROL_PLANE_NAMESPACE} pods -l app=etcd
      2. Take a snapshot of the pod database and save it locally to your machine by entering the following commands:

        $ ETCD_POD=etcd-0
        $ oc exec -n ${CONTROL_PLANE_NAMESPACE} -c etcd -t ${ETCD_POD} -- env ETCDCTL_API=3 /usr/bin/etcdctl \
        --cacert /etc/etcd/tls/etcd-ca/ca.crt \
        --cert /etc/etcd/tls/client/etcd-client.crt \
        --key /etc/etcd/tls/client/etcd-client.key \
        --endpoints=https://localhost:2379 \
        snapshot save /var/lib/snapshot.db
      3. Verify that the snapshot is successful by entering the following command:

        $ oc exec -n ${CONTROL_PLANE_NAMESPACE} -c etcd -t ${ETCD_POD} -- env ETCDCTL_API=3 /usr/bin/etcdctl -w table snapshot status /var/lib/snapshot.db
    3. Make a local copy of the snapshot by entering the following command:

      $ oc cp -c etcd ${CONTROL_PLANE_NAMESPACE}/${ETCD_POD}:/var/lib/snapshot.db /tmp/etcd.snapshot.db
      1. Make a copy of the snapshot database from etcd persistent storage:

        1. List etcd pods by entering the following command:

          $ oc get -n ${CONTROL_PLANE_NAMESPACE} pods -l app=etcd
        2. Find a pod that is running and set its name as the value of ETCD_POD: ETCD_POD=etcd-0, and then copy its snapshot database by entering the following command:

          $ oc cp -c etcd ${CONTROL_PLANE_NAMESPACE}/${ETCD_POD}:/var/lib/data/member/snap/db /tmp/etcd.snapshot.db
  3. Next, scale down the etcd statefulset by entering the following command:

    $ oc scale -n ${CONTROL_PLANE_NAMESPACE} statefulset/etcd --replicas=0
    1. Delete volumes for second and third members by entering the following command:

      $ oc delete -n ${CONTROL_PLANE_NAMESPACE} pvc/data-etcd-1 pvc/data-etcd-2
    2. Create a pod to access the first etcd member’s data:

      1. Get the etcd image by entering the following command:

        $ ETCD_IMAGE=$(oc get -n ${CONTROL_PLANE_NAMESPACE} statefulset/etcd -o jsonpath='{ .spec.template.spec.containers[0].image }')
      2. Create a pod that allows access to etcd data:

        $ cat << EOF | oc apply -n ${CONTROL_PLANE_NAMESPACE} -f -
        apiVersion: apps/v1
        kind: Deployment
        metadata:
          name: etcd-data
        spec:
          replicas: 1
          selector:
            matchLabels:
              app: etcd-data
          template:
            metadata:
              labels:
                app: etcd-data
            spec:
              containers:
              - name: access
                image: $ETCD_IMAGE
                volumeMounts:
                - name: data
                  mountPath: /var/lib
                command:
                - /usr/bin/bash
                args:
                - -c
                - |-
                  while true; do
                    sleep 1000
                  done
              volumes:
              - name: data
                persistentVolumeClaim:
                  claimName: data-etcd-0
        EOF
      3. Check the status of the etcd-data pod and wait for it to be running by entering the following command:

        $ oc get -n ${CONTROL_PLANE_NAMESPACE} pods -l app=etcd-data
      4. Get the name of the etcd-data pod by entering the following command:

        $ DATA_POD=$(oc get -n ${CONTROL_PLANE_NAMESPACE} pods --no-headers -l app=etcd-data -o name | cut -d/ -f2)
    3. Copy an etcd snapshot into the pod by entering the following command:

      $ oc cp /tmp/etcd.snapshot.db ${CONTROL_PLANE_NAMESPACE}/${DATA_POD}:/var/lib/restored.snap.db
    4. Remove old data from the etcd-data pod by entering the following commands:

      $ oc exec -n ${CONTROL_PLANE_NAMESPACE} ${DATA_POD} -- rm -rf /var/lib/data
      $ oc exec -n ${CONTROL_PLANE_NAMESPACE} ${DATA_POD} -- mkdir -p /var/lib/data
    5. Restore the etcd snapshot by entering the following command:

      $ oc exec -n ${CONTROL_PLANE_NAMESPACE} ${DATA_POD} -- etcdutl snapshot restore /var/lib/restored.snap.db \
           --data-dir=/var/lib/data --skip-hash-check \
           --name etcd-0 \
           --initial-cluster-token=etcd-cluster \
           --initial-cluster etcd-0=https://etcd-0.etcd-discovery.${CONTROL_PLANE_NAMESPACE}.svc:2380,etcd-1=https://etcd-1.etcd-discovery.${CONTROL_PLANE_NAMESPACE}.svc:2380,etcd-2=https://etcd-2.etcd-discovery.${CONTROL_PLANE_NAMESPACE}.svc:2380 \
           --initial-advertise-peer-urls https://etcd-0.etcd-discovery.${CONTROL_PLANE_NAMESPACE}.svc:2380
    6. Remove the temporary etcd snapshot from the pod by entering the following command:

      $ oc exec -n ${CONTROL_PLANE_NAMESPACE} ${DATA_POD} -- rm /var/lib/restored.snap.db
    7. Delete data access deployment by entering the following command:

      $ oc delete -n ${CONTROL_PLANE_NAMESPACE} deployment/etcd-data
    8. Scale up the etcd cluster by entering the following command:

      $ oc scale -n ${CONTROL_PLANE_NAMESPACE} statefulset/etcd --replicas=3
    9. Wait for the etcd member pods to return and report as available by entering the following command:

      $ oc get -n ${CONTROL_PLANE_NAMESPACE} pods -l app=etcd -w
    10. Scale up all etcd-writer deployments by entering the following command:

      $ oc scale deployment -n ${CONTROL_PLANE_NAMESPACE} --replicas=3 kube-apiserver openshift-apiserver openshift-oauth-apiserver
  4. Restore reconciliation of the hosted cluster by entering the following command:

    $ oc patch -n ${CLUSTER_NAMESPACE} hostedclusters/${CLUSTER_NAME} -p '{"spec":{"pausedUntil":""}}' --type=merge

8.4. Backing up and restoring etcd on AWS

You can back up and restore etcd on a hosted cluster on Amazon Web Services (AWS) to fix failures.

8.4.1. Taking a snapshot of etcd for a hosted cluster

To back up etcd for a hosted cluster, you must take a snapshot of etcd. Later, you can restore etcd by using the snapshot.

Important

This procedure requires API downtime.

Procedure

  1. Pause reconciliation of the hosted cluster by entering the following command:

    $ oc patch -n clusters hostedclusters/<hosted_cluster_name> -p '{"spec":{"pausedUntil":"true"}}' --type=merge
  2. Stop all etcd-writer deployments by entering the following command:

    $ oc scale deployment -n <hosted_cluster_namespace> --replicas=0 kube-apiserver openshift-apiserver openshift-oauth-apiserver
  3. To take an etcd snapshot, use the exec command in each etcd container by entering the following command:

    $ oc exec -it <etcd_pod_name> -n <hosted_cluster_namespace> -- env ETCDCTL_API=3 /usr/bin/etcdctl --cacert /etc/etcd/tls/etcd-ca/ca.crt --cert /etc/etcd/tls/client/etcd-client.crt --key /etc/etcd/tls/client/etcd-client.key --endpoints=localhost:2379 snapshot save /var/lib/data/snapshot.db
  4. To check the snapshot status, use the exec command in each etcd container by running the following command:

    $ oc exec -it <etcd_pod_name> -n <hosted_cluster_namespace> -- env ETCDCTL_API=3 /usr/bin/etcdctl -w table snapshot status /var/lib/data/snapshot.db
  5. Copy the snapshot data to a location where you can retrieve it later, such as an S3 bucket. See the following example.

    Note

    The following example uses signature version 2. If you are in a region that supports signature version 4, such as the us-east-2 region, use signature version 4. Otherwise, when copying the snapshot to an S3 bucket, the upload fails.

    Example

    BUCKET_NAME=somebucket
    FILEPATH="/${BUCKET_NAME}/${CLUSTER_NAME}-snapshot.db"
    CONTENT_TYPE="application/x-compressed-tar"
    DATE_VALUE=`date -R`
    SIGNATURE_STRING="PUT\n\n${CONTENT_TYPE}\n${DATE_VALUE}\n${FILEPATH}"
    ACCESS_KEY=accesskey
    SECRET_KEY=secret
    SIGNATURE_HASH=`echo -en ${SIGNATURE_STRING} | openssl sha1 -hmac ${SECRET_KEY} -binary | base64`
    
    oc exec -it etcd-0 -n ${HOSTED_CLUSTER_NAMESPACE} -- curl -X PUT -T "/var/lib/data/snapshot.db" \
      -H "Host: ${BUCKET_NAME}.s3.amazonaws.com" \
      -H "Date: ${DATE_VALUE}" \
      -H "Content-Type: ${CONTENT_TYPE}" \
      -H "Authorization: AWS ${ACCESS_KEY}:${SIGNATURE_HASH}" \
      https://${BUCKET_NAME}.s3.amazonaws.com/${CLUSTER_NAME}-snapshot.db

  6. To restore the snapshot on a new cluster later, save the encryption secret that the hosted cluster references.

    1. Get the secret encryption key by entering the following command:

      $ oc get hostedcluster <hosted_cluster_name> -o=jsonpath='{.spec.secretEncryption.aescbc}'
      {"activeKey":{"name":"<hosted_cluster_name>-etcd-encryption-key"}}
    2. Save the secret encryption key by entering the following command:

      $ oc get secret <hosted_cluster_name>-etcd-encryption-key -o=jsonpath='{.data.key}'

      You can decrypt this key when restoring a snapshot on a new cluster.

Next steps

Restore the etcd snapshot.

8.4.2. Restoring an etcd snapshot on a hosted cluster

If you have a snapshot of etcd from your hosted cluster, you can restore it. Currently, you can restore an etcd snapshot only during cluster creation.

To restore an etcd snapshot, you modify the output from the create cluster --render command and define a restoreSnapshotURL value in the etcd section of the HostedCluster specification.

Note

The --render flag in the hcp create command does not render the secrets. To render the secrets, you must use both the --render and the --render-sensitive flags in the hcp create command.

Prerequisites

You took an etcd snapshot on a hosted cluster.

Procedure

  1. On the aws command-line interface (CLI), create a pre-signed URL so that you can download your etcd snapshot from S3 without passing credentials to the etcd deployment:

    ETCD_SNAPSHOT=${ETCD_SNAPSHOT:-"s3://${BUCKET_NAME}/${CLUSTER_NAME}-snapshot.db"}
    ETCD_SNAPSHOT_URL=$(aws s3 presign ${ETCD_SNAPSHOT})
  2. Modify the HostedCluster specification to refer to the URL:

    spec:
      etcd:
        managed:
          storage:
            persistentVolume:
              size: 4Gi
            type: PersistentVolume
            restoreSnapshotURL:
            - "${ETCD_SNAPSHOT_URL}"
        managementType: Managed
  3. Ensure that the secret that you referenced from the spec.secretEncryption.aescbc value contains the same AES key that you saved in the previous steps.

8.5. Backing up and restoring a hosted cluster on OpenShift Virtualization

You can back up and restore a hosted cluster on OpenShift Virtualization to fix failures.

8.5.1. Backing up a hosted cluster on OpenShift Virtualization

When you back up a hosted cluster on OpenShift Virtualization, the hosted cluster can remain running. The backup contains the hosted control plane components and the etcd for the hosted cluster.

When the hosted cluster is not running compute nodes on external infrastructure, hosted cluster workload data that is stored in persistent volume claims (PVCs) that are provisioned by KubeVirt CSI are also backed up. The backup does not contain any KubeVirt virtual machines (VMs) that are used as compute nodes. Those VMs are automatically re-created after the restore process is completed.

Procedure

  1. Create a Velero backup resource by creating a YAML file that is similar to the following example:

    apiVersion: velero.io/v1
    kind: Backup
    metadata:
      name: hc-clusters-hosted-backup
      namespace: openshift-adp
      labels:
        velero.io/storage-location: default
    spec:
      includedNamespaces: 1
      - clusters
      - clusters-hosted
      includedResources:
      - sa
      - role
      - rolebinding
      - deployment
      - statefulset
      - pv
      - pvc
      - bmh
      - configmap
      - infraenv
      - priorityclasses
      - pdb
      - hostedcluster
      - nodepool
      - secrets
      - hostedcontrolplane
      - cluster
      - datavolume
      - service
      - route
      excludedResources: [ ]
      labelSelector: 2
        matchExpressions:
        - key: 'hypershift.openshift.io/is-kubevirt-rhcos'
          operator: 'DoesNotExist'
      storageLocation: default
      preserveNodePorts: true
      ttl: 4h0m0s
      snapshotMoveData: true 3
      datamover: "velero" 4
      defaultVolumesToFsBackup: false 5
    1
    This field selects the namespaces from the objects to back up. Include namespaces from both the hosted cluster and the hosted control plane. In this example, clusters is a namespace from the hosted cluster and clusters-hosted is a namespace from the hosted control plane. By default, the HostedControlPlane namespace is clusters-<hosted_cluster_name>.
    2
    The boot image of the VMs that are used as the hosted cluster nodes are stored in large PVCs. To reduce backup time and storage size, you can filter those PVCs out of the backup by adding this label selector.
    3
    This field and the datamover field enable automatically uploading the CSI VolumeSnapshots to remote cloud storage.
    4
    This field and the snapshotMoveData field enable automatically uploading the CSI VolumeSnapshots to remote cloud storage.
    5
    This field indicates whether pod volume file system backup is used for all volumes by default. Set this value to false to back up the PVCs that you want.
  2. Apply the changes to the YAML file by entering the following command:

    $ oc apply -f <backup_file_name>.yaml

    Replace <backup_file_name> with the name of your file.

  3. Monitor the backup process in the backup object status and in the Velero logs.

    • To monitor the backup object status, enter the following command:

      $ watch "oc get backups.velero.io -n openshift-adp <backup_file_name> -o jsonpath='{.status}' | jq"
    • To monitor the Velero logs, enter the following command:

      $ oc logs -n openshift-adp -ldeploy=velero -f

Verification

  • When the status.phase field is Completed, the backup process is considered complete.

8.5.2. Restoring a hosted cluster on OpenShift Virtualization

After you back up a hosted cluster on OpenShift Virtualization, you can restore the backup.

Note

The restore process can be completed only on the same management cluster where you created the backup.

Procedure

  1. Ensure that no pods or persistent volume claims (PVCs) are running in the HostedControlPlane namespace.
  2. Delete the following objects from the management cluster:

    • HostedCluster
    • NodePool
    • PVCs
  3. Create a restoration manifest YAML file that is similar to the following example:

    apiVersion: velero.io/v1
    kind: Restore
    metadata:
      name: hc-clusters-hosted-restore
      namespace: openshift-adp
    spec:
      backupName: hc-clusters-hosted-backup
      restorePVs: true 1
      existingResourcePolicy: update 2
      excludedResources:
      - nodes
      - events
      - events.events.k8s.io
      - backups.velero.io
      - restores.velero.io
      - resticrepositories.velero.io
    1
    This field starts the recovery of pods with the included persistent volumes.
    2
    Setting existingResourcePolicy to update ensures that any existing objects are overwritten with backup content. This action can cause issues with objects that contain immutable fields, which is why you deleted the HostedCluster, node pools, and PVCs. If you do not set this policy, the Velero engine skips the restoration of objects that already exist.
  4. Apply the changes to the YAML file by entering the following command:

    $ oc apply -f <restore_resource_file_name>.yaml

    Replace <restore_resource_file_name> with the name of your file.

  5. Monitor the restore process by checking the restore status field and the Velero logs.

    • To check the restore status field, enter the following command:

      $ watch "oc get restores.velero.io -n openshift-adp <backup_file_name> -o jsonpath='{.status}' | jq"
    • To check the Velero logs, enter the following command:

      $ oc logs -n openshift-adp -ldeploy=velero -f

Verification

  • When the status.phase field is Completed, the restore process is considered complete.

Next steps

  • After some time, the KubeVirt VMs are created and join the hosted cluster as compute nodes. Make sure that the hosted cluster workloads are running again as expected.

8.6. Disaster recovery for a hosted cluster in AWS

You can recover a hosted cluster to the same region within Amazon Web Services (AWS). For example, you need disaster recovery when the upgrade of a management cluster fails and the hosted cluster is in a read-only state.

The disaster recovery process involves the following steps:

  1. Backing up the hosted cluster on the source management cluster
  2. Restoring the hosted cluster on a destination management cluster
  3. Deleting the hosted cluster from the source management cluster

Your workloads remain running during the process. The Cluster API might be unavailable for a period, but that does not affect the services that are running on the worker nodes.

Important

Both the source management cluster and the destination management cluster must have the --external-dns flags to maintain the API server URL. That way, the server URL ends with https://api-sample-hosted.sample-hosted.aws.openshift.com. See the following example:

Example: External DNS flags

--external-dns-provider=aws \
--external-dns-credentials=<path_to_aws_credentials_file> \
--external-dns-domain-filter=<basedomain>

If you do not include the --external-dns flags to maintain the API server URL, you cannot migrate the hosted cluster.

8.6.1. Overview of the backup and restore process

The backup and restore process works as follows:

  1. On management cluster 1, which you can think of as the source management cluster, the control plane and workers interact by using the external DNS API. The external DNS API is accessible, and a load balancer sits between the management clusters.

    Diagram that shows the workers accessing the external DNS API and the external DNS API pointing to the control plane through a load balancer
  2. You take a snapshot of the hosted cluster, which includes etcd, the control plane, and the worker nodes. During this process, the worker nodes continue to try to access the external DNS API even if it is not accessible, the workloads are running, the control plane is saved in a local manifest file, and etcd is backed up to an S3 bucket. The data plane is active and the control plane is paused.

    298 OpenShift Backup Restore 0123 01
  3. On management cluster 2, which you can think of as the destination management cluster, you restore etcd from the S3 bucket and restore the control plane from the local manifest file. During this process, the external DNS API is stopped, the hosted cluster API becomes inaccessible, and any workers that use the API are unable to update their manifest files, but the workloads are still running.

    298 OpenShift Backup Restore 0123 02
  4. The external DNS API is accessible again, and the worker nodes use it to move to management cluster 2. The external DNS API can access the load balancer that points to the control plane.

    298 OpenShift Backup Restore 0123 03
  5. On management cluster 2, the control plane and worker nodes interact by using the external DNS API. The resources are deleted from management cluster 1, except for the S3 backup of etcd. If you try to set up the hosted cluster again on mangagement cluster 1, it will not work.

    298 OpenShift Backup Restore 0123 04

8.6.2. Backing up a hosted cluster

To recover your hosted cluster in your target management cluster, you first need to back up all of the relevant data.

Procedure

  1. Create a configmap file to declare the source management cluster by entering this command:

    $ oc create configmap mgmt-parent-cluster -n default --from-literal=from=${MGMT_CLUSTER_NAME}
  2. Shut down the reconciliation in the hosted cluster and in the node pools by entering these commands:

    $ PAUSED_UNTIL="true"
    $ oc patch -n ${HC_CLUSTER_NS} hostedclusters/${HC_CLUSTER_NAME} -p '{"spec":{"pausedUntil":"'${PAUSED_UNTIL}'"}}' --type=merge
    $ oc scale deployment -n ${HC_CLUSTER_NS}-${HC_CLUSTER_NAME} --replicas=0 kube-apiserver openshift-apiserver openshift-oauth-apiserver control-plane-operator
    $ PAUSED_UNTIL="true"
    $ oc patch -n ${HC_CLUSTER_NS} hostedclusters/${HC_CLUSTER_NAME} -p '{"spec":{"pausedUntil":"'${PAUSED_UNTIL}'"}}' --type=merge
    $ oc patch -n ${HC_CLUSTER_NS} nodepools/${NODEPOOLS} -p '{"spec":{"pausedUntil":"'${PAUSED_UNTIL}'"}}' --type=merge
    $ oc scale deployment -n ${HC_CLUSTER_NS}-${HC_CLUSTER_NAME} --replicas=0 kube-apiserver openshift-apiserver openshift-oauth-apiserver control-plane-operator
  3. Back up etcd and upload the data to an S3 bucket by running this bash script:

    Tip

    Wrap this script in a function and call it from the main function.

    # ETCD Backup
    ETCD_PODS="etcd-0"
    if [ "${CONTROL_PLANE_AVAILABILITY_POLICY}" = "HighlyAvailable" ]; then
      ETCD_PODS="etcd-0 etcd-1 etcd-2"
    fi
    
    for POD in ${ETCD_PODS}; do
      # Create an etcd snapshot
      oc exec -it ${POD} -n ${HC_CLUSTER_NS}-${HC_CLUSTER_NAME} -- env ETCDCTL_API=3 /usr/bin/etcdctl --cacert /etc/etcd/tls/client/etcd-client-ca.crt --cert /etc/etcd/tls/client/etcd-client.crt --key /etc/etcd/tls/client/etcd-client.key --endpoints=localhost:2379 snapshot save /var/lib/data/snapshot.db
      oc exec -it ${POD} -n ${HC_CLUSTER_NS}-${HC_CLUSTER_NAME} -- env ETCDCTL_API=3 /usr/bin/etcdctl -w table snapshot status /var/lib/data/snapshot.db
    
      FILEPATH="/${BUCKET_NAME}/${HC_CLUSTER_NAME}-${POD}-snapshot.db"
      CONTENT_TYPE="application/x-compressed-tar"
      DATE_VALUE=`date -R`
      SIGNATURE_STRING="PUT\n\n${CONTENT_TYPE}\n${DATE_VALUE}\n${FILEPATH}"
    
      set +x
      ACCESS_KEY=$(grep aws_access_key_id ${AWS_CREDS} | head -n1 | cut -d= -f2 | sed "s/ //g")
      SECRET_KEY=$(grep aws_secret_access_key ${AWS_CREDS} | head -n1 | cut -d= -f2 | sed "s/ //g")
      SIGNATURE_HASH=$(echo -en ${SIGNATURE_STRING} | openssl sha1 -hmac "${SECRET_KEY}" -binary | base64)
      set -x
    
      # FIXME: this is pushing to the OIDC bucket
      oc exec -it etcd-0 -n ${HC_CLUSTER_NS}-${HC_CLUSTER_NAME} -- curl -X PUT -T "/var/lib/data/snapshot.db" \
        -H "Host: ${BUCKET_NAME}.s3.amazonaws.com" \
        -H "Date: ${DATE_VALUE}" \
        -H "Content-Type: ${CONTENT_TYPE}" \
        -H "Authorization: AWS ${ACCESS_KEY}:${SIGNATURE_HASH}" \
        https://${BUCKET_NAME}.s3.amazonaws.com/${HC_CLUSTER_NAME}-${POD}-snapshot.db
    done

    For more information about backing up etcd, see "Backing up and restoring etcd on a hosted cluster".

  4. Back up Kubernetes and OpenShift Container Platform objects by entering the following commands. You need to back up the following objects:

    • HostedCluster and NodePool objects from the HostedCluster namespace
    • HostedCluster secrets from the HostedCluster namespace
    • HostedControlPlane from the Hosted Control Plane namespace
    • Cluster from the Hosted Control Plane namespace
    • AWSCluster, AWSMachineTemplate, and AWSMachine from the Hosted Control Plane namespace
    • MachineDeployments, MachineSets, and Machines from the Hosted Control Plane namespace
    • ControlPlane secrets from the Hosted Control Plane namespace

      $ mkdir -p ${BACKUP_DIR}/namespaces/${HC_CLUSTER_NS} ${BACKUP_DIR}/namespaces/${HC_CLUSTER_NS}-${HC_CLUSTER_NAME}
      $ chmod 700 ${BACKUP_DIR}/namespaces/
      
      # HostedCluster
      $ echo "Backing Up HostedCluster Objects:"
      $ oc get hc ${HC_CLUSTER_NAME} -n ${HC_CLUSTER_NS} -o yaml > ${BACKUP_DIR}/namespaces/${HC_CLUSTER_NS}/hc-${HC_CLUSTER_NAME}.yaml
      $ echo "--> HostedCluster"
      $ sed -i '' -e '/^status:$/,$d' ${BACKUP_DIR}/namespaces/${HC_CLUSTER_NS}/hc-${HC_CLUSTER_NAME}.yaml
      
      # NodePool
      $ oc get np ${NODEPOOLS} -n ${HC_CLUSTER_NS} -o yaml > ${BACKUP_DIR}/namespaces/${HC_CLUSTER_NS}/np-${NODEPOOLS}.yaml
      $ echo "--> NodePool"
      $ sed -i '' -e '/^status:$/,$ d' ${BACKUP_DIR}/namespaces/${HC_CLUSTER_NS}/np-${NODEPOOLS}.yaml
      
      # Secrets in the HC Namespace
      $ echo "--> HostedCluster Secrets:"
      for s in $(oc get secret -n ${HC_CLUSTER_NS} | grep "^${HC_CLUSTER_NAME}" | awk '{print $1}'); do
          oc get secret -n ${HC_CLUSTER_NS} $s -o yaml > ${BACKUP_DIR}/namespaces/${HC_CLUSTER_NS}/secret-${s}.yaml
      done
      
      # Secrets in the HC Control Plane Namespace
      $ echo "--> HostedCluster ControlPlane Secrets:"
      for s in $(oc get secret -n ${HC_CLUSTER_NS}-${HC_CLUSTER_NAME} | egrep -v "docker|service-account-token|oauth-openshift|NAME|token-${HC_CLUSTER_NAME}" | awk '{print $1}'); do
          oc get secret -n ${HC_CLUSTER_NS}-${HC_CLUSTER_NAME} $s -o yaml > ${BACKUP_DIR}/namespaces/${HC_CLUSTER_NS}-${HC_CLUSTER_NAME}/secret-${s}.yaml
      done
      
      # Hosted Control Plane
      $ echo "--> HostedControlPlane:"
      $ oc get hcp ${HC_CLUSTER_NAME} -n ${HC_CLUSTER_NS}-${HC_CLUSTER_NAME} -o yaml > ${BACKUP_DIR}/namespaces/${HC_CLUSTER_NS}-${HC_CLUSTER_NAME}/hcp-${HC_CLUSTER_NAME}.yaml
      
      # Cluster
      $ echo "--> Cluster:"
      $ CL_NAME=$(oc get hcp ${HC_CLUSTER_NAME} -n ${HC_CLUSTER_NS}-${HC_CLUSTER_NAME} -o jsonpath={.metadata.labels.\*} | grep ${HC_CLUSTER_NAME})
      $ oc get cluster ${CL_NAME} -n ${HC_CLUSTER_NS}-${HC_CLUSTER_NAME} -o yaml > ${BACKUP_DIR}/namespaces/${HC_CLUSTER_NS}-${HC_CLUSTER_NAME}/cl-${HC_CLUSTER_NAME}.yaml
      
      # AWS Cluster
      $ echo "--> AWS Cluster:"
      $ oc get awscluster ${HC_CLUSTER_NAME} -n ${HC_CLUSTER_NS}-${HC_CLUSTER_NAME} -o yaml > ${BACKUP_DIR}/namespaces/${HC_CLUSTER_NS}-${HC_CLUSTER_NAME}/awscl-${HC_CLUSTER_NAME}.yaml
      
      # AWS MachineTemplate
      $ echo "--> AWS Machine Template:"
      $ oc get awsmachinetemplate ${NODEPOOLS} -n ${HC_CLUSTER_NS}-${HC_CLUSTER_NAME} -o yaml > ${BACKUP_DIR}/namespaces/${HC_CLUSTER_NS}-${HC_CLUSTER_NAME}/awsmt-${HC_CLUSTER_NAME}.yaml
      
      # AWS Machines
      $ echo "--> AWS Machine:"
      $ CL_NAME=$(oc get hcp ${HC_CLUSTER_NAME} -n ${HC_CLUSTER_NS}-${HC_CLUSTER_NAME} -o jsonpath={.metadata.labels.\*} | grep ${HC_CLUSTER_NAME})
      for s in $(oc get awsmachines -n ${HC_CLUSTER_NS}-${HC_CLUSTER_NAME} --no-headers | grep ${CL_NAME} | cut -f1 -d\ ); do
          oc get -n ${HC_CLUSTER_NS}-${HC_CLUSTER_NAME} awsmachines $s -o yaml > ${BACKUP_DIR}/namespaces/${HC_CLUSTER_NS}-${HC_CLUSTER_NAME}/awsm-${s}.yaml
      done
      
      # MachineDeployments
      $ echo "--> HostedCluster MachineDeployments:"
      for s in $(oc get machinedeployment -n ${HC_CLUSTER_NS}-${HC_CLUSTER_NAME} -o name); do
          mdp_name=$(echo ${s} | cut -f 2 -d /)
          oc get -n ${HC_CLUSTER_NS}-${HC_CLUSTER_NAME} $s -o yaml > ${BACKUP_DIR}/namespaces/${HC_CLUSTER_NS}-${HC_CLUSTER_NAME}/machinedeployment-${mdp_name}.yaml
      done
      
      # MachineSets
      $ echo "--> HostedCluster MachineSets:"
      for s in $(oc get machineset -n ${HC_CLUSTER_NS}-${HC_CLUSTER_NAME} -o name); do
          ms_name=$(echo ${s} | cut -f 2 -d /)
          oc get -n ${HC_CLUSTER_NS}-${HC_CLUSTER_NAME} $s -o yaml > ${BACKUP_DIR}/namespaces/${HC_CLUSTER_NS}-${HC_CLUSTER_NAME}/machineset-${ms_name}.yaml
      done
      
      # Machines
      $ echo "--> HostedCluster Machine:"
      for s in $(oc get machine -n ${HC_CLUSTER_NS}-${HC_CLUSTER_NAME} -o name); do
          m_name=$(echo ${s} | cut -f 2 -d /)
          oc get -n ${HC_CLUSTER_NS}-${HC_CLUSTER_NAME} $s -o yaml > ${BACKUP_DIR}/namespaces/${HC_CLUSTER_NS}-${HC_CLUSTER_NAME}/machine-${m_name}.yaml
      done
  5. Clean up the ControlPlane routes by entering this command:

    $ oc delete routes -n ${HC_CLUSTER_NS}-${HC_CLUSTER_NAME} --all

    By entering that command, you enable the ExternalDNS Operator to delete the Route53 entries.

  6. Verify that the Route53 entries are clean by running this script:

    function clean_routes() {
    
        if [[ -z "${1}" ]];then
            echo "Give me the NS where to clean the routes"
            exit 1
        fi
    
        # Constants
        if [[ -z "${2}" ]];then
            echo "Give me the Route53 zone ID"
            exit 1
        fi
    
        ZONE_ID=${2}
        ROUTES=10
        timeout=40
        count=0
    
        # This allows us to remove the ownership in the AWS for the API route
        oc delete route -n ${1} --all
    
        while [ ${ROUTES} -gt 2 ]
        do
            echo "Waiting for ExternalDNS Operator to clean the DNS Records in AWS Route53 where the zone id is: ${ZONE_ID}..."
            echo "Try: (${count}/${timeout})"
            sleep 10
            if [[ $count -eq timeout ]];then
                echo "Timeout waiting for cleaning the Route53 DNS records"
                exit 1
            fi
            count=$((count+1))
            ROUTES=$(aws route53 list-resource-record-sets --hosted-zone-id ${ZONE_ID} --max-items 10000 --output json | grep -c ${EXTERNAL_DNS_DOMAIN})
        done
    }
    
    # SAMPLE: clean_routes "<HC ControlPlane Namespace>" "<AWS_ZONE_ID>"
    clean_routes "${HC_CLUSTER_NS}-${HC_CLUSTER_NAME}" "${AWS_ZONE_ID}"

Verification

Check all of the OpenShift Container Platform objects and the S3 bucket to verify that everything looks as expected.

Next steps

Restore your hosted cluster.

8.6.3. Restoring a hosted cluster

Gather all of the objects that you backed up and restore them in your destination management cluster.

Prerequisites

You backed up the data from your source management cluster.

Tip

Ensure that the kubeconfig file of the destination management cluster is placed as it is set in the KUBECONFIG variable or, if you use the script, in the MGMT2_KUBECONFIG variable. Use export KUBECONFIG=<Kubeconfig FilePath> or, if you use the script, use export KUBECONFIG=${MGMT2_KUBECONFIG}.

Procedure

  1. Verify that the new management cluster does not contain any namespaces from the cluster that you are restoring by entering these commands:

    # Just in case
    $ export KUBECONFIG=${MGMT2_KUBECONFIG}
    $ BACKUP_DIR=${HC_CLUSTER_DIR}/backup
    
    # Namespace deletion in the destination Management cluster
    $ oc delete ns ${HC_CLUSTER_NS} || true
    $ oc delete ns ${HC_CLUSTER_NS}-{HC_CLUSTER_NAME} || true
  2. Re-create the deleted namespaces by entering these commands:

    # Namespace creation
    $ oc new-project ${HC_CLUSTER_NS}
    $ oc new-project ${HC_CLUSTER_NS}-${HC_CLUSTER_NAME}
  3. Restore the secrets in the HC namespace by entering this command:

    $ oc apply -f ${BACKUP_DIR}/namespaces/${HC_CLUSTER_NS}/secret-*
  4. Restore the objects in the HostedCluster control plane namespace by entering these commands:

    # Secrets
    $ oc apply -f ${BACKUP_DIR}/namespaces/${HC_CLUSTER_NS}-${HC_CLUSTER_NAME}/secret-*
    
    # Cluster
    $ oc apply -f ${BACKUP_DIR}/namespaces/${HC_CLUSTER_NS}-${HC_CLUSTER_NAME}/hcp-*
    $ oc apply -f ${BACKUP_DIR}/namespaces/${HC_CLUSTER_NS}-${HC_CLUSTER_NAME}/cl-*
  5. If you are recovering the nodes and the node pool to reuse AWS instances, restore the objects in the HC control plane namespace by entering these commands:

    # AWS
    $ oc apply -f ${BACKUP_DIR}/namespaces/${HC_CLUSTER_NS}-${HC_CLUSTER_NAME}/awscl-*
    $ oc apply -f ${BACKUP_DIR}/namespaces/${HC_CLUSTER_NS}-${HC_CLUSTER_NAME}/awsmt-*
    $ oc apply -f ${BACKUP_DIR}/namespaces/${HC_CLUSTER_NS}-${HC_CLUSTER_NAME}/awsm-*
    
    # Machines
    $ oc apply -f ${BACKUP_DIR}/namespaces/${HC_CLUSTER_NS}-${HC_CLUSTER_NAME}/machinedeployment-*
    $ oc apply -f ${BACKUP_DIR}/namespaces/${HC_CLUSTER_NS}-${HC_CLUSTER_NAME}/machineset-*
    $ oc apply -f ${BACKUP_DIR}/namespaces/${HC_CLUSTER_NS}-${HC_CLUSTER_NAME}/machine-*
  6. Restore the etcd data and the hosted cluster by running this bash script:

    ETCD_PODS="etcd-0"
    if [ "${CONTROL_PLANE_AVAILABILITY_POLICY}" = "HighlyAvailable" ]; then
      ETCD_PODS="etcd-0 etcd-1 etcd-2"
    fi
    
    HC_RESTORE_FILE=${BACKUP_DIR}/namespaces/${HC_CLUSTER_NS}/hc-${HC_CLUSTER_NAME}-restore.yaml
    HC_BACKUP_FILE=${BACKUP_DIR}/namespaces/${HC_CLUSTER_NS}/hc-${HC_CLUSTER_NAME}.yaml
    HC_NEW_FILE=${BACKUP_DIR}/namespaces/${HC_CLUSTER_NS}/hc-${HC_CLUSTER_NAME}-new.yaml
    cat ${HC_BACKUP_FILE} > ${HC_NEW_FILE}
    cat > ${HC_RESTORE_FILE} <<EOF
        restoreSnapshotURL:
    EOF
    
    for POD in ${ETCD_PODS}; do
      # Create a pre-signed URL for the etcd snapshot
      ETCD_SNAPSHOT="s3://${BUCKET_NAME}/${HC_CLUSTER_NAME}-${POD}-snapshot.db"
      ETCD_SNAPSHOT_URL=$(AWS_DEFAULT_REGION=${MGMT2_REGION} aws s3 presign ${ETCD_SNAPSHOT})
    
      # FIXME no CLI support for restoreSnapshotURL yet
      cat >> ${HC_RESTORE_FILE} <<EOF
        - "${ETCD_SNAPSHOT_URL}"
    EOF
    done
    
    cat ${HC_RESTORE_FILE}
    
    if ! grep ${HC_CLUSTER_NAME}-snapshot.db ${HC_NEW_FILE}; then
      sed -i '' -e "/type: PersistentVolume/r ${HC_RESTORE_FILE}" ${HC_NEW_FILE}
      sed -i '' -e '/pausedUntil:/d' ${HC_NEW_FILE}
    fi
    
    HC=$(oc get hc -n ${HC_CLUSTER_NS} ${HC_CLUSTER_NAME} -o name || true)
    if [[ ${HC} == "" ]];then
        echo "Deploying HC Cluster: ${HC_CLUSTER_NAME} in ${HC_CLUSTER_NS} namespace"
        oc apply -f ${HC_NEW_FILE}
    else
        echo "HC Cluster ${HC_CLUSTER_NAME} already exists, avoiding step"
    fi
  7. If you are recovering the nodes and the node pool to reuse AWS instances, restore the node pool by entering this command:

    $ oc apply -f ${BACKUP_DIR}/namespaces/${HC_CLUSTER_NS}/np-*

Verification

  • To verify that the nodes are fully restored, use this function:

    timeout=40
    count=0
    NODE_STATUS=$(oc get nodes --kubeconfig=${HC_KUBECONFIG} | grep -v NotReady | grep -c "worker") || NODE_STATUS=0
    
    while [ ${NODE_POOL_REPLICAS} != ${NODE_STATUS} ]
    do
        echo "Waiting for Nodes to be Ready in the destination MGMT Cluster: ${MGMT2_CLUSTER_NAME}"
        echo "Try: (${count}/${timeout})"
        sleep 30
        if [[ $count -eq timeout ]];then
            echo "Timeout waiting for Nodes in the destination MGMT Cluster"
            exit 1
        fi
        count=$((count+1))
        NODE_STATUS=$(oc get nodes --kubeconfig=${HC_KUBECONFIG} | grep -v NotReady | grep -c "worker") || NODE_STATUS=0
    done

Next steps

Shut down and delete your cluster.

8.6.4. Deleting a hosted cluster from your source management cluster

After you back up your hosted cluster and restore it to your destination management cluster, you shut down and delete the hosted cluster on your source management cluster.

Prerequisites

You backed up your data and restored it to your source management cluster.

Tip

Ensure that the kubeconfig file of the destination management cluster is placed as it is set in the KUBECONFIG variable or, if you use the script, in the MGMT_KUBECONFIG variable. Use export KUBECONFIG=<Kubeconfig FilePath> or, if you use the script, use export KUBECONFIG=${MGMT_KUBECONFIG}.

Procedure

  1. Scale the deployment and statefulset objects by entering these commands:

    Important

    Do not scale the stateful set if the value of its spec.persistentVolumeClaimRetentionPolicy.whenScaled field is set to Delete, because this could lead to a loss of data.

    As a workaround, update the value of the spec.persistentVolumeClaimRetentionPolicy.whenScaled field to Retain. Ensure that no controllers exist that reconcile the stateful set and would return the value back to Delete, which could lead to a loss of data.

    # Just in case
    $ export KUBECONFIG=${MGMT_KUBECONFIG}
    
    # Scale down deployments
    $ oc scale deployment -n ${HC_CLUSTER_NS}-${HC_CLUSTER_NAME} --replicas=0 --all
    $ oc scale statefulset.apps -n ${HC_CLUSTER_NS}-${HC_CLUSTER_NAME} --replicas=0 --all
    $ sleep 15
  2. Delete the NodePool objects by entering these commands:

    NODEPOOLS=$(oc get nodepools -n ${HC_CLUSTER_NS} -o=jsonpath='{.items[?(@.spec.clusterName=="'${HC_CLUSTER_NAME}'")].metadata.name}')
    if [[ ! -z "${NODEPOOLS}" ]];then
        oc patch -n "${HC_CLUSTER_NS}" nodepool ${NODEPOOLS} --type=json --patch='[ { "op":"remove", "path": "/metadata/finalizers" }]'
        oc delete np -n ${HC_CLUSTER_NS} ${NODEPOOLS}
    fi
  3. Delete the machine and machineset objects by entering these commands:

    # Machines
    for m in $(oc get machines -n ${HC_CLUSTER_NS}-${HC_CLUSTER_NAME} -o name); do
        oc patch -n ${HC_CLUSTER_NS}-${HC_CLUSTER_NAME} ${m} --type=json --patch='[ { "op":"remove", "path": "/metadata/finalizers" }]' || true
        oc delete -n ${HC_CLUSTER_NS}-${HC_CLUSTER_NAME} ${m} || true
    done
    
    $ oc delete machineset -n ${HC_CLUSTER_NS}-${HC_CLUSTER_NAME} --all || true
  4. Delete the cluster object by entering these commands:

    # Cluster
    $ C_NAME=$(oc get cluster -n ${HC_CLUSTER_NS}-${HC_CLUSTER_NAME} -o name)
    $ oc patch -n ${HC_CLUSTER_NS}-${HC_CLUSTER_NAME} ${C_NAME} --type=json --patch='[ { "op":"remove", "path": "/metadata/finalizers" }]'
    $ oc delete cluster.cluster.x-k8s.io -n ${HC_CLUSTER_NS}-${HC_CLUSTER_NAME} --all
  5. Delete the AWS machines (Kubernetes objects) by entering these commands. Do not worry about deleting the real AWS machines. The cloud instances will not be affected.

    # AWS Machines
    for m in $(oc get awsmachine.infrastructure.cluster.x-k8s.io -n ${HC_CLUSTER_NS}-${HC_CLUSTER_NAME} -o name)
    do
        oc patch -n ${HC_CLUSTER_NS}-${HC_CLUSTER_NAME} ${m} --type=json --patch='[ { "op":"remove", "path": "/metadata/finalizers" }]' || true
        oc delete -n ${HC_CLUSTER_NS}-${HC_CLUSTER_NAME} ${m} || true
    done
  6. Delete the HostedControlPlane and ControlPlane HC namespace objects by entering these commands:

    # Delete HCP and ControlPlane HC NS
    $ oc patch -n ${HC_CLUSTER_NS}-${HC_CLUSTER_NAME} hostedcontrolplane.hypershift.openshift.io ${HC_CLUSTER_NAME} --type=json --patch='[ { "op":"remove", "path": "/metadata/finalizers" }]'
    $ oc delete hostedcontrolplane.hypershift.openshift.io -n ${HC_CLUSTER_NS}-${HC_CLUSTER_NAME} --all
    $ oc delete ns ${HC_CLUSTER_NS}-${HC_CLUSTER_NAME} || true
  7. Delete the HostedCluster and HC namespace objects by entering these commands:

    # Delete HC and HC Namespace
    $ oc -n ${HC_CLUSTER_NS} patch hostedclusters ${HC_CLUSTER_NAME} -p '{"metadata":{"finalizers":null}}' --type merge || true
    $ oc delete hc -n ${HC_CLUSTER_NS} ${HC_CLUSTER_NAME}  || true
    $ oc delete ns ${HC_CLUSTER_NS} || true

Verification

  • To verify that everything works, enter these commands:

    # Validations
    $ export KUBECONFIG=${MGMT2_KUBECONFIG}
    
    $ oc get hc -n ${HC_CLUSTER_NS}
    $ oc get np -n ${HC_CLUSTER_NS}
    $ oc get pod -n ${HC_CLUSTER_NS}-${HC_CLUSTER_NAME}
    $ oc get machines -n ${HC_CLUSTER_NS}-${HC_CLUSTER_NAME}
    
    # Inside the HostedCluster
    $ export KUBECONFIG=${HC_KUBECONFIG}
    $ oc get clusterversion
    $ oc get nodes

Next steps

Delete the OVN pods in the hosted cluster so that you can connect to the new OVN control plane that runs in the new management cluster:

  1. Load the KUBECONFIG environment variable with the hosted cluster’s kubeconfig path.
  2. Enter this command:

    $ oc delete pod -n openshift-ovn-kubernetes --all

8.7. Disaster recovery for a hosted cluster by using OADP

You can use the OpenShift API for Data Protection (OADP) Operator to perform disaster recovery on Amazon Web Services (AWS) and bare metal.

The disaster recovery process with OpenShift API for Data Protection (OADP) involves the following steps:

  1. Preparing your platform, such as Amazon Web Services or bare metal, to use OADP
  2. Backing up the data plane workload
  3. Backing up the control plane workload
  4. Restoring a hosted cluster by using OADP

8.7.1. Prerequisites

You must meet the following prerequisites on the management cluster:

  • You installed the OADP Operator.
  • You created a storage class.
  • You have access to the cluster with cluster-admin privileges.
  • You have access to the OADP subscription through a catalog source.
  • You have access to a cloud storage provider that is compatible with OADP, such as S3, Microsoft Azure, Google Cloud Platform, or MinIO.
  • In a disconnected environment, you have access to a self-hosted storage provider, for example Red Hat OpenShift Data Foundation or MinIO, that is compatible with OADP.
  • Your hosted control planes pods are up and running.

8.7.2. Preparing AWS to use OADP

To perform disaster recovery for a hosted cluster, you can use OpenShift API for Data Protection (OADP) on Amazon Web Services (AWS) S3 compatible storage. After creating the DataProtectionApplication object, new velero deployment and node-agent pods are created in the openshift-adp namespace.

To prepare AWS to use OADP, see "Configuring the OpenShift API for Data Protection with Multicloud Object Gateway".

Next steps

  • Backing up the data plane workload
  • Backing up the control plane workload

8.7.3. Preparing bare metal to use OADP

To perform disaster recovery for a hosted cluster, you can use OpenShift API for Data Protection (OADP) on bare metal. After creating the DataProtectionApplication object, new velero deployment and node-agent pods are created in the openshift-adp namespace.

To prepare bare metal to use OADP, see "Configuring the OpenShift API for Data Protection with AWS S3 compatible storage".

Next steps

  • Backing up the data plane workload
  • Backing up the control plane workload

8.7.4. Backing up the data plane workload

If the data plane workload is not important, you can skip this procedure. To back up the data plane workload by using the OADP Operator, see "Backing up applications".

Additional resources

Next steps

  • Restoring a hosted cluster by using OADP

8.7.5. Backing up the control plane workload

You can back up the control plane workload by creating the Backup custom resource (CR).

To monitor and observe the backup process, see "Observing the backup and restore process".

Procedure

  1. Pause the reconciliation of the HostedCluster resource by running the following command:

    $ oc --kubeconfig <management_cluster_kubeconfig_file> \
      patch hostedcluster -n <hosted_cluster_namespace> <hosted_cluster_name> \
      --type json -p '[{"op": "add", "path": "/spec/pausedUntil", "value": "true"}]'
  2. Pause the reconciliation of the NodePool resource by running the following command:

    $ oc --kubeconfig <management_cluster_kubeconfig_file> \
      patch nodepool -n <hosted_cluster_namespace> <node_pool_name> \
      --type json -p '[{"op": "add", "path": "/spec/pausedUntil", "value": "true"}]'
  3. Pause the reconciliation of the AgentCluster resource by running the following command:

    $ oc --kubeconfig <management_cluster_kubeconfig_file> \
      annotate agentcluster -n <hosted_control_plane_namespace>  \
      cluster.x-k8s.io/paused=true --all'
  4. Pause the reconciliation of the AgentMachine resource by running the following command:

    $ oc --kubeconfig <management_cluster_kubeconfig_file> \
      annotate agentmachine -n <hosted_control_plane_namespace>  \
      cluster.x-k8s.io/paused=true --all'
  5. Annotate the HostedCluster resource to prevent the deletion of the hosted control plane namespace by running the following command:

    $ oc --kubeconfig <management_cluster_kubeconfig_file> \
      annotate hostedcluster -n <hosted_cluster_namespace> <hosted_cluster_name> \
      hypershift.openshift.io/skip-delete-hosted-controlplane-namespace=true
  6. Create a YAML file that defines the Backup CR:

    Example 8.1. Example backup-control-plane.yaml file

    apiVersion: velero.io/v1
    kind: Backup
    metadata:
      name: <backup_resource_name> 1
      namespace: openshift-adp
      labels:
        velero.io/storage-location: default
    spec:
      hooks: {}
      includedNamespaces: 2
      - <hosted_cluster_namespace> 3
      - <hosted_control_plane_namespace> 4
      includedResources:
      - sa
      - role
      - rolebinding
      - pod
      - pvc
      - pv
      - bmh
      - configmap
      - infraenv 5
      - priorityclasses
      - pdb
      - agents
      - hostedcluster
      - nodepool
      - secrets
      - hostedcontrolplane
      - cluster
      - agentcluster
      - agentmachinetemplate
      - agentmachine
      - machinedeployment
      - machineset
      - machine
      excludedResources: []
      storageLocation: default
      ttl: 2h0m0s
      snapshotMoveData: true 6
      datamover: "velero" 7
      defaultVolumesToFsBackup: true 8
    1
    Replace backup_resource_name with the name of your Backup resource.
    2
    Selects specific namespaces to back up objects from them. You must include your hosted cluster namespace and the hosted control plane namespace.
    3
    Replace <hosted_cluster_namespace> with the name of the hosted cluster namespace, for example, clusters.
    4
    Replace <hosted_control_plane_namespace> with the name of the hosted control plane namespace, for example, clusters-hosted.
    5
    You must create the infraenv resource in a separate namespace. Do not delete the infraenv resource during the backup process.
    6 7
    Enables the CSI volume snapshots and uploads the control plane workload automatically to the cloud storage.
    8
    Sets the fs-backup backing up method for persistent volumes (PVs) as default. This setting is useful when you use a combination of Container Storage Interface (CSI) volume snapshots and the fs-backup method.
    Note

    If you want to use CSI volume snapshots, you must add the backup.velero.io/backup-volumes-excludes=<pv_name> annotation to your PVs.

  7. Apply the Backup CR by running the following command:

    $ oc apply -f backup-control-plane.yaml

Verification

  • Verify if the value of the status.phase is Completed by running the following command:

    $ oc get backups.velero.io <backup_resource_name> -n openshift-adp -o jsonpath='{.status.phase}'

Next steps

  • Restoring a hosted cluster by using OADP

8.7.6. Restoring a hosted cluster by using OADP

You can restore the hosted cluster by creating the Restore custom resource (CR).

  • If you are using an in-place update, InfraEnv does not need spare nodes. You need to re-provision the worker nodes from the new management cluster.
  • If you are using a replace update, you need some spare nodes for InfraEnv to deploy the worker nodes.
Important

After you back up your hosted cluster, you must destroy it to initiate the restoring process. To initiate node provisioning, you must back up workloads in the data plane before deleting the hosted cluster.

Prerequisites

To monitor and observe the backup process, see "Observing the backup and restore process".

Procedure

  1. Verify that no pods and persistent volume claims (PVCs) are present in the hosted control plane namespace by running the following command:

    $ oc get pod pvc -n <hosted_control_plane_namespace>

    Expected output

    No resources found

  2. Create a YAML file that defines the Restore CR:

    Example restore-hosted-cluster.yaml file

    apiVersion: velero.io/v1
    kind: Restore
    metadata:
      name: <restore_resource_name> 1
      namespace: openshift-adp
    spec:
      backupName: <backup_resource_name> 2
      restorePVs: true 3
      existingResourcePolicy: update 4
      excludedResources:
      - nodes
      - events
      - events.events.k8s.io
      - backups.velero.io
      - restores.velero.io
      - resticrepositories.velero.io

    1
    Replace <restore_resource_name> with the name of your Restore resource.
    2
    Replace <backup_resource_name> with the name of your Backup resource.
    3
    Initiates the recovery of persistent volumes (PVs) and its pods.
    4
    Ensures that the existing objects are overwritten with the backed up content.
    Important

    You must create the infraenv resource in a separate namespace. Do not delete the infraenv resource during the restore process. The infraenv resource is mandatory for the new nodes to be reprovisioned.

  3. Apply the Restore CR by running the following command:

    $ oc apply -f restore-hosted-cluster.yaml
  4. Verify if the value of the status.phase is Completed by running the following command:

    $ oc get hostedcluster <hosted_cluster_name> -n <hosted_cluster_namespace> -o jsonpath='{.status.phase}'
  5. After the restore process is complete, start the reconciliation of the HostedCluster and NodePool resources that you paused during backing up of the control plane workload:

    1. Start the reconciliation of the HostedCluster resource by running the following command:

      $ oc --kubeconfig <management_cluster_kubeconfig_file> \
        patch hostedcluster -n <hosted_cluster_namespace> <hosted_cluster_name> \
        --type json -p '[{"op": "add", "path": "/spec/pausedUntil", "value": "false"}]'
    2. Start the reconciliation of the NodePool resource by running the following command:

      $ oc --kubeconfig <management_cluster_kubeconfig_file> \
        patch nodepool -n <hosted_cluster_namespace> <node_pool_name> \
        --type json -p '[{"op": "add", "path": "/spec/pausedUntil", "value": "false"}]'
  6. Start the reconciliation of the Agent provider resources that you paused during backing up of the control plane workload:

    1. Start the reconciliation of the AgentCluster resource by running the following command:

      $ oc --kubeconfig <management_cluster_kubeconfig_file> \
        annotate agentcluster -n <hosted_control_plane_namespace>  \
        cluster.x-k8s.io/paused- --overwrite=true --all
    2. Start the reconciliation of the AgentMachine resource by running the following command:

      $ oc --kubeconfig <management_cluster_kubeconfig_file> \
        annotate agentmachine -n <hosted_control_plane_namespace>  \
        cluster.x-k8s.io/paused- --overwrite=true --all
  7. Remove the hypershift.openshift.io/skip-delete-hosted-controlplane-namespace- annotation in the HostedCluster resource to avoid manually deleting the hosted control plane namespace by running the following command:

    $ oc --kubeconfig <management_cluster_kubeconfig_file> \
      annotate hostedcluster -n <hosted_cluster_namespace> <hosted_cluster_name> \
      hypershift.openshift.io/skip-delete-hosted-controlplane-namespace- \
      --overwrite=true --all
  8. Scale the NodePool resource to the desired number of replicas by running the following command:

    $ oc --kubeconfig <management_cluster_kubeconfig_file> \
      scale nodepool -n <hosted_cluster_namespace> <node_pool_name> \
      --replicas <replica_count> 1
    1
    Replace <replica_count> by an integer value, for example, 3.

8.7.7. Observing the backup and restore process

When using OpenShift API for Data Protection (OADP) to backup and restore a hosted cluster, you can monitor and observe the process.

Procedure

  1. Observe the backup process by running the following command:

    $ watch "oc get backups.velero.io -n openshift-adp <backup_resource_name> -o jsonpath='{.status}'"
  2. Observe the restore process by running the following command:

    $ watch "oc get restores.velero.io -n openshift-adp <backup_resource_name> -o jsonpath='{.status}'"
  3. Observe the Velero logs by running the following command:

    $ oc logs -n openshift-adp -ldeploy=velero -f
  4. Observe the progress of all of the OADP objects by running the following command:

    $ watch "echo BackupRepositories:;echo;oc get backuprepositories.velero.io -A;echo; echo BackupStorageLocations: ;echo; oc get backupstoragelocations.velero.io -A;echo;echo DataUploads: ;echo;oc get datauploads.velero.io -A;echo;echo DataDownloads: ;echo;oc get datadownloads.velero.io -n openshift-adp; echo;echo VolumeSnapshotLocations: ;echo;oc get volumesnapshotlocations.velero.io -A;echo;echo Backups:;echo;oc get backup -A; echo;echo Restores:;echo;oc get restore -A"

8.7.8. Using the velero CLI to describe the Backup and Restore resources

When using OpenShift API for Data Protection, you can get more details of the Backup and Restore resources by using the velero command-line interface (CLI).

Procedure

  1. Create an alias to use the velero CLI from a container by running the following command:

    $ alias velero='oc -n openshift-adp exec deployment/velero -c velero -it -- ./velero'
  2. Get details of your Restore custom resource (CR) by running the following command:

    $ velero restore describe <restore_resource_name> --details 1
    1
    Replace <restore_resource_name> with the name of your Restore resource.
  3. Get details of your Backup CR by running the following command:

    $ velero restore describe <backup_resource_name> --details 1
    1
    Replace <backup_resource_name> with the name of your Backup resource.

Chapter 9. Authentication and authorization for hosted control planes

The OpenShift Container Platform control plane includes a built-in OAuth server. You can obtain OAuth access tokens to authenticate to the OpenShift Container Platform API. After you create your hosted cluster, you can configure OAuth by specifying an identity provider.

9.1. Configuring the OAuth server for a hosted cluster by using the CLI

You can configure the internal OAuth server for your hosted cluster by using an OpenID Connect identity provider (oidc).

You can configure OAuth for the following supported identity providers:

  • oidc
  • htpasswd
  • keystone
  • ldap
  • basic-authentication
  • request-header
  • github
  • gitlab
  • google

Adding any identity provider in the OAuth configuration removes the default kubeadmin user provider.

Note

When you configure identity providers, you must configure at least one NodePool replica in your hosted cluster in advance. Traffic for DNS resolution is sent through the worker nodes. You do not need to configure the NodePool replicas in advance for the htpasswd and request-header identity providers.

Prerequisites

  • You created your hosted cluster.

Procedure

  1. Edit the HostedCluster custom resource (CR) on the hosting cluster by running the following command:

    $ oc edit <hosted_cluster_name> -n <hosted_cluster_namespace>
  2. Add the OAuth configuration in the HostedCluster CR by using the following example:

    apiVersion: hypershift.openshift.io/v1alpha1
    kind: HostedCluster
    metadata:
      name: <hosted_cluster_name> 1
      namespace: <hosted_cluster_namespace> 2
    spec:
      configuration:
        oauth:
          identityProviders:
          - openID: 3
              claims:
                email: 4
                  - <email_address>
                name: 5
                  - <display_name>
                preferredUsername: 6
                  - <preferred_username>
              clientID: <client_id> 7
              clientSecret:
                name: <client_id_secret_name> 8
              issuer: https://example.com/identity 9
            mappingMethod: lookup 10
            name: IAM
            type: OpenID
    1
    Specifies your hosted cluster name.
    2
    Specifies your hosted cluster namespace.
    3
    This provider name is prefixed to the value of the identity claim to form an identity name. The provider name is also used to build the redirect URL.
    4
    Defines a list of attributes to use as the email address.
    5
    Defines a list of attributes to use as a display name.
    6
    Defines a list of attributes to use as a preferred user name.
    7
    Defines the ID of a client registered with the OpenID provider. You must allow the client to redirect to the https://oauth-openshift.apps.<cluster_name>.<cluster_domain>/oauth2callback/<idp_provider_name> URL.
    8
    Defines a secret of a client registered with the OpenID provider.
    9
    The Issuer Identifier described in the OpenID spec. You must use https without query or fragment component.
    10
    Defines a mapping method that controls how mappings are established between identities of this provider and User objects.
  3. Save the file to apply the changes.

9.2. Configuring the OAuth server for a hosted cluster by using the web console

You can configure the internal OAuth server for your hosted cluster by using the OpenShift Container Platform web console.

You can configure OAuth for the following supported identity providers:

  • oidc
  • htpasswd
  • keystone
  • ldap
  • basic-authentication
  • request-header
  • github
  • gitlab
  • google

Adding any identity provider in the OAuth configuration removes the default kubeadmin user provider.

Note

When you configure identity providers, you must configure at least one NodePool replica in your hosted cluster in advance. Traffic for DNS resolution is sent through the worker nodes. You do not need to configure the NodePool replicas in advance for the htpasswd and request-header identity providers.

Prerequisites

  • You logged in as a user with cluster-admin privileges.
  • You created your hosted cluster.

Procedure

  1. Navigate to HomeAPI Explorer.
  2. Use the Filter by kind box to search for your HostedCluster resource.
  3. Click the HostedCluster resource that you want to edit.
  4. Click the Instances tab.
  5. Click the Options menu kebab next to your hosted cluster name entry and click Edit HostedCluster.
  6. Add the OAuth configuration in the YAML file:

    spec:
      configuration:
        oauth:
          identityProviders:
          - openID: 1
              claims:
                email: 2
                  - <email_address>
                name: 3
                  - <display_name>
                preferredUsername: 4
                  - <preferred_username>
              clientID: <client_id> 5
              clientSecret:
                name: <client_id_secret_name> 6
              issuer: https://example.com/identity 7
            mappingMethod: lookup 8
            name: IAM
            type: OpenID
    1
    This provider name is prefixed to the value of the identity claim to form an identity name. The provider name is also used to build the redirect URL.
    2
    Defines a list of attributes to use as the email address.
    3
    Defines a list of attributes to use as a display name.
    4
    Defines a list of attributes to use as a preferred user name.
    5
    Defines the ID of a client registered with the OpenID provider. You must allow the client to redirect to the https://oauth-openshift.apps.<cluster_name>.<cluster_domain>/oauth2callback/<idp_provider_name> URL.
    6
    Defines a secret of a client registered with the OpenID provider.
    7
    The Issuer Identifier described in the OpenID spec. You must use https without query or fragment component.
    8
    Defines a mapping method that controls how mappings are established between identities of this provider and User objects.
  7. Click Save.

Additional resources

9.3. Assigning components IAM roles by using the CCO in a hosted cluster on AWS

You can assign components IAM roles that provide short-term, limited-privilege security credentials by using the Cloud Credential Operator (CCO) in hosted clusters on Amazon Web Services (AWS). By default, the CCO runs in a hosted control plane.

Note

The CCO supports a manual mode only for hosted clusters on AWS. By default, hosted clusters are configured in a manual mode. The management cluster might use modes other than manual.

9.4. Verifying the CCO installation in a hosted cluster on AWS

You can verify that the Cloud Credential Operator (CCO) is running correctly in your hosted control plane.

Prerequisites

  • You configured the hosted cluster on Amazon Web Services (AWS).

Procedure

  1. Verify that the CCO is configured in a manual mode in your hosted cluster by running the following command:

    $ oc get cloudcredentials <hosted_cluster_name> -n <hosted_cluster_namespace> -o=jsonpath={.spec.credentialsMode}

    Expected output

    Manual

  2. Verify that the value for the serviceAccountIssuer resource is not empty by running the following command:

    $ oc get authentication cluster --kubeconfig <hosted_cluster_name>.kubeconfig -o jsonpath --template '{.spec.serviceAccountIssuer }'

    Example output

    https://aos-hypershift-ci-oidc-29999.s3.us-east-2.amazonaws.com/hypershift-ci-29999

9.5. Enabling Operators to support CCO-based workflows with AWS STS

As an Operator author designing your project to run on Operator Lifecycle Manager (OLM), you can enable your Operator to authenticate against AWS on STS-enabled OpenShift Container Platform clusters by customizing your project to support the Cloud Credential Operator (CCO).

With this method, the Operator is responsible for and requires RBAC permissions for creating the CredentialsRequest object and reading the resulting Secret object.

Note

By default, pods related to the Operator deployment mount a serviceAccountToken volume so that the service account token can be referenced in the resulting Secret object.

Prerequisities

  • OpenShift Container Platform 4.14 or later
  • Cluster in STS mode
  • OLM-based Operator project

Procedure

  1. Update your Operator project’s ClusterServiceVersion (CSV) object:

    1. Ensure your Operator has RBAC permission to create CredentialsRequests objects:

      Example 9.1. Example clusterPermissions list

      # ...
      install:
        spec:
          clusterPermissions:
          - rules:
            - apiGroups:
              - "cloudcredential.openshift.io"
              resources:
              - credentialsrequests
              verbs:
              - create
              - delete
              - get
              - list
              - patch
              - update
              - watch
    2. Add the following annotation to claim support for this method of CCO-based workflow with AWS STS:

      # ...
      metadata:
       annotations:
         features.operators.openshift.io/token-auth-aws: "true"
  2. Update your Operator project code:

    1. Get the role ARN from the environment variable set on the pod by the Subscription object. For example:

      // Get ENV var
      roleARN := os.Getenv("ROLEARN")
      setupLog.Info("getting role ARN", "role ARN = ", roleARN)
      webIdentityTokenPath := "/var/run/secrets/openshift/serviceaccount/token"
    2. Ensure you have a CredentialsRequest object ready to be patched and applied. For example:

      Example 9.2. Example CredentialsRequest object creation

      import (
         minterv1 "github.com/openshift/cloud-credential-operator/pkg/apis/cloudcredential/v1"
         corev1 "k8s.io/api/core/v1"
         metav1 "k8s.io/apimachinery/pkg/apis/meta/v1"
      )
      
      var in = minterv1.AWSProviderSpec{
         StatementEntries: []minterv1.StatementEntry{
            {
               Action: []string{
                  "s3:*",
               },
               Effect:   "Allow",
               Resource: "arn:aws:s3:*:*:*",
            },
         },
      	STSIAMRoleARN: "<role_arn>",
      }
      
      var codec = minterv1.Codec
      var ProviderSpec, _ = codec.EncodeProviderSpec(in.DeepCopyObject())
      
      const (
         name      = "<credential_request_name>"
         namespace = "<namespace_name>"
      )
      
      var CredentialsRequestTemplate = &minterv1.CredentialsRequest{
         ObjectMeta: metav1.ObjectMeta{
             Name:      name,
             Namespace: "openshift-cloud-credential-operator",
         },
         Spec: minterv1.CredentialsRequestSpec{
            ProviderSpec: ProviderSpec,
            SecretRef: corev1.ObjectReference{
               Name:      "<secret_name>",
               Namespace: namespace,
            },
            ServiceAccountNames: []string{
               "<service_account_name>",
            },
            CloudTokenPath:   "",
         },
      }

      Alternatively, if you are starting from a CredentialsRequest object in YAML form (for example, as part of your Operator project code), you can handle it differently:

      Example 9.3. Example CredentialsRequest object creation in YAML form

      // CredentialsRequest is a struct that represents a request for credentials
      type CredentialsRequest struct {
        APIVersion string `yaml:"apiVersion"`
        Kind       string `yaml:"kind"`
        Metadata   struct {
           Name      string `yaml:"name"`
           Namespace string `yaml:"namespace"`
        } `yaml:"metadata"`
        Spec struct {
           SecretRef struct {
              Name      string `yaml:"name"`
              Namespace string `yaml:"namespace"`
           } `yaml:"secretRef"`
           ProviderSpec struct {
              APIVersion     string `yaml:"apiVersion"`
              Kind           string `yaml:"kind"`
              StatementEntries []struct {
                 Effect   string   `yaml:"effect"`
                 Action   []string `yaml:"action"`
                 Resource string   `yaml:"resource"`
              } `yaml:"statementEntries"`
              STSIAMRoleARN   string `yaml:"stsIAMRoleARN"`
           } `yaml:"providerSpec"`
      
           // added new field
            CloudTokenPath   string `yaml:"cloudTokenPath"`
        } `yaml:"spec"`
      }
      
      // ConsumeCredsRequestAddingTokenInfo is a function that takes a YAML filename and two strings as arguments
      // It unmarshals the YAML file to a CredentialsRequest object and adds the token information.
      func ConsumeCredsRequestAddingTokenInfo(fileName, tokenString, tokenPath string) (*CredentialsRequest, error) {
        // open a file containing YAML form of a CredentialsRequest
        file, err := os.Open(fileName)
        if err != nil {
           return nil, err
        }
        defer file.Close()
      
        // create a new CredentialsRequest object
        cr := &CredentialsRequest{}
      
        // decode the yaml file to the object
        decoder := yaml.NewDecoder(file)
        err = decoder.Decode(cr)
        if err != nil {
           return nil, err
        }
      
        // assign the string to the existing field in the object
        cr.Spec.CloudTokenPath = tokenPath
      
        // return the modified object
        return cr, nil
      }
      Note

      Adding a CredentialsRequest object to the Operator bundle is not currently supported.

    3. Add the role ARN and web identity token path to the credentials request and apply it during Operator initialization:

      Example 9.4. Example applying CredentialsRequest object during Operator initialization

      // apply CredentialsRequest on install
      credReq := credreq.CredentialsRequestTemplate
      credReq.Spec.CloudTokenPath = webIdentityTokenPath
      
      c := mgr.GetClient()
      if err := c.Create(context.TODO(), credReq); err != nil {
         if !errors.IsAlreadyExists(err) {
            setupLog.Error(err, "unable to create CredRequest")
            os.Exit(1)
         }
      }
    4. Ensure your Operator can wait for a Secret object to show up from the CCO, as shown in the following example, which is called along with the other items you are reconciling in your Operator:

      Example 9.5. Example wait for Secret object

      // WaitForSecret is a function that takes a Kubernetes client, a namespace, and a v1 "k8s.io/api/core/v1" name as arguments
      // It waits until the secret object with the given name exists in the given namespace
      // It returns the secret object or an error if the timeout is exceeded
      func WaitForSecret(client kubernetes.Interface, namespace, name string) (*v1.Secret, error) {
        // set a timeout of 10 minutes
        timeout := time.After(10 * time.Minute) 1
      
        // set a polling interval of 10 seconds
        ticker := time.NewTicker(10 * time.Second)
      
        // loop until the timeout or the secret is found
        for {
           select {
           case <-timeout:
              // timeout is exceeded, return an error
              return nil, fmt.Errorf("timed out waiting for secret %s in namespace %s", name, namespace)
                 // add to this error with a pointer to instructions for following a manual path to a Secret that will work on STS
           case <-ticker.C:
              // polling interval is reached, try to get the secret
              secret, err := client.CoreV1().Secrets(namespace).Get(context.Background(), name, metav1.GetOptions{})
              if err != nil {
                 if errors.IsNotFound(err) {
                    // secret does not exist yet, continue waiting
                    continue
                 } else {
                    // some other error occurred, return it
                    return nil, err
                 }
              } else {
                 // secret is found, return it
                 return secret, nil
              }
           }
        }
      }
      1
      The timeout value is based on an estimate of how fast the CCO might detect an added CredentialsRequest object and generate a Secret object. You might consider lowering the time or creating custom feedback for cluster administrators that could be wondering why the Operator is not yet accessing the cloud resources.
    5. Set up the AWS configuration by reading the secret created by the CCO from the credentials request and creating the AWS config file containing the data from that secret:

      Example 9.6. Example AWS configuration creation

      func SharedCredentialsFileFromSecret(secret *corev1.Secret) (string, error) {
         var data []byte
         switch {
         case len(secret.Data["credentials"]) > 0:
             data = secret.Data["credentials"]
         default:
             return "", errors.New("invalid secret for aws credentials")
         }
      
      
         f, err := ioutil.TempFile("", "aws-shared-credentials")
         if err != nil {
             return "", errors.Wrap(err, "failed to create file for shared credentials")
         }
         defer f.Close()
         if _, err := f.Write(data); err != nil {
             return "", errors.Wrapf(err, "failed to write credentials to %s", f.Name())
         }
         return f.Name(), nil
      }
      Important

      The secret is assumed to exist, but your Operator code should wait and retry when using this secret to give time to the CCO to create the secret.

      Additionally, the wait period should eventually time out and warn users that the OpenShift Container Platform cluster version, and therefore the CCO, might be an earlier version that does not support the CredentialsRequest object workflow with STS detection. In such cases, instruct users that they must add a secret by using another method.

    6. Configure the AWS SDK session, for example:

      Example 9.7. Example AWS SDK session configuration

      sharedCredentialsFile, err := SharedCredentialsFileFromSecret(secret)
      if err != nil {
         // handle error
      }
      options := session.Options{
         SharedConfigState: session.SharedConfigEnable,
         SharedConfigFiles: []string{sharedCredentialsFile},
      }

Chapter 10. Handling machine configuration for hosted control planes

In a standalone OpenShift Container Platform cluster, a machine config pool manages a set of nodes. You can handle a machine configuration by using the MachineConfigPool custom resource (CR).

In hosted control planes, the MachineConfigPool CR does not exist. A node pool contains a set of compute nodes. You can handle a machine configuration by using node pools.

10.1. Configuring node pools for hosted control planes

On hosted control planes, you can configure node pools by creating a MachineConfig object inside of a config map in the management cluster.

Procedure

  1. To create a MachineConfig object inside of a config map in the management cluster, enter the following information:

    apiVersion: v1
    kind: ConfigMap
    metadata:
      name: <configmap-name>
      namespace: clusters
    data:
      config: |
        apiVersion: machineconfiguration.openshift.io/v1
        kind: MachineConfig
        metadata:
          labels:
            machineconfiguration.openshift.io/role: worker
          name: <machineconfig-name>
        spec:
          config:
            ignition:
              version: 3.2.0
            storage:
              files:
              - contents:
                  source: data:...
                mode: 420
                overwrite: true
                path: ${PATH} 1
    1
    Sets the path on the node where the MachineConfig object is stored.
  2. After you add the object to the config map, you can apply the config map to the node pool as follows:

    $ oc edit nodepool <nodepool_name> --namespace <hosted_cluster_namespace>
    apiVersion: hypershift.openshift.io/v1alpha1
    kind: NodePool
    metadata:
    # ...
      name: nodepool-1
      namespace: clusters
    # ...
    spec:
      config:
      - name: ${configmap-name}
    # ...

10.2. Configuring node tuning in a hosted cluster

To set node-level tuning on the nodes in your hosted cluster, you can use the Node Tuning Operator. In hosted control planes, you can configure node tuning by creating config maps that contain Tuned objects and referencing those config maps in your node pools.

Procedure

  1. Create a config map that contains a valid tuned manifest, and reference the manifest in a node pool. In the following example, a Tuned manifest defines a profile that sets vm.dirty_ratio to 55 on nodes that contain the tuned-1-node-label node label with any value. Save the following ConfigMap manifest in a file named tuned-1.yaml:

        apiVersion: v1
        kind: ConfigMap
        metadata:
          name: tuned-1
          namespace: clusters
        data:
          tuning: |
            apiVersion: tuned.openshift.io/v1
            kind: Tuned
            metadata:
              name: tuned-1
              namespace: openshift-cluster-node-tuning-operator
            spec:
              profile:
              - data: |
                  [main]
                  summary=Custom OpenShift profile
                  include=openshift-node
                  [sysctl]
                  vm.dirty_ratio="55"
                name: tuned-1-profile
              recommend:
              - priority: 20
                profile: tuned-1-profile
    Note

    If you do not add any labels to an entry in the spec.recommend section of the Tuned spec, node-pool-based matching is assumed, so the highest priority profile in the spec.recommend section is applied to nodes in the pool. Although you can achieve more fine-grained node-label-based matching by setting a label value in the Tuned .spec.recommend.match section, node labels will not persist during an upgrade unless you set the .spec.management.upgradeType value of the node pool to InPlace.

  2. Create the ConfigMap object in the management cluster:

    $ oc --kubeconfig="$MGMT_KUBECONFIG" create -f tuned-1.yaml
  3. Reference the ConfigMap object in the spec.tuningConfig field of the node pool, either by editing a node pool or creating one. In this example, assume that you have only one NodePool, named nodepool-1, which contains 2 nodes.

        apiVersion: hypershift.openshift.io/v1alpha1
        kind: NodePool
        metadata:
          ...
          name: nodepool-1
          namespace: clusters
        ...
        spec:
          ...
          tuningConfig:
          - name: tuned-1
        status:
        ...
    Note

    You can reference the same config map in multiple node pools. In hosted control planes, the Node Tuning Operator appends a hash of the node pool name and namespace to the name of the Tuned CRs to distinguish them. Outside of this case, do not create multiple TuneD profiles of the same name in different Tuned CRs for the same hosted cluster.

Verification

Now that you have created the ConfigMap object that contains a Tuned manifest and referenced it in a NodePool, the Node Tuning Operator syncs the Tuned objects into the hosted cluster. You can verify which Tuned objects are defined and which TuneD profiles are applied to each node.

  1. List the Tuned objects in the hosted cluster:

    $ oc --kubeconfig="$HC_KUBECONFIG" get tuned.tuned.openshift.io -n openshift-cluster-node-tuning-operator

    Example output

    NAME       AGE
    default    7m36s
    rendered   7m36s
    tuned-1    65s

  2. List the Profile objects in the hosted cluster:

    $ oc --kubeconfig="$HC_KUBECONFIG" get profile.tuned.openshift.io -n openshift-cluster-node-tuning-operator

    Example output

    NAME                           TUNED            APPLIED   DEGRADED   AGE
    nodepool-1-worker-1            tuned-1-profile  True      False      7m43s
    nodepool-1-worker-2            tuned-1-profile  True      False      7m14s

    Note

    If no custom profiles are created, the openshift-node profile is applied by default.

  3. To confirm that the tuning was applied correctly, start a debug shell on a node and check the sysctl values:

    $ oc --kubeconfig="$HC_KUBECONFIG" debug node/nodepool-1-worker-1 -- chroot /host sysctl vm.dirty_ratio

    Example output

    vm.dirty_ratio = 55

10.3. Deploying the SR-IOV Operator for hosted control planes

After you configure and deploy your hosting service cluster, you can create a subscription to the SR-IOV Operator on a hosted cluster. The SR-IOV pod runs on worker machines rather than the control plane.

Prerequisites

You must configure and deploy the hosted cluster on AWS.

Procedure

  1. Create a namespace and an Operator group:

    apiVersion: v1
    kind: Namespace
    metadata:
      name: openshift-sriov-network-operator
    ---
    apiVersion: operators.coreos.com/v1
    kind: OperatorGroup
    metadata:
      name: sriov-network-operators
      namespace: openshift-sriov-network-operator
    spec:
      targetNamespaces:
      - openshift-sriov-network-operator
  2. Create a subscription to the SR-IOV Operator:

    apiVersion: operators.coreos.com/v1alpha1
    kind: Subscription
    metadata:
      name: sriov-network-operator-subsription
      namespace: openshift-sriov-network-operator
    spec:
      channel: stable
      name: sriov-network-operator
      config:
        nodeSelector:
          node-role.kubernetes.io/worker: ""
      source: s/qe-app-registry/redhat-operators
      sourceNamespace: openshift-marketplace

Verification

  1. To verify that the SR-IOV Operator is ready, run the following command and view the resulting output:

    $ oc get csv -n openshift-sriov-network-operator

    Example output

    NAME                                         DISPLAY                   VERSION               REPLACES                                     PHASE
    sriov-network-operator.4.17.0-202211021237   SR-IOV Network Operator   4.17.0-202211021237   sriov-network-operator.4.17.0-202210290517   Succeeded

  2. To verify that the SR-IOV pods are deployed, run the following command:

    $ oc get pods -n openshift-sriov-network-operator

Chapter 11. Using feature gates in a hosted cluster

You can use feature gates in a hosted cluster to enable features that are not part of the default set of features. You can enable the TechPreviewNoUpgrade feature set by using feature gates in your hosted cluster.

11.1. Enabling feature sets by using feature gates

You can enable the TechPreviewNoUpgrade feature set in a hosted cluster by editing the HostedCluster custom resource (CR) with the OpenShift CLI.

Prerequisites

  • You installed the OpenShift CLI (oc).

Procedure

  1. Open the HostedCluster CR for editing on the hosting cluster by running the following command:

    $ oc edit <hosted_cluster_name> -n <hosted_cluster_namespace>
  2. Define the feature set by entering a value in the featureSet field. For example:

    apiVersion: hypershift.openshift.io/v1beta1
    kind: HostedCluster
    metadata:
      name: <hosted_cluster_name> 1
      namespace: <hosted_cluster_namespace> 2
    spec:
      configuration:
        featureGate:
          featureSet: TechPreviewNoUpgrade 3
    1
    Specifies your hosted cluster name.
    2
    Specifies your hosted cluster namespace.
    3
    This feature set is a subset of the current Technology Preview features.
    Warning

    Enabling the TechPreviewNoUpgrade feature set on your cluster cannot be undone and prevents minor version updates. This feature set allows you to enable these Technology Preview features on test clusters, where you can fully test them. Do not enable this feature set on production clusters.

  3. Save the file to apply the changes.

Verification

  • Verify that the TechPreviewNoUpgrade feature gate is enabled in your hosted cluster by running the following command:

    $ oc get featuregate cluster -o yaml

Chapter 12. Observability for hosted control planes

You can gather metrics for hosted control planes by configuring metrics sets. The HyperShift Operator can create or delete monitoring dashboards in the management cluster for each hosted cluster that it manages.

12.1. Configuring metrics sets for hosted control planes

Hosted control planes for Red Hat OpenShift Container Platform creates ServiceMonitor resources in each control plane namespace that allow a Prometheus stack to gather metrics from the control planes. The ServiceMonitor resources use metrics relabelings to define which metrics are included or excluded from a particular component, such as etcd or the Kubernetes API server. The number of metrics that are produced by control planes directly impacts the resource requirements of the monitoring stack that gathers them.

Instead of producing a fixed number of metrics that apply to all situations, you can configure a metrics set that identifies a set of metrics to produce for each control plane. The following metrics sets are supported:

  • Telemetry: These metrics are needed for telemetry. This set is the default set and is the smallest set of metrics.
  • SRE: This set includes the necessary metrics to produce alerts and allow the troubleshooting of control plane components.
  • All: This set includes all of the metrics that are produced by standalone OpenShift Container Platform control plane components.

To configure a metrics set, set the METRICS_SET environment variable in the HyperShift Operator deployment by entering the following command:

$ oc set env -n hypershift deployment/operator METRICS_SET=All

12.1.1. Configuring the SRE metrics set

When you specify the SRE metrics set, the HyperShift Operator looks for a config map named sre-metric-set with a single key: config. The value of the config key must contain a set of RelabelConfigs that are organized by control plane component.

You can specify the following components:

  • etcd
  • kubeAPIServer
  • kubeControllerManager
  • openshiftAPIServer
  • openshiftControllerManager
  • openshiftRouteControllerManager
  • cvo
  • olm
  • catalogOperator
  • registryOperator
  • nodeTuningOperator
  • controlPlaneOperator
  • hostedClusterConfigOperator

A configuration of the SRE metrics set is illustrated in the following example:

kubeAPIServer:
  - action:       "drop"
    regex:        "etcd_(debugging|disk|server).*"
    sourceLabels: ["__name__"]
  - action:       "drop"
    regex:        "apiserver_admission_controller_admission_latencies_seconds_.*"
    sourceLabels: ["__name__"]
  - action:       "drop"
    regex:        "apiserver_admission_step_admission_latencies_seconds_.*"
    sourceLabels: ["__name__"]
  - action:       "drop"
    regex:        "scheduler_(e2e_scheduling_latency_microseconds|scheduling_algorithm_predicate_evaluation|scheduling_algorithm_priority_evaluation|scheduling_algorithm_preemption_evaluation|scheduling_algorithm_latency_microseconds|binding_latency_microseconds|scheduling_latency_seconds)"
    sourceLabels: ["__name__"]
  - action:       "drop"
    regex:        "apiserver_(request_count|request_latencies|request_latencies_summary|dropped_requests|storage_data_key_generation_latencies_microseconds|storage_transformation_failures_total|storage_transformation_latencies_microseconds|proxy_tunnel_sync_latency_secs)"
    sourceLabels: ["__name__"]
  - action:       "drop"
    regex:        "docker_(operations|operations_latency_microseconds|operations_errors|operations_timeout)"
    sourceLabels: ["__name__"]
  - action:       "drop"
    regex:        "reflector_(items_per_list|items_per_watch|list_duration_seconds|lists_total|short_watches_total|watch_duration_seconds|watches_total)"
    sourceLabels: ["__name__"]
  - action:       "drop"
    regex:        "etcd_(helper_cache_hit_count|helper_cache_miss_count|helper_cache_entry_count|request_cache_get_latencies_summary|request_cache_add_latencies_summary|request_latencies_summary)"
    sourceLabels: ["__name__"]
  - action:       "drop"
    regex:        "transformation_(transformation_latencies_microseconds|failures_total)"
    sourceLabels: ["__name__"]
  - action:       "drop"
    regex:        "network_plugin_operations_latency_microseconds|sync_proxy_rules_latency_microseconds|rest_client_request_latency_seconds"
    sourceLabels: ["__name__"]
  - action:       "drop"
    regex:        "apiserver_request_duration_seconds_bucket;(0.15|0.25|0.3|0.35|0.4|0.45|0.6|0.7|0.8|0.9|1.25|1.5|1.75|2.5|3|3.5|4.5|6|7|8|9|15|25|30|50)"
    sourceLabels: ["__name__", "le"]
kubeControllerManager:
  - action:       "drop"
    regex:        "etcd_(debugging|disk|request|server).*"
    sourceLabels: ["__name__"]
  - action:       "drop"
    regex:        "rest_client_request_latency_seconds_(bucket|count|sum)"
    sourceLabels: ["__name__"]
  - action:       "drop"
    regex:        "root_ca_cert_publisher_sync_duration_seconds_(bucket|count|sum)"
    sourceLabels: ["__name__"]
openshiftAPIServer:
  - action:       "drop"
    regex:        "etcd_(debugging|disk|server).*"
    sourceLabels: ["__name__"]
  - action:       "drop"
    regex:        "apiserver_admission_controller_admission_latencies_seconds_.*"
    sourceLabels: ["__name__"]
  - action:       "drop"
    regex:        "apiserver_admission_step_admission_latencies_seconds_.*"
    sourceLabels: ["__name__"]
  - action:       "drop"
    regex:        "apiserver_request_duration_seconds_bucket;(0.15|0.25|0.3|0.35|0.4|0.45|0.6|0.7|0.8|0.9|1.25|1.5|1.75|2.5|3|3.5|4.5|6|7|8|9|15|25|30|50)"
    sourceLabels: ["__name__", "le"]
openshiftControllerManager:
  - action:       "drop"
    regex:        "etcd_(debugging|disk|request|server).*"
    sourceLabels: ["__name__"]
openshiftRouteControllerManager:
  - action:       "drop"
    regex:        "etcd_(debugging|disk|request|server).*"
    sourceLabels: ["__name__"]
olm:
  - action:       "drop"
    regex:        "etcd_(debugging|disk|server).*"
    sourceLabels: ["__name__"]
catalogOperator:
  - action:       "drop"
    regex:        "etcd_(debugging|disk|server).*"
    sourceLabels: ["__name__"]
cvo:
  - action: drop
    regex: "etcd_(debugging|disk|server).*"
    sourceLabels: ["__name__"]

12.2. Enabling monitoring dashboards in a hosted cluster

To enable monitoring dashboards in a hosted cluster, complete the following steps:

Procedure

  1. Create the hypershift-operator-install-flags config map in the local-cluster namespace, being sure to specify the --monitoring-dashboards flag in the data.installFlagsToAdd section. For example:

    kind: ConfigMap
    apiVersion: v1
    metadata:
      name: hypershift-operator-install-flags
      namespace: local-cluster
    data:
      installFlagsToAdd: "--monitoring-dashboards"
      installFlagsToRemove: ""
  2. Wait a couple of minutes for the HyperShift Operator deployment in the hypershift namespace to be updated to include the following environment variable:

        - name: MONITORING_DASHBOARDS
          value: "1"

    When monitoring dashboards are enabled, for each hosted cluster that the HyperShift Operator manages, the Operator creates a config map named cp-<hosted_cluster_namespace>-<hosted_cluster_name> in the openshift-config-managed namespace, where <hosted_cluster_namespace> is the namespace of the hosted cluster and <hosted_cluster_name> is the name of the hosted cluster. As a result, a new dashboard is added in the administrative console of the management cluster.

  3. To view the dashboard, log in to the management cluster’s console and go to the dashboard for the hosted cluster by clicking Observe → Dashboards.
  4. Optional: To disable a monitoring dashboards in a hosted cluster, remove the --monitoring-dashboards flag from the hypershift-operator-install-flags config map. When you delete a hosted cluster, its corresponding dashboard is also deleted.

12.2.1. Dashboard customization

To generate dashboards for each hosted cluster, the HyperShift Operator uses a template that is stored in the monitoring-dashboard-template config map in the Operator namespace (hypershift). This template contains a set of Grafana panels that contain the metrics for the dashboard. You can edit the content of the config map to customize the dashboards.

When a dashboard is generated, the following strings are replaced with values that correspond to a specific hosted cluster:

Name

Description

__NAME__

The name of the hosted cluster

__NAMESPACE__

The namespace of the hosted cluster

__CONTROL_PLANE_NAMESPACE__

The namespace where the control plane pods of the hosted cluster are placed

__CLUSTER_ID__

The UUID of the hosted cluster, which matches the _id label of the hosted cluster metrics

Chapter 13. Troubleshooting hosted control planes

If you encounter issues with hosted control planes, see the following information to guide you through troubleshooting.

13.1. Gathering information to troubleshoot hosted control planes

When you need to troubleshoot an issue with hosted clusters, you can gather information by running the must-gather command. The command generates output for the management cluster and the hosted cluster.

The output for the management cluster contains the following content:

  • Cluster-scoped resources: These resources are node definitions of the management cluster.
  • The hypershift-dump compressed file: This file is useful if you need to share the content with other people.
  • Namespaced resources: These resources include all of the objects from the relevant namespaces, such as config maps, services, events, and logs.
  • Network logs: These logs include the OVN northbound and southbound databases and the status for each one.
  • Hosted clusters: This level of output involves all of the resources inside of the hosted cluster.

The output for the hosted cluster contains the following content:

  • Cluster-scoped resources: These resources include all of the cluster-wide objects, such as nodes and CRDs.
  • Namespaced resources: These resources include all of the objects from the relevant namespaces, such as config maps, services, events, and logs.

Although the output does not contain any secret objects from the cluster, it can contain references to the names of secrets.

Prerequisites

  • You must have cluster-admin access to the management cluster.
  • You need the name value for the HostedCluster resource and the namespace where the CR is deployed.
  • You must have the hcp command-line interface installed. For more information, see "Installing the hosted control planes command-line interface".
  • You must have the OpenShift CLI (oc) installed.
  • You must ensure that the kubeconfig file is loaded and is pointing to the management cluster.

Procedure

  • To gather the output for troubleshooting, enter the following command:

    $ oc adm must-gather \
      --image=registry.redhat.io/multicluster-engine/must-gather-rhel9:v<mce_version> \
      /usr/bin/gather hosted-cluster-namespace=HOSTEDCLUSTERNAMESPACE \
      hosted-cluster-name=HOSTEDCLUSTERNAME \
      --dest-dir=NAME ; tar -cvzf NAME.tgz NAME

    where:

    • You replace <mce_version> with the version of multicluster engine Operator that you are using; for example, 2.6.
    • The hosted-cluster-namespace=HOSTEDCLUSTERNAMESPACE parameter is optional. If you do not include it, the command runs as though the hosted cluster is in the default namespace, which is clusters.
    • If you want to save the results of the command to a compressed file, specify the --dest-dir=NAME parameter and replace NAME with the name of the directory where you want to save the results.

13.2. Entering the must-gather command in a disconnected environment

Complete the following steps to run the must-gather command in a disconnected environment.

Procedure

  1. In a disconnected environment, mirror the Red Hat operator catalog images into their mirror registry. For more information, see Install on disconnected networks.
  2. Run the following command to extract logs, which reference the image from their mirror registry:

    REGISTRY=registry.example.com:5000
    IMAGE=$REGISTRY/multicluster-engine/must-gather-rhel8@sha256:ff9f37eb400dc1f7d07a9b6f2da9064992934b69847d17f59e385783c071b9d8
    
    $ oc adm must-gather \
      --image=$IMAGE /usr/bin/gather \
      hosted-cluster-namespace=HOSTEDCLUSTERNAMESPACE \
      hosted-cluster-name=HOSTEDCLUSTERNAME \
      --dest-dir=./data

Additional resources

13.3. Troubleshooting hosted clusters on OpenShift Virtualization

When you troubleshoot a hosted cluster on OpenShift Virtualization, start with the top-level HostedCluster and NodePool resources and then work down the stack until you find the root cause. The following steps can help you discover the root cause of common issues.

13.3.1. HostedCluster resource is stuck in a partial state

If a hosted control plane is not coming fully online because a HostedCluster resource is pending, identify the problem by checking prerequisites, resource conditions, and node and Operator status.

Procedure

  • Ensure that you meet all of the prerequisites for a hosted cluster on OpenShift Virtualization.
  • View the conditions on the HostedCluster and NodePool resources for validation errors that prevent progress.
  • By using the kubeconfig file of the hosted cluster, inspect the status of the hosted cluster:

    • View the output of the oc get clusteroperators command to see which cluster Operators are pending.
    • View the output of the oc get nodes command to ensure that worker nodes are ready.

13.3.2. No worker nodes are registered

If a hosted control plane is not coming fully online because the hosted control plane has no worker nodes registered, identify the problem by checking the status of various parts of the hosted control plane.

Procedure

  • View the HostedCluster and NodePool conditions for failures that indicate what the problem might be.
  • Enter the following command to view the KubeVirt worker node virtual machine (VM) status for the NodePool resource:

    $ oc get vm -n <namespace>
  • If the VMs are stuck in the provisioning state, enter the following command to view the CDI import pods within the VM namespace for clues about why the importer pods have not completed:

    $ oc get pods -n <namespace> | grep "import"
  • If the VMs are stuck in the starting state, enter the following command to view the status of the virt-launcher pods:

    $ oc get pods -n <namespace> -l kubevirt.io=virt-launcher

    If the virt-launcher pods are in a pending state, investigate why the pods are not being scheduled. For example, not enough resources might exist to run the virt-launcher pods.

  • If the VMs are running but they are not registered as worker nodes, use the web console to gain VNC access to one of the affected VMs. The VNC output indicates whether the ignition configuration was applied. If a VM cannot access the hosted control plane ignition server on startup, the VM cannot be provisioned correctly.
  • If the ignition configuration was applied but the VM is still not registering as a node, see Identifying the problem: Access the VM console logs to learn how to access the VM console logs during startup.

13.3.3. Worker nodes are stuck in the NotReady state

During cluster creation, nodes enter the NotReady state temporarily while the networking stack is rolled out. This part of the process is normal. However, if this part of the process takes longer than 15 minutes, an issue might have occurred.

Procedure

Identify the problem by investigating the node object and pods:

  • Enter the following command to view the conditions on the node object and determine why the node is not ready:

    $ oc get nodes -o yaml
  • Enter the following command to look for failing pods within the cluster:

    $ oc get pods -A --field-selector=status.phase!=Running,status,phase!=Succeeded

13.3.4. Ingress and console cluster operators are not coming online

If a hosted control plane is not coming fully online because the Ingress and console cluster Operators are not online, check the wildcard DNS routes and load balancer.

Procedure

  • If the cluster uses the default Ingress behavior, enter the following command to ensure that wildcard DNS routes are enabled on the OpenShift Container Platform cluster that the virtual machines (VMs) are hosted on:

    $ oc patch ingresscontroller -n openshift-ingress-operator \
      default --type=json -p \
      '[{ "op": "add", "path": "/spec/routeAdmission", "value": {wildcardPolicy: "WildcardsAllowed"}}]'
  • If you use a custom base domain for the hosted control plane, complete the following steps:

    • Ensure that the load balancer is targeting the VM pods correctly.
    • Ensure that the wildcard DNS entry is targeting the load balancer IP address.

13.3.5. Load balancer services for the hosted cluster are not available

If a hosted control plane is not coming fully online because the load balancer services are not becoming available, check events, details, and the Kubernetes Cluster Configuration Manager (KCCM) pod.

Procedure

  • Look for events and details that are associated with the load balancer service within the hosted cluster.
  • By default, load balancers for the hosted cluster are handled by the kubevirt-cloud-controller-manager within the hosted control plane namespace. Ensure that the KCCM pod is online and view its logs for errors or warnings. To identify the KCCM pod in the hosted control plane namespace, enter the following command:

    $ oc get pods -n <hosted_control_plane_namespace> -l app=cloud-controller-manager

13.3.6. Hosted cluster PVCs are not available

If a hosted control plane is not coming fully online because the persistent volume claims (PVCs) for a hosted cluster are not available, check the PVC events and details, and component logs.

Procedure

  • Look for events and details that are associated with the PVC to understand which errors are occurring.
  • If a PVC is failing to attach to a pod, view the logs for the kubevirt-csi-node daemonset component within the hosted cluster to further investigate the problem. To identify the kubevirt-csi-node pods for each node, enter the following command:

    $ oc get pods -n openshift-cluster-csi-drivers -o wide -l app=kubevirt-csi-driver
  • If a PVC cannot bind to a persistent volume (PV), view the logs of the kubevirt-csi-controller component within the hosted control plane namespace. To identify the kubevirt-csi-controller pod within the hosted control plane namespace, enter the following command:

    $ oc get pods -n <hcp namespace> -l app=kubevirt-csi-driver

13.3.7. VM nodes are not correctly joining the cluster

If a hosted control plane is not coming fully online because the VM nodes are not correctly joining the cluster, access the VM console logs.

13.3.8. RHCOS image mirroring fails

For hosted control planes on OpenShift Virtualization in a disconnected environment, oc-mirror fails to automatically mirror the Red Hat Enterprise Linux CoreOS (RHCOS) image to the internal registry. When you create your first hosted cluster, the Kubevirt virtual machine does not boot, because the boot image is not available in the internal registry.

To resolve this issue, manually mirror the RHCOS image to the internal registry.

Procedure

  1. Get the internal registry name by running the following command:

    $ oc get imagecontentsourcepolicy -o json | jq -r '.items[].spec.repositoryDigestMirrors[0].mirrors[0]'
  2. Get a payload image by running the following command:

    $ oc get clusterversion version -ojsonpath='{.status.desired.image}'
  3. Extract the 0000_50_installer_coreos-bootimages.yaml file that contains boot images from your payload image on the hosted cluster. Replace <payload_image> with the name of your payload image. Run the following command:

    $ oc image extract --file /release-manifests/0000_50_installer_coreos-bootimages.yaml <payload_image> --confirm
  4. Get the RHCOS image by running the following command:

    $ cat 0000_50_installer_coreos-bootimages.yaml | yq -r .data.stream | jq -r '.architectures.x86_64.images.kubevirt."digest-ref"'
  5. Mirror the RHCOS image to your internal registry. Replace <rhcos_image> with your RHCOS image; for example, quay.io/openshift-release-dev/ocp-v4.0-art-dev@sha256:d9643ead36b1c026be664c9c65c11433c6cdf71bfd93ba229141d134a4a6dd94. Replace <internal_registry> with the name of your internal registry; for example, virthost.ostest.test.metalkube.org:5000/localimages/ocp-v4.0-art-dev. Run the following command:

    $ oc image mirror <rhcos_image> <internal_registry>
  6. Create a YAML file named rhcos-boot-kubevirt.yaml that defines the ImageDigestMirrorSet object. See the following example configuration:

    apiVersion: config.openshift.io/v1
    kind: ImageDigestMirrorSet
    metadata:
      name: rhcos-boot-kubevirt
    spec:
      repositoryDigestMirrors:
        - mirrors:
            - <rhcos_image_no_digest> 1
          source: virthost.ostest.test.metalkube.org:5000/localimages/ocp-v4.0-art-dev 2
    1
    Specify your RHCOS image without its digest, for example, quay.io/openshift-release-dev/ocp-v4.0-art-dev.
    2
    Specify the name of your internal registry, for example, virthost.ostest.test.metalkube.org:5000/localimages/ocp-v4.0-art-dev.
  7. Apply the rhcos-boot-kubevirt.yaml file to create the ImageDigestMirrorSet object by running the following command:

    $ oc apply -f rhcos-boot-kubevirt.yaml

13.3.9. Return non-bare-metal clusters to the late binding pool

If you are using late binding managed clusters without BareMetalHosts, you must complete additional manual steps to delete a late binding cluster and return the nodes back to the Discovery ISO.

For late binding managed clusters without BareMetalHosts, removing cluster information does not automatically return all nodes to the Discovery ISO.

Procedure

To unbind the non-bare-metal nodes with late binding, complete the following steps:

  1. Remove the cluster information. For more information, see Removing a cluster from management.
  2. Clean the root disks.
  3. Reboot manually with the Discovery ISO.

13.4. Restarting hosted control plane components

If you are an administrator for hosted control planes, you can use the hypershift.openshift.io/restart-date annotation to restart all control plane components for a particular HostedCluster resource. For example, you might need to restart control plane components for certificate rotation.

Procedure

To restart a control plane, annotate the HostedCluster resource by entering the following command:

$ oc annotate hostedcluster \
  -n <hosted_cluster_namespace> \
  <hosted_cluster_name> \
  hypershift.openshift.io/restart-date=$(date --iso-8601=seconds)

Verification

The control plane is restarted whenever the value of the anonotation changes. The date command in the example serves as the source of a unique string. The annotation is treated as a string, not a timestamp.

The following components are restarted:

  • catalog-operator
  • certified-operators-catalog
  • cluster-api
  • cluster-autoscaler
  • cluster-policy-controller
  • cluster-version-operator
  • community-operators-catalog
  • control-plane-operator
  • hosted-cluster-config-operator
  • ignition-server
  • ingress-operator
  • konnectivity-agent
  • konnectivity-server
  • kube-apiserver
  • kube-controller-manager
  • kube-scheduler
  • machine-approver
  • oauth-openshift
  • olm-operator
  • openshift-apiserver
  • openshift-controller-manager
  • openshift-oauth-apiserver
  • packageserver
  • redhat-marketplace-catalog
  • redhat-operators-catalog

13.5. Pausing the reconciliation of a hosted cluster and hosted control plane

If you are a cluster instance administrator, you can pause the reconciliation of a hosted cluster and hosted control plane. You might want to pause reconciliation when you back up and restore an etcd database or when you need to debug problems with a hosted cluster or hosted control plane.

Procedure

  1. To pause reconciliation for a hosted cluster and hosted control plane, populate the pausedUntil field of the HostedCluster resource.

    • To pause the reconciliation until a specific time, enter the following command:

      $ oc patch -n <hosted_cluster_namespace> \
        hostedclusters/<hosted_cluster_name> \
        -p '{"spec":{"pausedUntil":"<timestamp>"}}' \
        --type=merge 1
      1
      Specify a timestamp in the RFC339 format, for example, 2024-03-03T03:28:48Z. The reconciliation is paused until the specified time is passed.
    • To pause the reconciliation indefinitely, enter the following command:

      $ oc patch -n <hosted_cluster_namespace> \
        hostedclusters/<hosted_cluster_name> \
        -p '{"spec":{"pausedUntil":"true"}}' \
        --type=merge

      The reconciliation is paused until you remove the field from the HostedCluster resource.

      When the pause reconciliation field is populated for the HostedCluster resource, the field is automatically added to the associated HostedControlPlane resource.

  2. To remove the pausedUntil field, enter the following patch command:

    $ oc patch -n <hosted_cluster_namespace> \
      hostedclusters/<hosted_cluster_name> \
      -p '{"spec":{"pausedUntil":null}}' \
      --type=merge

13.6. Scaling down the data plane to zero

If you are not using the hosted control plane, to save the resources and cost you can scale down a data plane to zero.

Note

Ensure you are prepared to scale down the data plane to zero. Because the workload from the worker nodes disappears after scaling down.

Procedure

  1. Set the kubeconfig file to access the hosted cluster by running the following command:

    $ export KUBECONFIG=<install_directory>/auth/kubeconfig
  2. Get the name of the NodePool resource associated to your hosted cluster by running the following command:

    $ oc get nodepool --namespace <hosted_cluster_namespace>
  3. Optional: To prevent the pods from draining, add the nodeDrainTimeout field in the NodePool resource by running the following command:

    $ oc edit nodepool <nodepool_name>  --namespace <hosted_cluster_namespace>

    Example output

    apiVersion: hypershift.openshift.io/v1alpha1
    kind: NodePool
    metadata:
    # ...
      name: nodepool-1
      namespace: clusters
    # ...
    spec:
      arch: amd64
      clusterName: clustername 1
      management:
        autoRepair: false
        replace:
          rollingUpdate:
            maxSurge: 1
            maxUnavailable: 0
          strategy: RollingUpdate
        upgradeType: Replace
      nodeDrainTimeout: 0s 2
    # ...

    1
    Defines the name of your hosted cluster.
    2
    Specifies the total amount of time that the controller spends to drain a node. By default, the nodeDrainTimeout: 0s setting blocks the node draining process.
    Note

    To allow the node draining process to continue for a certain period of time, you can set the value of the nodeDrainTimeout field accordingly, for example, nodeDrainTimeout: 1m.

  4. Scale down the NodePool resource associated to your hosted cluster by running the following command:

    $ oc scale nodepool/<nodepool_name> --namespace <hosted_cluster_namespace> --replicas=0
    Note

    After scaling down the data plan to zero, some pods in the control plane stay in the Pending status and the hosted control plane stays up and running. If necessary, you can scale up the NodePool resource.

  5. Optional: Scale up the NodePool resource associated to your hosted cluster by running the following command:

    $ oc scale nodepool/<nodepool_name> --namespace <hosted_cluster_namespace> --replicas=1

    After rescaling the NodePool resource, wait for couple of minutes for the NodePool resource to become available in a Ready state.

Verification

  • Verify that the value for the nodeDrainTimeout field is greater than 0s by running the following command:

    $ oc get nodepool -n <hosted_cluster_namespace> <nodepool_name> -ojsonpath='{.spec.nodeDrainTimeout}'

Additional resources

Chapter 14. Destroying a hosted cluster

14.1. Destroying a hosted cluster on AWS

You can destroy a hosted cluster and its managed cluster resource on Amazon Web Services (AWS) by using the command-line interface (CLI).

14.1.1. Destroying a hosted cluster on AWS by using the CLI

You can use the command-line interface (CLI) to destroy a hosted cluster on Amazon Web Services (AWS).

Procedure

  1. Delete the managed cluster resource on multicluster engine Operator by running the following command:

    $ oc delete managedcluster <hosted_cluster_name> 1
    1
    Replace <hosted_cluster_name> with the name of your cluster.
  2. Delete the hosted cluster and its backend resources by running the following command:

    $ hcp destroy cluster aws  \
      --name <hosted_cluster_name> \1
      --infra-id <infra_id> \2
      --role-arn <arn_role> \3
      --sts-creds <path_to_sts_credential_file> \4
      --base-domain <basedomain> 5
    1
    Specify the name of your hosted cluster, for instance, example.
    2
    Specify the infrastructure name for your hosted cluster.
    3
    Specify the Amazon Resource Name (ARN), for example, arn:aws:iam::820196288204:role/myrole.
    4
    Specify the path to your AWS Security Token Service (STS) credentials file, for example, /home/user/sts-creds/sts-creds.json.
    5
    Specify your base domain, for example, example.com.
    Important

    If your session token for AWS Security Token Service (STS) is expired, retrieve the STS credentials in a JSON file named sts-creds.json by running the following command:

    $ aws sts get-session-token --output json > sts-creds.json

14.2. Destroying a hosted cluster on bare metal

You can destroy hosted clusters on bare metal by using the command-line interface (CLI) or the multicluster engine Operator web console.

14.2.1. Destroying a hosted cluster on bare metal by using the CLI

You can use the hcp command-line interface (CLI) to destroy a hosted cluster on bare metal.

Procedure

  • Delete the hosted cluster and its backend resources by running the following command:

    $ hcp destroy cluster agent --name <hosted_cluster_name> 1
    1
    Specify the name of your hosted cluster.

14.2.2. Destroying a hosted cluster on bare metal by using the web console

You can use the multicluster engine Operator web console to destroy a hosted cluster on bare metal.

Procedure

  1. In the console, click InfrastructureClusters.
  2. On the Clusters page, select the cluster that you want to destroy.
  3. In the Actions menu, select Destroy clusters to remove the cluster.

14.3. Destroying a hosted cluster on OpenShift Virtualization

You can destroy a hosted cluster and its managed cluster resource on OpenShift Virtualization by using the command-line interface (CLI).

14.3.1. Destroying a hosted cluster on OpenShift Virtualization by using the CLI

You can use the command-line interface (CLI) to destroy a hosted cluster and its managed cluster resource on OpenShift Virtualization.

Procedure

  1. Delete the managed cluster resource on multicluster engine Operator by running the following command:

    $ oc delete managedcluster <hosted_cluster_name>
  2. Delete the hosted cluster and its backend resources by running the following command:

    $ hcp destroy cluster kubevirt --name <hosted_cluster_name>

14.4. Destroying a hosted cluster on IBM Z

You can destroy a hosted cluster on x86 bare metal with IBM Z compute nodes and its managed cluster resource by using the command-line interface (CLI).

14.4.1. Destroying a hosted cluster on x86 bare metal with IBM Z compute nodes

To destroy a hosted cluster and its managed cluster on x86 bare metal with IBM Z compute nodes, you can use the command-line interface (CLI).

Procedure

  1. Scale the NodePool object to 0 nodes by running the following command:

    $ oc -n <hosted_cluster_namespace> scale nodepool <nodepool_name> --replicas 0

    After the NodePool object is scaled to 0, the compute nodes are detached from the hosted cluster. In OpenShift Container Platform version 4.17, this function is applicable only for IBM Z with KVM. For z/VM and LPAR, you must delete the compute nodes manually.

    If you want to re-attach compute nodes to the cluster, you can scale up the NodePool object with the number of compute nodes that you want. For z/VM and LPAR to reuse the agents, you must re-create them by using the Discovery image.

    Important

    If the compute nodes are not detached from the hosted cluster or are stuck in the Notready state, delete the compute nodes manually by running the following command:

    $ oc --kubeconfig <hosted_cluster_name>.kubeconfig delete node <compute_node_name>
  2. Verify the status of the compute nodes by entering the following command:

    $ oc --kubeconfig <hosted_cluster_name>.kubeconfig get nodes

    After the compute nodes are detached from the hosted cluster, the status of the agents is changed to auto-assign.

  3. Delete the agents from the cluster by running the following command:

    $ oc -n <hosted_control_plane_namespace> delete agent <agent_name>
    Note

    You can delete the virtual machines that you created as agents after you delete the agents from the cluster.

  4. Destroy the hosted cluster by running the following command:

    $ hcp destroy cluster agent --name <hosted_cluster_name> --namespace <hosted_cluster_namespace>

14.5. Destroying a hosted cluster on IBM Power

You can destroy a hosted cluster on IBM Power by using the command-line interface (CLI).

14.5.1. Destroying a hosted cluster on IBM Power by using the CLI

To destroy a hosted cluster on IBM Power, you can use the hcp command-line interface (CLI).

Procedure

  • Delete the hosted cluster by running the following command:

    $ hcp destroy cluster agent
     --name=<hosted_cluster_name> \1
     --namespace=<hosted_cluster_namespace> \2
     --cluster-grace-period <duration> 3
    1
    Replace <hosted_cluster_name> with the name of your hosted cluster.
    2
    Replace <hosted_cluster_namespace> with the name of your hosted cluster namespace.
    3
    Specifies the duration to destroy the hosted cluster completely, for example, 20m0s.

14.6. Destroying a hosted cluster on non-bare metal agent machines

You can destroy hosted clusters on non-bare metal agent machines by using the command-line interface (CLI) or the multicluster engine Operator web console.

14.6.1. Destroying a hosted cluster on non-bare metal agent machines

You can use the hcp command-line interface (CLI) to destroy a hosted cluster on non-bare metal agent machines.

Procedure

  • Delete the hosted cluster and its backend resources by running the following command:

    $ hcp destroy cluster agent --name <hosted_cluster_name> 1
    1
    Replace <hosted_cluster_name> with the name of your hosted cluster.

14.6.2. Destroying a hosted cluster on non-bare metal agent machines by using the web console

You can use the multicluster engine Operator web console to destroy a hosted cluster on non-bare metal agent machines.

Procedure

  1. In the console, click InfrastructureClusters.
  2. On the Clusters page, select the cluster that you want to destroy.
  3. In the Actions menu, select Destroy clusters to remove the cluster.

Chapter 15. Manually importing a hosted cluster

Hosted clusters are automatically imported into multicluster engine Operator after the hosted control plane becomes available.

15.1. Limitations of managing imported hosted clusters

Hosted clusters are automatically imported into the local multicluster engine for Kubernetes Operator, unlike a standalone OpenShift Container Platform or third party clusters. Hosted clusters run some of their agents in the hosted mode so that the agents do not use the resources of your cluster.

If you choose to automatically import hosted clusters, you can update node pools and the control plane in hosted clusters by using the HostedCluster resource on the management cluster. To update node pools and a control plane, see "Updating node pools in a hosted cluster" and "Updating a control plane in a hosted cluster".

You can import hosted clusters into a location other than the local multicluster engine Operator by using the Red Hat Advanced Cluster Management (RHACM). For more information, see "Discovering multicluster engine for Kubernetes Operator hosted clusters in Red Hat Advanced Cluster Management".

In this topology, you must update your hosted clusters by using the command-line interface or the console of the local multicluster engine for Kubernetes Operator where the cluster is hosted. You cannot update the hosted clusters through the RHACM hub cluster.

15.2. Additional resources

15.3. Manually importing hosted clusters

If you want to import hosted clusters manually, complete the following steps.

Procedure

  1. In the console, click InfrastructureClusters and select the hosted cluster that you want to import.
  2. Click Import hosted cluster.

    Note

    For your discovered hosted cluster, you can also import from the console, but the cluster must be in an upgradable state. Import on your cluster is disabled if the hosted cluster is not in an upgradable state because the hosted control plane is not available. Click Import to begin the process. The status is Importing while the cluster receives updates and then changes to Ready.

15.4. Manually importing a hosted cluster on AWS

You can also import a hosted cluster on Amazon Web Services (AWS) with the command-line interface.

Procedure

  1. Create your ManagedCluster resource by using the following sample YAML file:

    apiVersion: cluster.open-cluster-management.io/v1
    kind: ManagedCluster
    metadata:
      annotations:
        import.open-cluster-management.io/hosting-cluster-name: local-cluster
        import.open-cluster-management.io/klusterlet-deploy-mode: Hosted
        open-cluster-management/created-via: hypershift
      labels:
        cloud: auto-detect
        cluster.open-cluster-management.io/clusterset: default
        name: <cluster_name>
        vendor: OpenShift
      name: <cluster_name>
    spec:
      hubAcceptsClient: true
      leaseDurationSeconds: 60

    Replace <cluster_name> with the name of your hosted cluster.

  2. Run the following command to apply the resource:

    $ oc apply -f <file_name>

    Replace <file_name> with the YAML file name you created in the previous step.

  3. If you have Red Hat Advanced Cluster Management installed, create your KlusterletAddonConfig resource by using the following sample YAML file. If you have installed multicluster engine Operator only, skip this step:

    apiVersion: agent.open-cluster-management.io/v1
    kind: KlusterletAddonConfig
    metadata:
      name: <cluster_name>
      namespace: <cluster_name>
    spec:
      clusterName: <cluster_name>
      clusterNamespace: <cluster_name>
      clusterLabels:
        cloud: auto-detect
        vendor: auto-detect
      applicationManager:
        enabled: true
      certPolicyController:
        enabled: true
      iamPolicyController:
        enabled: true
      policyController:
        enabled: true
      searchCollector:
        enabled: false

    Replace <cluster_name> with the name of your hosted cluster.

  4. Run the following command to apply the resource:

    $ oc apply -f <file_name>

    Replace <file_name> with the YAML file name you created in the previous step.

  5. After the import process is complete, your hosted cluster becomes visible in the console. You can also check the status of your hosted cluster by running the following command:

    $ oc get managedcluster <cluster_name>

15.5. Disabling the automatic import of hosted clusters into multicluster engine Operator

Hosted clusters are automatically imported into multicluster engine Operator after the control plane becomes available. If needed, you can disable the automatic import of hosted clusters.

Any hosted clusters that were previously imported are not affected, even if you disable automatic import. When you upgrade to multicluster engine Operator 2.5 and automatic import is enabled, all hosted clusters that are not imported are automatically imported if their control planes are available.

Note

If Red Hat Advanced Cluster Management is installed, all Red Hat Advanced Cluster Management add-ons are also enabled.

When automatic import is disabled, only newly created hosted clusters are not automatically imported. Hosted clusters that were already imported are not affected. You can still manually import clusters by using the console or by creating the ManagedCluster and KlusterletAddonConfig custom resources.

Procedure

To disable the automatic import of hosted clusters, complete the following steps:

  1. On the hub cluster, open the hypershift-addon-deploy-config specification that is in the AddonDeploymentConfig resource in the namespace where multicluster engine Operator is installed by entering the following command:

    $ oc edit addondeploymentconfig hypershift-addon-deploy-config -n multicluster-engine
  2. In the spec.customizedVariables section, add the autoImportDisabled variable with value of "true", as shown in the following example:

    apiVersion: addon.open-cluster-management.io/v1alpha1
    kind: AddOnDeploymentConfig
    metadata:
      name: hypershift-addon-deploy-config
      namespace: multicluster-engine
    spec:
      customizedVariables:
       - name: hcMaxNumber
         value: "80"
      - name: hcThresholdNumber
        value: "60"
      - name: autoImportDisabled
        value: "true"
  3. To re-enable automatic import, set the value of the autoImportDisabled variable to "false" or remove the variable from the AddonDeploymentConfig resource.

Legal Notice

Copyright © 2024 Red Hat, Inc.

OpenShift documentation is licensed under the Apache License 2.0 (https://www.apache.org/licenses/LICENSE-2.0).

Modified versions must remove all Red Hat trademarks.

Portions adapted from https://github.com/kubernetes-incubator/service-catalog/ with modifications by Red Hat.

Red Hat, Red Hat Enterprise Linux, the Red Hat logo, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other countries.

Linux® is the registered trademark of Linus Torvalds in the United States and other countries.

Java® is a registered trademark of Oracle and/or its affiliates.

XFS® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States and/or other countries.

MySQL® is a registered trademark of MySQL AB in the United States, the European Union and other countries.

Node.js® is an official trademark of Joyent. Red Hat Software Collections is not formally related to or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack® Word Mark and OpenStack logo are either registered trademarks/service marks or trademarks/service marks of the OpenStack Foundation, in the United States and other countries and are used with the OpenStack Foundation’s permission. We are not affiliated with, endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Red Hat logoGithubRedditYoutubeTwitter

Learn

Try, buy, & sell

Communities

About Red Hat Documentation

We help Red Hat users innovate and achieve their goals with our products and services with content they can trust.

Making open source more inclusive

Red Hat is committed to replacing problematic language in our code, documentation, and web properties. For more details, see the Red Hat Blog.

About Red Hat

We deliver hardened solutions that make it easier for enterprises to work across platforms and environments, from the core datacenter to the network edge.

© 2024 Red Hat, Inc.