6.13. Installing a cluster on user-provisioned infrastructure in AWS by using CloudFormation templates
In OpenShift Container Platform version 4.12, you can install a cluster on Amazon Web Services (AWS) that uses infrastructure that you provide.
One way to create this infrastructure is to use the provided CloudFormation templates. You can modify the templates to customize your infrastructure or use the information that they contain to create AWS objects according to your company’s policies.
The steps for performing a user-provisioned infrastructure installation are provided as an example only. Installing a cluster with infrastructure you provide requires knowledge of the cloud provider and the installation process of OpenShift Container Platform. Several CloudFormation templates are provided to assist in completing these steps or to help model your own. You are also free to create the required resources through other methods; the templates are just an example.
6.13.1. Conditions préalables
- You reviewed details about the OpenShift Container Platform installation and update processes.
- You read the documentation on selecting a cluster installation method and preparing it for users.
You configured an AWS account to host the cluster.
ImportantIf you have an AWS profile stored on your computer, it must not use a temporary session token that you generated while using a multi-factor authentication device. The cluster continues to use your current AWS credentials to create AWS resources for the entire life of the cluster, so you must use key-based, long-lived credentials. To generate appropriate keys, see Managing Access Keys for IAM Users in the AWS documentation. You can supply the keys when you run the installation program.
- You downloaded the AWS CLI and installed it on your computer. See Install the AWS CLI Using the Bundled Installer (Linux, macOS, or UNIX) in the AWS documentation.
If you use a firewall, you configured it to allow the sites that your cluster requires access to.
NoteBe sure to also review this site list if you are configuring a proxy.
-
If the cloud identity and access management (IAM) APIs are not accessible in your environment, or if you do not want to store an administrator-level credential secret in the
kube-system
namespace, you can manually create and maintain IAM credentials.
6.13.2. Accès à l'internet pour OpenShift Container Platform
Dans OpenShift Container Platform 4.12, vous devez avoir accès à Internet pour installer votre cluster.
Vous devez disposer d'un accès à l'internet pour :
- Accédez à OpenShift Cluster Manager Hybrid Cloud Console pour télécharger le programme d'installation et effectuer la gestion des abonnements. Si le cluster dispose d'un accès internet et que vous ne désactivez pas Telemetry, ce service donne automatiquement des droits à votre cluster.
- Accédez à Quay.io pour obtenir les paquets nécessaires à l'installation de votre cluster.
- Obtenir les paquets nécessaires pour effectuer les mises à jour de la grappe.
Si votre cluster ne peut pas avoir d'accès direct à l'internet, vous pouvez effectuer une installation en réseau restreint sur certains types d'infrastructure que vous fournissez. Au cours de ce processus, vous téléchargez le contenu requis et l'utilisez pour remplir un registre miroir avec les paquets d'installation. Avec certains types d'installation, l'environnement dans lequel vous installez votre cluster ne nécessite pas d'accès à Internet. Avant de mettre à jour le cluster, vous mettez à jour le contenu du registre miroir.
6.13.3. Requirements for a cluster with user-provisioned infrastructure
For a cluster that contains user-provisioned infrastructure, you must deploy all of the required machines.
This section describes the requirements for deploying OpenShift Container Platform on user-provisioned infrastructure.
6.13.3.1. Required machines for cluster installation
The smallest OpenShift Container Platform clusters require the following hosts:
Hosts | Description |
---|---|
One temporary bootstrap machine | The cluster requires the bootstrap machine to deploy the OpenShift Container Platform cluster on the three control plane machines. You can remove the bootstrap machine after you install the cluster. |
Three control plane machines | The control plane machines run the Kubernetes and OpenShift Container Platform services that form the control plane. |
At least two compute machines, which are also known as worker machines. | The workloads requested by OpenShift Container Platform users run on the compute machines. |
To maintain high availability of your cluster, use separate physical hosts for these cluster machines.
The bootstrap and control plane machines must use Red Hat Enterprise Linux CoreOS (RHCOS) as the operating system. However, the compute machines can choose between Red Hat Enterprise Linux CoreOS (RHCOS), Red Hat Enterprise Linux (RHEL) 8.4, or RHEL 8.5.
Note that RHCOS is based on Red Hat Enterprise Linux (RHEL) 8 and inherits all of its hardware certifications and requirements. See Red Hat Enterprise Linux technology capabilities and limits.
6.13.3.2. Minimum resource requirements for cluster installation
Each cluster machine must meet the following minimum requirements:
Machine | Operating System | vCPU [1] | Virtual RAM | Stockage | IOPS [2] |
---|---|---|---|---|---|
Bootstrap | RHCOS | 4 | 16 GB | 100 GB | 300 |
Control plane | RHCOS | 4 | 16 GB | 100 GB | 300 |
Compute | RHCOS, RHEL 8.4, or RHEL 8.5 [3] | 2 | 8 GB | 100 GB | 300 |
- One vCPU is equivalent to one physical core when simultaneous multithreading (SMT), or hyperthreading, is not enabled. When enabled, use the following formula to calculate the corresponding ratio: (threads per core × cores) × sockets = vCPUs.
- OpenShift Container Platform and Kubernetes are sensitive to disk performance, and faster storage is recommended, particularly for etcd on the control plane nodes which require a 10 ms p99 fsync duration. Note that on many cloud platforms, storage size and IOPS scale together, so you might need to over-allocate storage volume to obtain sufficient performance.
- As with all user-provisioned installations, if you choose to use RHEL compute machines in your cluster, you take responsibility for all operating system life cycle management and maintenance, including performing system updates, applying patches, and completing all other required tasks. Use of RHEL 7 compute machines is deprecated and has been removed in OpenShift Container Platform 4.10 and later.
If an instance type for your platform meets the minimum requirements for cluster machines, it is supported to use in OpenShift Container Platform.
6.13.3.3. Tested instance types for AWS
The following Amazon Web Services (AWS) instance types have been tested with OpenShift Container Platform.
Use the machine types included in the following charts for your AWS instances. If you use an instance type that is not listed in the chart, ensure that the instance size you use matches the minimum resource requirements that are listed in "Minimum resource requirements for cluster installation".
Exemple 6.29. Machine types based on x86_64 architecture
-
c4.*
-
c5.*
-
c5a.*
-
i3.*
-
m4.*
-
m5.*
-
m5a.*
-
m6i.*
-
r4.*
-
r5.*
-
r5a.*
-
r6i.*
-
t3.*
-
t3a.*
6.13.3.4. Tested instance types for AWS ARM
The following Amazon Web Services (AWS) ARM instance types have been tested with OpenShift Container Platform.
Use the machine types included in the following charts for your AWS ARM instances. If you use an instance type that is not listed in the chart, ensure that the instance size you use matches the minimum resource requirements that are listed in "Minimum resource requirements for cluster installation".
Exemple 6.30. Machine types based on arm64 architecture
-
c6g.*
-
m6g.*
6.13.3.5. Certificate signing requests management
Because your cluster has limited access to automatic machine management when you use infrastructure that you provision, you must provide a mechanism for approving cluster certificate signing requests (CSRs) after installation. The kube-controller-manager
only approves the kubelet client CSRs. The machine-approver
cannot guarantee the validity of a serving certificate that is requested by using kubelet credentials because it cannot confirm that the correct machine issued the request. You must determine and implement a method of verifying the validity of the kubelet serving certificate requests and approving them.
6.13.3.6. Supported AWS machine types
The following Amazon Web Services (AWS) instance types are supported with OpenShift Container Platform.
Exemple 6.31. Machine types based on x86_64 architecture
Instance type | Bootstrap | Control plane | Compute |
---|---|---|---|
| x | ||
| x | ||
| x | x | |
| x | x | |
| x | x | |
| x | x | |
| x | x | |
| x | ||
| x | x | |
| x | x | |
| x | x | |
| x | x | |
| x | x | |
| x | x | |
| x | ||
| x | x | |
| x | x | |
| x | x | |
| x | x | |
| x | x | |
| x | x | |
| x | ||
| x | x | |
| x | x | |
| x | x | |
| x | x | |
| x | x | |
| x | x | |
| x | x | |
| x | x | |
| x | x | |
| x | ||
| x | x | |
| x | x | |
| x | x | |
| x | x | |
| x | x | |
| x | x | |
| x | ||
| x | x | |
| x | x | |
| x | x | |
| x | x | |
| x | x | |
| x | x | |
| x | ||
| x | x | |
| x | x | |
| x | x | |
| x | x | |
| x | x | |
| x | ||
| x | x | |
| x | x | |
| x | x | |
| x | x | |
| x | x | |
| x | x | |
| x | x | |
| x | ||
| x | x | |
| x | x | |
| x | x | |
| x | x | |
| x | x | |
| x | x | |
| x | x | |
| x | ||
| x | ||
| x | ||
| x | ||
| x | ||
| x |
Exemple 6.32. Machine types based on arm64 architecture
Instance type | Bootstrap | Control plane | Compute |
---|---|---|---|
| x | x | |
| x | x | |
| x | x | |
| x | x | |
| x | x | |
| x | x | |
| x | x | |
| x | ||
| x | ||
| x | x | |
| x | x | |
| x | x | |
| x | x | |
| x | x | |
| x | ||
| x | x | |
| x | x | |
| x | x | |
| x | x | |
| x | x | |
| x | x |
6.13.4. Required AWS infrastructure components
To install OpenShift Container Platform on user-provisioned infrastructure in Amazon Web Services (AWS), you must manually create both the machines and their supporting infrastructure.
For more information about the integration testing for different platforms, see the OpenShift Container Platform 4.x Tested Integrations page.
By using the provided CloudFormation templates, you can create stacks of AWS resources that represent the following components:
- An AWS Virtual Private Cloud (VPC)
- Networking and load balancing components
- Security groups and roles
- An OpenShift Container Platform bootstrap node
- OpenShift Container Platform control plane nodes
- An OpenShift Container Platform compute node
Alternatively, you can manually create the components or you can reuse existing infrastructure that meets the cluster requirements. Review the CloudFormation templates for more details about how the components interrelate.
6.13.4.1. Other infrastructure components
- A VPC
- DNS entries
- Load balancers (classic or network) and listeners
- A public and a private Route 53 zone
- Security groups
- IAM roles
- S3 buckets
If you are working in a disconnected environment, you are unable to reach the public IP addresses for EC2, ELB, and S3 endpoints. Depending on the level to which you want to restrict internet traffic during the installation, the following configuration options are available:
Option 1: Create VPC endpoints
Create a VPC endpoint and attach it to the subnets that the clusters are using. Name the endpoints as follows:
-
ec2.<aws_region>.amazonaws.com
-
elasticloadbalancing.<aws_region>.amazonaws.com
-
s3.<aws_region>.amazonaws.com
With this option, network traffic remains private between your VPC and the required AWS services.
Option 2: Create a proxy without VPC endpoints
As part of the installation process, you can configure an HTTP or HTTPS proxy. With this option, internet traffic goes through the proxy to reach the required AWS services.
Option 3: Create a proxy with VPC endpoints
As part of the installation process, you can configure an HTTP or HTTPS proxy with VPC endpoints. Create a VPC endpoint and attach it to the subnets that the clusters are using. Name the endpoints as follows:
-
ec2.<aws_region>.amazonaws.com
-
elasticloadbalancing.<aws_region>.amazonaws.com
-
s3.<aws_region>.amazonaws.com
When configuring the proxy in the install-config.yaml
file, add these endpoints to the noProxy
field. With this option, the proxy prevents the cluster from accessing the internet directly. However, network traffic remains private between your VPC and the required AWS services.
Required VPC components
You must provide a suitable VPC and subnets that allow communication to your machines.
Composant | AWS type | Description | |
---|---|---|---|
VPC |
| You must provide a public VPC for the cluster to use. The VPC uses an endpoint that references the route tables for each subnet to improve communication with the registry that is hosted in S3. | |
Public subnets |
| Your VPC must have public subnets for between 1 and 3 availability zones and associate them with appropriate Ingress rules. | |
Internet gateway |
| You must have a public internet gateway, with public routes, attached to the VPC. In the provided templates, each public subnet has a NAT gateway with an EIP address. These NAT gateways allow cluster resources, like private subnet instances, to reach the internet and are not required for some restricted network or proxy scenarios. | |
Network access control |
| You must allow the VPC to access the following ports: | |
Port | Reason | ||
| Inbound HTTP traffic | ||
| Inbound HTTPS traffic | ||
| Inbound SSH traffic | ||
| Inbound ephemeral traffic | ||
| Outbound ephemeral traffic | ||
Private subnets |
| Your VPC can have private subnets. The provided CloudFormation templates can create private subnets for between 1 and 3 availability zones. If you use private subnets, you must provide appropriate routes and tables for them. |
Required DNS and load balancing components
Your DNS and load balancer configuration needs to use a public hosted zone and can use a private hosted zone similar to the one that the installation program uses if it provisions the cluster’s infrastructure. You must create a DNS entry that resolves to your load balancer. An entry for api.<cluster_name>.<domain>
must point to the external load balancer, and an entry for api-int.<cluster_name>.<domain>
must point to the internal load balancer.
The cluster also requires load balancers and listeners for port 6443, which are required for the Kubernetes API and its extensions, and port 22623, which are required for the Ignition config files for new machines. The targets will be the control plane nodes. Port 6443 must be accessible to both clients external to the cluster and nodes within the cluster. Port 22623 must be accessible to nodes within the cluster.
Composant | AWS type | Description |
---|---|---|
DNS |
| The hosted zone for your internal DNS. |
Public load balancer |
| The load balancer for your public subnets. |
External API server record |
| Alias records for the external API server. |
External listener |
| A listener on port 6443 for the external load balancer. |
External target group |
| The target group for the external load balancer. |
Private load balancer |
| The load balancer for your private subnets. |
Internal API server record |
| Alias records for the internal API server. |
Internal listener |
| A listener on port 22623 for the internal load balancer. |
Internal target group |
| The target group for the internal load balancer. |
Internal listener |
| A listener on port 6443 for the internal load balancer. |
Internal target group |
| The target group for the internal load balancer. |
Security groups
The control plane and worker machines require access to the following ports:
Groupe | Type | IP Protocol | Port range |
---|---|---|---|
|
|
|
|
|
| ||
|
| ||
|
| ||
|
|
|
|
|
| ||
|
|
|
|
|
|
Control plane Ingress
The control plane machines require the following Ingress groups. Each Ingress group is a AWS::EC2::SecurityGroupIngress
resource.
Ingress group | Description | IP protocol | Port range |
---|---|---|---|
| etcd |
|
|
| Vxlan packets |
|
|
| Vxlan packets |
|
|
| Internal cluster communication and Kubernetes proxy metrics |
|
|
| Internal cluster communication |
|
|
| Kubernetes kubelet, scheduler and controller manager |
|
|
| Kubernetes kubelet, scheduler and controller manager |
|
|
| Kubernetes Ingress services |
|
|
| Kubernetes Ingress services |
|
|
| Geneve packets |
|
|
| Geneve packets |
|
|
| IPsec IKE packets |
|
|
| IPsec IKE packets |
|
|
| IPsec NAT-T packets |
|
|
| IPsec NAT-T packets |
|
|
| IPsec ESP packets |
|
|
| IPsec ESP packets |
|
|
| Internal cluster communication |
|
|
| Internal cluster communication |
|
|
| Kubernetes Ingress services |
|
|
| Kubernetes Ingress services |
|
|
Worker Ingress
The worker machines require the following Ingress groups. Each Ingress group is a AWS::EC2::SecurityGroupIngress
resource.
Ingress group | Description | IP protocol | Port range |
---|---|---|---|
| Vxlan packets |
|
|
| Vxlan packets |
|
|
| Internal cluster communication |
|
|
| Internal cluster communication |
|
|
| Kubernetes kubelet, scheduler, and controller manager |
|
|
| Kubernetes kubelet, scheduler, and controller manager |
|
|
| Kubernetes Ingress services |
|
|
| Kubernetes Ingress services |
|
|
| Geneve packets |
|
|
| Geneve packets |
|
|
| IPsec IKE packets |
|
|
| IPsec IKE packets |
|
|
| IPsec NAT-T packets |
|
|
| IPsec NAT-T packets |
|
|
| IPsec ESP packets |
|
|
| IPsec ESP packets |
|
|
| Internal cluster communication |
|
|
| Internal cluster communication |
|
|
| Kubernetes Ingress services |
|
|
| Kubernetes Ingress services |
|
|
Roles and instance profiles
You must grant the machines permissions in AWS. The provided CloudFormation templates grant the machines Allow
permissions for the following AWS::IAM::Role
objects and provide a AWS::IAM::InstanceProfile
for each set of roles. If you do not use the templates, you can grant the machines the following broad permissions or the following individual permissions.
Rôle | Effect | Action | Ressources |
---|---|---|---|
Master |
|
|
|
|
|
| |
|
|
| |
|
|
| |
Worker |
|
|
|
Bootstrap |
|
|
|
|
|
| |
|
|
|
6.13.4.2. Cluster machines
You need AWS::EC2::Instance
objects for the following machines:
- A bootstrap machine. This machine is required during installation, but you can remove it after your cluster deploys.
- Three control plane machines. The control plane machines are not governed by a control plane machine set.
- Compute machines. You must create at least two compute machines, which are also known as worker machines, during installation. These machines are not governed by a compute machine set.
6.13.4.3. Required AWS permissions for the IAM user
Your IAM user must have the permission tag:GetResources
in the region us-east-1
to delete the base cluster resources. As part of the AWS API requirement, the OpenShift Container Platform installation program performs various actions in this region.
When you attach the AdministratorAccess
policy to the IAM user that you create in Amazon Web Services (AWS), you grant that user all of the required permissions. To deploy all components of an OpenShift Container Platform cluster, the IAM user requires the following permissions:
Exemple 6.33. Required EC2 permissions for installation
-
ec2:AuthorizeSecurityGroupEgress
-
ec2:AuthorizeSecurityGroupIngress
-
ec2:CopyImage
-
ec2:CreateNetworkInterface
-
ec2:AttachNetworkInterface
-
ec2:CreateSecurityGroup
-
ec2:CreateTags
-
ec2:CreateVolume
-
ec2:DeleteSecurityGroup
-
ec2:DeleteSnapshot
-
ec2:DeleteTags
-
ec2:DeregisterImage
-
ec2:DescribeAccountAttributes
-
ec2:DescribeAddresses
-
ec2:DescribeAvailabilityZones
-
ec2:DescribeDhcpOptions
-
ec2:DescribeImages
-
ec2:DescribeInstanceAttribute
-
ec2:DescribeInstanceCreditSpecifications
-
ec2:DescribeInstances
-
ec2:DescribeInstanceTypes
-
ec2:DescribeInternetGateways
-
ec2:DescribeKeyPairs
-
ec2:DescribeNatGateways
-
ec2:DescribeNetworkAcls
-
ec2:DescribeNetworkInterfaces
-
ec2:DescribePrefixLists
-
ec2:DescribeRegions
-
ec2:DescribeRouteTables
-
ec2:DescribeSecurityGroups
-
ec2:DescribeSubnets
-
ec2:DescribeTags
-
ec2:DescribeVolumes
-
ec2:DescribeVpcAttribute
-
ec2:DescribeVpcClassicLink
-
ec2:DescribeVpcClassicLinkDnsSupport
-
ec2:DescribeVpcEndpoints
-
ec2:DescribeVpcs
-
ec2:GetEbsDefaultKmsKeyId
-
ec2:ModifyInstanceAttribute
-
ec2:ModifyNetworkInterfaceAttribute
-
ec2:RevokeSecurityGroupEgress
-
ec2:RevokeSecurityGroupIngress
-
ec2:RunInstances
-
ec2:TerminateInstances
Exemple 6.34. Required permissions for creating network resources during installation
-
ec2:AllocateAddress
-
ec2:AssociateAddress
-
ec2:AssociateDhcpOptions
-
ec2:AssociateRouteTable
-
ec2:AttachInternetGateway
-
ec2:CreateDhcpOptions
-
ec2:CreateInternetGateway
-
ec2:CreateNatGateway
-
ec2:CreateRoute
-
ec2:CreateRouteTable
-
ec2:CreateSubnet
-
ec2:CreateVpc
-
ec2:CreateVpcEndpoint
-
ec2:ModifySubnetAttribute
-
ec2:ModifyVpcAttribute
If you use an existing VPC, your account does not require these permissions for creating network resources.
Exemple 6.35. Required Elastic Load Balancing permissions (ELB) for installation
-
elasticloadbalancing:AddTags
-
elasticloadbalancing:ApplySecurityGroupsToLoadBalancer
-
elasticloadbalancing:AttachLoadBalancerToSubnets
-
elasticloadbalancing:ConfigureHealthCheck
-
elasticloadbalancing:CreateLoadBalancer
-
elasticloadbalancing:CreateLoadBalancerListeners
-
elasticloadbalancing:DeleteLoadBalancer
-
elasticloadbalancing:DeregisterInstancesFromLoadBalancer
-
elasticloadbalancing:DescribeInstanceHealth
-
elasticloadbalancing:DescribeLoadBalancerAttributes
-
elasticloadbalancing:DescribeLoadBalancers
-
elasticloadbalancing:DescribeTags
-
elasticloadbalancing:ModifyLoadBalancerAttributes
-
elasticloadbalancing:RegisterInstancesWithLoadBalancer
-
elasticloadbalancing:SetLoadBalancerPoliciesOfListener
Exemple 6.36. Required Elastic Load Balancing permissions (ELBv2) for installation
-
elasticloadbalancing:AddTags
-
elasticloadbalancing:CreateListener
-
elasticloadbalancing:CreateLoadBalancer
-
elasticloadbalancing:CreateTargetGroup
-
elasticloadbalancing:DeleteLoadBalancer
-
elasticloadbalancing:DeregisterTargets
-
elasticloadbalancing:DescribeListeners
-
elasticloadbalancing:DescribeLoadBalancerAttributes
-
elasticloadbalancing:DescribeLoadBalancers
-
elasticloadbalancing:DescribeTargetGroupAttributes
-
elasticloadbalancing:DescribeTargetHealth
-
elasticloadbalancing:ModifyLoadBalancerAttributes
-
elasticloadbalancing:ModifyTargetGroup
-
elasticloadbalancing:ModifyTargetGroupAttributes
-
elasticloadbalancing:RegisterTargets
Exemple 6.37. Required IAM permissions for installation
-
iam:AddRoleToInstanceProfile
-
iam:CreateInstanceProfile
-
iam:CreateRole
-
iam:DeleteInstanceProfile
-
iam:DeleteRole
-
iam:DeleteRolePolicy
-
iam:GetInstanceProfile
-
iam:GetRole
-
iam:GetRolePolicy
-
iam:GetUser
-
iam:ListInstanceProfilesForRole
-
iam:ListRoles
-
iam:ListUsers
-
iam:PassRole
-
iam:PutRolePolicy
-
iam:RemoveRoleFromInstanceProfile
-
iam:SimulatePrincipalPolicy
-
iam:TagRole
If you have not created a load balancer in your AWS account, the IAM user also requires the iam:CreateServiceLinkedRole
permission.
Exemple 6.38. Required Route 53 permissions for installation
-
route53:ChangeResourceRecordSets
-
route53:ChangeTagsForResource
-
route53:CreateHostedZone
-
route53:DeleteHostedZone
-
route53:GetChange
-
route53:GetHostedZone
-
route53:ListHostedZones
-
route53:ListHostedZonesByName
-
route53:ListResourceRecordSets
-
route53:ListTagsForResource
-
route53:UpdateHostedZoneComment
Exemple 6.39. Required S3 permissions for installation
-
s3:CreateBucket
-
s3:DeleteBucket
-
s3:GetAccelerateConfiguration
-
s3:GetBucketAcl
-
s3:GetBucketCors
-
s3:GetBucketLocation
-
s3:GetBucketLogging
-
s3:GetBucketPolicy
-
s3:GetBucketObjectLockConfiguration
-
s3:GetBucketReplication
-
s3:GetBucketRequestPayment
-
s3:GetBucketTagging
-
s3:GetBucketVersioning
-
s3:GetBucketWebsite
-
s3:GetEncryptionConfiguration
-
s3:GetLifecycleConfiguration
-
s3:GetReplicationConfiguration
-
s3:ListBucket
-
s3:PutBucketAcl
-
s3:PutBucketTagging
-
s3:PutEncryptionConfiguration
Exemple 6.40. S3 permissions that cluster Operators require
-
s3:DeleteObject
-
s3:GetObject
-
s3:GetObjectAcl
-
s3:GetObjectTagging
-
s3:GetObjectVersion
-
s3:PutObject
-
s3:PutObjectAcl
-
s3:PutObjectTagging
Exemple 6.41. Required permissions to delete base cluster resources
-
autoscaling:DescribeAutoScalingGroups
-
ec2:DeletePlacementGroup
-
ec2:DeleteNetworkInterface
-
ec2:DeleteVolume
-
elasticloadbalancing:DeleteTargetGroup
-
elasticloadbalancing:DescribeTargetGroups
-
iam:DeleteAccessKey
-
iam:DeleteUser
-
iam:ListAttachedRolePolicies
-
iam:ListInstanceProfiles
-
iam:ListRolePolicies
-
iam:ListUserPolicies
-
s3:DeleteObject
-
s3:ListBucketVersions
-
tag:GetResources
Exemple 6.42. Required permissions to delete network resources
-
ec2:DeleteDhcpOptions
-
ec2:DeleteInternetGateway
-
ec2:DeleteNatGateway
-
ec2:DeleteRoute
-
ec2:DeleteRouteTable
-
ec2:DeleteSubnet
-
ec2:DeleteVpc
-
ec2:DeleteVpcEndpoints
-
ec2:DetachInternetGateway
-
ec2:DisassociateRouteTable
-
ec2:ReleaseAddress
-
ec2:ReplaceRouteTableAssociation
If you use an existing VPC, your account does not require these permissions to delete network resources. Instead, your account only requires the tag:UntagResources
permission to delete network resources.
Exemple 6.43. Required permissions to delete a cluster with shared instance roles
-
iam:UntagRole
Exemple 6.44. Additional IAM and S3 permissions that are required to create manifests
-
iam:DeleteAccessKey
-
iam:DeleteUser
-
iam:DeleteUserPolicy
-
iam:GetUserPolicy
-
iam:ListAccessKeys
-
iam:PutUserPolicy
-
iam:TagUser
-
s3:PutBucketPublicAccessBlock
-
s3:GetBucketPublicAccessBlock
-
s3:PutLifecycleConfiguration
-
s3:HeadBucket
-
s3:ListBucketMultipartUploads
-
s3:AbortMultipartUpload
If you are managing your cloud provider credentials with mint mode, the IAM user also requires the iam:CreateAccessKey
and iam:CreateUser
permissions.
Exemple 6.45. Optional permissions for instance and quota checks for installation
-
ec2:DescribeInstanceTypeOfferings
-
servicequotas:ListAWSDefaultServiceQuotas
6.13.5. Obtaining an AWS Marketplace image
If you are deploying an OpenShift Container Platform cluster using an AWS Marketplace image, you must first subscribe through AWS. Subscribing to the offer provides you with the AMI ID that the installation program uses to deploy worker nodes.
Conditions préalables
- You have an AWS account to purchase the offer. This account does not have to be the same account that is used to install the cluster.
Procédure
- Complete the OpenShift Container Platform subscription from the AWS Marketplace.
-
Record the AMI ID for your specific region. If you use the CloudFormation template to deploy your worker nodes, you must update the
worker0.type.properties.ImageID
parameter with this value.
6.13.6. Obtaining the installation program
Before you install OpenShift Container Platform, download the installation file on the host you are using for installation.
Conditions préalables
- You have a computer that runs Linux or macOS, with 500 MB of local disk space.
Procédure
- Access the Infrastructure Provider page on the OpenShift Cluster Manager site. If you have a Red Hat account, log in with your credentials. If you do not, create an account.
- Select your infrastructure provider.
Navigate to the page for your installation type, download the installation program that corresponds with your host operating system and architecture, and place the file in the directory where you will store the installation configuration files.
ImportantThe installation program creates several files on the computer that you use to install your cluster. You must keep the installation program and the files that the installation program creates after you finish installing the cluster. Both files are required to delete the cluster.
ImportantDeleting the files created by the installation program does not remove your cluster, even if the cluster failed during installation. To remove your cluster, complete the OpenShift Container Platform uninstallation procedures for your specific cloud provider.
Extract the installation program. For example, on a computer that uses a Linux operating system, run the following command:
$ tar -xvf openshift-install-linux.tar.gz
- Download your installation pull secret from the Red Hat OpenShift Cluster Manager. This pull secret allows you to authenticate with the services that are provided by the included authorities, including Quay.io, which serves the container images for OpenShift Container Platform components.
6.13.7. Generating a key pair for cluster node SSH access
During an OpenShift Container Platform installation, you can provide an SSH public key to the installation program. The key is passed to the Red Hat Enterprise Linux CoreOS (RHCOS) nodes through their Ignition config files and is used to authenticate SSH access to the nodes. The key is added to the ~/.ssh/authorized_keys
list for the core
user on each node, which enables password-less authentication.
After the key is passed to the nodes, you can use the key pair to SSH in to the RHCOS nodes as the user core
. To access the nodes through SSH, the private key identity must be managed by SSH for your local user.
If you want to SSH in to your cluster nodes to perform installation debugging or disaster recovery, you must provide the SSH public key during the installation process. The ./openshift-install gather
command also requires the SSH public key to be in place on the cluster nodes.
Do not skip this procedure in production environments, where disaster recovery and debugging is required.
You must use a local key, not one that you configured with platform-specific approaches such as AWS key pairs.
Procédure
If you do not have an existing SSH key pair on your local machine to use for authentication onto your cluster nodes, create one. For example, on a computer that uses a Linux operating system, run the following command:
$ ssh-keygen -t ed25519 -N '' -f <path>/<file_name> 1
- 1
- Specify the path and file name, such as
~/.ssh/id_ed25519
, of the new SSH key. If you have an existing key pair, ensure your public key is in the your~/.ssh
directory.
NoteIf you plan to install an OpenShift Container Platform cluster that uses FIPS Validated / Modules in Process cryptographic libraries on the
x86_64
architecture, do not create a key that uses theed25519
algorithm. Instead, create a key that uses thersa
orecdsa
algorithm.View the public SSH key:
$ cat <path>/<file_name>.pub
For example, run the following to view the
~/.ssh/id_ed25519.pub
public key:$ cat ~/.ssh/id_ed25519.pub
Add the SSH private key identity to the SSH agent for your local user, if it has not already been added. SSH agent management of the key is required for password-less SSH authentication onto your cluster nodes, or if you want to use the
./openshift-install gather
command.NoteOn some distributions, default SSH private key identities such as
~/.ssh/id_rsa
and~/.ssh/id_dsa
are managed automatically.If the
ssh-agent
process is not already running for your local user, start it as a background task:$ eval "$(ssh-agent -s)"
Exemple de sortie
Agent pid 31874
NoteIf your cluster is in FIPS mode, only use FIPS-compliant algorithms to generate the SSH key. The key must be either RSA or ECDSA.
Add your SSH private key to the
ssh-agent
:$ ssh-add <path>/<file_name> 1
- 1
- Specify the path and file name for your SSH private key, such as
~/.ssh/id_ed25519
Exemple de sortie
Identity added: /home/<you>/<path>/<file_name> (<computer_name>)
Prochaines étapes
- When you install OpenShift Container Platform, provide the SSH public key to the installation program. If you install a cluster on infrastructure that you provision, you must provide the key to the installation program.
6.13.8. Creating the installation files for AWS
To install OpenShift Container Platform on Amazon Web Services (AWS) using user-provisioned infrastructure, you must generate the files that the installation program needs to deploy your cluster and modify them so that the cluster creates only the machines that it will use. You generate and customize the install-config.yaml
file, Kubernetes manifests, and Ignition config files. You also have the option to first set up a separate var
partition during the preparation phases of installation.
6.13.8.1. Optional: Creating a separate /var
partition
It is recommended that disk partitioning for OpenShift Container Platform be left to the installer. However, there are cases where you might want to create separate partitions in a part of the filesystem that you expect to grow.
OpenShift Container Platform supports the addition of a single partition to attach storage to either the /var
partition or a subdirectory of /var
. For example:
-
/var/lib/containers
: Holds container-related content that can grow as more images and containers are added to a system. -
/var/lib/etcd
: Holds data that you might want to keep separate for purposes such as performance optimization of etcd storage. -
/var
: Holds data that you might want to keep separate for purposes such as auditing.
Storing the contents of a /var
directory separately makes it easier to grow storage for those areas as needed and reinstall OpenShift Container Platform at a later date and keep that data intact. With this method, you will not have to pull all your containers again, nor will you have to copy massive log files when you update systems.
Because /var
must be in place before a fresh installation of Red Hat Enterprise Linux CoreOS (RHCOS), the following procedure sets up the separate /var
partition by creating a machine config manifest that is inserted during the openshift-install
preparation phases of an OpenShift Container Platform installation.
If you follow the steps to create a separate /var
partition in this procedure, it is not necessary to create the Kubernetes manifest and Ignition config files again as described later in this section.
Procédure
Create a directory to hold the OpenShift Container Platform installation files:
$ mkdir $HOME/clusterconfig
Run
openshift-install
to create a set of files in themanifest
andopenshift
subdirectories. Answer the system questions as you are prompted:$ openshift-install create manifests --dir $HOME/clusterconfig
Exemple de sortie
? SSH Public Key ... INFO Credentials loaded from the "myprofile" profile in file "/home/myuser/.aws/credentials" INFO Consuming Install Config from target directory INFO Manifests created in: $HOME/clusterconfig/manifests and $HOME/clusterconfig/openshift
Optional: Confirm that the installation program created manifests in the
clusterconfig/openshift
directory:$ ls $HOME/clusterconfig/openshift/
Exemple de sortie
99_kubeadmin-password-secret.yaml 99_openshift-cluster-api_master-machines-0.yaml 99_openshift-cluster-api_master-machines-1.yaml 99_openshift-cluster-api_master-machines-2.yaml ...
Create a Butane config that configures the additional partition. For example, name the file
$HOME/clusterconfig/98-var-partition.bu
, change the disk device name to the name of the storage device on theworker
systems, and set the storage size as appropriate. This example places the/var
directory on a separate partition:variant: openshift version: 4.12.0 metadata: labels: machineconfiguration.openshift.io/role: worker name: 98-var-partition storage: disks: - device: /dev/<device_name> 1 partitions: - label: var start_mib: <partition_start_offset> 2 size_mib: <partition_size> 3 filesystems: - device: /dev/disk/by-partlabel/var path: /var format: xfs mount_options: [defaults, prjquota] 4 with_mount_unit: true
- 1
- The storage device name of the disk that you want to partition.
- 2
- When adding a data partition to the boot disk, a minimum value of 25000 MiB (Mebibytes) is recommended. The root file system is automatically resized to fill all available space up to the specified offset. If no value is specified, or if the specified value is smaller than the recommended minimum, the resulting root file system will be too small, and future reinstalls of RHCOS might overwrite the beginning of the data partition.
- 3
- The size of the data partition in mebibytes.
- 4
- The
prjquota
mount option must be enabled for filesystems used for container storage.
NoteWhen creating a separate
/var
partition, you cannot use different instance types for worker nodes, if the different instance types do not have the same device name.Create a manifest from the Butane config and save it to the
clusterconfig/openshift
directory. For example, run the following command:$ butane $HOME/clusterconfig/98-var-partition.bu -o $HOME/clusterconfig/openshift/98-var-partition.yaml
Run
openshift-install
again to create Ignition configs from a set of files in themanifest
andopenshift
subdirectories:$ openshift-install create ignition-configs --dir $HOME/clusterconfig $ ls $HOME/clusterconfig/ auth bootstrap.ign master.ign metadata.json worker.ign
Now you can use the Ignition config files as input to the installation procedures to install Red Hat Enterprise Linux CoreOS (RHCOS) systems.
6.13.8.2. Creating the installation configuration file
Generate and customize the installation configuration file that the installation program needs to deploy your cluster.
Conditions préalables
- You obtained the OpenShift Container Platform installation program for user-provisioned infrastructure and the pull secret for your cluster.
-
You checked that you are deploying your cluster to a region with an accompanying Red Hat Enterprise Linux CoreOS (RHCOS) AMI published by Red Hat. If you are deploying to a region that requires a custom AMI, such as an AWS GovCloud region, you must create the
install-config.yaml
file manually.
Procédure
Create the
install-config.yaml
file.Change to the directory that contains the installation program and run the following command:
$ ./openshift-install create install-config --dir <installation_directory> 1
- 1
- For
<installation_directory>
, specify the directory name to store the files that the installation program creates.
ImportantSpecify an empty directory. Some installation assets, like bootstrap X.509 certificates have short expiration intervals, so you must not reuse an installation directory. If you want to reuse individual files from another cluster installation, you can copy them into your directory. However, the file names for the installation assets might change between releases. Use caution when copying installation files from an earlier OpenShift Container Platform version.
At the prompts, provide the configuration details for your cloud:
Optional: Select an SSH key to use to access your cluster machines.
NoteFor production OpenShift Container Platform clusters on which you want to perform installation debugging or disaster recovery, specify an SSH key that your
ssh-agent
process uses.- Select aws as the platform to target.
If you do not have an AWS profile stored on your computer, enter the AWS access key ID and secret access key for the user that you configured to run the installation program.
NoteThe AWS access key ID and secret access key are stored in
~/.aws/credentials
in the home directory of the current user on the installation host. You are prompted for the credentials by the installation program if the credentials for the exported profile are not present in the file. Any credentials that you provide to the installation program are stored in the file.- Select the AWS region to deploy the cluster to.
- Select the base domain for the Route 53 service that you configured for your cluster.
- Enter a descriptive name for your cluster.
- Paste the pull secret from the Red Hat OpenShift Cluster Manager.
Optional: Back up the
install-config.yaml
file.ImportantThe
install-config.yaml
file is consumed during the installation process. If you want to reuse the file, you must back it up now.
Ressources complémentaires
- See Configuration and credential file settings in the AWS documentation for more information about AWS profile and credential configuration.
6.13.8.3. Configuring the cluster-wide proxy during installation
Production environments can deny direct access to the internet and instead have an HTTP or HTTPS proxy available. You can configure a new OpenShift Container Platform cluster to use a proxy by configuring the proxy settings in the install-config.yaml
file.
Conditions préalables
-
You have an existing
install-config.yaml
file. You reviewed the sites that your cluster requires access to and determined whether any of them need to bypass the proxy. By default, all cluster egress traffic is proxied, including calls to hosting cloud provider APIs. You added sites to the
Proxy
object’sspec.noProxy
field to bypass the proxy if necessary.NoteThe
Proxy
objectstatus.noProxy
field is populated with the values of thenetworking.machineNetwork[].cidr
,networking.clusterNetwork[].cidr
, andnetworking.serviceNetwork[]
fields from your installation configuration.For installations on Amazon Web Services (AWS), Google Cloud Platform (GCP), Microsoft Azure, and Red Hat OpenStack Platform (RHOSP), the
Proxy
objectstatus.noProxy
field is also populated with the instance metadata endpoint (169.254.169.254
).
Procédure
Edit your
install-config.yaml
file and add the proxy settings. For example:apiVersion: v1 baseDomain: my.domain.com proxy: httpProxy: http://<username>:<pswd>@<ip>:<port> 1 httpsProxy: https://<username>:<pswd>@<ip>:<port> 2 noProxy: ec2.<aws_region>.amazonaws.com,elasticloadbalancing.<aws_region>.amazonaws.com,s3.<aws_region>.amazonaws.com 3 additionalTrustBundle: | 4 -----BEGIN CERTIFICATE----- <MY_TRUSTED_CA_CERT> -----END CERTIFICATE----- additionalTrustBundlePolicy: <policy_to_add_additionalTrustBundle> 5
- 1
- A proxy URL to use for creating HTTP connections outside the cluster. The URL scheme must be
http
. - 2
- A proxy URL to use for creating HTTPS connections outside the cluster.
- 3
- A comma-separated list of destination domain names, IP addresses, or other network CIDRs to exclude from proxying. Preface a domain with
.
to match subdomains only. For example,.y.com
matchesx.y.com
, but noty.com
. Use*
to bypass the proxy for all destinations. If you have added the AmazonEC2
,Elastic Load Balancing
, andS3
VPC endpoints to your VPC, you must add these endpoints to thenoProxy
field. - 4
- If provided, the installation program generates a config map that is named
user-ca-bundle
in theopenshift-config
namespace that contains one or more additional CA certificates that are required for proxying HTTPS connections. The Cluster Network Operator then creates atrusted-ca-bundle
config map that merges these contents with the Red Hat Enterprise Linux CoreOS (RHCOS) trust bundle, and this config map is referenced in thetrustedCA
field of theProxy
object. TheadditionalTrustBundle
field is required unless the proxy’s identity certificate is signed by an authority from the RHCOS trust bundle. - 5
- Optional: The policy to determine the configuration of the
Proxy
object to reference theuser-ca-bundle
config map in thetrustedCA
field. The allowed values areProxyonly
andAlways
. UseProxyonly
to reference theuser-ca-bundle
config map only whenhttp/https
proxy is configured. UseAlways
to always reference theuser-ca-bundle
config map. The default value isProxyonly
.
NoteThe installation program does not support the proxy
readinessEndpoints
field.NoteIf the installer times out, restart and then complete the deployment by using the
wait-for
command of the installer. For example:$ ./openshift-install wait-for install-complete --log-level debug
- Save the file and reference it when installing OpenShift Container Platform.
The installation program creates a cluster-wide proxy that is named cluster
that uses the proxy settings in the provided install-config.yaml
file. If no proxy settings are provided, a cluster
Proxy
object is still created, but it will have a nil spec
.
Only the Proxy
object named cluster
is supported, and no additional proxies can be created.
6.13.8.4. Creating the Kubernetes manifest and Ignition config files
Because you must modify some cluster definition files and manually start the cluster machines, you must generate the Kubernetes manifest and Ignition config files that the cluster needs to configure the machines.
The installation configuration file transforms into the Kubernetes manifests. The manifests wrap into the Ignition configuration files, which are later used to configure the cluster machines.
-
The Ignition config files that the OpenShift Container Platform installation program generates contain certificates that expire after 24 hours, which are then renewed at that time. If the cluster is shut down before renewing the certificates and the cluster is later restarted after the 24 hours have elapsed, the cluster automatically recovers the expired certificates. The exception is that you must manually approve the pending
node-bootstrapper
certificate signing requests (CSRs) to recover kubelet certificates. See the documentation for Recovering from expired control plane certificates for more information. - Il est recommandé d'utiliser les fichiers de configuration Ignition dans les 12 heures suivant leur génération, car le certificat de 24 heures tourne entre 16 et 22 heures après l'installation du cluster. En utilisant les fichiers de configuration Ignition dans les 12 heures, vous pouvez éviter l'échec de l'installation si la mise à jour du certificat s'exécute pendant l'installation.
Conditions préalables
- You obtained the OpenShift Container Platform installation program.
-
You created the
install-config.yaml
installation configuration file.
Procédure
Change to the directory that contains the OpenShift Container Platform installation program and generate the Kubernetes manifests for the cluster:
$ ./openshift-install create manifests --dir <installation_directory> 1
- 1
- For
<installation_directory>
, specify the installation directory that contains theinstall-config.yaml
file you created.
Remove the Kubernetes manifest files that define the control plane machines:
$ rm -f <installation_directory>/openshift/99_openshift-cluster-api_master-machines-*.yaml
By removing these files, you prevent the cluster from automatically generating control plane machines.
Remove the Kubernetes manifest files that define the control plane machine set:
$ rm -f <installation_directory>/openshift/99_openshift-machine-api_master-control-plane-machine-set.yaml
Remove the Kubernetes manifest files that define the worker machines:
$ rm -f <installation_directory>/openshift/99_openshift-cluster-api_worker-machineset-*.yaml
Because you create and manage the worker machines yourself, you do not need to initialize these machines.
Check that the
mastersSchedulable
parameter in the<installation_directory>/manifests/cluster-scheduler-02-config.yml
Kubernetes manifest file is set tofalse
. This setting prevents pods from being scheduled on the control plane machines:-
Open the
<installation_directory>/manifests/cluster-scheduler-02-config.yml
file. -
Locate the
mastersSchedulable
parameter and ensure that it is set tofalse
. - Save and exit the file.
-
Open the
Optional: If you do not want the Ingress Operator to create DNS records on your behalf, remove the
privateZone
andpublicZone
sections from the<installation_directory>/manifests/cluster-dns-02-config.yml
DNS configuration file:apiVersion: config.openshift.io/v1 kind: DNS metadata: creationTimestamp: null name: cluster spec: baseDomain: example.openshift.com privateZone: 1 id: mycluster-100419-private-zone publicZone: 2 id: example.openshift.com status: {}
If you do so, you must add ingress DNS records manually in a later step.
To create the Ignition configuration files, run the following command from the directory that contains the installation program:
$ ./openshift-install create ignition-configs --dir <installation_directory> 1
- 1
- For
<installation_directory>
, specify the same installation directory.
Ignition config files are created for the bootstrap, control plane, and compute nodes in the installation directory. The
kubeadmin-password
andkubeconfig
files are created in the./<installation_directory>/auth
directory:. ├── auth │ ├── kubeadmin-password │ └── kubeconfig ├── bootstrap.ign ├── master.ign ├── metadata.json └── worker.ign
6.13.9. Extracting the infrastructure name
The Ignition config files contain a unique cluster identifier that you can use to uniquely identify your cluster in Amazon Web Services (AWS). The infrastructure name is also used to locate the appropriate AWS resources during an OpenShift Container Platform installation. The provided CloudFormation templates contain references to this infrastructure name, so you must extract it.
Conditions préalables
- You obtained the OpenShift Container Platform installation program and the pull secret for your cluster.
- You generated the Ignition config files for your cluster.
-
You installed the
jq
package.
Procédure
To extract and view the infrastructure name from the Ignition config file metadata, run the following command:
$ jq -r .infraID <installation_directory>/metadata.json 1
- 1
- For
<installation_directory>
, specify the path to the directory that you stored the installation files in.
Exemple de sortie
openshift-vw9j6 1
- 1
- The output of this command is your cluster name and a random string.
6.13.10. Creating a VPC in AWS
You must create a Virtual Private Cloud (VPC) in Amazon Web Services (AWS) for your OpenShift Container Platform cluster to use. You can customize the VPC to meet your requirements, including VPN and route tables.
You can use the provided CloudFormation template and a custom parameter file to create a stack of AWS resources that represent the VPC.
If you do not use the provided CloudFormation template to create your AWS infrastructure, you must review the provided information and manually create the infrastructure. If your cluster does not initialize correctly, you might have to contact Red Hat support with your installation logs.
Conditions préalables
- You configured an AWS account.
-
You added your AWS keys and region to your local AWS profile by running
aws configure
. - You generated the Ignition config files for your cluster.
Procédure
Create a JSON file that contains the parameter values that the template requires:
[ { "ParameterKey": "VpcCidr", 1 "ParameterValue": "10.0.0.0/16" 2 }, { "ParameterKey": "AvailabilityZoneCount", 3 "ParameterValue": "1" 4 }, { "ParameterKey": "SubnetBits", 5 "ParameterValue": "12" 6 } ]
- Copy the template from the CloudFormation template for the VPC section of this topic and save it as a YAML file on your computer. This template describes the VPC that your cluster requires.
Launch the CloudFormation template to create a stack of AWS resources that represent the VPC:
ImportantYou must enter the command on a single line.
$ aws cloudformation create-stack --stack-name <name> 1 --template-body file://<template>.yaml 2 --parameters file://<parameters>.json 3
- 1
<name>
is the name for the CloudFormation stack, such ascluster-vpc
. You need the name of this stack if you remove the cluster.- 2
<template>
is the relative path to and name of the CloudFormation template YAML file that you saved.- 3
<parameters>
is the relative path to and name of the CloudFormation parameters JSON file.
Exemple de sortie
arn:aws:cloudformation:us-east-1:269333783861:stack/cluster-vpc/dbedae40-2fd3-11eb-820e-12a48460849f
Confirm that the template components exist:
$ aws cloudformation describe-stacks --stack-name <name>
After the
StackStatus
displaysCREATE_COMPLETE
, the output displays values for the following parameters. You must provide these parameter values to the other CloudFormation templates that you run to create your cluster:VpcId
The ID of your VPC.
PublicSubnetIds
The IDs of the new public subnets.
PrivateSubnetIds
The IDs of the new private subnets.
6.13.10.1. CloudFormation template for the VPC
You can use the following CloudFormation template to deploy the VPC that you need for your OpenShift Container Platform cluster.
Exemple 6.46. CloudFormation template for the VPC
AWSTemplateFormatVersion: 2010-09-09 Description: Template for Best Practice VPC with 1-3 AZs Parameters: VpcCidr: AllowedPattern: ^(([0-9]|[1-9][0-9]|1[0-9]{2}|2[0-4][0-9]|25[0-5])\.){3}([0-9]|[1-9][0-9]|1[0-9]{2}|2[0-4][0-9]|25[0-5])(\/(1[6-9]|2[0-4]))$ ConstraintDescription: CIDR block parameter must be in the form x.x.x.x/16-24. Default: 10.0.0.0/16 Description: CIDR block for VPC. Type: String AvailabilityZoneCount: ConstraintDescription: "The number of availability zones. (Min: 1, Max: 3)" MinValue: 1 MaxValue: 3 Default: 1 Description: "How many AZs to create VPC subnets for. (Min: 1, Max: 3)" Type: Number SubnetBits: ConstraintDescription: CIDR block parameter must be in the form x.x.x.x/19-27. MinValue: 5 MaxValue: 13 Default: 12 Description: "Size of each subnet to create within the availability zones. (Min: 5 = /27, Max: 13 = /19)" Type: Number Metadata: AWS::CloudFormation::Interface: ParameterGroups: - Label: default: "Network Configuration" Parameters: - VpcCidr - SubnetBits - Label: default: "Availability Zones" Parameters: - AvailabilityZoneCount ParameterLabels: AvailabilityZoneCount: default: "Availability Zone Count" VpcCidr: default: "VPC CIDR" SubnetBits: default: "Bits Per Subnet" Conditions: DoAz3: !Equals [3, !Ref AvailabilityZoneCount] DoAz2: !Or [!Equals [2, !Ref AvailabilityZoneCount], Condition: DoAz3] Resources: VPC: Type: "AWS::EC2::VPC" Properties: EnableDnsSupport: "true" EnableDnsHostnames: "true" CidrBlock: !Ref VpcCidr PublicSubnet: Type: "AWS::EC2::Subnet" Properties: VpcId: !Ref VPC CidrBlock: !Select [0, !Cidr [!Ref VpcCidr, 6, !Ref SubnetBits]] AvailabilityZone: !Select - 0 - Fn::GetAZs: !Ref "AWS::Region" PublicSubnet2: Type: "AWS::EC2::Subnet" Condition: DoAz2 Properties: VpcId: !Ref VPC CidrBlock: !Select [1, !Cidr [!Ref VpcCidr, 6, !Ref SubnetBits]] AvailabilityZone: !Select - 1 - Fn::GetAZs: !Ref "AWS::Region" PublicSubnet3: Type: "AWS::EC2::Subnet" Condition: DoAz3 Properties: VpcId: !Ref VPC CidrBlock: !Select [2, !Cidr [!Ref VpcCidr, 6, !Ref SubnetBits]] AvailabilityZone: !Select - 2 - Fn::GetAZs: !Ref "AWS::Region" InternetGateway: Type: "AWS::EC2::InternetGateway" GatewayToInternet: Type: "AWS::EC2::VPCGatewayAttachment" Properties: VpcId: !Ref VPC InternetGatewayId: !Ref InternetGateway PublicRouteTable: Type: "AWS::EC2::RouteTable" Properties: VpcId: !Ref VPC PublicRoute: Type: "AWS::EC2::Route" DependsOn: GatewayToInternet Properties: RouteTableId: !Ref PublicRouteTable DestinationCidrBlock: 0.0.0.0/0 GatewayId: !Ref InternetGateway PublicSubnetRouteTableAssociation: Type: "AWS::EC2::SubnetRouteTableAssociation" Properties: SubnetId: !Ref PublicSubnet RouteTableId: !Ref PublicRouteTable PublicSubnetRouteTableAssociation2: Type: "AWS::EC2::SubnetRouteTableAssociation" Condition: DoAz2 Properties: SubnetId: !Ref PublicSubnet2 RouteTableId: !Ref PublicRouteTable PublicSubnetRouteTableAssociation3: Condition: DoAz3 Type: "AWS::EC2::SubnetRouteTableAssociation" Properties: SubnetId: !Ref PublicSubnet3 RouteTableId: !Ref PublicRouteTable PrivateSubnet: Type: "AWS::EC2::Subnet" Properties: VpcId: !Ref VPC CidrBlock: !Select [3, !Cidr [!Ref VpcCidr, 6, !Ref SubnetBits]] AvailabilityZone: !Select - 0 - Fn::GetAZs: !Ref "AWS::Region" PrivateRouteTable: Type: "AWS::EC2::RouteTable" Properties: VpcId: !Ref VPC PrivateSubnetRouteTableAssociation: Type: "AWS::EC2::SubnetRouteTableAssociation" Properties: SubnetId: !Ref PrivateSubnet RouteTableId: !Ref PrivateRouteTable NAT: DependsOn: - GatewayToInternet Type: "AWS::EC2::NatGateway" Properties: AllocationId: "Fn::GetAtt": - EIP - AllocationId SubnetId: !Ref PublicSubnet EIP: Type: "AWS::EC2::EIP" Properties: Domain: vpc Route: Type: "AWS::EC2::Route" Properties: RouteTableId: Ref: PrivateRouteTable DestinationCidrBlock: 0.0.0.0/0 NatGatewayId: Ref: NAT PrivateSubnet2: Type: "AWS::EC2::Subnet" Condition: DoAz2 Properties: VpcId: !Ref VPC CidrBlock: !Select [4, !Cidr [!Ref VpcCidr, 6, !Ref SubnetBits]] AvailabilityZone: !Select - 1 - Fn::GetAZs: !Ref "AWS::Region" PrivateRouteTable2: Type: "AWS::EC2::RouteTable" Condition: DoAz2 Properties: VpcId: !Ref VPC PrivateSubnetRouteTableAssociation2: Type: "AWS::EC2::SubnetRouteTableAssociation" Condition: DoAz2 Properties: SubnetId: !Ref PrivateSubnet2 RouteTableId: !Ref PrivateRouteTable2 NAT2: DependsOn: - GatewayToInternet Type: "AWS::EC2::NatGateway" Condition: DoAz2 Properties: AllocationId: "Fn::GetAtt": - EIP2 - AllocationId SubnetId: !Ref PublicSubnet2 EIP2: Type: "AWS::EC2::EIP" Condition: DoAz2 Properties: Domain: vpc Route2: Type: "AWS::EC2::Route" Condition: DoAz2 Properties: RouteTableId: Ref: PrivateRouteTable2 DestinationCidrBlock: 0.0.0.0/0 NatGatewayId: Ref: NAT2 PrivateSubnet3: Type: "AWS::EC2::Subnet" Condition: DoAz3 Properties: VpcId: !Ref VPC CidrBlock: !Select [5, !Cidr [!Ref VpcCidr, 6, !Ref SubnetBits]] AvailabilityZone: !Select - 2 - Fn::GetAZs: !Ref "AWS::Region" PrivateRouteTable3: Type: "AWS::EC2::RouteTable" Condition: DoAz3 Properties: VpcId: !Ref VPC PrivateSubnetRouteTableAssociation3: Type: "AWS::EC2::SubnetRouteTableAssociation" Condition: DoAz3 Properties: SubnetId: !Ref PrivateSubnet3 RouteTableId: !Ref PrivateRouteTable3 NAT3: DependsOn: - GatewayToInternet Type: "AWS::EC2::NatGateway" Condition: DoAz3 Properties: AllocationId: "Fn::GetAtt": - EIP3 - AllocationId SubnetId: !Ref PublicSubnet3 EIP3: Type: "AWS::EC2::EIP" Condition: DoAz3 Properties: Domain: vpc Route3: Type: "AWS::EC2::Route" Condition: DoAz3 Properties: RouteTableId: Ref: PrivateRouteTable3 DestinationCidrBlock: 0.0.0.0/0 NatGatewayId: Ref: NAT3 S3Endpoint: Type: AWS::EC2::VPCEndpoint Properties: PolicyDocument: Version: 2012-10-17 Statement: - Effect: Allow Principal: '*' Action: - '*' Resource: - '*' RouteTableIds: - !Ref PublicRouteTable - !Ref PrivateRouteTable - !If [DoAz2, !Ref PrivateRouteTable2, !Ref "AWS::NoValue"] - !If [DoAz3, !Ref PrivateRouteTable3, !Ref "AWS::NoValue"] ServiceName: !Join - '' - - com.amazonaws. - !Ref 'AWS::Region' - .s3 VpcId: !Ref VPC Outputs: VpcId: Description: ID of the new VPC. Value: !Ref VPC PublicSubnetIds: Description: Subnet IDs of the public subnets. Value: !Join [ ",", [!Ref PublicSubnet, !If [DoAz2, !Ref PublicSubnet2, !Ref "AWS::NoValue"], !If [DoAz3, !Ref PublicSubnet3, !Ref "AWS::NoValue"]] ] PrivateSubnetIds: Description: Subnet IDs of the private subnets. Value: !Join [ ",", [!Ref PrivateSubnet, !If [DoAz2, !Ref PrivateSubnet2, !Ref "AWS::NoValue"], !If [DoAz3, !Ref PrivateSubnet3, !Ref "AWS::NoValue"]] ]
Ressources complémentaires
- You can view details about the CloudFormation stacks that you create by navigating to the AWS CloudFormation console.
6.13.11. Creating networking and load balancing components in AWS
You must configure networking and classic or network load balancing in Amazon Web Services (AWS) that your OpenShift Container Platform cluster can use.
You can use the provided CloudFormation template and a custom parameter file to create a stack of AWS resources. The stack represents the networking and load balancing components that your OpenShift Container Platform cluster requires. The template also creates a hosted zone and subnet tags.
You can run the template multiple times within a single Virtual Private Cloud (VPC).
If you do not use the provided CloudFormation template to create your AWS infrastructure, you must review the provided information and manually create the infrastructure. If your cluster does not initialize correctly, you might have to contact Red Hat support with your installation logs.
Conditions préalables
- You configured an AWS account.
-
You added your AWS keys and region to your local AWS profile by running
aws configure
. - You generated the Ignition config files for your cluster.
- You created and configured a VPC and associated subnets in AWS.
Procédure
Obtain the hosted zone ID for the Route 53 base domain that you specified in the
install-config.yaml
file for your cluster. You can obtain details about your hosted zone by running the following command:$ aws route53 list-hosted-zones-by-name --dns-name <route53_domain> 1
- 1
- For the
<route53_domain>
, specify the Route 53 base domain that you used when you generated theinstall-config.yaml
file for the cluster.
Exemple de sortie
mycluster.example.com. False 100 HOSTEDZONES 65F8F38E-2268-B835-E15C-AB55336FCBFA /hostedzone/Z21IXYZABCZ2A4 mycluster.example.com. 10
In the example output, the hosted zone ID is
Z21IXYZABCZ2A4
.Create a JSON file that contains the parameter values that the template requires:
[ { "ParameterKey": "ClusterName", 1 "ParameterValue": "mycluster" 2 }, { "ParameterKey": "InfrastructureName", 3 "ParameterValue": "mycluster-<random_string>" 4 }, { "ParameterKey": "HostedZoneId", 5 "ParameterValue": "<random_string>" 6 }, { "ParameterKey": "HostedZoneName", 7 "ParameterValue": "example.com" 8 }, { "ParameterKey": "PublicSubnets", 9 "ParameterValue": "subnet-<random_string>" 10 }, { "ParameterKey": "PrivateSubnets", 11 "ParameterValue": "subnet-<random_string>" 12 }, { "ParameterKey": "VpcId", 13 "ParameterValue": "vpc-<random_string>" 14 } ]
- 1
- A short, representative cluster name to use for hostnames, etc.
- 2
- Specify the cluster name that you used when you generated the
install-config.yaml
file for the cluster. - 3
- The name for your cluster infrastructure that is encoded in your Ignition config files for the cluster.
- 4
- Specify the infrastructure name that you extracted from the Ignition config file metadata, which has the format
<cluster-name>-<random-string>
. - 5
- The Route 53 public zone ID to register the targets with.
- 6
- Specify the Route 53 public zone ID, which as a format similar to
Z21IXYZABCZ2A4
. You can obtain this value from the AWS console. - 7
- The Route 53 zone to register the targets with.
- 8
- Specify the Route 53 base domain that you used when you generated the
install-config.yaml
file for the cluster. Do not include the trailing period (.) that is displayed in the AWS console. - 9
- The public subnets that you created for your VPC.
- 10
- Specify the
PublicSubnetIds
value from the output of the CloudFormation template for the VPC. - 11
- The private subnets that you created for your VPC.
- 12
- Specify the
PrivateSubnetIds
value from the output of the CloudFormation template for the VPC. - 13
- The VPC that you created for the cluster.
- 14
- Specify the
VpcId
value from the output of the CloudFormation template for the VPC.
Copy the template from the CloudFormation template for the network and load balancers section of this topic and save it as a YAML file on your computer. This template describes the networking and load balancing objects that your cluster requires.
ImportantIf you are deploying your cluster to an AWS government or secret region, you must update the
InternalApiServerRecord
in the CloudFormation template to useCNAME
records. Records of typeALIAS
are not supported for AWS government regions.Launch the CloudFormation template to create a stack of AWS resources that provide the networking and load balancing components:
ImportantYou must enter the command on a single line.
$ aws cloudformation create-stack --stack-name <name> 1 --template-body file://<template>.yaml 2 --parameters file://<parameters>.json 3 --capabilities CAPABILITY_NAMED_IAM 4
- 1
<name>
is the name for the CloudFormation stack, such ascluster-dns
. You need the name of this stack if you remove the cluster.- 2
<template>
is the relative path to and name of the CloudFormation template YAML file that you saved.- 3
<parameters>
is the relative path to and name of the CloudFormation parameters JSON file.- 4
- You must explicitly declare the
CAPABILITY_NAMED_IAM
capability because the provided template creates someAWS::IAM::Role
resources.
Exemple de sortie
arn:aws:cloudformation:us-east-1:269333783861:stack/cluster-dns/cd3e5de0-2fd4-11eb-5cf0-12be5c33a183
Confirm that the template components exist:
$ aws cloudformation describe-stacks --stack-name <name>
After the
StackStatus
displaysCREATE_COMPLETE
, the output displays values for the following parameters. You must provide these parameter values to the other CloudFormation templates that you run to create your cluster:PrivateHostedZoneId
Hosted zone ID for the private DNS.
ExternalApiLoadBalancerName
Full name of the external API load balancer.
InternalApiLoadBalancerName
Full name of the internal API load balancer.
ApiServerDnsName
Full hostname of the API server.
RegisterNlbIpTargetsLambda
Lambda ARN useful to help register/deregister IP targets for these load balancers.
ExternalApiTargetGroupArn
ARN of external API target group.
InternalApiTargetGroupArn
ARN of internal API target group.
InternalServiceTargetGroupArn
ARN of internal service target group.
6.13.11.1. CloudFormation template for the network and load balancers
You can use the following CloudFormation template to deploy the networking objects and load balancers that you need for your OpenShift Container Platform cluster.
Exemple 6.47. CloudFormation template for the network and load balancers
AWSTemplateFormatVersion: 2010-09-09 Description: Template for OpenShift Cluster Network Elements (Route53 & LBs) Parameters: ClusterName: AllowedPattern: ^([a-zA-Z][a-zA-Z0-9\-]{0,26})$ MaxLength: 27 MinLength: 1 ConstraintDescription: Cluster name must be alphanumeric, start with a letter, and have a maximum of 27 characters. Description: A short, representative cluster name to use for host names and other identifying names. Type: String InfrastructureName: AllowedPattern: ^([a-zA-Z][a-zA-Z0-9\-]{0,26})$ MaxLength: 27 MinLength: 1 ConstraintDescription: Infrastructure name must be alphanumeric, start with a letter, and have a maximum of 27 characters. Description: A short, unique cluster ID used to tag cloud resources and identify items owned or used by the cluster. Type: String HostedZoneId: Description: The Route53 public zone ID to register the targets with, such as Z21IXYZABCZ2A4. Type: String HostedZoneName: Description: The Route53 zone to register the targets with, such as example.com. Omit the trailing period. Type: String Default: "example.com" PublicSubnets: Description: The internet-facing subnets. Type: List<AWS::EC2::Subnet::Id> PrivateSubnets: Description: The internal subnets. Type: List<AWS::EC2::Subnet::Id> VpcId: Description: The VPC-scoped resources will belong to this VPC. Type: AWS::EC2::VPC::Id Metadata: AWS::CloudFormation::Interface: ParameterGroups: - Label: default: "Cluster Information" Parameters: - ClusterName - InfrastructureName - Label: default: "Network Configuration" Parameters: - VpcId - PublicSubnets - PrivateSubnets - Label: default: "DNS" Parameters: - HostedZoneName - HostedZoneId ParameterLabels: ClusterName: default: "Cluster Name" InfrastructureName: default: "Infrastructure Name" VpcId: default: "VPC ID" PublicSubnets: default: "Public Subnets" PrivateSubnets: default: "Private Subnets" HostedZoneName: default: "Public Hosted Zone Name" HostedZoneId: default: "Public Hosted Zone ID" Resources: ExtApiElb: Type: AWS::ElasticLoadBalancingV2::LoadBalancer Properties: Name: !Join ["-", [!Ref InfrastructureName, "ext"]] IpAddressType: ipv4 Subnets: !Ref PublicSubnets Type: network IntApiElb: Type: AWS::ElasticLoadBalancingV2::LoadBalancer Properties: Name: !Join ["-", [!Ref InfrastructureName, "int"]] Scheme: internal IpAddressType: ipv4 Subnets: !Ref PrivateSubnets Type: network IntDns: Type: "AWS::Route53::HostedZone" Properties: HostedZoneConfig: Comment: "Managed by CloudFormation" Name: !Join [".", [!Ref ClusterName, !Ref HostedZoneName]] HostedZoneTags: - Key: Name Value: !Join ["-", [!Ref InfrastructureName, "int"]] - Key: !Join ["", ["kubernetes.io/cluster/", !Ref InfrastructureName]] Value: "owned" VPCs: - VPCId: !Ref VpcId VPCRegion: !Ref "AWS::Region" ExternalApiServerRecord: Type: AWS::Route53::RecordSetGroup Properties: Comment: Alias record for the API server HostedZoneId: !Ref HostedZoneId RecordSets: - Name: !Join [ ".", ["api", !Ref ClusterName, !Join ["", [!Ref HostedZoneName, "."]]], ] Type: A AliasTarget: HostedZoneId: !GetAtt ExtApiElb.CanonicalHostedZoneID DNSName: !GetAtt ExtApiElb.DNSName InternalApiServerRecord: Type: AWS::Route53::RecordSetGroup Properties: Comment: Alias record for the API server HostedZoneId: !Ref IntDns RecordSets: - Name: !Join [ ".", ["api", !Ref ClusterName, !Join ["", [!Ref HostedZoneName, "."]]], ] Type: A AliasTarget: HostedZoneId: !GetAtt IntApiElb.CanonicalHostedZoneID DNSName: !GetAtt IntApiElb.DNSName - Name: !Join [ ".", ["api-int", !Ref ClusterName, !Join ["", [!Ref HostedZoneName, "."]]], ] Type: A AliasTarget: HostedZoneId: !GetAtt IntApiElb.CanonicalHostedZoneID DNSName: !GetAtt IntApiElb.DNSName ExternalApiListener: Type: AWS::ElasticLoadBalancingV2::Listener Properties: DefaultActions: - Type: forward TargetGroupArn: Ref: ExternalApiTargetGroup LoadBalancerArn: Ref: ExtApiElb Port: 6443 Protocol: TCP ExternalApiTargetGroup: Type: AWS::ElasticLoadBalancingV2::TargetGroup Properties: HealthCheckIntervalSeconds: 10 HealthCheckPath: "/readyz" HealthCheckPort: 6443 HealthCheckProtocol: HTTPS HealthyThresholdCount: 2 UnhealthyThresholdCount: 2 Port: 6443 Protocol: TCP TargetType: ip VpcId: Ref: VpcId TargetGroupAttributes: - Key: deregistration_delay.timeout_seconds Value: 60 InternalApiListener: Type: AWS::ElasticLoadBalancingV2::Listener Properties: DefaultActions: - Type: forward TargetGroupArn: Ref: InternalApiTargetGroup LoadBalancerArn: Ref: IntApiElb Port: 6443 Protocol: TCP InternalApiTargetGroup: Type: AWS::ElasticLoadBalancingV2::TargetGroup Properties: HealthCheckIntervalSeconds: 10 HealthCheckPath: "/readyz" HealthCheckPort: 6443 HealthCheckProtocol: HTTPS HealthyThresholdCount: 2 UnhealthyThresholdCount: 2 Port: 6443 Protocol: TCP TargetType: ip VpcId: Ref: VpcId TargetGroupAttributes: - Key: deregistration_delay.timeout_seconds Value: 60 InternalServiceInternalListener: Type: AWS::ElasticLoadBalancingV2::Listener Properties: DefaultActions: - Type: forward TargetGroupArn: Ref: InternalServiceTargetGroup LoadBalancerArn: Ref: IntApiElb Port: 22623 Protocol: TCP InternalServiceTargetGroup: Type: AWS::ElasticLoadBalancingV2::TargetGroup Properties: HealthCheckIntervalSeconds: 10 HealthCheckPath: "/healthz" HealthCheckPort: 22623 HealthCheckProtocol: HTTPS HealthyThresholdCount: 2 UnhealthyThresholdCount: 2 Port: 22623 Protocol: TCP TargetType: ip VpcId: Ref: VpcId TargetGroupAttributes: - Key: deregistration_delay.timeout_seconds Value: 60 RegisterTargetLambdaIamRole: Type: AWS::IAM::Role Properties: RoleName: !Join ["-", [!Ref InfrastructureName, "nlb", "lambda", "role"]] AssumeRolePolicyDocument: Version: "2012-10-17" Statement: - Effect: "Allow" Principal: Service: - "lambda.amazonaws.com" Action: - "sts:AssumeRole" Path: "/" Policies: - PolicyName: !Join ["-", [!Ref InfrastructureName, "master", "policy"]] PolicyDocument: Version: "2012-10-17" Statement: - Effect: "Allow" Action: [ "elasticloadbalancing:RegisterTargets", "elasticloadbalancing:DeregisterTargets", ] Resource: !Ref InternalApiTargetGroup - Effect: "Allow" Action: [ "elasticloadbalancing:RegisterTargets", "elasticloadbalancing:DeregisterTargets", ] Resource: !Ref InternalServiceTargetGroup - Effect: "Allow" Action: [ "elasticloadbalancing:RegisterTargets", "elasticloadbalancing:DeregisterTargets", ] Resource: !Ref ExternalApiTargetGroup RegisterNlbIpTargets: Type: "AWS::Lambda::Function" Properties: Handler: "index.handler" Role: Fn::GetAtt: - "RegisterTargetLambdaIamRole" - "Arn" Code: ZipFile: | import json import boto3 import cfnresponse def handler(event, context): elb = boto3.client('elbv2') if event['RequestType'] == 'Delete': elb.deregister_targets(TargetGroupArn=event['ResourceProperties']['TargetArn'],Targets=[{'Id': event['ResourceProperties']['TargetIp']}]) elif event['RequestType'] == 'Create': elb.register_targets(TargetGroupArn=event['ResourceProperties']['TargetArn'],Targets=[{'Id': event['ResourceProperties']['TargetIp']}]) responseData = {} cfnresponse.send(event, context, cfnresponse.SUCCESS, responseData, event['ResourceProperties']['TargetArn']+event['ResourceProperties']['TargetIp']) Runtime: "python3.8" Timeout: 120 RegisterSubnetTagsLambdaIamRole: Type: AWS::IAM::Role Properties: RoleName: !Join ["-", [!Ref InfrastructureName, "subnet-tags-lambda-role"]] AssumeRolePolicyDocument: Version: "2012-10-17" Statement: - Effect: "Allow" Principal: Service: - "lambda.amazonaws.com" Action: - "sts:AssumeRole" Path: "/" Policies: - PolicyName: !Join ["-", [!Ref InfrastructureName, "subnet-tagging-policy"]] PolicyDocument: Version: "2012-10-17" Statement: - Effect: "Allow" Action: [ "ec2:DeleteTags", "ec2:CreateTags" ] Resource: "arn:aws:ec2:*:*:subnet/*" - Effect: "Allow" Action: [ "ec2:DescribeSubnets", "ec2:DescribeTags" ] Resource: "*" RegisterSubnetTags: Type: "AWS::Lambda::Function" Properties: Handler: "index.handler" Role: Fn::GetAtt: - "RegisterSubnetTagsLambdaIamRole" - "Arn" Code: ZipFile: | import json import boto3 import cfnresponse def handler(event, context): ec2_client = boto3.client('ec2') if event['RequestType'] == 'Delete': for subnet_id in event['ResourceProperties']['Subnets']: ec2_client.delete_tags(Resources=[subnet_id], Tags=[{'Key': 'kubernetes.io/cluster/' + event['ResourceProperties']['InfrastructureName']}]); elif event['RequestType'] == 'Create': for subnet_id in event['ResourceProperties']['Subnets']: ec2_client.create_tags(Resources=[subnet_id], Tags=[{'Key': 'kubernetes.io/cluster/' + event['ResourceProperties']['InfrastructureName'], 'Value': 'shared'}]); responseData = {} cfnresponse.send(event, context, cfnresponse.SUCCESS, responseData, event['ResourceProperties']['InfrastructureName']+event['ResourceProperties']['Subnets'][0]) Runtime: "python3.8" Timeout: 120 RegisterPublicSubnetTags: Type: Custom::SubnetRegister Properties: ServiceToken: !GetAtt RegisterSubnetTags.Arn InfrastructureName: !Ref InfrastructureName Subnets: !Ref PublicSubnets RegisterPrivateSubnetTags: Type: Custom::SubnetRegister Properties: ServiceToken: !GetAtt RegisterSubnetTags.Arn InfrastructureName: !Ref InfrastructureName Subnets: !Ref PrivateSubnets Outputs: PrivateHostedZoneId: Description: Hosted zone ID for the private DNS, which is required for private records. Value: !Ref IntDns ExternalApiLoadBalancerName: Description: Full name of the external API load balancer. Value: !GetAtt ExtApiElb.LoadBalancerFullName InternalApiLoadBalancerName: Description: Full name of the internal API load balancer. Value: !GetAtt IntApiElb.LoadBalancerFullName ApiServerDnsName: Description: Full hostname of the API server, which is required for the Ignition config files. Value: !Join [".", ["api-int", !Ref ClusterName, !Ref HostedZoneName]] RegisterNlbIpTargetsLambda: Description: Lambda ARN useful to help register or deregister IP targets for these load balancers. Value: !GetAtt RegisterNlbIpTargets.Arn ExternalApiTargetGroupArn: Description: ARN of the external API target group. Value: !Ref ExternalApiTargetGroup InternalApiTargetGroupArn: Description: ARN of the internal API target group. Value: !Ref InternalApiTargetGroup InternalServiceTargetGroupArn: Description: ARN of the internal service target group. Value: !Ref InternalServiceTargetGroup
If you are deploying your cluster to an AWS government or secret region, you must update the InternalApiServerRecord
to use CNAME
records. Records of type ALIAS
are not supported for AWS government regions. For example:
Type: CNAME TTL: 10 ResourceRecords: - !GetAtt IntApiElb.DNSName
Ressources complémentaires
- You can view details about the CloudFormation stacks that you create by navigating to the AWS CloudFormation console.
- You can view details about your hosted zones by navigating to the AWS Route 53 console.
- See Listing public hosted zones in the AWS documentation for more information about listing public hosted zones.
6.13.12. Creating security group and roles in AWS
You must create security groups and roles in Amazon Web Services (AWS) for your OpenShift Container Platform cluster to use.
You can use the provided CloudFormation template and a custom parameter file to create a stack of AWS resources. The stack represents the security groups and roles that your OpenShift Container Platform cluster requires.
If you do not use the provided CloudFormation template to create your AWS infrastructure, you must review the provided information and manually create the infrastructure. If your cluster does not initialize correctly, you might have to contact Red Hat support with your installation logs.
Conditions préalables
- You configured an AWS account.
-
You added your AWS keys and region to your local AWS profile by running
aws configure
. - You generated the Ignition config files for your cluster.
- You created and configured a VPC and associated subnets in AWS.
Procédure
Create a JSON file that contains the parameter values that the template requires:
[ { "ParameterKey": "InfrastructureName", 1 "ParameterValue": "mycluster-<random_string>" 2 }, { "ParameterKey": "VpcCidr", 3 "ParameterValue": "10.0.0.0/16" 4 }, { "ParameterKey": "PrivateSubnets", 5 "ParameterValue": "subnet-<random_string>" 6 }, { "ParameterKey": "VpcId", 7 "ParameterValue": "vpc-<random_string>" 8 } ]
- 1
- The name for your cluster infrastructure that is encoded in your Ignition config files for the cluster.
- 2
- Specify the infrastructure name that you extracted from the Ignition config file metadata, which has the format
<cluster-name>-<random-string>
. - 3
- The CIDR block for the VPC.
- 4
- Specify the CIDR block parameter that you used for the VPC that you defined in the form
x.x.x.x/16-24
. - 5
- The private subnets that you created for your VPC.
- 6
- Specify the
PrivateSubnetIds
value from the output of the CloudFormation template for the VPC. - 7
- The VPC that you created for the cluster.
- 8
- Specify the
VpcId
value from the output of the CloudFormation template for the VPC.
- Copy the template from the CloudFormation template for security objects section of this topic and save it as a YAML file on your computer. This template describes the security groups and roles that your cluster requires.
Launch the CloudFormation template to create a stack of AWS resources that represent the security groups and roles:
ImportantYou must enter the command on a single line.
$ aws cloudformation create-stack --stack-name <name> 1 --template-body file://<template>.yaml 2 --parameters file://<parameters>.json 3 --capabilities CAPABILITY_NAMED_IAM 4
- 1
<name>
is the name for the CloudFormation stack, such ascluster-sec
. You need the name of this stack if you remove the cluster.- 2
<template>
is the relative path to and name of the CloudFormation template YAML file that you saved.- 3
<parameters>
is the relative path to and name of the CloudFormation parameters JSON file.- 4
- You must explicitly declare the
CAPABILITY_NAMED_IAM
capability because the provided template creates someAWS::IAM::Role
andAWS::IAM::InstanceProfile
resources.
Exemple de sortie
arn:aws:cloudformation:us-east-1:269333783861:stack/cluster-sec/03bd4210-2ed7-11eb-6d7a-13fc0b61e9db
Confirm that the template components exist:
$ aws cloudformation describe-stacks --stack-name <name>
After the
StackStatus
displaysCREATE_COMPLETE
, the output displays values for the following parameters. You must provide these parameter values to the other CloudFormation templates that you run to create your cluster:MasterSecurityGroupId
Master Security Group ID
WorkerSecurityGroupId
Worker Security Group ID
MasterInstanceProfile
Master IAM Instance Profile
WorkerInstanceProfile
Worker IAM Instance Profile
6.13.12.1. CloudFormation template for security objects
You can use the following CloudFormation template to deploy the security objects that you need for your OpenShift Container Platform cluster.
Exemple 6.48. CloudFormation template for security objects
AWSTemplateFormatVersion: 2010-09-09 Description: Template for OpenShift Cluster Security Elements (Security Groups & IAM) Parameters: InfrastructureName: AllowedPattern: ^([a-zA-Z][a-zA-Z0-9\-]{0,26})$ MaxLength: 27 MinLength: 1 ConstraintDescription: Infrastructure name must be alphanumeric, start with a letter, and have a maximum of 27 characters. Description: A short, unique cluster ID used to tag cloud resources and identify items owned or used by the cluster. Type: String VpcCidr: AllowedPattern: ^(([0-9]|[1-9][0-9]|1[0-9]{2}|2[0-4][0-9]|25[0-5])\.){3}([0-9]|[1-9][0-9]|1[0-9]{2}|2[0-4][0-9]|25[0-5])(\/(1[6-9]|2[0-4]))$ ConstraintDescription: CIDR block parameter must be in the form x.x.x.x/16-24. Default: 10.0.0.0/16 Description: CIDR block for VPC. Type: String VpcId: Description: The VPC-scoped resources will belong to this VPC. Type: AWS::EC2::VPC::Id PrivateSubnets: Description: The internal subnets. Type: List<AWS::EC2::Subnet::Id> Metadata: AWS::CloudFormation::Interface: ParameterGroups: - Label: default: "Cluster Information" Parameters: - InfrastructureName - Label: default: "Network Configuration" Parameters: - VpcId - VpcCidr - PrivateSubnets ParameterLabels: InfrastructureName: default: "Infrastructure Name" VpcId: default: "VPC ID" VpcCidr: default: "VPC CIDR" PrivateSubnets: default: "Private Subnets" Resources: MasterSecurityGroup: Type: AWS::EC2::SecurityGroup Properties: GroupDescription: Cluster Master Security Group SecurityGroupIngress: - IpProtocol: icmp FromPort: 0 ToPort: 0 CidrIp: !Ref VpcCidr - IpProtocol: tcp FromPort: 22 ToPort: 22 CidrIp: !Ref VpcCidr - IpProtocol: tcp ToPort: 6443 FromPort: 6443 CidrIp: !Ref VpcCidr - IpProtocol: tcp FromPort: 22623 ToPort: 22623 CidrIp: !Ref VpcCidr VpcId: !Ref VpcId WorkerSecurityGroup: Type: AWS::EC2::SecurityGroup Properties: GroupDescription: Cluster Worker Security Group SecurityGroupIngress: - IpProtocol: icmp FromPort: 0 ToPort: 0 CidrIp: !Ref VpcCidr - IpProtocol: tcp FromPort: 22 ToPort: 22 CidrIp: !Ref VpcCidr VpcId: !Ref VpcId MasterIngressEtcd: Type: AWS::EC2::SecurityGroupIngress Properties: GroupId: !GetAtt MasterSecurityGroup.GroupId SourceSecurityGroupId: !GetAtt MasterSecurityGroup.GroupId Description: etcd FromPort: 2379 ToPort: 2380 IpProtocol: tcp MasterIngressVxlan: Type: AWS::EC2::SecurityGroupIngress Properties: GroupId: !GetAtt MasterSecurityGroup.GroupId SourceSecurityGroupId: !GetAtt MasterSecurityGroup.GroupId Description: Vxlan packets FromPort: 4789 ToPort: 4789 IpProtocol: udp MasterIngressWorkerVxlan: Type: AWS::EC2::SecurityGroupIngress Properties: GroupId: !GetAtt MasterSecurityGroup.GroupId SourceSecurityGroupId: !GetAtt WorkerSecurityGroup.GroupId Description: Vxlan packets FromPort: 4789 ToPort: 4789 IpProtocol: udp MasterIngressGeneve: Type: AWS::EC2::SecurityGroupIngress Properties: GroupId: !GetAtt MasterSecurityGroup.GroupId SourceSecurityGroupId: !GetAtt MasterSecurityGroup.GroupId Description: Geneve packets FromPort: 6081 ToPort: 6081 IpProtocol: udp MasterIngressWorkerGeneve: Type: AWS::EC2::SecurityGroupIngress Properties: GroupId: !GetAtt MasterSecurityGroup.GroupId SourceSecurityGroupId: !GetAtt WorkerSecurityGroup.GroupId Description: Geneve packets FromPort: 6081 ToPort: 6081 IpProtocol: udp MasterIngressIpsecIke: Type: AWS::EC2::SecurityGroupIngress Properties: GroupId: !GetAtt MasterSecurityGroup.GroupId SourceSecurityGroupId: !GetAtt MasterSecurityGroup.GroupId Description: IPsec IKE packets FromPort: 500 ToPort: 500 IpProtocol: udp MasterIngressIpsecNat: Type: AWS::EC2::SecurityGroupIngress Properties: GroupId: !GetAtt MasterSecurityGroup.GroupId SourceSecurityGroupId: !GetAtt MasterSecurityGroup.GroupId Description: IPsec NAT-T packets FromPort: 4500 ToPort: 4500 IpProtocol: udp MasterIngressIpsecEsp: Type: AWS::EC2::SecurityGroupIngress Properties: GroupId: !GetAtt MasterSecurityGroup.GroupId SourceSecurityGroupId: !GetAtt MasterSecurityGroup.GroupId Description: IPsec ESP packets IpProtocol: 50 MasterIngressWorkerIpsecIke: Type: AWS::EC2::SecurityGroupIngress Properties: GroupId: !GetAtt MasterSecurityGroup.GroupId SourceSecurityGroupId: !GetAtt WorkerSecurityGroup.GroupId Description: IPsec IKE packets FromPort: 500 ToPort: 500 IpProtocol: udp MasterIngressWorkerIpsecNat: Type: AWS::EC2::SecurityGroupIngress Properties: GroupId: !GetAtt MasterSecurityGroup.GroupId SourceSecurityGroupId: !GetAtt WorkerSecurityGroup.GroupId Description: IPsec NAT-T packets FromPort: 4500 ToPort: 4500 IpProtocol: udp MasterIngressWorkerIpsecEsp: Type: AWS::EC2::SecurityGroupIngress Properties: GroupId: !GetAtt MasterSecurityGroup.GroupId SourceSecurityGroupId: !GetAtt WorkerSecurityGroup.GroupId Description: IPsec ESP packets IpProtocol: 50 MasterIngressInternal: Type: AWS::EC2::SecurityGroupIngress Properties: GroupId: !GetAtt MasterSecurityGroup.GroupId SourceSecurityGroupId: !GetAtt MasterSecurityGroup.GroupId Description: Internal cluster communication FromPort: 9000 ToPort: 9999 IpProtocol: tcp MasterIngressWorkerInternal: Type: AWS::EC2::SecurityGroupIngress Properties: GroupId: !GetAtt MasterSecurityGroup.GroupId SourceSecurityGroupId: !GetAtt WorkerSecurityGroup.GroupId Description: Internal cluster communication FromPort: 9000 ToPort: 9999 IpProtocol: tcp MasterIngressInternalUDP: Type: AWS::EC2::SecurityGroupIngress Properties: GroupId: !GetAtt MasterSecurityGroup.GroupId SourceSecurityGroupId: !GetAtt MasterSecurityGroup.GroupId Description: Internal cluster communication FromPort: 9000 ToPort: 9999 IpProtocol: udp MasterIngressWorkerInternalUDP: Type: AWS::EC2::SecurityGroupIngress Properties: GroupId: !GetAtt MasterSecurityGroup.GroupId SourceSecurityGroupId: !GetAtt WorkerSecurityGroup.GroupId Description: Internal cluster communication FromPort: 9000 ToPort: 9999 IpProtocol: udp MasterIngressKube: Type: AWS::EC2::SecurityGroupIngress Properties: GroupId: !GetAtt MasterSecurityGroup.GroupId SourceSecurityGroupId: !GetAtt MasterSecurityGroup.GroupId Description: Kubernetes kubelet, scheduler and controller manager FromPort: 10250 ToPort: 10259 IpProtocol: tcp MasterIngressWorkerKube: Type: AWS::EC2::SecurityGroupIngress Properties: GroupId: !GetAtt MasterSecurityGroup.GroupId SourceSecurityGroupId: !GetAtt WorkerSecurityGroup.GroupId Description: Kubernetes kubelet, scheduler and controller manager FromPort: 10250 ToPort: 10259 IpProtocol: tcp MasterIngressIngressServices: Type: AWS::EC2::SecurityGroupIngress Properties: GroupId: !GetAtt MasterSecurityGroup.GroupId SourceSecurityGroupId: !GetAtt MasterSecurityGroup.GroupId Description: Kubernetes ingress services FromPort: 30000 ToPort: 32767 IpProtocol: tcp MasterIngressWorkerIngressServices: Type: AWS::EC2::SecurityGroupIngress Properties: GroupId: !GetAtt MasterSecurityGroup.GroupId SourceSecurityGroupId: !GetAtt WorkerSecurityGroup.GroupId Description: Kubernetes ingress services FromPort: 30000 ToPort: 32767 IpProtocol: tcp MasterIngressIngressServicesUDP: Type: AWS::EC2::SecurityGroupIngress Properties: GroupId: !GetAtt MasterSecurityGroup.GroupId SourceSecurityGroupId: !GetAtt MasterSecurityGroup.GroupId Description: Kubernetes ingress services FromPort: 30000 ToPort: 32767 IpProtocol: udp MasterIngressWorkerIngressServicesUDP: Type: AWS::EC2::SecurityGroupIngress Properties: GroupId: !GetAtt MasterSecurityGroup.GroupId SourceSecurityGroupId: !GetAtt WorkerSecurityGroup.GroupId Description: Kubernetes ingress services FromPort: 30000 ToPort: 32767 IpProtocol: udp WorkerIngressVxlan: Type: AWS::EC2::SecurityGroupIngress Properties: GroupId: !GetAtt WorkerSecurityGroup.GroupId SourceSecurityGroupId: !GetAtt WorkerSecurityGroup.GroupId Description: Vxlan packets FromPort: 4789 ToPort: 4789 IpProtocol: udp WorkerIngressMasterVxlan: Type: AWS::EC2::SecurityGroupIngress Properties: GroupId: !GetAtt WorkerSecurityGroup.GroupId SourceSecurityGroupId: !GetAtt MasterSecurityGroup.GroupId Description: Vxlan packets FromPort: 4789 ToPort: 4789 IpProtocol: udp WorkerIngressGeneve: Type: AWS::EC2::SecurityGroupIngress Properties: GroupId: !GetAtt WorkerSecurityGroup.GroupId SourceSecurityGroupId: !GetAtt WorkerSecurityGroup.GroupId Description: Geneve packets FromPort: 6081 ToPort: 6081 IpProtocol: udp WorkerIngressMasterGeneve: Type: AWS::EC2::SecurityGroupIngress Properties: GroupId: !GetAtt WorkerSecurityGroup.GroupId SourceSecurityGroupId: !GetAtt MasterSecurityGroup.GroupId Description: Geneve packets FromPort: 6081 ToPort: 6081 IpProtocol: udp WorkerIngressIpsecIke: Type: AWS::EC2::SecurityGroupIngress Properties: GroupId: !GetAtt WorkerSecurityGroup.GroupId SourceSecurityGroupId: !GetAtt WorkerSecurityGroup.GroupId Description: IPsec IKE packets FromPort: 500 ToPort: 500 IpProtocol: udp WorkerIngressIpsecNat: Type: AWS::EC2::SecurityGroupIngress Properties: GroupId: !GetAtt WorkerSecurityGroup.GroupId SourceSecurityGroupId: !GetAtt WorkerSecurityGroup.GroupId Description: IPsec NAT-T packets FromPort: 4500 ToPort: 4500 IpProtocol: udp WorkerIngressIpsecEsp: Type: AWS::EC2::SecurityGroupIngress Properties: GroupId: !GetAtt WorkerSecurityGroup.GroupId SourceSecurityGroupId: !GetAtt WorkerSecurityGroup.GroupId Description: IPsec ESP packets IpProtocol: 50 WorkerIngressMasterIpsecIke: Type: AWS::EC2::SecurityGroupIngress Properties: GroupId: !GetAtt WorkerSecurityGroup.GroupId SourceSecurityGroupId: !GetAtt MasterSecurityGroup.GroupId Description: IPsec IKE packets FromPort: 500 ToPort: 500 IpProtocol: udp WorkerIngressMasterIpsecNat: Type: AWS::EC2::SecurityGroupIngress Properties: GroupId: !GetAtt WorkerSecurityGroup.GroupId SourceSecurityGroupId: !GetAtt MasterSecurityGroup.GroupId Description: IPsec NAT-T packets FromPort: 4500 ToPort: 4500 IpProtocol: udp WorkerIngressMasterIpsecEsp: Type: AWS::EC2::SecurityGroupIngress Properties: GroupId: !GetAtt WorkerSecurityGroup.GroupId SourceSecurityGroupId: !GetAtt MasterSecurityGroup.GroupId Description: IPsec ESP packets IpProtocol: 50 WorkerIngressInternal: Type: AWS::EC2::SecurityGroupIngress Properties: GroupId: !GetAtt WorkerSecurityGroup.GroupId SourceSecurityGroupId: !GetAtt WorkerSecurityGroup.GroupId Description: Internal cluster communication FromPort: 9000 ToPort: 9999 IpProtocol: tcp WorkerIngressMasterInternal: Type: AWS::EC2::SecurityGroupIngress Properties: GroupId: !GetAtt WorkerSecurityGroup.GroupId SourceSecurityGroupId: !GetAtt MasterSecurityGroup.GroupId Description: Internal cluster communication FromPort: 9000 ToPort: 9999 IpProtocol: tcp WorkerIngressInternalUDP: Type: AWS::EC2::SecurityGroupIngress Properties: GroupId: !GetAtt WorkerSecurityGroup.GroupId SourceSecurityGroupId: !GetAtt WorkerSecurityGroup.GroupId Description: Internal cluster communication FromPort: 9000 ToPort: 9999 IpProtocol: udp WorkerIngressMasterInternalUDP: Type: AWS::EC2::SecurityGroupIngress Properties: GroupId: !GetAtt WorkerSecurityGroup.GroupId SourceSecurityGroupId: !GetAtt MasterSecurityGroup.GroupId Description: Internal cluster communication FromPort: 9000 ToPort: 9999 IpProtocol: udp WorkerIngressKube: Type: AWS::EC2::SecurityGroupIngress Properties: GroupId: !GetAtt WorkerSecurityGroup.GroupId SourceSecurityGroupId: !GetAtt WorkerSecurityGroup.GroupId Description: Kubernetes secure kubelet port FromPort: 10250 ToPort: 10250 IpProtocol: tcp WorkerIngressWorkerKube: Type: AWS::EC2::SecurityGroupIngress Properties: GroupId: !GetAtt WorkerSecurityGroup.GroupId SourceSecurityGroupId: !GetAtt MasterSecurityGroup.GroupId Description: Internal Kubernetes communication FromPort: 10250 ToPort: 10250 IpProtocol: tcp WorkerIngressIngressServices: Type: AWS::EC2::SecurityGroupIngress Properties: GroupId: !GetAtt WorkerSecurityGroup.GroupId SourceSecurityGroupId: !GetAtt WorkerSecurityGroup.GroupId Description: Kubernetes ingress services FromPort: 30000 ToPort: 32767 IpProtocol: tcp WorkerIngressMasterIngressServices: Type: AWS::EC2::SecurityGroupIngress Properties: GroupId: !GetAtt WorkerSecurityGroup.GroupId SourceSecurityGroupId: !GetAtt MasterSecurityGroup.GroupId Description: Kubernetes ingress services FromPort: 30000 ToPort: 32767 IpProtocol: tcp WorkerIngressIngressServicesUDP: Type: AWS::EC2::SecurityGroupIngress Properties: GroupId: !GetAtt WorkerSecurityGroup.GroupId SourceSecurityGroupId: !GetAtt WorkerSecurityGroup.GroupId Description: Kubernetes ingress services FromPort: 30000 ToPort: 32767 IpProtocol: udp WorkerIngressMasterIngressServicesUDP: Type: AWS::EC2::SecurityGroupIngress Properties: GroupId: !GetAtt WorkerSecurityGroup.GroupId SourceSecurityGroupId: !GetAtt MasterSecurityGroup.GroupId Description: Kubernetes ingress services FromPort: 30000 ToPort: 32767 IpProtocol: udp MasterIamRole: Type: AWS::IAM::Role Properties: AssumeRolePolicyDocument: Version: "2012-10-17" Statement: - Effect: "Allow" Principal: Service: - "ec2.amazonaws.com" Action: - "sts:AssumeRole" Policies: - PolicyName: !Join ["-", [!Ref InfrastructureName, "master", "policy"]] PolicyDocument: Version: "2012-10-17" Statement: - Effect: "Allow" Action: - "ec2:AttachVolume" - "ec2:AuthorizeSecurityGroupIngress" - "ec2:CreateSecurityGroup" - "ec2:CreateTags" - "ec2:CreateVolume" - "ec2:DeleteSecurityGroup" - "ec2:DeleteVolume" - "ec2:Describe*" - "ec2:DetachVolume" - "ec2:ModifyInstanceAttribute" - "ec2:ModifyVolume" - "ec2:RevokeSecurityGroupIngress" - "elasticloadbalancing:AddTags" - "elasticloadbalancing:AttachLoadBalancerToSubnets" - "elasticloadbalancing:ApplySecurityGroupsToLoadBalancer" - "elasticloadbalancing:CreateListener" - "elasticloadbalancing:CreateLoadBalancer" - "elasticloadbalancing:CreateLoadBalancerPolicy" - "elasticloadbalancing:CreateLoadBalancerListeners" - "elasticloadbalancing:CreateTargetGroup" - "elasticloadbalancing:ConfigureHealthCheck" - "elasticloadbalancing:DeleteListener" - "elasticloadbalancing:DeleteLoadBalancer" - "elasticloadbalancing:DeleteLoadBalancerListeners" - "elasticloadbalancing:DeleteTargetGroup" - "elasticloadbalancing:DeregisterInstancesFromLoadBalancer" - "elasticloadbalancing:DeregisterTargets" - "elasticloadbalancing:Describe*" - "elasticloadbalancing:DetachLoadBalancerFromSubnets" - "elasticloadbalancing:ModifyListener" - "elasticloadbalancing:ModifyLoadBalancerAttributes" - "elasticloadbalancing:ModifyTargetGroup" - "elasticloadbalancing:ModifyTargetGroupAttributes" - "elasticloadbalancing:RegisterInstancesWithLoadBalancer" - "elasticloadbalancing:RegisterTargets" - "elasticloadbalancing:SetLoadBalancerPoliciesForBackendServer" - "elasticloadbalancing:SetLoadBalancerPoliciesOfListener" - "kms:DescribeKey" Resource: "*" MasterInstanceProfile: Type: "AWS::IAM::InstanceProfile" Properties: Roles: - Ref: "MasterIamRole" WorkerIamRole: Type: AWS::IAM::Role Properties: AssumeRolePolicyDocument: Version: "2012-10-17" Statement: - Effect: "Allow" Principal: Service: - "ec2.amazonaws.com" Action: - "sts:AssumeRole" Policies: - PolicyName: !Join ["-", [!Ref InfrastructureName, "worker", "policy"]] PolicyDocument: Version: "2012-10-17" Statement: - Effect: "Allow" Action: - "ec2:DescribeInstances" - "ec2:DescribeRegions" Resource: "*" WorkerInstanceProfile: Type: "AWS::IAM::InstanceProfile" Properties: Roles: - Ref: "WorkerIamRole" Outputs: MasterSecurityGroupId: Description: Master Security Group ID Value: !GetAtt MasterSecurityGroup.GroupId WorkerSecurityGroupId: Description: Worker Security Group ID Value: !GetAtt WorkerSecurityGroup.GroupId MasterInstanceProfile: Description: Master IAM Instance Profile Value: !Ref MasterInstanceProfile WorkerInstanceProfile: Description: Worker IAM Instance Profile Value: !Ref WorkerInstanceProfile
Ressources complémentaires
- You can view details about the CloudFormation stacks that you create by navigating to the AWS CloudFormation console.
6.13.13. Accessing RHCOS AMIs with stream metadata
In OpenShift Container Platform, stream metadata provides standardized metadata about RHCOS in the JSON format and injects the metadata into the cluster. Stream metadata is a stable format that supports multiple architectures and is intended to be self-documenting for maintaining automation.
You can use the coreos print-stream-json
sub-command of openshift-install
to access information about the boot images in the stream metadata format. This command provides a method for printing stream metadata in a scriptable, machine-readable format.
For user-provisioned installations, the openshift-install
binary contains references to the version of RHCOS boot images that are tested for use with OpenShift Container Platform, such as the AWS AMI.
Procédure
To parse the stream metadata, use one of the following methods:
-
From a Go program, use the official
stream-metadata-go
library at https://github.com/coreos/stream-metadata-go. You can also view example code in the library. - From another programming language, such as Python or Ruby, use the JSON library of your preferred programming language.
From a command-line utility that handles JSON data, such as
jq
:Print the current
x86_64
orarm64
AMI for an AWS region, such asus-west-1
:For x86_64
$ openshift-install coreos print-stream-json | jq -r '.architectures.x86_64.images.aws.regions["us-west-1"].image'
Exemple de sortie
ami-0d3e625f84626bbda
For arm64
$ openshift-install coreos print-stream-json | jq -r '.architectures.aarch64.images.aws.regions["us-west-1"].image'
Exemple de sortie
ami-0af1d3b7fa5be2131
The output of this command is the AWS AMI ID for your designated architecture and the
us-west-1
region. The AMI must belong to the same region as the cluster.
6.13.14. RHCOS AMIs for the AWS infrastructure
Red Hat provides Red Hat Enterprise Linux CoreOS (RHCOS) AMIs that are valid for the various AWS regions and instance architectures that you can manually specify for your OpenShift Container Platform nodes.
By importing your own AMI, you can also install to regions that do not have a published RHCOS AMI.
AWS zone | AWS AMI |
---|---|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
AWS zone | AWS AMI |
---|---|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6.13.14.1. AWS regions without a published RHCOS AMI
You can deploy an OpenShift Container Platform cluster to Amazon Web Services (AWS) regions without native support for a Red Hat Enterprise Linux CoreOS (RHCOS) Amazon Machine Image (AMI) or the AWS software development kit (SDK). If a published AMI is not available for an AWS region, you can upload a custom AMI prior to installing the cluster.
If you are deploying to a region not supported by the AWS SDK and you do not specify a custom AMI, the installation program copies the us-east-1
AMI to the user account automatically. Then the installation program creates the control plane machines with encrypted EBS volumes using the default or user-specified Key Management Service (KMS) key. This allows the AMI to follow the same process workflow as published RHCOS AMIs.
A region without native support for an RHCOS AMI is not available to select from the terminal during cluster creation because it is not published. However, you can install to this region by configuring the custom AMI in the install-config.yaml
file.
6.13.14.2. Uploading a custom RHCOS AMI in AWS
If you are deploying to a custom Amazon Web Services (AWS) region, you must upload a custom Red Hat Enterprise Linux CoreOS (RHCOS) Amazon Machine Image (AMI) that belongs to that region.
Conditions préalables
- You configured an AWS account.
- You created an Amazon S3 bucket with the required IAM service role.
- You uploaded your RHCOS VMDK file to Amazon S3. The RHCOS VMDK file must be the highest version that is less than or equal to the OpenShift Container Platform version you are installing.
- You downloaded the AWS CLI and installed it on your computer. See Install the AWS CLI Using the Bundled Installer.
Procédure
Export your AWS profile as an environment variable:
$ export AWS_PROFILE=<aws_profile> 1
Export the region to associate with your custom AMI as an environment variable:
$ export AWS_DEFAULT_REGION=<aws_region> 1
Export the version of RHCOS you uploaded to Amazon S3 as an environment variable:
$ export RHCOS_VERSION=<version> 1
Export the Amazon S3 bucket name as an environment variable:
$ export VMIMPORT_BUCKET_NAME=<s3_bucket_name>
Create the
containers.json
file and define your RHCOS VMDK file:$ cat <<EOF > containers.json { "Description": "rhcos-${RHCOS_VERSION}-x86_64-aws.x86_64", "Format": "vmdk", "UserBucket": { "S3Bucket": "${VMIMPORT_BUCKET_NAME}", "S3Key": "rhcos-${RHCOS_VERSION}-x86_64-aws.x86_64.vmdk" } } EOF
Import the RHCOS disk as an Amazon EBS snapshot:
$ aws ec2 import-snapshot --region ${AWS_DEFAULT_REGION} \ --description "<description>" \ 1 --disk-container "file://<file_path>/containers.json" 2
Check the status of the image import:
$ watch -n 5 aws ec2 describe-import-snapshot-tasks --region ${AWS_DEFAULT_REGION}
Exemple de sortie
{ "ImportSnapshotTasks": [ { "Description": "rhcos-4.7.0-x86_64-aws.x86_64", "ImportTaskId": "import-snap-fh6i8uil", "SnapshotTaskDetail": { "Description": "rhcos-4.7.0-x86_64-aws.x86_64", "DiskImageSize": 819056640.0, "Format": "VMDK", "SnapshotId": "snap-06331325870076318", "Status": "completed", "UserBucket": { "S3Bucket": "external-images", "S3Key": "rhcos-4.7.0-x86_64-aws.x86_64.vmdk" } } } ] }
Copy the
SnapshotId
to register the image.Create a custom RHCOS AMI from the RHCOS snapshot:
$ aws ec2 register-image \ --region ${AWS_DEFAULT_REGION} \ --architecture x86_64 \ 1 --description "rhcos-${RHCOS_VERSION}-x86_64-aws.x86_64" \ 2 --ena-support \ --name "rhcos-${RHCOS_VERSION}-x86_64-aws.x86_64" \ 3 --virtualization-type hvm \ --root-device-name '/dev/xvda' \ --block-device-mappings 'DeviceName=/dev/xvda,Ebs={DeleteOnTermination=true,SnapshotId=<snapshot_ID>}' 4
To learn more about these APIs, see the AWS documentation for importing snapshots and creating EBS-backed AMIs.
6.13.15. Creating the bootstrap node in AWS
You must create the bootstrap node in Amazon Web Services (AWS) to use during OpenShift Container Platform cluster initialization. You do this by:
-
Providing a location to serve the
bootstrap.ign
Ignition config file to your cluster. This file is located in your installation directory. The provided CloudFormation Template assumes that the Ignition config files for your cluster are served from an S3 bucket. If you choose to serve the files from another location, you must modify the templates. - Using the provided CloudFormation template and a custom parameter file to create a stack of AWS resources. The stack represents the bootstrap node that your OpenShift Container Platform installation requires.
If you do not use the provided CloudFormation template to create your bootstrap node, you must review the provided information and manually create the infrastructure. If your cluster does not initialize correctly, you might have to contact Red Hat support with your installation logs.
Conditions préalables
- You configured an AWS account.
-
You added your AWS keys and region to your local AWS profile by running
aws configure
. - You generated the Ignition config files for your cluster.
- You created and configured a VPC and associated subnets in AWS.
- You created and configured DNS, load balancers, and listeners in AWS.
- You created the security groups and roles required for your cluster in AWS.
Procédure
Create the bucket by running the following command:
$ aws s3 mb s3://<cluster-name>-infra 1
- 1
<cluster-name>-infra
is the bucket name. When creating theinstall-config.yaml
file, replace<cluster-name>
with the name specified for the cluster.
You must use a presigned URL for your S3 bucket, instead of the
s3://
schema, if you are:- Deploying to a region that has endpoints that differ from the AWS SDK.
- Deploying a proxy.
- Providing your own custom endpoints.
Upload the
bootstrap.ign
Ignition config file to the bucket by running the following command:$ aws s3 cp <installation_directory>/bootstrap.ign s3://<cluster-name>-infra/bootstrap.ign 1
- 1
- For
<installation_directory>
, specify the path to the directory that you stored the installation files in.
Verify that the file uploaded by running the following command:
$ aws s3 ls s3://<cluster-name>-infra/
Exemple de sortie
2019-04-03 16:15:16 314878 bootstrap.ign
NoteThe bootstrap Ignition config file does contain secrets, like X.509 keys. The following steps provide basic security for the S3 bucket. To provide additional security, you can enable an S3 bucket policy to allow only certain users, such as the OpenShift IAM user, to access objects that the bucket contains. You can avoid S3 entirely and serve your bootstrap Ignition config file from any address that the bootstrap machine can reach.
Create a JSON file that contains the parameter values that the template requires:
[ { "ParameterKey": "InfrastructureName", 1 "ParameterValue": "mycluster-<random_string>" 2 }, { "ParameterKey": "RhcosAmi", 3 "ParameterValue": "ami-<random_string>" 4 }, { "ParameterKey": "AllowedBootstrapSshCidr", 5 "ParameterValue": "0.0.0.0/0" 6 }, { "ParameterKey": "PublicSubnet", 7 "ParameterValue": "subnet-<random_string>" 8 }, { "ParameterKey": "MasterSecurityGroupId", 9 "ParameterValue": "sg-<random_string>" 10 }, { "ParameterKey": "VpcId", 11 "ParameterValue": "vpc-<random_string>" 12 }, { "ParameterKey": "BootstrapIgnitionLocation", 13 "ParameterValue": "s3://<bucket_name>/bootstrap.ign" 14 }, { "ParameterKey": "AutoRegisterELB", 15 "ParameterValue": "yes" 16 }, { "ParameterKey": "RegisterNlbIpTargetsLambdaArn", 17 "ParameterValue": "arn:aws:lambda:<aws_region>:<account_number>:function:<dns_stack_name>-RegisterNlbIpTargets-<random_string>" 18 }, { "ParameterKey": "ExternalApiTargetGroupArn", 19 "ParameterValue": "arn:aws:elasticloadbalancing:<aws_region>:<account_number>:targetgroup/<dns_stack_name>-Exter-<random_string>" 20 }, { "ParameterKey": "InternalApiTargetGroupArn", 21 "ParameterValue": "arn:aws:elasticloadbalancing:<aws_region>:<account_number>:targetgroup/<dns_stack_name>-Inter-<random_string>" 22 }, { "ParameterKey": "InternalServiceTargetGroupArn", 23 "ParameterValue": "arn:aws:elasticloadbalancing:<aws_region>:<account_number>:targetgroup/<dns_stack_name>-Inter-<random_string>" 24 } ]
- 1
- The name for your cluster infrastructure that is encoded in your Ignition config files for the cluster.
- 2
- Specify the infrastructure name that you extracted from the Ignition config file metadata, which has the format
<cluster-name>-<random-string>
. - 3
- Current Red Hat Enterprise Linux CoreOS (RHCOS) AMI to use for the bootstrap node based on your selected architecture.
- 4
- Specify a valid
AWS::EC2::Image::Id
value. - 5
- CIDR block to allow SSH access to the bootstrap node.
- 6
- Specify a CIDR block in the format
x.x.x.x/16-24
. - 7
- The public subnet that is associated with your VPC to launch the bootstrap node into.
- 8
- Specify the
PublicSubnetIds
value from the output of the CloudFormation template for the VPC. - 9
- The master security group ID (for registering temporary rules)
- 10
- Specify the
MasterSecurityGroupId
value from the output of the CloudFormation template for the security group and roles. - 11
- The VPC created resources will belong to.
- 12
- Specify the
VpcId
value from the output of the CloudFormation template for the VPC. - 13
- Location to fetch bootstrap Ignition config file from.
- 14
- Specify the S3 bucket and file name in the form
s3://<bucket_name>/bootstrap.ign
. - 15
- Whether or not to register a network load balancer (NLB).
- 16
- Specify
yes
orno
. If you specifyyes
, you must provide a Lambda Amazon Resource Name (ARN) value. - 17
- The ARN for NLB IP target registration lambda group.
- 18
- Specify the
RegisterNlbIpTargetsLambda
value from the output of the CloudFormation template for DNS and load balancing. Usearn:aws-us-gov
if deploying the cluster to an AWS GovCloud region. - 19
- The ARN for external API load balancer target group.
- 20
- Specify the
ExternalApiTargetGroupArn
value from the output of the CloudFormation template for DNS and load balancing. Usearn:aws-us-gov
if deploying the cluster to an AWS GovCloud region. - 21
- The ARN for internal API load balancer target group.
- 22
- Specify the
InternalApiTargetGroupArn
value from the output of the CloudFormation template for DNS and load balancing. Usearn:aws-us-gov
if deploying the cluster to an AWS GovCloud region. - 23
- The ARN for internal service load balancer target group.
- 24
- Specify the
InternalServiceTargetGroupArn
value from the output of the CloudFormation template for DNS and load balancing. Usearn:aws-us-gov
if deploying the cluster to an AWS GovCloud region.
- Copy the template from the CloudFormation template for the bootstrap machine section of this topic and save it as a YAML file on your computer. This template describes the bootstrap machine that your cluster requires.
-
Optional: If you are deploying the cluster with a proxy, you must update the ignition in the template to add the
ignition.config.proxy
fields. Additionally, If you have added the Amazon EC2, Elastic Load Balancing, and S3 VPC endpoints to your VPC, you must add these endpoints to thenoProxy
field. Launch the CloudFormation template to create a stack of AWS resources that represent the bootstrap node:
ImportantYou must enter the command on a single line.
$ aws cloudformation create-stack --stack-name <name> 1 --template-body file://<template>.yaml 2 --parameters file://<parameters>.json 3 --capabilities CAPABILITY_NAMED_IAM 4
- 1
<name>
is the name for the CloudFormation stack, such ascluster-bootstrap
. You need the name of this stack if you remove the cluster.- 2
<template>
is the relative path to and name of the CloudFormation template YAML file that you saved.- 3
<parameters>
is the relative path to and name of the CloudFormation parameters JSON file.- 4
- You must explicitly declare the
CAPABILITY_NAMED_IAM
capability because the provided template creates someAWS::IAM::Role
andAWS::IAM::InstanceProfile
resources.
Exemple de sortie
arn:aws:cloudformation:us-east-1:269333783861:stack/cluster-bootstrap/12944486-2add-11eb-9dee-12dace8e3a83
Confirm that the template components exist:
$ aws cloudformation describe-stacks --stack-name <name>
After the
StackStatus
displaysCREATE_COMPLETE
, the output displays values for the following parameters. You must provide these parameter values to the other CloudFormation templates that you run to create your cluster:BootstrapInstanceId
The bootstrap Instance ID.
BootstrapPublicIp
The bootstrap node public IP address.
BootstrapPrivateIp
The bootstrap node private IP address.
6.13.15.1. CloudFormation template for the bootstrap machine
You can use the following CloudFormation template to deploy the bootstrap machine that you need for your OpenShift Container Platform cluster.
Exemple 6.49. CloudFormation template for the bootstrap machine
AWSTemplateFormatVersion: 2010-09-09 Description: Template for OpenShift Cluster Bootstrap (EC2 Instance, Security Groups and IAM) Parameters: InfrastructureName: AllowedPattern: ^([a-zA-Z][a-zA-Z0-9\-]{0,26})$ MaxLength: 27 MinLength: 1 ConstraintDescription: Infrastructure name must be alphanumeric, start with a letter, and have a maximum of 27 characters. Description: A short, unique cluster ID used to tag cloud resources and identify items owned or used by the cluster. Type: String RhcosAmi: Description: Current Red Hat Enterprise Linux CoreOS AMI to use for bootstrap. Type: AWS::EC2::Image::Id AllowedBootstrapSshCidr: AllowedPattern: ^(([0-9]|[1-9][0-9]|1[0-9]{2}|2[0-4][0-9]|25[0-5])\.){3}([0-9]|[1-9][0-9]|1[0-9]{2}|2[0-4][0-9]|25[0-5])(\/([0-9]|1[0-9]|2[0-9]|3[0-2]))$ ConstraintDescription: CIDR block parameter must be in the form x.x.x.x/0-32. Default: 0.0.0.0/0 Description: CIDR block to allow SSH access to the bootstrap node. Type: String PublicSubnet: Description: The public subnet to launch the bootstrap node into. Type: AWS::EC2::Subnet::Id MasterSecurityGroupId: Description: The master security group ID for registering temporary rules. Type: AWS::EC2::SecurityGroup::Id VpcId: Description: The VPC-scoped resources will belong to this VPC. Type: AWS::EC2::VPC::Id BootstrapIgnitionLocation: Default: s3://my-s3-bucket/bootstrap.ign Description: Ignition config file location. Type: String AutoRegisterELB: Default: "yes" AllowedValues: - "yes" - "no" Description: Do you want to invoke NLB registration, which requires a Lambda ARN parameter? Type: String RegisterNlbIpTargetsLambdaArn: Description: ARN for NLB IP target registration lambda. Type: String ExternalApiTargetGroupArn: Description: ARN for external API load balancer target group. Type: String InternalApiTargetGroupArn: Description: ARN for internal API load balancer target group. Type: String InternalServiceTargetGroupArn: Description: ARN for internal service load balancer target group. Type: String BootstrapInstanceType: Description: Instance type for the bootstrap EC2 instance Default: "i3.large" Type: String Metadata: AWS::CloudFormation::Interface: ParameterGroups: - Label: default: "Cluster Information" Parameters: - InfrastructureName - Label: default: "Host Information" Parameters: - RhcosAmi - BootstrapIgnitionLocation - MasterSecurityGroupId - Label: default: "Network Configuration" Parameters: - VpcId - AllowedBootstrapSshCidr - PublicSubnet - Label: default: "Load Balancer Automation" Parameters: - AutoRegisterELB - RegisterNlbIpTargetsLambdaArn - ExternalApiTargetGroupArn - InternalApiTargetGroupArn - InternalServiceTargetGroupArn ParameterLabels: InfrastructureName: default: "Infrastructure Name" VpcId: default: "VPC ID" AllowedBootstrapSshCidr: default: "Allowed SSH Source" PublicSubnet: default: "Public Subnet" RhcosAmi: default: "Red Hat Enterprise Linux CoreOS AMI ID" BootstrapIgnitionLocation: default: "Bootstrap Ignition Source" MasterSecurityGroupId: default: "Master Security Group ID" AutoRegisterELB: default: "Use Provided ELB Automation" Conditions: DoRegistration: !Equals ["yes", !Ref AutoRegisterELB] Resources: BootstrapIamRole: Type: AWS::IAM::Role Properties: AssumeRolePolicyDocument: Version: "2012-10-17" Statement: - Effect: "Allow" Principal: Service: - "ec2.amazonaws.com" Action: - "sts:AssumeRole" Path: "/" Policies: - PolicyName: !Join ["-", [!Ref InfrastructureName, "bootstrap", "policy"]] PolicyDocument: Version: "2012-10-17" Statement: - Effect: "Allow" Action: "ec2:Describe*" Resource: "*" - Effect: "Allow" Action: "ec2:AttachVolume" Resource: "*" - Effect: "Allow" Action: "ec2:DetachVolume" Resource: "*" - Effect: "Allow" Action: "s3:GetObject" Resource: "*" BootstrapInstanceProfile: Type: "AWS::IAM::InstanceProfile" Properties: Path: "/" Roles: - Ref: "BootstrapIamRole" BootstrapSecurityGroup: Type: AWS::EC2::SecurityGroup Properties: GroupDescription: Cluster Bootstrap Security Group SecurityGroupIngress: - IpProtocol: tcp FromPort: 22 ToPort: 22 CidrIp: !Ref AllowedBootstrapSshCidr - IpProtocol: tcp ToPort: 19531 FromPort: 19531 CidrIp: 0.0.0.0/0 VpcId: !Ref VpcId BootstrapInstance: Type: AWS::EC2::Instance Properties: ImageId: !Ref RhcosAmi IamInstanceProfile: !Ref BootstrapInstanceProfile InstanceType: !Ref BootstrapInstanceType NetworkInterfaces: - AssociatePublicIpAddress: "true" DeviceIndex: "0" GroupSet: - !Ref "BootstrapSecurityGroup" - !Ref "MasterSecurityGroupId" SubnetId: !Ref "PublicSubnet" UserData: Fn::Base64: !Sub - '{"ignition":{"config":{"replace":{"source":"${S3Loc}"}},"version":"3.1.0"}}' - { S3Loc: !Ref BootstrapIgnitionLocation } RegisterBootstrapApiTarget: Condition: DoRegistration Type: Custom::NLBRegister Properties: ServiceToken: !Ref RegisterNlbIpTargetsLambdaArn TargetArn: !Ref ExternalApiTargetGroupArn TargetIp: !GetAtt BootstrapInstance.PrivateIp RegisterBootstrapInternalApiTarget: Condition: DoRegistration Type: Custom::NLBRegister Properties: ServiceToken: !Ref RegisterNlbIpTargetsLambdaArn TargetArn: !Ref InternalApiTargetGroupArn TargetIp: !GetAtt BootstrapInstance.PrivateIp RegisterBootstrapInternalServiceTarget: Condition: DoRegistration Type: Custom::NLBRegister Properties: ServiceToken: !Ref RegisterNlbIpTargetsLambdaArn TargetArn: !Ref InternalServiceTargetGroupArn TargetIp: !GetAtt BootstrapInstance.PrivateIp Outputs: BootstrapInstanceId: Description: Bootstrap Instance ID. Value: !Ref BootstrapInstance BootstrapPublicIp: Description: The bootstrap node public IP address. Value: !GetAtt BootstrapInstance.PublicIp BootstrapPrivateIp: Description: The bootstrap node private IP address. Value: !GetAtt BootstrapInstance.PrivateIp
Ressources complémentaires
- You can view details about the CloudFormation stacks that you create by navigating to the AWS CloudFormation console.
- See RHCOS AMIs for the AWS infrastructure for details about the Red Hat Enterprise Linux CoreOS (RHCOS) AMIs for the AWS zones.
6.13.16. Creating the control plane machines in AWS
You must create the control plane machines in Amazon Web Services (AWS) that your cluster will use.
You can use the provided CloudFormation template and a custom parameter file to create a stack of AWS resources that represent the control plane nodes.
The CloudFormation template creates a stack that represents three control plane nodes.
If you do not use the provided CloudFormation template to create your control plane nodes, you must review the provided information and manually create the infrastructure. If your cluster does not initialize correctly, you might have to contact Red Hat support with your installation logs.
Conditions préalables
- You configured an AWS account.
-
You added your AWS keys and region to your local AWS profile by running
aws configure
. - You generated the Ignition config files for your cluster.
- You created and configured a VPC and associated subnets in AWS.
- You created and configured DNS, load balancers, and listeners in AWS.
- You created the security groups and roles required for your cluster in AWS.
- You created the bootstrap machine.
Procédure
Create a JSON file that contains the parameter values that the template requires:
[ { "ParameterKey": "InfrastructureName", 1 "ParameterValue": "mycluster-<random_string>" 2 }, { "ParameterKey": "RhcosAmi", 3 "ParameterValue": "ami-<random_string>" 4 }, { "ParameterKey": "AutoRegisterDNS", 5 "ParameterValue": "yes" 6 }, { "ParameterKey": "PrivateHostedZoneId", 7 "ParameterValue": "<random_string>" 8 }, { "ParameterKey": "PrivateHostedZoneName", 9 "ParameterValue": "mycluster.example.com" 10 }, { "ParameterKey": "Master0Subnet", 11 "ParameterValue": "subnet-<random_string>" 12 }, { "ParameterKey": "Master1Subnet", 13 "ParameterValue": "subnet-<random_string>" 14 }, { "ParameterKey": "Master2Subnet", 15 "ParameterValue": "subnet-<random_string>" 16 }, { "ParameterKey": "MasterSecurityGroupId", 17 "ParameterValue": "sg-<random_string>" 18 }, { "ParameterKey": "IgnitionLocation", 19 "ParameterValue": "https://api-int.<cluster_name>.<domain_name>:22623/config/master" 20 }, { "ParameterKey": "CertificateAuthorities", 21 "ParameterValue": "data:text/plain;charset=utf-8;base64,ABC...xYz==" 22 }, { "ParameterKey": "MasterInstanceProfileName", 23 "ParameterValue": "<roles_stack>-MasterInstanceProfile-<random_string>" 24 }, { "ParameterKey": "MasterInstanceType", 25 "ParameterValue": "" 26 }, { "ParameterKey": "AutoRegisterELB", 27 "ParameterValue": "yes" 28 }, { "ParameterKey": "RegisterNlbIpTargetsLambdaArn", 29 "ParameterValue": "arn:aws:lambda:<aws_region>:<account_number>:function:<dns_stack_name>-RegisterNlbIpTargets-<random_string>" 30 }, { "ParameterKey": "ExternalApiTargetGroupArn", 31 "ParameterValue": "arn:aws:elasticloadbalancing:<aws_region>:<account_number>:targetgroup/<dns_stack_name>-Exter-<random_string>" 32 }, { "ParameterKey": "InternalApiTargetGroupArn", 33 "ParameterValue": "arn:aws:elasticloadbalancing:<aws_region>:<account_number>:targetgroup/<dns_stack_name>-Inter-<random_string>" 34 }, { "ParameterKey": "InternalServiceTargetGroupArn", 35 "ParameterValue": "arn:aws:elasticloadbalancing:<aws_region>:<account_number>:targetgroup/<dns_stack_name>-Inter-<random_string>" 36 } ]
- 1
- The name for your cluster infrastructure that is encoded in your Ignition config files for the cluster.
- 2
- Specify the infrastructure name that you extracted from the Ignition config file metadata, which has the format
<cluster-name>-<random-string>
. - 3
- Current Red Hat Enterprise Linux CoreOS (RHCOS) AMI to use for the control plane machines based on your selected architecture.
- 4
- Specify an
AWS::EC2::Image::Id
value. - 5
- Whether or not to perform DNS etcd registration.
- 6
- Specify
yes
orno
. If you specifyyes
, you must provide hosted zone information. - 7
- The Route 53 private zone ID to register the etcd targets with.
- 8
- Specify the
PrivateHostedZoneId
value from the output of the CloudFormation template for DNS and load balancing. - 9
- The Route 53 zone to register the targets with.
- 10
- Specify
<cluster_name>.<domain_name>
where<domain_name>
is the Route 53 base domain that you used when you generatedinstall-config.yaml
file for the cluster. Do not include the trailing period (.) that is displayed in the AWS console. - 11 13 15
- A subnet, preferably private, to launch the control plane machines on.
- 12 14 16
- Specify a subnet from the
PrivateSubnets
value from the output of the CloudFormation template for DNS and load balancing. - 17
- The master security group ID to associate with control plane nodes.
- 18
- Specify the
MasterSecurityGroupId
value from the output of the CloudFormation template for the security group and roles. - 19
- The location to fetch control plane Ignition config file from.
- 20
- Specify the generated Ignition config file location,
https://api-int.<cluster_name>.<domain_name>:22623/config/master
. - 21
- The base64 encoded certificate authority string to use.
- 22
- Specify the value from the
master.ign
file that is in the installation directory. This value is the long string with the formatdata:text/plain;charset=utf-8;base64,ABC…xYz==
. - 23
- The IAM profile to associate with control plane nodes.
- 24
- Specify the
MasterInstanceProfile
parameter value from the output of the CloudFormation template for the security group and roles. - 25
- The type of AWS instance to use for the control plane machines based on your selected architecture.
- 26
- The instance type value corresponds to the minimum resource requirements for control plane machines. For example
m6i.xlarge
is a type forx86_64
andm6g.xlarge
is a type forarm64
. - 27
- Whether or not to register a network load balancer (NLB).
- 28
- Specify
yes
orno
. If you specifyyes
, you must provide a Lambda Amazon Resource Name (ARN) value. - 29
- The ARN for NLB IP target registration lambda group.
- 30
- Specify the
RegisterNlbIpTargetsLambda
value from the output of the CloudFormation template for DNS and load balancing. Usearn:aws-us-gov
if deploying the cluster to an AWS GovCloud region. - 31
- The ARN for external API load balancer target group.
- 32
- Specify the
ExternalApiTargetGroupArn
value from the output of the CloudFormation template for DNS and load balancing. Usearn:aws-us-gov
if deploying the cluster to an AWS GovCloud region. - 33
- The ARN for internal API load balancer target group.
- 34
- Specify the
InternalApiTargetGroupArn
value from the output of the CloudFormation template for DNS and load balancing. Usearn:aws-us-gov
if deploying the cluster to an AWS GovCloud region. - 35
- The ARN for internal service load balancer target group.
- 36
- Specify the
InternalServiceTargetGroupArn
value from the output of the CloudFormation template for DNS and load balancing. Usearn:aws-us-gov
if deploying the cluster to an AWS GovCloud region.
- Copy the template from the CloudFormation template for control plane machines section of this topic and save it as a YAML file on your computer. This template describes the control plane machines that your cluster requires.
-
If you specified an
m5
instance type as the value forMasterInstanceType
, add that instance type to theMasterInstanceType.AllowedValues
parameter in the CloudFormation template. Launch the CloudFormation template to create a stack of AWS resources that represent the control plane nodes:
ImportantYou must enter the command on a single line.
$ aws cloudformation create-stack --stack-name <name> 1 --template-body file://<template>.yaml 2 --parameters file://<parameters>.json 3
- 1
<name>
is the name for the CloudFormation stack, such ascluster-control-plane
. You need the name of this stack if you remove the cluster.- 2
<template>
is the relative path to and name of the CloudFormation template YAML file that you saved.- 3
<parameters>
is the relative path to and name of the CloudFormation parameters JSON file.
Exemple de sortie
arn:aws:cloudformation:us-east-1:269333783861:stack/cluster-control-plane/21c7e2b0-2ee2-11eb-c6f6-0aa34627df4b
NoteThe CloudFormation template creates a stack that represents three control plane nodes.
Confirm that the template components exist:
$ aws cloudformation describe-stacks --stack-name <name>
6.13.16.1. CloudFormation template for control plane machines
You can use the following CloudFormation template to deploy the control plane machines that you need for your OpenShift Container Platform cluster.
Exemple 6.50. CloudFormation template for control plane machines
AWSTemplateFormatVersion: 2010-09-09 Description: Template for OpenShift Cluster Node Launch (EC2 master instances) Parameters: InfrastructureName: AllowedPattern: ^([a-zA-Z][a-zA-Z0-9\-]{0,26})$ MaxLength: 27 MinLength: 1 ConstraintDescription: Infrastructure name must be alphanumeric, start with a letter, and have a maximum of 27 characters. Description: A short, unique cluster ID used to tag nodes for the kubelet cloud provider. Type: String RhcosAmi: Description: Current Red Hat Enterprise Linux CoreOS AMI to use for bootstrap. Type: AWS::EC2::Image::Id AutoRegisterDNS: Default: "" Description: unused Type: String PrivateHostedZoneId: Default: "" Description: unused Type: String PrivateHostedZoneName: Default: "" Description: unused Type: String Master0Subnet: Description: The subnets, recommend private, to launch the master nodes into. Type: AWS::EC2::Subnet::Id Master1Subnet: Description: The subnets, recommend private, to launch the master nodes into. Type: AWS::EC2::Subnet::Id Master2Subnet: Description: The subnets, recommend private, to launch the master nodes into. Type: AWS::EC2::Subnet::Id MasterSecurityGroupId: Description: The master security group ID to associate with master nodes. Type: AWS::EC2::SecurityGroup::Id IgnitionLocation: Default: https://api-int.$CLUSTER_NAME.$DOMAIN:22623/config/master Description: Ignition config file location. Type: String CertificateAuthorities: Default: data:text/plain;charset=utf-8;base64,ABC...xYz== Description: Base64 encoded certificate authority string to use. Type: String MasterInstanceProfileName: Description: IAM profile to associate with master nodes. Type: String MasterInstanceType: Default: m5.xlarge Type: String AutoRegisterELB: Default: "yes" AllowedValues: - "yes" - "no" Description: Do you want to invoke NLB registration, which requires a Lambda ARN parameter? Type: String RegisterNlbIpTargetsLambdaArn: Description: ARN for NLB IP target registration lambda. Supply the value from the cluster infrastructure or select "no" for AutoRegisterELB. Type: String ExternalApiTargetGroupArn: Description: ARN for external API load balancer target group. Supply the value from the cluster infrastructure or select "no" for AutoRegisterELB. Type: String InternalApiTargetGroupArn: Description: ARN for internal API load balancer target group. Supply the value from the cluster infrastructure or select "no" for AutoRegisterELB. Type: String InternalServiceTargetGroupArn: Description: ARN for internal service load balancer target group. Supply the value from the cluster infrastructure or select "no" for AutoRegisterELB. Type: String Metadata: AWS::CloudFormation::Interface: ParameterGroups: - Label: default: "Cluster Information" Parameters: - InfrastructureName - Label: default: "Host Information" Parameters: - MasterInstanceType - RhcosAmi - IgnitionLocation - CertificateAuthorities - MasterSecurityGroupId - MasterInstanceProfileName - Label: default: "Network Configuration" Parameters: - VpcId - AllowedBootstrapSshCidr - Master0Subnet - Master1Subnet - Master2Subnet - Label: default: "Load Balancer Automation" Parameters: - AutoRegisterELB - RegisterNlbIpTargetsLambdaArn - ExternalApiTargetGroupArn - InternalApiTargetGroupArn - InternalServiceTargetGroupArn ParameterLabels: InfrastructureName: default: "Infrastructure Name" VpcId: default: "VPC ID" Master0Subnet: default: "Master-0 Subnet" Master1Subnet: default: "Master-1 Subnet" Master2Subnet: default: "Master-2 Subnet" MasterInstanceType: default: "Master Instance Type" MasterInstanceProfileName: default: "Master Instance Profile Name" RhcosAmi: default: "Red Hat Enterprise Linux CoreOS AMI ID" BootstrapIgnitionLocation: default: "Master Ignition Source" CertificateAuthorities: default: "Ignition CA String" MasterSecurityGroupId: default: "Master Security Group ID" AutoRegisterELB: default: "Use Provided ELB Automation" Conditions: DoRegistration: !Equals ["yes", !Ref AutoRegisterELB] Resources: Master0: Type: AWS::EC2::Instance Properties: ImageId: !Ref RhcosAmi BlockDeviceMappings: - DeviceName: /dev/xvda Ebs: VolumeSize: "120" VolumeType: "gp2" IamInstanceProfile: !Ref MasterInstanceProfileName InstanceType: !Ref MasterInstanceType NetworkInterfaces: - AssociatePublicIpAddress: "false" DeviceIndex: "0" GroupSet: - !Ref "MasterSecurityGroupId" SubnetId: !Ref "Master0Subnet" UserData: Fn::Base64: !Sub - '{"ignition":{"config":{"merge":[{"source":"${SOURCE}"}]},"security":{"tls":{"certificateAuthorities":[{"source":"${CA_BUNDLE}"}]}},"version":"3.1.0"}}' - { SOURCE: !Ref IgnitionLocation, CA_BUNDLE: !Ref CertificateAuthorities, } Tags: - Key: !Join ["", ["kubernetes.io/cluster/", !Ref InfrastructureName]] Value: "shared" RegisterMaster0: Condition: DoRegistration Type: Custom::NLBRegister Properties: ServiceToken: !Ref RegisterNlbIpTargetsLambdaArn TargetArn: !Ref ExternalApiTargetGroupArn TargetIp: !GetAtt Master0.PrivateIp RegisterMaster0InternalApiTarget: Condition: DoRegistration Type: Custom::NLBRegister Properties: ServiceToken: !Ref RegisterNlbIpTargetsLambdaArn TargetArn: !Ref InternalApiTargetGroupArn TargetIp: !GetAtt Master0.PrivateIp RegisterMaster0InternalServiceTarget: Condition: DoRegistration Type: Custom::NLBRegister Properties: ServiceToken: !Ref RegisterNlbIpTargetsLambdaArn TargetArn: !Ref InternalServiceTargetGroupArn TargetIp: !GetAtt Master0.PrivateIp Master1: Type: AWS::EC2::Instance Properties: ImageId: !Ref RhcosAmi BlockDeviceMappings: - DeviceName: /dev/xvda Ebs: VolumeSize: "120" VolumeType: "gp2" IamInstanceProfile: !Ref MasterInstanceProfileName InstanceType: !Ref MasterInstanceType NetworkInterfaces: - AssociatePublicIpAddress: "false" DeviceIndex: "0" GroupSet: - !Ref "MasterSecurityGroupId" SubnetId: !Ref "Master1Subnet" UserData: Fn::Base64: !Sub - '{"ignition":{"config":{"merge":[{"source":"${SOURCE}"}]},"security":{"tls":{"certificateAuthorities":[{"source":"${CA_BUNDLE}"}]}},"version":"3.1.0"}}' - { SOURCE: !Ref IgnitionLocation, CA_BUNDLE: !Ref CertificateAuthorities, } Tags: - Key: !Join ["", ["kubernetes.io/cluster/", !Ref InfrastructureName]] Value: "shared" RegisterMaster1: Condition: DoRegistration Type: Custom::NLBRegister Properties: ServiceToken: !Ref RegisterNlbIpTargetsLambdaArn TargetArn: !Ref ExternalApiTargetGroupArn TargetIp: !GetAtt Master1.PrivateIp RegisterMaster1InternalApiTarget: Condition: DoRegistration Type: Custom::NLBRegister Properties: ServiceToken: !Ref RegisterNlbIpTargetsLambdaArn TargetArn: !Ref InternalApiTargetGroupArn TargetIp: !GetAtt Master1.PrivateIp RegisterMaster1InternalServiceTarget: Condition: DoRegistration Type: Custom::NLBRegister Properties: ServiceToken: !Ref RegisterNlbIpTargetsLambdaArn TargetArn: !Ref InternalServiceTargetGroupArn TargetIp: !GetAtt Master1.PrivateIp Master2: Type: AWS::EC2::Instance Properties: ImageId: !Ref RhcosAmi BlockDeviceMappings: - DeviceName: /dev/xvda Ebs: VolumeSize: "120" VolumeType: "gp2" IamInstanceProfile: !Ref MasterInstanceProfileName InstanceType: !Ref MasterInstanceType NetworkInterfaces: - AssociatePublicIpAddress: "false" DeviceIndex: "0" GroupSet: - !Ref "MasterSecurityGroupId" SubnetId: !Ref "Master2Subnet" UserData: Fn::Base64: !Sub - '{"ignition":{"config":{"merge":[{"source":"${SOURCE}"}]},"security":{"tls":{"certificateAuthorities":[{"source":"${CA_BUNDLE}"}]}},"version":"3.1.0"}}' - { SOURCE: !Ref IgnitionLocation, CA_BUNDLE: !Ref CertificateAuthorities, } Tags: - Key: !Join ["", ["kubernetes.io/cluster/", !Ref InfrastructureName]] Value: "shared" RegisterMaster2: Condition: DoRegistration Type: Custom::NLBRegister Properties: ServiceToken: !Ref RegisterNlbIpTargetsLambdaArn TargetArn: !Ref ExternalApiTargetGroupArn TargetIp: !GetAtt Master2.PrivateIp RegisterMaster2InternalApiTarget: Condition: DoRegistration Type: Custom::NLBRegister Properties: ServiceToken: !Ref RegisterNlbIpTargetsLambdaArn TargetArn: !Ref InternalApiTargetGroupArn TargetIp: !GetAtt Master2.PrivateIp RegisterMaster2InternalServiceTarget: Condition: DoRegistration Type: Custom::NLBRegister Properties: ServiceToken: !Ref RegisterNlbIpTargetsLambdaArn TargetArn: !Ref InternalServiceTargetGroupArn TargetIp: !GetAtt Master2.PrivateIp Outputs: PrivateIPs: Description: The control-plane node private IP addresses. Value: !Join [ ",", [!GetAtt Master0.PrivateIp, !GetAtt Master1.PrivateIp, !GetAtt Master2.PrivateIp] ]
Ressources complémentaires
- You can view details about the CloudFormation stacks that you create by navigating to the AWS CloudFormation console.
6.13.17. Creating the worker nodes in AWS
You can create worker nodes in Amazon Web Services (AWS) for your cluster to use.
You can use the provided CloudFormation template and a custom parameter file to create a stack of AWS resources that represent a worker node.
The CloudFormation template creates a stack that represents one worker node. You must create a stack for each worker node.
If you do not use the provided CloudFormation template to create your worker nodes, you must review the provided information and manually create the infrastructure. If your cluster does not initialize correctly, you might have to contact Red Hat support with your installation logs.
Conditions préalables
- You configured an AWS account.
-
You added your AWS keys and region to your local AWS profile by running
aws configure
. - You generated the Ignition config files for your cluster.
- You created and configured a VPC and associated subnets in AWS.
- You created and configured DNS, load balancers, and listeners in AWS.
- You created the security groups and roles required for your cluster in AWS.
- You created the bootstrap machine.
- You created the control plane machines.
Procédure
Create a JSON file that contains the parameter values that the CloudFormation template requires:
[ { "ParameterKey": "InfrastructureName", 1 "ParameterValue": "mycluster-<random_string>" 2 }, { "ParameterKey": "RhcosAmi", 3 "ParameterValue": "ami-<random_string>" 4 }, { "ParameterKey": "Subnet", 5 "ParameterValue": "subnet-<random_string>" 6 }, { "ParameterKey": "WorkerSecurityGroupId", 7 "ParameterValue": "sg-<random_string>" 8 }, { "ParameterKey": "IgnitionLocation", 9 "ParameterValue": "https://api-int.<cluster_name>.<domain_name>:22623/config/worker" 10 }, { "ParameterKey": "CertificateAuthorities", 11 "ParameterValue": "" 12 }, { "ParameterKey": "WorkerInstanceProfileName", 13 "ParameterValue": "" 14 }, { "ParameterKey": "WorkerInstanceType", 15 "ParameterValue": "" 16 } ]
- 1
- The name for your cluster infrastructure that is encoded in your Ignition config files for the cluster.
- 2
- Specify the infrastructure name that you extracted from the Ignition config file metadata, which has the format
<cluster-name>-<random-string>
. - 3
- Current Red Hat Enterprise Linux CoreOS (RHCOS) AMI to use for the worker nodes based on your selected architecture.
- 4
- Specify an
AWS::EC2::Image::Id
value. - 5
- A subnet, preferably private, to start the worker nodes on.
- 6
- Specify a subnet from the
PrivateSubnets
value from the output of the CloudFormation template for DNS and load balancing. - 7
- The worker security group ID to associate with worker nodes.
- 8
- Specify the
WorkerSecurityGroupId
value from the output of the CloudFormation template for the security group and roles. - 9
- The location to fetch the bootstrap Ignition config file from.
- 10
- Specify the generated Ignition config location,
https://api-int.<cluster_name>.<domain_name>:22623/config/worker
. - 11
- Base64 encoded certificate authority string to use.
- 12
- Specify the value from the
worker.ign
file that is in the installation directory. This value is the long string with the formatdata:text/plain;charset=utf-8;base64,ABC…xYz==
. - 13
- The IAM profile to associate with worker nodes.
- 14
- Specify the
WorkerInstanceProfile
parameter value from the output of the CloudFormation template for the security group and roles. - 15
- The type of AWS instance to use for the compute machines based on your selected architecture.
- 16
- The instance type value corresponds to the minimum resource requirements for compute machines. For example
m6i.large
is a type forx86_64
andm6g.large
is a type forarm64
.
- Copy the template from the CloudFormation template for worker machines section of this topic and save it as a YAML file on your computer. This template describes the networking objects and load balancers that your cluster requires.
-
Optional: If you specified an
m5
instance type as the value forWorkerInstanceType
, add that instance type to theWorkerInstanceType.AllowedValues
parameter in the CloudFormation template. -
Optional: If you are deploying with an AWS Marketplace image, update the
Worker0.type.properties.ImageID
parameter with the AMI ID that you obtained from your subscription. Use the CloudFormation template to create a stack of AWS resources that represent a worker node:
ImportantYou must enter the command on a single line.
$ aws cloudformation create-stack --stack-name <name> 1 --template-body file://<template>.yaml \ 2 --parameters file://<parameters>.json 3
- 1
<name>
is the name for the CloudFormation stack, such ascluster-worker-1
. You need the name of this stack if you remove the cluster.- 2
<template>
is the relative path to and name of the CloudFormation template YAML file that you saved.- 3
<parameters>
is the relative path to and name of the CloudFormation parameters JSON file.
Exemple de sortie
arn:aws:cloudformation:us-east-1:269333783861:stack/cluster-worker-1/729ee301-1c2a-11eb-348f-sd9888c65b59
NoteThe CloudFormation template creates a stack that represents one worker node.
Confirm that the template components exist:
$ aws cloudformation describe-stacks --stack-name <name>
Continue to create worker stacks until you have created enough worker machines for your cluster. You can create additional worker stacks by referencing the same template and parameter files and specifying a different stack name.
ImportantYou must create at least two worker machines, so you must create at least two stacks that use this CloudFormation template.
6.13.17.1. CloudFormation template for worker machines
You can use the following CloudFormation template to deploy the worker machines that you need for your OpenShift Container Platform cluster.
Exemple 6.51. CloudFormation template for worker machines
AWSTemplateFormatVersion: 2010-09-09 Description: Template for OpenShift Cluster Node Launch (EC2 worker instance) Parameters: InfrastructureName: AllowedPattern: ^([a-zA-Z][a-zA-Z0-9\-]{0,26})$ MaxLength: 27 MinLength: 1 ConstraintDescription: Infrastructure name must be alphanumeric, start with a letter, and have a maximum of 27 characters. Description: A short, unique cluster ID used to tag nodes for the kubelet cloud provider. Type: String RhcosAmi: Description: Current Red Hat Enterprise Linux CoreOS AMI to use for bootstrap. Type: AWS::EC2::Image::Id Subnet: Description: The subnets, recommend private, to launch the master nodes into. Type: AWS::EC2::Subnet::Id WorkerSecurityGroupId: Description: The master security group ID to associate with master nodes. Type: AWS::EC2::SecurityGroup::Id IgnitionLocation: Default: https://api-int.$CLUSTER_NAME.$DOMAIN:22623/config/worker Description: Ignition config file location. Type: String CertificateAuthorities: Default: data:text/plain;charset=utf-8;base64,ABC...xYz== Description: Base64 encoded certificate authority string to use. Type: String WorkerInstanceProfileName: Description: IAM profile to associate with master nodes. Type: String WorkerInstanceType: Default: m5.large Type: String Metadata: AWS::CloudFormation::Interface: ParameterGroups: - Label: default: "Cluster Information" Parameters: - InfrastructureName - Label: default: "Host Information" Parameters: - WorkerInstanceType - RhcosAmi - IgnitionLocation - CertificateAuthorities - WorkerSecurityGroupId - WorkerInstanceProfileName - Label: default: "Network Configuration" Parameters: - Subnet ParameterLabels: Subnet: default: "Subnet" InfrastructureName: default: "Infrastructure Name" WorkerInstanceType: default: "Worker Instance Type" WorkerInstanceProfileName: default: "Worker Instance Profile Name" RhcosAmi: default: "Red Hat Enterprise Linux CoreOS AMI ID" IgnitionLocation: default: "Worker Ignition Source" CertificateAuthorities: default: "Ignition CA String" WorkerSecurityGroupId: default: "Worker Security Group ID" Resources: Worker0: Type: AWS::EC2::Instance Properties: ImageId: !Ref RhcosAmi BlockDeviceMappings: - DeviceName: /dev/xvda Ebs: VolumeSize: "120" VolumeType: "gp2" IamInstanceProfile: !Ref WorkerInstanceProfileName InstanceType: !Ref WorkerInstanceType NetworkInterfaces: - AssociatePublicIpAddress: "false" DeviceIndex: "0" GroupSet: - !Ref "WorkerSecurityGroupId" SubnetId: !Ref "Subnet" UserData: Fn::Base64: !Sub - '{"ignition":{"config":{"merge":[{"source":"${SOURCE}"}]},"security":{"tls":{"certificateAuthorities":[{"source":"${CA_BUNDLE}"}]}},"version":"3.1.0"}}' - { SOURCE: !Ref IgnitionLocation, CA_BUNDLE: !Ref CertificateAuthorities, } Tags: - Key: !Join ["", ["kubernetes.io/cluster/", !Ref InfrastructureName]] Value: "shared" Outputs: PrivateIP: Description: The compute node private IP address. Value: !GetAtt Worker0.PrivateIp
Ressources complémentaires
- You can view details about the CloudFormation stacks that you create by navigating to the AWS CloudFormation console.
6.13.18. Initializing the bootstrap sequence on AWS with user-provisioned infrastructure
After you create all of the required infrastructure in Amazon Web Services (AWS), you can start the bootstrap sequence that initializes the OpenShift Container Platform control plane.
Conditions préalables
- You configured an AWS account.
-
You added your AWS keys and region to your local AWS profile by running
aws configure
. - You generated the Ignition config files for your cluster.
- You created and configured a VPC and associated subnets in AWS.
- You created and configured DNS, load balancers, and listeners in AWS.
- You created the security groups and roles required for your cluster in AWS.
- You created the bootstrap machine.
- You created the control plane machines.
- You created the worker nodes.
Procédure
Change to the directory that contains the installation program and start the bootstrap process that initializes the OpenShift Container Platform control plane:
$ ./openshift-install wait-for bootstrap-complete --dir <installation_directory> \ 1 --log-level=info 2
Exemple de sortie
INFO Waiting up to 20m0s for the Kubernetes API at https://api.mycluster.example.com:6443... INFO API v1.25.0 up INFO Waiting up to 30m0s for bootstrapping to complete... INFO It is now safe to remove the bootstrap resources INFO Time elapsed: 1s
If the command exits without a
FATAL
warning, your OpenShift Container Platform control plane has initialized.NoteAfter the control plane initializes, it sets up the compute nodes and installs additional services in the form of Operators.
Ressources complémentaires
- See Monitoring installation progress for details about monitoring the installation, bootstrap, and control plane logs as an OpenShift Container Platform installation progresses.
- See Gathering bootstrap node diagnostic data for information about troubleshooting issues related to the bootstrap process.
- You can view details about the running instances that are created by using the AWS EC2 console.
6.13.19. Installer le CLI OpenShift en téléchargeant le binaire
Vous pouvez installer l'OpenShift CLI (oc
) pour interagir avec OpenShift Container Platform à partir d'une interface de ligne de commande. Vous pouvez installer oc
sur Linux, Windows ou macOS.
Si vous avez installé une version antérieure de oc
, vous ne pouvez pas l'utiliser pour exécuter toutes les commandes dans OpenShift Container Platform 4.12. Téléchargez et installez la nouvelle version de oc
.
Installation de la CLI OpenShift sur Linux
Vous pouvez installer le binaire OpenShift CLI (oc
) sur Linux en utilisant la procédure suivante.
Procédure
- Naviguez jusqu'à la page de téléchargements OpenShift Container Platform sur le portail client Red Hat.
- Sélectionnez l'architecture dans la liste déroulante Product Variant.
- Sélectionnez la version appropriée dans la liste déroulante Version.
- Cliquez sur Download Now à côté de l'entrée OpenShift v4.12 Linux Client et enregistrez le fichier.
Décompressez l'archive :
tar xvf <file>
Placez le fichier binaire
oc
dans un répertoire situé sur votre sitePATH
.Pour vérifier votre
PATH
, exécutez la commande suivante :$ echo $PATH
Après l'installation de la CLI OpenShift, elle est disponible à l'aide de la commande oc
:
oc <command>
Installation de la CLI OpenShift sur Windows
Vous pouvez installer le binaire OpenShift CLI (oc
) sur Windows en utilisant la procédure suivante.
Procédure
- Naviguez jusqu'à la page de téléchargements OpenShift Container Platform sur le portail client Red Hat.
- Sélectionnez la version appropriée dans la liste déroulante Version.
- Cliquez sur Download Now à côté de l'entrée OpenShift v4.12 Windows Client et enregistrez le fichier.
- Décompressez l'archive à l'aide d'un programme ZIP.
Déplacez le fichier binaire
oc
dans un répertoire situé sur votre sitePATH
.Pour vérifier votre
PATH
, ouvrez l'invite de commande et exécutez la commande suivante :C:\N> path
Après l'installation de la CLI OpenShift, elle est disponible à l'aide de la commande oc
:
C:\N> oc <command>
Installation de la CLI OpenShift sur macOS
Vous pouvez installer le binaire OpenShift CLI (oc
) sur macOS en utilisant la procédure suivante.
Procédure
- Naviguez jusqu'à la page de téléchargements OpenShift Container Platform sur le portail client Red Hat.
- Sélectionnez la version appropriée dans la liste déroulante Version.
Cliquez sur Download Now à côté de l'entrée OpenShift v4.12 macOS Client et enregistrez le fichier.
NotePour macOS arm64, choisissez l'entrée OpenShift v4.12 macOS arm64 Client.
- Décompressez l'archive.
Déplacez le binaire
oc
dans un répertoire de votre PATH.Pour vérifier votre
PATH
, ouvrez un terminal et exécutez la commande suivante :$ echo $PATH
Après l'installation de la CLI OpenShift, elle est disponible à l'aide de la commande oc
:
oc <command>
6.13.20. Logging in to the cluster by using the CLI
You can log in to your cluster as a default system user by exporting the cluster kubeconfig
file. The kubeconfig
file contains information about the cluster that is used by the CLI to connect a client to the correct cluster and API server. The file is specific to a cluster and is created during OpenShift Container Platform installation.
Conditions préalables
- You deployed an OpenShift Container Platform cluster.
-
Vous avez installé le CLI
oc
.
Procédure
Export the
kubeadmin
credentials:$ export KUBECONFIG=<installation_directory>/auth/kubeconfig 1
- 1
- For
<installation_directory>
, specify the path to the directory that you stored the installation files in.
Verify you can run
oc
commands successfully using the exported configuration:$ oc whoami
Exemple de sortie
system:admin
6.13.21. Approving the certificate signing requests for your machines
When you add machines to a cluster, two pending certificate signing requests (CSRs) are generated for each machine that you added. You must confirm that these CSRs are approved or, if necessary, approve them yourself. The client requests must be approved first, followed by the server requests.
Conditions préalables
- You added machines to your cluster.
Procédure
Confirm that the cluster recognizes the machines:
$ oc get nodes
Exemple de sortie
NAME STATUS ROLES AGE VERSION master-0 Ready master 63m v1.25.0 master-1 Ready master 63m v1.25.0 master-2 Ready master 64m v1.25.0
The output lists all of the machines that you created.
NoteThe preceding output might not include the compute nodes, also known as worker nodes, until some CSRs are approved.
Review the pending CSRs and ensure that you see the client requests with the
Pending
orApproved
status for each machine that you added to the cluster:$ oc get csr
Exemple de sortie
NAME AGE REQUESTOR CONDITION csr-8b2br 15m system:serviceaccount:openshift-machine-config-operator:node-bootstrapper Pending csr-8vnps 15m system:serviceaccount:openshift-machine-config-operator:node-bootstrapper Pending ...
In this example, two machines are joining the cluster. You might see more approved CSRs in the list.
If the CSRs were not approved, after all of the pending CSRs for the machines you added are in
Pending
status, approve the CSRs for your cluster machines:NoteBecause the CSRs rotate automatically, approve your CSRs within an hour of adding the machines to the cluster. If you do not approve them within an hour, the certificates will rotate, and more than two certificates will be present for each node. You must approve all of these certificates. After the client CSR is approved, the Kubelet creates a secondary CSR for the serving certificate, which requires manual approval. Then, subsequent serving certificate renewal requests are automatically approved by the
machine-approver
if the Kubelet requests a new certificate with identical parameters.NoteFor clusters running on platforms that are not machine API enabled, such as bare metal and other user-provisioned infrastructure, you must implement a method of automatically approving the kubelet serving certificate requests (CSRs). If a request is not approved, then the
oc exec
,oc rsh
, andoc logs
commands cannot succeed, because a serving certificate is required when the API server connects to the kubelet. Any operation that contacts the Kubelet endpoint requires this certificate approval to be in place. The method must watch for new CSRs, confirm that the CSR was submitted by thenode-bootstrapper
service account in thesystem:node
orsystem:admin
groups, and confirm the identity of the node.To approve them individually, run the following command for each valid CSR:
$ oc adm certificate approve <csr_name> 1
- 1
<csr_name>
est le nom d'un CSR figurant dans la liste des CSR actuels.
To approve all pending CSRs, run the following command:
$ oc get csr -o go-template='{{range .items}}{{if not .status}}{{.metadata.name}}{{"\n"}}{{end}}{{end}}' | xargs --no-run-if-empty oc adm certificate approve
NoteSome Operators might not become available until some CSRs are approved.
Now that your client requests are approved, you must review the server requests for each machine that you added to the cluster:
$ oc get csr
Exemple de sortie
NAME AGE REQUESTOR CONDITION csr-bfd72 5m26s system:node:ip-10-0-50-126.us-east-2.compute.internal Pending csr-c57lv 5m26s system:node:ip-10-0-95-157.us-east-2.compute.internal Pending ...
If the remaining CSRs are not approved, and are in the
Pending
status, approve the CSRs for your cluster machines:To approve them individually, run the following command for each valid CSR:
$ oc adm certificate approve <csr_name> 1
- 1
<csr_name>
est le nom d'un CSR figurant dans la liste des CSR actuels.
To approve all pending CSRs, run the following command:
$ oc get csr -o go-template='{{range .items}}{{if not .status}}{{.metadata.name}}{{"\n"}}{{end}}{{end}}' | xargs oc adm certificate approve
After all client and server CSRs have been approved, the machines have the
Ready
status. Verify this by running the following command:$ oc get nodes
Exemple de sortie
NAME STATUS ROLES AGE VERSION master-0 Ready master 73m v1.25.0 master-1 Ready master 73m v1.25.0 master-2 Ready master 74m v1.25.0 worker-0 Ready worker 11m v1.25.0 worker-1 Ready worker 11m v1.25.0
NoteIt can take a few minutes after approval of the server CSRs for the machines to transition to the
Ready
status.
Informations complémentaires
- For more information on CSRs, see Certificate Signing Requests.
6.13.22. Initial Operator configuration
After the control plane initializes, you must immediately configure some Operators so that they all become available.
Conditions préalables
- Your control plane has initialized.
Procédure
Watch the cluster components come online:
$ watch -n5 oc get clusteroperators
Exemple de sortie
NAME VERSION AVAILABLE PROGRESSING DEGRADED SINCE authentication 4.12.0 True False False 19m baremetal 4.12.0 True False False 37m cloud-credential 4.12.0 True False False 40m cluster-autoscaler 4.12.0 True False False 37m config-operator 4.12.0 True False False 38m console 4.12.0 True False False 26m csi-snapshot-controller 4.12.0 True False False 37m dns 4.12.0 True False False 37m etcd 4.12.0 True False False 36m image-registry 4.12.0 True False False 31m ingress 4.12.0 True False False 30m insights 4.12.0 True False False 31m kube-apiserver 4.12.0 True False False 26m kube-controller-manager 4.12.0 True False False 36m kube-scheduler 4.12.0 True False False 36m kube-storage-version-migrator 4.12.0 True False False 37m machine-api 4.12.0 True False False 29m machine-approver 4.12.0 True False False 37m machine-config 4.12.0 True False False 36m marketplace 4.12.0 True False False 37m monitoring 4.12.0 True False False 29m network 4.12.0 True False False 38m node-tuning 4.12.0 True False False 37m openshift-apiserver 4.12.0 True False False 32m openshift-controller-manager 4.12.0 True False False 30m openshift-samples 4.12.0 True False False 32m operator-lifecycle-manager 4.12.0 True False False 37m operator-lifecycle-manager-catalog 4.12.0 True False False 37m operator-lifecycle-manager-packageserver 4.12.0 True False False 32m service-ca 4.12.0 True False False 38m storage 4.12.0 True False False 37m
- Configure the Operators that are not available.
6.13.22.1. Configuration du stockage du registre d'images
Amazon Web Services provides default storage, which means the Image Registry Operator is available after installation. However, if the Registry Operator cannot create an S3 bucket and automatically configure storage, you must manually configure registry storage.
Des instructions sont données pour la configuration d'un volume persistant, qui est nécessaire pour les clusters de production. Le cas échéant, des instructions sont fournies pour configurer un répertoire vide comme emplacement de stockage, ce qui n'est possible que pour les clusters de non-production.
Des instructions supplémentaires sont fournies pour permettre au registre d'images d'utiliser des types de stockage en bloc en utilisant la stratégie de déploiement Recreate
lors des mises à niveau.
You can configure registry storage for user-provisioned infrastructure in AWS to deploy OpenShift Container Platform to hidden regions. See Configuring the registry for AWS user-provisioned infrastructure for more information.
6.13.22.1.1. Configuration du stockage de registres pour AWS avec une infrastructure fournie par l'utilisateur
Lors de l'installation, vos informations d'identification sont suffisantes pour créer un godet Amazon S3 et l'opérateur de registre configurera automatiquement le stockage.
Si l'opérateur de registre ne peut pas créer un seau S3 et configurer automatiquement le stockage, vous pouvez créer un seau S3 et configurer le stockage à l'aide de la procédure suivante.
Conditions préalables
- Vous disposez d'un cluster sur AWS avec une infrastructure fournie par l'utilisateur.
Pour le stockage Amazon S3, le secret doit contenir deux clés :
-
REGISTRY_STORAGE_S3_ACCESSKEY
-
REGISTRY_STORAGE_S3_SECRETKEY
-
Procédure
Utilisez la procédure suivante si l'opérateur de registre ne peut pas créer un seau S3 et configurer automatiquement le stockage.
- Configurez une politique de cycle de vie des bacs pour interrompre les téléchargements multipartites incomplets datant d'un jour.
Complétez la configuration du stockage à l'adresse
configs.imageregistry.operator.openshift.io/cluster
:$ oc edit configs.imageregistry.operator.openshift.io/cluster
Exemple de configuration
storage: s3: bucket: <bucket-name> region: <region-name>
Pour sécuriser vos images de registre dans AWS, bloquez l'accès public au seau S3.
6.13.22.1.2. Configuration du stockage pour le registre d'images dans les clusters de non-production
Vous devez configurer le stockage pour l'opérateur de registre d'images. Pour les clusters de non-production, vous pouvez définir le registre d'images dans un répertoire vide. Dans ce cas, toutes les images seront perdues si vous redémarrez le registre.
Procédure
Pour définir le stockage du registre d'images dans un répertoire vide :
$ oc patch configs.imageregistry.operator.openshift.io cluster --type merge --patch '{"spec":{"storage":{"emptyDir":{}}}}'
AvertissementConfigurez cette option pour les clusters de non-production uniquement.
Si vous exécutez cette commande avant que l'opérateur de registre d'images n'initialise ses composants, la commande
oc patch
échoue avec l'erreur suivante :Error from server (NotFound): configs.imageregistry.operator.openshift.io "cluster" not found
Attendez quelques minutes et exécutez à nouveau la commande.
6.13.23. Deleting the bootstrap resources
After you complete the initial Operator configuration for the cluster, remove the bootstrap resources from Amazon Web Services (AWS).
Conditions préalables
- You completed the initial Operator configuration for your cluster.
Procédure
Delete the bootstrap resources. If you used the CloudFormation template, delete its stack:
Delete the stack by using the AWS CLI:
$ aws cloudformation delete-stack --stack-name <name> 1
- 1
<name>
is the name of your bootstrap stack.
- Delete the stack by using the AWS CloudFormation console.
6.13.24. Creating the Ingress DNS Records
If you removed the DNS Zone configuration, manually create DNS records that point to the Ingress load balancer. You can create either a wildcard record or specific records. While the following procedure uses A records, you can use other record types that you require, such as CNAME or alias.
Conditions préalables
- You deployed an OpenShift Container Platform cluster on Amazon Web Services (AWS) that uses infrastructure that you provisioned.
-
You installed the OpenShift CLI (
oc
). -
You installed the
jq
package. - You downloaded the AWS CLI and installed it on your computer. See Install the AWS CLI Using the Bundled Installer (Linux, macOS, or Unix).
Procédure
Determine the routes to create.
-
To create a wildcard record, use
*.apps.<cluster_name>.<domain_name>
, where<cluster_name>
is your cluster name, and<domain_name>
is the Route 53 base domain for your OpenShift Container Platform cluster. To create specific records, you must create a record for each route that your cluster uses, as shown in the output of the following command:
$ oc get --all-namespaces -o jsonpath='{range .items[*]}{range .status.ingress[*]}{.host}{"\n"}{end}{end}' routes
Exemple de sortie
oauth-openshift.apps.<cluster_name>.<domain_name> console-openshift-console.apps.<cluster_name>.<domain_name> downloads-openshift-console.apps.<cluster_name>.<domain_name> alertmanager-main-openshift-monitoring.apps.<cluster_name>.<domain_name> prometheus-k8s-openshift-monitoring.apps.<cluster_name>.<domain_name>
-
To create a wildcard record, use
Retrieve the Ingress Operator load balancer status and note the value of the external IP address that it uses, which is shown in the
EXTERNAL-IP
column:$ oc -n openshift-ingress get service router-default
Exemple de sortie
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE router-default LoadBalancer 172.30.62.215 ab3...28.us-east-2.elb.amazonaws.com 80:31499/TCP,443:30693/TCP 5m
Locate the hosted zone ID for the load balancer:
$ aws elb describe-load-balancers | jq -r '.LoadBalancerDescriptions[] | select(.DNSName == "<external_ip>").CanonicalHostedZoneNameID' 1
- 1
- For
<external_ip>
, specify the value of the external IP address of the Ingress Operator load balancer that you obtained.
Exemple de sortie
Z3AADJGX6KTTL2
The output of this command is the load balancer hosted zone ID.
Obtain the public hosted zone ID for your cluster’s domain:
$ aws route53 list-hosted-zones-by-name \ --dns-name "<domain_name>" \ 1 --query 'HostedZones[? Config.PrivateZone != `true` && Name == `<domain_name>.`].Id' 2 --output text
Exemple de sortie
/hostedzone/Z3URY6TWQ91KVV
The public hosted zone ID for your domain is shown in the command output. In this example, it is
Z3URY6TWQ91KVV
.Add the alias records to your private zone:
$ aws route53 change-resource-record-sets --hosted-zone-id "<private_hosted_zone_id>" --change-batch '{ 1 > "Changes": [ > { > "Action": "CREATE", > "ResourceRecordSet": { > "Name": "\\052.apps.<cluster_domain>", 2 > "Type": "A", > "AliasTarget":{ > "HostedZoneId": "<hosted_zone_id>", 3 > "DNSName": "<external_ip>.", 4 > "EvaluateTargetHealth": false > } > } > } > ] > }'
- 1
- For
<private_hosted_zone_id>
, specify the value from the output of the CloudFormation template for DNS and load balancing. - 2
- For
<cluster_domain>
, specify the domain or subdomain that you use with your OpenShift Container Platform cluster. - 3
- For
<hosted_zone_id>
, specify the public hosted zone ID for the load balancer that you obtained. - 4
- For
<external_ip>
, specify the value of the external IP address of the Ingress Operator load balancer. Ensure that you include the trailing period (.
) in this parameter value.
Add the records to your public zone:
$ aws route53 change-resource-record-sets --hosted-zone-id "<public_hosted_zone_id>"" --change-batch '{ 1 > "Changes": [ > { > "Action": "CREATE", > "ResourceRecordSet": { > "Name": "\\052.apps.<cluster_domain>", 2 > "Type": "A", > "AliasTarget":{ > "HostedZoneId": "<hosted_zone_id>", 3 > "DNSName": "<external_ip>.", 4 > "EvaluateTargetHealth": false > } > } > } > ] > }'
- 1
- For
<public_hosted_zone_id>
, specify the public hosted zone for your domain. - 2
- For
<cluster_domain>
, specify the domain or subdomain that you use with your OpenShift Container Platform cluster. - 3
- For
<hosted_zone_id>
, specify the public hosted zone ID for the load balancer that you obtained. - 4
- For
<external_ip>
, specify the value of the external IP address of the Ingress Operator load balancer. Ensure that you include the trailing period (.
) in this parameter value.
6.13.25. Completing an AWS installation on user-provisioned infrastructure
After you start the OpenShift Container Platform installation on Amazon Web Service (AWS) user-provisioned infrastructure, monitor the deployment to completion.
Conditions préalables
- You removed the bootstrap node for an OpenShift Container Platform cluster on user-provisioned AWS infrastructure.
-
Vous avez installé le CLI
oc
.
Procédure
From the directory that contains the installation program, complete the cluster installation:
$ ./openshift-install --dir <installation_directory> wait-for install-complete 1
- 1
- For
<installation_directory>
, specify the path to the directory that you stored the installation files in.
Exemple de sortie
INFO Waiting up to 40m0s for the cluster at https://api.mycluster.example.com:6443 to initialize... INFO Waiting up to 10m0s for the openshift-console route to be created... INFO Install complete! INFO To access the cluster as the system:admin user when using 'oc', run 'export KUBECONFIG=/home/myuser/install_dir/auth/kubeconfig' INFO Access the OpenShift web-console here: https://console-openshift-console.apps.mycluster.example.com INFO Login to the console with user: "kubeadmin", and password: "4vYBz-Fe5en-ymBEc-Wt6NL" INFO Time elapsed: 1s
Important-
Les fichiers de configuration d'Ignition générés par le programme d'installation contiennent des certificats qui expirent après 24 heures et qui sont renouvelés à ce moment-là. Si le cluster est arrêté avant le renouvellement des certificats et qu'il est redémarré après l'expiration des 24 heures, le cluster récupère automatiquement les certificats expirés. L'exception est que vous devez approuver manuellement les demandes de signature de certificat (CSR) de
node-bootstrapper
en attente pour récupérer les certificats de kubelet. Pour plus d'informations, consultez la documentation relative à Recovering from expired control plane certificates. - Il est recommandé d'utiliser les fichiers de configuration Ignition dans les 12 heures suivant leur génération, car le certificat de 24 heures tourne entre 16 et 22 heures après l'installation du cluster. En utilisant les fichiers de configuration Ignition dans les 12 heures, vous pouvez éviter l'échec de l'installation si la mise à jour du certificat s'exécute pendant l'installation.
6.13.26. Logging in to the cluster by using the web console
The kubeadmin
user exists by default after an OpenShift Container Platform installation. You can log in to your cluster as the kubeadmin
user by using the OpenShift Container Platform web console.
Conditions préalables
- You have access to the installation host.
- You completed a cluster installation and all cluster Operators are available.
Procédure
Obtain the password for the
kubeadmin
user from thekubeadmin-password
file on the installation host:$ cat <installation_directory>/auth/kubeadmin-password
NoteAlternatively, you can obtain the
kubeadmin
password from the<installation_directory>/.openshift_install.log
log file on the installation host.List the OpenShift Container Platform web console route:
$ oc get routes -n openshift-console | grep 'console-openshift'
NoteAlternatively, you can obtain the OpenShift Container Platform route from the
<installation_directory>/.openshift_install.log
log file on the installation host.Exemple de sortie
console console-openshift-console.apps.<cluster_name>.<base_domain> console https reencrypt/Redirect None
-
Navigate to the route detailed in the output of the preceding command in a web browser and log in as the
kubeadmin
user.
Ressources complémentaires
- See Accessing the web console for more details about accessing and understanding the OpenShift Container Platform web console.
6.13.27. Telemetry access for OpenShift Container Platform
In OpenShift Container Platform 4.12, the Telemetry service, which runs by default to provide metrics about cluster health and the success of updates, requires internet access. If your cluster is connected to the internet, Telemetry runs automatically, and your cluster is registered to OpenShift Cluster Manager Hybrid Cloud Console.
After you confirm that your OpenShift Cluster Manager Hybrid Cloud Console inventory is correct, either maintained automatically by Telemetry or manually by using OpenShift Cluster Manager, use subscription watch to track your OpenShift Container Platform subscriptions at the account or multi-cluster level.
Ressources complémentaires
- See About remote health monitoring for more information about the Telemetry service.
6.13.28. Ressources complémentaires
- See Working with stacks in the AWS documentation for more information about AWS CloudFormation stacks.
6.13.29. Prochaines étapes
- Validating an installation.
- Customize your cluster.
- If necessary, you can opt out of remote health reporting.
- If necessary, you can remove cloud provider credentials.