17.4.3.2. Access Control Options


Users of xinetd services can choose to use the TCP wrappers hosts access rules, provide access control via the xinetd configuration files, or a mixture of both. Information concerning the use of TCP wrappers hosts access control files can be found in Section 17.2, “TCP Wrappers Configuration Files”.
This section discusses using xinetd to control access to services.

Note

Unlike TCP wrappers, changes to access control only take effect if the xinetd administrator restarts the xinetd service.
Also, unlike TCP wrappers, access control through xinetd only affects services controlled by xinetd.
The xinetd hosts access control differs from the method used by TCP wrappers. While TCP wrappers places all of the access configuration within two files, /etc/hosts.allow and /etc/hosts.deny, xinetd's access control is found in each service's configuration file within the /etc/xinetd.d/ directory.
The following hosts access options are supported by xinetd:
  • only_from — Allows only the specified hosts to use the service.
  • no_access — Blocks listed hosts from using the service.
  • access_times — Specifies the time range when a particular service may be used. The time range must be stated in 24-hour format notation, HH:MM-HH:MM.
The only_from and no_access options can use a list of IP addresses or host names, or can specify an entire network. Like TCP wrappers, combining xinetd access control with the enhanced logging configuration can increase security by blocking requests from banned hosts while verbosely recording each connection attempt.
For example, the following /etc/xinetd.d/telnet file can be used to block Telnet access from a particular network group and restrict the overall time range that even allowed users can log in:
service telnet
{
        disable         = no
        flags           = REUSE
        socket_type     = stream
        wait            = no
        user            = root
        server          = /usr/sbin/in.telnetd
        log_on_failure  += USERID
        no_access       = 10.0.1.0/24
        log_on_success  += PID HOST EXIT
        access_times    = 09:45-16:15
}
In this example, when a client system from the 10.0.1.0/24 network, such as 10.0.1.2, tries to access the Telnet service, it receives a message stating the following message:
Connection closed by foreign host.
In addition, their login attempts are logged in /var/log/secure as follows:
May 15 17:38:49 boo xinetd[16252]: START: telnet pid=16256 from=10.0.1.2
May 15 17:38:49 boo xinetd[16256]: FAIL: telnet address from=10.0.1.2
May 15 17:38:49 boo xinetd[16252]: EXIT: telnet status=0 pid=16256
When using TCP wrappers in conjunction with xinetd access controls, it is important to understand the relationship between the two access control mechanisms.
The following is the order of operations followed by xinetd when a client requests a connection:
  1. The xinetd daemon accesses the TCP wrappers hosts access rules through a libwrap.a library call. If a deny rule matches the client host, the connection is dropped. If an allow rule matches the client host, the connection is passed on to xinetd.
  2. The xinetd daemon checks its own access control rules both for the xinetd service and the requested service. If a deny rule matches the client host the connection is dropped. Otherwise, xinetd starts an instance of the requested service and passes control of the connection to it.

Important

Care should be taken when using TCP wrappers access controls in conjunction with xinetd access controls. Misconfiguration can cause undesired effects.
Red Hat logoGithubRedditYoutubeTwitter

Learn

Try, buy, & sell

Communities

About Red Hat Documentation

We help Red Hat users innovate and achieve their goals with our products and services with content they can trust.

Making open source more inclusive

Red Hat is committed to replacing problematic language in our code, documentation, and web properties. For more details, see the Red Hat Blog.

About Red Hat

We deliver hardened solutions that make it easier for enterprises to work across platforms and environments, from the core datacenter to the network edge.

© 2024 Red Hat, Inc.