9.12. Installing a cluster into a shared VPC on GCP using Deployment Manager templates
In OpenShift Container Platform version 4.12, you can install a cluster into a shared Virtual Private Cloud (VPC) on Google Cloud Platform (GCP) that uses infrastructure that you provide. In this context, a cluster installed into a shared VPC is a cluster that is configured to use a VPC from a project different from where the cluster is being deployed.
A shared VPC enables an organization to connect resources from multiple projects to a common VPC network. You can communicate within the organization securely and efficiently by using internal IPs from that network. For more information about shared VPC, see Shared VPC overview in the GCP documentation.
The steps for performing a user-provided infrastructure installation into a shared VPC are outlined here. Several Deployment Manager templates are provided to assist in completing these steps or to help model your own. You are also free to create the required resources through other methods.
The steps for performing a user-provisioned infrastructure installation are provided as an example only. Installing a cluster with infrastructure you provide requires knowledge of the cloud provider and the installation process of OpenShift Container Platform. Several Deployment Manager templates are provided to assist in completing these steps or to help model your own. You are also free to create the required resources through other methods; the templates are just an example.
9.12.1. Conditions préalables
- You reviewed details about the OpenShift Container Platform installation and update processes.
- You read the documentation on selecting a cluster installation method and preparing it for users.
- If you use a firewall and plan to use the Telemetry service, you configured the firewall to allow the sites that your cluster requires access to.
If the cloud identity and access management (IAM) APIs are not accessible in your environment, or if you do not want to store an administrator-level credential secret in the
kube-system
namespace, you can manually create and maintain IAM credentials.NoteBe sure to also review this site list if you are configuring a proxy.
9.12.2. Certificate signing requests management
Because your cluster has limited access to automatic machine management when you use infrastructure that you provision, you must provide a mechanism for approving cluster certificate signing requests (CSRs) after installation. The kube-controller-manager
only approves the kubelet client CSRs. The machine-approver
cannot guarantee the validity of a serving certificate that is requested by using kubelet credentials because it cannot confirm that the correct machine issued the request. You must determine and implement a method of verifying the validity of the kubelet serving certificate requests and approving them.
9.12.3. Accès à l'internet pour OpenShift Container Platform
Dans OpenShift Container Platform 4.12, vous devez avoir accès à Internet pour installer votre cluster.
Vous devez disposer d'un accès à l'internet pour :
- Accédez à OpenShift Cluster Manager Hybrid Cloud Console pour télécharger le programme d'installation et effectuer la gestion des abonnements. Si le cluster dispose d'un accès internet et que vous ne désactivez pas Telemetry, ce service donne automatiquement des droits à votre cluster.
- Accédez à Quay.io pour obtenir les paquets nécessaires à l'installation de votre cluster.
- Obtenir les paquets nécessaires pour effectuer les mises à jour de la grappe.
Si votre cluster ne peut pas avoir d'accès direct à l'internet, vous pouvez effectuer une installation en réseau restreint sur certains types d'infrastructure que vous fournissez. Au cours de ce processus, vous téléchargez le contenu requis et l'utilisez pour remplir un registre miroir avec les paquets d'installation. Avec certains types d'installation, l'environnement dans lequel vous installez votre cluster ne nécessite pas d'accès à Internet. Avant de mettre à jour le cluster, vous mettez à jour le contenu du registre miroir.
9.12.4. Configuring the GCP project that hosts your cluster
Before you can install OpenShift Container Platform, you must configure a Google Cloud Platform (GCP) project to host it.
9.12.4.1. Creating a GCP project
To install OpenShift Container Platform, you must create a project in your Google Cloud Platform (GCP) account to host the cluster.
Procédure
Create a project to host your OpenShift Container Platform cluster. See Creating and Managing Projects in the GCP documentation.
ImportantYour GCP project must use the Premium Network Service Tier if you are using installer-provisioned infrastructure. The Standard Network Service Tier is not supported for clusters installed using the installation program. The installation program configures internal load balancing for the
api-int.<cluster_name>.<base_domain>
URL; the Premium Tier is required for internal load balancing.
9.12.4.2. Enabling API services in GCP
Your Google Cloud Platform (GCP) project requires access to several API services to complete OpenShift Container Platform installation.
Conditions préalables
- You created a project to host your cluster.
Procédure
Enable the following required API services in the project that hosts your cluster. You may also enable optional API services which are not required for installation. See Enabling services in the GCP documentation.
Tableau 9.50. Required API services API service Console service name Compute Engine API
compute.googleapis.com
Cloud Resource Manager API
cloudresourcemanager.googleapis.com
Google DNS API
dns.googleapis.com
IAM Service Account Credentials API
iamcredentials.googleapis.com
Identity and Access Management (IAM) API
iam.googleapis.com
Service Usage API
serviceusage.googleapis.com
Tableau 9.51. Optional API services API service Console service name Cloud Deployment Manager V2 API
deploymentmanager.googleapis.com
Google Cloud APIs
cloudapis.googleapis.com
Service Management API
servicemanagement.googleapis.com
Google Cloud Storage JSON API
storage-api.googleapis.com
Cloud Storage
storage-component.googleapis.com
9.12.4.3. GCP account limits
The OpenShift Container Platform cluster uses a number of Google Cloud Platform (GCP) components, but the default Quotas do not affect your ability to install a default OpenShift Container Platform cluster.
A default cluster, which contains three compute and three control plane machines, uses the following resources. Note that some resources are required only during the bootstrap process and are removed after the cluster deploys.
Service | Composant | Location | Total resources required | Resources removed after bootstrap |
---|---|---|---|---|
Service account | IAM | Global | 6 | 1 |
Firewall rules | Mise en réseau | Global | 11 | 1 |
Forwarding rules | Compute | Global | 2 | 0 |
Health checks | Compute | Global | 2 | 0 |
Images | Compute | Global | 1 | 0 |
Networks | Mise en réseau | Global | 1 | 0 |
Routers | Mise en réseau | Global | 1 | 0 |
Routes | Mise en réseau | Global | 2 | 0 |
Subnetworks | Compute | Global | 2 | 0 |
Target pools | Mise en réseau | Global | 2 | 0 |
If any of the quotas are insufficient during installation, the installation program displays an error that states both which quota was exceeded and the region.
Be sure to consider your actual cluster size, planned cluster growth, and any usage from other clusters that are associated with your account. The CPU, static IP addresses, and persistent disk SSD (storage) quotas are the ones that are most likely to be insufficient.
If you plan to deploy your cluster in one of the following regions, you will exceed the maximum storage quota and are likely to exceed the CPU quota limit:
-
asia-east2
-
asia-northeast2
-
asia-south1
-
australia-southeast1
-
europe-north1
-
europe-west2
-
europe-west3
-
europe-west6
-
northamerica-northeast1
-
southamerica-east1
-
us-west2
You can increase resource quotas from the GCP console, but you might need to file a support ticket. Be sure to plan your cluster size early so that you can allow time to resolve the support ticket before you install your OpenShift Container Platform cluster.
9.12.4.4. Creating a service account in GCP
OpenShift Container Platform requires a Google Cloud Platform (GCP) service account that provides authentication and authorization to access data in the Google APIs. If you do not have an existing IAM service account that contains the required roles in your project, you must create one.
Conditions préalables
- You created a project to host your cluster.
Procédure
- Create a service account in the project that you use to host your OpenShift Container Platform cluster. See Creating a service account in the GCP documentation.
Grant the service account the appropriate permissions. You can either grant the individual permissions that follow or assign the
Owner
role to it. See Granting roles to a service account for specific resources.NoteWhile making the service account an owner of the project is the easiest way to gain the required permissions, it means that service account has complete control over the project. You must determine if the risk that comes from offering that power is acceptable.
You can create the service account key in JSON format, or attach the service account to a GCP virtual machine. See Creating service account keys and Creating and enabling service accounts for instances in the GCP documentation.
You must have a service account key or a virtual machine with an attached service account to create the cluster.
NoteIf you use a virtual machine with an attached service account to create your cluster, you must set
credentialsMode: Manual
in theinstall-config.yaml
file before installation.
9.12.4.4.1. Required GCP roles
When you attach the Owner
role to the service account that you create, you grant that service account all permissions, including those that are required to install OpenShift Container Platform. If your organization’s security policies require a more restrictive set of permissions, you can create a service account with the following permissions. If you deploy your cluster into an existing virtual private cloud (VPC), the service account does not require certain networking permissions, which are noted in the following lists:
Required roles for the installation program
- Compute Admin
- IAM Security Admin
- Service Account Admin
- Service Account Key Admin
- Service Account User
- Storage Admin
Required roles for creating network resources during installation
- DNS Administrator
Required roles for using passthrough credentials mode
- Compute Load Balancer Admin
- IAM Role Viewer
Required roles for user-provisioned GCP infrastructure
- Deployment Manager Editor
The roles are applied to the service accounts that the control plane and compute machines use:
Account | Rôles |
---|---|
Control Plane |
|
| |
| |
| |
| |
Compute |
|
|
9.12.4.5. Supported GCP regions
You can deploy an OpenShift Container Platform cluster to the following Google Cloud Platform (GCP) regions:
-
asia-east1
(Changhua County, Taiwan) -
asia-east2
(Hong Kong) -
asia-northeast1
(Tokyo, Japan) -
asia-northeast2
(Osaka, Japan) -
asia-northeast3
(Seoul, South Korea) -
asia-south1
(Mumbai, India) -
asia-south2
(Delhi, India) -
asia-southeast1
(Jurong West, Singapore) -
asia-southeast2
(Jakarta, Indonesia) -
australia-southeast1
(Sydney, Australia) -
australia-southeast2
(Melbourne, Australia) -
europe-central2
(Warsaw, Poland) -
europe-north1
(Hamina, Finland) -
europe-southwest1
(Madrid, Spain) -
europe-west1
(St. Ghislain, Belgium) -
europe-west2
(London, England, UK) -
europe-west3
(Frankfurt, Germany) -
europe-west4
(Eemshaven, Netherlands) -
europe-west6
(Zürich, Switzerland) -
europe-west8
(Milan, Italy) -
europe-west9
(Paris, France) -
europe-west12
(Turin, Italy) -
me-west1
(Tel Aviv, Israel) -
northamerica-northeast1
(Montréal, Québec, Canada) -
northamerica-northeast2
(Toronto, Ontario, Canada) -
southamerica-east1
(São Paulo, Brazil) -
southamerica-west1
(Santiago, Chile) -
us-central1
(Council Bluffs, Iowa, USA) -
us-east1
(Moncks Corner, South Carolina, USA) -
us-east4
(Ashburn, Northern Virginia, USA) -
us-east5
(Columbus, Ohio) -
us-south1
(Dallas, Texas) -
us-west1
(The Dalles, Oregon, USA) -
us-west2
(Los Angeles, California, USA) -
us-west3
(Salt Lake City, Utah, USA) -
us-west4
(Las Vegas, Nevada, USA)
9.12.4.6. Installing and configuring CLI tools for GCP
To install OpenShift Container Platform on Google Cloud Platform (GCP) using user-provisioned infrastructure, you must install and configure the CLI tools for GCP.
Conditions préalables
- You created a project to host your cluster.
- You created a service account and granted it the required permissions.
Procédure
Install the following binaries in
$PATH
:-
gcloud
-
gsutil
See Install the latest Cloud SDK version in the GCP documentation.
-
Authenticate using the
gcloud
tool with your configured service account.See Authorizing with a service account in the GCP documentation.
9.12.5. Requirements for a cluster with user-provisioned infrastructure
For a cluster that contains user-provisioned infrastructure, you must deploy all of the required machines.
This section describes the requirements for deploying OpenShift Container Platform on user-provisioned infrastructure.
9.12.5.1. Required machines for cluster installation
The smallest OpenShift Container Platform clusters require the following hosts:
Hosts | Description |
---|---|
One temporary bootstrap machine | The cluster requires the bootstrap machine to deploy the OpenShift Container Platform cluster on the three control plane machines. You can remove the bootstrap machine after you install the cluster. |
Three control plane machines | The control plane machines run the Kubernetes and OpenShift Container Platform services that form the control plane. |
At least two compute machines, which are also known as worker machines. | The workloads requested by OpenShift Container Platform users run on the compute machines. |
To maintain high availability of your cluster, use separate physical hosts for these cluster machines.
The bootstrap and control plane machines must use Red Hat Enterprise Linux CoreOS (RHCOS) as the operating system. However, the compute machines can choose between Red Hat Enterprise Linux CoreOS (RHCOS), Red Hat Enterprise Linux (RHEL) 8.4, or RHEL 8.5.
Note that RHCOS is based on Red Hat Enterprise Linux (RHEL) 8 and inherits all of its hardware certifications and requirements. See Red Hat Enterprise Linux technology capabilities and limits.
9.12.5.2. Minimum resource requirements for cluster installation
Each cluster machine must meet the following minimum requirements:
Machine | Operating System | vCPU [1] | Virtual RAM | Stockage | IOPS [2] |
---|---|---|---|---|---|
Bootstrap | RHCOS | 4 | 16 GB | 100 GB | 300 |
Control plane | RHCOS | 4 | 16 GB | 100 GB | 300 |
Compute | RHCOS, RHEL 8.4, or RHEL 8.5 [3] | 2 | 8 GB | 100 GB | 300 |
- One vCPU is equivalent to one physical core when simultaneous multithreading (SMT), or hyperthreading, is not enabled. When enabled, use the following formula to calculate the corresponding ratio: (threads per core × cores) × sockets = vCPUs.
- OpenShift Container Platform and Kubernetes are sensitive to disk performance, and faster storage is recommended, particularly for etcd on the control plane nodes which require a 10 ms p99 fsync duration. Note that on many cloud platforms, storage size and IOPS scale together, so you might need to over-allocate storage volume to obtain sufficient performance.
- As with all user-provisioned installations, if you choose to use RHEL compute machines in your cluster, you take responsibility for all operating system life cycle management and maintenance, including performing system updates, applying patches, and completing all other required tasks. Use of RHEL 7 compute machines is deprecated and has been removed in OpenShift Container Platform 4.10 and later.
If an instance type for your platform meets the minimum requirements for cluster machines, it is supported to use in OpenShift Container Platform.
9.12.5.3. Tested instance types for GCP
The following Google Cloud Platform instance types have been tested with OpenShift Container Platform.
Exemple 9.58. Machine series
-
C2
-
E2
-
M1
-
N1
-
N2
-
N2D
-
Tau T2D
9.12.5.4. Using custom machine types
Using a custom machine type to install a OpenShift Container Platform cluster is supported.
Consider the following when using a custom machine type:
- Similar to predefined instance types, custom machine types must meet the minimum resource requirements for control plane and compute machines. For more information, see "Minimum resource requirements for cluster installation".
The name of the custom machine type must adhere to the following syntax:
custom-<number_of_cpus>-<amount_of_memory_in_mb>
For example,
custom-6-20480
.
9.12.6. Configuring the GCP project that hosts your shared VPC network
If you use a shared Virtual Private Cloud (VPC) to host your OpenShift Container Platform cluster in Google Cloud Platform (GCP), you must configure the project that hosts it.
If you already have a project that hosts the shared VPC network, review this section to ensure that the project meets all of the requirements to install an OpenShift Container Platform cluster.
Procédure
- Create a project to host the shared VPC for your OpenShift Container Platform cluster. See Creating and Managing Projects in the GCP documentation.
- Create a service account in the project that hosts your shared VPC. See Creating a service account in the GCP documentation.
Grant the service account the appropriate permissions. You can either grant the individual permissions that follow or assign the
Owner
role to it. See Granting roles to a service account for specific resources.NoteWhile making the service account an owner of the project is the easiest way to gain the required permissions, it means that service account has complete control over the project. You must determine if the risk that comes from offering that power is acceptable.
The service account for the project that hosts the shared VPC network requires the following roles:
- Compute Network User
- Compute Security Admin
- Deployment Manager Editor
- DNS Administrator
- Security Admin
- Network Management Admin
9.12.6.1. Configuring DNS for GCP
To install OpenShift Container Platform, the Google Cloud Platform (GCP) account you use must have a dedicated public hosted zone in the project that hosts the shared VPC that you install the cluster into. This zone must be authoritative for the domain. The DNS service provides cluster DNS resolution and name lookup for external connections to the cluster.
Procédure
Identify your domain, or subdomain, and registrar. You can transfer an existing domain and registrar or obtain a new one through GCP or another source.
NoteIf you purchase a new domain, it can take time for the relevant DNS changes to propagate. For more information about purchasing domains through Google, see Google Domains.
Create a public hosted zone for your domain or subdomain in your GCP project. See Creating public zones in the GCP documentation.
Use an appropriate root domain, such as
openshiftcorp.com
, or subdomain, such asclusters.openshiftcorp.com
.Extract the new authoritative name servers from the hosted zone records. See Look up your Cloud DNS name servers in the GCP documentation.
You typically have four name servers.
- Update the registrar records for the name servers that your domain uses. For example, if you registered your domain to Google Domains, see the following topic in the Google Domains Help: How to switch to custom name servers.
- If you migrated your root domain to Google Cloud DNS, migrate your DNS records. See Migrating to Cloud DNS in the GCP documentation.
- If you use a subdomain, follow your company’s procedures to add its delegation records to the parent domain. This process might include a request to your company’s IT department or the division that controls the root domain and DNS services for your company.
9.12.6.2. Creating a VPC in GCP
You must create a VPC in Google Cloud Platform (GCP) for your OpenShift Container Platform cluster to use. You can customize the VPC to meet your requirements. One way to create the VPC is to modify the provided Deployment Manager template.
If you do not use the provided Deployment Manager template to create your GCP infrastructure, you must review the provided information and manually create the infrastructure. If your cluster does not initialize correctly, you might have to contact Red Hat support with your installation logs.
Conditions préalables
- Configure a GCP account.
Procédure
-
Copy the template from the Deployment Manager template for the VPC section of this topic and save it as
01_vpc.py
on your computer. This template describes the VPC that your cluster requires. Export the following variables required by the resource definition:
Export the control plane CIDR:
$ export MASTER_SUBNET_CIDR='10.0.0.0/17'
Export the compute CIDR:
$ export WORKER_SUBNET_CIDR='10.0.128.0/17'
Export the region to deploy the VPC network and cluster to:
$ export REGION='<region>'
Export the variable for the ID of the project that hosts the shared VPC:
$ export HOST_PROJECT=<host_project>
Export the variable for the email of the service account that belongs to host project:
$ export HOST_PROJECT_ACCOUNT=<host_service_account_email>
Create a
01_vpc.yaml
resource definition file:$ cat <<EOF >01_vpc.yaml imports: - path: 01_vpc.py resources: - name: cluster-vpc type: 01_vpc.py properties: infra_id: '<prefix>' 1 region: '${REGION}' 2 master_subnet_cidr: '${MASTER_SUBNET_CIDR}' 3 worker_subnet_cidr: '${WORKER_SUBNET_CIDR}' 4 EOF
Create the deployment by using the
gcloud
CLI:$ gcloud deployment-manager deployments create <vpc_deployment_name> --config 01_vpc.yaml --project ${HOST_PROJECT} --account ${HOST_PROJECT_ACCOUNT} 1
- 1
- For
<vpc_deployment_name>
, specify the name of the VPC to deploy.
Export the VPC variable that other components require:
Export the name of the host project network:
$ export HOST_PROJECT_NETWORK=<vpc_network>
Export the name of the host project control plane subnet:
$ export HOST_PROJECT_CONTROL_SUBNET=<control_plane_subnet>
Export the name of the host project compute subnet:
$ export HOST_PROJECT_COMPUTE_SUBNET=<compute_subnet>
- Set up the shared VPC. See Setting up Shared VPC in the GCP documentation.
9.12.6.2.1. Deployment Manager template for the VPC
You can use the following Deployment Manager template to deploy the VPC that you need for your OpenShift Container Platform cluster:
Exemple 9.59. 01_vpc.py
Deployment Manager template
def GenerateConfig(context): resources = [{ 'name': context.properties['infra_id'] + '-network', 'type': 'compute.v1.network', 'properties': { 'region': context.properties['region'], 'autoCreateSubnetworks': False } }, { 'name': context.properties['infra_id'] + '-master-subnet', 'type': 'compute.v1.subnetwork', 'properties': { 'region': context.properties['region'], 'network': '$(ref.' + context.properties['infra_id'] + '-network.selfLink)', 'ipCidrRange': context.properties['master_subnet_cidr'] } }, { 'name': context.properties['infra_id'] + '-worker-subnet', 'type': 'compute.v1.subnetwork', 'properties': { 'region': context.properties['region'], 'network': '$(ref.' + context.properties['infra_id'] + '-network.selfLink)', 'ipCidrRange': context.properties['worker_subnet_cidr'] } }, { 'name': context.properties['infra_id'] + '-router', 'type': 'compute.v1.router', 'properties': { 'region': context.properties['region'], 'network': '$(ref.' + context.properties['infra_id'] + '-network.selfLink)', 'nats': [{ 'name': context.properties['infra_id'] + '-nat-master', 'natIpAllocateOption': 'AUTO_ONLY', 'minPortsPerVm': 7168, 'sourceSubnetworkIpRangesToNat': 'LIST_OF_SUBNETWORKS', 'subnetworks': [{ 'name': '$(ref.' + context.properties['infra_id'] + '-master-subnet.selfLink)', 'sourceIpRangesToNat': ['ALL_IP_RANGES'] }] }, { 'name': context.properties['infra_id'] + '-nat-worker', 'natIpAllocateOption': 'AUTO_ONLY', 'minPortsPerVm': 512, 'sourceSubnetworkIpRangesToNat': 'LIST_OF_SUBNETWORKS', 'subnetworks': [{ 'name': '$(ref.' + context.properties['infra_id'] + '-worker-subnet.selfLink)', 'sourceIpRangesToNat': ['ALL_IP_RANGES'] }] }] } }] return {'resources': resources}
9.12.7. Creating the installation files for GCP
To install OpenShift Container Platform on Google Cloud Platform (GCP) using user-provisioned infrastructure, you must generate the files that the installation program needs to deploy your cluster and modify them so that the cluster creates only the machines that it will use. You generate and customize the install-config.yaml
file, Kubernetes manifests, and Ignition config files. You also have the option to first set up a separate var
partition during the preparation phases of installation.
9.12.7.1. Manually creating the installation configuration file
For user-provisioned installations of OpenShift Container Platform, you manually generate your installation configuration file.
Conditions préalables
- You have an SSH public key on your local machine to provide to the installation program. The key will be used for SSH authentication onto your cluster nodes for debugging and disaster recovery.
- You have obtained the OpenShift Container Platform installation program and the pull secret for your cluster.
Procédure
Create an installation directory to store your required installation assets in:
$ mkdir <installation_directory>
ImportantYou must create a directory. Some installation assets, like bootstrap X.509 certificates have short expiration intervals, so you must not reuse an installation directory. If you want to reuse individual files from another cluster installation, you can copy them into your directory. However, the file names for the installation assets might change between releases. Use caution when copying installation files from an earlier OpenShift Container Platform version.
Customize the sample
install-config.yaml
file template that is provided and save it in the<installation_directory>
.NoteYou must name this configuration file
install-config.yaml
.NoteFor some platform types, you can alternatively run
./openshift-install create install-config --dir <installation_directory>
to generate aninstall-config.yaml
file. You can provide details about your cluster configuration at the prompts.Back up the
install-config.yaml
file so that you can use it to install multiple clusters.ImportantThe
install-config.yaml
file is consumed during the next step of the installation process. You must back it up now.
9.12.7.3. Configuring the cluster-wide proxy during installation
Production environments can deny direct access to the internet and instead have an HTTP or HTTPS proxy available. You can configure a new OpenShift Container Platform cluster to use a proxy by configuring the proxy settings in the install-config.yaml
file.
Conditions préalables
-
You have an existing
install-config.yaml
file. You reviewed the sites that your cluster requires access to and determined whether any of them need to bypass the proxy. By default, all cluster egress traffic is proxied, including calls to hosting cloud provider APIs. You added sites to the
Proxy
object’sspec.noProxy
field to bypass the proxy if necessary.NoteThe
Proxy
objectstatus.noProxy
field is populated with the values of thenetworking.machineNetwork[].cidr
,networking.clusterNetwork[].cidr
, andnetworking.serviceNetwork[]
fields from your installation configuration.For installations on Amazon Web Services (AWS), Google Cloud Platform (GCP), Microsoft Azure, and Red Hat OpenStack Platform (RHOSP), the
Proxy
objectstatus.noProxy
field is also populated with the instance metadata endpoint (169.254.169.254
).
Procédure
Edit your
install-config.yaml
file and add the proxy settings. For example:apiVersion: v1 baseDomain: my.domain.com proxy: httpProxy: http://<username>:<pswd>@<ip>:<port> 1 httpsProxy: https://<username>:<pswd>@<ip>:<port> 2 noProxy: example.com 3 additionalTrustBundle: | 4 -----BEGIN CERTIFICATE----- <MY_TRUSTED_CA_CERT> -----END CERTIFICATE----- additionalTrustBundlePolicy: <policy_to_add_additionalTrustBundle> 5
- 1
- A proxy URL to use for creating HTTP connections outside the cluster. The URL scheme must be
http
. - 2
- A proxy URL to use for creating HTTPS connections outside the cluster.
- 3
- A comma-separated list of destination domain names, IP addresses, or other network CIDRs to exclude from proxying. Preface a domain with
.
to match subdomains only. For example,.y.com
matchesx.y.com
, but noty.com
. Use*
to bypass the proxy for all destinations. - 4
- If provided, the installation program generates a config map that is named
user-ca-bundle
in theopenshift-config
namespace that contains one or more additional CA certificates that are required for proxying HTTPS connections. The Cluster Network Operator then creates atrusted-ca-bundle
config map that merges these contents with the Red Hat Enterprise Linux CoreOS (RHCOS) trust bundle, and this config map is referenced in thetrustedCA
field of theProxy
object. TheadditionalTrustBundle
field is required unless the proxy’s identity certificate is signed by an authority from the RHCOS trust bundle. - 5
- Optional: The policy to determine the configuration of the
Proxy
object to reference theuser-ca-bundle
config map in thetrustedCA
field. The allowed values areProxyonly
andAlways
. UseProxyonly
to reference theuser-ca-bundle
config map only whenhttp/https
proxy is configured. UseAlways
to always reference theuser-ca-bundle
config map. The default value isProxyonly
.
NoteThe installation program does not support the proxy
readinessEndpoints
field.NoteIf the installer times out, restart and then complete the deployment by using the
wait-for
command of the installer. For example:$ ./openshift-install wait-for install-complete --log-level debug
- Save the file and reference it when installing OpenShift Container Platform.
The installation program creates a cluster-wide proxy that is named cluster
that uses the proxy settings in the provided install-config.yaml
file. If no proxy settings are provided, a cluster
Proxy
object is still created, but it will have a nil spec
.
Only the Proxy
object named cluster
is supported, and no additional proxies can be created.
9.12.7.4. Creating the Kubernetes manifest and Ignition config files
Because you must modify some cluster definition files and manually start the cluster machines, you must generate the Kubernetes manifest and Ignition config files that the cluster needs to configure the machines.
The installation configuration file transforms into the Kubernetes manifests. The manifests wrap into the Ignition configuration files, which are later used to configure the cluster machines.
-
The Ignition config files that the OpenShift Container Platform installation program generates contain certificates that expire after 24 hours, which are then renewed at that time. If the cluster is shut down before renewing the certificates and the cluster is later restarted after the 24 hours have elapsed, the cluster automatically recovers the expired certificates. The exception is that you must manually approve the pending
node-bootstrapper
certificate signing requests (CSRs) to recover kubelet certificates. See the documentation for Recovering from expired control plane certificates for more information. - Il est recommandé d'utiliser les fichiers de configuration Ignition dans les 12 heures suivant leur génération, car le certificat de 24 heures tourne entre 16 et 22 heures après l'installation du cluster. En utilisant les fichiers de configuration Ignition dans les 12 heures, vous pouvez éviter l'échec de l'installation si la mise à jour du certificat s'exécute pendant l'installation.
Conditions préalables
- You obtained the OpenShift Container Platform installation program.
-
You created the
install-config.yaml
installation configuration file.
Procédure
Change to the directory that contains the OpenShift Container Platform installation program and generate the Kubernetes manifests for the cluster:
$ ./openshift-install create manifests --dir <installation_directory> 1
- 1
- For
<installation_directory>
, specify the installation directory that contains theinstall-config.yaml
file you created.
Remove the Kubernetes manifest files that define the control plane machines:
$ rm -f <installation_directory>/openshift/99_openshift-cluster-api_master-machines-*.yaml
By removing these files, you prevent the cluster from automatically generating control plane machines.
Remove the Kubernetes manifest files that define the worker machines:
$ rm -f <installation_directory>/openshift/99_openshift-cluster-api_worker-machineset-*.yaml
Because you create and manage the worker machines yourself, you do not need to initialize these machines.
Check that the
mastersSchedulable
parameter in the<installation_directory>/manifests/cluster-scheduler-02-config.yml
Kubernetes manifest file is set tofalse
. This setting prevents pods from being scheduled on the control plane machines:-
Open the
<installation_directory>/manifests/cluster-scheduler-02-config.yml
file. -
Locate the
mastersSchedulable
parameter and ensure that it is set tofalse
. - Save and exit the file.
-
Open the
Remove the
privateZone
sections from the<installation_directory>/manifests/cluster-dns-02-config.yml
DNS configuration file:apiVersion: config.openshift.io/v1 kind: DNS metadata: creationTimestamp: null name: cluster spec: baseDomain: example.openshift.com privateZone: 1 id: mycluster-100419-private-zone status: {}
- 1
- Remove this section completely.
Configure the cloud provider for your VPC.
-
Open the
<installation_directory>/manifests/cloud-provider-config.yaml
file. -
Add the
network-project-id
parameter and set its value to the ID of project that hosts the shared VPC network. -
Add the
network-name
parameter and set its value to the name of the shared VPC network that hosts the OpenShift Container Platform cluster. -
Replace the value of the
subnetwork-name
parameter with the value of the shared VPC subnet that hosts your compute machines.
The contents of the
<installation_directory>/manifests/cloud-provider-config.yaml
resemble the following example:config: |+ [global] project-id = example-project regional = true multizone = true node-tags = opensh-ptzzx-master node-tags = opensh-ptzzx-worker node-instance-prefix = opensh-ptzzx external-instance-groups-prefix = opensh-ptzzx network-project-id = example-shared-vpc network-name = example-network subnetwork-name = example-worker-subnet
-
Open the
If you deploy a cluster that is not on a private network, open the
<installation_directory>/manifests/cluster-ingress-default-ingresscontroller.yaml
file and replace the value of thescope
parameter withExternal
. The contents of the file resemble the following example:apiVersion: operator.openshift.io/v1 kind: IngressController metadata: creationTimestamp: null name: default namespace: openshift-ingress-operator spec: endpointPublishingStrategy: loadBalancer: scope: External type: LoadBalancerService status: availableReplicas: 0 domain: '' selector: ''
To create the Ignition configuration files, run the following command from the directory that contains the installation program:
$ ./openshift-install create ignition-configs --dir <installation_directory> 1
- 1
- For
<installation_directory>
, specify the same installation directory.
Ignition config files are created for the bootstrap, control plane, and compute nodes in the installation directory. The
kubeadmin-password
andkubeconfig
files are created in the./<installation_directory>/auth
directory:. ├── auth │ ├── kubeadmin-password │ └── kubeconfig ├── bootstrap.ign ├── master.ign ├── metadata.json └── worker.ign
9.12.8. Exporting common variables
9.12.8.1. Extracting the infrastructure name
The Ignition config files contain a unique cluster identifier that you can use to uniquely identify your cluster in Google Cloud Platform (GCP). The infrastructure name is also used to locate the appropriate GCP resources during an OpenShift Container Platform installation. The provided Deployment Manager templates contain references to this infrastructure name, so you must extract it.
Conditions préalables
- You obtained the OpenShift Container Platform installation program and the pull secret for your cluster.
- You generated the Ignition config files for your cluster.
-
You installed the
jq
package.
Procédure
To extract and view the infrastructure name from the Ignition config file metadata, run the following command:
$ jq -r .infraID <installation_directory>/metadata.json 1
- 1
- For
<installation_directory>
, specify the path to the directory that you stored the installation files in.
Exemple de sortie
openshift-vw9j6 1
- 1
- The output of this command is your cluster name and a random string.
9.12.8.2. Exporting common variables for Deployment Manager templates
You must export a common set of variables that are used with the provided Deployment Manager templates used to assist in completing a user-provided infrastructure install on Google Cloud Platform (GCP).
Specific Deployment Manager templates can also require additional exported variables, which are detailed in their related procedures.
Conditions préalables
- Obtain the OpenShift Container Platform installation program and the pull secret for your cluster.
- Generate the Ignition config files for your cluster.
-
Install the
jq
package.
Procédure
- Export the following common variables to be used by the provided Deployment Manager templates:
$ export BASE_DOMAIN='<base_domain>' 1 $ export BASE_DOMAIN_ZONE_NAME='<base_domain_zone_name>' 2 $ export NETWORK_CIDR='10.0.0.0/16' $ export KUBECONFIG=<installation_directory>/auth/kubeconfig 3 $ export CLUSTER_NAME=`jq -r .clusterName <installation_directory>/metadata.json` $ export INFRA_ID=`jq -r .infraID <installation_directory>/metadata.json` $ export PROJECT_NAME=`jq -r .gcp.projectID <installation_directory>/metadata.json`
9.12.9. Networking requirements for user-provisioned infrastructure
All the Red Hat Enterprise Linux CoreOS (RHCOS) machines require networking to be configured in initramfs
during boot to fetch their Ignition config files.
9.12.9.1. Setting the cluster node hostnames through DHCP
On Red Hat Enterprise Linux CoreOS (RHCOS) machines, the hostname is set through NetworkManager. By default, the machines obtain their hostname through DHCP. If the hostname is not provided by DHCP, set statically through kernel arguments, or another method, it is obtained through a reverse DNS lookup. Reverse DNS lookup occurs after the network has been initialized on a node and can take time to resolve. Other system services can start prior to this and detect the hostname as localhost
or similar. You can avoid this by using DHCP to provide the hostname for each cluster node.
Additionally, setting the hostnames through DHCP can bypass any manual DNS record name configuration errors in environments that have a DNS split-horizon implementation.
9.12.9.2. Network connectivity requirements
You must configure the network connectivity between machines to allow OpenShift Container Platform cluster components to communicate. Each machine must be able to resolve the hostnames of all other machines in the cluster.
This section provides details about the ports that are required.
In connected OpenShift Container Platform environments, all nodes are required to have internet access to pull images for platform containers and provide telemetry data to Red Hat.
Protocol | Port | Description |
---|---|---|
ICMP | N/A | Network reachability tests |
TCP |
| Metrics |
|
Host level services, including the node exporter on ports | |
| The default ports that Kubernetes reserves | |
| openshift-sdn | |
UDP |
| VXLAN |
| Geneve | |
|
Host level services, including the node exporter on ports | |
| IPsec IKE packets | |
| IPsec NAT-T packets | |
TCP/UDP |
| Kubernetes node port |
ESP | N/A | IPsec Encapsulating Security Payload (ESP) |
Protocol | Port | Description |
---|---|---|
TCP |
| Kubernetes API |
Protocol | Port | Description |
---|---|---|
TCP |
| etcd server and peer ports |
9.12.10. Creating load balancers in GCP
You must configure load balancers in Google Cloud Platform (GCP) for your OpenShift Container Platform cluster to use. One way to create these components is to modify the provided Deployment Manager template.
If you do not use the provided Deployment Manager template to create your GCP infrastructure, you must review the provided information and manually create the infrastructure. If your cluster does not initialize correctly, you might have to contact Red Hat support with your installation logs.
Conditions préalables
- Configure a GCP account.
- Generate the Ignition config files for your cluster.
- Create and configure a VPC and associated subnets in GCP.
Procédure
-
Copy the template from the Deployment Manager template for the internal load balancer section of this topic and save it as
02_lb_int.py
on your computer. This template describes the internal load balancing objects that your cluster requires. -
For an external cluster, also copy the template from the Deployment Manager template for the external load balancer section of this topic and save it as
02_lb_ext.py
on your computer. This template describes the external load balancing objects that your cluster requires. Export the variables that the deployment template uses:
Export the cluster network location:
$ export CLUSTER_NETWORK=(`gcloud compute networks describe ${HOST_PROJECT_NETWORK} --project ${HOST_PROJECT} --account ${HOST_PROJECT_ACCOUNT} --format json | jq -r .selfLink`)
Export the control plane subnet location:
$ export CONTROL_SUBNET=(`gcloud compute networks subnets describe ${HOST_PROJECT_CONTROL_SUBNET} --region=${REGION} --project ${HOST_PROJECT} --account ${HOST_PROJECT_ACCOUNT} --format json | jq -r .selfLink`)
Export the three zones that the cluster uses:
$ export ZONE_0=(`gcloud compute regions describe ${REGION} --format=json | jq -r .zones[0] | cut -d "/" -f9`)
$ export ZONE_1=(`gcloud compute regions describe ${REGION} --format=json | jq -r .zones[1] | cut -d "/" -f9`)
$ export ZONE_2=(`gcloud compute regions describe ${REGION} --format=json | jq -r .zones[2] | cut -d "/" -f9`)
Create a
02_infra.yaml
resource definition file:$ cat <<EOF >02_infra.yaml imports: - path: 02_lb_ext.py - path: 02_lb_int.py 1 resources: - name: cluster-lb-ext 2 type: 02_lb_ext.py properties: infra_id: '${INFRA_ID}' 3 region: '${REGION}' 4 - name: cluster-lb-int type: 02_lb_int.py properties: cluster_network: '${CLUSTER_NETWORK}' control_subnet: '${CONTROL_SUBNET}' 5 infra_id: '${INFRA_ID}' region: '${REGION}' zones: 6 - '${ZONE_0}' - '${ZONE_1}' - '${ZONE_2}' EOF
- 1 2
- Required only when deploying an external cluster.
- 3
infra_id
is theINFRA_ID
infrastructure name from the extraction step.- 4
region
is the region to deploy the cluster into, for exampleus-central1
.- 5
control_subnet
is the URI to the control subnet.- 6
zones
are the zones to deploy the control plane instances into, likeus-east1-b
,us-east1-c
, andus-east1-d
.
Create the deployment by using the
gcloud
CLI:$ gcloud deployment-manager deployments create ${INFRA_ID}-infra --config 02_infra.yaml
Export the cluster IP address:
$ export CLUSTER_IP=(`gcloud compute addresses describe ${INFRA_ID}-cluster-ip --region=${REGION} --format json | jq -r .address`)
For an external cluster, also export the cluster public IP address:
$ export CLUSTER_PUBLIC_IP=(`gcloud compute addresses describe ${INFRA_ID}-cluster-public-ip --region=${REGION} --format json | jq -r .address`)
9.12.10.1. Deployment Manager template for the external load balancer
You can use the following Deployment Manager template to deploy the external load balancer that you need for your OpenShift Container Platform cluster:
Exemple 9.60. 02_lb_ext.py
Deployment Manager template
def GenerateConfig(context): resources = [{ 'name': context.properties['infra_id'] + '-cluster-public-ip', 'type': 'compute.v1.address', 'properties': { 'region': context.properties['region'] } }, { # Refer to docs/dev/kube-apiserver-health-check.md on how to correctly setup health check probe for kube-apiserver 'name': context.properties['infra_id'] + '-api-http-health-check', 'type': 'compute.v1.httpHealthCheck', 'properties': { 'port': 6080, 'requestPath': '/readyz' } }, { 'name': context.properties['infra_id'] + '-api-target-pool', 'type': 'compute.v1.targetPool', 'properties': { 'region': context.properties['region'], 'healthChecks': ['$(ref.' + context.properties['infra_id'] + '-api-http-health-check.selfLink)'], 'instances': [] } }, { 'name': context.properties['infra_id'] + '-api-forwarding-rule', 'type': 'compute.v1.forwardingRule', 'properties': { 'region': context.properties['region'], 'IPAddress': '$(ref.' + context.properties['infra_id'] + '-cluster-public-ip.selfLink)', 'target': '$(ref.' + context.properties['infra_id'] + '-api-target-pool.selfLink)', 'portRange': '6443' } }] return {'resources': resources}
9.12.10.2. Deployment Manager template for the internal load balancer
You can use the following Deployment Manager template to deploy the internal load balancer that you need for your OpenShift Container Platform cluster:
Exemple 9.61. 02_lb_int.py
Deployment Manager template
def GenerateConfig(context): backends = [] for zone in context.properties['zones']: backends.append({ 'group': '$(ref.' + context.properties['infra_id'] + '-master-' + zone + '-ig' + '.selfLink)' }) resources = [{ 'name': context.properties['infra_id'] + '-cluster-ip', 'type': 'compute.v1.address', 'properties': { 'addressType': 'INTERNAL', 'region': context.properties['region'], 'subnetwork': context.properties['control_subnet'] } }, { # Refer to docs/dev/kube-apiserver-health-check.md on how to correctly setup health check probe for kube-apiserver 'name': context.properties['infra_id'] + '-api-internal-health-check', 'type': 'compute.v1.healthCheck', 'properties': { 'httpsHealthCheck': { 'port': 6443, 'requestPath': '/readyz' }, 'type': "HTTPS" } }, { 'name': context.properties['infra_id'] + '-api-internal-backend-service', 'type': 'compute.v1.regionBackendService', 'properties': { 'backends': backends, 'healthChecks': ['$(ref.' + context.properties['infra_id'] + '-api-internal-health-check.selfLink)'], 'loadBalancingScheme': 'INTERNAL', 'region': context.properties['region'], 'protocol': 'TCP', 'timeoutSec': 120 } }, { 'name': context.properties['infra_id'] + '-api-internal-forwarding-rule', 'type': 'compute.v1.forwardingRule', 'properties': { 'backendService': '$(ref.' + context.properties['infra_id'] + '-api-internal-backend-service.selfLink)', 'IPAddress': '$(ref.' + context.properties['infra_id'] + '-cluster-ip.selfLink)', 'loadBalancingScheme': 'INTERNAL', 'ports': ['6443','22623'], 'region': context.properties['region'], 'subnetwork': context.properties['control_subnet'] } }] for zone in context.properties['zones']: resources.append({ 'name': context.properties['infra_id'] + '-master-' + zone + '-ig', 'type': 'compute.v1.instanceGroup', 'properties': { 'namedPorts': [ { 'name': 'ignition', 'port': 22623 }, { 'name': 'https', 'port': 6443 } ], 'network': context.properties['cluster_network'], 'zone': zone } }) return {'resources': resources}
You will need this template in addition to the 02_lb_ext.py
template when you create an external cluster.
9.12.11. Creating a private DNS zone in GCP
You must configure a private DNS zone in Google Cloud Platform (GCP) for your OpenShift Container Platform cluster to use. One way to create this component is to modify the provided Deployment Manager template.
If you do not use the provided Deployment Manager template to create your GCP infrastructure, you must review the provided information and manually create the infrastructure. If your cluster does not initialize correctly, you might have to contact Red Hat support with your installation logs.
Conditions préalables
- Configure a GCP account.
- Generate the Ignition config files for your cluster.
- Create and configure a VPC and associated subnets in GCP.
Procédure
-
Copy the template from the Deployment Manager template for the private DNS section of this topic and save it as
02_dns.py
on your computer. This template describes the private DNS objects that your cluster requires. Create a
02_dns.yaml
resource definition file:$ cat <<EOF >02_dns.yaml imports: - path: 02_dns.py resources: - name: cluster-dns type: 02_dns.py properties: infra_id: '${INFRA_ID}' 1 cluster_domain: '${CLUSTER_NAME}.${BASE_DOMAIN}' 2 cluster_network: '${CLUSTER_NETWORK}' 3 EOF
Create the deployment by using the
gcloud
CLI:$ gcloud deployment-manager deployments create ${INFRA_ID}-dns --config 02_dns.yaml --project ${HOST_PROJECT} --account ${HOST_PROJECT_ACCOUNT}
The templates do not create DNS entries due to limitations of Deployment Manager, so you must create them manually:
Add the internal DNS entries:
$ if [ -f transaction.yaml ]; then rm transaction.yaml; fi $ gcloud dns record-sets transaction start --zone ${INFRA_ID}-private-zone --project ${HOST_PROJECT} --account ${HOST_PROJECT_ACCOUNT} $ gcloud dns record-sets transaction add ${CLUSTER_IP} --name api.${CLUSTER_NAME}.${BASE_DOMAIN}. --ttl 60 --type A --zone ${INFRA_ID}-private-zone --project ${HOST_PROJECT} --account ${HOST_PROJECT_ACCOUNT} $ gcloud dns record-sets transaction add ${CLUSTER_IP} --name api-int.${CLUSTER_NAME}.${BASE_DOMAIN}. --ttl 60 --type A --zone ${INFRA_ID}-private-zone --project ${HOST_PROJECT} --account ${HOST_PROJECT_ACCOUNT} $ gcloud dns record-sets transaction execute --zone ${INFRA_ID}-private-zone --project ${HOST_PROJECT} --account ${HOST_PROJECT_ACCOUNT}
For an external cluster, also add the external DNS entries:
$ if [ -f transaction.yaml ]; then rm transaction.yaml; fi $ gcloud --account=${HOST_PROJECT_ACCOUNT} --project=${HOST_PROJECT} dns record-sets transaction start --zone ${BASE_DOMAIN_ZONE_NAME} $ gcloud --account=${HOST_PROJECT_ACCOUNT} --project=${HOST_PROJECT} dns record-sets transaction add ${CLUSTER_PUBLIC_IP} --name api.${CLUSTER_NAME}.${BASE_DOMAIN}. --ttl 60 --type A --zone ${BASE_DOMAIN_ZONE_NAME} $ gcloud --account=${HOST_PROJECT_ACCOUNT} --project=${HOST_PROJECT} dns record-sets transaction execute --zone ${BASE_DOMAIN_ZONE_NAME}
9.12.11.1. Deployment Manager template for the private DNS
You can use the following Deployment Manager template to deploy the private DNS that you need for your OpenShift Container Platform cluster:
Exemple 9.62. 02_dns.py
Deployment Manager template
def GenerateConfig(context): resources = [{ 'name': context.properties['infra_id'] + '-private-zone', 'type': 'dns.v1.managedZone', 'properties': { 'description': '', 'dnsName': context.properties['cluster_domain'] + '.', 'visibility': 'private', 'privateVisibilityConfig': { 'networks': [{ 'networkUrl': context.properties['cluster_network'] }] } } }] return {'resources': resources}
9.12.12. Creating firewall rules in GCP
You must create firewall rules in Google Cloud Platform (GCP) for your OpenShift Container Platform cluster to use. One way to create these components is to modify the provided Deployment Manager template.
If you do not use the provided Deployment Manager template to create your GCP infrastructure, you must review the provided information and manually create the infrastructure. If your cluster does not initialize correctly, you might have to contact Red Hat support with your installation logs.
Conditions préalables
- Configure a GCP account.
- Generate the Ignition config files for your cluster.
- Create and configure a VPC and associated subnets in GCP.
Procédure
-
Copy the template from the Deployment Manager template for firewall rules section of this topic and save it as
03_firewall.py
on your computer. This template describes the security groups that your cluster requires. Create a
03_firewall.yaml
resource definition file:$ cat <<EOF >03_firewall.yaml imports: - path: 03_firewall.py resources: - name: cluster-firewall type: 03_firewall.py properties: allowed_external_cidr: '0.0.0.0/0' 1 infra_id: '${INFRA_ID}' 2 cluster_network: '${CLUSTER_NETWORK}' 3 network_cidr: '${NETWORK_CIDR}' 4 EOF
- 1
allowed_external_cidr
is the CIDR range that can access the cluster API and SSH to the bootstrap host. For an internal cluster, set this value to${NETWORK_CIDR}
.- 2
infra_id
is theINFRA_ID
infrastructure name from the extraction step.- 3
cluster_network
is theselfLink
URL to the cluster network.- 4
network_cidr
is the CIDR of the VPC network, for example10.0.0.0/16
.
Create the deployment by using the
gcloud
CLI:$ gcloud deployment-manager deployments create ${INFRA_ID}-firewall --config 03_firewall.yaml --project ${HOST_PROJECT} --account ${HOST_PROJECT_ACCOUNT}
9.12.12.1. Deployment Manager template for firewall rules
You can use the following Deployment Manager template to deploy the firewall rues that you need for your OpenShift Container Platform cluster:
Exemple 9.63. 03_firewall.py
Deployment Manager template
def GenerateConfig(context): resources = [{ 'name': context.properties['infra_id'] + '-bootstrap-in-ssh', 'type': 'compute.v1.firewall', 'properties': { 'network': context.properties['cluster_network'], 'allowed': [{ 'IPProtocol': 'tcp', 'ports': ['22'] }], 'sourceRanges': [context.properties['allowed_external_cidr']], 'targetTags': [context.properties['infra_id'] + '-bootstrap'] } }, { 'name': context.properties['infra_id'] + '-api', 'type': 'compute.v1.firewall', 'properties': { 'network': context.properties['cluster_network'], 'allowed': [{ 'IPProtocol': 'tcp', 'ports': ['6443'] }], 'sourceRanges': [context.properties['allowed_external_cidr']], 'targetTags': [context.properties['infra_id'] + '-master'] } }, { 'name': context.properties['infra_id'] + '-health-checks', 'type': 'compute.v1.firewall', 'properties': { 'network': context.properties['cluster_network'], 'allowed': [{ 'IPProtocol': 'tcp', 'ports': ['6080', '6443', '22624'] }], 'sourceRanges': ['35.191.0.0/16', '130.211.0.0/22', '209.85.152.0/22', '209.85.204.0/22'], 'targetTags': [context.properties['infra_id'] + '-master'] } }, { 'name': context.properties['infra_id'] + '-etcd', 'type': 'compute.v1.firewall', 'properties': { 'network': context.properties['cluster_network'], 'allowed': [{ 'IPProtocol': 'tcp', 'ports': ['2379-2380'] }], 'sourceTags': [context.properties['infra_id'] + '-master'], 'targetTags': [context.properties['infra_id'] + '-master'] } }, { 'name': context.properties['infra_id'] + '-control-plane', 'type': 'compute.v1.firewall', 'properties': { 'network': context.properties['cluster_network'], 'allowed': [{ 'IPProtocol': 'tcp', 'ports': ['10257'] },{ 'IPProtocol': 'tcp', 'ports': ['10259'] },{ 'IPProtocol': 'tcp', 'ports': ['22623'] }], 'sourceTags': [ context.properties['infra_id'] + '-master', context.properties['infra_id'] + '-worker' ], 'targetTags': [context.properties['infra_id'] + '-master'] } }, { 'name': context.properties['infra_id'] + '-internal-network', 'type': 'compute.v1.firewall', 'properties': { 'network': context.properties['cluster_network'], 'allowed': [{ 'IPProtocol': 'icmp' },{ 'IPProtocol': 'tcp', 'ports': ['22'] }], 'sourceRanges': [context.properties['network_cidr']], 'targetTags': [ context.properties['infra_id'] + '-master', context.properties['infra_id'] + '-worker' ] } }, { 'name': context.properties['infra_id'] + '-internal-cluster', 'type': 'compute.v1.firewall', 'properties': { 'network': context.properties['cluster_network'], 'allowed': [{ 'IPProtocol': 'udp', 'ports': ['4789', '6081'] },{ 'IPProtocol': 'udp', 'ports': ['500', '4500'] },{ 'IPProtocol': 'esp', },{ 'IPProtocol': 'tcp', 'ports': ['9000-9999'] },{ 'IPProtocol': 'udp', 'ports': ['9000-9999'] },{ 'IPProtocol': 'tcp', 'ports': ['10250'] },{ 'IPProtocol': 'tcp', 'ports': ['30000-32767'] },{ 'IPProtocol': 'udp', 'ports': ['30000-32767'] }], 'sourceTags': [ context.properties['infra_id'] + '-master', context.properties['infra_id'] + '-worker' ], 'targetTags': [ context.properties['infra_id'] + '-master', context.properties['infra_id'] + '-worker' ] } }] return {'resources': resources}
9.12.14. Creating the RHCOS cluster image for the GCP infrastructure
You must use a valid Red Hat Enterprise Linux CoreOS (RHCOS) image for Google Cloud Platform (GCP) for your OpenShift Container Platform nodes.
Procédure
Obtain the RHCOS image from the RHCOS image mirror page.
ImportantThe RHCOS images might not change with every release of OpenShift Container Platform. You must download an image with the highest version that is less than or equal to the OpenShift Container Platform version that you install. Use the image version that matches your OpenShift Container Platform version if it is available.
The file name contains the OpenShift Container Platform version number in the format
rhcos-<version>-<arch>-gcp.<arch>.tar.gz
.Create the Google storage bucket:
$ gsutil mb gs://<bucket_name>
Upload the RHCOS image to the Google storage bucket:
$ gsutil cp <downloaded_image_file_path>/rhcos-<version>-x86_64-gcp.x86_64.tar.gz gs://<bucket_name>
Export the uploaded RHCOS image location as a variable:
$ export IMAGE_SOURCE=gs://<bucket_name>/rhcos-<version>-x86_64-gcp.x86_64.tar.gz
Create the cluster image:
$ gcloud compute images create "${INFRA_ID}-rhcos-image" \ --source-uri="${IMAGE_SOURCE}"
9.12.15. Creating the bootstrap machine in GCP
You must create the bootstrap machine in Google Cloud Platform (GCP) to use during OpenShift Container Platform cluster initialization. One way to create this machine is to modify the provided Deployment Manager template.
If you do not use the provided Deployment Manager template to create your bootstrap machine, you must review the provided information and manually create the infrastructure. If your cluster does not initialize correctly, you might have to contact Red Hat support with your installation logs.
Conditions préalables
- Configure a GCP account.
- Generate the Ignition config files for your cluster.
- Create and configure a VPC and associated subnets in GCP.
- Create and configure networking and load balancers in GCP.
- Create control plane and compute roles.
- Ensure pyOpenSSL is installed.
Procédure
-
Copy the template from the Deployment Manager template for the bootstrap machine section of this topic and save it as
04_bootstrap.py
on your computer. This template describes the bootstrap machine that your cluster requires. Export the location of the Red Hat Enterprise Linux CoreOS (RHCOS) image that the installation program requires:
$ export CLUSTER_IMAGE=(`gcloud compute images describe ${INFRA_ID}-rhcos-image --format json | jq -r .selfLink`)
Create a bucket and upload the
bootstrap.ign
file:$ gsutil mb gs://${INFRA_ID}-bootstrap-ignition $ gsutil cp <installation_directory>/bootstrap.ign gs://${INFRA_ID}-bootstrap-ignition/
Create a signed URL for the bootstrap instance to use to access the Ignition config. Export the URL from the output as a variable:
$ export BOOTSTRAP_IGN=`gsutil signurl -d 1h service-account-key.json gs://${INFRA_ID}-bootstrap-ignition/bootstrap.ign | grep "^gs:" | awk '{print $5}'`
Create a
04_bootstrap.yaml
resource definition file:$ cat <<EOF >04_bootstrap.yaml imports: - path: 04_bootstrap.py resources: - name: cluster-bootstrap type: 04_bootstrap.py properties: infra_id: '${INFRA_ID}' 1 region: '${REGION}' 2 zone: '${ZONE_0}' 3 cluster_network: '${CLUSTER_NETWORK}' 4 control_subnet: '${CONTROL_SUBNET}' 5 image: '${CLUSTER_IMAGE}' 6 machine_type: 'n1-standard-4' 7 root_volume_size: '128' 8 bootstrap_ign: '${BOOTSTRAP_IGN}' 9 EOF
- 1
infra_id
is theINFRA_ID
infrastructure name from the extraction step.- 2
region
is the region to deploy the cluster into, for exampleus-central1
.- 3
zone
is the zone to deploy the bootstrap instance into, for exampleus-central1-b
.- 4
cluster_network
is theselfLink
URL to the cluster network.- 5
control_subnet
is theselfLink
URL to the control subnet.- 6
image
is theselfLink
URL to the RHCOS image.- 7
machine_type
is the machine type of the instance, for examplen1-standard-4
.- 8
root_volume_size
is the boot disk size for the bootstrap machine.- 9
bootstrap_ign
is the URL output when creating a signed URL.
Create the deployment by using the
gcloud
CLI:$ gcloud deployment-manager deployments create ${INFRA_ID}-bootstrap --config 04_bootstrap.yaml
Add the bootstrap instance to the internal load balancer instance group:
$ gcloud compute instance-groups unmanaged add-instances ${INFRA_ID}-bootstrap-instance-group --zone=${ZONE_0} --instances=${INFRA_ID}-bootstrap
Add the bootstrap instance group to the internal load balancer backend service:
$ gcloud compute backend-services add-backend ${INFRA_ID}-api-internal-backend-service --region=${REGION} --instance-group=${INFRA_ID}-bootstrap-instance-group --instance-group-zone=${ZONE_0}
9.12.15.1. Deployment Manager template for the bootstrap machine
You can use the following Deployment Manager template to deploy the bootstrap machine that you need for your OpenShift Container Platform cluster:
Exemple 9.65. 04_bootstrap.py
Deployment Manager template
def GenerateConfig(context): resources = [{ 'name': context.properties['infra_id'] + '-bootstrap-public-ip', 'type': 'compute.v1.address', 'properties': { 'region': context.properties['region'] } }, { 'name': context.properties['infra_id'] + '-bootstrap', 'type': 'compute.v1.instance', 'properties': { 'disks': [{ 'autoDelete': True, 'boot': True, 'initializeParams': { 'diskSizeGb': context.properties['root_volume_size'], 'sourceImage': context.properties['image'] } }], 'machineType': 'zones/' + context.properties['zone'] + '/machineTypes/' + context.properties['machine_type'], 'metadata': { 'items': [{ 'key': 'user-data', 'value': '{"ignition":{"config":{"replace":{"source":"' + context.properties['bootstrap_ign'] + '"}},"version":"3.2.0"}}', }] }, 'networkInterfaces': [{ 'subnetwork': context.properties['control_subnet'], 'accessConfigs': [{ 'natIP': '$(ref.' + context.properties['infra_id'] + '-bootstrap-public-ip.address)' }] }], 'tags': { 'items': [ context.properties['infra_id'] + '-master', context.properties['infra_id'] + '-bootstrap' ] }, 'zone': context.properties['zone'] } }, { 'name': context.properties['infra_id'] + '-bootstrap-ig', 'type': 'compute.v1.instanceGroup', 'properties': { 'namedPorts': [ { 'name': 'ignition', 'port': 22623 }, { 'name': 'https', 'port': 6443 } ], 'network': context.properties['cluster_network'], 'zone': context.properties['zone'] } }] return {'resources': resources}
9.12.16. Creating the control plane machines in GCP
You must create the control plane machines in Google Cloud Platform (GCP) for your cluster to use. One way to create these machines is to modify the provided Deployment Manager template.
If you do not use the provided Deployment Manager template to create your control plane machines, you must review the provided information and manually create the infrastructure. If your cluster does not initialize correctly, you might have to contact Red Hat support with your installation logs.
Conditions préalables
- Configure a GCP account.
- Generate the Ignition config files for your cluster.
- Create and configure a VPC and associated subnets in GCP.
- Create and configure networking and load balancers in GCP.
- Create control plane and compute roles.
- Create the bootstrap machine.
Procédure
-
Copy the template from the Deployment Manager template for control plane machines section of this topic and save it as
05_control_plane.py
on your computer. This template describes the control plane machines that your cluster requires. Export the following variable required by the resource definition:
$ export MASTER_IGNITION=`cat <installation_directory>/master.ign`
Create a
05_control_plane.yaml
resource definition file:$ cat <<EOF >05_control_plane.yaml imports: - path: 05_control_plane.py resources: - name: cluster-control-plane type: 05_control_plane.py properties: infra_id: '${INFRA_ID}' 1 zones: 2 - '${ZONE_0}' - '${ZONE_1}' - '${ZONE_2}' control_subnet: '${CONTROL_SUBNET}' 3 image: '${CLUSTER_IMAGE}' 4 machine_type: 'n1-standard-4' 5 root_volume_size: '128' service_account_email: '${MASTER_SERVICE_ACCOUNT}' 6 ignition: '${MASTER_IGNITION}' 7 EOF
- 1
infra_id
is theINFRA_ID
infrastructure name from the extraction step.- 2
zones
are the zones to deploy the control plane instances into, for exampleus-central1-a
,us-central1-b
, andus-central1-c
.- 3
control_subnet
is theselfLink
URL to the control subnet.- 4
image
is theselfLink
URL to the RHCOS image.- 5
machine_type
is the machine type of the instance, for examplen1-standard-4
.- 6
service_account_email
is the email address for the master service account that you created.- 7
ignition
is the contents of themaster.ign
file.
Create the deployment by using the
gcloud
CLI:$ gcloud deployment-manager deployments create ${INFRA_ID}-control-plane --config 05_control_plane.yaml
The templates do not manage load balancer membership due to limitations of Deployment Manager, so you must add the control plane machines manually.
Run the following commands to add the control plane machines to the appropriate instance groups:
$ gcloud compute instance-groups unmanaged add-instances ${INFRA_ID}-master-${ZONE_0}-instance-group --zone=${ZONE_0} --instances=${INFRA_ID}-master-0 $ gcloud compute instance-groups unmanaged add-instances ${INFRA_ID}-master-${ZONE_1}-instance-group --zone=${ZONE_1} --instances=${INFRA_ID}-master-1 $ gcloud compute instance-groups unmanaged add-instances ${INFRA_ID}-master-${ZONE_2}-instance-group --zone=${ZONE_2} --instances=${INFRA_ID}-master-2
For an external cluster, you must also run the following commands to add the control plane machines to the target pools:
$ gcloud compute target-pools add-instances ${INFRA_ID}-api-target-pool --instances-zone="${ZONE_0}" --instances=${INFRA_ID}-master-0 $ gcloud compute target-pools add-instances ${INFRA_ID}-api-target-pool --instances-zone="${ZONE_1}" --instances=${INFRA_ID}-master-1 $ gcloud compute target-pools add-instances ${INFRA_ID}-api-target-pool --instances-zone="${ZONE_2}" --instances=${INFRA_ID}-master-2
9.12.16.1. Deployment Manager template for control plane machines
You can use the following Deployment Manager template to deploy the control plane machines that you need for your OpenShift Container Platform cluster:
Exemple 9.66. 05_control_plane.py
Deployment Manager template
def GenerateConfig(context): resources = [{ 'name': context.properties['infra_id'] + '-master-0', 'type': 'compute.v1.instance', 'properties': { 'disks': [{ 'autoDelete': True, 'boot': True, 'initializeParams': { 'diskSizeGb': context.properties['root_volume_size'], 'diskType': 'zones/' + context.properties['zones'][0] + '/diskTypes/pd-ssd', 'sourceImage': context.properties['image'] } }], 'machineType': 'zones/' + context.properties['zones'][0] + '/machineTypes/' + context.properties['machine_type'], 'metadata': { 'items': [{ 'key': 'user-data', 'value': context.properties['ignition'] }] }, 'networkInterfaces': [{ 'subnetwork': context.properties['control_subnet'] }], 'serviceAccounts': [{ 'email': context.properties['service_account_email'], 'scopes': ['https://www.googleapis.com/auth/cloud-platform'] }], 'tags': { 'items': [ context.properties['infra_id'] + '-master', ] }, 'zone': context.properties['zones'][0] } }, { 'name': context.properties['infra_id'] + '-master-1', 'type': 'compute.v1.instance', 'properties': { 'disks': [{ 'autoDelete': True, 'boot': True, 'initializeParams': { 'diskSizeGb': context.properties['root_volume_size'], 'diskType': 'zones/' + context.properties['zones'][1] + '/diskTypes/pd-ssd', 'sourceImage': context.properties['image'] } }], 'machineType': 'zones/' + context.properties['zones'][1] + '/machineTypes/' + context.properties['machine_type'], 'metadata': { 'items': [{ 'key': 'user-data', 'value': context.properties['ignition'] }] }, 'networkInterfaces': [{ 'subnetwork': context.properties['control_subnet'] }], 'serviceAccounts': [{ 'email': context.properties['service_account_email'], 'scopes': ['https://www.googleapis.com/auth/cloud-platform'] }], 'tags': { 'items': [ context.properties['infra_id'] + '-master', ] }, 'zone': context.properties['zones'][1] } }, { 'name': context.properties['infra_id'] + '-master-2', 'type': 'compute.v1.instance', 'properties': { 'disks': [{ 'autoDelete': True, 'boot': True, 'initializeParams': { 'diskSizeGb': context.properties['root_volume_size'], 'diskType': 'zones/' + context.properties['zones'][2] + '/diskTypes/pd-ssd', 'sourceImage': context.properties['image'] } }], 'machineType': 'zones/' + context.properties['zones'][2] + '/machineTypes/' + context.properties['machine_type'], 'metadata': { 'items': [{ 'key': 'user-data', 'value': context.properties['ignition'] }] }, 'networkInterfaces': [{ 'subnetwork': context.properties['control_subnet'] }], 'serviceAccounts': [{ 'email': context.properties['service_account_email'], 'scopes': ['https://www.googleapis.com/auth/cloud-platform'] }], 'tags': { 'items': [ context.properties['infra_id'] + '-master', ] }, 'zone': context.properties['zones'][2] } }] return {'resources': resources}
9.12.17. Wait for bootstrap completion and remove bootstrap resources in GCP
After you create all of the required infrastructure in Google Cloud Platform (GCP), wait for the bootstrap process to complete on the machines that you provisioned by using the Ignition config files that you generated with the installation program.
Conditions préalables
- Configure a GCP account.
- Generate the Ignition config files for your cluster.
- Create and configure a VPC and associated subnets in GCP.
- Create and configure networking and load balancers in GCP.
- Create control plane and compute roles.
- Create the bootstrap machine.
- Create the control plane machines.
Procédure
Change to the directory that contains the installation program and run the following command:
$ ./openshift-install wait-for bootstrap-complete --dir <installation_directory> \ 1 --log-level info 2
If the command exits without a
FATAL
warning, your production control plane has initialized.Delete the bootstrap resources:
$ gcloud compute backend-services remove-backend ${INFRA_ID}-api-internal-backend-service --region=${REGION} --instance-group=${INFRA_ID}-bootstrap-instance-group --instance-group-zone=${ZONE_0} $ gsutil rm gs://${INFRA_ID}-bootstrap-ignition/bootstrap.ign $ gsutil rb gs://${INFRA_ID}-bootstrap-ignition $ gcloud deployment-manager deployments delete ${INFRA_ID}-bootstrap
9.12.18. Creating additional worker machines in GCP
You can create worker machines in Google Cloud Platform (GCP) for your cluster to use by launching individual instances discretely or by automated processes outside the cluster, such as auto scaling groups. You can also take advantage of the built-in cluster scaling mechanisms and the machine API in OpenShift Container Platform.
In this example, you manually launch one instance by using the Deployment Manager template. Additional instances can be launched by including additional resources of type 06_worker.py
in the file.
If you do not use the provided Deployment Manager template to create your worker machines, you must review the provided information and manually create the infrastructure. If your cluster does not initialize correctly, you might have to contact Red Hat support with your installation logs.
Conditions préalables
- Configure a GCP account.
- Generate the Ignition config files for your cluster.
- Create and configure a VPC and associated subnets in GCP.
- Create and configure networking and load balancers in GCP.
- Create control plane and compute roles.
- Create the bootstrap machine.
- Create the control plane machines.
Procédure
-
Copy the template from the Deployment Manager template for worker machines section of this topic and save it as
06_worker.py
on your computer. This template describes the worker machines that your cluster requires. Export the variables that the resource definition uses.
Export the subnet that hosts the compute machines:
$ export COMPUTE_SUBNET=(`gcloud compute networks subnets describe ${HOST_PROJECT_COMPUTE_SUBNET} --region=${REGION} --project ${HOST_PROJECT} --account ${HOST_PROJECT_ACCOUNT} --format json | jq -r .selfLink`)
Export the email address for your service account:
$ export WORKER_SERVICE_ACCOUNT=(`gcloud iam service-accounts list --filter "email~^${INFRA_ID}-w@${PROJECT_NAME}." --format json | jq -r '.[0].email'`)
Export the location of the compute machine Ignition config file:
$ export WORKER_IGNITION=`cat <installation_directory>/worker.ign`
Create a
06_worker.yaml
resource definition file:$ cat <<EOF >06_worker.yaml imports: - path: 06_worker.py resources: - name: 'worker-0' 1 type: 06_worker.py properties: infra_id: '${INFRA_ID}' 2 zone: '${ZONE_0}' 3 compute_subnet: '${COMPUTE_SUBNET}' 4 image: '${CLUSTER_IMAGE}' 5 machine_type: 'n1-standard-4' 6 root_volume_size: '128' service_account_email: '${WORKER_SERVICE_ACCOUNT}' 7 ignition: '${WORKER_IGNITION}' 8 - name: 'worker-1' type: 06_worker.py properties: infra_id: '${INFRA_ID}' 9 zone: '${ZONE_1}' 10 compute_subnet: '${COMPUTE_SUBNET}' 11 image: '${CLUSTER_IMAGE}' 12 machine_type: 'n1-standard-4' 13 root_volume_size: '128' service_account_email: '${WORKER_SERVICE_ACCOUNT}' 14 ignition: '${WORKER_IGNITION}' 15 EOF
- 1
name
is the name of the worker machine, for exampleworker-0
.- 2 9
infra_id
is theINFRA_ID
infrastructure name from the extraction step.- 3 10
zone
is the zone to deploy the worker machine into, for exampleus-central1-a
.- 4 11
compute_subnet
is theselfLink
URL to the compute subnet.- 5 12
image
is theselfLink
URL to the RHCOS image. 1- 6 13
machine_type
is the machine type of the instance, for examplen1-standard-4
.- 7 14
service_account_email
is the email address for the worker service account that you created.- 8 15
ignition
is the contents of theworker.ign
file.
-
Optional: If you want to launch additional instances, include additional resources of type
06_worker.py
in your06_worker.yaml
resource definition file. Create the deployment by using the
gcloud
CLI:$ gcloud deployment-manager deployments create ${INFRA_ID}-worker --config 06_worker.yaml
To use a GCP Marketplace image, specify the offer to use:
-
OpenShift Container Platform:
https://www.googleapis.com/compute/v1/projects/redhat-marketplace-public/global/images/redhat-coreos-ocp-48-x86-64-202210040145
-
OpenShift Platform Plus:
https://www.googleapis.com/compute/v1/projects/redhat-marketplace-public/global/images/redhat-coreos-opp-48-x86-64-202206140145
-
OpenShift Kubernetes Engine:
https://www.googleapis.com/compute/v1/projects/redhat-marketplace-public/global/images/redhat-coreos-oke-48-x86-64-202206140145
-
OpenShift Container Platform:
9.12.18.1. Deployment Manager template for worker machines
You can use the following Deployment Manager template to deploy the worker machines that you need for your OpenShift Container Platform cluster:
Exemple 9.67. 06_worker.py
Deployment Manager template
def GenerateConfig(context): resources = [{ 'name': context.properties['infra_id'] + '-' + context.env['name'], 'type': 'compute.v1.instance', 'properties': { 'disks': [{ 'autoDelete': True, 'boot': True, 'initializeParams': { 'diskSizeGb': context.properties['root_volume_size'], 'sourceImage': context.properties['image'] } }], 'machineType': 'zones/' + context.properties['zone'] + '/machineTypes/' + context.properties['machine_type'], 'metadata': { 'items': [{ 'key': 'user-data', 'value': context.properties['ignition'] }] }, 'networkInterfaces': [{ 'subnetwork': context.properties['compute_subnet'] }], 'serviceAccounts': [{ 'email': context.properties['service_account_email'], 'scopes': ['https://www.googleapis.com/auth/cloud-platform'] }], 'tags': { 'items': [ context.properties['infra_id'] + '-worker', ] }, 'zone': context.properties['zone'] } }] return {'resources': resources}
9.12.19. Installer le CLI OpenShift en téléchargeant le binaire
Vous pouvez installer l'OpenShift CLI (oc
) pour interagir avec OpenShift Container Platform à partir d'une interface de ligne de commande. Vous pouvez installer oc
sur Linux, Windows ou macOS.
Si vous avez installé une version antérieure de oc
, vous ne pouvez pas l'utiliser pour exécuter toutes les commandes dans OpenShift Container Platform 4.12. Téléchargez et installez la nouvelle version de oc
.
Installation de la CLI OpenShift sur Linux
Vous pouvez installer le binaire OpenShift CLI (oc
) sur Linux en utilisant la procédure suivante.
Procédure
- Naviguez jusqu'à la page de téléchargements OpenShift Container Platform sur le portail client Red Hat.
- Sélectionnez l'architecture dans la liste déroulante Product Variant.
- Sélectionnez la version appropriée dans la liste déroulante Version.
- Cliquez sur Download Now à côté de l'entrée OpenShift v4.12 Linux Client et enregistrez le fichier.
Décompressez l'archive :
tar xvf <file>
Placez le fichier binaire
oc
dans un répertoire situé sur votre sitePATH
.Pour vérifier votre
PATH
, exécutez la commande suivante :$ echo $PATH
Après l'installation de la CLI OpenShift, elle est disponible à l'aide de la commande oc
:
oc <command>
Installation de la CLI OpenShift sur Windows
Vous pouvez installer le binaire OpenShift CLI (oc
) sur Windows en utilisant la procédure suivante.
Procédure
- Naviguez jusqu'à la page de téléchargements OpenShift Container Platform sur le portail client Red Hat.
- Sélectionnez la version appropriée dans la liste déroulante Version.
- Cliquez sur Download Now à côté de l'entrée OpenShift v4.12 Windows Client et enregistrez le fichier.
- Décompressez l'archive à l'aide d'un programme ZIP.
Déplacez le fichier binaire
oc
dans un répertoire situé sur votre sitePATH
.Pour vérifier votre
PATH
, ouvrez l'invite de commande et exécutez la commande suivante :C:\N> path
Après l'installation de la CLI OpenShift, elle est disponible à l'aide de la commande oc
:
C:\N> oc <command>
Installation de la CLI OpenShift sur macOS
Vous pouvez installer le binaire OpenShift CLI (oc
) sur macOS en utilisant la procédure suivante.
Procédure
- Naviguez jusqu'à la page de téléchargements OpenShift Container Platform sur le portail client Red Hat.
- Sélectionnez la version appropriée dans la liste déroulante Version.
Cliquez sur Download Now à côté de l'entrée OpenShift v4.12 macOS Client et enregistrez le fichier.
NotePour macOS arm64, choisissez l'entrée OpenShift v4.12 macOS arm64 Client.
- Décompressez l'archive.
Déplacez le binaire
oc
dans un répertoire de votre PATH.Pour vérifier votre
PATH
, ouvrez un terminal et exécutez la commande suivante :$ echo $PATH
Après l'installation de la CLI OpenShift, elle est disponible à l'aide de la commande oc
:
oc <command>
9.12.20. Logging in to the cluster by using the CLI
You can log in to your cluster as a default system user by exporting the cluster kubeconfig
file. The kubeconfig
file contains information about the cluster that is used by the CLI to connect a client to the correct cluster and API server. The file is specific to a cluster and is created during OpenShift Container Platform installation.
Conditions préalables
- You deployed an OpenShift Container Platform cluster.
-
Vous avez installé le CLI
oc
.
Procédure
Export the
kubeadmin
credentials:$ export KUBECONFIG=<installation_directory>/auth/kubeconfig 1
- 1
- For
<installation_directory>
, specify the path to the directory that you stored the installation files in.
Verify you can run
oc
commands successfully using the exported configuration:$ oc whoami
Exemple de sortie
system:admin
9.12.21. Approving the certificate signing requests for your machines
When you add machines to a cluster, two pending certificate signing requests (CSRs) are generated for each machine that you added. You must confirm that these CSRs are approved or, if necessary, approve them yourself. The client requests must be approved first, followed by the server requests.
Conditions préalables
- You added machines to your cluster.
Procédure
Confirm that the cluster recognizes the machines:
$ oc get nodes
Exemple de sortie
NAME STATUS ROLES AGE VERSION master-0 Ready master 63m v1.25.0 master-1 Ready master 63m v1.25.0 master-2 Ready master 64m v1.25.0
The output lists all of the machines that you created.
NoteThe preceding output might not include the compute nodes, also known as worker nodes, until some CSRs are approved.
Review the pending CSRs and ensure that you see the client requests with the
Pending
orApproved
status for each machine that you added to the cluster:$ oc get csr
Exemple de sortie
NAME AGE REQUESTOR CONDITION csr-8b2br 15m system:serviceaccount:openshift-machine-config-operator:node-bootstrapper Pending csr-8vnps 15m system:serviceaccount:openshift-machine-config-operator:node-bootstrapper Pending ...
In this example, two machines are joining the cluster. You might see more approved CSRs in the list.
If the CSRs were not approved, after all of the pending CSRs for the machines you added are in
Pending
status, approve the CSRs for your cluster machines:NoteBecause the CSRs rotate automatically, approve your CSRs within an hour of adding the machines to the cluster. If you do not approve them within an hour, the certificates will rotate, and more than two certificates will be present for each node. You must approve all of these certificates. After the client CSR is approved, the Kubelet creates a secondary CSR for the serving certificate, which requires manual approval. Then, subsequent serving certificate renewal requests are automatically approved by the
machine-approver
if the Kubelet requests a new certificate with identical parameters.NoteFor clusters running on platforms that are not machine API enabled, such as bare metal and other user-provisioned infrastructure, you must implement a method of automatically approving the kubelet serving certificate requests (CSRs). If a request is not approved, then the
oc exec
,oc rsh
, andoc logs
commands cannot succeed, because a serving certificate is required when the API server connects to the kubelet. Any operation that contacts the Kubelet endpoint requires this certificate approval to be in place. The method must watch for new CSRs, confirm that the CSR was submitted by thenode-bootstrapper
service account in thesystem:node
orsystem:admin
groups, and confirm the identity of the node.To approve them individually, run the following command for each valid CSR:
$ oc adm certificate approve <csr_name> 1
- 1
<csr_name>
est le nom d'un CSR figurant dans la liste des CSR actuels.
To approve all pending CSRs, run the following command:
$ oc get csr -o go-template='{{range .items}}{{if not .status}}{{.metadata.name}}{{"\n"}}{{end}}{{end}}' | xargs --no-run-if-empty oc adm certificate approve
NoteSome Operators might not become available until some CSRs are approved.
Now that your client requests are approved, you must review the server requests for each machine that you added to the cluster:
$ oc get csr
Exemple de sortie
NAME AGE REQUESTOR CONDITION csr-bfd72 5m26s system:node:ip-10-0-50-126.us-east-2.compute.internal Pending csr-c57lv 5m26s system:node:ip-10-0-95-157.us-east-2.compute.internal Pending ...
If the remaining CSRs are not approved, and are in the
Pending
status, approve the CSRs for your cluster machines:To approve them individually, run the following command for each valid CSR:
$ oc adm certificate approve <csr_name> 1
- 1
<csr_name>
est le nom d'un CSR figurant dans la liste des CSR actuels.
To approve all pending CSRs, run the following command:
$ oc get csr -o go-template='{{range .items}}{{if not .status}}{{.metadata.name}}{{"\n"}}{{end}}{{end}}' | xargs oc adm certificate approve
After all client and server CSRs have been approved, the machines have the
Ready
status. Verify this by running the following command:$ oc get nodes
Exemple de sortie
NAME STATUS ROLES AGE VERSION master-0 Ready master 73m v1.25.0 master-1 Ready master 73m v1.25.0 master-2 Ready master 74m v1.25.0 worker-0 Ready worker 11m v1.25.0 worker-1 Ready worker 11m v1.25.0
NoteIt can take a few minutes after approval of the server CSRs for the machines to transition to the
Ready
status.
Informations complémentaires
- For more information on CSRs, see Certificate Signing Requests.
9.12.22. Adding the ingress DNS records
DNS zone configuration is removed when creating Kubernetes manifests and generating Ignition configs. You must manually create DNS records that point at the ingress load balancer. You can create either a wildcard *.apps.{baseDomain}.
or specific records. You can use A, CNAME, and other records per your requirements.
Conditions préalables
- Configure a GCP account.
- Remove the DNS Zone configuration when creating Kubernetes manifests and generating Ignition configs.
- Create and configure a VPC and associated subnets in GCP.
- Create and configure networking and load balancers in GCP.
- Create control plane and compute roles.
- Create the bootstrap machine.
- Create the control plane machines.
- Create the worker machines.
Procédure
Wait for the Ingress router to create a load balancer and populate the
EXTERNAL-IP
field:$ oc -n openshift-ingress get service router-default
Exemple de sortie
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE router-default LoadBalancer 172.30.18.154 35.233.157.184 80:32288/TCP,443:31215/TCP 98
Add the A record to your zones:
To use A records:
Export the variable for the router IP address:
$ export ROUTER_IP=`oc -n openshift-ingress get service router-default --no-headers | awk '{print $4}'`
Add the A record to the private zones:
$ if [ -f transaction.yaml ]; then rm transaction.yaml; fi $ gcloud dns record-sets transaction start --zone ${INFRA_ID}-private-zone --project ${HOST_PROJECT} --account ${HOST_PROJECT_ACCOUNT} $ gcloud dns record-sets transaction add ${ROUTER_IP} --name \*.apps.${CLUSTER_NAME}.${BASE_DOMAIN}. --ttl 300 --type A --zone ${INFRA_ID}-private-zone --project ${HOST_PROJECT} --account ${HOST_PROJECT_ACCOUNT} $ gcloud dns record-sets transaction execute --zone ${INFRA_ID}-private-zone --project ${HOST_PROJECT} --account ${HOST_PROJECT_ACCOUNT}
For an external cluster, also add the A record to the public zones:
$ if [ -f transaction.yaml ]; then rm transaction.yaml; fi $ gcloud dns record-sets transaction start --zone ${BASE_DOMAIN_ZONE_NAME} --project ${HOST_PROJECT} --account ${HOST_PROJECT_ACCOUNT} $ gcloud dns record-sets transaction add ${ROUTER_IP} --name \*.apps.${CLUSTER_NAME}.${BASE_DOMAIN}. --ttl 300 --type A --zone ${BASE_DOMAIN_ZONE_NAME} --project ${HOST_PROJECT} --account ${HOST_PROJECT_ACCOUNT} $ gcloud dns record-sets transaction execute --zone ${BASE_DOMAIN_ZONE_NAME} --project ${HOST_PROJECT} --account ${HOST_PROJECT_ACCOUNT}
To add explicit domains instead of using a wildcard, create entries for each of the cluster’s current routes:
$ oc get --all-namespaces -o jsonpath='{range .items[*]}{range .status.ingress[*]}{.host}{"\n"}{end}{end}' routes
Exemple de sortie
oauth-openshift.apps.your.cluster.domain.example.com console-openshift-console.apps.your.cluster.domain.example.com downloads-openshift-console.apps.your.cluster.domain.example.com alertmanager-main-openshift-monitoring.apps.your.cluster.domain.example.com prometheus-k8s-openshift-monitoring.apps.your.cluster.domain.example.com
9.12.23. Adding ingress firewall rules
The cluster requires several firewall rules. If you do not use a shared VPC, these rules are created by the Ingress Controller via the GCP cloud provider. When you use a shared VPC, you can either create cluster-wide firewall rules for all services now or create each rule based on events, when the cluster requests access. By creating each rule when the cluster requests access, you know exactly which firewall rules are required. By creating cluster-wide firewall rules, you can apply the same rule set across multiple clusters.
If you choose to create each rule based on events, you must create firewall rules after you provision the cluster and during the life of the cluster when the console notifies you that rules are missing. Events that are similar to the following event are displayed, and you must add the firewall rules that are required:
$ oc get events -n openshift-ingress --field-selector="reason=LoadBalancerManualChange"
Exemple de sortie
Firewall change required by security admin: `gcloud compute firewall-rules create k8s-fw-a26e631036a3f46cba28f8df67266d55 --network example-network --description "{\"kubernetes.io/service-name\":\"openshift-ingress/router-default\", \"kubernetes.io/service-ip\":\"35.237.236.234\"}\" --allow tcp:443,tcp:80 --source-ranges 0.0.0.0/0 --target-tags exampl-fqzq7-master,exampl-fqzq7-worker --project example-project`
If you encounter issues when creating these rule-based events, you can configure the cluster-wide firewall rules while your cluster is running.
9.12.24. Completing a GCP installation on user-provisioned infrastructure
After you start the OpenShift Container Platform installation on Google Cloud Platform (GCP) user-provisioned infrastructure, you can monitor the cluster events until the cluster is ready.
Conditions préalables
- Deploy the bootstrap machine for an OpenShift Container Platform cluster on user-provisioned GCP infrastructure.
-
Install the
oc
CLI and log in.
Procédure
Complete the cluster installation:
$ ./openshift-install --dir <installation_directory> wait-for install-complete 1
Exemple de sortie
INFO Waiting up to 30m0s for the cluster to initialize...
- 1
- For
<installation_directory>
, specify the path to the directory that you stored the installation files in.
Important-
Les fichiers de configuration d'Ignition générés par le programme d'installation contiennent des certificats qui expirent après 24 heures et qui sont renouvelés à ce moment-là. Si le cluster est arrêté avant le renouvellement des certificats et qu'il est redémarré après l'expiration des 24 heures, le cluster récupère automatiquement les certificats expirés. L'exception est que vous devez approuver manuellement les demandes de signature de certificat (CSR) de
node-bootstrapper
en attente pour récupérer les certificats de kubelet. Pour plus d'informations, consultez la documentation relative à Recovering from expired control plane certificates. - Il est recommandé d'utiliser les fichiers de configuration Ignition dans les 12 heures suivant leur génération, car le certificat de 24 heures tourne entre 16 et 22 heures après l'installation du cluster. En utilisant les fichiers de configuration Ignition dans les 12 heures, vous pouvez éviter l'échec de l'installation si la mise à jour du certificat s'exécute pendant l'installation.
Observe the running state of your cluster.
Run the following command to view the current cluster version and status:
$ oc get clusterversion
Exemple de sortie
NAME VERSION AVAILABLE PROGRESSING SINCE STATUS version False True 24m Working towards 4.5.4: 99% complete
Run the following command to view the Operators managed on the control plane by the Cluster Version Operator (CVO):
$ oc get clusteroperators
Exemple de sortie
NAME VERSION AVAILABLE PROGRESSING DEGRADED SINCE authentication 4.5.4 True False False 7m56s cloud-credential 4.5.4 True False False 31m cluster-autoscaler 4.5.4 True False False 16m console 4.5.4 True False False 10m csi-snapshot-controller 4.5.4 True False False 16m dns 4.5.4 True False False 22m etcd 4.5.4 False False False 25s image-registry 4.5.4 True False False 16m ingress 4.5.4 True False False 16m insights 4.5.4 True False False 17m kube-apiserver 4.5.4 True False False 19m kube-controller-manager 4.5.4 True False False 20m kube-scheduler 4.5.4 True False False 20m kube-storage-version-migrator 4.5.4 True False False 16m machine-api 4.5.4 True False False 22m machine-config 4.5.4 True False False 22m marketplace 4.5.4 True False False 16m monitoring 4.5.4 True False False 10m network 4.5.4 True False False 23m node-tuning 4.5.4 True False False 23m openshift-apiserver 4.5.4 True False False 17m openshift-controller-manager 4.5.4 True False False 15m openshift-samples 4.5.4 True False False 16m operator-lifecycle-manager 4.5.4 True False False 22m operator-lifecycle-manager-catalog 4.5.4 True False False 22m operator-lifecycle-manager-packageserver 4.5.4 True False False 18m service-ca 4.5.4 True False False 23m service-catalog-apiserver 4.5.4 True False False 23m service-catalog-controller-manager 4.5.4 True False False 23m storage 4.5.4 True False False 17m
Run the following command to view your cluster pods:
$ oc get pods --all-namespaces
Exemple de sortie
NAMESPACE NAME READY STATUS RESTARTS AGE kube-system etcd-member-ip-10-0-3-111.us-east-2.compute.internal 1/1 Running 0 35m kube-system etcd-member-ip-10-0-3-239.us-east-2.compute.internal 1/1 Running 0 37m kube-system etcd-member-ip-10-0-3-24.us-east-2.compute.internal 1/1 Running 0 35m openshift-apiserver-operator openshift-apiserver-operator-6d6674f4f4-h7t2t 1/1 Running 1 37m openshift-apiserver apiserver-fm48r 1/1 Running 0 30m openshift-apiserver apiserver-fxkvv 1/1 Running 0 29m openshift-apiserver apiserver-q85nm 1/1 Running 0 29m ... openshift-service-ca-operator openshift-service-ca-operator-66ff6dc6cd-9r257 1/1 Running 0 37m openshift-service-ca apiservice-cabundle-injector-695b6bcbc-cl5hm 1/1 Running 0 35m openshift-service-ca configmap-cabundle-injector-8498544d7-25qn6 1/1 Running 0 35m openshift-service-ca service-serving-cert-signer-6445fc9c6-wqdqn 1/1 Running 0 35m openshift-service-catalog-apiserver-operator openshift-service-catalog-apiserver-operator-549f44668b-b5q2w 1/1 Running 0 32m openshift-service-catalog-controller-manager-operator openshift-service-catalog-controller-manager-operator-b78cr2lnm 1/1 Running 0 31m
When the current cluster version is
AVAILABLE
, the installation is complete.
9.12.25. Telemetry access for OpenShift Container Platform
In OpenShift Container Platform 4.12, the Telemetry service, which runs by default to provide metrics about cluster health and the success of updates, requires internet access. If your cluster is connected to the internet, Telemetry runs automatically, and your cluster is registered to OpenShift Cluster Manager Hybrid Cloud Console.
After you confirm that your OpenShift Cluster Manager Hybrid Cloud Console inventory is correct, either maintained automatically by Telemetry or manually by using OpenShift Cluster Manager, use subscription watch to track your OpenShift Container Platform subscriptions at the account or multi-cluster level.
Ressources complémentaires
- See About remote health monitoring for more information about the Telemetry service
9.12.26. Prochaines étapes
- Customize your cluster.
- If necessary, you can opt out of remote health reporting.