Installing on GCP


OpenShift Container Platform 4.17

Installing OpenShift Container Platform on Google Cloud Platform

Red Hat OpenShift Documentation Team

Abstract

This document describes how to install OpenShift Container Platform on Google Cloud Platform.

Chapter 1. Preparing to install on GCP

1.1. Prerequisites

1.2. Requirements for installing OpenShift Container Platform on GCP

Before installing OpenShift Container Platform on Google Cloud Platform (GCP), you must create a service account and configure a GCP project. See Configuring a GCP project for details about creating a project, enabling API services, configuring DNS, GCP account limits, and supported GCP regions.

If the cloud identity and access management (IAM) APIs are not accessible in your environment, or if you do not want to store an administrator-level credential secret in the kube-system namespace, see Manually creating long-term credentials for GCP for other options.

1.3. Choosing a method to install OpenShift Container Platform on GCP

You can install OpenShift Container Platform on installer-provisioned or user-provisioned infrastructure. The default installation type uses installer-provisioned infrastructure, where the installation program provisions the underlying infrastructure for the cluster. You can also install OpenShift Container Platform on infrastructure that you provision. If you do not use infrastructure that the installation program provisions, you must manage and maintain the cluster resources yourself.

See Installation process for more information about installer-provisioned and user-provisioned installation processes.

1.3.1. Installing a cluster on installer-provisioned infrastructure

You can install a cluster on GCP infrastructure that is provisioned by the OpenShift Container Platform installation program, by using one of the following methods:

  • Installing a cluster quickly on GCP: You can install OpenShift Container Platform on GCP infrastructure that is provisioned by the OpenShift Container Platform installation program. You can install a cluster quickly by using the default configuration options.
  • Installing a customized cluster on GCP: You can install a customized cluster on GCP infrastructure that the installation program provisions. The installation program allows for some customization to be applied at the installation stage. Many other customization options are available post-installation.
  • Installing a cluster on GCP with network customizations: You can customize your OpenShift Container Platform network configuration during installation, so that your cluster can coexist with your existing IP address allocations and adhere to your network requirements.
  • Installing a cluster on GCP in a restricted network: You can install OpenShift Container Platform on GCP on installer-provisioned infrastructure by using an internal mirror of the installation release content. You can use this method to install a cluster that does not require an active internet connection to obtain the software components. While you can install OpenShift Container Platform by using the mirrored content, your cluster still requires internet access to use the GCP APIs.
  • Installing a cluster into an existing Virtual Private Cloud: You can install OpenShift Container Platform on an existing GCP Virtual Private Cloud (VPC). You can use this installation method if you have constraints set by the guidelines of your company, such as limits on creating new accounts or infrastructure.
  • Installing a private cluster on an existing VPC: You can install a private cluster on an existing GCP VPC. You can use this method to deploy OpenShift Container Platform on an internal network that is not visible to the internet.

1.3.2. Installing a cluster on user-provisioned infrastructure

You can install a cluster on GCP infrastructure that you provision, by using one of the following methods:

1.4. Next steps

Chapter 2. Configuring a GCP project

Before you can install OpenShift Container Platform, you must configure a Google Cloud Platform (GCP) project to host it.

2.1. Creating a GCP project

To install OpenShift Container Platform, you must create a project in your Google Cloud Platform (GCP) account to host the cluster.

Procedure

  • Create a project to host your OpenShift Container Platform cluster. See Creating and Managing Projects in the GCP documentation.

    Important

    Your GCP project must use the Premium Network Service Tier if you are using installer-provisioned infrastructure. The Standard Network Service Tier is not supported for clusters installed using the installation program. The installation program configures internal load balancing for the api-int.<cluster_name>.<base_domain> URL; the Premium Tier is required for internal load balancing.

2.2. Enabling API services in GCP

Your Google Cloud Platform (GCP) project requires access to several API services to complete OpenShift Container Platform installation.

Prerequisites

  • You created a project to host your cluster.

Procedure

  • Enable the following required API services in the project that hosts your cluster. You may also enable optional API services which are not required for installation. See Enabling services in the GCP documentation.

    Table 2.1. Required API services
    API serviceConsole service name

    Compute Engine API

    compute.googleapis.com

    Cloud Resource Manager API

    cloudresourcemanager.googleapis.com

    Google DNS API

    dns.googleapis.com

    IAM Service Account Credentials API

    iamcredentials.googleapis.com

    Identity and Access Management (IAM) API

    iam.googleapis.com

    Service Usage API

    serviceusage.googleapis.com

    Table 2.2. Optional API services
    API serviceConsole service name

    Google Cloud APIs

    cloudapis.googleapis.com

    Service Management API

    servicemanagement.googleapis.com

    Google Cloud Storage JSON API

    storage-api.googleapis.com

    Cloud Storage

    storage-component.googleapis.com

2.3. Configuring DNS for GCP

To install OpenShift Container Platform, the Google Cloud Platform (GCP) account you use must have a dedicated public hosted zone in the same project that you host the OpenShift Container Platform cluster. This zone must be authoritative for the domain. The DNS service provides cluster DNS resolution and name lookup for external connections to the cluster.

Procedure

  1. Identify your domain, or subdomain, and registrar. You can transfer an existing domain and registrar or obtain a new one through GCP or another source.

    Note

    If you purchase a new domain, it can take time for the relevant DNS changes to propagate. For more information about purchasing domains through Google, see Google Domains.

  2. Create a public hosted zone for your domain or subdomain in your GCP project. See Creating public zones in the GCP documentation.

    Use an appropriate root domain, such as openshiftcorp.com, or subdomain, such as clusters.openshiftcorp.com.

  3. Extract the new authoritative name servers from the hosted zone records. See Look up your Cloud DNS name servers in the GCP documentation.

    You typically have four name servers.

  4. Update the registrar records for the name servers that your domain uses. For example, if you registered your domain to Google Domains, see the following topic in the Google Domains Help: How to switch to custom name servers.
  5. If you migrated your root domain to Google Cloud DNS, migrate your DNS records. See Migrating to Cloud DNS in the GCP documentation.
  6. If you use a subdomain, follow your company’s procedures to add its delegation records to the parent domain. This process might include a request to your company’s IT department or the division that controls the root domain and DNS services for your company.

2.4. GCP account limits

The OpenShift Container Platform cluster uses a number of Google Cloud Platform (GCP) components, but the default Quotas do not affect your ability to install a default OpenShift Container Platform cluster.

A default cluster, which contains three compute and three control plane machines, uses the following resources. Note that some resources are required only during the bootstrap process and are removed after the cluster deploys.

Table 2.3. GCP resources used in a default cluster
ServiceComponentLocationTotal resources requiredResources removed after bootstrap

Service account

IAM

Global

6

1

Firewall rules

Compute

Global

11

1

Forwarding rules

Compute

Global

2

0

In-use global IP addresses

Compute

Global

4

1

Health checks

Compute

Global

3

0

Images

Compute

Global

1

0

Networks

Compute

Global

2

0

Static IP addresses

Compute

Region

4

1

Routers

Compute

Global

1

0

Routes

Compute

Global

2

0

Subnetworks

Compute

Global

2

0

Target pools

Compute

Global

3

0

CPUs

Compute

Region

28

4

Persistent disk SSD (GB)

Compute

Region

896

128

Note

If any of the quotas are insufficient during installation, the installation program displays an error that states both which quota was exceeded and the region.

Be sure to consider your actual cluster size, planned cluster growth, and any usage from other clusters that are associated with your account. The CPU, static IP addresses, and persistent disk SSD (storage) quotas are the ones that are most likely to be insufficient.

If you plan to deploy your cluster in one of the following regions, you will exceed the maximum storage quota and are likely to exceed the CPU quota limit:

  • asia-east2
  • asia-northeast2
  • asia-south1
  • australia-southeast1
  • europe-north1
  • europe-west2
  • europe-west3
  • europe-west6
  • northamerica-northeast1
  • southamerica-east1
  • us-west2

You can increase resource quotas from the GCP console, but you might need to file a support ticket. Be sure to plan your cluster size early so that you can allow time to resolve the support ticket before you install your OpenShift Container Platform cluster.

2.5. Creating a service account in GCP

OpenShift Container Platform requires a Google Cloud Platform (GCP) service account that provides authentication and authorization to access data in the Google APIs. If you do not have an existing IAM service account that contains the required roles in your project, you must create one.

Prerequisites

  • You created a project to host your cluster.

Procedure

  1. Create a service account in the project that you use to host your OpenShift Container Platform cluster. See Creating a service account in the GCP documentation.
  2. Grant the service account the appropriate permissions. You can either grant the individual permissions that follow or assign the Owner role to it. See Granting roles to a service account for specific resources.

    Note

    While making the service account an owner of the project is the easiest way to gain the required permissions, it means that service account has complete control over the project. You must determine if the risk that comes from offering that power is acceptable.

  3. You can create the service account key in JSON format, or attach the service account to a GCP virtual machine. See Creating service account keys and Creating and enabling service accounts for instances in the GCP documentation.

    Note

    If you use a virtual machine with an attached service account to create your cluster, you must set credentialsMode: Manual in the install-config.yaml file before installation.

2.5.1. Required GCP roles

When you attach the Owner role to the service account that you create, you grant that service account all permissions, including those that are required to install OpenShift Container Platform. If your organization’s security policies require a more restrictive set of permissions, you can create a service account with the following permissions. If you deploy your cluster into an existing virtual private cloud (VPC), the service account does not require certain networking permissions, which are noted in the following lists:

Required roles for the installation program

  • Compute Admin
  • Role Administrator
  • Security Admin
  • Service Account Admin
  • Service Account Key Admin
  • Service Account User
  • Storage Admin

Required roles for creating network resources during installation

  • DNS Administrator

Required roles for using the Cloud Credential Operator in passthrough mode

  • Compute Load Balancer Admin
  • Tag User

The following roles are applied to the service accounts that the control plane and compute machines use:

Table 2.4. GCP service account roles
AccountRoles

Control Plane

roles/compute.instanceAdmin

roles/compute.networkAdmin

roles/compute.securityAdmin

roles/storage.admin

roles/iam.serviceAccountUser

Compute

roles/compute.viewer

roles/storage.admin

roles/artifactregistry.reader

2.5.2. Required GCP permissions for installer-provisioned infrastructure

When you attach the Owner role to the service account that you create, you grant that service account all permissions, including those that are required to install OpenShift Container Platform.

If your organization’s security policies require a more restrictive set of permissions, you can create custom roles with the necessary permissions. The following permissions are required for the installer-provisioned infrastructure for creating and deleting the OpenShift Container Platform cluster.

Example 2.1. Required permissions for creating network resources

  • compute.addresses.create
  • compute.addresses.createInternal
  • compute.addresses.delete
  • compute.addresses.get
  • compute.addresses.list
  • compute.addresses.use
  • compute.addresses.useInternal
  • compute.firewalls.create
  • compute.firewalls.delete
  • compute.firewalls.get
  • compute.firewalls.list
  • compute.forwardingRules.create
  • compute.forwardingRules.get
  • compute.forwardingRules.list
  • compute.forwardingRules.setLabels
  • compute.globalAddresses.create
  • compute.globalAddresses.get
  • compute.globalAddresses.use
  • compute.globalForwardingRules.create
  • compute.globalForwardingRules.get
  • compute.globalForwardingRules.setLabels
  • compute.networks.create
  • compute.networks.get
  • compute.networks.list
  • compute.networks.updatePolicy
  • compute.networks.use
  • compute.routers.create
  • compute.routers.get
  • compute.routers.list
  • compute.routers.update
  • compute.routes.list
  • compute.subnetworks.create
  • compute.subnetworks.get
  • compute.subnetworks.list
  • compute.subnetworks.use
  • compute.subnetworks.useExternalIp

Example 2.2. Required permissions for creating load balancer resources

  • compute.backendServices.create
  • compute.backendServices.get
  • compute.backendServices.list
  • compute.backendServices.update
  • compute.backendServices.use
  • compute.regionBackendServices.create
  • compute.regionBackendServices.get
  • compute.regionBackendServices.list
  • compute.regionBackendServices.update
  • compute.regionBackendServices.use
  • compute.targetPools.addInstance
  • compute.targetPools.create
  • compute.targetPools.get
  • compute.targetPools.list
  • compute.targetPools.removeInstance
  • compute.targetPools.use
  • compute.targetTcpProxies.create
  • compute.targetTcpProxies.get
  • compute.targetTcpProxies.use

Example 2.3. Required permissions for creating DNS resources

  • dns.changes.create
  • dns.changes.get
  • dns.managedZones.create
  • dns.managedZones.get
  • dns.managedZones.list
  • dns.networks.bindPrivateDNSZone
  • dns.resourceRecordSets.create
  • dns.resourceRecordSets.list

Example 2.4. Required permissions for creating Service Account resources

  • iam.serviceAccountKeys.create
  • iam.serviceAccountKeys.delete
  • iam.serviceAccountKeys.get
  • iam.serviceAccountKeys.list
  • iam.serviceAccounts.actAs
  • iam.serviceAccounts.create
  • iam.serviceAccounts.delete
  • iam.serviceAccounts.get
  • iam.serviceAccounts.list
  • resourcemanager.projects.get
  • resourcemanager.projects.getIamPolicy
  • resourcemanager.projects.setIamPolicy

Example 2.5. Required permissions for creating compute resources

  • compute.disks.create
  • compute.disks.get
  • compute.disks.list
  • compute.disks.setLabels
  • compute.instanceGroups.create
  • compute.instanceGroups.delete
  • compute.instanceGroups.get
  • compute.instanceGroups.list
  • compute.instanceGroups.update
  • compute.instanceGroups.use
  • compute.instances.create
  • compute.instances.delete
  • compute.instances.get
  • compute.instances.list
  • compute.instances.setLabels
  • compute.instances.setMetadata
  • compute.instances.setServiceAccount
  • compute.instances.setTags
  • compute.instances.use
  • compute.machineTypes.get
  • compute.machineTypes.list

Example 2.6. Required for creating storage resources

  • storage.buckets.create
  • storage.buckets.delete
  • storage.buckets.get
  • storage.buckets.list
  • storage.objects.create
  • storage.objects.delete
  • storage.objects.get
  • storage.objects.list

Example 2.7. Required permissions for creating health check resources

  • compute.healthChecks.create
  • compute.healthChecks.get
  • compute.healthChecks.list
  • compute.healthChecks.useReadOnly
  • compute.httpHealthChecks.create
  • compute.httpHealthChecks.get
  • compute.httpHealthChecks.list
  • compute.httpHealthChecks.useReadOnly
  • compute.regionHealthChecks.create
  • compute.regionHealthChecks.get
  • compute.regionHealthChecks.useReadOnly

Example 2.8. Required permissions to get GCP zone and region related information

  • compute.globalOperations.get
  • compute.regionOperations.get
  • compute.regions.get
  • compute.regions.list
  • compute.zoneOperations.get
  • compute.zones.get
  • compute.zones.list

Example 2.9. Required permissions for checking services and quotas

  • monitoring.timeSeries.list
  • serviceusage.quotas.get
  • serviceusage.services.list

Example 2.10. Required IAM permissions for installation

  • iam.roles.create
  • iam.roles.get
  • iam.roles.update

Example 2.11. Required permissions when authenticating without a service account key

  • iam.serviceAccounts.signBlob

Example 2.12. Optional Images permissions for installation

  • compute.images.list

Example 2.13. Optional permission for running gather bootstrap

  • compute.instances.getSerialPortOutput

Example 2.14. Required permissions for deleting network resources

  • compute.addresses.delete
  • compute.addresses.deleteInternal
  • compute.addresses.list
  • compute.addresses.setLabels
  • compute.firewalls.delete
  • compute.firewalls.list
  • compute.forwardingRules.delete
  • compute.forwardingRules.list
  • compute.globalAddresses.delete
  • compute.globalAddresses.list
  • compute.globalForwardingRules.delete
  • compute.globalForwardingRules.list
  • compute.networks.delete
  • compute.networks.list
  • compute.networks.updatePolicy
  • compute.routers.delete
  • compute.routers.list
  • compute.routes.list
  • compute.subnetworks.delete
  • compute.subnetworks.list

Example 2.15. Required permissions for deleting load balancer resources

  • compute.backendServices.delete
  • compute.backendServices.list
  • compute.regionBackendServices.delete
  • compute.regionBackendServices.list
  • compute.targetPools.delete
  • compute.targetPools.list
  • compute.targetTcpProxies.delete
  • compute.targetTcpProxies.list

Example 2.16. Required permissions for deleting DNS resources

  • dns.changes.create
  • dns.managedZones.delete
  • dns.managedZones.get
  • dns.managedZones.list
  • dns.resourceRecordSets.delete
  • dns.resourceRecordSets.list

Example 2.17. Required permissions for deleting Service Account resources

  • iam.serviceAccounts.delete
  • iam.serviceAccounts.get
  • iam.serviceAccounts.list
  • resourcemanager.projects.getIamPolicy
  • resourcemanager.projects.setIamPolicy

Example 2.18. Required permissions for deleting compute resources

  • compute.disks.delete
  • compute.disks.list
  • compute.instanceGroups.delete
  • compute.instanceGroups.list
  • compute.instances.delete
  • compute.instances.list
  • compute.instances.stop
  • compute.machineTypes.list

Example 2.19. Required for deleting storage resources

  • storage.buckets.delete
  • storage.buckets.getIamPolicy
  • storage.buckets.list
  • storage.objects.delete
  • storage.objects.list

Example 2.20. Required permissions for deleting health check resources

  • compute.healthChecks.delete
  • compute.healthChecks.list
  • compute.httpHealthChecks.delete
  • compute.httpHealthChecks.list
  • compute.regionHealthChecks.delete
  • compute.regionHealthChecks.list

Example 2.21. Required Images permissions for deletion

  • compute.images.list

2.5.3. Required GCP permissions for shared VPC installations

When you are installing a cluster to a shared VPC, you must configure the service account for both the host project and the service project. If you are not installing to a shared VPC, you can skip this section.

You must apply the minimum roles required for a standard installation as listed above, to the service project.

Important

You can use granular permissions for a Cloud Credential Operator that operates in either manual or mint credentials mode. You cannot use granular permissions in passthrough credentials mode.

Ensure that the host project applies one of the following configurations to the service account:

Example 2.22. Required permissions for creating firewalls in the host project

  • projects/<host-project>/roles/dns.networks.bindPrivateDNSZone
  • roles/compute.networkAdmin
  • roles/compute.securityAdmin

Example 2.23. Required permissions for deleting firewalls in the host project

  • compute.firewalls.delete
  • compute.networks.updatePolicy

Example 2.24. Required minimal permissions

  • projects/<host-project>/roles/dns.networks.bindPrivateDNSZone
  • roles/compute.networkUser

If you do not supply a service account for control plane nodes in the install-config.yaml file, please grant the below permissions to the service account in the host project. If you do not supply a service account for compute nodes in the install-config.yaml file, please grant the below permissions to the service account in the host project for cluster destruction.

  • resourcemanager.projects.getIamPolicy
  • resourcemanager.projects.setIamPolicy

2.5.4. Required GCP permissions for user-provided service accounts

When you are installing a cluster, the compute and control plane nodes require their own service accounts. By default, the installation program creates a service account for the control plane and compute nodes. The service account that the installation program uses requires the roles and permissions that are listed in the Creating a service account in GCP section, as well as the resourcemanager.projects.getIamPolicy and resourcemanager.projects.setIamPolicy permissions. These permissions should be applied to the service account in the host project. If this approach does not meet the security requirements of your organization, you can provide a service account email address for the control plane or compute nodes in the install-config.yaml file. For more information, see the Installation configuration parameters for GCP page. If you provide a service account for control plane nodes during an installation into a shared VPC, you must grant that service account the roles/compute.networkUser role in the host project. If you want the installation program to automatically create firewall rules when you supply the control plane service account, you must grant that service account the roles/compute.networkAdmin and roles/compute.securityAdmin roles in the host project. If you only supply the roles/compute.networkUser role, you must create the firewall rules manually.

Important

The following roles are required for user-provided service accounts for control plane and compute nodes respectively.

Example 2.25. Required roles for control plane nodes

  • roles/compute.instanceAdmin
  • roles/compute.networkAdmin
  • roles/compute.securityAdmin
  • roles/storage.admin

Example 2.26. Required roles for compute nodes

  • roles/compute.viewer
  • roles/storage.admin
  • roles/artifactregistry.reader

2.6. Supported GCP regions

You can deploy an OpenShift Container Platform cluster to the following Google Cloud Platform (GCP) regions:

  • africa-south1 (Johannesburg, South Africa)
  • asia-east1 (Changhua County, Taiwan)
  • asia-east2 (Hong Kong)
  • asia-northeast1 (Tokyo, Japan)
  • asia-northeast2 (Osaka, Japan)
  • asia-northeast3 (Seoul, South Korea)
  • asia-south1 (Mumbai, India)
  • asia-south2 (Delhi, India)
  • asia-southeast1 (Jurong West, Singapore)
  • asia-southeast2 (Jakarta, Indonesia)
  • australia-southeast1 (Sydney, Australia)
  • australia-southeast2 (Melbourne, Australia)
  • europe-central2 (Warsaw, Poland)
  • europe-north1 (Hamina, Finland)
  • europe-southwest1 (Madrid, Spain)
  • europe-west1 (St. Ghislain, Belgium)
  • europe-west2 (London, England, UK)
  • europe-west3 (Frankfurt, Germany)
  • europe-west4 (Eemshaven, Netherlands)
  • europe-west6 (Zürich, Switzerland)
  • europe-west8 (Milan, Italy)
  • europe-west9 (Paris, France)
  • europe-west12 (Turin, Italy)
  • me-central1 (Doha, Qatar, Middle East)
  • me-central2 (Dammam, Saudi Arabia, Middle East)
  • me-west1 (Tel Aviv, Israel)
  • northamerica-northeast1 (Montréal, Québec, Canada)
  • northamerica-northeast2 (Toronto, Ontario, Canada)
  • southamerica-east1 (São Paulo, Brazil)
  • southamerica-west1 (Santiago, Chile)
  • us-central1 (Council Bluffs, Iowa, USA)
  • us-east1 (Moncks Corner, South Carolina, USA)
  • us-east4 (Ashburn, Northern Virginia, USA)
  • us-east5 (Columbus, Ohio)
  • us-south1 (Dallas, Texas)
  • us-west1 (The Dalles, Oregon, USA)
  • us-west2 (Los Angeles, California, USA)
  • us-west3 (Salt Lake City, Utah, USA)
  • us-west4 (Las Vegas, Nevada, USA)
Note

To determine which machine type instances are available by region and zone, see the Google documentation.

2.7. Next steps

Chapter 3. Installing a cluster quickly on GCP

In OpenShift Container Platform version 4.17, you can install a cluster on Google Cloud Platform (GCP) that uses the default configuration options.

3.1. Prerequisites

3.2. Internet access for OpenShift Container Platform

In OpenShift Container Platform 4.17, you require access to the internet to install your cluster.

You must have internet access to:

  • Access OpenShift Cluster Manager to download the installation program and perform subscription management. If the cluster has internet access and you do not disable Telemetry, that service automatically entitles your cluster.
  • Access Quay.io to obtain the packages that are required to install your cluster.
  • Obtain the packages that are required to perform cluster updates.
Important

If your cluster cannot have direct internet access, you can perform a restricted network installation on some types of infrastructure that you provision. During that process, you download the required content and use it to populate a mirror registry with the installation packages. With some installation types, the environment that you install your cluster in will not require internet access. Before you update the cluster, you update the content of the mirror registry.

3.3. Generating a key pair for cluster node SSH access

During an OpenShift Container Platform installation, you can provide an SSH public key to the installation program. The key is passed to the Red Hat Enterprise Linux CoreOS (RHCOS) nodes through their Ignition config files and is used to authenticate SSH access to the nodes. The key is added to the ~/.ssh/authorized_keys list for the core user on each node, which enables password-less authentication.

After the key is passed to the nodes, you can use the key pair to SSH in to the RHCOS nodes as the user core. To access the nodes through SSH, the private key identity must be managed by SSH for your local user.

If you want to SSH in to your cluster nodes to perform installation debugging or disaster recovery, you must provide the SSH public key during the installation process. The ./openshift-install gather command also requires the SSH public key to be in place on the cluster nodes.

Important

Do not skip this procedure in production environments, where disaster recovery and debugging is required.

Note

You must use a local key, not one that you configured with platform-specific approaches such as AWS key pairs.

Procedure

  1. If you do not have an existing SSH key pair on your local machine to use for authentication onto your cluster nodes, create one. For example, on a computer that uses a Linux operating system, run the following command:

    $ ssh-keygen -t ed25519 -N '' -f <path>/<file_name> 1
    1
    Specify the path and file name, such as ~/.ssh/id_ed25519, of the new SSH key. If you have an existing key pair, ensure your public key is in the your ~/.ssh directory.
    Note

    If you plan to install an OpenShift Container Platform cluster that uses the RHEL cryptographic libraries that have been submitted to NIST for FIPS 140-2/140-3 Validation on only the x86_64, ppc64le, and s390x architectures, do not create a key that uses the ed25519 algorithm. Instead, create a key that uses the rsa or ecdsa algorithm.

  2. View the public SSH key:

    $ cat <path>/<file_name>.pub

    For example, run the following to view the ~/.ssh/id_ed25519.pub public key:

    $ cat ~/.ssh/id_ed25519.pub
  3. Add the SSH private key identity to the SSH agent for your local user, if it has not already been added. SSH agent management of the key is required for password-less SSH authentication onto your cluster nodes, or if you want to use the ./openshift-install gather command.

    Note

    On some distributions, default SSH private key identities such as ~/.ssh/id_rsa and ~/.ssh/id_dsa are managed automatically.

    1. If the ssh-agent process is not already running for your local user, start it as a background task:

      $ eval "$(ssh-agent -s)"

      Example output

      Agent pid 31874

      Note

      If your cluster is in FIPS mode, only use FIPS-compliant algorithms to generate the SSH key. The key must be either RSA or ECDSA.

  4. Add your SSH private key to the ssh-agent:

    $ ssh-add <path>/<file_name> 1
    1
    Specify the path and file name for your SSH private key, such as ~/.ssh/id_ed25519

    Example output

    Identity added: /home/<you>/<path>/<file_name> (<computer_name>)

Next steps

  • When you install OpenShift Container Platform, provide the SSH public key to the installation program.

3.4. Obtaining the installation program

Before you install OpenShift Container Platform, download the installation file on the host you are using for installation.

Prerequisites

  • You have a computer that runs Linux or macOS, with 500 MB of local disk space.

Procedure

  1. Go to the Cluster Type page on the Red Hat Hybrid Cloud Console. If you have a Red Hat account, log in with your credentials. If you do not, create an account.
  2. Select your infrastructure provider from the Run it yourself section of the page.
  3. Select your host operating system and architecture from the dropdown menus under OpenShift Installer and click Download Installer.
  4. Place the downloaded file in the directory where you want to store the installation configuration files.

    Important
    • The installation program creates several files on the computer that you use to install your cluster. You must keep the installation program and the files that the installation program creates after you finish installing the cluster. Both of the files are required to delete the cluster.
    • Deleting the files created by the installation program does not remove your cluster, even if the cluster failed during installation. To remove your cluster, complete the OpenShift Container Platform uninstallation procedures for your specific cloud provider.
  5. Extract the installation program. For example, on a computer that uses a Linux operating system, run the following command:

    $ tar -xvf openshift-install-linux.tar.gz
  6. Download your installation pull secret from Red Hat OpenShift Cluster Manager. This pull secret allows you to authenticate with the services that are provided by the included authorities, including Quay.io, which serves the container images for OpenShift Container Platform components.
Tip

Alternatively, you can retrieve the installation program from the Red Hat Customer Portal, where you can specify a version of the installation program to download. However, you must have an active subscription to access this page.

3.5. Deploying the cluster

You can install OpenShift Container Platform on a compatible cloud platform.

Important

You can run the create cluster command of the installation program only once, during initial installation.

Prerequisites

  • You have configured an account with the cloud platform that hosts your cluster.
  • You have the OpenShift Container Platform installation program and the pull secret for your cluster.
  • You have verified that the cloud provider account on your host has the correct permissions to deploy the cluster. An account with incorrect permissions causes the installation process to fail with an error message that displays the missing permissions.

Procedure

  1. Remove any existing GCP credentials that do not use the service account key for the GCP account that you configured for your cluster and that are stored in the following locations:

    • The GOOGLE_CREDENTIALS, GOOGLE_CLOUD_KEYFILE_JSON, or GCLOUD_KEYFILE_JSON environment variables
    • The ~/.gcp/osServiceAccount.json file
    • The gcloud cli default credentials
  2. Change to the directory that contains the installation program and initialize the cluster deployment:

    $ ./openshift-install create cluster --dir <installation_directory> \ 1
        --log-level=info 2
    1
    For <installation_directory>, specify the directory name to store the files that the installation program creates.
    2
    To view different installation details, specify warn, debug, or error instead of info.

    When specifying the directory:

    • Verify that the directory has the execute permission. This permission is required to run Terraform binaries under the installation directory.
    • Use an empty directory. Some installation assets, such as bootstrap X.509 certificates, have short expiration intervals, therefore you must not reuse an installation directory. If you want to reuse individual files from another cluster installation, you can copy them into your directory. However, the file names for the installation assets might change between releases. Use caution when copying installation files from an earlier OpenShift Container Platform version.
  3. Provide values at the prompts:

    1. Optional: Select an SSH key to use to access your cluster machines.

      Note

      For production OpenShift Container Platform clusters on which you want to perform installation debugging or disaster recovery, specify an SSH key that your ssh-agent process uses.

    2. Select gcp as the platform to target.
    3. If you have not configured the service account key for your GCP account on your host, you must obtain it from GCP and paste the contents of the file or enter the absolute path to the file.
    4. Select the project ID to provision the cluster in. The default value is specified by the service account that you configured.
    5. Select the region to deploy the cluster to.
    6. Select the base domain to deploy the cluster to. The base domain corresponds to the public DNS zone that you created for your cluster.
    7. Enter a descriptive name for your cluster. If you provide a name that is longer than 6 characters, only the first 6 characters will be used in the infrastructure ID that is generated from the cluster name.
    8. Paste the pull secret from Red Hat OpenShift Cluster Manager.
  4. Optional: You can reduce the number of permissions for the service account that you used to install the cluster.

    • If you assigned the Owner role to your service account, you can remove that role and replace it with the Viewer role.
    • If you included the Service Account Key Admin role, you can remove it.

Verification

When the cluster deployment completes successfully:

  • The terminal displays directions for accessing your cluster, including a link to the web console and credentials for the kubeadmin user.
  • Credential information also outputs to <installation_directory>/.openshift_install.log.
Important

Do not delete the installation program or the files that the installation program creates. Both are required to delete the cluster.

Example output

...
INFO Install complete!
INFO To access the cluster as the system:admin user when using 'oc', run 'export KUBECONFIG=/home/myuser/install_dir/auth/kubeconfig'
INFO Access the OpenShift web-console here: https://console-openshift-console.apps.mycluster.example.com
INFO Login to the console with user: "kubeadmin", and password: "password"
INFO Time elapsed: 36m22s

Important
  • The Ignition config files that the installation program generates contain certificates that expire after 24 hours, which are then renewed at that time. If the cluster is shut down before renewing the certificates and the cluster is later restarted after the 24 hours have elapsed, the cluster automatically recovers the expired certificates. The exception is that you must manually approve the pending node-bootstrapper certificate signing requests (CSRs) to recover kubelet certificates. See the documentation for Recovering from expired control plane certificates for more information.
  • It is recommended that you use Ignition config files within 12 hours after they are generated because the 24-hour certificate rotates from 16 to 22 hours after the cluster is installed. By using the Ignition config files within 12 hours, you can avoid installation failure if the certificate update runs during installation.

3.6. Installing the OpenShift CLI

You can install the OpenShift CLI (oc) to interact with OpenShift Container Platform from a command-line interface. You can install oc on Linux, Windows, or macOS.

Important

If you installed an earlier version of oc, you cannot use it to complete all of the commands in OpenShift Container Platform 4.17. Download and install the new version of oc.

Installing the OpenShift CLI on Linux

You can install the OpenShift CLI (oc) binary on Linux by using the following procedure.

Procedure

  1. Navigate to the OpenShift Container Platform downloads page on the Red Hat Customer Portal.
  2. Select the architecture from the Product Variant drop-down list.
  3. Select the appropriate version from the Version drop-down list.
  4. Click Download Now next to the OpenShift v4.17 Linux Clients entry and save the file.
  5. Unpack the archive:

    $ tar xvf <file>
  6. Place the oc binary in a directory that is on your PATH.

    To check your PATH, execute the following command:

    $ echo $PATH

Verification

  • After you install the OpenShift CLI, it is available using the oc command:

    $ oc <command>
Installing the OpenShift CLI on Windows

You can install the OpenShift CLI (oc) binary on Windows by using the following procedure.

Procedure

  1. Navigate to the OpenShift Container Platform downloads page on the Red Hat Customer Portal.
  2. Select the appropriate version from the Version drop-down list.
  3. Click Download Now next to the OpenShift v4.17 Windows Client entry and save the file.
  4. Unzip the archive with a ZIP program.
  5. Move the oc binary to a directory that is on your PATH.

    To check your PATH, open the command prompt and execute the following command:

    C:\> path

Verification

  • After you install the OpenShift CLI, it is available using the oc command:

    C:\> oc <command>
Installing the OpenShift CLI on macOS

You can install the OpenShift CLI (oc) binary on macOS by using the following procedure.

Procedure

  1. Navigate to the OpenShift Container Platform downloads page on the Red Hat Customer Portal.
  2. Select the appropriate version from the Version drop-down list.
  3. Click Download Now next to the OpenShift v4.17 macOS Clients entry and save the file.

    Note

    For macOS arm64, choose the OpenShift v4.17 macOS arm64 Client entry.

  4. Unpack and unzip the archive.
  5. Move the oc binary to a directory on your PATH.

    To check your PATH, open a terminal and execute the following command:

    $ echo $PATH

Verification

  • Verify your installation by using an oc command:

    $ oc <command>

3.7. Logging in to the cluster by using the CLI

You can log in to your cluster as a default system user by exporting the cluster kubeconfig file. The kubeconfig file contains information about the cluster that is used by the CLI to connect a client to the correct cluster and API server. The file is specific to a cluster and is created during OpenShift Container Platform installation.

Prerequisites

  • You deployed an OpenShift Container Platform cluster.
  • You installed the oc CLI.

Procedure

  1. Export the kubeadmin credentials:

    $ export KUBECONFIG=<installation_directory>/auth/kubeconfig 1
    1
    For <installation_directory>, specify the path to the directory that you stored the installation files in.
  2. Verify you can run oc commands successfully using the exported configuration:

    $ oc whoami

    Example output

    system:admin

Additional resources

  • See Accessing the web console for more details about accessing and understanding the OpenShift Container Platform web console.

3.8. Telemetry access for OpenShift Container Platform

In OpenShift Container Platform 4.17, the Telemetry service, which runs by default to provide metrics about cluster health and the success of updates, requires internet access. If your cluster is connected to the internet, Telemetry runs automatically, and your cluster is registered to OpenShift Cluster Manager.

After you confirm that your OpenShift Cluster Manager inventory is correct, either maintained automatically by Telemetry or manually by using OpenShift Cluster Manager, use subscription watch to track your OpenShift Container Platform subscriptions at the account or multi-cluster level.

Additional resources

3.9. Next steps

Chapter 4. Installing a cluster on GCP with customizations

In OpenShift Container Platform version 4.17, you can install a customized cluster on infrastructure that the installation program provisions on Google Cloud Platform (GCP). To customize the installation, you modify parameters in the install-config.yaml file before you install the cluster.

4.1. Prerequisites

4.2. Internet access for OpenShift Container Platform

In OpenShift Container Platform 4.17, you require access to the internet to install your cluster.

You must have internet access to:

  • Access OpenShift Cluster Manager to download the installation program and perform subscription management. If the cluster has internet access and you do not disable Telemetry, that service automatically entitles your cluster.
  • Access Quay.io to obtain the packages that are required to install your cluster.
  • Obtain the packages that are required to perform cluster updates.
Important

If your cluster cannot have direct internet access, you can perform a restricted network installation on some types of infrastructure that you provision. During that process, you download the required content and use it to populate a mirror registry with the installation packages. With some installation types, the environment that you install your cluster in will not require internet access. Before you update the cluster, you update the content of the mirror registry.

4.3. Generating a key pair for cluster node SSH access

During an OpenShift Container Platform installation, you can provide an SSH public key to the installation program. The key is passed to the Red Hat Enterprise Linux CoreOS (RHCOS) nodes through their Ignition config files and is used to authenticate SSH access to the nodes. The key is added to the ~/.ssh/authorized_keys list for the core user on each node, which enables password-less authentication.

After the key is passed to the nodes, you can use the key pair to SSH in to the RHCOS nodes as the user core. To access the nodes through SSH, the private key identity must be managed by SSH for your local user.

If you want to SSH in to your cluster nodes to perform installation debugging or disaster recovery, you must provide the SSH public key during the installation process. The ./openshift-install gather command also requires the SSH public key to be in place on the cluster nodes.

Important

Do not skip this procedure in production environments, where disaster recovery and debugging is required.

Note

You must use a local key, not one that you configured with platform-specific approaches such as AWS key pairs.

Procedure

  1. If you do not have an existing SSH key pair on your local machine to use for authentication onto your cluster nodes, create one. For example, on a computer that uses a Linux operating system, run the following command:

    $ ssh-keygen -t ed25519 -N '' -f <path>/<file_name> 1
    1
    Specify the path and file name, such as ~/.ssh/id_ed25519, of the new SSH key. If you have an existing key pair, ensure your public key is in the your ~/.ssh directory.
    Note

    If you plan to install an OpenShift Container Platform cluster that uses the RHEL cryptographic libraries that have been submitted to NIST for FIPS 140-2/140-3 Validation on only the x86_64, ppc64le, and s390x architectures, do not create a key that uses the ed25519 algorithm. Instead, create a key that uses the rsa or ecdsa algorithm.

  2. View the public SSH key:

    $ cat <path>/<file_name>.pub

    For example, run the following to view the ~/.ssh/id_ed25519.pub public key:

    $ cat ~/.ssh/id_ed25519.pub
  3. Add the SSH private key identity to the SSH agent for your local user, if it has not already been added. SSH agent management of the key is required for password-less SSH authentication onto your cluster nodes, or if you want to use the ./openshift-install gather command.

    Note

    On some distributions, default SSH private key identities such as ~/.ssh/id_rsa and ~/.ssh/id_dsa are managed automatically.

    1. If the ssh-agent process is not already running for your local user, start it as a background task:

      $ eval "$(ssh-agent -s)"

      Example output

      Agent pid 31874

      Note

      If your cluster is in FIPS mode, only use FIPS-compliant algorithms to generate the SSH key. The key must be either RSA or ECDSA.

  4. Add your SSH private key to the ssh-agent:

    $ ssh-add <path>/<file_name> 1
    1
    Specify the path and file name for your SSH private key, such as ~/.ssh/id_ed25519

    Example output

    Identity added: /home/<you>/<path>/<file_name> (<computer_name>)

Next steps

  • When you install OpenShift Container Platform, provide the SSH public key to the installation program.

4.4. Obtaining the installation program

Before you install OpenShift Container Platform, download the installation file on the host you are using for installation.

Prerequisites

  • You have a computer that runs Linux or macOS, with 500 MB of local disk space.

Procedure

  1. Go to the Cluster Type page on the Red Hat Hybrid Cloud Console. If you have a Red Hat account, log in with your credentials. If you do not, create an account.
  2. Select your infrastructure provider from the Run it yourself section of the page.
  3. Select your host operating system and architecture from the dropdown menus under OpenShift Installer and click Download Installer.
  4. Place the downloaded file in the directory where you want to store the installation configuration files.

    Important
    • The installation program creates several files on the computer that you use to install your cluster. You must keep the installation program and the files that the installation program creates after you finish installing the cluster. Both of the files are required to delete the cluster.
    • Deleting the files created by the installation program does not remove your cluster, even if the cluster failed during installation. To remove your cluster, complete the OpenShift Container Platform uninstallation procedures for your specific cloud provider.
  5. Extract the installation program. For example, on a computer that uses a Linux operating system, run the following command:

    $ tar -xvf openshift-install-linux.tar.gz
  6. Download your installation pull secret from Red Hat OpenShift Cluster Manager. This pull secret allows you to authenticate with the services that are provided by the included authorities, including Quay.io, which serves the container images for OpenShift Container Platform components.
Tip

Alternatively, you can retrieve the installation program from the Red Hat Customer Portal, where you can specify a version of the installation program to download. However, you must have an active subscription to access this page.

4.5. Creating the installation configuration file

You can customize the OpenShift Container Platform cluster you install on Google Cloud Platform (GCP).

Prerequisites

  • You have the OpenShift Container Platform installation program and the pull secret for your cluster.

Procedure

  1. Create the install-config.yaml file.

    1. Change to the directory that contains the installation program and run the following command:

      $ ./openshift-install create install-config --dir <installation_directory> 1
      1
      For <installation_directory>, specify the directory name to store the files that the installation program creates.

      When specifying the directory:

      • Verify that the directory has the execute permission. This permission is required to run Terraform binaries under the installation directory.
      • Use an empty directory. Some installation assets, such as bootstrap X.509 certificates, have short expiration intervals, therefore you must not reuse an installation directory. If you want to reuse individual files from another cluster installation, you can copy them into your directory. However, the file names for the installation assets might change between releases. Use caution when copying installation files from an earlier OpenShift Container Platform version.
    2. At the prompts, provide the configuration details for your cloud:

      1. Optional: Select an SSH key to use to access your cluster machines.

        Note

        For production OpenShift Container Platform clusters on which you want to perform installation debugging or disaster recovery, specify an SSH key that your ssh-agent process uses.

      2. Select gcp as the platform to target.
      3. If you have not configured the service account key for your GCP account on your computer, you must obtain it from GCP and paste the contents of the file or enter the absolute path to the file.
      4. Select the project ID to provision the cluster in. The default value is specified by the service account that you configured.
      5. Select the region to deploy the cluster to.
      6. Select the base domain to deploy the cluster to. The base domain corresponds to the public DNS zone that you created for your cluster.
      7. Enter a descriptive name for your cluster.
  2. Modify the install-config.yaml file. You can find more information about the available parameters in the "Installation configuration parameters" section.

    Note

    If you are installing a three-node cluster, be sure to set the compute.replicas parameter to 0. This ensures that the cluster’s control planes are schedulable. For more information, see "Installing a three-node cluster on GCP".

  3. Back up the install-config.yaml file so that you can use it to install multiple clusters.

    Important

    The install-config.yaml file is consumed during the installation process. If you want to reuse the file, you must back it up now.

4.5.1. Minimum resource requirements for cluster installation

Each cluster machine must meet the following minimum requirements:

Table 4.1. Minimum resource requirements
MachineOperating SystemvCPU [1]Virtual RAMStorageInput/Output Per Second (IOPS)[2]

Bootstrap

RHCOS

4

16 GB

100 GB

300

Control plane

RHCOS

4

16 GB

100 GB

300

Compute

RHCOS, RHEL 8.6 and later [3]

2

8 GB

100 GB

300

  1. One vCPU is equivalent to one physical core when simultaneous multithreading (SMT), or Hyper-Threading, is not enabled. When enabled, use the following formula to calculate the corresponding ratio: (threads per core × cores) × sockets = vCPUs.
  2. OpenShift Container Platform and Kubernetes are sensitive to disk performance, and faster storage is recommended, particularly for etcd on the control plane nodes which require a 10 ms p99 fsync duration. Note that on many cloud platforms, storage size and IOPS scale together, so you might need to over-allocate storage volume to obtain sufficient performance.
  3. As with all user-provisioned installations, if you choose to use RHEL compute machines in your cluster, you take responsibility for all operating system life cycle management and maintenance, including performing system updates, applying patches, and completing all other required tasks. Use of RHEL 7 compute machines is deprecated and has been removed in OpenShift Container Platform 4.10 and later.
Note

As of OpenShift Container Platform version 4.13, RHCOS is based on RHEL version 9.2, which updates the micro-architecture requirements. The following list contains the minimum instruction set architectures (ISA) that each architecture requires:

  • x86-64 architecture requires x86-64-v2 ISA
  • ARM64 architecture requires ARMv8.0-A ISA
  • IBM Power architecture requires Power 9 ISA
  • s390x architecture requires z14 ISA

For more information, see RHEL Architectures.

If an instance type for your platform meets the minimum requirements for cluster machines, it is supported to use in OpenShift Container Platform.

Additional resources

4.5.2. Tested instance types for GCP

The following Google Cloud Platform instance types have been tested with OpenShift Container Platform.

Example 4.1. Machine series

  • A2
  • A3
  • C2
  • C2D
  • C3
  • C3D
  • E2
  • M1
  • N1
  • N2
  • N2D
  • N4
  • Tau T2D

4.5.3. Tested instance types for GCP on 64-bit ARM infrastructures

The following Google Cloud Platform (GCP) 64-bit ARM instance types have been tested with OpenShift Container Platform.

Example 4.2. Machine series for 64-bit ARM machines

  • Tau T2A

4.5.4. Using custom machine types

Using a custom machine type to install a OpenShift Container Platform cluster is supported.

Consider the following when using a custom machine type:

  • Similar to predefined instance types, custom machine types must meet the minimum resource requirements for control plane and compute machines. For more information, see "Minimum resource requirements for cluster installation".
  • The name of the custom machine type must adhere to the following syntax:

    custom-<number_of_cpus>-<amount_of_memory_in_mb>

    For example, custom-6-20480.

As part of the installation process, you specify the custom machine type in the install-config.yaml file.

Sample install-config.yaml file with a custom machine type

compute:
- architecture: amd64
  hyperthreading: Enabled
  name: worker
  platform:
    gcp:
      type: custom-6-20480
  replicas: 2
controlPlane:
  architecture: amd64
  hyperthreading: Enabled
  name: master
  platform:
    gcp:
      type: custom-6-20480
  replicas: 3

4.5.5. Enabling Shielded VMs

You can use Shielded VMs when installing your cluster. Shielded VMs have extra security features including secure boot, firmware and integrity monitoring, and rootkit detection. For more information, see Google’s documentation on Shielded VMs.

Note

Shielded VMs are currently not supported on clusters with 64-bit ARM infrastructures.

Prerequisites

  • You have created an install-config.yaml file.

Procedure

  • Use a text editor to edit the install-config.yaml file prior to deploying your cluster and add one of the following stanzas:

    1. To use shielded VMs for only control plane machines:

      controlPlane:
        platform:
          gcp:
             secureBoot: Enabled
    2. To use shielded VMs for only compute machines:

      compute:
      - platform:
          gcp:
             secureBoot: Enabled
    3. To use shielded VMs for all machines:

      platform:
        gcp:
          defaultMachinePlatform:
             secureBoot: Enabled

4.5.6. Enabling Confidential VMs

You can use Confidential VMs when installing your cluster. Confidential VMs encrypt data while it is being processed. For more information, see Google’s documentation on Confidential Computing. You can enable Confidential VMs and Shielded VMs at the same time, although they are not dependent on each other.

Note

Confidential VMs are currently not supported on 64-bit ARM architectures.

Prerequisites

  • You have created an install-config.yaml file.

Procedure

  • Use a text editor to edit the install-config.yaml file prior to deploying your cluster and add one of the following stanzas:

    1. To use confidential VMs for only control plane machines:

      controlPlane:
        platform:
          gcp:
             confidentialCompute: Enabled 1
             type: n2d-standard-8 2
             onHostMaintenance: Terminate 3
      1
      Enable confidential VMs.
      2
      Specify a machine type that supports Confidential VMs. Confidential VMs require the N2D or C2D series of machine types. For more information on supported machine types, see Supported operating systems and machine types.
      3
      Specify the behavior of the VM during a host maintenance event, such as a hardware or software update. For a machine that uses Confidential VM, this value must be set to Terminate, which stops the VM. Confidential VMs do not support live VM migration.
    2. To use confidential VMs for only compute machines:

      compute:
      - platform:
          gcp:
             confidentialCompute: Enabled
             type: n2d-standard-8
             onHostMaintenance: Terminate
    3. To use confidential VMs for all machines:

      platform:
        gcp:
          defaultMachinePlatform:
             confidentialCompute: Enabled
             type: n2d-standard-8
             onHostMaintenance: Terminate

4.5.7. Sample customized install-config.yaml file for GCP

You can customize the install-config.yaml file to specify more details about your OpenShift Container Platform cluster’s platform or modify the values of the required parameters.

Important

This sample YAML file is provided for reference only. You must obtain your install-config.yaml file by using the installation program and modify it.

apiVersion: v1
baseDomain: example.com 1
credentialsMode: Mint 2
controlPlane: 3 4
  hyperthreading: Enabled 5
  name: master
  platform:
    gcp:
      type: n2-standard-4
      zones:
      - us-central1-a
      - us-central1-c
      osDisk:
        diskType: pd-ssd
        diskSizeGB: 1024
        encryptionKey: 6
          kmsKey:
            name: worker-key
            keyRing: test-machine-keys
            location: global
            projectID: project-id
      tags: 7
      - control-plane-tag1
      - control-plane-tag2
      osImage: 8
        project: example-project-name
        name: example-image-name
  replicas: 3
compute: 9 10
- hyperthreading: Enabled 11
  name: worker
  platform:
    gcp:
      type: n2-standard-4
      zones:
      - us-central1-a
      - us-central1-c
      osDisk:
        diskType: pd-standard
        diskSizeGB: 128
        encryptionKey: 12
          kmsKey:
            name: worker-key
            keyRing: test-machine-keys
            location: global
            projectID: project-id
        tags: 13
        - compute-tag1
        - compute-tag2
        osImage: 14
          project: example-project-name
          name: example-image-name
  replicas: 3
metadata:
  name: test-cluster 15
networking:
  clusterNetwork:
  - cidr: 10.128.0.0/14
    hostPrefix: 23
  machineNetwork:
  - cidr: 10.0.0.0/16
  networkType: OVNKubernetes 16
  serviceNetwork:
  - 172.30.0.0/16
platform:
  gcp:
    projectID: openshift-production 17
    region: us-central1 18
    defaultMachinePlatform:
      tags: 19
      - global-tag1
      - global-tag2
      osImage: 20
        project: example-project-name
        name: example-image-name
pullSecret: '{"auths": ...}' 21
fips: false 22
sshKey: ssh-ed25519 AAAA... 23
1 15 17 18 21
Required. The installation program prompts you for this value.
2
Optional: Add this parameter to force the Cloud Credential Operator (CCO) to use the specified mode. By default, the CCO uses the root credentials in the kube-system namespace to dynamically try to determine the capabilities of the credentials. For details about CCO modes, see the "About the Cloud Credential Operator" section in the Authentication and authorization guide.
3 9
If you do not provide these parameters and values, the installation program provides the default value.
4 10
The controlPlane section is a single mapping, but the compute section is a sequence of mappings. To meet the requirements of the different data structures, the first line of the compute section must begin with a hyphen, -, and the first line of the controlPlane section must not. Only one control plane pool is used.
5 11
Whether to enable or disable simultaneous multithreading, or hyperthreading. By default, simultaneous multithreading is enabled to increase the performance of your machines' cores. You can disable it by setting the parameter value to Disabled. If you disable simultaneous multithreading in some cluster machines, you must disable it in all cluster machines.
Important

If you disable simultaneous multithreading, ensure that your capacity planning accounts for the dramatically decreased machine performance. Use larger machine types, such as n1-standard-8, for your machines if you disable simultaneous multithreading.

6 12
Optional: The custom encryption key section to encrypt both virtual machines and persistent volumes. Your default compute service account must have the permissions granted to use your KMS key and have the correct IAM role assigned. The default service account name follows the service-<project_number>@compute-system.iam.gserviceaccount.com pattern. For more information about granting the correct permissions for your service account, see "Machine management" → "Creating compute machine sets" → "Creating a compute machine set on GCP".
7 13 19
Optional: A set of network tags to apply to the control plane or compute machine sets. The platform.gcp.defaultMachinePlatform.tags parameter will apply to both control plane and compute machines. If the compute.platform.gcp.tags or controlPlane.platform.gcp.tags parameters are set, they override the platform.gcp.defaultMachinePlatform.tags parameter.
8 14 20
Optional: A custom Red Hat Enterprise Linux CoreOS (RHCOS) that should be used to boot control plane and compute machines. The project and name parameters under platform.gcp.defaultMachinePlatform.osImage apply to both control plane and compute machines. If the project and name parameters under controlPlane.platform.gcp.osImage or compute.platform.gcp.osImage are set, they override the platform.gcp.defaultMachinePlatform.osImage parameters.
16
The cluster network plugin to install. The default value OVNKubernetes is the only supported value.
22
Whether to enable or disable FIPS mode. By default, FIPS mode is not enabled. If FIPS mode is enabled, the Red Hat Enterprise Linux CoreOS (RHCOS) machines that OpenShift Container Platform runs on bypass the default Kubernetes cryptography suite and use the cryptography modules that are provided with RHCOS instead.
Important

When running Red Hat Enterprise Linux (RHEL) or Red Hat Enterprise Linux CoreOS (RHCOS) booted in FIPS mode, OpenShift Container Platform core components use the RHEL cryptographic libraries that have been submitted to NIST for FIPS 140-2/140-3 Validation on only the x86_64, ppc64le, and s390x architectures.

23
You can optionally provide the sshKey value that you use to access the machines in your cluster.
Note

For production OpenShift Container Platform clusters on which you want to perform installation debugging or disaster recovery, specify an SSH key that your ssh-agent process uses.

4.5.8. Configuring the cluster-wide proxy during installation

Production environments can deny direct access to the internet and instead have an HTTP or HTTPS proxy available. You can configure a new OpenShift Container Platform cluster to use a proxy by configuring the proxy settings in the install-config.yaml file.

Prerequisites

  • You have an existing install-config.yaml file.
  • You reviewed the sites that your cluster requires access to and determined whether any of them need to bypass the proxy. By default, all cluster egress traffic is proxied, including calls to hosting cloud provider APIs. You added sites to the Proxy object’s spec.noProxy field to bypass the proxy if necessary.

    Note

    The Proxy object status.noProxy field is populated with the values of the networking.machineNetwork[].cidr, networking.clusterNetwork[].cidr, and networking.serviceNetwork[] fields from your installation configuration.

    For installations on Amazon Web Services (AWS), Google Cloud Platform (GCP), Microsoft Azure, and Red Hat OpenStack Platform (RHOSP), the Proxy object status.noProxy field is also populated with the instance metadata endpoint (169.254.169.254).

Procedure

  1. Edit your install-config.yaml file and add the proxy settings. For example:

    apiVersion: v1
    baseDomain: my.domain.com
    proxy:
      httpProxy: http://<username>:<pswd>@<ip>:<port> 1
      httpsProxy: https://<username>:<pswd>@<ip>:<port> 2
      noProxy: example.com 3
    additionalTrustBundle: | 4
        -----BEGIN CERTIFICATE-----
        <MY_TRUSTED_CA_CERT>
        -----END CERTIFICATE-----
    additionalTrustBundlePolicy: <policy_to_add_additionalTrustBundle> 5
    1
    A proxy URL to use for creating HTTP connections outside the cluster. The URL scheme must be http.
    2
    A proxy URL to use for creating HTTPS connections outside the cluster.
    3
    A comma-separated list of destination domain names, IP addresses, or other network CIDRs to exclude from proxying. Preface a domain with . to match subdomains only. For example, .y.com matches x.y.com, but not y.com. Use * to bypass the proxy for all destinations.
    4
    If provided, the installation program generates a config map that is named user-ca-bundle in the openshift-config namespace that contains one or more additional CA certificates that are required for proxying HTTPS connections. The Cluster Network Operator then creates a trusted-ca-bundle config map that merges these contents with the Red Hat Enterprise Linux CoreOS (RHCOS) trust bundle, and this config map is referenced in the trustedCA field of the Proxy object. The additionalTrustBundle field is required unless the proxy’s identity certificate is signed by an authority from the RHCOS trust bundle.
    5
    Optional: The policy to determine the configuration of the Proxy object to reference the user-ca-bundle config map in the trustedCA field. The allowed values are Proxyonly and Always. Use Proxyonly to reference the user-ca-bundle config map only when http/https proxy is configured. Use Always to always reference the user-ca-bundle config map. The default value is Proxyonly.
    Note

    The installation program does not support the proxy readinessEndpoints field.

    Note

    If the installer times out, restart and then complete the deployment by using the wait-for command of the installer. For example:

    $ ./openshift-install wait-for install-complete --log-level debug
  2. Save the file and reference it when installing OpenShift Container Platform.

The installation program creates a cluster-wide proxy that is named cluster that uses the proxy settings in the provided install-config.yaml file. If no proxy settings are provided, a cluster Proxy object is still created, but it will have a nil spec.

Note

Only the Proxy object named cluster is supported, and no additional proxies can be created.

4.6. Managing user-defined labels and tags for GCP

Google Cloud Platform (GCP) provides labels and tags that help to identify and organize the resources created for a specific OpenShift Container Platform cluster, making them easier to manage.

You can define labels and tags for each GCP resource only during OpenShift Container Platform cluster installation.

Important

User-defined labels and tags are not supported for OpenShift Container Platform clusters upgraded to OpenShift Container Platform 4.17.

Note

You cannot update the tags that are already added. Also, a new tag-supported resource creation fails if the configured tag keys or tag values are deleted.

User-defined labels

User-defined labels and OpenShift Container Platform specific labels are applied only to resources created by OpenShift Container Platform installation program and its core components such as:

  • GCP filestore CSI Driver Operator
  • GCP PD CSI Driver Operator
  • Image Registry Operator
  • Machine API provider for GCP

User-defined labels are not attached to the resources created by any other Operators or the Kubernetes in-tree components.

User-defined labels and OpenShift Container Platform labels are available on the following GCP resources:

  • Compute disk
  • Compute forwarding rule
  • Compute image
  • Compute instance
  • DNS managed zone
  • Filestore backup
  • Filestore instance
  • Storage bucket

Limitations to user-defined labels

  • Labels for ComputeAddress are supported in the GCP beta version. OpenShift Container Platform does not add labels to the resource.

User-defined tags

User-defined tags are applied only to resources created by OpenShift Container Platform installation program and its core components, such as the following resources:

  • GCP FileStore CSI Driver Operator
  • GCP PD CSI Driver Operator
  • Image Registry Operator
  • Machine API provider for GCP

User-defined tags are not attached to the resources created by any other Operators or the Kubernetes in-tree components.

User-defined tags are available on the following GCP resources:

  • Compute disk
  • Compute instance
  • Filestore backup
  • Filestore instance
  • Storage bucket

Limitations to the user-defined tags

  • Tags must not be restricted to particular service accounts, because Operators create and use service accounts with minimal roles.
  • OpenShift Container Platform does not create any key and value resources of the tag.
  • OpenShift Container Platform specific tags are not added to any resource.

Additional resources

  • For more information about identifying the OrganizationID, see: OrganizationID
  • For more information about identifying the ProjectID, see: ProjectID
  • For more information about labels, see Labels Overview.
  • For more information about tags, see Tags Overview.

4.6.1. Configuring user-defined labels and tags for GCP

Prerequisites

  • The installation program requires that a service account includes a TagUser role, so that the program can create the OpenShift Container Platform cluster with defined tags at both organization and project levels.

Procedure

  • Update the install-config.yaml file to define the list of desired labels and tags.

    Note

    Labels and tags are defined during the install-config.yaml creation phase, and cannot be modified or updated with new labels and tags after cluster creation.

    Sample install-config.yaml file

    apiVersion: v1
    featureSet: TechPreviewNoUpgrade
    platform:
     gcp:
       userLabels: 1
       - key: <label_key>2
         value: <label_value>3
       userTags: 4
       - parentID: <OrganizationID/ProjectID>5
         key: <tag_key_short_name>
         value: <tag_value_short_name>

    1
    Adds keys and values as labels to the resources created on GCP.
    2
    Defines the label name.
    3
    Defines the label content.
    4
    Adds keys and values as tags to the resources created on GCP.
    5
    The ID of the hierarchical resource where the tags are defined, at the organization or the project level.

The following are the requirements for user-defined labels:

  • A label key and value must have a minimum of 1 character and can have a maximum of 63 characters.
  • A label key and value must contain only lowercase letters, numeric characters, underscore (_), and dash (-).
  • A label key must start with a lowercase letter.
  • You can configure a maximum of 32 labels per resource. Each resource can have a maximum of 64 labels, and 32 labels are reserved for internal use by OpenShift Container Platform.

The following are the requirements for user-defined tags:

  • Tag key and tag value must already exist. OpenShift Container Platform does not create the key and the value.
  • A tag parentID can be either OrganizationID or ProjectID:

    • OrganizationID must consist of decimal numbers without leading zeros.
    • ProjectID must be 6 to 30 characters in length, that includes only lowercase letters, numbers, and hyphens.
    • ProjectID must start with a letter, and cannot end with a hyphen.
  • A tag key must contain only uppercase and lowercase alphanumeric characters, hyphen (-), underscore (_), and period (.).
  • A tag value must contain only uppercase and lowercase alphanumeric characters, hyphen (-), underscore (_), period (.), at sign (@), percent sign (%), equals sign (=), plus (+), colon (:), comma (,), asterisk (*), pound sign ($), ampersand (&), parentheses (()), square braces ([]), curly braces ({}), and space.
  • A tag key and value must begin and end with an alphanumeric character.
  • Tag value must be one of the pre-defined values for the key.
  • You can configure a maximum of 50 tags.
  • There should be no tag key defined with the same value as any of the existing tag keys that will be inherited from the parent resource.

4.6.2. Querying user-defined labels and tags for GCP

After creating the OpenShift Container Platform cluster, you can access the list of the labels and tags defined for the GCP resources in the infrastructures.config.openshift.io/cluster object as shown in the following sample infrastructure.yaml file.

Sample infrastructure.yaml file

apiVersion: config.openshift.io/v1
kind: Infrastructure
metadata:
 name: cluster
spec:
 platformSpec:
   type: GCP
status:
 infrastructureName: <cluster_id>1
 platform: GCP
 platformStatus:
   gcp:
     resourceLabels:
     - key: <label_key>
       value: <label_value>
     resourceTags:
     - key: <tag_key_short_name>
       parentID: <OrganizationID/ProjectID>
       value: <tag_value_short_name>
   type: GCP

1
The cluster ID that is generated during cluster installation.

Along with the user-defined labels, resources have a label defined by the OpenShift Container Platform. The format of the OpenShift Container Platform labels is kubernetes-io-cluster-<cluster_id>:owned.

4.7. Installing the OpenShift CLI

You can install the OpenShift CLI (oc) to interact with OpenShift Container Platform from a command-line interface. You can install oc on Linux, Windows, or macOS.

Important

If you installed an earlier version of oc, you cannot use it to complete all of the commands in OpenShift Container Platform 4.17. Download and install the new version of oc.

Installing the OpenShift CLI on Linux

You can install the OpenShift CLI (oc) binary on Linux by using the following procedure.

Procedure

  1. Navigate to the OpenShift Container Platform downloads page on the Red Hat Customer Portal.
  2. Select the architecture from the Product Variant drop-down list.
  3. Select the appropriate version from the Version drop-down list.
  4. Click Download Now next to the OpenShift v4.17 Linux Clients entry and save the file.
  5. Unpack the archive:

    $ tar xvf <file>
  6. Place the oc binary in a directory that is on your PATH.

    To check your PATH, execute the following command:

    $ echo $PATH

Verification

  • After you install the OpenShift CLI, it is available using the oc command:

    $ oc <command>
Installing the OpenShift CLI on Windows

You can install the OpenShift CLI (oc) binary on Windows by using the following procedure.

Procedure

  1. Navigate to the OpenShift Container Platform downloads page on the Red Hat Customer Portal.
  2. Select the appropriate version from the Version drop-down list.
  3. Click Download Now next to the OpenShift v4.17 Windows Client entry and save the file.
  4. Unzip the archive with a ZIP program.
  5. Move the oc binary to a directory that is on your PATH.

    To check your PATH, open the command prompt and execute the following command:

    C:\> path

Verification

  • After you install the OpenShift CLI, it is available using the oc command:

    C:\> oc <command>
Installing the OpenShift CLI on macOS

You can install the OpenShift CLI (oc) binary on macOS by using the following procedure.

Procedure

  1. Navigate to the OpenShift Container Platform downloads page on the Red Hat Customer Portal.
  2. Select the appropriate version from the Version drop-down list.
  3. Click Download Now next to the OpenShift v4.17 macOS Clients entry and save the file.

    Note

    For macOS arm64, choose the OpenShift v4.17 macOS arm64 Client entry.

  4. Unpack and unzip the archive.
  5. Move the oc binary to a directory on your PATH.

    To check your PATH, open a terminal and execute the following command:

    $ echo $PATH

Verification

  • Verify your installation by using an oc command:

    $ oc <command>

4.8. Alternatives to storing administrator-level secrets in the kube-system project

By default, administrator secrets are stored in the kube-system project. If you configured the credentialsMode parameter in the install-config.yaml file to Manual, you must use one of the following alternatives:

4.8.1. Manually creating long-term credentials

The Cloud Credential Operator (CCO) can be put into manual mode prior to installation in environments where the cloud identity and access management (IAM) APIs are not reachable, or the administrator prefers not to store an administrator-level credential secret in the cluster kube-system namespace.

Procedure

  1. Add the following granular permissions to the GCP account that the installation program uses:

    Example 4.3. Required GCP permissions

    • compute.machineTypes.list
    • compute.regions.list
    • compute.zones.list
    • dns.changes.create
    • dns.changes.get
    • dns.managedZones.create
    • dns.managedZones.delete
    • dns.managedZones.get
    • dns.managedZones.list
    • dns.networks.bindPrivateDNSZone
    • dns.resourceRecordSets.create
    • dns.resourceRecordSets.delete
    • dns.resourceRecordSets.list
  2. If you did not set the credentialsMode parameter in the install-config.yaml configuration file to Manual, modify the value as shown:

    Sample configuration file snippet

    apiVersion: v1
    baseDomain: example.com
    credentialsMode: Manual
    # ...

  3. If you have not previously created installation manifest files, do so by running the following command:

    $ openshift-install create manifests --dir <installation_directory>

    where <installation_directory> is the directory in which the installation program creates files.

  4. Set a $RELEASE_IMAGE variable with the release image from your installation file by running the following command:

    $ RELEASE_IMAGE=$(./openshift-install version | awk '/release image/ {print $3}')
  5. Extract the list of CredentialsRequest custom resources (CRs) from the OpenShift Container Platform release image by running the following command:

    $ oc adm release extract \
      --from=$RELEASE_IMAGE \
      --credentials-requests \
      --included \1
      --install-config=<path_to_directory_with_installation_configuration>/install-config.yaml \2
      --to=<path_to_directory_for_credentials_requests> 3
    1
    The --included parameter includes only the manifests that your specific cluster configuration requires.
    2
    Specify the location of the install-config.yaml file.
    3
    Specify the path to the directory where you want to store the CredentialsRequest objects. If the specified directory does not exist, this command creates it.

    This command creates a YAML file for each CredentialsRequest object.

    Sample CredentialsRequest object

    apiVersion: cloudcredential.openshift.io/v1
    kind: CredentialsRequest
    metadata:
      name: <component_credentials_request>
      namespace: openshift-cloud-credential-operator
      ...
    spec:
      providerSpec:
        apiVersion: cloudcredential.openshift.io/v1
        kind: GCPProviderSpec
        predefinedRoles:
        - roles/storage.admin
        - roles/iam.serviceAccountUser
        skipServiceCheck: true
      ...

  6. Create YAML files for secrets in the openshift-install manifests directory that you generated previously. The secrets must be stored using the namespace and secret name defined in the spec.secretRef for each CredentialsRequest object.

    Sample CredentialsRequest object with secrets

    apiVersion: cloudcredential.openshift.io/v1
    kind: CredentialsRequest
    metadata:
      name: <component_credentials_request>
      namespace: openshift-cloud-credential-operator
      ...
    spec:
      providerSpec:
        apiVersion: cloudcredential.openshift.io/v1
          ...
      secretRef:
        name: <component_secret>
        namespace: <component_namespace>
      ...

    Sample Secret object

    apiVersion: v1
    kind: Secret
    metadata:
      name: <component_secret>
      namespace: <component_namespace>
    data:
      service_account.json: <base64_encoded_gcp_service_account_file>

Important

Before upgrading a cluster that uses manually maintained credentials, you must ensure that the CCO is in an upgradeable state.

4.8.2. Configuring a GCP cluster to use short-term credentials

To install a cluster that is configured to use GCP Workload Identity, you must configure the CCO utility and create the required GCP resources for your cluster.

4.8.2.1. Configuring the Cloud Credential Operator utility

To create and manage cloud credentials from outside of the cluster when the Cloud Credential Operator (CCO) is operating in manual mode, extract and prepare the CCO utility (ccoctl) binary.

Note

The ccoctl utility is a Linux binary that must run in a Linux environment.

Prerequisites

  • You have access to an OpenShift Container Platform account with cluster administrator access.
  • You have installed the OpenShift CLI (oc).
  • You have added one of the following authentication options to the GCP account that the installation program uses:

    • The IAM Workload Identity Pool Admin role.
    • The following granular permissions:

      Example 4.4. Required GCP permissions

      • compute.projects.get
      • iam.googleapis.com/workloadIdentityPoolProviders.create
      • iam.googleapis.com/workloadIdentityPoolProviders.get
      • iam.googleapis.com/workloadIdentityPools.create
      • iam.googleapis.com/workloadIdentityPools.delete
      • iam.googleapis.com/workloadIdentityPools.get
      • iam.googleapis.com/workloadIdentityPools.undelete
      • iam.roles.create
      • iam.roles.delete
      • iam.roles.list
      • iam.roles.undelete
      • iam.roles.update
      • iam.serviceAccounts.create
      • iam.serviceAccounts.delete
      • iam.serviceAccounts.getIamPolicy
      • iam.serviceAccounts.list
      • iam.serviceAccounts.setIamPolicy
      • iam.workloadIdentityPoolProviders.get
      • iam.workloadIdentityPools.delete
      • resourcemanager.projects.get
      • resourcemanager.projects.getIamPolicy
      • resourcemanager.projects.setIamPolicy
      • storage.buckets.create
      • storage.buckets.delete
      • storage.buckets.get
      • storage.buckets.getIamPolicy
      • storage.buckets.setIamPolicy
      • storage.objects.create
      • storage.objects.delete
      • storage.objects.list

Procedure

  1. Set a variable for the OpenShift Container Platform release image by running the following command:

    $ RELEASE_IMAGE=$(./openshift-install version | awk '/release image/ {print $3}')
  2. Obtain the CCO container image from the OpenShift Container Platform release image by running the following command:

    $ CCO_IMAGE=$(oc adm release info --image-for='cloud-credential-operator' $RELEASE_IMAGE -a ~/.pull-secret)
    Note

    Ensure that the architecture of the $RELEASE_IMAGE matches the architecture of the environment in which you will use the ccoctl tool.

  3. Extract the ccoctl binary from the CCO container image within the OpenShift Container Platform release image by running the following command:

    $ oc image extract $CCO_IMAGE \
      --file="/usr/bin/ccoctl.<rhel_version>" \1
      -a ~/.pull-secret
    1
    For <rhel_version>, specify the value that corresponds to the version of Red Hat Enterprise Linux (RHEL) that the host uses. If no value is specified, ccoctl.rhel8 is used by default. The following values are valid:
    • rhel8: Specify this value for hosts that use RHEL 8.
    • rhel9: Specify this value for hosts that use RHEL 9.
  4. Change the permissions to make ccoctl executable by running the following command:

    $ chmod 775 ccoctl.<rhel_version>

Verification

  • To verify that ccoctl is ready to use, display the help file. Use a relative file name when you run the command, for example:

    $ ./ccoctl.rhel9

    Example output

    OpenShift credentials provisioning tool
    
    Usage:
      ccoctl [command]
    
    Available Commands:
      aws          Manage credentials objects for AWS cloud
      azure        Manage credentials objects for Azure
      gcp          Manage credentials objects for Google cloud
      help         Help about any command
      ibmcloud     Manage credentials objects for {ibm-cloud-title}
      nutanix      Manage credentials objects for Nutanix
    
    Flags:
      -h, --help   help for ccoctl
    
    Use "ccoctl [command] --help" for more information about a command.

4.8.2.2. Creating GCP resources with the Cloud Credential Operator utility

You can use the ccoctl gcp create-all command to automate the creation of GCP resources.

Note

By default, ccoctl creates objects in the directory in which the commands are run. To create the objects in a different directory, use the --output-dir flag. This procedure uses <path_to_ccoctl_output_dir> to refer to this directory.

Prerequisites

You must have:

  • Extracted and prepared the ccoctl binary.

Procedure

  1. Set a $RELEASE_IMAGE variable with the release image from your installation file by running the following command:

    $ RELEASE_IMAGE=$(./openshift-install version | awk '/release image/ {print $3}')
  2. Extract the list of CredentialsRequest objects from the OpenShift Container Platform release image by running the following command:

    $ oc adm release extract \
      --from=$RELEASE_IMAGE \
      --credentials-requests \
      --included \1
      --install-config=<path_to_directory_with_installation_configuration>/install-config.yaml \2
      --to=<path_to_directory_for_credentials_requests> 3
    1
    The --included parameter includes only the manifests that your specific cluster configuration requires.
    2
    Specify the location of the install-config.yaml file.
    3
    Specify the path to the directory where you want to store the CredentialsRequest objects. If the specified directory does not exist, this command creates it.
    Note

    This command might take a few moments to run.

  3. Use the ccoctl tool to process all CredentialsRequest objects by running the following command:

    $ ccoctl gcp create-all \
      --name=<name> \1
      --region=<gcp_region> \2
      --project=<gcp_project_id> \3
      --credentials-requests-dir=<path_to_credentials_requests_directory> 4
    1
    Specify the user-defined name for all created GCP resources used for tracking.
    2
    Specify the GCP region in which cloud resources will be created.
    3
    Specify the GCP project ID in which cloud resources will be created.
    4
    Specify the directory containing the files of CredentialsRequest manifests to create GCP service accounts.
    Note

    If your cluster uses Technology Preview features that are enabled by the TechPreviewNoUpgrade feature set, you must include the --enable-tech-preview parameter.

Verification

  • To verify that the OpenShift Container Platform secrets are created, list the files in the <path_to_ccoctl_output_dir>/manifests directory:

    $ ls <path_to_ccoctl_output_dir>/manifests

    Example output

    cluster-authentication-02-config.yaml
    openshift-cloud-controller-manager-gcp-ccm-cloud-credentials-credentials.yaml
    openshift-cloud-credential-operator-cloud-credential-operator-gcp-ro-creds-credentials.yaml
    openshift-cloud-network-config-controller-cloud-credentials-credentials.yaml
    openshift-cluster-api-capg-manager-bootstrap-credentials-credentials.yaml
    openshift-cluster-csi-drivers-gcp-pd-cloud-credentials-credentials.yaml
    openshift-image-registry-installer-cloud-credentials-credentials.yaml
    openshift-ingress-operator-cloud-credentials-credentials.yaml
    openshift-machine-api-gcp-cloud-credentials-credentials.yaml

    You can verify that the IAM service accounts are created by querying GCP. For more information, refer to GCP documentation on listing IAM service accounts.

4.8.2.3. Incorporating the Cloud Credential Operator utility manifests

To implement short-term security credentials managed outside the cluster for individual components, you must move the manifest files that the Cloud Credential Operator utility (ccoctl) created to the correct directories for the installation program.

Prerequisites

  • You have configured an account with the cloud platform that hosts your cluster.
  • You have configured the Cloud Credential Operator utility (ccoctl).
  • You have created the cloud provider resources that are required for your cluster with the ccoctl utility.

Procedure

  1. Add the following granular permissions to the GCP account that the installation program uses:

    Example 4.5. Required GCP permissions

    • compute.machineTypes.list
    • compute.regions.list
    • compute.zones.list
    • dns.changes.create
    • dns.changes.get
    • dns.managedZones.create
    • dns.managedZones.delete
    • dns.managedZones.get
    • dns.managedZones.list
    • dns.networks.bindPrivateDNSZone
    • dns.resourceRecordSets.create
    • dns.resourceRecordSets.delete
    • dns.resourceRecordSets.list
  2. If you did not set the credentialsMode parameter in the install-config.yaml configuration file to Manual, modify the value as shown:

    Sample configuration file snippet

    apiVersion: v1
    baseDomain: example.com
    credentialsMode: Manual
    # ...

  3. If you have not previously created installation manifest files, do so by running the following command:

    $ openshift-install create manifests --dir <installation_directory>

    where <installation_directory> is the directory in which the installation program creates files.

  4. Copy the manifests that the ccoctl utility generated to the manifests directory that the installation program created by running the following command:

    $ cp /<path_to_ccoctl_output_dir>/manifests/* ./manifests/
  5. Copy the tls directory that contains the private key to the installation directory:

    $ cp -a /<path_to_ccoctl_output_dir>/tls .

4.9. Using the GCP Marketplace offering

Using the GCP Marketplace offering lets you deploy an OpenShift Container Platform cluster, which is billed on pay-per-use basis (hourly, per core) through GCP, while still being supported directly by Red Hat.

By default, the installation program downloads and installs the Red Hat Enterprise Linux CoreOS (RHCOS) image that is used to deploy compute machines. To deploy an OpenShift Container Platform cluster using an RHCOS image from the GCP Marketplace, override the default behavior by modifying the install-config.yaml file to reference the location of GCP Marketplace offer.

Prerequisites

  • You have an existing install-config.yaml file.

Procedure

  1. Edit the compute.platform.gcp.osImage parameters to specify the location of the GCP Marketplace image:

    • Set the project parameter to redhat-marketplace-public
    • Set the name parameter to one of the following offers:

      OpenShift Container Platform
      redhat-coreos-ocp-413-x86-64-202305021736
      OpenShift Platform Plus
      redhat-coreos-opp-413-x86-64-202305021736
      OpenShift Kubernetes Engine
      redhat-coreos-oke-413-x86-64-202305021736
  2. Save the file and reference it when deploying the cluster.

Sample install-config.yaml file that specifies a GCP Marketplace image for compute machines

apiVersion: v1
baseDomain: example.com
controlPlane:
# ...
compute:
  platform:
    gcp:
      osImage:
        project: redhat-marketplace-public
        name: redhat-coreos-ocp-413-x86-64-202305021736
# ...

4.10. Deploying the cluster

You can install OpenShift Container Platform on a compatible cloud platform.

Important

You can run the create cluster command of the installation program only once, during initial installation.

Prerequisites

  • You have configured an account with the cloud platform that hosts your cluster.
  • You have the OpenShift Container Platform installation program and the pull secret for your cluster.
  • You have verified that the cloud provider account on your host has the correct permissions to deploy the cluster. An account with incorrect permissions causes the installation process to fail with an error message that displays the missing permissions.

Procedure

  1. Remove any existing GCP credentials that do not use the service account key for the GCP account that you configured for your cluster and that are stored in the following locations:

    • The GOOGLE_CREDENTIALS, GOOGLE_CLOUD_KEYFILE_JSON, or GCLOUD_KEYFILE_JSON environment variables
    • The ~/.gcp/osServiceAccount.json file
    • The gcloud cli default credentials
  2. Change to the directory that contains the installation program and initialize the cluster deployment:

    $ ./openshift-install create cluster --dir <installation_directory> \ 1
        --log-level=info 2
    1
    For <installation_directory>, specify the location of your customized ./install-config.yaml file.
    2
    To view different installation details, specify warn, debug, or error instead of info.
  3. Optional: You can reduce the number of permissions for the service account that you used to install the cluster.

    • If you assigned the Owner role to your service account, you can remove that role and replace it with the Viewer role.
    • If you included the Service Account Key Admin role, you can remove it.

Verification

When the cluster deployment completes successfully:

  • The terminal displays directions for accessing your cluster, including a link to the web console and credentials for the kubeadmin user.
  • Credential information also outputs to <installation_directory>/.openshift_install.log.
Important

Do not delete the installation program or the files that the installation program creates. Both are required to delete the cluster.

Example output

...
INFO Install complete!
INFO To access the cluster as the system:admin user when using 'oc', run 'export KUBECONFIG=/home/myuser/install_dir/auth/kubeconfig'
INFO Access the OpenShift web-console here: https://console-openshift-console.apps.mycluster.example.com
INFO Login to the console with user: "kubeadmin", and password: "password"
INFO Time elapsed: 36m22s

Important
  • The Ignition config files that the installation program generates contain certificates that expire after 24 hours, which are then renewed at that time. If the cluster is shut down before renewing the certificates and the cluster is later restarted after the 24 hours have elapsed, the cluster automatically recovers the expired certificates. The exception is that you must manually approve the pending node-bootstrapper certificate signing requests (CSRs) to recover kubelet certificates. See the documentation for Recovering from expired control plane certificates for more information.
  • It is recommended that you use Ignition config files within 12 hours after they are generated because the 24-hour certificate rotates from 16 to 22 hours after the cluster is installed. By using the Ignition config files within 12 hours, you can avoid installation failure if the certificate update runs during installation.

4.11. Logging in to the cluster by using the CLI

You can log in to your cluster as a default system user by exporting the cluster kubeconfig file. The kubeconfig file contains information about the cluster that is used by the CLI to connect a client to the correct cluster and API server. The file is specific to a cluster and is created during OpenShift Container Platform installation.

Prerequisites

  • You deployed an OpenShift Container Platform cluster.
  • You installed the oc CLI.

Procedure

  1. Export the kubeadmin credentials:

    $ export KUBECONFIG=<installation_directory>/auth/kubeconfig 1
    1
    For <installation_directory>, specify the path to the directory that you stored the installation files in.
  2. Verify you can run oc commands successfully using the exported configuration:

    $ oc whoami

    Example output

    system:admin

Additional resources

  • See Accessing the web console for more details about accessing and understanding the OpenShift Container Platform web console.

4.12. Telemetry access for OpenShift Container Platform

In OpenShift Container Platform 4.17, the Telemetry service, which runs by default to provide metrics about cluster health and the success of updates, requires internet access. If your cluster is connected to the internet, Telemetry runs automatically, and your cluster is registered to OpenShift Cluster Manager.

After you confirm that your OpenShift Cluster Manager inventory is correct, either maintained automatically by Telemetry or manually by using OpenShift Cluster Manager, use subscription watch to track your OpenShift Container Platform subscriptions at the account or multi-cluster level.

Additional resources

4.13. Next steps

Chapter 5. Installing a cluster on GCP with network customizations

In OpenShift Container Platform version 4.17, you can install a cluster with a customized network configuration on infrastructure that the installation program provisions on Google Cloud Platform (GCP). By customizing your network configuration, your cluster can coexist with existing IP address allocations in your environment and integrate with existing MTU and VXLAN configurations. To customize the installation, you modify parameters in the install-config.yaml file before you install the cluster.

You must set most of the network configuration parameters during installation, and you can modify only kubeProxy configuration parameters in a running cluster.

5.1. Prerequisites

5.2. Internet access for OpenShift Container Platform

In OpenShift Container Platform 4.17, you require access to the internet to install your cluster.

You must have internet access to:

  • Access OpenShift Cluster Manager to download the installation program and perform subscription management. If the cluster has internet access and you do not disable Telemetry, that service automatically entitles your cluster.
  • Access Quay.io to obtain the packages that are required to install your cluster.
  • Obtain the packages that are required to perform cluster updates.
Important

If your cluster cannot have direct internet access, you can perform a restricted network installation on some types of infrastructure that you provision. During that process, you download the required content and use it to populate a mirror registry with the installation packages. With some installation types, the environment that you install your cluster in will not require internet access. Before you update the cluster, you update the content of the mirror registry.

5.3. Generating a key pair for cluster node SSH access

During an OpenShift Container Platform installation, you can provide an SSH public key to the installation program. The key is passed to the Red Hat Enterprise Linux CoreOS (RHCOS) nodes through their Ignition config files and is used to authenticate SSH access to the nodes. The key is added to the ~/.ssh/authorized_keys list for the core user on each node, which enables password-less authentication.

After the key is passed to the nodes, you can use the key pair to SSH in to the RHCOS nodes as the user core. To access the nodes through SSH, the private key identity must be managed by SSH for your local user.

If you want to SSH in to your cluster nodes to perform installation debugging or disaster recovery, you must provide the SSH public key during the installation process. The ./openshift-install gather command also requires the SSH public key to be in place on the cluster nodes.

Important

Do not skip this procedure in production environments, where disaster recovery and debugging is required.

Note

You must use a local key, not one that you configured with platform-specific approaches such as AWS key pairs.

Procedure

  1. If you do not have an existing SSH key pair on your local machine to use for authentication onto your cluster nodes, create one. For example, on a computer that uses a Linux operating system, run the following command:

    $ ssh-keygen -t ed25519 -N '' -f <path>/<file_name> 1
    1
    Specify the path and file name, such as ~/.ssh/id_ed25519, of the new SSH key. If you have an existing key pair, ensure your public key is in the your ~/.ssh directory.
    Note

    If you plan to install an OpenShift Container Platform cluster that uses the RHEL cryptographic libraries that have been submitted to NIST for FIPS 140-2/140-3 Validation on only the x86_64, ppc64le, and s390x architectures, do not create a key that uses the ed25519 algorithm. Instead, create a key that uses the rsa or ecdsa algorithm.

  2. View the public SSH key:

    $ cat <path>/<file_name>.pub

    For example, run the following to view the ~/.ssh/id_ed25519.pub public key:

    $ cat ~/.ssh/id_ed25519.pub
  3. Add the SSH private key identity to the SSH agent for your local user, if it has not already been added. SSH agent management of the key is required for password-less SSH authentication onto your cluster nodes, or if you want to use the ./openshift-install gather command.

    Note

    On some distributions, default SSH private key identities such as ~/.ssh/id_rsa and ~/.ssh/id_dsa are managed automatically.

    1. If the ssh-agent process is not already running for your local user, start it as a background task:

      $ eval "$(ssh-agent -s)"

      Example output

      Agent pid 31874

      Note

      If your cluster is in FIPS mode, only use FIPS-compliant algorithms to generate the SSH key. The key must be either RSA or ECDSA.

  4. Add your SSH private key to the ssh-agent:

    $ ssh-add <path>/<file_name> 1
    1
    Specify the path and file name for your SSH private key, such as ~/.ssh/id_ed25519

    Example output

    Identity added: /home/<you>/<path>/<file_name> (<computer_name>)

Next steps

  • When you install OpenShift Container Platform, provide the SSH public key to the installation program.

5.4. Obtaining the installation program

Before you install OpenShift Container Platform, download the installation file on the host you are using for installation.

Prerequisites

  • You have a computer that runs Linux or macOS, with 500 MB of local disk space.

Procedure

  1. Go to the Cluster Type page on the Red Hat Hybrid Cloud Console. If you have a Red Hat account, log in with your credentials. If you do not, create an account.
  2. Select your infrastructure provider from the Run it yourself section of the page.
  3. Select your host operating system and architecture from the dropdown menus under OpenShift Installer and click Download Installer.
  4. Place the downloaded file in the directory where you want to store the installation configuration files.

    Important
    • The installation program creates several files on the computer that you use to install your cluster. You must keep the installation program and the files that the installation program creates after you finish installing the cluster. Both of the files are required to delete the cluster.
    • Deleting the files created by the installation program does not remove your cluster, even if the cluster failed during installation. To remove your cluster, complete the OpenShift Container Platform uninstallation procedures for your specific cloud provider.
  5. Extract the installation program. For example, on a computer that uses a Linux operating system, run the following command:

    $ tar -xvf openshift-install-linux.tar.gz
  6. Download your installation pull secret from Red Hat OpenShift Cluster Manager. This pull secret allows you to authenticate with the services that are provided by the included authorities, including Quay.io, which serves the container images for OpenShift Container Platform components.
Tip

Alternatively, you can retrieve the installation program from the Red Hat Customer Portal, where you can specify a version of the installation program to download. However, you must have an active subscription to access this page.

5.5. Creating the installation configuration file

You can customize the OpenShift Container Platform cluster you install on Google Cloud Platform (GCP).

Prerequisites

  • You have the OpenShift Container Platform installation program and the pull secret for your cluster.

Procedure

  1. Create the install-config.yaml file.

    1. Change to the directory that contains the installation program and run the following command:

      $ ./openshift-install create install-config --dir <installation_directory> 1
      1
      For <installation_directory>, specify the directory name to store the files that the installation program creates.

      When specifying the directory:

      • Verify that the directory has the execute permission. This permission is required to run Terraform binaries under the installation directory.
      • Use an empty directory. Some installation assets, such as bootstrap X.509 certificates, have short expiration intervals, therefore you must not reuse an installation directory. If you want to reuse individual files from another cluster installation, you can copy them into your directory. However, the file names for the installation assets might change between releases. Use caution when copying installation files from an earlier OpenShift Container Platform version.
    2. At the prompts, provide the configuration details for your cloud:

      1. Optional: Select an SSH key to use to access your cluster machines.

        Note

        For production OpenShift Container Platform clusters on which you want to perform installation debugging or disaster recovery, specify an SSH key that your ssh-agent process uses.

      2. Select gcp as the platform to target.
      3. If you have not configured the service account key for your GCP account on your computer, you must obtain it from GCP and paste the contents of the file or enter the absolute path to the file.
      4. Select the project ID to provision the cluster in. The default value is specified by the service account that you configured.
      5. Select the region to deploy the cluster to.
      6. Select the base domain to deploy the cluster to. The base domain corresponds to the public DNS zone that you created for your cluster.
      7. Enter a descriptive name for your cluster.
  2. Modify the install-config.yaml file. You can find more information about the available parameters in the "Installation configuration parameters" section.
  3. Back up the install-config.yaml file so that you can use it to install multiple clusters.

    Important

    The install-config.yaml file is consumed during the installation process. If you want to reuse the file, you must back it up now.

5.5.1. Minimum resource requirements for cluster installation

Each cluster machine must meet the following minimum requirements:

Table 5.1. Minimum resource requirements
MachineOperating SystemvCPU [1]Virtual RAMStorageInput/Output Per Second (IOPS)[2]

Bootstrap

RHCOS

4

16 GB

100 GB

300

Control plane

RHCOS

4

16 GB

100 GB

300

Compute

RHCOS, RHEL 8.6 and later [3]

2

8 GB

100 GB

300

  1. One vCPU is equivalent to one physical core when simultaneous multithreading (SMT), or Hyper-Threading, is not enabled. When enabled, use the following formula to calculate the corresponding ratio: (threads per core × cores) × sockets = vCPUs.
  2. OpenShift Container Platform and Kubernetes are sensitive to disk performance, and faster storage is recommended, particularly for etcd on the control plane nodes which require a 10 ms p99 fsync duration. Note that on many cloud platforms, storage size and IOPS scale together, so you might need to over-allocate storage volume to obtain sufficient performance.
  3. As with all user-provisioned installations, if you choose to use RHEL compute machines in your cluster, you take responsibility for all operating system life cycle management and maintenance, including performing system updates, applying patches, and completing all other required tasks. Use of RHEL 7 compute machines is deprecated and has been removed in OpenShift Container Platform 4.10 and later.
Note

As of OpenShift Container Platform version 4.13, RHCOS is based on RHEL version 9.2, which updates the micro-architecture requirements. The following list contains the minimum instruction set architectures (ISA) that each architecture requires:

  • x86-64 architecture requires x86-64-v2 ISA
  • ARM64 architecture requires ARMv8.0-A ISA
  • IBM Power architecture requires Power 9 ISA
  • s390x architecture requires z14 ISA

For more information, see RHEL Architectures.

If an instance type for your platform meets the minimum requirements for cluster machines, it is supported to use in OpenShift Container Platform.

Additional resources

5.5.2. Tested instance types for GCP

The following Google Cloud Platform instance types have been tested with OpenShift Container Platform.

Example 5.1. Machine series

  • A2
  • A3
  • C2
  • C2D
  • C3
  • C3D
  • E2
  • M1
  • N1
  • N2
  • N2D
  • N4
  • Tau T2D

5.5.3. Tested instance types for GCP on 64-bit ARM infrastructures

The following Google Cloud Platform (GCP) 64-bit ARM instance types have been tested with OpenShift Container Platform.

Example 5.2. Machine series for 64-bit ARM machines

  • Tau T2A

5.5.4. Using custom machine types

Using a custom machine type to install a OpenShift Container Platform cluster is supported.

Consider the following when using a custom machine type:

  • Similar to predefined instance types, custom machine types must meet the minimum resource requirements for control plane and compute machines. For more information, see "Minimum resource requirements for cluster installation".
  • The name of the custom machine type must adhere to the following syntax:

    custom-<number_of_cpus>-<amount_of_memory_in_mb>

    For example, custom-6-20480.

As part of the installation process, you specify the custom machine type in the install-config.yaml file.

Sample install-config.yaml file with a custom machine type

compute:
- architecture: amd64
  hyperthreading: Enabled
  name: worker
  platform:
    gcp:
      type: custom-6-20480
  replicas: 2
controlPlane:
  architecture: amd64
  hyperthreading: Enabled
  name: master
  platform:
    gcp:
      type: custom-6-20480
  replicas: 3

5.5.5. Enabling Shielded VMs

You can use Shielded VMs when installing your cluster. Shielded VMs have extra security features including secure boot, firmware and integrity monitoring, and rootkit detection. For more information, see Google’s documentation on Shielded VMs.

Note

Shielded VMs are currently not supported on clusters with 64-bit ARM infrastructures.

Prerequisites

  • You have created an install-config.yaml file.

Procedure

  • Use a text editor to edit the install-config.yaml file prior to deploying your cluster and add one of the following stanzas:

    1. To use shielded VMs for only control plane machines:

      controlPlane:
        platform:
          gcp:
             secureBoot: Enabled
    2. To use shielded VMs for only compute machines:

      compute:
      - platform:
          gcp:
             secureBoot: Enabled
    3. To use shielded VMs for all machines:

      platform:
        gcp:
          defaultMachinePlatform:
             secureBoot: Enabled

5.5.6. Enabling Confidential VMs

You can use Confidential VMs when installing your cluster. Confidential VMs encrypt data while it is being processed. For more information, see Google’s documentation on Confidential Computing. You can enable Confidential VMs and Shielded VMs at the same time, although they are not dependent on each other.

Note

Confidential VMs are currently not supported on 64-bit ARM architectures.

Prerequisites

  • You have created an install-config.yaml file.

Procedure

  • Use a text editor to edit the install-config.yaml file prior to deploying your cluster and add one of the following stanzas:

    1. To use confidential VMs for only control plane machines:

      controlPlane:
        platform:
          gcp:
             confidentialCompute: Enabled 1
             type: n2d-standard-8 2
             onHostMaintenance: Terminate 3
      1
      Enable confidential VMs.
      2
      Specify a machine type that supports Confidential VMs. Confidential VMs require the N2D or C2D series of machine types. For more information on supported machine types, see Supported operating systems and machine types.
      3
      Specify the behavior of the VM during a host maintenance event, such as a hardware or software update. For a machine that uses Confidential VM, this value must be set to Terminate, which stops the VM. Confidential VMs do not support live VM migration.
    2. To use confidential VMs for only compute machines:

      compute:
      - platform:
          gcp:
             confidentialCompute: Enabled
             type: n2d-standard-8
             onHostMaintenance: Terminate
    3. To use confidential VMs for all machines:

      platform:
        gcp:
          defaultMachinePlatform:
             confidentialCompute: Enabled
             type: n2d-standard-8
             onHostMaintenance: Terminate

5.5.7. Sample customized install-config.yaml file for GCP

You can customize the install-config.yaml file to specify more details about your OpenShift Container Platform cluster’s platform or modify the values of the required parameters.

Important

This sample YAML file is provided for reference only. You must obtain your install-config.yaml file by using the installation program and modify it.

apiVersion: v1
baseDomain: example.com 1
credentialsMode: Mint 2
controlPlane: 3 4
  hyperthreading: Enabled 5
  name: master
  platform:
    gcp:
      type: n2-standard-4
      zones:
      - us-central1-a
      - us-central1-c
      osDisk:
        diskType: pd-ssd
        diskSizeGB: 1024
        encryptionKey: 6
          kmsKey:
            name: worker-key
            keyRing: test-machine-keys
            location: global
            projectID: project-id
      tags: 7
      - control-plane-tag1
      - control-plane-tag2
      osImage: 8
        project: example-project-name
        name: example-image-name
  replicas: 3
compute: 9 10
- hyperthreading: Enabled 11
  name: worker
  platform:
    gcp:
      type: n2-standard-4
      zones:
      - us-central1-a
      - us-central1-c
      osDisk:
        diskType: pd-standard
        diskSizeGB: 128
        encryptionKey: 12
          kmsKey:
            name: worker-key
            keyRing: test-machine-keys
            location: global
            projectID: project-id
        tags: 13
        - compute-tag1
        - compute-tag2
        osImage: 14
          project: example-project-name
          name: example-image-name
  replicas: 3
metadata:
  name: test-cluster 15
networking: 16
  clusterNetwork:
  - cidr: 10.128.0.0/14
    hostPrefix: 23
  machineNetwork:
  - cidr: 10.0.0.0/16
  networkType: OVNKubernetes 17
  serviceNetwork:
  - 172.30.0.0/16
platform:
  gcp:
    projectID: openshift-production 18
    region: us-central1 19
    defaultMachinePlatform:
      tags: 20
      - global-tag1
      - global-tag2
      osImage: 21
        project: example-project-name
        name: example-image-name
pullSecret: '{"auths": ...}' 22
fips: false 23
sshKey: ssh-ed25519 AAAA... 24
1 15 18 19 22
Required. The installation program prompts you for this value.
2
Optional: Add this parameter to force the Cloud Credential Operator (CCO) to use the specified mode. By default, the CCO uses the root credentials in the kube-system namespace to dynamically try to determine the capabilities of the credentials. For details about CCO modes, see the "About the Cloud Credential Operator" section in the Authentication and authorization guide.
3 9 16
If you do not provide these parameters and values, the installation program provides the default value.
4 10
The controlPlane section is a single mapping, but the compute section is a sequence of mappings. To meet the requirements of the different data structures, the first line of the compute section must begin with a hyphen, -, and the first line of the controlPlane section must not. Only one control plane pool is used.
5 11
Whether to enable or disable simultaneous multithreading, or hyperthreading. By default, simultaneous multithreading is enabled to increase the performance of your machines' cores. You can disable it by setting the parameter value to Disabled. If you disable simultaneous multithreading in some cluster machines, you must disable it in all cluster machines.
Important

If you disable simultaneous multithreading, ensure that your capacity planning accounts for the dramatically decreased machine performance. Use larger machine types, such as n1-standard-8, for your machines if you disable simultaneous multithreading.

6 12
Optional: The custom encryption key section to encrypt both virtual machines and persistent volumes. Your default compute service account must have the permissions granted to use your KMS key and have the correct IAM role assigned. The default service account name follows the service-<project_number>@compute-system.iam.gserviceaccount.com pattern. For more information about granting the correct permissions for your service account, see "Machine management" → "Creating compute machine sets" → "Creating a compute machine set on GCP".
7 13 20
Optional: A set of network tags to apply to the control plane or compute machine sets. The platform.gcp.defaultMachinePlatform.tags parameter will apply to both control plane and compute machines. If the compute.platform.gcp.tags or controlPlane.platform.gcp.tags parameters are set, they override the platform.gcp.defaultMachinePlatform.tags parameter.
8 14 21
Optional: A custom Red Hat Enterprise Linux CoreOS (RHCOS) that should be used to boot control plane and compute machines. The project and name parameters under platform.gcp.defaultMachinePlatform.osImage apply to both control plane and compute machines. If the project and name parameters under controlPlane.platform.gcp.osImage or compute.platform.gcp.osImage are set, they override the platform.gcp.defaultMachinePlatform.osImage parameters.
17
The cluster network plugin to install. The default value OVNKubernetes is the only supported value.
23
Whether to enable or disable FIPS mode. By default, FIPS mode is not enabled. If FIPS mode is enabled, the Red Hat Enterprise Linux CoreOS (RHCOS) machines that OpenShift Container Platform runs on bypass the default Kubernetes cryptography suite and use the cryptography modules that are provided with RHCOS instead.
Important

When running Red Hat Enterprise Linux (RHEL) or Red Hat Enterprise Linux CoreOS (RHCOS) booted in FIPS mode, OpenShift Container Platform core components use the RHEL cryptographic libraries that have been submitted to NIST for FIPS 140-2/140-3 Validation on only the x86_64, ppc64le, and s390x architectures.

24
You can optionally provide the sshKey value that you use to access the machines in your cluster.
Note

For production OpenShift Container Platform clusters on which you want to perform installation debugging or disaster recovery, specify an SSH key that your ssh-agent process uses.

5.5.8. Configuring the cluster-wide proxy during installation

Production environments can deny direct access to the internet and instead have an HTTP or HTTPS proxy available. You can configure a new OpenShift Container Platform cluster to use a proxy by configuring the proxy settings in the install-config.yaml file.

Prerequisites

  • You have an existing install-config.yaml file.
  • You reviewed the sites that your cluster requires access to and determined whether any of them need to bypass the proxy. By default, all cluster egress traffic is proxied, including calls to hosting cloud provider APIs. You added sites to the Proxy object’s spec.noProxy field to bypass the proxy if necessary.

    Note

    The Proxy object status.noProxy field is populated with the values of the networking.machineNetwork[].cidr, networking.clusterNetwork[].cidr, and networking.serviceNetwork[] fields from your installation configuration.

    For installations on Amazon Web Services (AWS), Google Cloud Platform (GCP), Microsoft Azure, and Red Hat OpenStack Platform (RHOSP), the Proxy object status.noProxy field is also populated with the instance metadata endpoint (169.254.169.254).

Procedure

  1. Edit your install-config.yaml file and add the proxy settings. For example:

    apiVersion: v1
    baseDomain: my.domain.com
    proxy:
      httpProxy: http://<username>:<pswd>@<ip>:<port> 1
      httpsProxy: https://<username>:<pswd>@<ip>:<port> 2
      noProxy: example.com 3
    additionalTrustBundle: | 4
        -----BEGIN CERTIFICATE-----
        <MY_TRUSTED_CA_CERT>
        -----END CERTIFICATE-----
    additionalTrustBundlePolicy: <policy_to_add_additionalTrustBundle> 5
    1
    A proxy URL to use for creating HTTP connections outside the cluster. The URL scheme must be http.
    2
    A proxy URL to use for creating HTTPS connections outside the cluster.
    3
    A comma-separated list of destination domain names, IP addresses, or other network CIDRs to exclude from proxying. Preface a domain with . to match subdomains only. For example, .y.com matches x.y.com, but not y.com. Use * to bypass the proxy for all destinations.
    4
    If provided, the installation program generates a config map that is named user-ca-bundle in the openshift-config namespace that contains one or more additional CA certificates that are required for proxying HTTPS connections. The Cluster Network Operator then creates a trusted-ca-bundle config map that merges these contents with the Red Hat Enterprise Linux CoreOS (RHCOS) trust bundle, and this config map is referenced in the trustedCA field of the Proxy object. The additionalTrustBundle field is required unless the proxy’s identity certificate is signed by an authority from the RHCOS trust bundle.
    5
    Optional: The policy to determine the configuration of the Proxy object to reference the user-ca-bundle config map in the trustedCA field. The allowed values are Proxyonly and Always. Use Proxyonly to reference the user-ca-bundle config map only when http/https proxy is configured. Use Always to always reference the user-ca-bundle config map. The default value is Proxyonly.
    Note

    The installation program does not support the proxy readinessEndpoints field.

    Note

    If the installer times out, restart and then complete the deployment by using the wait-for command of the installer. For example:

    $ ./openshift-install wait-for install-complete --log-level debug
  2. Save the file and reference it when installing OpenShift Container Platform.

The installation program creates a cluster-wide proxy that is named cluster that uses the proxy settings in the provided install-config.yaml file. If no proxy settings are provided, a cluster Proxy object is still created, but it will have a nil spec.

Note

Only the Proxy object named cluster is supported, and no additional proxies can be created.

5.6. Installing the OpenShift CLI

You can install the OpenShift CLI (oc) to interact with OpenShift Container Platform from a command-line interface. You can install oc on Linux, Windows, or macOS.

Important

If you installed an earlier version of oc, you cannot use it to complete all of the commands in OpenShift Container Platform 4.17. Download and install the new version of oc.

Installing the OpenShift CLI on Linux

You can install the OpenShift CLI (oc) binary on Linux by using the following procedure.

Procedure

  1. Navigate to the OpenShift Container Platform downloads page on the Red Hat Customer Portal.
  2. Select the architecture from the Product Variant drop-down list.
  3. Select the appropriate version from the Version drop-down list.
  4. Click Download Now next to the OpenShift v4.17 Linux Clients entry and save the file.
  5. Unpack the archive:

    $ tar xvf <file>
  6. Place the oc binary in a directory that is on your PATH.

    To check your PATH, execute the following command:

    $ echo $PATH

Verification

  • After you install the OpenShift CLI, it is available using the oc command:

    $ oc <command>
Installing the OpenShift CLI on Windows

You can install the OpenShift CLI (oc) binary on Windows by using the following procedure.

Procedure

  1. Navigate to the OpenShift Container Platform downloads page on the Red Hat Customer Portal.
  2. Select the appropriate version from the Version drop-down list.
  3. Click Download Now next to the OpenShift v4.17 Windows Client entry and save the file.
  4. Unzip the archive with a ZIP program.
  5. Move the oc binary to a directory that is on your PATH.

    To check your PATH, open the command prompt and execute the following command:

    C:\> path

Verification

  • After you install the OpenShift CLI, it is available using the oc command:

    C:\> oc <command>
Installing the OpenShift CLI on macOS

You can install the OpenShift CLI (oc) binary on macOS by using the following procedure.

Procedure

  1. Navigate to the OpenShift Container Platform downloads page on the Red Hat Customer Portal.
  2. Select the appropriate version from the Version drop-down list.
  3. Click Download Now next to the OpenShift v4.17 macOS Clients entry and save the file.

    Note

    For macOS arm64, choose the OpenShift v4.17 macOS arm64 Client entry.

  4. Unpack and unzip the archive.
  5. Move the oc binary to a directory on your PATH.

    To check your PATH, open a terminal and execute the following command:

    $ echo $PATH

Verification

  • Verify your installation by using an oc command:

    $ oc <command>

5.7. Alternatives to storing administrator-level secrets in the kube-system project

By default, administrator secrets are stored in the kube-system project. If you configured the credentialsMode parameter in the install-config.yaml file to Manual, you must use one of the following alternatives:

5.7.1. Manually creating long-term credentials

The Cloud Credential Operator (CCO) can be put into manual mode prior to installation in environments where the cloud identity and access management (IAM) APIs are not reachable, or the administrator prefers not to store an administrator-level credential secret in the cluster kube-system namespace.

Procedure

  1. Add the following granular permissions to the GCP account that the installation program uses:

    Example 5.3. Required GCP permissions

    • compute.machineTypes.list
    • compute.regions.list
    • compute.zones.list
    • dns.changes.create
    • dns.changes.get
    • dns.managedZones.create
    • dns.managedZones.delete
    • dns.managedZones.get
    • dns.managedZones.list
    • dns.networks.bindPrivateDNSZone
    • dns.resourceRecordSets.create
    • dns.resourceRecordSets.delete
    • dns.resourceRecordSets.list
  2. If you did not set the credentialsMode parameter in the install-config.yaml configuration file to Manual, modify the value as shown:

    Sample configuration file snippet

    apiVersion: v1
    baseDomain: example.com
    credentialsMode: Manual
    # ...

  3. If you have not previously created installation manifest files, do so by running the following command:

    $ openshift-install create manifests --dir <installation_directory>

    where <installation_directory> is the directory in which the installation program creates files.

  4. Set a $RELEASE_IMAGE variable with the release image from your installation file by running the following command:

    $ RELEASE_IMAGE=$(./openshift-install version | awk '/release image/ {print $3}')
  5. Extract the list of CredentialsRequest custom resources (CRs) from the OpenShift Container Platform release image by running the following command:

    $ oc adm release extract \
      --from=$RELEASE_IMAGE \
      --credentials-requests \
      --included \1
      --install-config=<path_to_directory_with_installation_configuration>/install-config.yaml \2
      --to=<path_to_directory_for_credentials_requests> 3
    1
    The --included parameter includes only the manifests that your specific cluster configuration requires.
    2
    Specify the location of the install-config.yaml file.
    3
    Specify the path to the directory where you want to store the CredentialsRequest objects. If the specified directory does not exist, this command creates it.

    This command creates a YAML file for each CredentialsRequest object.

    Sample CredentialsRequest object

    apiVersion: cloudcredential.openshift.io/v1
    kind: CredentialsRequest
    metadata:
      name: <component_credentials_request>
      namespace: openshift-cloud-credential-operator
      ...
    spec:
      providerSpec:
        apiVersion: cloudcredential.openshift.io/v1
        kind: GCPProviderSpec
        predefinedRoles:
        - roles/storage.admin
        - roles/iam.serviceAccountUser
        skipServiceCheck: true
      ...

  6. Create YAML files for secrets in the openshift-install manifests directory that you generated previously. The secrets must be stored using the namespace and secret name defined in the spec.secretRef for each CredentialsRequest object.

    Sample CredentialsRequest object with secrets

    apiVersion: cloudcredential.openshift.io/v1
    kind: CredentialsRequest
    metadata:
      name: <component_credentials_request>
      namespace: openshift-cloud-credential-operator
      ...
    spec:
      providerSpec:
        apiVersion: cloudcredential.openshift.io/v1
          ...
      secretRef:
        name: <component_secret>
        namespace: <component_namespace>
      ...

    Sample Secret object

    apiVersion: v1
    kind: Secret
    metadata:
      name: <component_secret>
      namespace: <component_namespace>
    data:
      service_account.json: <base64_encoded_gcp_service_account_file>

Important

Before upgrading a cluster that uses manually maintained credentials, you must ensure that the CCO is in an upgradeable state.

5.7.2. Configuring a GCP cluster to use short-term credentials

To install a cluster that is configured to use GCP Workload Identity, you must configure the CCO utility and create the required GCP resources for your cluster.

5.7.2.1. Configuring the Cloud Credential Operator utility

To create and manage cloud credentials from outside of the cluster when the Cloud Credential Operator (CCO) is operating in manual mode, extract and prepare the CCO utility (ccoctl) binary.

Note

The ccoctl utility is a Linux binary that must run in a Linux environment.

Prerequisites

  • You have access to an OpenShift Container Platform account with cluster administrator access.
  • You have installed the OpenShift CLI (oc).
  • You have added one of the following authentication options to the GCP account that the installation program uses:

    • The IAM Workload Identity Pool Admin role.
    • The following granular permissions:

      Example 5.4. Required GCP permissions

      • compute.projects.get
      • iam.googleapis.com/workloadIdentityPoolProviders.create
      • iam.googleapis.com/workloadIdentityPoolProviders.get
      • iam.googleapis.com/workloadIdentityPools.create
      • iam.googleapis.com/workloadIdentityPools.delete
      • iam.googleapis.com/workloadIdentityPools.get
      • iam.googleapis.com/workloadIdentityPools.undelete
      • iam.roles.create
      • iam.roles.delete
      • iam.roles.list
      • iam.roles.undelete
      • iam.roles.update
      • iam.serviceAccounts.create
      • iam.serviceAccounts.delete
      • iam.serviceAccounts.getIamPolicy
      • iam.serviceAccounts.list
      • iam.serviceAccounts.setIamPolicy
      • iam.workloadIdentityPoolProviders.get
      • iam.workloadIdentityPools.delete
      • resourcemanager.projects.get
      • resourcemanager.projects.getIamPolicy
      • resourcemanager.projects.setIamPolicy
      • storage.buckets.create
      • storage.buckets.delete
      • storage.buckets.get
      • storage.buckets.getIamPolicy
      • storage.buckets.setIamPolicy
      • storage.objects.create
      • storage.objects.delete
      • storage.objects.list

Procedure

  1. Set a variable for the OpenShift Container Platform release image by running the following command:

    $ RELEASE_IMAGE=$(./openshift-install version | awk '/release image/ {print $3}')
  2. Obtain the CCO container image from the OpenShift Container Platform release image by running the following command:

    $ CCO_IMAGE=$(oc adm release info --image-for='cloud-credential-operator' $RELEASE_IMAGE -a ~/.pull-secret)
    Note

    Ensure that the architecture of the $RELEASE_IMAGE matches the architecture of the environment in which you will use the ccoctl tool.

  3. Extract the ccoctl binary from the CCO container image within the OpenShift Container Platform release image by running the following command:

    $ oc image extract $CCO_IMAGE \
      --file="/usr/bin/ccoctl.<rhel_version>" \1
      -a ~/.pull-secret
    1
    For <rhel_version>, specify the value that corresponds to the version of Red Hat Enterprise Linux (RHEL) that the host uses. If no value is specified, ccoctl.rhel8 is used by default. The following values are valid:
    • rhel8: Specify this value for hosts that use RHEL 8.
    • rhel9: Specify this value for hosts that use RHEL 9.
  4. Change the permissions to make ccoctl executable by running the following command:

    $ chmod 775 ccoctl.<rhel_version>

Verification

  • To verify that ccoctl is ready to use, display the help file. Use a relative file name when you run the command, for example:

    $ ./ccoctl.rhel9

    Example output

    OpenShift credentials provisioning tool
    
    Usage:
      ccoctl [command]
    
    Available Commands:
      aws          Manage credentials objects for AWS cloud
      azure        Manage credentials objects for Azure
      gcp          Manage credentials objects for Google cloud
      help         Help about any command
      ibmcloud     Manage credentials objects for {ibm-cloud-title}
      nutanix      Manage credentials objects for Nutanix
    
    Flags:
      -h, --help   help for ccoctl
    
    Use "ccoctl [command] --help" for more information about a command.

5.7.2.2. Creating GCP resources with the Cloud Credential Operator utility

You can use the ccoctl gcp create-all command to automate the creation of GCP resources.

Note

By default, ccoctl creates objects in the directory in which the commands are run. To create the objects in a different directory, use the --output-dir flag. This procedure uses <path_to_ccoctl_output_dir> to refer to this directory.

Prerequisites

You must have:

  • Extracted and prepared the ccoctl binary.

Procedure

  1. Set a $RELEASE_IMAGE variable with the release image from your installation file by running the following command:

    $ RELEASE_IMAGE=$(./openshift-install version | awk '/release image/ {print $3}')
  2. Extract the list of CredentialsRequest objects from the OpenShift Container Platform release image by running the following command:

    $ oc adm release extract \
      --from=$RELEASE_IMAGE \
      --credentials-requests \
      --included \1
      --install-config=<path_to_directory_with_installation_configuration>/install-config.yaml \2
      --to=<path_to_directory_for_credentials_requests> 3
    1
    The --included parameter includes only the manifests that your specific cluster configuration requires.
    2
    Specify the location of the install-config.yaml file.
    3
    Specify the path to the directory where you want to store the CredentialsRequest objects. If the specified directory does not exist, this command creates it.
    Note

    This command might take a few moments to run.

  3. Use the ccoctl tool to process all CredentialsRequest objects by running the following command:

    $ ccoctl gcp create-all \
      --name=<name> \1
      --region=<gcp_region> \2
      --project=<gcp_project_id> \3
      --credentials-requests-dir=<path_to_credentials_requests_directory> 4
    1
    Specify the user-defined name for all created GCP resources used for tracking.
    2
    Specify the GCP region in which cloud resources will be created.
    3
    Specify the GCP project ID in which cloud resources will be created.
    4
    Specify the directory containing the files of CredentialsRequest manifests to create GCP service accounts.
    Note

    If your cluster uses Technology Preview features that are enabled by the TechPreviewNoUpgrade feature set, you must include the --enable-tech-preview parameter.

Verification

  • To verify that the OpenShift Container Platform secrets are created, list the files in the <path_to_ccoctl_output_dir>/manifests directory:

    $ ls <path_to_ccoctl_output_dir>/manifests

    Example output

    cluster-authentication-02-config.yaml
    openshift-cloud-controller-manager-gcp-ccm-cloud-credentials-credentials.yaml
    openshift-cloud-credential-operator-cloud-credential-operator-gcp-ro-creds-credentials.yaml
    openshift-cloud-network-config-controller-cloud-credentials-credentials.yaml
    openshift-cluster-api-capg-manager-bootstrap-credentials-credentials.yaml
    openshift-cluster-csi-drivers-gcp-pd-cloud-credentials-credentials.yaml
    openshift-image-registry-installer-cloud-credentials-credentials.yaml
    openshift-ingress-operator-cloud-credentials-credentials.yaml
    openshift-machine-api-gcp-cloud-credentials-credentials.yaml

    You can verify that the IAM service accounts are created by querying GCP. For more information, refer to GCP documentation on listing IAM service accounts.

5.7.2.3. Incorporating the Cloud Credential Operator utility manifests

To implement short-term security credentials managed outside the cluster for individual components, you must move the manifest files that the Cloud Credential Operator utility (ccoctl) created to the correct directories for the installation program.

Prerequisites

  • You have configured an account with the cloud platform that hosts your cluster.
  • You have configured the Cloud Credential Operator utility (ccoctl).
  • You have created the cloud provider resources that are required for your cluster with the ccoctl utility.

Procedure

  1. Add the following granular permissions to the GCP account that the installation program uses:

    Example 5.5. Required GCP permissions

    • compute.machineTypes.list
    • compute.regions.list
    • compute.zones.list
    • dns.changes.create
    • dns.changes.get
    • dns.managedZones.create
    • dns.managedZones.delete
    • dns.managedZones.get
    • dns.managedZones.list
    • dns.networks.bindPrivateDNSZone
    • dns.resourceRecordSets.create
    • dns.resourceRecordSets.delete
    • dns.resourceRecordSets.list
  2. If you did not set the credentialsMode parameter in the install-config.yaml configuration file to Manual, modify the value as shown:

    Sample configuration file snippet

    apiVersion: v1
    baseDomain: example.com
    credentialsMode: Manual
    # ...

  3. If you have not previously created installation manifest files, do so by running the following command:

    $ openshift-install create manifests --dir <installation_directory>

    where <installation_directory> is the directory in which the installation program creates files.

  4. Copy the manifests that the ccoctl utility generated to the manifests directory that the installation program created by running the following command:

    $ cp /<path_to_ccoctl_output_dir>/manifests/* ./manifests/
  5. Copy the tls directory that contains the private key to the installation directory:

    $ cp -a /<path_to_ccoctl_output_dir>/tls .

5.8. Network configuration phases

There are two phases prior to OpenShift Container Platform installation where you can customize the network configuration.

Phase 1

You can customize the following network-related fields in the install-config.yaml file before you create the manifest files:

  • networking.networkType
  • networking.clusterNetwork
  • networking.serviceNetwork
  • networking.machineNetwork

    For more information, see "Installation configuration parameters".

    Note

    Set the networking.machineNetwork to match the Classless Inter-Domain Routing (CIDR) where the preferred subnet is located.

    Important

    The CIDR range 172.17.0.0/16 is reserved by libVirt. You cannot use any other CIDR range that overlaps with the 172.17.0.0/16 CIDR range for networks in your cluster.

Phase 2
After creating the manifest files by running openshift-install create manifests, you can define a customized Cluster Network Operator manifest with only the fields you want to modify. You can use the manifest to specify an advanced network configuration.

During phase 2, you cannot override the values that you specified in phase 1 in the install-config.yaml file. However, you can customize the network plugin during phase 2.

5.9. Specifying advanced network configuration

You can use advanced network configuration for your network plugin to integrate your cluster into your existing network environment.

You can specify advanced network configuration only before you install the cluster.

Important

Customizing your network configuration by modifying the OpenShift Container Platform manifest files created by the installation program is not supported. Applying a manifest file that you create, as in the following procedure, is supported.

Prerequisites

  • You have created the install-config.yaml file and completed any modifications to it.

Procedure

  1. Change to the directory that contains the installation program and create the manifests:

    $ ./openshift-install create manifests --dir <installation_directory> 1
    1
    <installation_directory> specifies the name of the directory that contains the install-config.yaml file for your cluster.
  2. Create a stub manifest file for the advanced network configuration that is named cluster-network-03-config.yml in the <installation_directory>/manifests/ directory:

    apiVersion: operator.openshift.io/v1
    kind: Network
    metadata:
      name: cluster
    spec:
  3. Specify the advanced network configuration for your cluster in the cluster-network-03-config.yml file, such as in the following example:

    Enable IPsec for the OVN-Kubernetes network provider

    apiVersion: operator.openshift.io/v1
    kind: Network
    metadata:
      name: cluster
    spec:
      defaultNetwork:
        ovnKubernetesConfig:
          ipsecConfig:
            mode: Full

  4. Optional: Back up the manifests/cluster-network-03-config.yml file. The installation program consumes the manifests/ directory when you create the Ignition config files.

5.10. Cluster Network Operator configuration

The configuration for the cluster network is specified as part of the Cluster Network Operator (CNO) configuration and stored in a custom resource (CR) object that is named cluster. The CR specifies the fields for the Network API in the operator.openshift.io API group.

The CNO configuration inherits the following fields during cluster installation from the Network API in the Network.config.openshift.io API group:

clusterNetwork
IP address pools from which pod IP addresses are allocated.
serviceNetwork
IP address pool for services.
defaultNetwork.type
Cluster network plugin. OVNKubernetes is the only supported plugin during installation.

You can specify the cluster network plugin configuration for your cluster by setting the fields for the defaultNetwork object in the CNO object named cluster.

5.10.1. Cluster Network Operator configuration object

The fields for the Cluster Network Operator (CNO) are described in the following table:

Table 5.2. Cluster Network Operator configuration object
FieldTypeDescription

metadata.name

string

The name of the CNO object. This name is always cluster.

spec.clusterNetwork

array

A list specifying the blocks of IP addresses from which pod IP addresses are allocated and the subnet prefix length assigned to each individual node in the cluster. For example:

spec:
  clusterNetwork:
  - cidr: 10.128.0.0/19
    hostPrefix: 23
  - cidr: 10.128.32.0/19
    hostPrefix: 23

spec.serviceNetwork

array

A block of IP addresses for services. The OVN-Kubernetes network plugin supports only a single IP address block for the service network. For example:

spec:
  serviceNetwork:
  - 172.30.0.0/14

You can customize this field only in the install-config.yaml file before you create the manifests. The value is read-only in the manifest file.

spec.defaultNetwork

object

Configures the network plugin for the cluster network.

spec.kubeProxyConfig

object

The fields for this object specify the kube-proxy configuration. If you are using the OVN-Kubernetes cluster network plugin, the kube-proxy configuration has no effect.

Important

For a cluster that needs to deploy objects across multiple networks, ensure that you specify the same value for the clusterNetwork.hostPrefix parameter for each network type that is defined in the install-config.yaml file. Setting a different value for each clusterNetwork.hostPrefix parameter can impact the OVN-Kubernetes network plugin, where the plugin cannot effectively route object traffic among different nodes.

defaultNetwork object configuration

The values for the defaultNetwork object are defined in the following table:

Table 5.3. defaultNetwork object
FieldTypeDescription

type

string

OVNKubernetes. The Red Hat OpenShift Networking network plugin is selected during installation. This value cannot be changed after cluster installation.

Note

OpenShift Container Platform uses the OVN-Kubernetes network plugin by default. OpenShift SDN is no longer available as an installation choice for new clusters.

ovnKubernetesConfig

object

This object is only valid for the OVN-Kubernetes network plugin.

Configuration for the OVN-Kubernetes network plugin

The following table describes the configuration fields for the OVN-Kubernetes network plugin:

Table 5.4. ovnKubernetesConfig object
FieldTypeDescription

mtu

integer

The maximum transmission unit (MTU) for the Geneve (Generic Network Virtualization Encapsulation) overlay network. This is detected automatically based on the MTU of the primary network interface. You do not normally need to override the detected MTU.

If the auto-detected value is not what you expect it to be, confirm that the MTU on the primary network interface on your nodes is correct. You cannot use this option to change the MTU value of the primary network interface on the nodes.

If your cluster requires different MTU values for different nodes, you must set this value to 100 less than the lowest MTU value in your cluster. For example, if some nodes in your cluster have an MTU of 9001, and some have an MTU of 1500, you must set this value to 1400.

genevePort

integer

The port to use for all Geneve packets. The default value is 6081. This value cannot be changed after cluster installation.

ipsecConfig

object

Specify a configuration object for customizing the IPsec configuration.

ipv4

object

Specifies a configuration object for IPv4 settings.

ipv6

object

Specifies a configuration object for IPv6 settings.

policyAuditConfig

object

Specify a configuration object for customizing network policy audit logging. If unset, the defaults audit log settings are used.

gatewayConfig

object

Optional: Specify a configuration object for customizing how egress traffic is sent to the node gateway.

Note

While migrating egress traffic, you can expect some disruption to workloads and service traffic until the Cluster Network Operator (CNO) successfully rolls out the changes.

Table 5.5. ovnKubernetesConfig.ipv4 object
FieldTypeDescription

internalTransitSwitchSubnet

string

If your existing network infrastructure overlaps with the 100.88.0.0/16 IPv4 subnet, you can specify a different IP address range for internal use by OVN-Kubernetes. The subnet for the distributed transit switch that enables east-west traffic. This subnet cannot overlap with any other subnets used by OVN-Kubernetes or on the host itself. It must be large enough to accommodate one IP address per node in your cluster.

The default value is 100.88.0.0/16.

internalJoinSubnet

string

If your existing network infrastructure overlaps with the 100.64.0.0/16 IPv4 subnet, you can specify a different IP address range for internal use by OVN-Kubernetes. You must ensure that the IP address range does not overlap with any other subnet used by your OpenShift Container Platform installation. The IP address range must be larger than the maximum number of nodes that can be added to the cluster. For example, if the clusterNetwork.cidr value is 10.128.0.0/14 and the clusterNetwork.hostPrefix value is /23, then the maximum number of nodes is 2^(23-14)=512.

The default value is 100.64.0.0/16.

Table 5.6. ovnKubernetesConfig.ipv6 object
FieldTypeDescription

internalTransitSwitchSubnet

string

If your existing network infrastructure overlaps with the fd97::/64 IPv6 subnet, you can specify a different IP address range for internal use by OVN-Kubernetes. The subnet for the distributed transit switch that enables east-west traffic. This subnet cannot overlap with any other subnets used by OVN-Kubernetes or on the host itself. It must be large enough to accommodate one IP address per node in your cluster.

The default value is fd97::/64.

internalJoinSubnet

string

If your existing network infrastructure overlaps with the fd98::/64 IPv6 subnet, you can specify a different IP address range for internal use by OVN-Kubernetes. You must ensure that the IP address range does not overlap with any other subnet used by your OpenShift Container Platform installation. The IP address range must be larger than the maximum number of nodes that can be added to the cluster.

The default value is fd98::/64.

Table 5.7. policyAuditConfig object
FieldTypeDescription

rateLimit

integer

The maximum number of messages to generate every second per node. The default value is 20 messages per second.

maxFileSize

integer

The maximum size for the audit log in bytes. The default value is 50000000 or 50 MB.

maxLogFiles

integer

The maximum number of log files that are retained.

destination

string

One of the following additional audit log targets:

libc
The libc syslog() function of the journald process on the host.
udp:<host>:<port>
A syslog server. Replace <host>:<port> with the host and port of the syslog server.
unix:<file>
A Unix Domain Socket file specified by <file>.
null
Do not send the audit logs to any additional target.

syslogFacility

string

The syslog facility, such as kern, as defined by RFC5424. The default value is local0.

Table 5.8. gatewayConfig object
FieldTypeDescription

routingViaHost

boolean

Set this field to true to send egress traffic from pods to the host networking stack. For highly-specialized installations and applications that rely on manually configured routes in the kernel routing table, you might want to route egress traffic to the host networking stack. By default, egress traffic is processed in OVN to exit the cluster and is not affected by specialized routes in the kernel routing table. The default value is false.

This field has an interaction with the Open vSwitch hardware offloading feature. If you set this field to true, you do not receive the performance benefits of the offloading because egress traffic is processed by the host networking stack.

ipForwarding

object

You can control IP forwarding for all traffic on OVN-Kubernetes managed interfaces by using the ipForwarding specification in the Network resource. Specify Restricted to only allow IP forwarding for Kubernetes related traffic. Specify Global to allow forwarding of all IP traffic. For new installations, the default is Restricted. For updates to OpenShift Container Platform 4.14 or later, the default is Global.

ipv4

object

Optional: Specify an object to configure the internal OVN-Kubernetes masquerade address for host to service traffic for IPv4 addresses.

ipv6

object

Optional: Specify an object to configure the internal OVN-Kubernetes masquerade address for host to service traffic for IPv6 addresses.

Table 5.9. gatewayConfig.ipv4 object
FieldTypeDescription

internalMasqueradeSubnet

string

The masquerade IPv4 addresses that are used internally to enable host to service traffic. The host is configured with these IP addresses as well as the shared gateway bridge interface. The default value is 169.254.169.0/29.

Important

For OpenShift Container Platform 4.17 and later versions, clusters use 169.254.0.0/17 as the default masquerade subnet. For upgraded clusters, there is no change to the default masquerade subnet.

Table 5.10. gatewayConfig.ipv6 object
FieldTypeDescription

internalMasqueradeSubnet

string

The masquerade IPv6 addresses that are used internally to enable host to service traffic. The host is configured with these IP addresses as well as the shared gateway bridge interface. The default value is fd69::/125.

Important

For OpenShift Container Platform 4.17 and later versions, clusters use fd69::/112 as the default masquerade subnet. For upgraded clusters, there is no change to the default masquerade subnet.

Table 5.11. ipsecConfig object
FieldTypeDescription

mode

string

Specifies the behavior of the IPsec implementation. Must be one of the following values:

  • Disabled: IPsec is not enabled on cluster nodes.
  • External: IPsec is enabled for network traffic with external hosts.
  • Full: IPsec is enabled for pod traffic and network traffic with external hosts.

Example OVN-Kubernetes configuration with IPSec enabled

defaultNetwork:
  type: OVNKubernetes
  ovnKubernetesConfig:
    mtu: 1400
    genevePort: 6081
      ipsecConfig:
        mode: Full

5.11. Deploying the cluster

You can install OpenShift Container Platform on a compatible cloud platform.

Important

You can run the create cluster command of the installation program only once, during initial installation.

Prerequisites

  • You have configured an account with the cloud platform that hosts your cluster.
  • You have the OpenShift Container Platform installation program and the pull secret for your cluster.
  • You have verified that the cloud provider account on your host has the correct permissions to deploy the cluster. An account with incorrect permissions causes the installation process to fail with an error message that displays the missing permissions.

Procedure

  1. Remove any existing GCP credentials that do not use the service account key for the GCP account that you configured for your cluster and that are stored in the following locations:

    • The GOOGLE_CREDENTIALS, GOOGLE_CLOUD_KEYFILE_JSON, or GCLOUD_KEYFILE_JSON environment variables
    • The ~/.gcp/osServiceAccount.json file
    • The gcloud cli default credentials
  2. Change to the directory that contains the installation program and initialize the cluster deployment:

    $ ./openshift-install create cluster --dir <installation_directory> \ 1
        --log-level=info 2
    1
    For <installation_directory>, specify the location of your customized ./install-config.yaml file.
    2
    To view different installation details, specify warn, debug, or error instead of info.
  3. Optional: You can reduce the number of permissions for the service account that you used to install the cluster.

    • If you assigned the Owner role to your service account, you can remove that role and replace it with the Viewer role.
    • If you included the Service Account Key Admin role, you can remove it.

Verification

When the cluster deployment completes successfully:

  • The terminal displays directions for accessing your cluster, including a link to the web console and credentials for the kubeadmin user.
  • Credential information also outputs to <installation_directory>/.openshift_install.log.
Important

Do not delete the installation program or the files that the installation program creates. Both are required to delete the cluster.

Example output

...
INFO Install complete!
INFO To access the cluster as the system:admin user when using 'oc', run 'export KUBECONFIG=/home/myuser/install_dir/auth/kubeconfig'
INFO Access the OpenShift web-console here: https://console-openshift-console.apps.mycluster.example.com
INFO Login to the console with user: "kubeadmin", and password: "password"
INFO Time elapsed: 36m22s

Important
  • The Ignition config files that the installation program generates contain certificates that expire after 24 hours, which are then renewed at that time. If the cluster is shut down before renewing the certificates and the cluster is later restarted after the 24 hours have elapsed, the cluster automatically recovers the expired certificates. The exception is that you must manually approve the pending node-bootstrapper certificate signing requests (CSRs) to recover kubelet certificates. See the documentation for Recovering from expired control plane certificates for more information.
  • It is recommended that you use Ignition config files within 12 hours after they are generated because the 24-hour certificate rotates from 16 to 22 hours after the cluster is installed. By using the Ignition config files within 12 hours, you can avoid installation failure if the certificate update runs during installation.

5.12. Logging in to the cluster by using the CLI

You can log in to your cluster as a default system user by exporting the cluster kubeconfig file. The kubeconfig file contains information about the cluster that is used by the CLI to connect a client to the correct cluster and API server. The file is specific to a cluster and is created during OpenShift Container Platform installation.

Prerequisites

  • You deployed an OpenShift Container Platform cluster.
  • You installed the oc CLI.

Procedure

  1. Export the kubeadmin credentials:

    $ export KUBECONFIG=<installation_directory>/auth/kubeconfig 1
    1
    For <installation_directory>, specify the path to the directory that you stored the installation files in.
  2. Verify you can run oc commands successfully using the exported configuration:

    $ oc whoami

    Example output

    system:admin

Additional resources

  • See Accessing the web console for more details about accessing and understanding the OpenShift Container Platform web console.

5.13. Telemetry access for OpenShift Container Platform

In OpenShift Container Platform 4.17, the Telemetry service, which runs by default to provide metrics about cluster health and the success of updates, requires internet access. If your cluster is connected to the internet, Telemetry runs automatically, and your cluster is registered to OpenShift Cluster Manager.

After you confirm that your OpenShift Cluster Manager inventory is correct, either maintained automatically by Telemetry or manually by using OpenShift Cluster Manager, use subscription watch to track your OpenShift Container Platform subscriptions at the account or multi-cluster level.

Additional resources

5.14. Next steps

Chapter 6. Installing a cluster on GCP in a restricted network

In OpenShift Container Platform 4.17, you can install a cluster on Google Cloud Platform (GCP) in a restricted network by creating an internal mirror of the installation release content on an existing Google Virtual Private Cloud (VPC).

Important

You can install an OpenShift Container Platform cluster by using mirrored installation release content, but your cluster will require internet access to use the GCP APIs.

6.1. Prerequisites

  • You reviewed details about the OpenShift Container Platform installation and update processes.
  • You read the documentation on selecting a cluster installation method and preparing it for users.
  • You configured a GCP project to host the cluster.
  • You mirrored the images for a disconnected installation to your registry and obtained the imageContentSources data for your version of OpenShift Container Platform.

    Important

    Because the installation media is on the mirror host, you can use that computer to complete all installation steps.

  • You have an existing VPC in GCP. While installing a cluster in a restricted network that uses installer-provisioned infrastructure, you cannot use the installer-provisioned VPC. You must use a user-provisioned VPC that satisfies one of the following requirements:

    • Contains the mirror registry
    • Has firewall rules or a peering connection to access the mirror registry hosted elsewhere
  • If you use a firewall, you configured it to allow the sites that your cluster requires access to. While you might need to grant access to more sites, you must grant access to *.googleapis.com and accounts.google.com.

6.2. About installations in restricted networks

In OpenShift Container Platform 4.17, you can perform an installation that does not require an active connection to the internet to obtain software components. Restricted network installations can be completed using installer-provisioned infrastructure or user-provisioned infrastructure, depending on the cloud platform to which you are installing the cluster.

If you choose to perform a restricted network installation on a cloud platform, you still require access to its cloud APIs. Some cloud functions, like Amazon Web Service’s Route 53 DNS and IAM services, require internet access. Depending on your network, you might require less internet access for an installation on bare metal hardware, Nutanix, or on VMware vSphere.

To complete a restricted network installation, you must create a registry that mirrors the contents of the OpenShift image registry and contains the installation media. You can create this registry on a mirror host, which can access both the internet and your closed network, or by using other methods that meet your restrictions.

6.2.1. Additional limits

Clusters in restricted networks have the following additional limitations and restrictions:

  • The ClusterVersion status includes an Unable to retrieve available updates error.
  • By default, you cannot use the contents of the Developer Catalog because you cannot access the required image stream tags.

6.3. Internet access for OpenShift Container Platform

In OpenShift Container Platform 4.17, you require access to the internet to obtain the images that are necessary to install your cluster.

You must have internet access to:

  • Access OpenShift Cluster Manager to download the installation program and perform subscription management. If the cluster has internet access and you do not disable Telemetry, that service automatically entitles your cluster.
  • Access Quay.io to obtain the packages that are required to install your cluster.
  • Obtain the packages that are required to perform cluster updates.

6.4. Generating a key pair for cluster node SSH access

During an OpenShift Container Platform installation, you can provide an SSH public key to the installation program. The key is passed to the Red Hat Enterprise Linux CoreOS (RHCOS) nodes through their Ignition config files and is used to authenticate SSH access to the nodes. The key is added to the ~/.ssh/authorized_keys list for the core user on each node, which enables password-less authentication.

After the key is passed to the nodes, you can use the key pair to SSH in to the RHCOS nodes as the user core. To access the nodes through SSH, the private key identity must be managed by SSH for your local user.

If you want to SSH in to your cluster nodes to perform installation debugging or disaster recovery, you must provide the SSH public key during the installation process. The ./openshift-install gather command also requires the SSH public key to be in place on the cluster nodes.

Important

Do not skip this procedure in production environments, where disaster recovery and debugging is required.

Note

You must use a local key, not one that you configured with platform-specific approaches such as AWS key pairs.

Procedure

  1. If you do not have an existing SSH key pair on your local machine to use for authentication onto your cluster nodes, create one. For example, on a computer that uses a Linux operating system, run the following command:

    $ ssh-keygen -t ed25519 -N '' -f <path>/<file_name> 1
    1
    Specify the path and file name, such as ~/.ssh/id_ed25519, of the new SSH key. If you have an existing key pair, ensure your public key is in the your ~/.ssh directory.
    Note

    If you plan to install an OpenShift Container Platform cluster that uses the RHEL cryptographic libraries that have been submitted to NIST for FIPS 140-2/140-3 Validation on only the x86_64, ppc64le, and s390x architectures, do not create a key that uses the ed25519 algorithm. Instead, create a key that uses the rsa or ecdsa algorithm.

  2. View the public SSH key:

    $ cat <path>/<file_name>.pub

    For example, run the following to view the ~/.ssh/id_ed25519.pub public key:

    $ cat ~/.ssh/id_ed25519.pub
  3. Add the SSH private key identity to the SSH agent for your local user, if it has not already been added. SSH agent management of the key is required for password-less SSH authentication onto your cluster nodes, or if you want to use the ./openshift-install gather command.

    Note

    On some distributions, default SSH private key identities such as ~/.ssh/id_rsa and ~/.ssh/id_dsa are managed automatically.

    1. If the ssh-agent process is not already running for your local user, start it as a background task:

      $ eval "$(ssh-agent -s)"

      Example output

      Agent pid 31874

      Note

      If your cluster is in FIPS mode, only use FIPS-compliant algorithms to generate the SSH key. The key must be either RSA or ECDSA.

  4. Add your SSH private key to the ssh-agent:

    $ ssh-add <path>/<file_name> 1
    1
    Specify the path and file name for your SSH private key, such as ~/.ssh/id_ed25519

    Example output

    Identity added: /home/<you>/<path>/<file_name> (<computer_name>)

Next steps

  • When you install OpenShift Container Platform, provide the SSH public key to the installation program.

6.5. Creating the installation configuration file

You can customize the OpenShift Container Platform cluster you install on Google Cloud Platform (GCP).

Prerequisites

  • You have the OpenShift Container Platform installation program and the pull secret for your cluster. For a restricted network installation, these files are on your mirror host.
  • You have the imageContentSources values that were generated during mirror registry creation.
  • You have obtained the contents of the certificate for your mirror registry.

Procedure

  1. Create the install-config.yaml file.

    1. Change to the directory that contains the installation program and run the following command:

      $ ./openshift-install create install-config --dir <installation_directory> 1
      1
      For <installation_directory>, specify the directory name to store the files that the installation program creates.

      When specifying the directory:

      • Verify that the directory has the execute permission. This permission is required to run Terraform binaries under the installation directory.
      • Use an empty directory. Some installation assets, such as bootstrap X.509 certificates, have short expiration intervals, therefore you must not reuse an installation directory. If you want to reuse individual files from another cluster installation, you can copy them into your directory. However, the file names for the installation assets might change between releases. Use caution when copying installation files from an earlier OpenShift Container Platform version.
    2. At the prompts, provide the configuration details for your cloud:

      1. Optional: Select an SSH key to use to access your cluster machines.

        Note

        For production OpenShift Container Platform clusters on which you want to perform installation debugging or disaster recovery, specify an SSH key that your ssh-agent process uses.

      2. Select gcp as the platform to target.
      3. If you have not configured the service account key for your GCP account on your computer, you must obtain it from GCP and paste the contents of the file or enter the absolute path to the file.
      4. Select the project ID to provision the cluster in. The default value is specified by the service account that you configured.
      5. Select the region to deploy the cluster to.
      6. Select the base domain to deploy the cluster to. The base domain corresponds to the public DNS zone that you created for your cluster.
      7. Enter a descriptive name for your cluster.
  2. Edit the install-config.yaml file to give the additional information that is required for an installation in a restricted network.

    1. Update the pullSecret value to contain the authentication information for your registry:

      pullSecret: '{"auths":{"<mirror_host_name>:5000": {"auth": "<credentials>","email": "you@example.com"}}}'

      For <mirror_host_name>, specify the registry domain name that you specified in the certificate for your mirror registry, and for <credentials>, specify the base64-encoded user name and password for your mirror registry.

    2. Add the additionalTrustBundle parameter and value.

      additionalTrustBundle: |
        -----BEGIN CERTIFICATE-----
        ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ
        -----END CERTIFICATE-----

      The value must be the contents of the certificate file that you used for your mirror registry. The certificate file can be an existing, trusted certificate authority, or the self-signed certificate that you generated for the mirror registry.

    3. Define the network and subnets for the VPC to install the cluster in under the parent platform.gcp field:

      network: <existing_vpc>
      controlPlaneSubnet: <control_plane_subnet>
      computeSubnet: <compute_subnet>

      For platform.gcp.network, specify the name for the existing Google VPC. For platform.gcp.controlPlaneSubnet and platform.gcp.computeSubnet, specify the existing subnets to deploy the control plane machines and compute machines, respectively.

    4. Add the image content resources, which resemble the following YAML excerpt:

      imageContentSources:
      - mirrors:
        - <mirror_host_name>:5000/<repo_name>/release
        source: quay.io/openshift-release-dev/ocp-release
      - mirrors:
        - <mirror_host_name>:5000/<repo_name>/release
        source: registry.redhat.io/ocp/release

      For these values, use the imageContentSources that you recorded during mirror registry creation.

    5. Optional: Set the publishing strategy to Internal:

      publish: Internal

      By setting this option, you create an internal Ingress Controller and a private load balancer.

  3. Make any other modifications to the install-config.yaml file that you require.

    For more information about the parameters, see "Installation configuration parameters".

  4. Back up the install-config.yaml file so that you can use it to install multiple clusters.

    Important

    The install-config.yaml file is consumed during the installation process. If you want to reuse the file, you must back it up now.

6.5.1. Minimum resource requirements for cluster installation

Each cluster machine must meet the following minimum requirements:

Table 6.1. Minimum resource requirements
MachineOperating SystemvCPU [1]Virtual RAMStorageInput/Output Per Second (IOPS)[2]

Bootstrap

RHCOS

4

16 GB

100 GB

300

Control plane

RHCOS

4

16 GB

100 GB

300

Compute

RHCOS, RHEL 8.6 and later [3]

2

8 GB

100 GB

300

  1. One vCPU is equivalent to one physical core when simultaneous multithreading (SMT), or Hyper-Threading, is not enabled. When enabled, use the following formula to calculate the corresponding ratio: (threads per core × cores) × sockets = vCPUs.
  2. OpenShift Container Platform and Kubernetes are sensitive to disk performance, and faster storage is recommended, particularly for etcd on the control plane nodes which require a 10 ms p99 fsync duration. Note that on many cloud platforms, storage size and IOPS scale together, so you might need to over-allocate storage volume to obtain sufficient performance.
  3. As with all user-provisioned installations, if you choose to use RHEL compute machines in your cluster, you take responsibility for all operating system life cycle management and maintenance, including performing system updates, applying patches, and completing all other required tasks. Use of RHEL 7 compute machines is deprecated and has been removed in OpenShift Container Platform 4.10 and later.
Note

As of OpenShift Container Platform version 4.13, RHCOS is based on RHEL version 9.2, which updates the micro-architecture requirements. The following list contains the minimum instruction set architectures (ISA) that each architecture requires:

  • x86-64 architecture requires x86-64-v2 ISA
  • ARM64 architecture requires ARMv8.0-A ISA
  • IBM Power architecture requires Power 9 ISA
  • s390x architecture requires z14 ISA

For more information, see RHEL Architectures.

If an instance type for your platform meets the minimum requirements for cluster machines, it is supported to use in OpenShift Container Platform.

Additional resources

6.5.2. Tested instance types for GCP

The following Google Cloud Platform instance types have been tested with OpenShift Container Platform.

Example 6.1. Machine series

  • A2
  • A3
  • C2
  • C2D
  • C3
  • C3D
  • E2
  • M1
  • N1
  • N2
  • N2D
  • N4
  • Tau T2D

6.5.3. Tested instance types for GCP on 64-bit ARM infrastructures

The following Google Cloud Platform (GCP) 64-bit ARM instance types have been tested with OpenShift Container Platform.

Example 6.2. Machine series for 64-bit ARM machines

  • Tau T2A

6.5.4. Using custom machine types

Using a custom machine type to install a OpenShift Container Platform cluster is supported.

Consider the following when using a custom machine type:

  • Similar to predefined instance types, custom machine types must meet the minimum resource requirements for control plane and compute machines. For more information, see "Minimum resource requirements for cluster installation".
  • The name of the custom machine type must adhere to the following syntax:

    custom-<number_of_cpus>-<amount_of_memory_in_mb>

    For example, custom-6-20480.

As part of the installation process, you specify the custom machine type in the install-config.yaml file.

Sample install-config.yaml file with a custom machine type

compute:
- architecture: amd64
  hyperthreading: Enabled
  name: worker
  platform:
    gcp:
      type: custom-6-20480
  replicas: 2
controlPlane:
  architecture: amd64
  hyperthreading: Enabled
  name: master
  platform:
    gcp:
      type: custom-6-20480
  replicas: 3

6.5.5. Enabling Shielded VMs

You can use Shielded VMs when installing your cluster. Shielded VMs have extra security features including secure boot, firmware and integrity monitoring, and rootkit detection. For more information, see Google’s documentation on Shielded VMs.

Note

Shielded VMs are currently not supported on clusters with 64-bit ARM infrastructures.

Prerequisites

  • You have created an install-config.yaml file.

Procedure

  • Use a text editor to edit the install-config.yaml file prior to deploying your cluster and add one of the following stanzas:

    1. To use shielded VMs for only control plane machines:

      controlPlane:
        platform:
          gcp:
             secureBoot: Enabled
    2. To use shielded VMs for only compute machines:

      compute:
      - platform:
          gcp:
             secureBoot: Enabled
    3. To use shielded VMs for all machines:

      platform:
        gcp:
          defaultMachinePlatform:
             secureBoot: Enabled

6.5.6. Enabling Confidential VMs

You can use Confidential VMs when installing your cluster. Confidential VMs encrypt data while it is being processed. For more information, see Google’s documentation on Confidential Computing. You can enable Confidential VMs and Shielded VMs at the same time, although they are not dependent on each other.

Note

Confidential VMs are currently not supported on 64-bit ARM architectures.

Prerequisites

  • You have created an install-config.yaml file.

Procedure

  • Use a text editor to edit the install-config.yaml file prior to deploying your cluster and add one of the following stanzas:

    1. To use confidential VMs for only control plane machines:

      controlPlane:
        platform:
          gcp:
             confidentialCompute: Enabled 1
             type: n2d-standard-8 2
             onHostMaintenance: Terminate 3
      1
      Enable confidential VMs.
      2
      Specify a machine type that supports Confidential VMs. Confidential VMs require the N2D or C2D series of machine types. For more information on supported machine types, see Supported operating systems and machine types.
      3
      Specify the behavior of the VM during a host maintenance event, such as a hardware or software update. For a machine that uses Confidential VM, this value must be set to Terminate, which stops the VM. Confidential VMs do not support live VM migration.
    2. To use confidential VMs for only compute machines:

      compute:
      - platform:
          gcp:
             confidentialCompute: Enabled
             type: n2d-standard-8
             onHostMaintenance: Terminate
    3. To use confidential VMs for all machines:

      platform:
        gcp:
          defaultMachinePlatform:
             confidentialCompute: Enabled
             type: n2d-standard-8
             onHostMaintenance: Terminate

6.5.7. Sample customized install-config.yaml file for GCP

You can customize the install-config.yaml file to specify more details about your OpenShift Container Platform cluster’s platform or modify the values of the required parameters.

Important

This sample YAML file is provided for reference only. You must obtain your install-config.yaml file by using the installation program and modify it.

apiVersion: v1
baseDomain: example.com 1
credentialsMode: Mint 2
controlPlane: 3 4
  hyperthreading: Enabled 5
  name: master
  platform:
    gcp:
      type: n2-standard-4
      zones:
      - us-central1-a
      - us-central1-c
      osDisk:
        diskType: pd-ssd
        diskSizeGB: 1024
        encryptionKey: 6
          kmsKey:
            name: worker-key
            keyRing: test-machine-keys
            location: global
            projectID: project-id
      tags: 7
      - control-plane-tag1
      - control-plane-tag2
      osImage: 8
        project: example-project-name
        name: example-image-name
  replicas: 3
compute: 9 10
- hyperthreading: Enabled 11
  name: worker
  platform:
    gcp:
      type: n2-standard-4
      zones:
      - us-central1-a
      - us-central1-c
      osDisk:
        diskType: pd-standard
        diskSizeGB: 128
        encryptionKey: 12
          kmsKey:
            name: worker-key
            keyRing: test-machine-keys
            location: global
            projectID: project-id
        tags: 13
        - compute-tag1
        - compute-tag2
        osImage: 14
          project: example-project-name
          name: example-image-name
  replicas: 3
metadata:
  name: test-cluster 15
networking:
  clusterNetwork:
  - cidr: 10.128.0.0/14
    hostPrefix: 23
  machineNetwork:
  - cidr: 10.0.0.0/16
  networkType: OVNKubernetes 16
  serviceNetwork:
  - 172.30.0.0/16
platform:
  gcp:
    projectID: openshift-production 17
    region: us-central1 18
    defaultMachinePlatform:
      tags: 19
      - global-tag1
      - global-tag2
      osImage: 20
        project: example-project-name
        name: example-image-name
    network: existing_vpc 21
    controlPlaneSubnet: control_plane_subnet 22
    computeSubnet: compute_subnet 23
pullSecret: '{"auths":{"<local_registry>": {"auth": "<credentials>","email": "you@example.com"}}}' 24
fips: false 25
sshKey: ssh-ed25519 AAAA... 26
additionalTrustBundle: | 27
    -----BEGIN CERTIFICATE-----
    <MY_TRUSTED_CA_CERT>
    -----END CERTIFICATE-----
imageContentSources: 28
- mirrors:
  - <local_registry>/<local_repository_name>/release
  source: quay.io/openshift-release-dev/ocp-release
- mirrors:
  - <local_registry>/<local_repository_name>/release
  source: quay.io/openshift-release-dev/ocp-v4.0-art-dev
1 15 17 18
Required. The installation program prompts you for this value.
2
Optional: Add this parameter to force the Cloud Credential Operator (CCO) to use the specified mode. By default, the CCO uses the root credentials in the kube-system namespace to dynamically try to determine the capabilities of the credentials. For details about CCO modes, see the "About the Cloud Credential Operator" section in the Authentication and authorization guide.
3 9
If you do not provide these parameters and values, the installation program provides the default value.
4 10
The controlPlane section is a single mapping, but the compute section is a sequence of mappings. To meet the requirements of the different data structures, the first line of the compute section must begin with a hyphen, -, and the first line of the controlPlane section must not. Only one control plane pool is used.
5 11
Whether to enable or disable simultaneous multithreading, or hyperthreading. By default, simultaneous multithreading is enabled to increase the performance of your machines' cores. You can disable it by setting the parameter value to Disabled. If you disable simultaneous multithreading in some cluster machines, you must disable it in all cluster machines.
Important

If you disable simultaneous multithreading, ensure that your capacity planning accounts for the dramatically decreased machine performance. Use larger machine types, such as n1-standard-8, for your machines if you disable simultaneous multithreading.

6 12
Optional: The custom encryption key section to encrypt both virtual machines and persistent volumes. Your default compute service account must have the permissions granted to use your KMS key and have the correct IAM role assigned. The default service account name follows the service-<project_number>@compute-system.iam.gserviceaccount.com pattern. For more information about granting the correct permissions for your service account, see "Machine management" → "Creating compute machine sets" → "Creating a compute machine set on GCP".
7 13 19
Optional: A set of network tags to apply to the control plane or compute machine sets. The platform.gcp.defaultMachinePlatform.tags parameter will apply to both control plane and compute machines. If the compute.platform.gcp.tags or controlPlane.platform.gcp.tags parameters are set, they override the platform.gcp.defaultMachinePlatform.tags parameter.
8 14 20
Optional: A custom Red Hat Enterprise Linux CoreOS (RHCOS) that should be used to boot control plane and compute machines. The project and name parameters under platform.gcp.defaultMachinePlatform.osImage apply to both control plane and compute machines. If the project and name parameters under controlPlane.platform.gcp.osImage or compute.platform.gcp.osImage are set, they override the platform.gcp.defaultMachinePlatform.osImage parameters.
16
The cluster network plugin to install. The default value OVNKubernetes is the only supported value.
21
Specify the name of an existing VPC.
22
Specify the name of the existing subnet to deploy the control plane machines to. The subnet must belong to the VPC that you specified.
23
Specify the name of the existing subnet to deploy the compute machines to. The subnet must belong to the VPC that you specified.
24
For <local_registry>, specify the registry domain name, and optionally the port, that your mirror registry uses to serve content. For example, registry.example.com or registry.example.com:5000. For <credentials>, specify the base64-encoded user name and password for your mirror registry.
25
Whether to enable or disable FIPS mode. By default, FIPS mode is not enabled. If FIPS mode is enabled, the Red Hat Enterprise Linux CoreOS (RHCOS) machines that OpenShift Container Platform runs on bypass the default Kubernetes cryptography suite and use the cryptography modules that are provided with RHCOS instead.
Important

When running Red Hat Enterprise Linux (RHEL) or Red Hat Enterprise Linux CoreOS (RHCOS) booted in FIPS mode, OpenShift Container Platform core components use the RHEL cryptographic libraries that have been submitted to NIST for FIPS 140-2/140-3 Validation on only the x86_64, ppc64le, and s390x architectures.

26
You can optionally provide the sshKey value that you use to access the machines in your cluster.
Note

For production OpenShift Container Platform clusters on which you want to perform installation debugging or disaster recovery, specify an SSH key that your ssh-agent process uses.

27
Provide the contents of the certificate file that you used for your mirror registry.
28
Provide the imageContentSources section from the output of the command to mirror the repository.

6.5.8. Create an Ingress Controller with global access on GCP

You can create an Ingress Controller that has global access to a Google Cloud Platform (GCP) cluster. Global access is only available to Ingress Controllers using internal load balancers.

Prerequisites

  • You created the install-config.yaml and complete any modifications to it.

Procedure

Create an Ingress Controller with global access on a new GCP cluster.

  1. Change to the directory that contains the installation program and create a manifest file:

    $ ./openshift-install create manifests --dir <installation_directory> 1
    1
    For <installation_directory>, specify the name of the directory that contains the install-config.yaml file for your cluster.
  2. Create a file that is named cluster-ingress-default-ingresscontroller.yaml in the <installation_directory>/manifests/ directory:

    $ touch <installation_directory>/manifests/cluster-ingress-default-ingresscontroller.yaml 1
    1
    For <installation_directory>, specify the directory name that contains the manifests/ directory for your cluster.

    After creating the file, several network configuration files are in the manifests/ directory, as shown:

    $ ls <installation_directory>/manifests/cluster-ingress-default-ingresscontroller.yaml

    Example output

    cluster-ingress-default-ingresscontroller.yaml

  3. Open the cluster-ingress-default-ingresscontroller.yaml file in an editor and enter a custom resource (CR) that describes the Operator configuration you want:

    Sample clientAccess configuration to Global

      apiVersion: operator.openshift.io/v1
      kind: IngressController
      metadata:
        name: default
        namespace: openshift-ingress-operator
      spec:
        endpointPublishingStrategy:
          loadBalancer:
            providerParameters:
              gcp:
                clientAccess: Global 1
              type: GCP
            scope: Internal          2
          type: LoadBalancerService

    1
    Set gcp.clientAccess to Global.
    2
    Global access is only available to Ingress Controllers using internal load balancers.

6.5.9. Configuring the cluster-wide proxy during installation

Production environments can deny direct access to the internet and instead have an HTTP or HTTPS proxy available. You can configure a new OpenShift Container Platform cluster to use a proxy by configuring the proxy settings in the install-config.yaml file.

Prerequisites

  • You have an existing install-config.yaml file.
  • You reviewed the sites that your cluster requires access to and determined whether any of them need to bypass the proxy. By default, all cluster egress traffic is proxied, including calls to hosting cloud provider APIs. You added sites to the Proxy object’s spec.noProxy field to bypass the proxy if necessary.

    Note

    The Proxy object status.noProxy field is populated with the values of the networking.machineNetwork[].cidr, networking.clusterNetwork[].cidr, and networking.serviceNetwork[] fields from your installation configuration.

    For installations on Amazon Web Services (AWS), Google Cloud Platform (GCP), Microsoft Azure, and Red Hat OpenStack Platform (RHOSP), the Proxy object status.noProxy field is also populated with the instance metadata endpoint (169.254.169.254).

Procedure

  1. Edit your install-config.yaml file and add the proxy settings. For example:

    apiVersion: v1
    baseDomain: my.domain.com
    proxy:
      httpProxy: http://<username>:<pswd>@<ip>:<port> 1
      httpsProxy: https://<username>:<pswd>@<ip>:<port> 2
      noProxy: example.com 3
    additionalTrustBundle: | 4
        -----BEGIN CERTIFICATE-----
        <MY_TRUSTED_CA_CERT>
        -----END CERTIFICATE-----
    additionalTrustBundlePolicy: <policy_to_add_additionalTrustBundle> 5
    1
    A proxy URL to use for creating HTTP connections outside the cluster. The URL scheme must be http.
    2
    A proxy URL to use for creating HTTPS connections outside the cluster.
    3
    A comma-separated list of destination domain names, IP addresses, or other network CIDRs to exclude from proxying. Preface a domain with . to match subdomains only. For example, .y.com matches x.y.com, but not y.com. Use * to bypass the proxy for all destinations.
    4
    If provided, the installation program generates a config map that is named user-ca-bundle in the openshift-config namespace that contains one or more additional CA certificates that are required for proxying HTTPS connections. The Cluster Network Operator then creates a trusted-ca-bundle config map that merges these contents with the Red Hat Enterprise Linux CoreOS (RHCOS) trust bundle, and this config map is referenced in the trustedCA field of the Proxy object. The additionalTrustBundle field is required unless the proxy’s identity certificate is signed by an authority from the RHCOS trust bundle.
    5
    Optional: The policy to determine the configuration of the Proxy object to reference the user-ca-bundle config map in the trustedCA field. The allowed values are Proxyonly and Always. Use Proxyonly to reference the user-ca-bundle config map only when http/https proxy is configured. Use Always to always reference the user-ca-bundle config map. The default value is Proxyonly.
    Note

    The installation program does not support the proxy readinessEndpoints field.

    Note

    If the installer times out, restart and then complete the deployment by using the wait-for command of the installer. For example:

    $ ./openshift-install wait-for install-complete --log-level debug
  2. Save the file and reference it when installing OpenShift Container Platform.

The installation program creates a cluster-wide proxy that is named cluster that uses the proxy settings in the provided install-config.yaml file. If no proxy settings are provided, a cluster Proxy object is still created, but it will have a nil spec.

Note

Only the Proxy object named cluster is supported, and no additional proxies can be created.

6.6. Installing the OpenShift CLI

You can install the OpenShift CLI (oc) to interact with OpenShift Container Platform from a command-line interface. You can install oc on Linux, Windows, or macOS.

Important

If you installed an earlier version of oc, you cannot use it to complete all of the commands in OpenShift Container Platform 4.17. Download and install the new version of oc.

Installing the OpenShift CLI on Linux

You can install the OpenShift CLI (oc) binary on Linux by using the following procedure.

Procedure

  1. Navigate to the OpenShift Container Platform downloads page on the Red Hat Customer Portal.
  2. Select the architecture from the Product Variant drop-down list.
  3. Select the appropriate version from the Version drop-down list.
  4. Click Download Now next to the OpenShift v4.17 Linux Clients entry and save the file.
  5. Unpack the archive:

    $ tar xvf <file>
  6. Place the oc binary in a directory that is on your PATH.

    To check your PATH, execute the following command:

    $ echo $PATH

Verification

  • After you install the OpenShift CLI, it is available using the oc command:

    $ oc <command>
Installing the OpenShift CLI on Windows

You can install the OpenShift CLI (oc) binary on Windows by using the following procedure.

Procedure

  1. Navigate to the OpenShift Container Platform downloads page on the Red Hat Customer Portal.
  2. Select the appropriate version from the Version drop-down list.
  3. Click Download Now next to the OpenShift v4.17 Windows Client entry and save the file.
  4. Unzip the archive with a ZIP program.
  5. Move the oc binary to a directory that is on your PATH.

    To check your PATH, open the command prompt and execute the following command:

    C:\> path

Verification

  • After you install the OpenShift CLI, it is available using the oc command:

    C:\> oc <command>
Installing the OpenShift CLI on macOS

You can install the OpenShift CLI (oc) binary on macOS by using the following procedure.

Procedure

  1. Navigate to the OpenShift Container Platform downloads page on the Red Hat Customer Portal.
  2. Select the appropriate version from the Version drop-down list.
  3. Click Download Now next to the OpenShift v4.17 macOS Clients entry and save the file.

    Note

    For macOS arm64, choose the OpenShift v4.17 macOS arm64 Client entry.

  4. Unpack and unzip the archive.
  5. Move the oc binary to a directory on your PATH.

    To check your PATH, open a terminal and execute the following command:

    $ echo $PATH

Verification

  • Verify your installation by using an oc command:

    $ oc <command>

6.7. Alternatives to storing administrator-level secrets in the kube-system project

By default, administrator secrets are stored in the kube-system project. If you configured the credentialsMode parameter in the install-config.yaml file to Manual, you must use one of the following alternatives:

6.7.1. Manually creating long-term credentials

The Cloud Credential Operator (CCO) can be put into manual mode prior to installation in environments where the cloud identity and access management (IAM) APIs are not reachable, or the administrator prefers not to store an administrator-level credential secret in the cluster kube-system namespace.

Procedure

  1. Add the following granular permissions to the GCP account that the installation program uses:

    Example 6.3. Required GCP permissions

    • compute.machineTypes.list
    • compute.regions.list
    • compute.zones.list
    • dns.changes.create
    • dns.changes.get
    • dns.managedZones.create
    • dns.managedZones.delete
    • dns.managedZones.get
    • dns.managedZones.list
    • dns.networks.bindPrivateDNSZone
    • dns.resourceRecordSets.create
    • dns.resourceRecordSets.delete
    • dns.resourceRecordSets.list
  2. If you did not set the credentialsMode parameter in the install-config.yaml configuration file to Manual, modify the value as shown:

    Sample configuration file snippet

    apiVersion: v1
    baseDomain: example.com
    credentialsMode: Manual
    # ...

  3. If you have not previously created installation manifest files, do so by running the following command:

    $ openshift-install create manifests --dir <installation_directory>

    where <installation_directory> is the directory in which the installation program creates files.

  4. Set a $RELEASE_IMAGE variable with the release image from your installation file by running the following command:

    $ RELEASE_IMAGE=$(./openshift-install version | awk '/release image/ {print $3}')
  5. Extract the list of CredentialsRequest custom resources (CRs) from the OpenShift Container Platform release image by running the following command:

    $ oc adm release extract \
      --from=$RELEASE_IMAGE \
      --credentials-requests \
      --included \1
      --install-config=<path_to_directory_with_installation_configuration>/install-config.yaml \2
      --to=<path_to_directory_for_credentials_requests> 3
    1
    The --included parameter includes only the manifests that your specific cluster configuration requires.
    2
    Specify the location of the install-config.yaml file.
    3
    Specify the path to the directory where you want to store the CredentialsRequest objects. If the specified directory does not exist, this command creates it.

    This command creates a YAML file for each CredentialsRequest object.

    Sample CredentialsRequest object

    apiVersion: cloudcredential.openshift.io/v1
    kind: CredentialsRequest
    metadata:
      name: <component_credentials_request>
      namespace: openshift-cloud-credential-operator
      ...
    spec:
      providerSpec:
        apiVersion: cloudcredential.openshift.io/v1
        kind: GCPProviderSpec
        predefinedRoles:
        - roles/storage.admin
        - roles/iam.serviceAccountUser
        skipServiceCheck: true
      ...

  6. Create YAML files for secrets in the openshift-install manifests directory that you generated previously. The secrets must be stored using the namespace and secret name defined in the spec.secretRef for each CredentialsRequest object.

    Sample CredentialsRequest object with secrets

    apiVersion: cloudcredential.openshift.io/v1
    kind: CredentialsRequest
    metadata:
      name: <component_credentials_request>
      namespace: openshift-cloud-credential-operator
      ...
    spec:
      providerSpec:
        apiVersion: cloudcredential.openshift.io/v1
          ...
      secretRef:
        name: <component_secret>
        namespace: <component_namespace>
      ...

    Sample Secret object

    apiVersion: v1
    kind: Secret
    metadata:
      name: <component_secret>
      namespace: <component_namespace>
    data:
      service_account.json: <base64_encoded_gcp_service_account_file>

Important

Before upgrading a cluster that uses manually maintained credentials, you must ensure that the CCO is in an upgradeable state.

6.7.2. Configuring a GCP cluster to use short-term credentials

To install a cluster that is configured to use GCP Workload Identity, you must configure the CCO utility and create the required GCP resources for your cluster.

6.7.2.1. Configuring the Cloud Credential Operator utility

To create and manage cloud credentials from outside of the cluster when the Cloud Credential Operator (CCO) is operating in manual mode, extract and prepare the CCO utility (ccoctl) binary.

Note

The ccoctl utility is a Linux binary that must run in a Linux environment.

Prerequisites

  • You have access to an OpenShift Container Platform account with cluster administrator access.
  • You have installed the OpenShift CLI (oc).
  • You have added one of the following authentication options to the GCP account that the installation program uses:

    • The IAM Workload Identity Pool Admin role.
    • The following granular permissions:

      Example 6.4. Required GCP permissions

      • compute.projects.get
      • iam.googleapis.com/workloadIdentityPoolProviders.create
      • iam.googleapis.com/workloadIdentityPoolProviders.get
      • iam.googleapis.com/workloadIdentityPools.create
      • iam.googleapis.com/workloadIdentityPools.delete
      • iam.googleapis.com/workloadIdentityPools.get
      • iam.googleapis.com/workloadIdentityPools.undelete
      • iam.roles.create
      • iam.roles.delete
      • iam.roles.list
      • iam.roles.undelete
      • iam.roles.update
      • iam.serviceAccounts.create
      • iam.serviceAccounts.delete
      • iam.serviceAccounts.getIamPolicy
      • iam.serviceAccounts.list
      • iam.serviceAccounts.setIamPolicy
      • iam.workloadIdentityPoolProviders.get
      • iam.workloadIdentityPools.delete
      • resourcemanager.projects.get
      • resourcemanager.projects.getIamPolicy
      • resourcemanager.projects.setIamPolicy
      • storage.buckets.create
      • storage.buckets.delete
      • storage.buckets.get
      • storage.buckets.getIamPolicy
      • storage.buckets.setIamPolicy
      • storage.objects.create
      • storage.objects.delete
      • storage.objects.list

Procedure

  1. Set a variable for the OpenShift Container Platform release image by running the following command:

    $ RELEASE_IMAGE=$(./openshift-install version | awk '/release image/ {print $3}')
  2. Obtain the CCO container image from the OpenShift Container Platform release image by running the following command:

    $ CCO_IMAGE=$(oc adm release info --image-for='cloud-credential-operator' $RELEASE_IMAGE -a ~/.pull-secret)
    Note

    Ensure that the architecture of the $RELEASE_IMAGE matches the architecture of the environment in which you will use the ccoctl tool.

  3. Extract the ccoctl binary from the CCO container image within the OpenShift Container Platform release image by running the following command:

    $ oc image extract $CCO_IMAGE \
      --file="/usr/bin/ccoctl.<rhel_version>" \1
      -a ~/.pull-secret
    1
    For <rhel_version>, specify the value that corresponds to the version of Red Hat Enterprise Linux (RHEL) that the host uses. If no value is specified, ccoctl.rhel8 is used by default. The following values are valid:
    • rhel8: Specify this value for hosts that use RHEL 8.
    • rhel9: Specify this value for hosts that use RHEL 9.
  4. Change the permissions to make ccoctl executable by running the following command:

    $ chmod 775 ccoctl.<rhel_version>

Verification

  • To verify that ccoctl is ready to use, display the help file. Use a relative file name when you run the command, for example:

    $ ./ccoctl.rhel9

    Example output

    OpenShift credentials provisioning tool
    
    Usage:
      ccoctl [command]
    
    Available Commands:
      aws          Manage credentials objects for AWS cloud
      azure        Manage credentials objects for Azure
      gcp          Manage credentials objects for Google cloud
      help         Help about any command
      ibmcloud     Manage credentials objects for {ibm-cloud-title}
      nutanix      Manage credentials objects for Nutanix
    
    Flags:
      -h, --help   help for ccoctl
    
    Use "ccoctl [command] --help" for more information about a command.

6.7.2.2. Creating GCP resources with the Cloud Credential Operator utility

You can use the ccoctl gcp create-all command to automate the creation of GCP resources.

Note

By default, ccoctl creates objects in the directory in which the commands are run. To create the objects in a different directory, use the --output-dir flag. This procedure uses <path_to_ccoctl_output_dir> to refer to this directory.

Prerequisites

You must have:

  • Extracted and prepared the ccoctl binary.

Procedure

  1. Set a $RELEASE_IMAGE variable with the release image from your installation file by running the following command:

    $ RELEASE_IMAGE=$(./openshift-install version | awk '/release image/ {print $3}')
  2. Extract the list of CredentialsRequest objects from the OpenShift Container Platform release image by running the following command:

    $ oc adm release extract \
      --from=$RELEASE_IMAGE \
      --credentials-requests \
      --included \1
      --install-config=<path_to_directory_with_installation_configuration>/install-config.yaml \2
      --to=<path_to_directory_for_credentials_requests> 3
    1
    The --included parameter includes only the manifests that your specific cluster configuration requires.
    2
    Specify the location of the install-config.yaml file.
    3
    Specify the path to the directory where you want to store the CredentialsRequest objects. If the specified directory does not exist, this command creates it.
    Note

    This command might take a few moments to run.

  3. Use the ccoctl tool to process all CredentialsRequest objects by running the following command:

    $ ccoctl gcp create-all \
      --name=<name> \1
      --region=<gcp_region> \2
      --project=<gcp_project_id> \3
      --credentials-requests-dir=<path_to_credentials_requests_directory> 4
    1
    Specify the user-defined name for all created GCP resources used for tracking.
    2
    Specify the GCP region in which cloud resources will be created.
    3
    Specify the GCP project ID in which cloud resources will be created.
    4
    Specify the directory containing the files of CredentialsRequest manifests to create GCP service accounts.
    Note

    If your cluster uses Technology Preview features that are enabled by the TechPreviewNoUpgrade feature set, you must include the --enable-tech-preview parameter.

Verification

  • To verify that the OpenShift Container Platform secrets are created, list the files in the <path_to_ccoctl_output_dir>/manifests directory:

    $ ls <path_to_ccoctl_output_dir>/manifests

    Example output

    cluster-authentication-02-config.yaml
    openshift-cloud-controller-manager-gcp-ccm-cloud-credentials-credentials.yaml
    openshift-cloud-credential-operator-cloud-credential-operator-gcp-ro-creds-credentials.yaml
    openshift-cloud-network-config-controller-cloud-credentials-credentials.yaml
    openshift-cluster-api-capg-manager-bootstrap-credentials-credentials.yaml
    openshift-cluster-csi-drivers-gcp-pd-cloud-credentials-credentials.yaml
    openshift-image-registry-installer-cloud-credentials-credentials.yaml
    openshift-ingress-operator-cloud-credentials-credentials.yaml
    openshift-machine-api-gcp-cloud-credentials-credentials.yaml

    You can verify that the IAM service accounts are created by querying GCP. For more information, refer to GCP documentation on listing IAM service accounts.

6.7.2.3. Incorporating the Cloud Credential Operator utility manifests

To implement short-term security credentials managed outside the cluster for individual components, you must move the manifest files that the Cloud Credential Operator utility (ccoctl) created to the correct directories for the installation program.

Prerequisites

  • You have configured an account with the cloud platform that hosts your cluster.
  • You have configured the Cloud Credential Operator utility (ccoctl).
  • You have created the cloud provider resources that are required for your cluster with the ccoctl utility.

Procedure

  1. Add the following granular permissions to the GCP account that the installation program uses:

    Example 6.5. Required GCP permissions

    • compute.machineTypes.list
    • compute.regions.list
    • compute.zones.list
    • dns.changes.create
    • dns.changes.get
    • dns.managedZones.create
    • dns.managedZones.delete
    • dns.managedZones.get
    • dns.managedZones.list
    • dns.networks.bindPrivateDNSZone
    • dns.resourceRecordSets.create
    • dns.resourceRecordSets.delete
    • dns.resourceRecordSets.list
  2. If you did not set the credentialsMode parameter in the install-config.yaml configuration file to Manual, modify the value as shown:

    Sample configuration file snippet

    apiVersion: v1
    baseDomain: example.com
    credentialsMode: Manual
    # ...

  3. If you have not previously created installation manifest files, do so by running the following command:

    $ openshift-install create manifests --dir <installation_directory>

    where <installation_directory> is the directory in which the installation program creates files.

  4. Copy the manifests that the ccoctl utility generated to the manifests directory that the installation program created by running the following command:

    $ cp /<path_to_ccoctl_output_dir>/manifests/* ./manifests/
  5. Copy the tls directory that contains the private key to the installation directory:

    $ cp -a /<path_to_ccoctl_output_dir>/tls .

6.8. Deploying the cluster

You can install OpenShift Container Platform on a compatible cloud platform.

Important

You can run the create cluster command of the installation program only once, during initial installation.

Prerequisites

  • You have configured an account with the cloud platform that hosts your cluster.
  • You have the OpenShift Container Platform installation program and the pull secret for your cluster.
  • You have verified that the cloud provider account on your host has the correct permissions to deploy the cluster. An account with incorrect permissions causes the installation process to fail with an error message that displays the missing permissions.

Procedure

  1. Remove any existing GCP credentials that do not use the service account key for the GCP account that you configured for your cluster and that are stored in the following locations:

    • The GOOGLE_CREDENTIALS, GOOGLE_CLOUD_KEYFILE_JSON, or GCLOUD_KEYFILE_JSON environment variables
    • The ~/.gcp/osServiceAccount.json file
    • The gcloud cli default credentials
  2. Change to the directory that contains the installation program and initialize the cluster deployment:

    $ ./openshift-install create cluster --dir <installation_directory> \ 1
        --log-level=info 2
    1
    For <installation_directory>, specify the location of your customized ./install-config.yaml file.
    2
    To view different installation details, specify warn, debug, or error instead of info.
  3. Optional: You can reduce the number of permissions for the service account that you used to install the cluster.

    • If you assigned the Owner role to your service account, you can remove that role and replace it with the Viewer role.
    • If you included the Service Account Key Admin role, you can remove it.

Verification

When the cluster deployment completes successfully:

  • The terminal displays directions for accessing your cluster, including a link to the web console and credentials for the kubeadmin user.
  • Credential information also outputs to <installation_directory>/.openshift_install.log.
Important

Do not delete the installation program or the files that the installation program creates. Both are required to delete the cluster.

Example output

...
INFO Install complete!
INFO To access the cluster as the system:admin user when using 'oc', run 'export KUBECONFIG=/home/myuser/install_dir/auth/kubeconfig'
INFO Access the OpenShift web-console here: https://console-openshift-console.apps.mycluster.example.com
INFO Login to the console with user: "kubeadmin", and password: "password"
INFO Time elapsed: 36m22s

Important
  • The Ignition config files that the installation program generates contain certificates that expire after 24 hours, which are then renewed at that time. If the cluster is shut down before renewing the certificates and the cluster is later restarted after the 24 hours have elapsed, the cluster automatically recovers the expired certificates. The exception is that you must manually approve the pending node-bootstrapper certificate signing requests (CSRs) to recover kubelet certificates. See the documentation for Recovering from expired control plane certificates for more information.
  • It is recommended that you use Ignition config files within 12 hours after they are generated because the 24-hour certificate rotates from 16 to 22 hours after the cluster is installed. By using the Ignition config files within 12 hours, you can avoid installation failure if the certificate update runs during installation.

6.9. Logging in to the cluster by using the CLI

You can log in to your cluster as a default system user by exporting the cluster kubeconfig file. The kubeconfig file contains information about the cluster that is used by the CLI to connect a client to the correct cluster and API server. The file is specific to a cluster and is created during OpenShift Container Platform installation.

Prerequisites

  • You deployed an OpenShift Container Platform cluster.
  • You installed the oc CLI.

Procedure

  1. Export the kubeadmin credentials:

    $ export KUBECONFIG=<installation_directory>/auth/kubeconfig 1
    1
    For <installation_directory>, specify the path to the directory that you stored the installation files in.
  2. Verify you can run oc commands successfully using the exported configuration:

    $ oc whoami

    Example output

    system:admin

6.10. Disabling the default OperatorHub catalog sources

Operator catalogs that source content provided by Red Hat and community projects are configured for OperatorHub by default during an OpenShift Container Platform installation. In a restricted network environment, you must disable the default catalogs as a cluster administrator.

Procedure

  • Disable the sources for the default catalogs by adding disableAllDefaultSources: true to the OperatorHub object:

    $ oc patch OperatorHub cluster --type json \
        -p '[{"op": "add", "path": "/spec/disableAllDefaultSources", "value": true}]'
Tip

Alternatively, you can use the web console to manage catalog sources. From the AdministrationCluster SettingsConfigurationOperatorHub page, click the Sources tab, where you can create, update, delete, disable, and enable individual sources.

6.11. Telemetry access for OpenShift Container Platform

In OpenShift Container Platform 4.17, the Telemetry service, which runs by default to provide metrics about cluster health and the success of updates, requires internet access. If your cluster is connected to the internet, Telemetry runs automatically, and your cluster is registered to OpenShift Cluster Manager.

After you confirm that your OpenShift Cluster Manager inventory is correct, either maintained automatically by Telemetry or manually by using OpenShift Cluster Manager, use subscription watch to track your OpenShift Container Platform subscriptions at the account or multi-cluster level.

Additional resources

6.12. Next steps

Chapter 7. Installing a cluster on GCP into an existing VPC

In OpenShift Container Platform version 4.17, you can install a cluster into an existing Virtual Private Cloud (VPC) on Google Cloud Platform (GCP). The installation program provisions the rest of the required infrastructure, which you can further customize. To customize the installation, you modify parameters in the install-config.yaml file before you install the cluster.

7.1. Prerequisites

7.2. About using a custom VPC

In OpenShift Container Platform 4.17, you can deploy a cluster into existing subnets in an existing Virtual Private Cloud (VPC) in Google Cloud Platform (GCP). By deploying OpenShift Container Platform into an existing GCP VPC, you might be able to avoid limit constraints in new accounts or more easily abide by the operational constraints that your company’s guidelines set. If you cannot obtain the infrastructure creation permissions that are required to create the VPC yourself, use this installation option. You must configure networking for the subnets.

7.2.1. Requirements for using your VPC

The union of the VPC CIDR block and the machine network CIDR must be non-empty. The subnets must be within the machine network.

The installation program does not create the following components:

  • NAT gateways
  • Subnets
  • Route tables
  • VPC network
Note

The installation program requires that you use the cloud-provided DNS server. Using a custom DNS server is not supported and causes the installation to fail.

7.2.2. VPC validation

To ensure that the subnets that you provide are suitable, the installation program confirms the following data:

  • All the subnets that you specify exist.
  • You provide one subnet for control-plane machines and one subnet for compute machines.
  • The subnet’s CIDRs belong to the machine CIDR that you specified.

7.2.3. Division of permissions

Some individuals can create different resource in your clouds than others. For example, you might be able to create application-specific items, like instances, buckets, and load balancers, but not networking-related components such as VPCs, subnets, or ingress rules.

7.2.4. Isolation between clusters

If you deploy OpenShift Container Platform to an existing network, the isolation of cluster services is reduced in the following ways:

  • You can install multiple OpenShift Container Platform clusters in the same VPC.
  • ICMP ingress is allowed to the entire network.
  • TCP 22 ingress (SSH) is allowed to the entire network.
  • Control plane TCP 6443 ingress (Kubernetes API) is allowed to the entire network.
  • Control plane TCP 22623 ingress (MCS) is allowed to the entire network.

7.3. Internet access for OpenShift Container Platform

In OpenShift Container Platform 4.17, you require access to the internet to install your cluster.

You must have internet access to:

  • Access OpenShift Cluster Manager to download the installation program and perform subscription management. If the cluster has internet access and you do not disable Telemetry, that service automatically entitles your cluster.
  • Access Quay.io to obtain the packages that are required to install your cluster.
  • Obtain the packages that are required to perform cluster updates.
Important

If your cluster cannot have direct internet access, you can perform a restricted network installation on some types of infrastructure that you provision. During that process, you download the required content and use it to populate a mirror registry with the installation packages. With some installation types, the environment that you install your cluster in will not require internet access. Before you update the cluster, you update the content of the mirror registry.

7.4. Generating a key pair for cluster node SSH access

During an OpenShift Container Platform installation, you can provide an SSH public key to the installation program. The key is passed to the Red Hat Enterprise Linux CoreOS (RHCOS) nodes through their Ignition config files and is used to authenticate SSH access to the nodes. The key is added to the ~/.ssh/authorized_keys list for the core user on each node, which enables password-less authentication.

After the key is passed to the nodes, you can use the key pair to SSH in to the RHCOS nodes as the user core. To access the nodes through SSH, the private key identity must be managed by SSH for your local user.

If you want to SSH in to your cluster nodes to perform installation debugging or disaster recovery, you must provide the SSH public key during the installation process. The ./openshift-install gather command also requires the SSH public key to be in place on the cluster nodes.

Important

Do not skip this procedure in production environments, where disaster recovery and debugging is required.

Note

You must use a local key, not one that you configured with platform-specific approaches such as AWS key pairs.

Procedure

  1. If you do not have an existing SSH key pair on your local machine to use for authentication onto your cluster nodes, create one. For example, on a computer that uses a Linux operating system, run the following command:

    $ ssh-keygen -t ed25519 -N '' -f <path>/<file_name> 1
    1
    Specify the path and file name, such as ~/.ssh/id_ed25519, of the new SSH key. If you have an existing key pair, ensure your public key is in the your ~/.ssh directory.
    Note

    If you plan to install an OpenShift Container Platform cluster that uses the RHEL cryptographic libraries that have been submitted to NIST for FIPS 140-2/140-3 Validation on only the x86_64, ppc64le, and s390x architectures, do not