ベアメタルへのインストール


OpenShift Container Platform 4.19

ベアメタルへの OpenShift Container Platform のインストール

Red Hat OpenShift Documentation Team

概要

このドキュメントでは、ベアメタルに OpenShift Container Platform をインストールする方法を説明します。

第1章 ベアメタルクラスターのインストールの準備

1.1. 前提条件

1.2. OpenShift 仮想化のためのベアメタルクラスターの計画

OpenShift 仮想化を使用する場合は、ベアメタルクラスターをインストールする前に、いくつかの要件を認識することが重要です。

  • ライブマイグレーション機能を使用する場合は、クラスターのインストール時に 複数のワーカーノードが必要です。これは、ライブマイグレーションではクラスターレベルの高可用性 (HA) フラグを true に設定する必要があるためです。HA フラグは、クラスターのインストール時に設定され、後で変更することはできません。クラスターのインストール時に定義されたワーカーノードが 2 つ未満の場合、クラスターの存続期間中、HA フラグは false に設定されます。

    注記

    単一ノードのクラスターに OpenShift Virtualization をインストールできますが、単一ノードの OpenShift は高可用性をサポートしていません。

  • ライブマイグレーションには共有ストレージが必要です。OpenShift Virtualization のストレージは、ReadWriteMany (RWX) アクセスモードをサポートし、使用する必要があります。
  • Single Root I/O Virtualization (SR-IOV) を使用する予定の場合は、ネットワークインターフェイスコントローラー (NIC) が OpenShift Container Platform でサポートされていることを確認してください。

1.3. SR-IOV デバイスの NIC パーティショニング

OpenShift Container Platform は、デュアルポートのネットワークインターフェイスカード (NIC) を搭載したサーバーにデプロイできます。1 つの高速デュアルポート NIC を複数の仮想機能 (VF) に分割し、SR-IOV を有効にすることができます。

この機能は、Link Aggregation Control Protocol (LACP) による高可用性のための結合の使用をサポートします。

注記

物理 NIC で宣言できる LACP は 1 つだけです。

OpenShift Container Platform クラスターは、以下の方法を使用して、2 つの物理機能 (PF) に 2 つの VF を持つ結合インターフェイスにデプロイできます。

  • Agent-based Installer

    注記

    nmstate の最低限必要なバージョンは次のとおりです。

    • RHEL 8 バージョンの 1.4.2-4
    • RHEL 9 バージョンの 2.2.7
  • installer-provisioned infrastructure によるインストール
  • user-provisioned infrastructure によるインストール

1.4. ベアメタルに OpenShift Container Platform をインストールする方法の選択

OpenShift Container Platform インストールプログラムは、クラスターをデプロイするための 4 つの方法を提供します。

  • インタラクティブ: Web ベースの Assisted Installer を使用してクラスターをデプロイできます。これは、ネットワークがインターネットに接続されているクラスターに推奨されるアプローチです。Assisted Installer は、OpenShift Container Platform をインストールする最も簡単な方法であり、スマートなデフォルトを提供し、クラスターをインストールする前に事前検証を実行します。また、自動化および高度な設定シナリオのための RESTful API も提供します。
  • ローカルエージェントベース: エアギャップネットワークまたはネットワークが制限された環境用の Agent-based Installer を使用して、クラスターをローカルにデプロイできます。この方法では、Assisted Installer の多くの利点を得られますが、最初に Agent-based Installer をダウンロードして設定する必要があります。設定はコマンドラインインターフェイスで行います。このアプローチは、エアギャップまたは制限されたネットワークに最適です。
  • 自動化: installer-provisioned infrastructure とそれが維持するクラスターにクラスターをデプロイできます。インストーラーは、各クラスターホストのベースボード管理コントローラー (BMC) をプロビジョニングに使用します。接続されたネットワーク、エアギャップされたネットワーク、または制限されたネットワークの両方でクラスターをデプロイできます。
  • 完全な制御: お客様が準備および保守するインフラストラクチャー にクラスターをデプロイメントできます。これにより、最大限のカスタマイズ性が提供されます。接続されたネットワーク、エアギャップされたネットワーク、または制限されたネットワークの両方でクラスターをデプロイできます。

クラスターには次の特徴があります。

  • 単一障害点のない高可用性インフラストラクチャーがデフォルトで利用可能である。
  • 管理者は適用される更新内容および更新タイミングを制御できる。

installer-provisioned installation および user-provisioned installation のプロセスの詳細は、インストールプロセス を参照してください。

1.4.1. installer-provisioned infrastructure へのクラスターのインストール

以下の方法を使用して、OpenShift Container Platform インストールプログラムでプロビジョニングされるベアメタルインフラストラクチャーに、クラスターをインストールできます。

インストーラーによってプロビジョニングされるクラスターのベアメタルへのインストール
インストーラーによるプロビジョニングを使用して、OpenShift Container Platform をベアメタルにインストールできます。

1.4.2. user-provisioned infrastructure へのクラスターのインストール

以下の方法のいずれかを使用して、独自にプロビジョニングするベアメタルインフラストラクチャーに、クラスターをインストールできます。

ユーザーによってプロビジョニングされるクラスターのベアメタルへのインストール
OpenShift Container Platform はユーザーがプロビジョニングするインフラストラクチャーにインストールできます。user-provisioned infrastructure を含むクラスターの場合、必要なマシンすべてをデプロイする必要があります。
ネットワークをカスタマイズしたユーザープロビジョニング型ベアメタルクラスターのインストール
ネットワークをカスタマイズして、user-provisioned infrastructure にベアメタルクラスターをインストールできます。ネットワーク設定をカスタマイズすることにより、クラスターは環境内の既存の IP アドレスの割り当てと共存でき、既存の MTU および VXLAN 設定と統合できます。ネットワークのカスタマイズのほとんどは、インストールステージで適用する必要があります。
ネットワークが制限された環境でのユーザープロビジョニング型ベアメタルクラスターのインストール
ミラーレジストリーを使用して、制限されたネットワークまたは非接続のネットワークに、ユーザーがプロビジョニングするベアメタルクラスターをインストールできます。また、このインストール方法を使用して、クラスターが外部コンテンツに対する組織の制御の条件を満たすコンテナーイメージのみを使用するようにすることもできます。

第2章 user-provisioned infrastructure

2.1. ユーザーによってプロビジョニングされるクラスターのベアメタルへのインストール

OpenShift Container Platform 4.19 では、独自にプロビジョニングするベアメタルインフラストラクチャーにクラスターをインストールできます。

重要

以下の手順に従って仮想化環境またはクラウド環境にクラスターをデプロイすることができますが、ベアメタルプラットフォーム以外の場合は追加の考慮事項に注意してください。このような環境に OpenShift Container Platform クラスターをインストールする前に、guidelines for deploying OpenShift Container Platform on non-tested platforms の情報を確認してください。

2.1.1. 前提条件

2.1.2. OpenShift Container Platform のインターネットアクセス

OpenShift Container Platform 4.19 では、クラスターをインストールするためにインターネットアクセスが必要です。

次のアクションを実行するには、インターネットにアクセスできる必要があります。

  • OpenShift Cluster Manager にアクセスし、インストールプログラムをダウンロードし、サブスクリプション管理を実行します。クラスターがインターネットにアクセスでき、Telemetry を無効にしていない場合、そのサービスによってクラスターのサブスクリプションが自動的に有効化されます。
  • クラスターのインストールに必要なパッケージを取得するために Quay.io にアクセスします。
  • クラスターの更新を実行するために必要なパッケージを取得します。
重要

クラスターでインターネットに直接アクセスできない場合、プロビジョニングする一部のタイプのインフラストラクチャーでネットワークが制限されたインストールを実行できます。このプロセスで、必要なコンテンツをダウンロードし、これを使用してミラーレジストリーにインストールパッケージを設定します。インストールタイプに応じて、クラスターのインストール環境でインターネットアクセスが不要となる場合があります。クラスターを更新する前に、ミラーレジストリーのコンテンツを更新します。

2.1.3. user-provisioned infrastructure を使用したクラスターの要件

user-provisioned infrastructure を含むクラスターの場合、必要なマシンすべてをデプロイする必要があります。

このセクションでは、user-provisioned infrastructure に OpenShift Container Platform をデプロイする要件を説明します。

2.1.3.1. クラスターのインストールに必要なマシン

最小の OpenShift Container Platform クラスターでは以下のホストが必要です。

Expand
表2.1 最低限必要なホスト
ホスト説明

1 つの一時的なブートストラップマシン

クラスターでは、ブートストラップマシンが OpenShift Container Platform クラスターを 3 つのコントロールプレーンマシンにデプロイする必要があります。クラスターのインストール後にブートストラップマシンを削除できます。

3 つのコントロールプレーンマシン

コントロールプレーンマシンは、コントロールプレーンを設定する Kubernetes および OpenShift Container Platform サービスを実行します。

少なくとも 2 つのコンピュートマシン (ワーカーマシンとしても知られる)。

OpenShift Container Platform ユーザーが要求するワークロードは、コンピュートマシンで実行されます。

注記

例外として、ゼロ (0) コンピュートマシンを 3 つのコントロールプレーンマシンのみで構成されるベアメタルクラスターで実行できます。これにより、テスト、開発、および実稼働に使用するための小規模なリソース効率の高いクラスターが、クラスター管理者および開発者に提供されます。1 つのコンピュートマシンの実行はサポートされていません。

重要

クラスターの高可用性を維持するには、これらのクラスターマシンに別の物理ホストを使用します。

ブートストラップおよびコントロールプレーンマシンでは、Red Hat Enterprise Linux CoreOS (RHCOS) をオペレーティングシステムとして使用する必要があります。ただし、コンピュートマシンは、Red Hat Enterprise Linux CoreOS (RHCOS)、Red Hat Enterprise Linux (RHEL) 8.6 以降から選択できます。

RHCOS は Red Hat Enterprise Linux (RHEL) 9.2 をベースとしており、そのハードウェア認定および要件がすべて継承されることに注意してください。Red Hat Enterprise Linux テクノロジーの機能と制限 を参照してください。

2.1.3.2. クラスターインストールの最小リソース要件

それぞれのクラスターマシンは、以下の最小要件を満たしている必要があります。

Expand
表2.2 最小リソース要件
マシンオペレーティングシステムCPU [1]RAMストレージ1 秒あたりの入出力 (IOPS) [2]

ブートストラップ

RHCOS

4

16 GB

100 GB

300

コントロールプレーン

RHCOS

4

16 GB

100 GB

300

Compute

RHCOS、RHEL 8.6 以降 [3]

2

8 GB

100 GB

300

  1. 1 つの CPU は、同時マルチスレッド (SMT) またはハイパースレッディングが有効にされていない場合に 1 つの物理コアと同等です。これが有効にされている場合、(コアごとのスレッド x コア数) x ソケット数 = CPU という数式を使用して対応する比率を計算します。
  2. OpenShift Container Platform および Kubernetes はディスクのパフォーマンスに敏感であり、特に 10 ms p99 fsync 期間を必要とするコントロールプレーンノード上の etcd には、高速ストレージが推奨されます。多くのクラウドプラットフォームでは、ストレージサイズと IOPS が連動してスケーリングされるため、十分なパフォーマンスを得るには、ストレージボリュームを過剰に割り当てる必要がある場合がある点に注意してください。
  3. すべての user-provisioned installation と同様に、クラスターで RHEL コンピュートマシンの使用を選択する場合は、システム更新の実行、パッチの適用、その他すべての必要なタスクの完了など、オペレーティングシステムのライフサイクルの管理と保守をすべて担当します。RHEL 7 コンピュートマシンの使用は非推奨となり、OpenShift Container Platform 4.10 以降で削除されています。
注記

OpenShift Container Platform バージョン 4.19 の場合、RHCOS は RHEL バージョン 9.6 に基づいています。これは、マイクロアーキテクチャー要件を更新します。次のリストには、各アーキテクチャーに必要な最小限の命令セットアーキテクチャー (ISA) が含まれています。

  • x86-64 アーキテクチャーには x86-64-v2 ISA が必要
  • ARM64 アーキテクチャーには ARMv8.0-A ISA が必要
  • IBM Power アーキテクチャーには Power 9 ISA が必要
  • s390x アーキテクチャーには z14 ISA が必要

詳細は、アーキテクチャー (RHEL ドキュメント) を参照してください。

プラットフォームのインスタンスタイプがクラスターマシンの最小要件を満たす場合、これは OpenShift Container Platform で使用することがサポートされます。

2.1.3.3. 証明書署名要求の管理

ユーザーがプロビジョニングするインフラストラクチャーを使用する場合、クラスターの自動マシン管理へのアクセスは制限されるため、インストール後にクラスターの証明書署名要求 (CSR) のメカニズムを提供する必要があります。kube-controller-manager は kubelet クライアント CSR のみを承認します。machine-approver は、kubelet 認証情報を使用して要求されるサービング証明書の有効性を保証できません。適切なマシンがこの要求を発行したかどうかを確認できないためです。kubelet 提供証明書の要求の有効性を検証し、それらを承認する方法を判別し、実装する必要があります。

2.1.3.4. vSphere 上のベアメタルクラスターの要件

クラスター内のすべての仮想マシンで、disk.EnableUUID パラメーターを必ず有効にしてください。

2.1.3.5. user-provisioned infrastructure のネットワーク要件

すべての Red Hat Enterprise Linux CoreOS (RHCOS) マシンでは、起動時に initramfs でネットワークを設定し、Ignition 設定ファイルを取得する必要があります。

初回の起動時に、マシンには DHCP サーバーを使用して設定される IP アドレス設定、または必要な起動オプションを指定して静的に設定される IP アドレス設定が必要です。ネットワーク設定の確立後に、マシンは HTTP または HTTPS サーバーから Ignition 設定ファイルをダウンロードします。その後、Ignition 設定ファイルは各マシンの正確な状態を設定するために使用されます。Machine Config Operator はインストール後に、新しい証明書やキーの適用など、マシンへの追加の変更を完了します。

注記
  • クラスターマシンの長期管理に DHCP サーバーを使用することが推奨されます。DHCP サーバーが永続 IP アドレス、DNS サーバー情報、およびホスト名をクラスターマシンに提供するように設定されていることを確認します。
  • DHCP サービスが user-provisioned infrastructure で利用できない場合は、IP ネットワーク設定および DNS サーバーのアドレスを RHCOS のインストール時にノードに提供することができます。ISO イメージからインストールしている場合は、ブート引数として渡すことができます。静的 IP プロビジョニングと高度なネットワークオプションの詳細は、RHCOS のインストールと OpenShift Container Platform ブートストラッププロセスの開始 のセクションを参照してください。

Kubernetes API サーバーはクラスターマシンのノード名を解決できる必要があります。API サーバーおよびワーカーノードが異なるゾーンに置かれている場合、デフォルトの DNS 検索ゾーンを、API サーバーでノード名を解決できるように設定することができます。もう 1 つの実行可能な方法として、ノードオブジェクトとすべての DNS 要求の両方において、ホストを完全修飾ドメイン名で常に参照します。

2.1.3.5.1. DHCP を使用したクラスターノードのホスト名の設定

Red Hat Enterprise Linux CoreOS (RHCOS) マシンでは、ホスト名は NetworkManager 経由で設定されます。デフォルトでは、マシンは DHCP 経由でホスト名を取得します。ホスト名が DHCP によって提供されない場合、カーネル引数を介して静的に設定される場合、または別の方法でホスト名が取得される場合は、逆引き DNS ルックアップによって取得されます。逆引き DNS ルックアップは、ネットワークがノードで初期化された後に発生し、解決に時間がかかる場合があります。その他のシステムサービスは、これより前に起動し、ホスト名を localhost または同様のものとして検出できます。これを回避するには、DHCP を使用して各クラスターノードのホスト名を指定できます。

また、DHCP を介してホスト名を設定すると、DNS スプリットホライズンが実装されている環境での手動の DNS レコード名設定エラーを回避できます。

2.1.3.5.2. ネットワーク接続の要件

OpenShift Container Platform クラスターのコンポーネントが通信できるように、マシン間のネットワーク接続を設定する必要があります。すべてのマシンではクラスターの他のすべてのマシンのホスト名を解決できる必要があります。

このセクションでは、必要なポートの詳細を説明します。

重要

インターネットに接続された OpenShift Container Platform 環境では、プラットフォームコンテナーのイメージをプルし、Red Hat にテレメトリーデータを提供するために、すべてのノードがインターネットにアクセスできる必要があります。

Expand
表2.3 すべてのマシンからすべてのマシンへの通信に使用されるポート
プロトコルポート説明

ICMP

該当なし

ネットワーク到達性のテスト

TCP

1936

メトリクス

9000-9999

ホストレベルのサービス。ポート 9100-9101 のノードエクスポーター、ポート 9099 の Cluster Version Operator が含まれます。

10250-10259

Kubernetes が予約するデフォルトポート

22623

このポートは、マシン設定サーバーからのトラフィックを処理し、トラフィックをコントロールプレーンマシンに送信します。

UDP

4789

VXLAN

6081

Geneve

9000-9999

ポート 9100-9101 のノードエクスポーターを含む、ホストレベルのサービス。

500

IPsec IKE パケット

4500

IPsec NAT-T パケット

123

UDP ポート 123 のネットワークタイムプロトコル (NTP)外部 NTP タイムサーバーが設定されている場合は、UDP ポート 123 を開く必要があります。

TCP/UDP

30000-32767

Kubernetes ノードポート

ESP

該当なし

IPsec Encapsulating Security Payload (ESP)

Expand
表2.4 すべてのマシンからコントロールプレーンへの通信に使用されるポート
プロトコルポート説明

TCP

6443

Kubernetes API

Expand
表2.5 コントロールプレーンマシンからコントロールプレーンマシンへの通信に使用されるポート
プロトコルポート説明

TCP

2379-2380

etcd サーバーおよびピアポート

2.1.3.5.3. user-provisioned infrastructure の NTP 設定

OpenShift Container Platform クラスターは、デフォルトでパブリック Network Time Protocol (NTP) サーバーを使用するように設定されます。ローカルのエンタープライズ NTP サーバーを使用する必要があるか、クラスターが切断されたネットワークにデプロイされている場合は、特定のタイムサーバーを使用するようにクラスターを設定できます。詳細は、chrony タイムサービスの設定 のドキュメントを参照してください。

DHCP サーバーが NTP サーバー情報を提供する場合、Red Hat Enterprise Linux CoreOS (RHCOS) マシンの chrony タイムサービスは情報を読み取り、NTP サーバーとクロックを同期できます。

2.1.3.6. user-provisioned DNS 要件

OpenShift Container Platform のデプロイメントでは、以下のコンポーネントに DNS 名前解決が必要です。

  • The Kubernetes API
  • OpenShift Container Platform のアプリケーションワイルドカード
  • ブートストラップ、コントロールプレーンおよびコンピュートマシン

また、Kubernetes API、ブートストラップマシン、コントロールプレーンマシン、およびコンピュートマシンに逆引き DNS 解決も必要です。

DNS A/AAAA または CNAME レコードは名前解決に使用され、PTR レコードは逆引き名前解決に使用されます。ホスト名が DHCP によって提供されていない場合は、Red Hat Enterprise Linux CoreOS (RHCOS) は逆引きレコードを使用してすべてのノードのホスト名を設定するため、逆引きレコードは重要です。さらに、逆引きレコードは、OpenShift Container Platform が動作するために必要な証明書署名要求 (CSR) を生成するために使用されます。

注記

各クラスターノードにホスト名を提供するために DHCP サーバーを使用することが推奨されます。詳細は、user-provisioned infrastructure に関する DHCP の推奨事項 のセクションを参照してください。

以下の DNS レコードは、user-provisioned OpenShift Container Platform クラスターに必要で、これはインストール前に設定されている必要があります。各レコードで、<cluster_name> はクラスター名で、<base_domain> は、install-config.yaml ファイルに指定するベースドメインです。完全な DNS レコードは <component>.<cluster_name>.<base_domain>. の形式を取ります。

Expand
表2.6 必要な DNS レコード
コンポーネントレコード説明

Kubernetes API

api.<cluster_name>.<base_domain>.

API ロードバランサーを特定するための DNS A/AAAA または CNAME レコード、および DNS PTR レコード。これらのレコードは、クラスター外のクライアントおよびクラスター内のすべてのノードで解決できる必要があります。

api-int.<cluster_name>.<base_domain>.

API ロードバランサーを内部的に識別するための DNS A/AAAA または CNAME レコード、および DNS PTR レコード。これらのレコードは、クラスター内のすべてのノードで解決できる必要があります。

重要

API サーバーは、Kubernetes に記録されるホスト名でワーカーノードを解決できる必要があります。API サーバーがノード名を解決できない場合、プロキシーされる API 呼び出しが失敗し、Pod からログを取得できなくなる可能性があります。

ルート

*.apps.<cluster_name>.<base_domain>.

アプリケーション Ingress ロードバランサーを参照するワイルドカード DNS A/AAAA または CNAME レコード。アプリケーション Ingress ロードバランサーは、Ingress コントローラー Pod を実行するマシンをターゲットにします。Ingress コントローラー Pod はデフォルトでコンピュートマシンで実行されます。これらのレコードは、クラスター外のクライアントおよびクラスター内のすべてのノードで解決できる必要があります。

たとえば、console-openshift-console.apps.<cluster_name>.<base_domain> は、OpenShift Container Platform コンソールへのワイルドカードルートとして使用されます。

ブートストラップマシン

bootstrap.<cluster_name>.<base_domain>.

ブートストラップマシンを識別するための DNS A / AAAA または CNAME レコード、および DNS PTR レコード。これらのレコードは、クラスター内のノードで解決できる必要があります。

コントロールプレーンマシン

<control_plane><n>.<cluster_name>.<base_domain>.

コントロールプレーンノードの各マシンを特定するための DNS A/AAAA または CNAME レコードおよび DNS PTR レコード。これらのレコードは、クラスター内のノードで解決できる必要があります。

コンピュートマシン

<compute><n>.<cluster_name>.<base_domain>.

ワーカーノードの各マシンを特定するための DNS A/AAAA または CNAME レコード、および DNS PTR レコード。これらのレコードは、クラスター内のノードで解決できる必要があります。

注記

OpenShift Container Platform 4.4 以降では、DNS 設定で etcd ホストおよび SRV レコードを指定する必要はありません。

ヒント

dig コマンドを使用して、名前および逆引き名前解決を確認することができます。検証手順の詳細は、user-provisioned infrastructure の DNS 解決の検証 のセクションを参照してください。

2.1.3.6.1. user-provisioned クラスターの DNS 設定の例

このセクションでは、user-provisioned infrastructure に OpenShift Container Platform をデプロイするための DNS 要件を満たす A および PTR レコード設定サンプルを提供します。サンプルは、特定の DNS ソリューションを選択するためのアドバイスを提供することを目的としていません。

この例では、クラスター名は ocp4 で、ベースドメインは example.com です。

user-provisioned クラスターの DNS A レコードの設定例

BIND ゾーンファイルの以下の例は、user-provisioned クラスターの名前解決の A レコードの例を示しています。

例2.1 DNS ゾーンデータベースのサンプル

$TTL 1W
@	IN	SOA	ns1.example.com.	root (
			2019070700	; serial
			3H		; refresh (3 hours)
			30M		; retry (30 minutes)
			2W		; expiry (2 weeks)
			1W )		; minimum (1 week)
	IN	NS	ns1.example.com.
	IN	MX 10	smtp.example.com.
;
;
ns1.example.com.		IN	A	192.168.1.5
smtp.example.com.		IN	A	192.168.1.5
;
helper.example.com.		IN	A	192.168.1.5
helper.ocp4.example.com.	IN	A	192.168.1.5
;
api.ocp4.example.com.		IN	A	192.168.1.5 
1

api-int.ocp4.example.com.	IN	A	192.168.1.5 
2

;
*.apps.ocp4.example.com.	IN	A	192.168.1.5 
3

;
bootstrap.ocp4.example.com.	IN	A	192.168.1.96 
4

;
control-plane0.ocp4.example.com.	IN	A	192.168.1.97 
5

control-plane1.ocp4.example.com.	IN	A	192.168.1.98 
6

control-plane2.ocp4.example.com.	IN	A	192.168.1.99 
7

;
compute0.ocp4.example.com.	IN	A	192.168.1.11 
8

compute1.ocp4.example.com.	IN	A	192.168.1.7 
9

;
;EOF
Copy to Clipboard Toggle word wrap
1
Kubernetes API の名前解決を提供します。レコードは API ロードバランサーの IP アドレスを参照します。
2
Kubernetes API の名前解決を提供します。レコードは API ロードバランサーの IP アドレスを参照し、内部クラスター通信に使用されます。
3
ワイルドカードルートの名前解決を提供します。レコードは、アプリケーション Ingress ロードバランサーの IP アドレスを参照します。アプリケーション Ingress ロードバランサーは、Ingress コントローラー Pod を実行するマシンをターゲットにします。Ingress コントローラー Pod はデフォルトでコンピュートマシンで実行されます。
注記

この例では、同じロードバランサーが Kubernetes API およびアプリケーションの Ingress トラフィックに使用されます。実稼働のシナリオでは、API およびアプリケーション Ingress ロードバランサーを個別にデプロイし、それぞれのロードバランサーインフラストラクチャーを分離してスケーリングすることができます。

4
ブートストラップマシンの名前解決を提供します。
5 6 7
コントロールプレーンマシンの名前解決を提供します。
8 9
コンピュートマシンの名前解決を提供します。

user-provisioned クラスターの DNS PTR レコードの設定例

以下の BIND ゾーンファイルの例では、user-provisioned クラスターの逆引き名前解決の PTR レコードの例を示しています。

例2.2 逆引きレコードの DNS ゾーンデータベースの例

$TTL 1W
@	IN	SOA	ns1.example.com.	root (
			2019070700	; serial
			3H		; refresh (3 hours)
			30M		; retry (30 minutes)
			2W		; expiry (2 weeks)
			1W )		; minimum (1 week)
	IN	NS	ns1.example.com.
;
5.1.168.192.in-addr.arpa.	IN	PTR	api.ocp4.example.com. 
1

5.1.168.192.in-addr.arpa.	IN	PTR	api-int.ocp4.example.com. 
2

;
96.1.168.192.in-addr.arpa.	IN	PTR	bootstrap.ocp4.example.com. 
3

;
97.1.168.192.in-addr.arpa.	IN	PTR	control-plane0.ocp4.example.com. 
4

98.1.168.192.in-addr.arpa.	IN	PTR	control-plane1.ocp4.example.com. 
5

99.1.168.192.in-addr.arpa.	IN	PTR	control-plane2.ocp4.example.com. 
6

;
11.1.168.192.in-addr.arpa.	IN	PTR	compute0.ocp4.example.com. 
7

7.1.168.192.in-addr.arpa.	IN	PTR	compute1.ocp4.example.com. 
8

;
;EOF
Copy to Clipboard Toggle word wrap
1
Kubernetes API の逆引き DNS 解決を提供します。PTR レコードは、API ロードバランサーのレコード名を参照します。
2
Kubernetes API の逆引き DNS 解決を提供します。PTR レコードは、API ロードバランサーのレコード名を参照し、内部クラスター通信に使用されます。
3
ブートストラップマシンの逆引き DNS 解決を提供します。
4 5 6
コントロールプレーンマシンの逆引き DNS 解決を提供します。
7 8
コンピュートマシンの逆引き DNS 解決を提供します。
注記

PTR レコードは、OpenShift Container Platform アプリケーションのワイルドカードには必要ありません。

2.1.3.7. user-provisioned infrastructure の負荷分散要件

OpenShift Container Platform をインストールする前に、API およびアプリケーションの Ingress 負荷分散インフラストラクチャーをプロビジョニングする必要があります。実稼働のシナリオでは、API およびアプリケーション Ingress ロードバランサーを個別にデプロイし、それぞれのロードバランサーインフラストラクチャーを分離してスケーリングすることができます。

注記

Red Hat Enterprise Linux (RHEL) インスタンスを使用して API およびアプリケーション Ingress ロードバランサーをデプロイする場合は、RHEL サブスクリプションを別途購入する必要があります。

負荷分散インフラストラクチャーは以下の要件を満たす必要があります。

  1. API ロードバランサー: プラットフォームと対話およびプラットフォームを設定するためのユーザー向けの共通のエンドポイントを提供します。以下の条件を設定します。

    • Layer 4 の負荷分散のみ。これは、Raw TCP または SSL パススルーモードと呼ばれます。
    • ステートレス負荷分散アルゴリズム。オプションは、ロードバランサーの実装によって異なります。
    重要

    API ロードバランサーのセッションの永続性は設定しないでください。Kubernetes API サーバーのセッション永続性を設定すると、OpenShift Container Platform クラスターとクラスター内で実行される Kubernetes API の過剰なアプリケーショントラフィックによりパフォーマンスの問題が発生する可能性があります。

    ロードバランサーのフロントとバックの両方で以下のポートを設定します。

    Expand
    表2.7 API ロードバランサー
    ポートバックエンドマシン (プールメンバー)内部外部説明

    6443

    ブートストラップおよびコントロールプレーン。ブートストラップマシンがクラスターのコントロールプレーンを初期化した後に、ブートストラップマシンをロードバランサーから削除します。API サーバーのヘルスチェックプローブの /readyz エンドポイントを設定する必要があります。

    X

    X

    Kubernetes API サーバー

    22623

    ブートストラップおよびコントロールプレーン。ブートストラップマシンがクラスターのコントロールプレーンを初期化した後に、ブートストラップマシンをロードバランサーから削除します。

    X

     

    マシン設定サーバー

    注記

    ロードバランサーは、API サーバーが /readyz エンドポイントをオフにしてからプールから API サーバーインスタンスを削除するまで最大 30 秒かかるように設定する必要があります。/readyz の後の時間枠内でエラーが返されたり、正常になったりする場合は、エンドポイントが削除または追加されているはずです。5 秒または 10 秒ごとのプロービングで、2 回連続成功すると正常、3 回連続失敗すると異常と判断する設定は、十分にテストされた値です。

  2. Application Ingress ロードバランサー: クラスター外から送られるアプリケーショントラフィックの Ingress ポイントを提供します。Ingress ルーターの作業用の設定が OpenShift Container Platform クラスターに必要です。

    以下の条件を設定します。

    • Layer 4 の負荷分散のみ。これは、Raw TCP または SSL パススルーモードと呼ばれます。
    • 選択可能なオプションやプラットフォーム上でホストされるアプリケーションの種類に基づいて、接続ベースの永続化またはセッションベースの永続化が推奨されます。
    ヒント

    クライアントの実際の IP アドレスがアプリケーション Ingress ロードバランサーによって確認できる場合、ソースの IP ベースのセッション永続化を有効にすると、エンドツーエンドの TLS 暗号化を使用するアプリケーションのパフォーマンスを強化できます。

    ロードバランサーのフロントとバックの両方で以下のポートを設定します。

    Expand
    表2.8 アプリケーション Ingress ロードバランサー
    ポートバックエンドマシン (プールメンバー)内部外部説明

    443

    デフォルトで Ingress コントローラー Pod、コンピュート、またはワーカーを実行するマシン。

    X

    X

    HTTPS トラフィック

    80

    デフォルトで Ingress コントローラー Pod、コンピュート、またはワーカーを実行するマシン。

    X

    X

    HTTP トラフィック

    注記

    ゼロ (0) コンピュートノードで 3 ノードクラスターをデプロイする場合、Ingress コントローラー Pod はコントロールプレーンノードで実行されます。3 ノードクラスターデプロイメントでは、HTTP および HTTPS トラフィックをコントロールプレーンノードにルーティングするようにアプリケーション Ingress ロードバランサーを設定する必要があります。

2.1.3.7.1. user-provisioned クラスターのロードバランサーの設定例

このセクションでは、user-provisioned クラスターの負荷分散要件を満たす API およびアプリケーション Ingress ロードバランサーの設定例を説明します。この例は、HAProxy ロードバランサーの /etc/haproxy/haproxy.cfg 設定です。この例では、特定の負荷分散ソリューションを選択するためのアドバイスを提供することを目的としていません。

この例では、同じロードバランサーが Kubernetes API およびアプリケーションの Ingress トラフィックに使用されます。実稼働のシナリオでは、API およびアプリケーション Ingress ロードバランサーを個別にデプロイし、それぞれのロードバランサーインフラストラクチャーを分離してスケーリングすることができます。

注記

HAProxy をロードバランサーとして使用し、SELinux が enforcing に設定されている場合は、setsebool -P haproxy_connect_any=1 を実行して、HAProxy サービスが設定済みの TCP ポートにバインドできることを確認する必要があります。

例2.3 API およびアプリケーション Ingress ロードバランサーの設定例

global
  log         127.0.0.1 local2
  pidfile     /var/run/haproxy.pid
  maxconn     4000
  daemon
defaults
  mode                    http
  log                     global
  option                  dontlognull
  option http-server-close
  option                  redispatch
  retries                 3
  timeout http-request    10s
  timeout queue           1m
  timeout connect         10s
  timeout client          1m
  timeout server          1m
  timeout http-keep-alive 10s
  timeout check           10s
  maxconn                 3000
listen api-server-6443 
1

  bind *:6443
  mode tcp
  option  httpchk GET /readyz HTTP/1.0
  option  log-health-checks
  balance roundrobin
  server bootstrap bootstrap.ocp4.example.com:6443 verify none check check-ssl inter 10s fall 2 rise 3 backup 
2

  server master0 master0.ocp4.example.com:6443 weight 1 verify none check check-ssl inter 10s fall 2 rise 3
  server master1 master1.ocp4.example.com:6443 weight 1 verify none check check-ssl inter 10s fall 2 rise 3
  server master2 master2.ocp4.example.com:6443 weight 1 verify none check check-ssl inter 10s fall 2 rise 3
listen machine-config-server-22623 
3

  bind *:22623
  mode tcp
  server bootstrap bootstrap.ocp4.example.com:22623 check inter 1s backup 
4

  server master0 master0.ocp4.example.com:22623 check inter 1s
  server master1 master1.ocp4.example.com:22623 check inter 1s
  server master2 master2.ocp4.example.com:22623 check inter 1s
listen ingress-router-443 
5

  bind *:443
  mode tcp
  balance source
  server compute0 compute0.ocp4.example.com:443 check inter 1s
  server compute1 compute1.ocp4.example.com:443 check inter 1s
listen ingress-router-80 
6

  bind *:80
  mode tcp
  balance source
  server compute0 compute0.ocp4.example.com:80 check inter 1s
  server compute1 compute1.ocp4.example.com:80 check inter 1s
Copy to Clipboard Toggle word wrap
1
ポート 6443 は Kubernetes API トラフィックを処理し、コントロールプレーンマシンを参照します。
2 4
ブートストラップエントリーは、OpenShift Container Platform クラスターのインストール前に有効にし、ブートストラッププロセスの完了後にそれらを削除する必要があります。
3
ポート 22623 はマシン設定サーバートラフィックを処理し、コントロールプレーンマシンを参照します。
5
ポート 443 は HTTPS トラフィックを処理し、Ingress コントローラー Pod を実行するマシンを参照します。Ingress コントローラー Pod はデフォルトでコンピュートマシンで実行されます。
6
ポート 80 は HTTP トラフィックを処理し、Ingress コントローラー Pod を実行するマシンを参照します。Ingress コントローラー Pod はデフォルトでコンピュートマシンで実行されます。
注記

ゼロ (0) コンピュートノードで 3 ノードクラスターをデプロイする場合、Ingress コントローラー Pod はコントロールプレーンノードで実行されます。3 ノードクラスターデプロイメントでは、HTTP および HTTPS トラフィックをコントロールプレーンノードにルーティングするようにアプリケーション Ingress ロードバランサーを設定する必要があります。

ヒント

HAProxy をロードバランサーとして使用する場合は、HAProxy ノードで netstat -nltupe を実行して、ポート 644322623443、および 80haproxy プロセスがリッスンしていることを確認することができます。

2.1.4. カスタマイズされた br-ex ブリッジを含むマニフェストオブジェクトの作成

configure-ovs.sh シェルスクリプトを使用してベアメタルプラットフォームで br-ex ブリッジを設定する代わりに、NMState 設定ファイルを含む MachineConfig オブジェクトを作成できます。ホスト nmstate-configuration.service および nmstate.service により、クラスター内で実行される各ノードに NMState 設定ファイルが適用されます。

カスタマイズされた br-ex ブリッジを含むマニフェストオブジェクトを作成する場合は、次のユースケースを検討してください。

  • Open vSwitch (OVS) または OVN-Kubernetes br-ex ブリッジネットワークの変更など、ブリッジにインストール後の変更を加えたい場合。configure-ovs.sh シェルスクリプトは、ブリッジへのインストール後の変更をサポートしていません。
  • ホストまたはサーバーの IP アドレスで使用可能なインターフェイスとは異なるインターフェイスにブリッジをデプロイします。
  • configure-ovs.sh シェルスクリプトでは不可能な、ブリッジの高度な設定を実行したいと考えています。これらの設定にスクリプトを使用すると、ブリッジが複数のネットワークインターフェイスに接続できず、インターフェイス間のデータ転送が促進されない可能性があります。
注記

単一のネットワークインターフェイスコントローラー (NIC) とデフォルトのネットワーク設定を備えた環境が必要な場合は、configure-ovs.sh シェルスクリプトを使用します。

Red Hat Enterprise Linux CoreOS (RHCOS) をインストールしてシステムを再起動すると、Machine Config Operator がクラスター内の各ノードに Ignition 設定ファイルを注入し、各ノードが br-ex ブリッジネットワーク設定を受け取るようになります。設定の競合を防ぐために、configure-ovs.sh シェルスクリプトは、br-ex ブリッジを設定しない信号を受け取ります。

警告

次のインターフェイス名は予約されており、NMstate 設定では使用できません。

  • br-ext
  • br-int
  • br-local
  • br-nexthop
  • br0
  • ext-vxlan
  • ext
  • genev_sys_*
  • int
  • k8s-*
  • ovn-k8s-*
  • patch-br-*
  • tun0
  • vxlan_sys_*

前提条件

  • オプション: NMState 設定を検証できるように、nmstate API をインストールしました。

手順

  1. カスタマイズされた br-ex ブリッジネットワークの base64 情報をデコードした NMState 設定ファイルを作成します。

    カスタマイズされた br-ex ブリッジネットワークの NMState 設定の例

    interfaces:
    - name: enp2s0 
    1
    
      type: ethernet 
    2
    
      state: up 
    3
    
      ipv4:
        enabled: false 
    4
    
      ipv6:
        enabled: false
    - name: br-ex
      type: ovs-bridge
      state: up
      ipv4:
        enabled: false
        dhcp: false
      ipv6:
        enabled: false
        dhcp: false
      bridge:
        options:
          mcast-snooping-enable: true
        port:
        - name: enp2s0 
    5
    
        - name: br-ex
    - name: br-ex
      type: ovs-interface
      state: up
      copy-mac-from: enp2s0
      ipv4:
        enabled: true
        dhcp: true
        auto-route-metric: 48 
    6
    
      ipv6:
        enabled: true
        dhcp: true
        auto-route-metric: 48
    # ...
    Copy to Clipboard Toggle word wrap

    1
    インターフェイスの名前。
    2
    イーサネットのタイプ。
    3
    作成後のインターフェイスの要求された状態。
    4
    この例では、IPv4 と IPv6 を無効にします。
    5
    ブリッジが接続されるノードの NIC。
    6
    br-ex デフォルトルートに常に最高の優先度 (最も低いメトリック値) を付与するには、パラメーターを 48 に設定します。この設定により、NetworkManager サービスによって自動的に設定される他のインターフェイスとのルーティングの競合が防止されます。
  2. cat コマンドを使用して、NMState 設定の内容を base64 でエンコードします。

    $ cat <nmstate_configuration>.yaml | base64 
    1
    Copy to Clipboard Toggle word wrap
    1
    <nmstate_configuration> を NMState リソース YAML ファイルの名前に置き換えます。
  3. MachineConfig マニフェストファイルを作成し、次の例に類似したカスタマイズされた br-ex ブリッジネットワーク設定を定義します。

    apiVersion: machineconfiguration.openshift.io/v1
    kind: MachineConfig
    metadata:
      labels:
        machineconfiguration.openshift.io/role: worker
      name: 10-br-ex-worker 
    1
    
    spec:
      config:
        ignition:
          version: 3.2.0
        storage:
          files:
          - contents:
              source: data:text/plain;charset=utf-8;base64,<base64_encoded_nmstate_configuration> 
    2
    
            mode: 0644
            overwrite: true
            path: /etc/nmstate/openshift/worker-0.yml 
    3
    
          - contents:
              source: data:text/plain;charset=utf-8;base64,<base64_encoded_nmstate_configuration>
            mode: 0644
            overwrite: true
            path: /etc/nmstate/openshift/worker-1.yml 
    4
    
    # ...
    Copy to Clipboard Toggle word wrap
    1
    ポリシーの名前。
    2
    エンコードされた base64 情報を指定されたパスに書き込みます。
    3 4
    クラスター内の各ノードに対して、ノードへのホスト名パスと、マシンタイプに応じた base-64 でエンコードされた Ignition 設定ファイルデータを指定します。worker ロールは、クラスター内のノードのデフォルトロールです。MachineConfig マニフェストファイルで各ノードまたはすべてのノードに対して短いホスト名 (hostname -s で得られるもの) のパスを指定する際に、.yaml 拡張子は機能しません。

    クラスター内のすべてのノードに適用する単一のグローバル設定が /etc/nmstate/openshift/cluster.yml 設定ファイルで指定されている場合は、各ノードの短いホスト名パス (例: /etc/nmstate/openshift/<node_hostname>.yml) を指定する必要はありません。以下に例を示します。

    # ...
          - contents:
              source: data:text/plain;charset=utf-8;base64,<base64_encoded_nmstate_configuration>
            mode: 0644
            overwrite: true
            path: /etc/nmstate/openshift/cluster.yml
    # ...
    Copy to Clipboard Toggle word wrap

次のステップ

  • コンピュートノードをスケーリングして、クラスター内に存在する各コンピュートノードに、カスタマイズされた br-ex ブリッジを含むマニフェストオブジェクトを適用します。詳細は、関連情報 セクションの「クラスターの拡張」を参照してください。
2.1.4.1. 各マシンセットをコンピュートノードにスケーリング

カスタマイズされた br-ex ブリッジ設定を OpenShift Container Platform クラスター内のすべてのコンピュートノードに適用するには、MachineConfig カスタムリソース (CR) を編集し、そのロールを変更する必要があります。さらに、ホスト名、認証情報など、ベアメタルマシンの情報を定義する BareMetalHost CR を作成する必要があります。

これらのリソースを設定した後、マシンセットをスケーリングして、マシンセットが各コンピュートノードにリソース設定を適用し、ノードを再起動できるようにする必要があります。

前提条件

  • カスタマイズされた br-ex ブリッジ設定を含む MachineConfig マニフェストオブジェクトを作成しました。

手順

  1. 次のコマンドを入力して MachineConfig CR を編集します。

    $ oc edit mc <machineconfig_custom_resource_name>
    Copy to Clipboard Toggle word wrap
  2. 各コンピュートノード設定を CR に追加して、CR がクラスター内の定義済みコンピュートノードごとにロールを管理できるようにします。
  3. 最小限の静的 IP 設定を持つ extraworker-secret という名前の Secret オブジェクトを作成します。
  4. 次のコマンドを入力して、クラスター内の各ノードに extraworker-secret シークレットを適用します。このステップでは、各コンピュートノードに Ignition 設定ファイルへのアクセスを提供します。

    $ oc apply -f ./extraworker-secret.yaml
    Copy to Clipboard Toggle word wrap
  5. BareMetalHost リソースを作成し、preprovisioningNetworkDataName パラメーターでネットワークシークレットを指定します。

    ネットワークシークレットが添付された BareMetalHost リソースの例

    apiVersion: metal3.io/v1alpha1
    kind: BareMetalHost
    spec:
    # ...
      preprovisioningNetworkDataName: ostest-extraworker-0-network-config-secret
    # ...
    Copy to Clipboard Toggle word wrap

  6. クラスターの openshift-machine-api namespace 内で BareMetalHost オブジェクトを管理するために、次のコマンドを入力して namespace に変更します。

    $ oc project openshift-machine-api
    Copy to Clipboard Toggle word wrap
  7. マシンセットを取得します。

    $ oc get machinesets
    Copy to Clipboard Toggle word wrap
  8. 次のコマンドを入力して、各マシンセットをスケールします。このコマンドはマシンセットごとに実行する必要があります。

    $ oc scale machineset <machineset_name> --replicas=<n> 
    1
    Copy to Clipboard Toggle word wrap
    1
    <machineset_name> はマシンセットの名前です。<n> はコンピュートノードの数です。

2.1.5. クラスターで OVS balance-slb モードを有効にする

2 つ以上の物理インターフェイスがネットワークトラフィックを共有できるように、Open vSwitch (OVS) の balance-slb モードを有効にできます。balance-slb モードのインターフェイスは、ネットワークスイッチとのソースロードバランシングを必要とせずに、仮想化ワークロードを実行するクラスターにソース負荷分散 (SLB) 機能を提供できます。

現在、ソースロードバランシングはボンディングインターフェイスで実行されます。このインターフェイスは br-phy などの補助ブリッジに接続します。ソースロードバランシングは、Media Access Control (MAC) アドレスと仮想ローカルエリアネットワーク (VLAN) の組み合わせが複数存在する場合にのみ、負荷分散を行います。OVN-Kubernetes Pod のトラフィックはすべて同じ MAC アドレスと VLAN を使用するため、このトラフィックを多数の物理インターフェイス間で負荷分散することはできないことに注意してください。

次の図は、単純なクラスターインフラストラクチャーレイアウトでの balance-slb モードを示しています。仮想マシン (VM) は、特定の localnet NetworkAttachmentDefinition (NAD) カスタムリソース定義 (CRD)、NAD 0 または NAD 1 に接続します。各 NAD は、仮想マシンに基盤となる物理ネットワークへのアクセスを提供し、タグ付きまたはタグなしの VLAN トラフィックをサポートしています。br-ex OVS ブリッジは仮想マシンからのトラフィックを受信し、そのトラフィックを次の OVS ブリッジである br-phy に渡します。br-phy ブリッジは SLB ボンディングのコントローラーとして機能します。SLB ボンディングは、eno0eno1 などの物理インターフェイスリンクを介して、異なる仮想マシンポートからのトラフィックを分散します。さらに、どちらの物理インターフェイスからの Ingress トラフィックも、OVS ブリッジのセットを通過して仮想マシンに到達できます。

図2.1 2 つの NAD を持つローカルネット上で動作する OVS balance-slb モード

OVS ボンディングを使用して、balance-slb モードインターフェイスをプライマリーまたはセカンダリーネットワークタイプに統合できます。OVS ボンディングでは、次の点に注意してください。

  • OVN-Kubernetes CNI プラグインをサポートし、プラグインと簡単に統合できます。
  • ネイティブで balance-slb モードをサポートします。

前提条件

  • プライマリーネットワークに複数の物理インターフェイスが接続されており、それらのインターフェイスを MachineConfig ファイルで定義した。
  • マニフェストオブジェクトを作成し、カスタマイズした br-ex ブリッジをオブジェクト設定ファイルで定義した。
  • プライマリーネットワークに複数の物理インターフェイスが接続されており、それらのインターフェイスを NAD CRD ファイルで定義した。

手順

  1. クラスター内に存在するベアメタルホストごとに、クラスターの install-config.yaml ファイルで、次の例のように networkConfig セクションを定義します。

    # ...
    networkConfig:
      interfaces:
        - name: enp1s0 
    1
    
          type: ethernet
          state: up
          ipv4:
            dhcp: true
            enabled: true
          ipv6:
            enabled: false
        - name: enp2s0 
    2
    
          type: ethernet
          state: up
          mtu: 1500 
    3
    
          ipv4:
            dhcp: true
            enabled: true
          ipv6:
            dhcp: true
            enabled: true
        - name: enp3s0 
    4
    
          type: ethernet
          state: up
          mtu: 1500
          ipv4:
            enabled: false
          ipv6:
            enabled: false
    # ...
    Copy to Clipboard Toggle word wrap
    1
    プロビジョニングされるネットワークインターフェイスコントローラー (NIC) のインターフェイス。
    2
    ボンディングインターフェイス用の Ignition 設定ファイルを取り込む最初のボンディングされたインターフェイス。
    3
    ボンディングポートの br-ex 最大伝送単位 (MTU) を手動で設定します。
    4
    2 つ目のボンディングされたインターフェイスは、クラスターのインストール中に Ignition を実行する最小設定の一部です。
  2. NMState 設定ファイルで各ネットワークインターフェイスを定義します。

    多数のネットワークインターフェイスを定義する NMState 設定ファイルの例

    ovn:
      bridge-mappings:
        - localnet: localnet-network
          bridge: br-ex
          state: present
    interfaces:
      - name: br-ex
        type: ovs-bridge
        state: up
        bridge:
          allow-extra-patch-ports: true
          port:
            - name: br-ex
            - name: patch-ex-to-phy
        ovs-db:
          external_ids:
            bridge-uplink: "patch-ex-to-phy"
      - name: br-ex
        type: ovs-interface
        state: up
        mtu: 1500 
    1
    
        ipv4:
          enabled: true
          dhcp: true
          auto-route-metric: 48
        ipv6:
          enabled: false
          dhcp: false
          auto-route-metric: 48
      - name: br-phy
        type: ovs-bridge
        state: up
        bridge:
          allow-extra-patch-ports: true
          port:
            - name: patch-phy-to-ex
            - name: ovs-bond
              link-aggregation:
                mode: balance-slb
                port:
                  - name: enp2s0
                  - name: enp3s0
      - name: patch-ex-to-phy
        type: ovs-interface
        state: up
        patch:
          peer: patch-phy-to-ex
      - name: patch-phy-to-ex
        type: ovs-interface
        state: up
        patch:
          peer: patch-ex-to-phy
      - name: enp1s0
        type: ethernet
        state: up
        ipv4:
          dhcp: true
          enabled: true
        ipv6:
          enabled: false
      - name: enp2s0
        type: ethernet
        state: up
        mtu: 1500
        ipv4:
          enabled: false
        ipv6:
          enabled: false
      - name: enp3s0
        type: ethernet
        state: up
        mtu: 1500
        ipv4:
          enabled: false
        ipv6:
          enabled: false
    # ...
    Copy to Clipboard Toggle word wrap

    1
    ボンディングポートの br-ex MTU を手動で設定します。
  3. base64 コマンドを使用して、NMState 設定ファイルのインターフェイスコンテンツをエンコードします。

    $ base64 -w0  <nmstate_configuration>.yml 
    1
    Copy to Clipboard Toggle word wrap
    1
    -w0 オプションは、base64 エンコード操作中に行の折り返しを防止します。
  4. master ロールと worker ロールの MachineConfig マニフェストファイルを作成します。前のコマンドからの base64 エンコード文字列を各 MachineConfig マニフェストファイルに必ず埋め込んでください。次のマニフェストファイルの例では、クラスター内に存在するすべてのノードに対して master ロールを設定します。ノード固有の master ロールと worker ロールのマニフェストファイルを作成することもできます。

    apiVersion: machineconfiguration.openshift.io/v1
    kind: MachineConfig
    metadata:
      labels:
        machineconfiguration.openshift.io/role: master
      name: 10-br-ex-master 
    1
    
    spec:
      config:
        ignition:
          version: 3.2.0
        storage:
          files:
          - contents:
              source: data:text/plain;charset=utf-8;base64,<base64_encoded_nmstate_configuration> 
    2
    
            mode: 0644
            overwrite: true
            path: /etc/nmstate/openshift/cluster.yml 
    3
    Copy to Clipboard Toggle word wrap
    1
    ポリシーの名前。
    2
    エンコードされた base64 情報を指定されたパスに書き込みます。
    3
    cluster.yml ファイルへのパスを指定します。クラスター内の各ノードに対して、<node_short_hostname>.yml など、ノードへの短いホスト名パスを指定できます。
  5. MachineConfig マニフェストファイルを ./<installation_directory>/manifests ディレクトリーに保存します。<installation_directory> は、インストールプログラムがファイルを作成するディレクトリーです。

    Machine Config Operator (MCO) が各マニフェストファイルからコンテンツを取得し、ローリング更新中に選択されたすべてのノードにそのコンテンツを一貫して適用します。

2.1.6. user-provisioned infrastructure の準備

user-provisioned infrastructure に OpenShift Container Platform をインストールする前に、基礎となるインフラストラクチャーを準備する必要があります。

このセクションでは、OpenShift Container Platform インストールの準備としてクラスターインフラストラクチャーを設定するために必要な手順の概要を説明します。これには、クラスターノード用の IP ネットワークおよびネットワーク接続を設定し、ファイアウォール経由で必要なポートを有効にし、必要な DNS および負荷分散インフラストラクチャーの設定が含まれます。

準備後、クラスターインフラストラクチャーは、user-provisioned infrastructure を使用したクラスターの要件 セクションで説明されている要件を満たす必要があります。

前提条件

手順

  1. DHCP を使用して IP ネットワーク設定をクラスターノードに提供する場合は、DHCP サービスを設定します。

    1. ノードの永続 IP アドレスを DHCP サーバー設定に追加します。設定で、関連するネットワークインターフェイスの MAC アドレスを、各ノードの目的の IP アドレスと一致させます。
    2. DHCP を使用してクラスターマシンの IP アドレスを設定する場合、マシンは DHCP を介して DNS サーバー情報も取得します。DHCP サーバー設定を介してクラスターノードが使用する永続 DNS サーバーアドレスを定義します。

      注記

      DHCP サービスを使用しない場合、IP ネットワーク設定と DNS サーバーのアドレスを RHCOS インストール時にノードに指定する必要があります。ISO イメージからインストールしている場合は、ブート引数として渡すことができます。静的 IP プロビジョニングと高度なネットワークオプションの詳細は、RHCOS のインストールと OpenShift Container Platform ブートストラッププロセスの開始 のセクションを参照してください。

    3. DHCP サーバー設定でクラスターノードのホスト名を定義します。ホスト名に関する考慮事項の詳細は、DHCP を使用したクラスターノードのホスト名の設定 セクションを参照してください。

      注記

      DHCP サービスを使用しない場合、クラスターノードは逆引き DNS ルックアップを介してホスト名を取得します。

  2. ネットワークインフラストラクチャーがクラスターコンポーネント間の必要なネットワーク接続を提供することを確認します。要件に関する詳細は、user-provisioned infrastructure のネットワーク要件 のセクションを参照してください。
  3. OpenShift Container Platform クラスターコンポーネントで通信するために必要なポートを有効にするようにファイアウォールを設定します。必要なポートの詳細は、user-provisioned infrastructure のネットワーク要件 のセクションを参照してください。

    重要

    デフォルトで、ポート 1936 は OpenShift Container Platform クラスターにアクセスできます。これは、各コントロールプレーンノードがこのポートへのアクセスを必要とするためです。

    Ingress ロードバランサーを使用してこのポートを公開しないでください。これを実行すると、Ingress コントローラーに関連する統計やメトリクスなどの機密情報が公開される可能性があるためです。

  4. クラスターに必要な DNS インフラストラクチャーを設定します。

    1. Kubernetes API、アプリケーションワイルドカード、ブートストラップマシン、コントロールプレーンマシン、およびコンピュートマシンの DNS 名前解決を設定します。
    2. Kubernetes API、ブートストラップマシン、コントロールプレーンマシン、およびコンピュートマシンの逆引き DNS 解決を設定します。

      OpenShift Container Platform DNS 要件の詳細は、user-provisioned DNS 要件 のセクションを参照してください。

  5. DNS 設定を検証します。

    1. インストールノードから、Kubernetes API、ワイルドカードルート、およびクラスターノードのレコード名に対して DNS ルックアップを実行します。応答の IP アドレスが正しいコンポーネントに対応することを確認します。
    2. インストールノードから、ロードバランサーとクラスターノードの IP アドレスに対して逆引き DNS ルックアップを実行します。応答のレコード名が正しいコンポーネントに対応することを確認します。

      DNS 検証手順の詳細は、user-provisioned infrastructure の DNS 解決の検証 のセクションを参照してください。

  6. 必要な API およびアプリケーションの Ingress 負荷分散インフラストラクチャーをプロビジョニングします。要件に関する詳細は、user-provisioned infrastructure の負荷分散要件 のセクションを参照してください。
注記

一部の負荷分散ソリューションでは、負荷分散を初期化する前に、クラスターノードの DNS 名前解決を有効化する必要があります。

2.1.7. user-provisioned infrastructure の DNS 解決の検証

OpenShift Container Platform を user-provisioned infrastructure にインストールする前に、DNS 設定を検証できます。

重要

このセクションの検証手順は、クラスターのインストール前に正常に実行される必要があります。

前提条件

  • user-provisioned infrastructure に必要な DNS レコードを設定している。

手順

  1. インストールノードから、Kubernetes API、ワイルドカードルート、およびクラスターノードのレコード名に対して DNS ルックアップを実行します。応答に含まれる IP アドレスが正しいコンポーネントに対応することを確認します。

    1. Kubernetes API レコード名に対してルックアップを実行します。結果が API ロードバランサーの IP アドレスを参照することを確認します。

      $ dig +noall +answer @<nameserver_ip> api.<cluster_name>.<base_domain> 
      1
      Copy to Clipboard Toggle word wrap
      1
      <nameserver_ip> をネームサーバーの IP アドレスに、<cluster_name> をクラスター名に、<base_domain> をベースドメイン名に置き換えます。

      出力例

      api.ocp4.example.com.		604800	IN	A	192.168.1.5
      Copy to Clipboard Toggle word wrap

    2. Kubernetes 内部 API レコード名に対してルックアップを実行します。結果が API ロードバランサーの IP アドレスを参照することを確認します。

      $ dig +noall +answer @<nameserver_ip> api-int.<cluster_name>.<base_domain>
      Copy to Clipboard Toggle word wrap

      出力例

      api-int.ocp4.example.com.		604800	IN	A	192.168.1.5
      Copy to Clipboard Toggle word wrap

    3. *.apps.<cluster_name>.<base_domain> DNS ワイルドカードルックアップの例をテストします。すべてのアプリケーションのワイルドカードルックアップは、アプリケーション Ingress ロードバランサーの IP アドレスに解決する必要があります。

      $ dig +noall +answer @<nameserver_ip> random.apps.<cluster_name>.<base_domain>
      Copy to Clipboard Toggle word wrap

      出力例

      random.apps.ocp4.example.com.		604800	IN	A	192.168.1.5
      Copy to Clipboard Toggle word wrap

      注記

      出力例では、同じロードバランサーが Kubernetes API およびアプリケーションの Ingress トラフィックに使用されます。実稼働のシナリオでは、API およびアプリケーション Ingress ロードバランサーを個別にデプロイし、それぞれのロードバランサーインフラストラクチャーを分離してスケーリングすることができます。

      random は、別のワイルドカード値に置き換えることができます。たとえば、OpenShift Container Platform コンソールへのルートをクエリーできます。

      $ dig +noall +answer @<nameserver_ip> console-openshift-console.apps.<cluster_name>.<base_domain>
      Copy to Clipboard Toggle word wrap

      出力例

      console-openshift-console.apps.ocp4.example.com. 604800 IN	A 192.168.1.5
      Copy to Clipboard Toggle word wrap

    4. ブートストラップ DNS レコード名に対してルックアップを実行します。結果がブートストラップノードの IP アドレスを参照することを確認します。

      $ dig +noall +answer @<nameserver_ip> bootstrap.<cluster_name>.<base_domain>
      Copy to Clipboard Toggle word wrap

      出力例

      bootstrap.ocp4.example.com.		604800	IN	A	192.168.1.96
      Copy to Clipboard Toggle word wrap

    5. この方法を使用して、コントロールプレーンおよびコンピュートノードの DNS レコード名に対してルックアップを実行します。結果が各ノードの IP アドレスに対応していることを確認します。
  2. インストールノードから、ロードバランサーとクラスターノードの IP アドレスに対して逆引き DNS ルックアップを実行します。応答に含まれるレコード名が正しいコンポーネントに対応することを確認します。

    1. API ロードバランサーの IP アドレスに対して逆引き参照を実行します。応答に、Kubernetes API および Kubernetes 内部 API のレコード名が含まれていることを確認します。

      $ dig +noall +answer @<nameserver_ip> -x 192.168.1.5
      Copy to Clipboard Toggle word wrap

      出力例

      5.1.168.192.in-addr.arpa. 604800	IN	PTR	api-int.ocp4.example.com. 
      1
      
      5.1.168.192.in-addr.arpa. 604800	IN	PTR	api.ocp4.example.com. 
      2
      Copy to Clipboard Toggle word wrap

      1
      Kubernetes 内部 API のレコード名を指定します。
      2
      Kubernetes API のレコード名を指定します。
      注記

      PTR レコードは、OpenShift Container Platform アプリケーションのワイルドカードには必要ありません。アプリケーション Ingress ロードバランサーの IP アドレスに対する逆引き DNS 解決の検証手順は必要ありません。

    2. ブートストラップノードの IP アドレスに対して逆引き参照を実行します。結果がブートストラップノードの DNS レコード名を参照していることを確認します。

      $ dig +noall +answer @<nameserver_ip> -x 192.168.1.96
      Copy to Clipboard Toggle word wrap

      出力例

      96.1.168.192.in-addr.arpa. 604800	IN	PTR	bootstrap.ocp4.example.com.
      Copy to Clipboard Toggle word wrap

    3. この方法を使用して、コントロールプレーンおよびコンピュートノードの IP アドレスに対して逆引きルックアップを実行します。結果が各ノードの DNS レコード名に対応していることを確認します。

2.1.8. クラスターノードの SSH アクセス用のキーペアの生成

OpenShift Container Platform をインストールする際に、SSH パブリックキーをインストールプログラムに指定できます。キーは、Ignition 設定ファイルを介して Red Hat Enterprise Linux CoreOS (RHCOS) ノードに渡され、ノードへの SSH アクセスを認証するために使用されます。このキーは各ノードの core ユーザーの ~/.ssh/authorized_keys リストに追加され、パスワードなしの認証が可能になります。

キーがノードに渡されると、キーペアを使用して RHCOS ノードにユーザー core として SSH を実行できます。SSH 経由でノードにアクセスするには、秘密鍵のアイデンティティーをローカルユーザーの SSH で管理する必要があります。

インストールのデバッグまたは障害復旧を実行するためにクラスターノードに対して SSH を実行する場合は、インストールプロセスの間に SSH 公開鍵を指定する必要があります。./openshift-install gather コマンドでは、SSH 公開鍵がクラスターノードに配置されている必要もあります。

重要

障害復旧およびデバッグが必要な実稼働環境では、この手順を省略しないでください。

注記

プラットフォーム固有の方法で設定したキーではなく、ローカルキーを使用する必要があります。

手順

  1. クラスターノードへの認証に使用するローカルマシンに既存の SSH キーペアがない場合は、これを作成します。たとえば、Linux オペレーティングシステムを使用するコンピューターで以下のコマンドを実行します。

    $ ssh-keygen -t ed25519 -N '' -f <path>/<file_name> 
    1
    Copy to Clipboard Toggle word wrap
    1
    新しい SSH キーのパスとファイル名 (~/.ssh/id_ed25519 など) を指定します。既存のキーペアがある場合は、公開鍵が ~/.ssh ディレクトリーにあることを確認します。
    注記

    x86_64ppc64le、および s390x アーキテクチャーのみで FIPS 140-2/140-3 検証のために NIST に提出された RHEL 暗号化ライブラリーを使用する OpenShift Container Platform クラスターをインストールする予定がある場合は、ed25519 アルゴリズムを使用するキーを作成しないでください。代わりに、rsa アルゴリズムまたは ecdsa アルゴリズムを使用するキーを作成します。

  2. 公開 SSH キーを表示します。

    $ cat <path>/<file_name>.pub
    Copy to Clipboard Toggle word wrap

    たとえば、次のコマンドを実行して ~/.ssh/id_ed25519.pub 公開鍵を表示します。

    $ cat ~/.ssh/id_ed25519.pub
    Copy to Clipboard Toggle word wrap
  3. ローカルユーザーの SSH エージェントに SSH 秘密鍵 ID が追加されていない場合は、それを追加します。キーの SSH エージェント管理は、クラスターノードへのパスワードなしの SSH 認証、または ./openshift-install gather コマンドを使用する場合は必要になります。

    注記

    一部のディストリビューションでは、~/.ssh/id_rsa および ~/.ssh/id_dsa などのデフォルトの SSH 秘密鍵のアイデンティティーは自動的に管理されます。

    1. ssh-agent プロセスがローカルユーザーに対して実行されていない場合は、バックグラウンドタスクとして開始します。

      $ eval "$(ssh-agent -s)"
      Copy to Clipboard Toggle word wrap

      出力例

      Agent pid 31874
      Copy to Clipboard Toggle word wrap

      注記

      クラスターが FIPS モードにある場合は、FIPS 準拠のアルゴリズムのみを使用して SSH キーを生成します。鍵は RSA または ECDSA のいずれかである必要があります。

  4. SSH プライベートキーを ssh-agent に追加します。

    $ ssh-add <path>/<file_name> 
    1
    Copy to Clipboard Toggle word wrap
    1
    ~/.ssh/id_ed25519 などの、SSH プライベートキーのパスおよびファイル名を指定します。

    出力例

    Identity added: /home/<you>/<path>/<file_name> (<computer_name>)
    Copy to Clipboard Toggle word wrap

次のステップ

  • OpenShift Container Platform をインストールする際に、SSH パブリックキーをインストールプログラムに指定します。クラスターを独自にプロビジョニングするインフラストラクチャーにインストールする場合は、キーをインストールプログラムに指定する必要があります。

2.1.9. インストールプログラムの取得

OpenShift Container Platform をインストールする前に、インストールに使用しているホストにインストールファイルをダウンロードします。

前提条件

  • 500 MB のローカルディスク領域がある Linux または macOS を実行するコンピューターが必要です。

手順

  1. Red Hat Hybrid Cloud Console の Cluster Type ページに移動します。Red Hat アカウントがある場合は、認証情報を使用してログインします。アカウントがない場合はこれを作成します。

    ヒント
  2. ページの Run it yourself セクションからインフラストラクチャープロバイダーを選択します。
  3. OpenShift Installer のドロップダウンメニューからホストオペレーティングシステムとアーキテクチャーを選択し、Download Installer をクリックします。
  4. ダウンロードしたファイルを、インストール設定ファイルを保存するディレクトリーに配置します。

    重要
    • インストールプログラムは、クラスターのインストールに使用するコンピューターにいくつかのファイルを作成します。クラスターのインストール完了後は、インストールプログラムおよびインストールプログラムが作成するファイルを保持する必要があります。クラスターを削除するには、両方のファイルが必要です。
    • インストールプログラムで作成されたファイルを削除しても、クラスターがインストール時に失敗した場合でもクラスターは削除されません。クラスターを削除するには、特定のクラウドプロバイダー用の OpenShift Container Platform のアンインストール手順を実行します。
  5. インストールプログラムを展開します。たとえば、Linux オペレーティングシステムを使用するコンピューターで以下のコマンドを実行します。

    $ tar -xvf openshift-install-linux.tar.gz
    Copy to Clipboard Toggle word wrap
  6. Red Hat OpenShift Cluster Manager からインストールプルシークレット をダウンロードします。このプルシークレットを使用し、OpenShift Container Platform コンポーネントのコンテナーイメージを提供する Quay.io など、組み込まれた各種の認証局によって提供されるサービスで認証できます。
ヒント

Red Hat カスタマーポータル からインストールプログラムを取得することもできます。このページでは、ダウンロードするインストールプログラムのバージョンを指定できます。ただし、このページにアクセスするには、有効なサブスクリプションが必要です。

2.1.10. OpenShift CLI のインストール

コマンドラインインターフェイスを使用して OpenShift Container Platform と対話するために OpenShift CLI (oc) をインストールすることができます。oc は Linux、Windows、または macOS にインストールできます。

重要

以前のバージョンの oc をインストールした場合、それを使用して OpenShift Container Platform のすべてのコマンドを実行することはできません。

新しいバージョンの oc をダウンロードしてインストールしてください。

2.1.10.1. Linux への OpenShift CLI のインストール

以下の手順を使用して、OpenShift CLI (oc) バイナリーを Linux にインストールできます。

手順

  1. Red Hat カスタマーポータルの Download OpenShift Container Platform ページに移動します。
  2. Product Variant リストからアーキテクチャーを選択します。
  3. Version リストから適切なバージョンを選択します。
  4. OpenShift v4.19 Linux Clients エントリーの横にある Download Now をクリックして、ファイルを保存します。
  5. アーカイブを展開します。

    $ tar xvf <file>
    Copy to Clipboard Toggle word wrap
  6. oc バイナリーを、PATH にあるディレクトリーに配置します。

    PATH を確認するには、以下のコマンドを実行します。

    $ echo $PATH
    Copy to Clipboard Toggle word wrap

検証

  • OpenShift CLI のインストール後に、oc コマンドを使用して利用できます。

    $ oc <command>
    Copy to Clipboard Toggle word wrap
2.1.10.2. Windows への OpenShift CLI のインストール

以下の手順を使用して、OpenShift CLI (oc) バイナリーを Windows にインストールできます。

手順

  1. Red Hat カスタマーポータルの Download OpenShift Container Platform ページに移動します。
  2. Version リストから適切なバージョンを選択します。
  3. OpenShift v4.19 Windows Client エントリーの横にある Download Now をクリックして、ファイルを保存します。
  4. ZIP プログラムでアーカイブを展開します。
  5. oc バイナリーを、PATH にあるディレクトリーに移動します。

    PATH を確認するには、コマンドプロンプトを開いて以下のコマンドを実行します。

    C:\> path
    Copy to Clipboard Toggle word wrap

検証

  • OpenShift CLI のインストール後に、oc コマンドを使用して利用できます。

    C:\> oc <command>
    Copy to Clipboard Toggle word wrap
2.1.10.3. macOS への OpenShift CLI のインストール

以下の手順を使用して、OpenShift CLI (oc) バイナリーを macOS にインストールできます。

手順

  1. Red Hat カスタマーポータルの Download OpenShift Container Platform ページに移動します。
  2. バージョン ドロップダウンリストから適切なバージョンを選択します。
  3. OpenShift v4.19 macOS Clients エントリーの横にある Download Now をクリックして、ファイルを保存します。

    注記

    macOS arm64 の場合は、OpenShift v4.19 macOS arm64 Client エントリーを選択します。

  4. アーカイブを展開し、解凍します。
  5. oc バイナリーをパスにあるディレクトリーに移動します。

    PATH を確認するには、ターミナルを開き、以下のコマンドを実行します。

    $ echo $PATH
    Copy to Clipboard Toggle word wrap

検証

  • oc コマンドを使用してインストールを確認します。

    $ oc <command>
    Copy to Clipboard Toggle word wrap

2.1.11. インストール設定ファイルの手動作成

クラスターをインストールするには、インストール設定ファイルを手動で作成する必要があります。

前提条件

  • インストールプログラムで使用するための SSH 公開鍵がローカルマシン上に存在する。この鍵は、デバッグや障害復旧のために、クラスターノードへの SSH 認証に使用できます。
  • OpenShift Container Platform インストールプログラムとクラスターのプルシークレットを取得している。

手順

  1. 必要なインストールアセットを保存するためのインストールディレクトリーを作成します。

    $ mkdir <installation_directory>
    Copy to Clipboard Toggle word wrap
    重要

    このディレクトリーは必ず作成してください。ブートストラップ X.509 証明書などの一部のインストールアセットは、有効期限が短いため、インストールディレクトリーを再利用しないでください。別のクラスターインストールの個別のファイルを再利用する必要がある場合は、それらをディレクトリーにコピーすることができます。ただし、インストールアセットのファイル名はリリース間で変更される可能性があります。インストールファイルを以前のバージョンの OpenShift Container Platform からコピーする場合は注意してください。

  2. 提供されているサンプルの install-config.yaml ファイルテンプレートをカスタマイズし、ファイルを <installation_directory> に保存します。

    注記

    この設定ファイルの名前を install-config.yaml と付ける必要があります。

  3. 多くのクラスターのインストールに使用できるように、install-config.yaml ファイルをバックアップします。

    重要

    インストールプロセスの次のステップで install-config.yaml ファイルを使用するため、今すぐこのファイルをバックアップしてください。

2.1.11.1. ベアメタルのサンプル install-config.yaml ファイル

install-config.yaml ファイルをカスタマイズして、OpenShift Container Platform クラスターのプラットフォームに関する詳細を指定するか、必要なパラメーターの値を変更することができます。

apiVersion: v1
baseDomain: example.com 
1

compute: 
2

- hyperthreading: Enabled 
3

  name: worker
  replicas: 0 
4

controlPlane: 
5

  hyperthreading: Enabled 
6

  name: master
  replicas: 3 
7

metadata:
  name: test 
8

networking:
  clusterNetwork:
  - cidr: 10.128.0.0/14 
9

    hostPrefix: 23 
10

  networkType: OVNKubernetes 
11

  serviceNetwork: 
12

  - 172.30.0.0/16
platform:
  none: {} 
13

fips: false 
14

pullSecret: '{"auths": ...}' 
15

sshKey: 'ssh-ed25519 AAAA...' 
16
Copy to Clipboard Toggle word wrap
1
クラスターのベースドメイン。すべての DNS レコードはこのベースのサブドメインである必要があり、クラスター名が含まれる必要があります。
2 5
controlPlane セクションは単一マッピングですが、compute セクションはマッピングのシーケンスになります。複数の異なるデータ構造の要件を満たすには、compute セクションの最初の行はハイフン - で始め、controlPlane セクションの最初の行はハイフンで始めることができません。1 つのコントロールプレーンプールのみが使用されます。
3 6
同時マルチスレッド (SMT) またはハイパースレッディングを有効/無効にするかどうかを指定します。デフォルトでは、SMT はマシンのコアのパフォーマンスを上げるために有効にされます。パラメーター値を Disabled に設定するとこれを無効にすることができます。SMT を無効にする場合、これをすべてのクラスターマシンで無効にする必要があります。これにはコントロールプレーンとコンピュートマシンの両方が含まれます。
注記

同時マルチスレッド (SMT) はデフォルトで有効になっています。SMT が BIOS 設定で有効になっていない場合は、hyperthreading パラメーターは効果がありません。

重要

BIOS または install-config.yaml ファイルであるかに関係なく hyperthreading を無効にする場合、容量計画においてマシンのパフォーマンスの大幅な低下が考慮に入れられていることを確認します。

4
OpenShift Container Platform を user-provisioned infrastructure にインストールする場合は、この値を 0 に設定する必要があります。installer-provisioned installation では、パラメーターはクラスターが作成し、管理するコンピュートマシンの数を制御します。user-provisioned installation では、クラスターのインストールの終了前にコンピュートマシンを手動でデプロイする必要があります。
注記

3 ノードクラスターをインストールする場合は、Red Hat Enterprise Linux CoreOS (RHCOS) マシンをインストールする際にコンピュートマシンをデプロイしないでください。

7
クラスターに追加するコントロールプレーンマシンの数。クラスターをこれらの値をクラスターの etcd エンドポイント数として使用するため、値はデプロイするコントロールプレーンマシンの数に一致する必要があります。
8
DNS レコードに指定したクラスター名。
9
Pod IP アドレスの割り当てに使用する IP アドレスのブロック。このブロックは既存の物理ネットワークと重複できません。これらの IP アドレスは Pod ネットワークに使用されます。外部ネットワークから Pod にアクセスする必要がある場合、ロードバランサーおよびルーターを、トラフィックを管理するように設定する必要があります。
注記

クラス E の CIDR 範囲は、将来の使用のために予約されています。クラス E CIDR 範囲を使用するには、ネットワーク環境がクラス E CIDR 範囲内の IP アドレスを受け入れるようにする必要があります。

10
それぞれの個別ノードに割り当てるサブネット接頭辞長。たとえば、hostPrefix23 に設定されている場合、各ノードに指定の cidr から /23 サブネットが割り当てられます。これにより、510 (2^(32 - 23) - 2) Pod IP アドレスが許可されます。外部ネットワークからのノードへのアクセスを提供する必要がある場合には、ロードバランサーおよびルーターを、トラフィックを管理するように設定します。
11
インストールするクラスターネットワークプラグイン。サポートされる値はデフォルト値の OVNKubernetes のみです。
12
サービス IP アドレスに使用する IP アドレスプール。1 つの IP アドレスプールのみを入力できます。このブロックは既存の物理ネットワークと重複できません。外部ネットワークからサービスにアクセスする必要がある場合、ロードバランサーおよびルーターを、トラフィックを管理するように設定します。
13
プラットフォームを none に設定する必要があります。プラットフォーム用に追加のプラットフォーム設定変数を指定することはできません。
重要

プラットフォームタイプ none でインストールされたクラスターは、Machine API を使用したコンピュートマシンの管理など、一部の機能を使用できません。この制限は、クラスターに接続されている計算マシンが、通常はこの機能をサポートするプラットフォームにインストールされている場合でも適用されます。このパラメーターは、インストール後に変更することはできません。

14
FIPS モードを有効または無効にするかどうか。デフォルトでは、FIPS モードは有効にされません。FIPS モードが有効にされている場合、OpenShift Container Platform が実行される Red Hat Enterprise Linux CoreOS (RHCOS) マシンがデフォルトの Kubernetes 暗号スイートをバイパスし、代わりに RHCOS で提供される暗号モジュールを使用します。
重要

クラスターで FIPS モードを有効にするには、FIPS モードで動作するように設定された Red Hat Enterprise Linux (RHEL) コンピューターからインストールプログラムを実行する必要があります。RHEL で FIPS モードを設定する方法の詳細は、RHEL から FIPS モードへの切り替え を参照してください。

FIPS モードでブートされた Red Hat Enterprise Linux (RHEL) または Red Hat Enterprise Linux CoreOS (RHCOS) を実行する場合、OpenShift Container Platform コアコンポーネントは、x86_64、ppc64le、および s390x アーキテクチャーのみで、FIPS 140-2/140-3 検証のために NIST に提出された RHEL 暗号化ライブラリーを使用します。

15
Red Hat OpenShift Cluster Manager からのプルシークレット。このプルシークレットを使用し、OpenShift Container Platform コンポーネントのコンテナーイメージを提供する Quay.io など、組み込まれた各種の認証局によって提供されるサービスで認証できます。
16
Red Hat Enterprise Linux CoreOS (RHCOS) の core ユーザーの SSH 公開鍵。
注記

インストールのデバッグまたは障害復旧を実行する必要のある実稼働用の OpenShift Container Platform クラスターでは、ssh-agent プロセスが使用する SSH キーを指定します。

2.1.11.2. インストール時のクラスター全体のプロキシーの設定

実稼働環境では、インターネットへの直接アクセスを拒否し、代わりに HTTP または HTTPS プロキシーを使用することができます。プロキシー設定を install-config.yaml ファイルで行うことにより、新規の OpenShift Container Platform クラスターをプロキシーを使用するように設定できます。

注記

ベアメタルインストールでは、install-config.yaml ファイルの networking.machineNetwork[].cidr フィールドで指定される範囲にあるノード IP アドレスを割り当てない場合、それらを proxy.noProxy フィールドに含める必要があります。

前提条件

  • 既存の install-config.yaml ファイルがある。
  • クラスターがアクセスする必要のあるサイトを確認済みで、それらのいずれかがプロキシーをバイパスする必要があるかどうかを判別している。デフォルトで、すべてのクラスター Egress トラフィック (クラスターをホストするクラウドに関するクラウドプロバイダー API に対する呼び出しを含む) はプロキシーされます。プロキシーを必要に応じてバイパスするために、サイトを Proxy オブジェクトの spec.noProxy フィールドに追加している。

    注記

    Proxy オブジェクトの status.noProxy フィールドには、インストール設定の networking.machineNetwork[].cidrnetworking.clusterNetwork[].cidr、および networking.serviceNetwork[] フィールドの値が設定されます。

    Amazon Web Services (AWS)、Google Cloud Platform (GCP)、Microsoft Azure、および Red Hat OpenStack Platform (RHOSP) へのインストールの場合、Proxy オブジェクトの status.noProxy フィールドには、インスタンスメタデータのエンドポイント (169.254.169.254) も設定されます。

手順

  1. install-config.yaml ファイルを編集し、プロキシー設定を追加します。以下に例を示します。

    apiVersion: v1
    baseDomain: my.domain.com
    proxy:
      httpProxy: http://<username>:<pswd>@<ip>:<port> 
    1
    
      httpsProxy: https://<username>:<pswd>@<ip>:<port> 
    2
    
      noProxy: example.com 
    3
    
    additionalTrustBundle: | 
    4
    
        -----BEGIN CERTIFICATE-----
        <MY_TRUSTED_CA_CERT>
        -----END CERTIFICATE-----
    additionalTrustBundlePolicy: <policy_to_add_additionalTrustBundle> 
    5
    Copy to Clipboard Toggle word wrap
    1
    クラスター外の HTTP 接続を作成するために使用するプロキシー URL。URL スキームは http である必要があります。
    2
    クラスター外で HTTPS 接続を作成するために使用するプロキシー URL。
    3
    プロキシーから除外するための宛先ドメイン名、IP アドレス、または他のネットワーク CIDR のコンマ区切りのリスト。サブドメインのみと一致するように、ドメインの前に . を付けます。たとえば、.y.comx.y.com に一致しますが、y.com には一致しません。* を使用し、すべての宛先のプロキシーをバイパスします。
    4
    指定されている場合、インストールプログラムは HTTPS 接続のプロキシーに必要な 1 つ以上の追加の CA 証明書が含まれる user-ca-bundle という名前の設定マップを openshift-config namespace に生成します。次に Cluster Network Operator は、これらのコンテンツを Red Hat Enterprise Linux CoreOS (RHCOS) 信頼バンドルにマージする trusted-ca-bundle config map を作成し、この config map は Proxy オブジェクトの trustedCA フィールドで参照されます。additionalTrustBundle フィールドは、プロキシーのアイデンティティー証明書が RHCOS 信頼バンドルからの認証局によって署名されない限り必要になります。
    5
    オプション: trustedCA フィールドの user-ca-bundle 設定マップを参照する Proxy オブジェクトの設定を決定するポリシー。許可される値は Proxyonly および Always です。Proxyonly を使用して、http/https プロキシーが設定されている場合にのみ user-ca-bundle 設定マップを参照します。Always を使用して、常に user-ca-bundle 設定マップを参照します。デフォルト値は Proxyonly です。
    注記

    インストールプログラムは、プロキシーの readinessEndpoints フィールドをサポートしません。

    注記

    インストーラーがタイムアウトした場合は、インストーラーの wait-for コマンドを使用してデプロイメントを再起動してからデプロイメントを完了します。以下に例を示します。

    $ ./openshift-install wait-for install-complete --log-level debug
    Copy to Clipboard Toggle word wrap
  2. ファイルを保存し、OpenShift Container Platform のインストール時にこれを参照します。

インストールプログラムは、指定の install-config.yaml ファイルのプロキシー設定を使用する cluster という名前のクラスター全体のプロキシーを作成します。プロキシー設定が指定されていない場合、cluster Proxy オブジェクトが依然として作成されますが、これには spec がありません。

注記

cluster という名前の Proxy オブジェクトのみがサポートされ、追加のプロキシーを作成することはできません。

2.1.11.3. 3 ノードクラスターの設定

オプションで、3 台のコントロールプレーンマシンのみで構成されるベアメタルクラスターに、ゼロコンピュートマシンをデプロイできます。これにより、テスト、開発、および実稼働に使用するための小規模なリソース効率の高いクラスターが、クラスター管理者および開発者に提供されます。

3 ノードの OpenShift Container Platform 環境では、3 つのコントロールプレーンマシンがスケジュール対象となります。つまり、アプリケーションのワークロードがそれらで実行されるようにスケジュールされます。

前提条件

  • 既存の install-config.yaml ファイルがある。

手順

  • 以下の compute スタンザに示されるように、コンピュートレプリカの数が install-config.yaml ファイルで 0 に設定されることを確認します。

    compute:
    - name: worker
      platform: {}
      replicas: 0
    Copy to Clipboard Toggle word wrap
    注記

    デプロイするコンピュートマシンの数にかかわらず、OpenShift Container Platform を user-provisioned infrastructure にインストールする際に、コンピュートマシンの replicas パラメーターの値を 0 に設定する必要があります。installer-provisioned installation では、パラメーターはクラスターが作成し、管理するコンピュートマシンの数を制御します。これは、コンピュートマシンが手動でデプロイされる、user-provisioned installation には適用されません。

3 ノードのクラスターのインストールで、以下の手順を実行します。

  • ゼロ (0) コンピュートノードで 3 ノードクラスターをデプロイする場合、Ingress コントローラー Pod はコントロールプレーンノードで実行されます。3 ノードクラスターデプロイメントでは、HTTP および HTTPS トラフィックをコントロールプレーンノードにルーティングするようにアプリケーション Ingress ロードバランサーを設定する必要があります。詳細は、user-provisioned infrastructure の負荷分散要件 のセクションを参照してください。
  • 以下の手順で Kubernetes マニフェストファイルを作成する際に、<installation_directory>/manifests/cluster-scheduler-02-config.yml ファイルの mastersSchedulable パラメーターが true に設定されていることを確認します。これにより、アプリケーションのワークロードがコントロールプレーンノードで実行できます。
  • Red Hat Enterprise Linux CoreOS (RHCOS) マシンを作成する際は、コンピュートノードをデプロイしないでください。

2.1.12. Kubernetes マニフェストおよび Ignition 設定ファイルの作成

一部のクラスター定義ファイルを変更し、クラスターマシンを手動で起動する必要があるため、クラスターがマシンを設定するために必要な Kubernetes マニフェストと Ignition 設定ファイルを生成する必要があります。

インストール設定ファイルは Kubernetes マニフェストに変換されます。マニフェストは Ignition 設定ファイルにラップされます。これはクラスターマシンを設定するために後で使用されます。

重要
  • OpenShift Container Platform のインストールプログラムが生成する Ignition 設定ファイルには、24 時間が経過すると期限切れになり、その後に更新される証明書が含まれます。証明書を更新する前にクラスターが停止し、24 時間経過した後にクラスターを再起動すると、クラスターは期限切れの証明書を自動的に復元します。例外として、kubelet 証明書を回復するために保留状態の node-bootstrapper 証明書署名要求 (CSR) を手動で承認する必要があります。詳細は、コントロールプレーン証明書の期限切れの状態からのリカバリー に関するドキュメントを参照してください。
  • 24 時間証明書はクラスターのインストール後 16 時間から 22 時間にローテーションするため、Ignition 設定ファイルは、生成後 12 時間以内に使用することを推奨します。12 時間以内に Ignition 設定ファイルを使用することにより、インストール中に証明書の更新が実行された場合のインストールの失敗を回避できます。

前提条件

  • OpenShift Container Platform インストールプログラムを取得していること。
  • install-config.yaml インストール設定ファイルを作成していること。

手順

  1. OpenShift Container Platform のインストールプログラムが含まれるディレクトリーに切り替え、クラスターの Kubernetes マニフェストを生成します。

    $ ./openshift-install create manifests --dir <installation_directory> 
    1
    Copy to Clipboard Toggle word wrap
    1
    <installation_directory> には、作成した install-config.yaml ファイルが含まれるインストールディレクトリーを指定します。
    警告

    3 ノードクラスターをインストールしている場合は、以下の手順を省略してコントロールプレーンノードをスケジュール対象にします。

    重要

    コントロールプレーンノードをデフォルトのスケジュール不可からスケジュール可に設定するには、追加のサブスクリプションが必要です。これは、コントロールプレーンノードがコンピュートノードになるためです。

  2. <installation_directory>/manifests/cluster-scheduler-02-config.yml Kubernetes マニフェストファイルの mastersSchedulable パラメーターが false に設定されていることを確認します。この設定により、Pod がコントロールプレーンマシンにスケジュールされなくなります。

    1. <installation_directory>/manifests/cluster-scheduler-02-config.yml ファイルを開きます。
    2. mastersSchedulable パラメーターを見つけ、これが false に設定されていることを確認します。
    3. ファイルを保存し、終了します。
  3. Ignition 設定ファイルを作成するには、インストールプログラムが含まれるディレクトリーから以下のコマンドを実行します。

    $ ./openshift-install create ignition-configs --dir <installation_directory> 
    1
    Copy to Clipboard Toggle word wrap
    1
    <installation_directory> には、同じインストールディレクトリーを指定します。

    Ignition 設定ファイルは、インストールディレクトリー内のブートストラップ、コントロールプレーン、およびコンピュートノード用に作成されます。kubeadmin-password および kubeconfig ファイルが ./<installation_directory>/auth ディレクトリーに作成されます。

    .
    ├── auth
    │   ├── kubeadmin-password
    │   └── kubeconfig
    ├── bootstrap.ign
    ├── master.ign
    ├── metadata.json
    └── worker.ign
    Copy to Clipboard Toggle word wrap

2.1.13. RHCOS のインストールおよび OpenShift Container Platform ブートストラッププロセスの開始

OpenShift Container Platform を独自にプロビジョニングするベアメタルインフラストラクチャーにインストールするには、Red Hat Enterprise Linux CoreOS (RHCOS) をマシンにインストールする必要があります。RHCOS のインストール時に、インストールするマシンのタイプに、OpenShift Container Platform インストールプログラムによって生成された Ignition 設定ファイルを指定する必要があります。適切なネットワーク、DNS、および負荷分散インフラストラクチャーが設定されている場合、OpenShift Container Platform ブートストラッププロセスは RHCOS マシンの再起動後に自動的に開始されます。

RHCOS をマシンにインストールするには、ISO イメージまたはネットワーク PXE ブートを使用する手順のいずれかを実行します。

注記

このインストールガイドに含まれるコンピュートノードのデプロイメント手順は、RHCOS 固有のものです。代わりに RHEL ベースのコンピュートノードのデプロイを選択する場合は、システム更新の実行、パッチの適用、その他すべての必要なタスクの完了など、オペレーティングシステムのライフサイクルの管理と保守をすべて担当します。RHEL8 コンピュートマシンのみがサポートされています。

以下の方法を使用して、ISO および PXE のインストール時に RHCOS を設定できます。

  • カーネル引数: カーネル引数を使用してインストール固有の情報を提供できます。たとえば、HTTP サーバーにアップロードした RHCOS インストールファイルの場所と、インストールするノードタイプの Ignition 設定ファイルの場所を指定できます。PXE インストールの場合、APPEND パラメーターを使用して、ライブインストーラーのカーネルに引数を渡すことができます。ISO インストールの場合は、ライブインストール起動プロセスを中断してカーネル引数を追加できます。いずれのインストールの場合でも、特殊な coreos.inst.* 引数を使用してライブインストーラーに指示を与えたり、標準のカーネルサービスをオンまたはオフにするために標準のインストールブート引数を使用したりできます。
  • Ignition 設定: OpenShift Container Platform Ignition 設定ファイル (*.ign) は、インストールするノードのタイプに固有のものです。RHCOS のインストール時にブートストラップ、コントロールプレーン、またはコンピュートノードの Ignition 設定ファイルの場所を渡して、初回起動時に有効にされるようにします。特別なケースでは、ライブシステムに渡すために個別の制限付き Ignition 設定を作成できます。この Ignition 設定は、インストールが正常に完了したことをプロビジョニングシステムに報告するなどの一連のタスクを実行する可能性があります。この特別な Ignition 設定は、インストール済みシステムの初回ブート時に適用される coreos-installer によって使用されます。標準のコントロールプレーンおよびコンピュートノードの Ignition 設定をライブ ISO に直接指定しないでください。
  • coreos-installer: ライブ ISO インストーラーをシェルプロンプトで起動できます。これにより、初回のブート前にさまざまな方法で永続的なシステムの準備を行うことができます。特に、coreos-installer コマンドを実行すると、追加するさまざまなアーティファクトを特定し、ディスクパーティションを使用し、ネットワークを設定できます。場合によっては、ライブシステムで機能を設定し、それらをインストールされたシステムにコピーできます。

    注記

    バージョン 0.17.0-3 以降、coreos-installer プログラムを実行するには RHEL 9 以降が必要です。古いバージョンの coreos-installer を使用して、新しい OpenShift Container Platform リリースの RHCOS アーティファクトをカスタマイズし、メタルイメージをディスクにインストールすることもできます。coreos-installer バイナリーの古いバージョンは、coreos-installer image mirror ページからダウンロードできます。

ISO または PXE インストールを使用するかどうかは、状況によって異なります。PXE インストールには、利用可能な DHCP サービスとさらなる準備が必要ですが、インストールプロセスはさらに自動化することが可能です。ISO インストールは主に手動によるプロセスで、複数のマシンを設定する場合には使用しにくい可能性があります。

2.1.13.1. ISO イメージを使用した RHCOS のインストール

ISO イメージを使用してマシンに RHCOS をインストールできます。

前提条件

  • クラスターの Ignition 設定ファイルを作成している。
  • 適切なネットワーク、DNS、および負荷分散インフラストラクチャーを設定している。
  • お使いのコンピューターからアクセスでき、作成するマシンからもアクセスできる HTTP サーバーがある。
  • ネットワークやディスクパーティションなどのさまざまな機能の設定方法について、高度な RHCOS インストール設定 のセクションを確認している。

手順

  1. それぞれの Ignition 設定ファイルの SHA512 ダイジェストを取得します。たとえば、Linux を実行しているシステムで以下を使用して、bootstrap.ign Ignition 設定ファイルの SHA512 ダイジェストを取得できます。

    $ sha512sum <installation_directory>/bootstrap.ign
    Copy to Clipboard Toggle word wrap

    ダイジェストは、クラスターノードの Ignition 設定ファイルの信頼性を検証するために、後の手順で coreos-installer に提供されます。

  2. インストールプログラムが作成したブートストラップ、コントロールプレーン、およびコンピュートノード Ignition 設定ファイルを HTTP サーバーにアップロードします。これらのファイルの URL をメモします。

    重要

    HTTP サーバーに保存する前に、Ignition 設定で設定内容を追加したり、変更したりできます。インストールの完了後にコンピュートマシンをさらにクラスターに追加する予定の場合には、これらのファイルを削除しないでください。

  3. インストールホストから、Ignition 設定ファイルが URL で利用可能であることを確認します。以下の例では、ブートストラップノードの Ignition 設定ファイルを取得します。

    $ curl -k http://<HTTP_server>/bootstrap.ign 
    1
    Copy to Clipboard Toggle word wrap

    出力例

      % Total    % Received % Xferd  Average Speed   Time    Time     Time  Current
                                     Dload  Upload   Total   Spent    Left  Speed
      0     0    0     0    0     0      0      0 --:--:-- --:--:-- --:--:--     0{"ignition":{"version":"3.2.0"},"passwd":{"users":[{"name":"core","sshAuthorizedKeys":["ssh-rsa...
    Copy to Clipboard Toggle word wrap

    コマンドで bootstrap.ignmaster.ign または worker.ign に置き換え、コントロールプレーンおよびコンピュートノードの Ignition 設定ファイルも利用可能であることを検証します。

  4. RHCOS イメージのミラー ページから、オペレーティングシステムインスタンスをインストールするための推奨される方法に必要な RHCOS イメージを取得することは可能ですが、RHCOS イメージの正しいバージョンを取得するための推奨される方法は、openshift-install コマンドの出力から取得することです。

    $ openshift-install coreos print-stream-json | grep '\.iso[^.]'
    Copy to Clipboard Toggle word wrap

    出力例

    "location": "<url>/art/storage/releases/rhcos-4.19-aarch64/<release>/aarch64/rhcos-<release>-live.aarch64.iso",
    "location": "<url>/art/storage/releases/rhcos-4.19-ppc64le/<release>/ppc64le/rhcos-<release>-live.ppc64le.iso",
    "location": "<url>/art/storage/releases/rhcos-4.19-s390x/<release>/s390x/rhcos-<release>-live.s390x.iso",
    "location": "<url>/art/storage/releases/rhcos-4.19/<release>/x86_64/rhcos-<release>-live.x86_64.iso",
    Copy to Clipboard Toggle word wrap

    重要

    RHCOS イメージは OpenShift Container Platform の各リリースごとに変更されない可能性があります。インストールする OpenShift Container Platform バージョンと等しいか、それ以下のバージョンの内で最も新しいバージョンのイメージをダウンロードする必要があります。利用可能な場合は、OpenShift Container Platform バージョンに一致するイメージのバージョンを使用します。この手順には ISO イメージのみを使用します。RHCOS qcow2 イメージは、このインストールではサポートされません。

    ISO ファイルの名前は以下の例のようになります。

    rhcos-<version>-live.<architecture>.iso

  5. ISO を使用し、RHCOS インストールを開始します。以下のインストールオプションのいずれかを使用します。

    • ディスクに ISO イメージを書き込み、これを直接起動します。
    • Lights Out Management (LOM) インターフェイスを使用して ISO リダイレクトを使用します。
  6. オプションを指定したり、ライブ起動シーケンスを中断したりせずに、RHCOS ISO イメージを起動します。インストーラーが RHCOS ライブ環境でシェルプロンプトを起動するのを待ちます。

    注記

    RHCOS インストール起動プロセスを中断して、カーネル引数を追加できます。ただし、この ISO 手順では、カーネル引数を追加する代わりに、以下の手順で説明しているように coreos-installer コマンドを使用する必要があります。

  7. coreos-installer コマンドを実行し、インストール要件を満たすオプションを指定します。少なくとも、ノードタイプの Ignition 設定ファイルを参照する URL と、インストール先のデバイスを指定する必要があります。

    $ sudo coreos-installer install --ignition-url=http://<HTTP_server>/<node_type>.ign <device> \ 
    1
    
    --ignition-hash=sha512-<digest> 
    2
    Copy to Clipboard Toggle word wrap
    1 1
    core ユーザーにはインストールを実行するために必要な root 特権がないため、sudo を使用して coreos-installer コマンドを実行する必要があります。
    2
    --ignition-hash オプションは、Ignition 設定ファイルを HTTP URL を使用して取得し、クラスターノードの Ignition 設定ファイルの信頼性を検証するために必要です。<digest> は、先の手順で取得した Ignition 設定ファイル SHA512 ダイジェストです。
    注記

    TLS を使用する HTTPS サーバーを使用して Ignition 設定ファイルを提供する場合は、coreos-installer を実行する前に、内部認証局 (CA) をシステムのトラストストアに追加できます。

    以下の例では、/dev/sda デバイスへのブートストラップノードのインストールを初期化します。ブートストラップノードの Ignition 設定ファイルは、IP アドレス 192.168.1.2 で HTTP Web サーバーから取得されます。

    $ sudo coreos-installer install --ignition-url=http://192.168.1.2:80/installation_directory/bootstrap.ign /dev/sda \
    --ignition-hash=sha512-a5a2d43879223273c9b60af66b44202a1d1248fc01cf156c46d4a79f552b6bad47bc8cc78ddf0116e80c59d2ea9e32ba53bc807afbca581aa059311def2c3e3b
    Copy to Clipboard Toggle word wrap
  8. マシンのコンソールで RHCOS インストールの進捗を監視します。

    重要

    OpenShift Container Platform のインストールを開始する前に、各ノードでインストールが成功していることを確認します。インストールプロセスを監視すると、発生する可能性のある RHCOS インストールの問題の原因を特定する上でも役立ちます。

  9. RHCOS のインストール後、システムを再起動する必要があります。システムの再起動後、指定した Ignition 設定ファイルを適用します。
  10. コンソール出力をチェックして、Ignition が実行されたことを確認します。

    コマンドの例

    Ignition: ran on 2022/03/14 14:48:33 UTC (this boot)
    Ignition: user-provided config was applied
    Copy to Clipboard Toggle word wrap

  11. 継続してクラスターの他のマシンを作成します。

    重要

    この時点でブートストラップおよびコントロールプレーンマシンを作成する必要があります。コントロールプレーンマシンがデフォルトのスケジュール対象にされていない場合、OpenShift Container Platform のインストール前に少なくとも 2 つのコンピュートマシンも作成します。

    必要なネットワーク、DNS、およびロードバランサーインフラストラクチャーが配置されている場合、OpenShift Container Platform ブートストラッププロセスは RHCOS ノードの再起動後に自動的に起動します。

    注記

    RHCOS ノードには、core ユーザーのデフォルトのパスワードは含まれません。ノードには、ssh core@<node>.<cluster_name>.<base_domain> を、install_config.yaml ファイルで指定したパブリックキーとペアになる SSH プライベートキーへのアクセスのあるユーザーとして実行してアクセスできます。RHCOS を実行する OpenShift Container Platform 4 クラスターノードは変更できず、Operator を使用してクラスターの変更を適用します。SSH を使用したクラスターノードへのアクセスは推奨されません。ただし、インストールの問題を調査する際に、OpenShift Container Platform API が利用できない場合や、kubelet がターゲットノードで適切に機能しない場合、デバッグまたは障害復旧に SSH アクセスが必要になることがあります。

2.1.13.2. PXE または iPXE ブートを使用した RHCOS のインストール

PXE または iPXE ブートを使用してマシンに RHCOS をインストールできます。

前提条件

  • クラスターの Ignition 設定ファイルを作成している。
  • 適切なネットワーク、DNS および負荷分散インフラストラクチャーを設定している。
  • 適切な PXE または iPXE インフラストラクチャーを設定していること。
  • お使いのコンピューターからアクセスでき、作成するマシンからもアクセスできる HTTP サーバーがある。
  • ネットワークやディスクパーティションなどのさまざまな機能の設定方法について、高度な RHCOS インストール設定 のセクションを確認している。

手順

  1. インストールプログラムが作成したブートストラップ、コントロールプレーン、およびコンピュートノード Ignition 設定ファイルを HTTP サーバーにアップロードします。これらのファイルの URL をメモします。

    重要

    HTTP サーバーに保存する前に、Ignition 設定で設定内容を追加したり、変更したりできます。インストールの完了後にコンピュートマシンをさらにクラスターに追加する予定の場合には、これらのファイルを削除しないでください。

  2. インストールホストから、Ignition 設定ファイルが URL で利用可能であることを確認します。以下の例では、ブートストラップノードの Ignition 設定ファイルを取得します。

    $ curl -k http://<HTTP_server>/bootstrap.ign 
    1
    Copy to Clipboard Toggle word wrap

    出力例

      % Total    % Received % Xferd  Average Speed   Time    Time     Time  Current
                                     Dload  Upload   Total   Spent    Left  Speed
      0     0    0     0    0     0      0      0 --:--:-- --:--:-- --:--:--     0{"ignition":{"version":"3.2.0"},"passwd":{"users":[{"name":"core","sshAuthorizedKeys":["ssh-rsa...
    Copy to Clipboard Toggle word wrap

    コマンドで bootstrap.ignmaster.ign または worker.ign に置き換え、コントロールプレーンおよびコンピュートノードの Ignition 設定ファイルも利用可能であることを検証します。

  3. RHCOS イメージミラー ページからオペレーティングシステムインスタンスをインストールするための推奨される方法に必要な RHCOS kernelinitramfs、および rootfs ファイルを取得することは可能ですが、RHCOS ファイルの正しいバージョンを取得するための推奨される方法は、openshift-install コマンドの出力から取得することです。

    $ openshift-install coreos print-stream-json | grep -Eo '"https.*(kernel-|initramfs.|rootfs.)\w+(\.img)?"'
    Copy to Clipboard Toggle word wrap

    出力例

    "<url>/art/storage/releases/rhcos-4.19-aarch64/<release>/aarch64/rhcos-<release>-live-kernel-aarch64"
    "<url>/art/storage/releases/rhcos-4.19-aarch64/<release>/aarch64/rhcos-<release>-live-initramfs.aarch64.img"
    "<url>/art/storage/releases/rhcos-4.19-aarch64/<release>/aarch64/rhcos-<release>-live-rootfs.aarch64.img"
    "<url>/art/storage/releases/rhcos-4.19-ppc64le/49.84.202110081256-0/ppc64le/rhcos-<release>-live-kernel-ppc64le"
    "<url>/art/storage/releases/rhcos-4.19-ppc64le/<release>/ppc64le/rhcos-<release>-live-initramfs.ppc64le.img"
    "<url>/art/storage/releases/rhcos-4.19-ppc64le/<release>/ppc64le/rhcos-<release>-live-rootfs.ppc64le.img"
    "<url>/art/storage/releases/rhcos-4.19-s390x/<release>/s390x/rhcos-<release>-live-kernel-s390x"
    "<url>/art/storage/releases/rhcos-4.19-s390x/<release>/s390x/rhcos-<release>-live-initramfs.s390x.img"
    "<url>/art/storage/releases/rhcos-4.19-s390x/<release>/s390x/rhcos-<release>-live-rootfs.s390x.img"
    "<url>/art/storage/releases/rhcos-4.19/<release>/x86_64/rhcos-<release>-live-kernel-x86_64"
    "<url>/art/storage/releases/rhcos-4.19/<release>/x86_64/rhcos-<release>-live-initramfs.x86_64.img"
    "<url>/art/storage/releases/rhcos-4.19/<release>/x86_64/rhcos-<release>-live-rootfs.x86_64.img"
    Copy to Clipboard Toggle word wrap

    重要

    RHCOS アーティファクトは OpenShift Container Platform の各リリースごとに変更されない可能性があります。インストールする OpenShift Container Platform バージョンと等しいか、それ以下のバージョンの内で最も新しいバージョンのイメージをダウンロードする必要があります。この手順で説明されている適切な kernelinitramfs、および rootfs アーティファクトのみを使用します。RHCOS QCOW2 イメージは、このインストールタイプではサポートされません。

    ファイル名には、OpenShift Container Platform のバージョン番号が含まれます。以下の例のようになります。

    • kernel: rhcos-<version>-live-kernel-<architecture>
    • initramfs: rhcos-<version>-live-initramfs.<architecture>.img
    • rootfs: rhcos-<version>-live-rootfs.<architecture>.img
  4. rootfskernel、および initramfs ファイルを HTTP サーバーにアップロードします。

    重要

    インストールの完了後にコンピュートマシンをさらにクラスターに追加する予定の場合には、これらのファイルを削除しないでください。

  5. RHCOS のインストール後にマシンがローカルディスクから起動されるようにネットワークブートインフラストラクチャーを設定します。
  6. RHCOS イメージの PXE または iPXE インストールを設定し、インストールを開始します。

    ご使用の環境に関する以下の例で示されるメニューエントリーのいずれかを変更し、イメージおよび Ignition ファイルが適切にアクセスできることを確認します。

    • PXE(x86_64) の場合:

      DEFAULT pxeboot
      TIMEOUT 20
      PROMPT 0
      LABEL pxeboot
          KERNEL http://<HTTP_server>/rhcos-<version>-live-kernel-<architecture> 
      1
      
          APPEND initrd=http://<HTTP_server>/rhcos-<version>-live-initramfs.<architecture>.img coreos.live.rootfs_url=http://<HTTP_server>/rhcos-<version>-live-rootfs.<architecture>.img coreos.inst.install_dev=/dev/sda coreos.inst.ignition_url=http://<HTTP_server>/bootstrap.ign 
      2
       
      3
      Copy to Clipboard Toggle word wrap
      1 1
      HTTP サーバーにアップロードしたライブ kernel ファイルの場所を指定します。URL は HTTP、TFTP、または FTP である必要があります。HTTPS および NFS はサポートされません。
      2
      複数の NIC を使用する場合、ip オプションに単一インターフェイスを指定します。たとえば、eno1 という名前の NIC で DHCP を使用するには、ip=eno1:dhcp を設定します。
      3
      HTTP サーバーにアップロードした RHCOS ファイルの場所を指定します。initrd パラメーター値は initramfs ファイルの場所であり、coreos.live.rootfs_url パラメーター値は rootfs ファイルの場所、また coreos.inst.ignition_url パラメーター値はブートストラップ Ignition 設定ファイルの場所になります。APPEND 行にカーネル引数を追加して、ネットワークやその他の起動オプションを設定することもできます。
      注記

      この設定では、グラフィカルコンソールを使用するマシンでシリアルコンソールアクセスを有効にしません。別のコンソールを設定するには、APPEND 行に 1 つ以上の console= 引数を追加します。たとえば、console=tty0 console=ttyS0 を追加して、最初の PC シリアルポートをプライマリーコンソールとして、グラフィカルコンソールをセカンダリーコンソールとして設定します。詳細は、How does one set up a serial terminal and/or console in Red Hat Enterprise Linux? と、「高度な RHCOS インストール設定」セクションの「PXE および ISO インストール用シリアルコンソールの有効化」を参照してください。

    • iPXE (x86_64 + aarch64) の場合:

      kernel http://<HTTP_server>/rhcos-<version>-live-kernel-<architecture> initrd=main coreos.live.rootfs_url=http://<HTTP_server>/rhcos-<version>-live-rootfs.<architecture>.img coreos.inst.install_dev=/dev/sda coreos.inst.ignition_url=http://<HTTP_server>/bootstrap.ign 
      1
       
      2
      
      initrd --name main http://<HTTP_server>/rhcos-<version>-live-initramfs.<architecture>.img 
      3
      
      boot
      Copy to Clipboard Toggle word wrap
      1
      HTTP サーバーにアップロードした RHCOS ファイルの場所を指定します。kernel パラメーター値は kernel ファイルの場所であり、initrd=main 引数は UEFI システムでの起動に必要であり、coreos.live.rootfs_url パラメーター値は rootfs ファイルの場所であり、coreos.inst.ignition_url パラメーター値はブートストラップ Ignition 設定ファイルの場所になります。
      2
      複数の NIC を使用する場合、ip オプションに単一インターフェイスを指定します。たとえば、eno1 という名前の NIC で DHCP を使用するには、ip=eno1:dhcp を設定します。
      3
      HTTP サーバーにアップロードした initramfs ファイルの場所を指定します。
      注記

      この設定では、グラフィカルコンソールを使用するマシンでシリアルコンソールアクセスを有効にしません。別のコンソールを設定するには、kernel 行に console= 引数を 1 つ以上追加します。たとえば、console=tty0 console=ttyS0 を追加して、最初の PC シリアルポートをプライマリーコンソールとして、グラフィカルコンソールをセカンダリーコンソールとして設定します。詳細は、How does one set up a serial terminal and/or console in Red Hat Enterprise Linux? と、「高度な RHCOS インストール設定」セクションの「PXE および ISO インストール用シリアルコンソールの有効化」を参照してください。

      注記

      aarch64 アーキテクチャーで CoreOS kernel をネットワークブートするには、IMAGE_GZIP オプションが有効になっているバージョンの iPXE ビルドを使用する必要があります。iPXE の IMAGE_GZIP オプション を参照してください。

    • aarch64 上の PXE (第 2 段階として UEFI と Grub を使用) の場合:

      menuentry 'Install CoreOS' {
          linux rhcos-<version>-live-kernel-<architecture>  coreos.live.rootfs_url=http://<HTTP_server>/rhcos-<version>-live-rootfs.<architecture>.img coreos.inst.install_dev=/dev/sda coreos.inst.ignition_url=http://<HTTP_server>/bootstrap.ign 
      1
       
      2
      
          initrd rhcos-<version>-live-initramfs.<architecture>.img 
      3
      
      }
      Copy to Clipboard Toggle word wrap
      1
      HTTP/TFTP サーバーにアップロードした RHCOS ファイルの場所を指定します。kernel パラメーター値は、TFTP サーバー上の kernel ファイルの場所になります。coreos.live.rootfs_url パラメーター値は rootfs ファイルの場所であり、coreos.inst.ignition_url パラメーター値は HTTP サーバー上のブートストラップ Ignition 設定ファイルの場所になります。
      2
      複数の NIC を使用する場合、ip オプションに単一インターフェイスを指定します。たとえば、eno1 という名前の NIC で DHCP を使用するには、ip=eno1:dhcp を設定します。
      3
      TFTP サーバーにアップロードした initramfs ファイルの場所を指定します。
  7. マシンのコンソールで RHCOS インストールの進捗を監視します。

    重要

    OpenShift Container Platform のインストールを開始する前に、各ノードでインストールが成功していることを確認します。インストールプロセスを監視すると、発生する可能性のある RHCOS インストールの問題の原因を特定する上でも役立ちます。

  8. RHCOS のインストール後に、システムは再起動します。再起動中、システムは指定した Ignition 設定ファイルを適用します。
  9. コンソール出力をチェックして、Ignition が実行されたことを確認します。

    コマンドの例

    Ignition: ran on 2022/03/14 14:48:33 UTC (this boot)
    Ignition: user-provided config was applied
    Copy to Clipboard Toggle word wrap

  10. クラスターのマシンの作成を続行します。

    重要

    この時点でブートストラップおよびコントロールプレーンマシンを作成する必要があります。コントロールプレーンマシンがデフォルトのスケジュール対象にされていない場合、クラスターのインストール前に少なくとも 2 つのコンピュートマシンを作成します。

    必要なネットワーク、DNS、およびロードバランサーインフラストラクチャーが配置されている場合、OpenShift Container Platform ブートストラッププロセスは RHCOS ノードの再起動後に自動的に起動します。

    注記

    RHCOS ノードには、core ユーザーのデフォルトのパスワードは含まれません。ノードには、ssh core@<node>.<cluster_name>.<base_domain> を、install_config.yaml ファイルで指定したパブリックキーとペアになる SSH プライベートキーへのアクセスのあるユーザーとして実行してアクセスできます。RHCOS を実行する OpenShift Container Platform 4 クラスターノードは変更できず、Operator を使用してクラスターの変更を適用します。SSH を使用したクラスターノードへのアクセスは推奨されません。ただし、インストールの問題を調査する際に、OpenShift Container Platform API が利用できない場合や、kubelet がターゲットノードで適切に機能しない場合、デバッグまたは障害復旧に SSH アクセスが必要になることがあります。

2.1.13.3. 高度な RHCOS インストール設定

OpenShift Container Platform 用の Red Hat Enterprise Linux CoreOS (RHCOS) ノードを手動でプロビジョニングする主な利点は、デフォルトの OpenShift Container Platform インストール方法では利用できない設定を実行できることです。このセクションでは、以下のような手法で実行できるいくつかの設定を説明します。

  • カーネル引数をライブインストーラーに渡す
  • ライブシステムからの coreos-installer の手動による実行
  • ライブ ISO または PXE ブートイメージのカスタマイズ

このセクションで説明されている手動の Red Hat Enterprise Linux CoreOS (RHCOS) インストールの高度な設定トピックは、ディスクパーティション設定、ネットワーク、および複数の異なる方法での Ignition 設定の使用に関連しています。

2.1.13.3.1. PXE および ISO インストールの高度なネットワーキングオプションの使用

OpenShift Container Platform ノードのネットワークはデフォルトで DHCP を使用して、必要な設定をすべて収集します。静的 IP アドレスを設定したり、ボンディングなどの特別な設定を行う場合は、以下のいずれかの方法で実行できます。

  • ライブインストーラーの起動時に、特別なカーネルパラメーターを渡します。
  • マシン設定を使用してネットワークファイルをインストール済みシステムにコピーします。
  • ライブインストーラーのシェルプロンプトからネットワークを設定し、それらの設定をインストール済みシステムにコピーして、インストール済みシステムの初回起動時に有効になるようにします。

PXE または iPXE インストールを設定するには、以下のオプションのいずれかを使用します。

  • 「詳細な RHCOS インストールリファレンスの表」を参照してください。
  • マシン設定を使用してネットワークファイルをインストール済みシステムにコピーします。

ISO インストールを設定するには、以下の手順に従います。

手順

  1. ISO インストーラーを起動します。
  2. ライブシステムシェルプロンプトから、nmcli または nmtui などの利用可能な RHEL ツールを使用して、ライブシステムのネットワークを設定します。
  3. coreos-installer コマンドを実行してシステムをインストールし、--copy-network オプションを追加してネットワーク設定をコピーします。以下に例を示します。

    $ sudo coreos-installer install --copy-network \
         --ignition-url=http://host/worker.ign /dev/disk/by-id/scsi-<serial_number>
    Copy to Clipboard Toggle word wrap
    重要

    --copy-network オプションは、/etc/NetworkManager/system-connections にあるネットワーク設定のみをコピーします。特に、システムのホスト名はコピーされません。

  4. インストール済みのシステムで再起動します。
2.1.13.3.2. ディスクパーティション設定

ディスクパーティションは、Red Hat Enterprise Linux CoreOS (RHCOS) のインストール時に OpenShift Container Platform クラスターノードに作成されます。デフォルトのパーティション設定をオーバーライドしない限り、特定のアーキテクチャーの各 RHCOS ノードで同じパーティションレイアウトが使用されます。RHCOS のインストール時に、ルートファイルシステムのサイズが拡大し、ターゲットデバイスの残りの使用可能なスペースが使用されます。

重要

ノードでカスタムパーティションスキームを使用すると、OpenShift Container Platform が一部のノードパーティションでモニタリングやアラートを行わなくなる可能性があります。デフォルトのパーティション設定をオーバーライドする場合は、OpenShift Container Platform がホストファイルシステムを監視する方法の詳細について Understanding OpenShift File System Monitoring (eviction conditions) を参照してください。

OpenShift Container Platform は、次の 2 つのファイルシステム識別子を監視します。

  • nodefs: /var/lib/kubelet を含むファイルシステム
  • imagefs: /var/lib/containers を含むファイルシステム

デフォルトのパーティションスキームの場合、nodefsimagefs は同じルートファイルシステム (/) を監視します。

RHCOS を OpenShift Container Platform クラスターノードにインストールするときにデフォルトのパーティション設定をオーバーライドするには、別のパーティションを作成する必要があります。コンテナーとコンテナーイメージ用に別のストレージパーティションを追加する状況を考えてみましょう。たとえば、/var/lib/containers を別のパーティションにマウントすると、kubelet が /var/lib/containersimagefs ディレクトリーとして、ルートファイルシステムを nodefs ディレクトリーとして個別に監視します。

重要

より大きなファイルシステムをホストするためにディスクサイズを変更した場合は、別の /var/lib/containers パーティションを作成することを検討してください。多数の割り当てグループによって発生する CPU 時間の問題を軽減するには、xfs 形式のディスクのサイズを変更することを検討してください。

2.1.13.3.2.1. 個別の /var パーティションの作成

通常は、RHCOS のインストール時に作成されるデフォルトのディスクパーティションを使用する必要があります。ただし、拡張するディレクトリーの個別のパーティションの作成が必要となる場合もあります。

OpenShift Container Platform は、ストレージを /var ディレクトリーまたは /var のサブディレクトリーのいずれかに割り当てる単一のパーティションの追加をサポートします。以下に例を示します。

  • /var/lib/containers: イメージやコンテナーがシステムにさらに追加されると拡張するコンテナー関連のコンテンツを保持します。
  • /var/lib/etcd: etcd ストレージのパフォーマンスの最適化などの目的で分離する必要のあるデータを保持します。
  • /var: 監査などの目的に合わせて分離させる必要のあるデータを保持します。

    重要

    ディスクサイズが 100 GB を超える場合、特に 1 TB を超える場合は、別の /var パーティションを作成します。

/var ディレクトリーのコンテンツを個別に保存すると、必要に応じてこれらの領域のストレージの拡大を容易にし、後で OpenShift Container Platform を再インストールして、そのデータをそのまま保持することができます。この方法では、すべてのコンテナーを再度プルする必要はありません。また、システムの更新時に大きなログファイルをコピーする必要もありません。

/var ディレクトリーまたは /var のサブディレクトリーの個別のパーティションを使用すると、パーティション設定されたディレクトリーでのデータの増加によりルートファイルシステムが一杯になることを避けることもできます。

以下の手順では、インストールの準備フェーズでノードタイプの Ignition 設定ファイルにラップされるマシン設定マニフェストを追加して、別の /var パーティションを設定します。

手順

  1. インストールホストで、OpenShift Container Platform のインストールプログラムが含まれるディレクトリーに切り替え、クラスターの Kubernetes マニフェストを生成します。

    $ openshift-install create manifests --dir <installation_directory>
    Copy to Clipboard Toggle word wrap
  2. 追加のパーティションを設定する Butane 設定を作成します。たとえば、$HOME/clusterconfig/98-var-partition.bu ファイルに名前を付け、ディスクのデバイス名を worker システムのストレージデバイスの名前に変更し、必要に応じてストレージサイズを設定します。以下の例では、/var ディレクトリーを別のパーティションにマウントします。

    variant: openshift
    version: 4.19.0
    metadata:
      labels:
        machineconfiguration.openshift.io/role: worker
      name: 98-var-partition
    storage:
      disks:
      - device: /dev/disk/by-id/<device_name> 
    1
    
        partitions:
        - label: var
          start_mib: <partition_start_offset> 
    2
    
          size_mib: <partition_size> 
    3
    
          number: 5
      filesystems:
        - device: /dev/disk/by-partlabel/var
          path: /var
          format: xfs
          mount_options: [defaults, prjquota] 
    4
    
          with_mount_unit: true
    Copy to Clipboard Toggle word wrap
    1
    パーティションを設定する必要のあるディスクのストレージデバイス名。
    2
    データパーティションをブートディスクに追加する場合は、25000 のメビバイトの最小のオフセット値が推奨されます。ルートファイルシステムは、指定したオフセットまでの利用可能な領域をすべて埋めるためにサイズを自動的に変更します。オフセット値の指定がない場合や、指定した値が推奨される最小値よりも小さい場合、生成されるルートファイルシステムのサイズは小さ過ぎるため、RHCOS の再インストールでデータパーティションの最初の部分が上書きされる可能性があります。
    3
    データパーティションのサイズ (メビバイト単位)。
    4
    コンテナーストレージに使用されるファイルシステムでは、prjquota マウントオプションを有効にする必要があります。
    注記

    個別の /var パーティションを作成する場合、異なるインスタンスタイプに同じデバイス名がない場合は、コンピュートノードに異なるインスタンスタイプを使用することはできません。

  3. Butane config からマニフェストを作成し、clusterconfig/openshift ディレクトリーに保存します。たとえば、以下のコマンドを実行します。

    $ butane $HOME/clusterconfig/98-var-partition.bu -o $HOME/clusterconfig/openshift/98-var-partition.yaml
    Copy to Clipboard Toggle word wrap
  4. Ignition 設定ファイルを作成します。

    $ openshift-install create ignition-configs --dir <installation_directory> 
    1
    Copy to Clipboard Toggle word wrap
    1
    <installation_directory> には、同じインストールディレクトリーを指定します。

    Ignition 設定ファイルは、インストールディレクトリー内のブートストラップ、コントロールプレーン、およびコンピュートノード用に作成されます。

    .
    ├── auth
    │   ├── kubeadmin-password
    │   └── kubeconfig
    ├── bootstrap.ign
    ├── master.ign
    ├── metadata.json
    └── worker.ign
    Copy to Clipboard Toggle word wrap

    <installation_directory>/manifest ディレクトリーおよび <installation_directory>/openshift ディレクトリーのファイルは、98-var-partition カスタム MachineConfig オブジェクトが含まれるファイルを含む Ignition 設定ファイルにラップされます。

次のステップ

  • RHCOS のインストール時に Ignition 設定ファイルを参照して、カスタムディスクのパーティション設定を適用することができます。
2.1.13.3.2.2. 既存パーティションの保持

ISO インストールの場合は、インストーラーに 1 つ以上の既存パーティションを維持させる coreos-installer コマンドにオプションを追加することができます。PXE インストールの場合、coreos.inst.* オプションを APPEND パラメーターに追加して、パーティションを保持できます。

保存したパーティションは、既存の OpenShift Container Platform システムからのデータパーティションである可能性があります。パーティションラベルまたは番号のいずれかで保持する必要のあるディスクパーティションを特定できます。

注記

既存のパーティションを保存し、それらのパーティションが RHCOS の十分な領域を残さない場合、インストールは失敗します。この場合、保存したパーティションが破損することはありません。

ISO インストール時の既存パーティションの保持

この例では、パーティションラベルが data (data*) で始まるパーティションを保持します。

# coreos-installer install --ignition-url http://10.0.2.2:8080/user.ign \
--save-partlabel 'data*' \
/dev/disk/by-id/scsi-<serial_number>
Copy to Clipboard Toggle word wrap

以下の例では、ディスク上の 6 番目のパーティションを保持する方法で coreos-installer を実行する方法を説明しています。

# coreos-installer install --ignition-url http://10.0.2.2:8080/user.ign \
--save-partindex 6 /dev/disk/by-id/scsi-<serial_number>
Copy to Clipboard Toggle word wrap

この例では、パーティション 5 以上を保持します。

# coreos-installer install --ignition-url http://10.0.2.2:8080/user.ign \
--save-partindex 5- /dev/disk/by-id/scsi-<serial_number>
Copy to Clipboard Toggle word wrap

パーティションの保存が使用された以前の例では、coreos-installer はパーティションをすぐに再作成します。

PXE インストール時の既存パーティションの保持

この APPEND オプションは、パーティションラベルが 'data' ('data*') で始まるパーティションを保持します。

coreos.inst.save_partlabel=data*
Copy to Clipboard Toggle word wrap

この APPEND オプションは、パーティション 5 以上を保持します。

coreos.inst.save_partindex=5-
Copy to Clipboard Toggle word wrap

この APPEND オプションは、パーティション 6 を保持します。

coreos.inst.save_partindex=6
Copy to Clipboard Toggle word wrap
2.1.13.3.3. Ignition 設定の特定

RHCOS の手動インストールを実行する場合、提供できる Ignition 設定には 2 つのタイプがあり、それぞれを提供する理由もそれぞれ異なります。

  • Permanent install Ignition config: すべての手動の RHCOS インストールは、bootstrap.ignmaster.ign、および worker.ign などの openshift-installer が生成した Ignition 設定ファイルのいずれかを渡し、インストールを実行する必要があります。

    重要

    これらの Ignition 設定ファイルを直接変更することは推奨されません。前述のセクションの例で説明されているように、Ignition 設定ファイルにラップされるマニフェストファイルを更新できます。

    PXE インストールの場合、coreos.inst.ignition_url= オプションを使用して、APPEND 行に Ignition 設定を渡します。ISO インストールの場合、シェルプロンプトで ISO を起動した後に、--ignition-url= オプションを指定した coreos-installer コマンドラインで Ignition 設定を特定します。いずれの場合も、HTTP プロトコルおよび HTTPS プロトコルのみがサポートされます。

  • Live install Ignition config: このタイプは、coreos-installer customize サブコマンドとそのさまざまなオプションを使用して作成できます。この方法では、Ignition 設定はライブインストールメディアに渡され、起動直後に実行され、RHCOS システムがディスクにインストールされる前または後にセットアップタスクを実行します。この方法は、マシン設定を使用して実行できない高度なパーティション設定など、一度の適用後に再度適用する必要のないタスクの実行にのみ使用する必要があります。

    PXE または ISO ブートの場合、Ignition 設定を作成し、ignition.config.url= オプションに対して APPEND を実行し、Ignition 設定の場所を特定できます。また、ignition.firstboot ignition.platform.id=metal も追加する必要があります。追加しない場合は、ignition.config.url が無視されます。

2.1.13.3.4. デフォルトのコンソール設定

OpenShift Container Platform 4.19 ブートイメージからインストールされた Red Hat Enterprise Linux CoreOS (RHCOS) ノードは、ほとんどの仮想化セットアップおよびベアメタルセットアップに対応するためのデフォルトコンソールを使用します。クラウドおよび仮想化プラットフォームが異なれば、選択したアーキテクチャーに応じて、異なるデフォルト設定が使用される場合があります。ベアメタルインストールではカーネルのデフォルト設定が使用されます。これは通常、グラフィカルコンソールがプライマリーコンソールで、シリアルコンソールが無効になっていることを意味します。

デフォルトのコンソールが特定のハードウェア設定と一致しない場合や、デフォルトのコンソールを調整する必要がある特定のニーズがある場合があります。以下に例を示します。

  • デバッグ目的で、コンソールの緊急シェルにアクセスしたいと考えています。
  • クラウドプラットフォームは、グラフィカルコンソールへの対話型アクセスを提供しませんが、シリアルコンソールを提供します。
  • 複数のコンソールを有効にしたい。

コンソール設定は、ブートイメージから継承されます。これは、既存のクラスター内の新しいノードが、デフォルトのコンソールへの変更の影響を受けないことを意味します。

次の方法で、ベアメタルインストール用にコンソールを設定できます。

  • コマンドラインで手動で coreos-installer を使用する。
  • --dest-console オプションを指定した coreos-installer iso customize または coreos-installer pxe customize サブコマンドを使用して、プロセスを自動化するカスタムイメージを作成します。
注記

高度なカスタマイズを行うには、カーネル引数ではなく、coreos-installer iso または coreos-installer pxe サブコマンドを使用してコンソール設定を実行します。

2.1.13.3.5. PXE および ISO インストール用のシリアルコンソールの有効化

デフォルトでは、Red Hat Enterprise Linux CoreOS (RHCOS) シリアルコンソールは無効になっており、すべての出力はグラフィカルコンソールに書き込まれます。ISO インストール用にシリアルコンソールを有効にし、シリアルコンソールとグラフィカルコンソールの両方に出力が送信されるようにブートローダーを再設定できます。

手順

  1. ISO インストーラーを起動します。
  2. coreos-installer コマンドを実行してシステムをインストールし、--console オプションを 1 回追加してグラフィカルコンソールを指定し、2 回目にシリアルコンソールを指定します。

    $ coreos-installer install \
    --console=tty0 \
    1
    
    --console=ttyS0,<options> \
    2
    
    --ignition-url=http://host/worker.ign /dev/disk/by-id/scsi-<serial_number>
    Copy to Clipboard Toggle word wrap
    1
    望ましい 2 番目のコンソール。この場合は、グラフィカルコンソールです。このオプションを省略すると、グラフィカルコンソールが無効になります。
    2
    望ましいひとつ目のコンソール。この場合、シリアルコンソールです。options フィールドは、ボーレートとその他の設定を定義します。このフィールドの一般的な値は 115200n8 です。オプションが指定されていない場合、デフォルトのカーネル値である 9600n8 が使用されます。このオプションの形式の詳細は、Linux カーネルシリアルコンソール のドキュメントを参照してください。
  3. インストール済みのシステムで再起動します。

    注記

    coreos-installer install --append-karg オプションを使用し、console= でコンソールを指定すると、同様の結果が得られます。ただし、これはカーネルのコンソールのみを設定し、ブートローダーは設定しません。

PXE インストールを設定するには、coreos.inst.install_dev カーネルコマンドラインオプションが省略されていることを確認し、シェルプロンプトを使用して、上記の ISO インストール手順を使用して手動で coreos-installer を実行します。

2.1.13.3.6. ライブ RHCOS ISO または PXE インストールのカスタマイズ

ライブ ISO イメージまたは PXE 環境を使用して、Ignition 設定ファイルをイメージに直接挿入することで RHCOS をインストールできます。これにより、システムのプロビジョニングに使用できるカスタマイズされたイメージが作成されます。

ISO イメージの場合、これを行うメカニズムは coreos-installer iso customize サブコマンドです。これは設定に合わせて .iso ファイルを変更します。同様に、PXE 環境のメカニズムは、カスタマイズを含む新しい initramfs ファイルを作成する coreos-installer pxe customize サブコマンドです。

customize サブコマンドは、他のタイプのカスタマイズも埋め込むことができる汎用ツールです。次のタスクは、より一般的なカスタマイズの例です。

  • 企業のセキュリティーポリシーで使う必要がある場合に備えて、カスタム CA 証明書を挿入します。
  • カーネル引数を必要とせずにネットワーク設定を設定します。
  • 任意のプレインストールおよびポストインストールスクリプトまたはバイナリーを埋め込みます。
2.1.13.3.7. ライブ RHCOS ISO イメージのカスタマイズ

coreos-installer iso customize サブコマンドを使用して、ライブ RHCOS ISO イメージを直接カスタマイズできます。ISO イメージを起動すると、カスタマイズが自動的に適用されます。

この機能を使用して、RHCOS を自動的にインストールするように ISO イメージを設定できます。

手順

  1. coreos-installer イメージミラー ページから、coreos-installer バイナリーをダウンロードします。
  2. RHCOS イメージミラー ページと Ignition 設定ファイルから RHCOS ISO イメージを取得し、次のコマンドを実行して、Ignition 設定を ISO イメージに直接挿入します。

    $ coreos-installer iso customize rhcos-<version>-live.x86_64.iso \
        --dest-ignition bootstrap.ign \ 
    1
    
        --dest-device /dev/disk/by-id/scsi-<serial_number> 
    2
    Copy to Clipboard Toggle word wrap
    1
    openshift-installer インストールプログラムから生成される Ignition 設定ファイル。
    2
    このオプションを指定すると、ISO イメージは自動的にインストールを実行します。それ以外の場合は、イメージはインストール用に設定されたままになりますが、coreos.inst.install_dev カーネル引数を指定しない限り、自動的にはインストールされません。
  3. オプション: ISO イメージのカスタマイズを削除し、イメージを元の状態に戻すには、次のコマンドを実行します。

    $ coreos-installer iso reset rhcos-<version>-live.x86_64.iso
    Copy to Clipboard Toggle word wrap

    これで、ライブ ISO イメージを再カスタマイズしたり、元の状態で使用したりできます。

カスタマイズを適用すると、それ以降のすべての RHCOS 起動に影響します。

2.1.13.3.7.1. ライブインストール ISO イメージを変更して、シリアルコンソールを有効化

OpenShift Container Platform 4.12 以降でインストールされたクラスターでは、シリアルコンソールはデフォルトで無効になり、すべての出力がグラフィカルコンソールに書き込まれます。次の手順でシリアルコンソールを有効にできます。

手順

  1. coreos-installer イメージミラー ページから、coreos-installer バイナリーをダウンロードします。
  2. RHCOS イメージミラー ページから RHCOS ISO イメージを取得し、次のコマンドを実行して ISO イメージをカスタマイズし、シリアルコンソールが出力を受信できるようにします。

    $ coreos-installer iso customize rhcos-<version>-live.x86_64.iso \
      --dest-ignition <path> \
    1
    
      --dest-console tty0 \
    2
    
      --dest-console ttyS0,<options> \
    3
    
      --dest-device /dev/disk/by-id/scsi-<serial_number> 
    4
    Copy to Clipboard Toggle word wrap
    1
    インストールする Ignition 設定の場所。
    2
    望ましい 2 番目のコンソール。この場合は、グラフィカルコンソールです。このオプションを省略すると、グラフィカルコンソールが無効になります。
    3
    望ましいひとつ目のコンソール。この場合、シリアルコンソールです。options フィールドは、ボーレートとその他の設定を定義します。このフィールドの一般的な値は 115200n8 です。オプションが指定されていない場合、デフォルトのカーネル値である 9600n8 が使用されます。このオプションの形式の詳細は、Linux カーネルシリアルコンソール のドキュメントを参照してください。
    4
    インストール先として指定されたディスク。このオプションを省略すると、ISO イメージはインストールプログラムを自動的に実行しますが、coreos.inst.install_dev カーネル引数も指定しない限り失敗します。
    注記

    --dest-console オプションは、ライブ ISO システムではなく、インストールされたシステムに影響します。ライブ ISO システムのコンソールを変更するには、--live-karg-append オプションを使用し、console= でコンソールを指定します。

    カスタマイズが適用され、ISO イメージの後続のすべての起動に影響します。

  3. オプション: ISO イメージのカスタマイズを削除してイメージを元の状態に戻すには、次のコマンドを実行します。

    $ coreos-installer iso reset rhcos-<version>-live.x86_64.iso
    Copy to Clipboard Toggle word wrap

    ライブ ISO イメージを再カスタマイズするか、元の状態で使用できるようになりました。

2.1.13.3.7.2. カスタム認証局を使用するようにライブインストール ISO イメージを変更する

customize サブコマンドの --ignition-ca フラグを使用して、認証局 (CA) 証明書を Ignition に提供できます。CA 証明書は、インストールの起動時とインストール済みシステムのプロビジョニング時の両方で使用できます。

注記

カスタム CA 証明書は、Ignition がリモートリソースをフェッチする方法に影響しますが、システムにインストールされている証明書には影響しません。

手順

  1. coreos-installer イメージミラー ページから、coreos-installer バイナリーをダウンロードします。
  2. RHCOS イメージミラー ページから RHCOS ISO イメージを取得し、次のコマンドを実行して、カスタム CA で使用する ISO イメージをカスタマイズします。

    $ coreos-installer iso customize rhcos-<version>-live.x86_64.iso --ignition-ca cert.pem
    Copy to Clipboard Toggle word wrap
重要

coreos.inst.ignition_url カーネルパラメーターは、--ignition-ca フラグでは機能しません。クラスターごとにカスタマイズされたイメージを作成するには、--dest-ignition フラグを使用する必要があります。

カスタム CA 証明書を適用すると、それ以降のすべての RHCOS 起動に影響します。

NetworkManager キーファイルをライブ ISO イメージに埋め込み、customize サブコマンドの --network-keyfile フラグを使用してインストール済みシステムに渡すことができます。

警告

接続プロファイルを作成する際は、接続プロファイルのファイル名に .nmconnection ファイル名拡張子を使用する必要があります。.nmconnection ファイル名拡張子を使用しない場合、クラスターは接続プロファイルをライブ環境に適用しますが、クラスターが初めてノードを起動するときに設定が適用されないため、セットアップが機能しなくなります。

手順

  1. coreos-installer イメージミラー ページから、coreos-installer バイナリーをダウンロードします。
  2. ボンディングされたインターフェイスの接続プロファイルを作成します。たとえば、ローカルディレクトリーに次の内容の bond0.nmconnection ファイルを作成します。

    [connection]
    id=bond0
    type=bond
    interface-name=bond0
    multi-connect=1
    
    [bond]
    miimon=100
    mode=active-backup
    
    [ipv4]
    method=auto
    
    [ipv6]
    method=auto
    Copy to Clipboard Toggle word wrap
  3. ボンディングに追加するセカンダリーインターフェイスの接続プロファイルを作成します。たとえば、ローカルディレクトリーに次の内容の bond0-proxy-em1.nmconnection ファイルを作成します。

    [connection]
    id=em1
    type=ethernet
    interface-name=em1
    master=bond0
    multi-connect=1
    slave-type=bond
    Copy to Clipboard Toggle word wrap
  4. ボンディングに追加するセカンダリーインターフェイスの接続プロファイルを作成します。たとえば、ローカルディレクトリーに次の内容の bond0-proxy-em2.nmconnection ファイルを作成します。

    [connection]
    id=em2
    type=ethernet
    interface-name=em2
    master=bond0
    multi-connect=1
    slave-type=bond
    Copy to Clipboard Toggle word wrap
  5. RHCOS イメージミラー ページから RHCOS ISO イメージを取得し、次のコマンドを実行して、設定されたネットワークで ISO イメージをカスタマイズします。

    $ coreos-installer iso customize rhcos-<version>-live.x86_64.iso \
        --network-keyfile bond0.nmconnection \
        --network-keyfile bond0-proxy-em1.nmconnection \
        --network-keyfile bond0-proxy-em2.nmconnection
    Copy to Clipboard Toggle word wrap

    ネットワーク設定はライブシステムに適用され、宛先システムに引き継がれます。

2.1.13.3.7.4. iSCSI ブートデバイス用のライブインストール ISO イメージをカスタマイズする

ライブ RHCOS イメージのカスタマイズされたバージョンを使用して、自動マウント、起動、および設定用の iSCSI ターゲットとイニシエーターの値を設定できます。

前提条件

  1. RHCOS のインストール先となる iSCSI ターゲットがある。

手順

  1. coreos-installer イメージミラー ページから、coreos-installer バイナリーをダウンロードします。
  2. RHCOS イメージミラー ページから RHCOS ISO イメージを取得し、次の情報を使用して ISO イメージをカスタマイズするために、以下のコマンドを実行します。

    $ coreos-installer iso customize \
        --pre-install mount-iscsi.sh \ 
    1
    
        --post-install unmount-iscsi.sh \ 
    2
    
        --dest-device /dev/disk/by-path/<IP_address>:<port>-iscsi-<target_iqn>-lun-<lun> \ 
    3
    
        --dest-ignition config.ign \ 
    4
    
        --dest-karg-append rd.iscsi.initiator=<initiator_iqn> \ 
    5
    
        --dest-karg-append netroot=<target_iqn> \ 
    6
    
        -o custom.iso rhcos-<version>-live.x86_64.iso
    Copy to Clipboard Toggle word wrap
    1
    インストール前に実行されるスクリプト。iSCSI ターゲットをマウントするための iscsiadm コマンドと、マルチパス構成を有効にするコマンドが含まれている必要があります。
    2
    インストール後に実行されるスクリプト。iscsiadm --mode node --logout=all コマンドが含まれている必要があります。
    3
    宛先システムの場所。ターゲットポータルの IP アドレス、関連付けられたポート番号、IQN 形式のターゲット iSCSI ノード、および iSCSI 論理ユニット番号 (LUN) を指定する必要があります。
    4
    宛先システムの Ignition 設定。
    5
    IQN 形式の iSCSI イニシエーター、クライアントの名前。イニシエーターは iSCSI ターゲットに接続するセッションを形成します。
    6
    IQN 形式の iSCSI ターゲットまたはサーバーの名前。

    dracut でサポートされる iSCSI オプションの詳細は、dracut.cmdline man ページ を参照してください。

ライブ RHCOS イメージのカスタマイズされたバージョンを使用して、自動マウント、起動、および設定用の iSCSI ターゲットとイニシエーターの値を設定できます。

前提条件

  1. RHCOS のインストール先となる iSCSI ターゲットがある。
  2. オプション: iSCSI ターゲットをマルチパス化した。

手順

  1. coreos-installer イメージミラー ページから、coreos-installer バイナリーをダウンロードします。
  2. RHCOS イメージミラー ページから RHCOS ISO イメージを取得し、次の情報を使用して ISO イメージをカスタマイズするために、以下のコマンドを実行します。

    $ coreos-installer iso customize \
        --pre-install mount-iscsi.sh \ 
    1
    
        --post-install unmount-iscsi.sh \ 
    2
    
        --dest-device /dev/mapper/mpatha \ 
    3
    
        --dest-ignition config.ign \ 
    4
    
        --dest-karg-append rd.iscsi.firmware=1 \ 
    5
    
        --dest-karg-append rd.multipath=default \ 
    6
    
        -o custom.iso rhcos-<version>-live.x86_64.iso
    Copy to Clipboard Toggle word wrap
    1
    インストール前に実行されるスクリプト。iSCSI ターゲットをマウントするための iscsiadm コマンドと、マルチパス構成を有効にするコマンドが含まれている必要があります。
    2
    インストール後に実行されるスクリプト。iscsiadm --mode node --logout=all コマンドが含まれている必要があります。
    3
    デバイスへのパス。マルチパスを使用している場合は、マルチパスデバイス (/dev/mapper/mpatha) を使用します。複数のマルチパスデバイスが接続されている場合、または明示する場合、/dev/disk/by-path で使用可能な World Wide Name (WWN) シンボリックリンクを使用できます。
    4
    宛先システムの Ignition 設定。
    5
    iSCSI パラメーターは、BIOS ファームウェアから読み取られます。
    6
    オプション: マルチパス構成を有効にする場合は、このパラメーターを含めます。

    dracut でサポートされる iSCSI オプションの詳細は、dracut.cmdline man ページ を参照してください。

2.1.13.3.8. ライブ RHCOS PXE 環境のカスタマイズ

coreos-installer pxe customize サブコマンドを使用して、ライブ RHCOS PXE 環境を直接カスタマイズできます。PXE 環境を起動すると、カスタマイズが自動的に適用されます。

この機能を使用して、RHCOS を自動的にインストールするように PXE 環境を設定できます。

手順

  1. coreos-installer イメージミラー ページから、coreos-installer バイナリーをダウンロードします。
  2. RHCOS イメージミラー ページと Ignition 設定ファイルから、RHCOS kernelinitramfs、および rootfs ファイルを取得し、次のコマンドを実行して、Ignition 設定からのカスタマイズを含む新しい initramfs ファイルを作成します。

    $ coreos-installer pxe customize rhcos-<version>-live-initramfs.x86_64.img \
        --dest-ignition bootstrap.ign \ 
    1
    
        --dest-device /dev/disk/by-id/scsi-<serial_number> \ 
    2
    
        -o rhcos-<version>-custom-initramfs.x86_64.img 
    3
    Copy to Clipboard Toggle word wrap
    1
    openshift-installer から生成された Ignition 設定ファイル。
    2
    このオプションを指定すると、PXE 環境で自動的にインストールが実行されます。それ以外の場合は、イメージはインストール用に設定されたままになりますが、coreos.inst.install_dev カーネル引数を指定しない限り、自動的には設定されません。
    3
    PXE 設定でカスタマイズされた initramfs ファイルを使用します。ignition.firstboot および ignition.platform.id=metal カーネル引数が存在しない場合は追加します。

カスタマイズを適用すると、それ以降のすべての RHCOS 起動に影響します。

2.1.13.3.8.1. ライブインストール PXE 環境を変更して、シリアルコンソールを有効化。

OpenShift Container Platform 4.12 以降でインストールされたクラスターでは、シリアルコンソールはデフォルトで無効になり、すべての出力がグラフィカルコンソールに書き込まれます。次の手順でシリアルコンソールを有効にできます。

手順

  1. coreos-installer イメージミラー ページから、coreos-installer バイナリーをダウンロードします。
  2. RHCOS イメージミラー ページおよび Ignition 設定ファイルから RHCOS kernelinitramfs および rootfs ファイルを取得します。次のコマンドを実行して、シリアルコンソールが出力を受信できるようにする新しいカスタマイズされた initramfs ファイルを作成します。

    $ coreos-installer pxe customize rhcos-<version>-live-initramfs.x86_64.img \
      --dest-ignition <path> \
    1
    
      --dest-console tty0 \
    2
    
      --dest-console ttyS0,<options> \
    3
    
      --dest-device /dev/disk/by-id/scsi-<serial_number> \
    4
    
      -o rhcos-<version>-custom-initramfs.x86_64.img 
    5
    Copy to Clipboard Toggle word wrap
    1
    インストールする Ignition 設定の場所。
    2
    望ましい 2 番目のコンソール。この場合は、グラフィカルコンソールです。このオプションを省略すると、グラフィカルコンソールが無効になります。
    3
    望ましいひとつ目のコンソール。この場合、シリアルコンソールです。options フィールドは、ボーレートとその他の設定を定義します。このフィールドの一般的な値は 115200n8 です。オプションが指定されていない場合、デフォルトのカーネル値である 9600n8 が使用されます。このオプションの形式の詳細は、Linux カーネルシリアルコンソール のドキュメントを参照してください。
    4
    インストール先として指定されたディスク。このオプションを省略すると、PXE 環境は自動的にインストーラーを実行しますが、coreos.inst.install_dev カーネル引数も指定しない限り失敗します。
    5
    PXE 設定でカスタマイズされた initramfs ファイルを使用します。ignition.firstboot および ignition.platform.id=metal カーネル引数が存在しない場合は追加します。

    カスタマイズが適用され、PXE 環境の後続のすべての起動に影響します。

2.1.13.3.8.2. カスタム認証局を使用するようにライブインストール PXE 環境を変更する

customize サブコマンドの --ignition-ca フラグを使用して、認証局 (CA) 証明書を Ignition に提供できます。CA 証明書は、インストールの起動時とインストール済みシステムのプロビジョニング時の両方で使用できます。

注記

カスタム CA 証明書は、Ignition がリモートリソースをフェッチする方法に影響しますが、システムにインストールされている証明書には影響しません。

手順

  1. coreos-installer イメージミラー ページから、coreos-installer バイナリーをダウンロードします。
  2. RHCOS イメージミラー ページから、RHCOS kernelinitramfs、および rootfs ファイルを取得し、次のコマンドを実行して、カスタム CA で使用するための新しいカスタマイズされた initramfs ファイルを作成します。

    $ coreos-installer pxe customize rhcos-<version>-live-initramfs.x86_64.img \
        --ignition-ca cert.pem \
        -o rhcos-<version>-custom-initramfs.x86_64.img
    Copy to Clipboard Toggle word wrap
  3. PXE 設定でカスタマイズされた initramfs ファイルを使用します。ignition.firstboot および ignition.platform.id=metal カーネル引数が存在しない場合は追加します。
重要

coreos.inst.ignition_url カーネルパラメーターは、--ignition-ca フラグでは機能しません。クラスターごとにカスタマイズされたイメージを作成するには、--dest-ignition フラグを使用する必要があります。

カスタム CA 証明書を適用すると、それ以降のすべての RHCOS 起動に影響します。

NetworkManager キーファイルをライブ PXE 環境に埋め込み、customize サブコマンドの --network-keyfile フラグを使用して、インストール済みシステムに渡すことができます。

警告

接続プロファイルを作成する際は、接続プロファイルのファイル名に .nmconnection ファイル名拡張子を使用する必要があります。.nmconnection ファイル名拡張子を使用しない場合、クラスターは接続プロファイルをライブ環境に適用しますが、クラスターが初めてノードを起動するときに設定が適用されないため、セットアップが機能しなくなります。

手順

  1. coreos-installer イメージミラー ページから、coreos-installer バイナリーをダウンロードします。
  2. ボンディングされたインターフェイスの接続プロファイルを作成します。たとえば、ローカルディレクトリーに次の内容の bond0.nmconnection ファイルを作成します。

    [connection]
    id=bond0
    type=bond
    interface-name=bond0
    multi-connect=1
    
    [bond]
    miimon=100
    mode=active-backup
    
    [ipv4]
    method=auto
    
    [ipv6]
    method=auto
    Copy to Clipboard Toggle word wrap
  3. ボンディングに追加するセカンダリーインターフェイスの接続プロファイルを作成します。たとえば、ローカルディレクトリーに次の内容の bond0-proxy-em1.nmconnection ファイルを作成します。

    [connection]
    id=em1
    type=ethernet
    interface-name=em1
    master=bond0
    multi-connect=1
    slave-type=bond
    Copy to Clipboard Toggle word wrap
  4. ボンディングに追加するセカンダリーインターフェイスの接続プロファイルを作成します。たとえば、ローカルディレクトリーに次の内容の bond0-proxy-em2.nmconnection ファイルを作成します。

    [connection]
    id=em2
    type=ethernet
    interface-name=em2
    master=bond0
    multi-connect=1
    slave-type=bond
    Copy to Clipboard Toggle word wrap
  5. RHCOS イメージミラー ページから、RHCOS kernelinitramfs、および rootfs ファイルを取得し、次のコマンドを実行して、設定済みのネットワークを含む新しいカスタマイズされた initramfs ファイルを作成します。

    $ coreos-installer pxe customize rhcos-<version>-live-initramfs.x86_64.img \
        --network-keyfile bond0.nmconnection \
        --network-keyfile bond0-proxy-em1.nmconnection \
        --network-keyfile bond0-proxy-em2.nmconnection \
        -o rhcos-<version>-custom-initramfs.x86_64.img
    Copy to Clipboard Toggle word wrap
  6. PXE 設定でカスタマイズされた initramfs ファイルを使用します。ignition.firstboot および ignition.platform.id=metal カーネル引数が存在しない場合は追加します。

    ネットワーク設定はライブシステムに適用され、宛先システムに引き継がれます。

2.1.13.3.8.4. iSCSI ブートデバイス用のライブインストール PXE 環境をカスタマイズする

ライブ RHCOS イメージのカスタマイズされたバージョンを使用して、自動マウント、起動、および設定用の iSCSI ターゲットとイニシエーターの値を設定できます。

前提条件

  1. RHCOS のインストール先となる iSCSI ターゲットがある。

手順

  1. coreos-installer イメージミラー ページから、coreos-installer バイナリーをダウンロードします。
  2. RHCOS イメージミラー ページから、RHCOS kernelinitramfs、および rootfs ファイルを取得し、次のコマンドを実行して、次の情報を含む新しいカスタマイズされた initramfs ファイルを作成します。

    $ coreos-installer pxe customize \
        --pre-install mount-iscsi.sh \ 
    1
    
        --post-install unmount-iscsi.sh \ 
    2
    
        --dest-device /dev/disk/by-path/<IP_address>:<port>-iscsi-<target_iqn>-lun-<lun> \ 
    3
    
        --dest-ignition config.ign \ 
    4
    
        --dest-karg-append rd.iscsi.initiator=<initiator_iqn> \ 
    5
    
        --dest-karg-append netroot=<target_iqn> \ 
    6
    
        -o custom.img rhcos-<version>-live-initramfs.x86_64.img
    Copy to Clipboard Toggle word wrap
    1
    インストール前に実行されるスクリプト。iSCSI ターゲットをマウントするための iscsiadm コマンドと、マルチパス構成を有効にするコマンドが含まれている必要があります。
    2
    インストール後に実行されるスクリプト。iscsiadm --mode node --logout=all コマンドが含まれている必要があります。
    3
    宛先システムの場所。ターゲットポータルの IP アドレス、関連付けられたポート番号、IQN 形式のターゲット iSCSI ノード、および iSCSI 論理ユニット番号 (LUN) を指定する必要があります。
    4
    宛先システムの Ignition 設定。
    5
    IQN 形式の iSCSI イニシエーター、クライアントの名前。イニシエーターは iSCSI ターゲットに接続するセッションを形成します。
    6
    IQN 形式の iSCSI ターゲットまたはサーバーの名前。

    dracut でサポートされる iSCSI オプションの詳細は、dracut.cmdline man ページ を参照してください。

ライブ RHCOS イメージのカスタマイズされたバージョンを使用して、自動マウント、起動、および設定用の iSCSI ターゲットとイニシエーターの値を設定できます。

前提条件

  1. RHCOS のインストール先となる iSCSI ターゲットがある。
  2. オプション: iSCSI ターゲットをマルチパス化した。

手順

  1. coreos-installer イメージミラー ページから、coreos-installer バイナリーをダウンロードします。
  2. RHCOS イメージミラー ページから、RHCOS kernelinitramfs、および rootfs ファイルを取得し、次のコマンドを実行して、次の情報を含む新しいカスタマイズされた initramfs ファイルを作成します。

    $ coreos-installer pxe customize \
        --pre-install mount-iscsi.sh \ 
    1
    
        --post-install unmount-iscsi.sh \ 
    2
    
        --dest-device /dev/mapper/mpatha \ 
    3
    
        --dest-ignition config.ign \ 
    4
    
        --dest-karg-append rd.iscsi.firmware=1 \ 
    5
    
        --dest-karg-append rd.multipath=default \ 
    6
    
        -o custom.img rhcos-<version>-live-initramfs.x86_64.img
    Copy to Clipboard Toggle word wrap
    1
    インストール前に実行されるスクリプト。iSCSI ターゲットをマウントするための iscsiadm コマンドが含まれている必要があります。
    2
    インストール後に実行されるスクリプト。iscsiadm --mode node --logout=all コマンドが含まれている必要があります。
    3
    デバイスへのパス。マルチパスを使用している場合は、マルチパスデバイス (/dev/mapper/mpatha) を使用します。複数のマルチパスデバイスが接続されている場合、または明示する場合、/dev/disk/by-path で使用可能な World Wide Name (WWN) シンボリックリンクを使用できます。
    4
    宛先システムの Ignition 設定。
    5
    iSCSI パラメーターは、BIOS ファームウェアから読み取られます。
    6
    オプション: マルチパス構成を有効にする場合は、このパラメーターを含めます。

    dracut でサポートされる iSCSI オプションの詳細は、dracut.cmdline man ページ を参照してください。

2.1.13.3.9. 詳細の RHCOS インストールリファレンス

このセクションでは、Red Hat Enterprise Linux CoreOS (RHCOS) の手動インストールプロセスを変更できるようにするネットワーク設定および他の高度なオプションを説明します。以下の表では、RHCOS ライブインストーラーおよび coreos-installer コマンドで使用できるカーネル引数およびコマンドラインのオプションを説明します。

2.1.13.3.9.1. ISO インストールのネットワークおよびボンディングのオプション

ISO イメージから RHCOS をインストールする場合、そのイメージを起動してノードのネットワークを設定する際に手動でカーネル引数を追加できます。ネットワークの引数が指定されていない場合、RHCOS が Ignition 設定ファイルを取得するためにネットワークが必要であることを検知する際に、DHCP が initramfs でアクティベートされます。

重要

ネットワーク引数を手動で追加する場合は、rd.neednet=1 カーネル引数を追加して、ネットワークを initramfs で有効にする必要があります。

以下の情報は、ISO インストール用に RHCOS ノードでネットワークおよびボンディングを設定する例を示しています。この例では、ip=nameserver=、および bond= カーネル引数の使用方法を説明しています。

注記

順序は、カーネル引数の ip=nameserver=、および bond= を追加する場合に重要です。

ネットワークオプションは、システムの起動時に dracut ツールに渡されます。dracut でサポートされるネットワークオプションの詳細は、dracut.cmdline man ページ を参照してください。

次の例は、ISO インストールのネットワークオプションです。

2.1.13.3.9.1.1. DHCP または静的 IP アドレスの設定

IP アドレスを設定するには、DHCP (ip=dhcp) を使用するか、個別の静的 IP アドレス (ip=<host_ip>) を設定します。静的 IP を設定する場合、各ノードで DNS サーバー IP アドレス (nameserver=<dns_ip>) を特定する必要があります。次の例では、以下を設定します。

  • ノードの IP アドレス: 10.10.10.2
  • ゲートウェイアドレス: 10.10.10.254
  • ネットワーク: 255.255.255.0
  • ホスト名: core0.example.com
  • DNS サーバーアドレス: 4.4.4.41
  • auto-configuration の値を none に設定します。IP ネットワークが静的に設定されている場合には、自動設定は必要ありません。
ip=10.10.10.2::10.10.10.254:255.255.255.0:core0.example.com:enp1s0:none
nameserver=4.4.4.41
Copy to Clipboard Toggle word wrap
注記

DHCP を使用して RHCOS マシンの IP アドレスを設定する場合、マシンは DHCP を介して DNS サーバー情報も取得します。DHCP ベースのデプロイメントの場合、DHCP サーバー設定を使用して RHCOS ノードが使用する DNS サーバーアドレスを定義できます。

2.1.13.3.9.1.2. 静的ホスト名を使用しない IP アドレスの設定

静的ホスト名を割り当てずに IP アドレスを設定できます。静的ホスト名がユーザーによって設定されていない場合は、逆引き DNS ルックアップによって取得され、自動的に設定されます。静的ホスト名なしで IP アドレスを設定するには、次の例を参照してください。

  • ノードの IP アドレス: 10.10.10.2
  • ゲートウェイアドレス: 10.10.10.254
  • ネットワーク: 255.255.255.0
  • DNS サーバーアドレス: 4.4.4.41
  • auto-configuration の値を none に設定します。IP ネットワークが静的に設定されている場合には、自動設定は必要ありません。
ip=10.10.10.2::10.10.10.254:255.255.255.0::enp1s0:none
nameserver=4.4.4.41
Copy to Clipboard Toggle word wrap
2.1.13.3.9.1.3. 複数のネットワークインターフェイスの指定

複数の ip= エントリーを設定することで、複数のネットワークインターフェイスを指定できます。

ip=10.10.10.2::10.10.10.254:255.255.255.0:core0.example.com:enp1s0:none
ip=10.10.10.3::10.10.10.254:255.255.255.0:core0.example.com:enp2s0:none
Copy to Clipboard Toggle word wrap
2.1.13.3.9.1.4. デフォルトゲートウェイとルートの設定

オプション: rd.route= value を設定して、追加のネットワークへのルートを設定できます。

注記

1 つまたは複数のネットワークを設定する場合、1 つのデフォルトゲートウェイが必要です。追加のネットワークゲートウェイがプライマリーネットワークゲートウェイと異なる場合、デフォルトゲートウェイはプライマリーネットワークゲートウェイである必要があります。

  • 次のコマンドを実行して、デフォルトゲートウェイを設定します。

    ip=::10.10.10.254::::
    Copy to Clipboard Toggle word wrap
  • 次のコマンドを入力して、追加ネットワークのルートを設定します。

    rd.route=20.20.20.0/24:20.20.20.254:enp2s0
    Copy to Clipboard Toggle word wrap
2.1.13.3.9.1.5. 単一インターフェイスでの DHCP の無効化

2 つ以上のネットワークインターフェイスがあり、1 つのインターフェイスのみが使用される場合などに、1 つのインターフェイスで DHCP を無効にします。この例では、enp1s0 インターフェイスには静的ネットワーク設定があり、使用されていない enp2s0 では DHCP が無効になっています。

ip=10.10.10.2::10.10.10.254:255.255.255.0:core0.example.com:enp1s0:none
ip=::::core0.example.com:enp2s0:none
Copy to Clipboard Toggle word wrap
2.1.13.3.9.1.6. DHCP と静的 IP 設定の組み合わせ

以下のように、複数のネットワークインターフェイスを持つシステムで、DHCP および静的 IP 設定を組み合わせることができます。

ip=enp1s0:dhcp
ip=10.10.10.2::10.10.10.254:255.255.255.0:core0.example.com:enp2s0:none
Copy to Clipboard Toggle word wrap
2.1.13.3.9.1.7. 個々のインターフェイスでの VLAN の設定

オプション: vlan= パラメーターを使用して、個別のインターフェイスに VLAN を設定できます。

  • ネットワークインターフェイスで VLAN を設定し、静的 IP アドレスを使用するには、次のコマンドを実行します。

    ip=10.10.10.2::10.10.10.254:255.255.255.0:core0.example.com:enp2s0.100:none
    vlan=enp2s0.100:enp2s0
    Copy to Clipboard Toggle word wrap
  • ネットワークインターフェイスで VLAN を設定し、DHCP を使用するには、次のコマンドを実行します。

    ip=enp2s0.100:dhcp
    vlan=enp2s0.100:enp2s0
    Copy to Clipboard Toggle word wrap
2.1.13.3.9.1.8. 複数の DNS サーバーの指定

以下のように、各サーバーに nameserver= エントリーを追加して、複数の DNS サーバーを指定できます。

nameserver=1.1.1.1
nameserver=8.8.8.8
Copy to Clipboard Toggle word wrap

オプション: bond= オプションを使用して、複数のネットワークインターフェイスを単一のインターフェイスにボンディングできます。次の例を参照してください。

  • ボンディングされたインターフェイスを設定するための構文は、bond=<name>[:<network_interfaces>][:options] です。

    <name> はボンディングデバイス名 (bond0)、<network_interfaces> は物理 (イーサネット) インターフェイスのコンマ区切りのリスト (em1,em2) を表し、options はボンディングオプションのコンマ区切りのリストです。modinfo bonding を入力して、利用可能なオプションを表示します。

  • bond= を使用してボンディングされたインターフェイスを作成する場合は、ボンディングされたインターフェイスの IP アドレスの割り当て方法やその他の情報を指定する必要があります。

    • DHCP を使用するようにボンディングされたインターフェイスを設定するには、ボンドの IP アドレスを dhcp に設定します。以下に例を示します。

      bond=bond0:em1,em2:mode=active-backup
      ip=bond0:dhcp
      Copy to Clipboard Toggle word wrap
    • 静的 IP アドレスを使用するようにボンディングされたインターフェイスを設定するには、必要な特定の IP アドレスと関連情報を入力します。以下に例を示します。

      bond=bond0:em1,em2:mode=active-backup
      ip=10.10.10.2::10.10.10.254:255.255.255.0:core0.example.com:bond0:none
      Copy to Clipboard Toggle word wrap

オプション: bond= オプションを使用して、複数の SR-IOV ネットワークインターフェイスをデュアルポート NIC インターフェイスに結合できます。

各ノードで、次のタスクを実行する必要があります。

  1. SR-IOV デバイスの管理 のガイダンスに従って、SR-IOV 仮想機能 (VF) を作成します。「仮想マシンへの SR-IOV ネットワークデバイスの接続」セクションの手順に従います。
  2. ボンドを作成し、目的の VF をボンドに接続し、ネットワークボンディングの設定 のガイダンスに従って、ボンドリンクの状態を設定します。説明されている手順のいずれかに従って、結合を作成します。

次の例は、使用する必要がある構文を示しています。

  • 結合インターフェイスを設定するための構文は、bond=<name>[:<network_interfaces>][:options] です。

    <name> はボンディングデバイス名 (bond0)、<network_interfaces> は仮想機能 (VF) をカーネル内の既知の名前で表し、ip link コマンド (eno1f0eno2f0) の出力に表示されます。options は結合オプションのコンマ区切りリストです。modinfo bonding を入力して、利用可能なオプションを表示します。

  • bond= を使用してボンディングされたインターフェイスを作成する場合は、ボンディングされたインターフェイスの IP アドレスの割り当て方法やその他の情報を指定する必要があります。

    • DHCP を使用するようにボンディングされたインターフェイスを設定するには、ボンドの IP アドレスを dhcp に設定します。以下に例を示します。

      bond=bond0:eno1f0,eno2f0:mode=active-backup
      ip=bond0:dhcp
      Copy to Clipboard Toggle word wrap
    • 静的 IP アドレスを使用するようにボンディングされたインターフェイスを設定するには、必要な特定の IP アドレスと関連情報を入力します。以下に例を示します。

      bond=bond0:eno1f0,eno2f0:mode=active-backup
      ip=10.10.10.2::10.10.10.254:255.255.255.0:core0.example.com:bond0:none
      Copy to Clipboard Toggle word wrap
2.1.13.3.9.1.11. ネットワークチーミングの使用

任意: team= パラメーターを指定して、ボンディングの代わりにネットワークチーミングを使用できます。

  • チームインターフェイス設定の構文は team=name[:network_interfaces] です。

    name はチームデバイス名 (team0)、network_interfaces は物理 (イーサネット) インターフェイス (em1, em2) のコンマ区切りリストを表します。

注記

RHCOS が次のバージョンの RHEL に切り替わると、チーミングは非推奨になる予定です。詳細は、こちらの Red Hat ナレッジベース記事 を参照してください。

次の例を使用して、ネットワークチームを設定します。

team=team0:em1,em2
ip=team0:dhcp
Copy to Clipboard Toggle word wrap
2.1.13.3.9.2. ISO および PXE インストール用の coreos-installer オプション

RHCOS は、ISO イメージから RHCOS ライブ環境に起動した後に、コマンドプロンプトで coreos-installer install <options> <device> を実行してインストールできます。

以下の表は、coreos-installer コマンドに渡すことのできるサブコマンド、オプションおよび引数を示しています。

Expand
表2.9 coreos-installer サブコマンド、コマンドラインオプション、および引数

coreos-installer install サブコマンド

サブコマンド

説明

$ coreos-installer install <options> <device>

Ignition 設定を ISO イメージに埋め込みます。

coreos-installer install サブコマンドオプション

オプション

説明

-u--image-url <url>

イメージの URL を手動で指定します。

-f--image-file <path>

ローカルイメージファイルを手動で指定します。デバッグに使用されます。

-i--ignition-file <path>

ファイルから Ignition 設定を埋め込みます。

-I--ignition-url <URL>

URL から Ignition 設定を埋め込みます。

--ignition-hash <digest>

Ignition 設定の type-value をダイジェスト値を取得します。

-p--platform <name>

インストール済みシステムの Ignition プラットフォーム ID を上書きします。

--console <spec>

インストールされたシステムのカーネルとブートローダーコンソールを設定します。<spec> の形式の詳細は、Linux カーネルシリアルコンソール のドキュメントを参照してください。

--append-karg <arg>…​

インストール済みシステムにデフォルトのカーネル引数を追加します。

--delete-karg <arg>…​

インストール済みシステムからデフォルトのカーネル引数を削除します。

-n--copy-network

インストール環境からネットワーク設定をコピーします。

重要

--copy-network オプションは、/etc/NetworkManager/system-connections にあるネットワーク設定のみをコピーします。特に、システムのホスト名はコピーされません。

--network-dir <path>

-n を指定して使用する場合。デフォルトは /etc/NetworkManager/system-connections/ です。

--save-partlabel <lx>..

このラベル glob でパーティションを保存します。

--save-partindex <id>…​

この数または範囲でパーティションを保存します。

--insecure

RHCOS イメージ署名の検証を省略します。

--insecure-ignition

HTTPS またはハッシュなしで Ignition URL を許可します。

--architecture <name>

ターゲット CPU アーキテクチャー。有効な値は x86_64 および aarch64 です。

--preserve-on-error

エラー時のパーティションテーブルは消去しないでください。

-h--help

ヘルプ情報を表示します。

coreos-installer インストールサブコマンド引数

引数

説明

<device>

宛先デバイス。

coreos-installer ISO サブコマンド

サブコマンド

説明

$ coreos-installer iso customize <options> <ISO_image>

RHCOS ライブ ISO イメージをカスタマイズします。

coreos-installer iso reset <options> <ISO_image>

RHCOS ライブ ISO イメージをデフォルト設定に復元します。

coreos-installer iso ignition remove <options> <ISO_image>

ISO イメージから埋め込まれた Ignition 設定を削除します。

coreos-installer ISO カスタマイズサブコマンドオプション

オプション

説明

--dest-ignition <path>

指定された Ignition 設定ファイルを宛先システムの新しい設定フラグメントにマージします。

--dest-console <spec>

宛先システムのカーネルとブートローダーコンソールを指定します。

--dest-device <path>

指定した宛先デバイスをインストールして上書きします。

--dest-karg-append <arg>

宛先システムの各起動にカーネル引数を追加します。

--dest-karg-delete <arg>

宛先システムの各起動からカーネル引数を削除します。

--network-keyfile <path>

ライブシステムと宛先システムに指定された NetworkManager キーファイルを使用してネットワークを設定します。

--ignition-ca <path>

Ignition によって信頼される追加の TLS 認証局を指定します。

--pre-install <path>

インストールする前に、指定されたスクリプトを実行します。

--post-install <path>

インストール後に指定されたスクリプトを実行します。

--installer-config <path>

指定されたインストーラー設定ファイルを適用します。

--live-ignition <path>

指定された Ignition 設定ファイルをライブ環境の新しい設定フラグメントにマージします。

--live-karg-append <arg>

ライブ環境の各ブートにカーネル引数を追加します。

--live-karg-delete <arg>

ライブ環境の各ブートからカーネル引数を削除します。

--live-karg-replace <k=o=n>

ライブ環境の各起動で、key=old=new の形式でカーネル引数を置き換えます。

-f, --force

既存の Ignition 設定を上書きします。

-o--output <path>

新しい出力ファイルに ISO を書き込みます。

-h--help

ヘルプ情報を表示します。

coreos-installer PXE サブコマンド

サブコマンド

説明

これらのオプションすべてがすべてのサブコマンドで使用できる訳ではないことに注意してください。

coreos-installer pxe customize <options> <path>

RHCOS ライブ PXE ブート設定をカスタマイズします。

coreos-installer pxe ignition wrap <options>

イメージに Ignition 設定をラップします。

coreos-installer pxe ignition unwrap <options> <image_name>

イメージでラップされた Ignition 設定を表示します。

coreos-installer PXE はサブコマンドオプションをカスタマイズします

オプション

説明

これらのオプションすべてがすべてのサブコマンドで使用できる訳ではないことに注意してください。

--dest-ignition <path>

指定された Ignition 設定ファイルを宛先システムの新しい設定フラグメントにマージします。

--dest-console <spec>

宛先システムのカーネルとブートローダーコンソールを指定します。

--dest-device <path>

指定した宛先デバイスをインストールして上書きします。

--network-keyfile <path>

ライブシステムと宛先システムに指定された NetworkManager キーファイルを使用してネットワークを設定します。

--ignition-ca <path>

Ignition によって信頼される追加の TLS 認証局を指定します。

--pre-install <path>

インストールする前に、指定されたスクリプトを実行します。

post-install <path>

インストール後に指定されたスクリプトを実行します。

--installer-config <path>

指定されたインストーラー設定ファイルを適用します。

--live-ignition <path>

指定された Ignition 設定ファイルをライブ環境の新しい設定フラグメントにマージします。

-o, --output <path>

initramfs を新しい出力ファイルに書き込みます。

注記

このオプションは、PXE 環境に必要です。

-h--help

ヘルプ情報を表示します。

2.1.13.3.9.3. ISO または PXE インストールの coreos.inst ブートオプション

coreos.inst ブートパラメーターを RHCOS ライブインストーラーに渡して、ブート時に coreos-installer オプションを自動的に起動できます。これらは、標準のブート引数の追加として提供されます。

  • ISO インストールの場合、ブートローダーメニューで自動ブートを中断して coreos.inst オプションを追加できます。RHEL CoreOS (Live) メニューオプションが強調表示されている状態で TAB を押すと、自動ブートを中断できます。
  • PXE または iPXE インストールの場合、RHCOS ライブインストーラーのブート前に coreos.inst オプションを APPEND 行に追加する必要があります。

以下の表は、ISO および PXE インストールの RHCOS ライブインストーラーの coreos.inst ブートオプションを示しています。

Expand
表2.10 coreos.inst ブートオプション
引数説明

coreos.inst.install_dev

必須。インストール先のシステムのブロックデバイス。

注記

sda は許可されていますが、/dev/sda などの完全パスを使用することが推奨されます。

coreos.inst.ignition_url

オプション: インストール済みシステムに埋め込む Ignition 設定の URL。URL が指定されていない場合、Ignition 設定は埋め込まれません。HTTP プロトコルおよび HTTPS プロトコルのみがサポートされます。

coreos.inst.save_partlabel

オプション: インストール時に保存するパーティションのコンマ区切りのラベル。glob 形式のワイルドカードが許可されます。指定したパーティションは存在する必要はありません。

coreos.inst.save_partindex

オプション: インストール時に保存するパーティションのコンマ区切りのインデックス。範囲 m-n は許可され、m または n のいずれかを省略できます。指定したパーティションは存在する必要はありません。

coreos.inst.insecure

オプション: coreos.inst.image_url で署名なしと指定される OS イメージを許可します。

coreos.inst.image_url

オプション: 指定した RHCOS イメージをダウンロードし、インストールします。

  • この引数は実稼働環境では使用できず、デバッグの目的でのみ使用することが意図されています。
  • この引数は、ライブメディアに一致しないバージョンの RHCOS をインストールするために使用できますが、インストールするバージョンに一致するメディアを使用することが推奨されます。
  • coreos.inst.image_url を使用している場合は、coreos.inst.insecure も使用する必要があります。これは、ベアメタルメディアが OpenShift Container Platform について GPG で署名されていないためです。
  • HTTP プロトコルおよび HTTPS プロトコルのみがサポートされます。

coreos.inst.skip_reboot

オプション: システムはインストール後に再起動しません。インストールが完了するとプロンプトが表示され、インストール時に生じる内容を検査できます。この引数は実稼働環境では使用できず、デバッグの目的でのみ使用することが意図されています。

coreos.inst.platform_id

オプション: RHCOS イメージがインストールされるプラットフォームの Ignition プラットフォーム ID。デフォルトは metal です。このオプションは、VMware などのクラウドプロバイダーから Ignition 設定を要求するかどうかを決定します。例: coreos.inst.platform_id=vmware

ignition.config.url

オプション: ライブ起動の Ignition 設定の URL。たとえば、これは coreos-installer の起動方法をカスタマイズしたり、インストール前後にコードを実行するために使用できます。これはインストール済みシステムの Ignition 設定である coreos.inst.ignition_url とは異なります。

2.1.13.4. RHCOS のカーネル引数でのマルチパスの有効化

RHCOS はプライマリーディスクでのマルチパスをサポートするようになり、ハードウェア障害に対する対障害性が強化され、ホストの可用性を強化できるようになりました。

OpenShift Container Platform 4.8 以降でプロビジョニングされたノードのマルチパスを有効にできます。インストール後のサポートは、マシン設定を使用してマルチパスをアクティベートすることで利用できますが、インストール中にマルチパスを有効にすることが推奨されます。

非最適化パスに対して I/O があると、I/O システムエラーが発生するように設定するには、インストール時にマルチパスを有効にする必要があります。

重要

IBM Z® および IBM® LinuxONE では、インストール時にクラスターを設定した場合のみマルチパスを有効にできます。詳細は、IBM Z® および IBM® LinuxONE への z/VM を使用したクラスターのインストール の RHCOS の「インストールおよび OpenShift Container Platform ブートストラッププロセスの開始」を参照してください。

以下の手順では、インストール時にマルチパスを有効にし、coreos-installer install コマンドにカーネル引数を追加して、インストール済みシステム自体が初回起動からマルチパスを使用できるようにします。

注記

OpenShift Container Platform は、4.6 以前からアップグレードされたノードでの day-2 アクティビティーとしてのマルチパスの有効化をサポートしません。

前提条件

  • クラスターの Ignition 設定ファイルを作成している。
  • RHCOS のインストールと OpenShift Container Platform ブートストラッププロセスの開始 を確認した。

手順

  1. マルチパスを有効にして multipathd デーモンを起動するには、インストールホストで次のコマンドを実行します。

    $ mpathconf --enable && systemctl start multipathd.service
    Copy to Clipboard Toggle word wrap
    • 必要に応じて、PXE または ISO を起動する場合は、カーネルコマンドラインから rd.multipath=default を追加することで、マルチパスを有効にできます。
  2. coreos-installer プログラムを呼び出してカーネル引数を追加します。

    • マシンに接続されているマルチパスデバイスが 1 つしかない場合は、このデバイスは /dev/mapper/mpatha のパスで利用できます。以下に例を示します。

      $ coreos-installer install /dev/mapper/mpatha \
      1
      
      --ignition-url=http://host/worker.ign \
      --append-karg rd.multipath=default \
      --append-karg root=/dev/disk/by-label/dm-mpath-root \
      --append-karg rw
      Copy to Clipboard Toggle word wrap
      1
      1 つのマルチパスデバイスのパスを指定します。
    • 複数のマルチパスデバイスがマシンに接続している場合には、より明示的に /dev/mapper/mpatha を使用する代わりに、/dev/disk/by-id で利用可能な World Wide Name (WWN) シンボリックリンクを使用することが推奨されます。以下に例を示します。

      $ coreos-installer install /dev/disk/by-id/wwn-<wwn_ID> \
      1
      
      --ignition-url=http://host/worker.ign \
      --append-karg rd.multipath=default \
      --append-karg root=/dev/disk/by-label/dm-mpath-root \
      --append-karg rw
      Copy to Clipboard Toggle word wrap
      1
      マルチパス化されたデバイスの WWN ID を指定します。例: 0xx194e957fcedb4841

      特別な coreos.inst.* 引数を使用してライブインストーラーを指定する場合に、このシンボリックリンクを coreos.inst.install_dev カーネル引数として使用することもできます。詳細は、「RHCOS のインストールおよび OpenShift Container Platform ブートストラッププロセスの開始」を参照してください。

  3. インストール済みのシステムで再起動します。
  4. ワーカーノードのいずれかに移動し、(ホストの /proc/cmdline 内の) カーネルコマンドライン引数をリスト表示して、カーネル引数が機能していることを確認します。

    $ oc debug node/ip-10-0-141-105.ec2.internal
    Copy to Clipboard Toggle word wrap

    出力例

    Starting pod/ip-10-0-141-105ec2internal-debug ...
    To use host binaries, run `chroot /host`
    
    sh-4.2# cat /host/proc/cmdline
    ...
    rd.multipath=default root=/dev/disk/by-label/dm-mpath-root
    ...
    
    sh-4.2# exit
    Copy to Clipboard Toggle word wrap

    追加したカーネル引数が表示されるはずです。

2.1.13.4.1. セカンダリーディスクでのマルチパス構成の有効化

RHCOS はセカンダリーディスク上のマルチパス構成もサポートします。カーネル引数の代わりに、Ignition を使用してインストール時にセカンダリーディスクのマルチパス構成を有効にします。

前提条件

  • ディスクのパーティション設定 セクションを読了した。
  • RHCOS のカーネル引数でのマルチパスの有効化 を読了した。
  • Butane ユーティリティーをインストールした。

手順

  1. 次のような情報を含む Butane 設定を作成します。

    multipath-config.bu の例

    variant: openshift
    version: 4.19.0
    systemd:
      units:
        - name: mpath-configure.service
          enabled: true
          contents: |
            [Unit]
            Description=Configure Multipath on Secondary Disk
            ConditionFirstBoot=true
            ConditionPathExists=!/etc/multipath.conf
            Before=multipathd.service 
    1
    
            DefaultDependencies=no
    
            [Service]
            Type=oneshot
            ExecStart=/usr/sbin/mpathconf --enable 
    2
    
    
            [Install]
            WantedBy=multi-user.target
        - name: mpath-var-lib-container.service
          enabled: true
          contents: |
            [Unit]
            Description=Set Up Multipath On /var/lib/containers
            ConditionFirstBoot=true 
    3
    
            Requires=dev-mapper-mpatha.device
            After=dev-mapper-mpatha.device
            After=ostree-remount.service
            Before=kubelet.service
            DefaultDependencies=no
    
            [Service] 
    4
    
            Type=oneshot
            ExecStart=/usr/sbin/mkfs.xfs -L containers -m reflink=1 /dev/mapper/mpatha
            ExecStart=/usr/bin/mkdir -p /var/lib/containers
    
            [Install]
            WantedBy=multi-user.target
        - name: var-lib-containers.mount
          enabled: true
          contents: |
            [Unit]
            Description=Mount /var/lib/containers
            After=mpath-var-lib-containers.service
            Before=kubelet.service 
    5
    
    
            [Mount] 
    6
    
            What=/dev/disk/by-label/dm-mpath-containers
            Where=/var/lib/containers
            Type=xfs
    
            [Install]
            WantedBy=multi-user.target
    Copy to Clipboard Toggle word wrap

    1
    マルチパスデーモンを起動する前に設定を行う必要があります。
    2
    mpathconf ユーティリティーを起動します。
    3
    このフィールドの値は、true に設定する必要があります。
    4
    ファイルシステムとディレクトリー /var/lib/containers を作成します。
    5
    ノードを起動する前にデバイスをマウントする必要があります。
    6
    デバイスを /var/lib/containers マウントポイントにマウントします。この場所はシンボリックリンクにできません。
  2. 次のコマンドを実行して、Ignition 設定を作成します。

    $ butane --pretty --strict multipath-config.bu > multipath-config.ign
    Copy to Clipboard Toggle word wrap
  3. 初回起動時の RHCOS インストールプロセスの残りを続行します。

    重要

    プライマリーディスクもマルチパス化されていない限り、インストール中にコマンドラインに rd.multipath または root カーネル引数を追加しないでください。

2.1.13.5. iSCSI ブートデバイスに RHCOS を手動でインストールする

iSCSI ターゲットに、手動で RHCOS をインストールできます。

前提条件

  1. RHCOS ライブ環境にいる。
  2. RHCOS のインストール先となる iSCSI ターゲットがある。

手順

  1. 次のコマンドを実行して、ライブ環境から iSCSI ターゲットをマウントします。

    $ iscsiadm \
        --mode discovery \
        --type sendtargets
        --portal <IP_address> \ 
    1
    
        --login
    Copy to Clipboard Toggle word wrap
    1
    ターゲットポータルの IP アドレス。
  2. 次のコマンドを実行し、必要なカーネル引数を使用して、RHCOS を iSCSI ターゲットにインストールします。以下はその例です。

    $ coreos-installer install \
    /dev/disk/by-path/ip-<IP_address>:<port>-iscsi-<target_iqn>-lun-<lun> \ 
    1
    
    --append-karg rd.iscsi.initiator=<initiator_iqn> \ 
    2
    
    --append.karg netroot=<target_iqn> \ 
    3
    
    --console ttyS0,115200n8
    --ignition-file <path_to_file>
    Copy to Clipboard Toggle word wrap
    1
    インストール先の場所。ターゲットポータルの IP アドレス、関連付けられたポート番号、IQN 形式のターゲット iSCSI ノード、および iSCSI 論理ユニット番号 (LUN) を指定する必要があります。
    2
    IQN 形式の iSCSI イニシエーター、クライアントの名前。イニシエーターは iSCSI ターゲットに接続するセッションを形成します。
    3
    IQN 形式の iSCSI ターゲットまたはサーバーの名前。

    dracut でサポートされる iSCSI オプションの詳細は、dracut.cmdline man ページ を参照してください。

  3. 次のコマンドを実行して iSCSI ディスクをアンマウントします。

    $ iscsiadm --mode node --logoutall=all
    Copy to Clipboard Toggle word wrap

この手順は、coreos-installer iso customize または coreos-installer pxe customize サブコマンドを使用して実行することもできます。

2.1.13.6. iBFT を使用して iSCSI ブートデバイスに RHCOS をインストールする

完全にディスクレスなマシンでは、iSCSI ターゲットとイニシエーターの値を iBFT 経由で渡すことができます。iSCSI マルチパス構成もサポートされています。

前提条件

  1. RHCOS ライブ環境にいる。
  2. RHCOS のインストール先となる iSCSI ターゲットがある。
  3. オプション: iSCSI ターゲットをマルチパス化した。

手順

  1. 次のコマンドを実行して、ライブ環境から iSCSI ターゲットをマウントします。

    $ iscsiadm \
        --mode discovery \
        --type sendtargets
        --portal <IP_address> \ 
    1
    
        --login
    Copy to Clipboard Toggle word wrap
    1
    ターゲットポータルの IP アドレス。
  2. オプション: マルチパス構成を有効にし、次のコマンドでデーモンを起動します。

    $ mpathconf --enable && systemctl start multipathd.service
    Copy to Clipboard Toggle word wrap
  3. 次のコマンドを実行し、必要なカーネル引数を使用して、RHCOS を iSCSI ターゲットにインストールします。以下はその例です。

    $ coreos-installer install \
        /dev/mapper/mpatha \ 
    1
    
        --append-karg rd.iscsi.firmware=1 \ 
    2
    
        --append-karg rd.multipath=default \ 
    3
    
        --console ttyS0 \
        --ignition-file <path_to_file>
    Copy to Clipboard Toggle word wrap
    1
    マルチパス化された単一デバイスのパス。複数のマルチパスデバイスが接続されている場合、または明示する場合、/dev/disk/by-path で使用可能な World Wide Name (WWN) シンボリックリンクを使用できます。
    2
    iSCSI パラメーターは、BIOS ファームウェアから読み取られます。
    3
    オプション: マルチパス構成を有効にする場合は、このパラメーターを含めます。

    dracut でサポートされる iSCSI オプションの詳細は、dracut.cmdline man ページ を参照してください。

  4. iSCSI ディスクをアンマウントします。

    $ iscsiadm --mode node --logout=all
    Copy to Clipboard Toggle word wrap

この手順は、coreos-installer iso customize または coreos-installer pxe customize サブコマンドを使用して実行することもできます。

2.1.14. ブートストラッププロセスの完了まで待機する

OpenShift Container Platform ブートストラッププロセスは、初回のクラスターノードのディスクにインストールされている永続的な RHCOS 環境での起動後に開始します。Ignition 設定ファイルで指定される設定情報は、ブートストラッププロセスを初期化し、マシンに OpenShift Container Platform をインストールするために使用されます。ブートストラッププロセスが完了するまで待機する必要があります。

前提条件

  • クラスターの Ignition 設定ファイルを作成している。
  • 適切なネットワーク、DNS および負荷分散インフラストラクチャーを設定している。
  • インストールプログラムを取得し、クラスターの Ignition 設定ファイルを生成している。
  • RHCOS をクラスターマシンにインストールし、OpenShift Container Platform インストールプログラムで生成される Ignition 設定ファイルを指定している。
  • お使いのマシンでインターネットに直接アクセスできるか、HTTP または HTTPS プロキシーが利用できる。

手順

  1. ブートストラッププロセスをモニターします。

    $ ./openshift-install --dir <installation_directory> wait-for bootstrap-complete \ 
    1
    
        --log-level=info 
    2
    Copy to Clipboard Toggle word wrap
    1
    <installation_directory> には、インストールファイルを保存したディレクトリーへのパスを指定します。
    2
    異なるインストールの詳細情報を表示するには、info ではなく、warndebug、または error を指定します。

    出力例

    INFO Waiting up to 30m0s for the Kubernetes API at https://api.test.example.com:6443...
    INFO API v1.32.3 up
    INFO Waiting up to 30m0s for bootstrapping to complete...
    INFO It is now safe to remove the bootstrap resources
    Copy to Clipboard Toggle word wrap

    Kubernetes API サーバーでこれがコントロールプレーンマシンにブートストラップされていることを示すシグナルが出されるとコマンドは成功します。

  2. ブートストラッププロセスが完了したら、ブートストラップマシンをロードバランサーから削除します。

    重要

    この時点で、ブートストラップマシンをロードバランサーから削除する必要があります。さらに、ブートストラップマシン自体を削除し、再フォーマットすることができます。

2.1.15. CLI の使用によるクラスターへのログイン

クラスター kubeconfig ファイルをエクスポートし、デフォルトシステムユーザーとしてクラスターにログインできます。kubeconfig ファイルには、クライアントを正しいクラスターおよび API サーバーに接続するために CLI で使用されるクラスターに関する情報が含まれます。このファイルはクラスターに固有のファイルであり、OpenShift Container Platform のインストール時に作成されます。

前提条件

  • OpenShift Container Platform クラスターをデプロイしていること。
  • OpenShift CLI (oc) がインストールされている。

手順

  1. 次のコマンドを実行して、kubeadmin 認証情報をエクスポートします。

    $ export KUBECONFIG=<installation_directory>/auth/kubeconfig 
    1
    Copy to Clipboard Toggle word wrap
    1
    <installation_directory> には、インストールファイルを保存したディレクトリーへのパスを指定します。
  2. 次のコマンドを実行し、エクスポートされた設定を使用して oc コマンドを正常に実行できることを確認します。

    $ oc whoami
    Copy to Clipboard Toggle word wrap

    出力例

    system:admin
    Copy to Clipboard Toggle word wrap

2.1.16. マシンの証明書署名要求の承認

マシンをクラスターに追加する際に、追加したそれぞれのマシンに対して 2 つの保留状態の証明書署名要求 (CSR) が生成されます。これらの CSR が承認されていることを確認するか、必要な場合はそれらを承認してください。最初にクライアント要求を承認し、次にサーバー要求を承認する必要があります。

前提条件

  • マシンがクラスターに追加されています。

手順

  1. クラスターがマシンを認識していることを確認します。

    $ oc get nodes
    Copy to Clipboard Toggle word wrap

    出力例

    NAME      STATUS    ROLES   AGE  VERSION
    master-0  Ready     master  63m  v1.32.3
    master-1  Ready     master  63m  v1.32.3
    master-2  Ready     master  64m  v1.32.3
    Copy to Clipboard Toggle word wrap

    出力には作成したすべてのマシンがリスト表示されます。

    注記

    上記の出力には、一部の CSR が承認されるまで、ワーカーノード (ワーカーノードとも呼ばれる) が含まれない場合があります。

  2. 保留中の証明書署名要求 (CSR) を確認し、クラスターに追加したそれぞれのマシンのクライアントおよびサーバー要求に Pending または Approved ステータスが表示されていることを確認します。

    $ oc get csr
    Copy to Clipboard Toggle word wrap

    出力例

    NAME        AGE     REQUESTOR                                                                   CONDITION
    csr-8b2br   15m     system:serviceaccount:openshift-machine-config-operator:node-bootstrapper   Pending
    csr-8vnps   15m     system:serviceaccount:openshift-machine-config-operator:node-bootstrapper   Pending
    ...
    Copy to Clipboard Toggle word wrap

    この例では、2 つのマシンがクラスターに参加しています。このリストにはさらに多くの承認された CSR が表示される可能性があります。

  3. 追加したマシンの保留中の CSR すべてが Pending ステータスになった後に CSR が承認されない場合には、クラスターマシンの CSR を承認します。

    注記

    CSR のローテーションは自動的に実行されるため、クラスターにマシンを追加後 1 時間以内に CSR を承認してください。1 時間以内に承認しない場合には、証明書のローテーションが行われ、各ノードに 3 つ以上の証明書が存在するようになります。これらの証明書すべてを承認する必要があります。クライアントの CSR が承認された後に、Kubelet は提供証明書のセカンダリー CSR を作成します。これには、手動の承認が必要になります。次に、後続の提供証明書の更新要求は、Kubelet が同じパラメーターを持つ新規証明書を要求する場合に machine-approver によって自動的に承認されます。

    注記

    ベアメタルおよび他の user-provisioned infrastructure などのマシン API ではないプラットフォームで実行されているクラスターの場合、kubelet 提供証明書要求 (CSR) を自動的に承認する方法を実装する必要があります。要求が承認されない場合、API サーバーが kubelet に接続する際に提供証明書が必須であるため、oc execoc rsh、および oc logs コマンドは正常に実行できません。Kubelet エンドポイントにアクセスする操作には、この証明書の承認が必要です。この方法は新規 CSR の有無を監視し、CSR が system:node または system:admin グループの node-bootstrapper サービスアカウントによって提出されていることを確認し、ノードの ID を確認します。

    • それらを個別に承認するには、それぞれの有効な CSR に以下のコマンドを実行します。

      $ oc adm certificate approve <csr_name> 
      1
      Copy to Clipboard Toggle word wrap
      1
      <csr_name> は、現行の CSR のリストからの CSR の名前です。
    • すべての保留中の CSR を承認するには、以下のコマンドを実行します。

      $ oc get csr -o go-template='{{range .items}}{{if not .status}}{{.metadata.name}}{{"\n"}}{{end}}{{end}}' | xargs --no-run-if-empty oc adm certificate approve
      Copy to Clipboard Toggle word wrap
      注記

      一部の Operator は、一部の CSR が承認されるまで利用できない可能性があります。

  4. クライアント要求が承認されたら、クラスターに追加した各マシンのサーバー要求を確認する必要があります。

    $ oc get csr
    Copy to Clipboard Toggle word wrap

    出力例

    NAME        AGE     REQUESTOR                                                                   CONDITION
    csr-bfd72   5m26s   system:node:ip-10-0-50-126.us-east-2.compute.internal                       Pending
    csr-c57lv   5m26s   system:node:ip-10-0-95-157.us-east-2.compute.internal                       Pending
    ...
    Copy to Clipboard Toggle word wrap

  5. 残りの CSR が承認されず、それらが Pending ステータスにある場合、クラスターマシンの CSR を承認します。

    • それらを個別に承認するには、それぞれの有効な CSR に以下のコマンドを実行します。

      $ oc adm certificate approve <csr_name> 
      1
      Copy to Clipboard Toggle word wrap
      1
      <csr_name> は、現行の CSR のリストからの CSR の名前です。
    • すべての保留中の CSR を承認するには、以下のコマンドを実行します。

      $ oc get csr -o go-template='{{range .items}}{{if not .status}}{{.metadata.name}}{{"\n"}}{{end}}{{end}}' | xargs oc adm certificate approve
      Copy to Clipboard Toggle word wrap
  6. すべてのクライアントおよびサーバーの CSR が承認された後に、マシンのステータスが Ready になります。以下のコマンドを実行して、これを確認します。

    $ oc get nodes
    Copy to Clipboard Toggle word wrap

    出力例

    NAME      STATUS    ROLES   AGE  VERSION
    master-0  Ready     master  73m  v1.32.3
    master-1  Ready     master  73m  v1.32.3
    master-2  Ready     master  74m  v1.32.3
    worker-0  Ready     worker  11m  v1.32.3
    worker-1  Ready     worker  11m  v1.32.3
    Copy to Clipboard Toggle word wrap

    注記

    サーバー CSR の承認後にマシンが Ready ステータスに移行するまでに数分の時間がかかる場合があります。

関連情報

2.1.17. Operator の初期設定

コントロールプレーンの初期化後に、一部の Operator を利用可能にするためにそれらをすぐに設定する必要があります。

前提条件

  • コントロールプレーンが初期化されています。

手順

  1. クラスターコンポーネントがオンラインになることを確認します。

    $ watch -n5 oc get clusteroperators
    Copy to Clipboard Toggle word wrap

    出力例

    NAME                                       VERSION   AVAILABLE   PROGRESSING   DEGRADED   SINCE
    authentication                             4.19.0    True        False         False      19m
    baremetal                                  4.19.0    True        False         False      37m
    cloud-credential                           4.19.0    True        False         False      40m
    cluster-autoscaler                         4.19.0    True        False         False      37m
    config-operator                            4.19.0    True        False         False      38m
    console                                    4.19.0    True        False         False      26m
    csi-snapshot-controller                    4.19.0    True        False         False      37m
    dns                                        4.19.0    True        False         False      37m
    etcd                                       4.19.0    True        False         False      36m
    image-registry                             4.19.0    True        False         False      31m
    ingress                                    4.19.0    True        False         False      30m
    insights                                   4.19.0    True        False         False      31m
    kube-apiserver                             4.19.0    True        False         False      26m
    kube-controller-manager                    4.19.0    True        False         False      36m
    kube-scheduler                             4.19.0    True        False         False      36m
    kube-storage-version-migrator              4.19.0    True        False         False      37m
    machine-api                                4.19.0    True        False         False      29m
    machine-approver                           4.19.0    True        False         False      37m
    machine-config                             4.19.0    True        False         False      36m
    marketplace                                4.19.0    True        False         False      37m
    monitoring                                 4.19.0    True        False         False      29m
    network                                    4.19.0    True        False         False      38m
    node-tuning                                4.19.0    True        False         False      37m
    openshift-apiserver                        4.19.0    True        False         False      32m
    openshift-controller-manager               4.19.0    True        False         False      30m
    openshift-samples                          4.19.0    True        False         False      32m
    operator-lifecycle-manager                 4.19.0    True        False         False      37m
    operator-lifecycle-manager-catalog         4.19.0    True        False         False      37m
    operator-lifecycle-manager-packageserver   4.19.0    True        False         False      32m
    service-ca                                 4.19.0    True        False         False      38m
    storage                                    4.19.0    True        False         False      37m
    Copy to Clipboard Toggle word wrap

  2. 利用不可の Operator を設定します。
2.1.17.1. インストール時に削除されたイメージレジストリー

共有可能なオブジェクトストレージを提供しないプラットフォームでは、OpenShift Image Registry Operator 自体が Removed としてブートストラップされます。これにより、openshift-installer がそれらのプラットフォームタイプでのインストールを完了できます。

インストール後に、Image Registry Operator 設定を編集して managementStateRemoved から Managed に切り替える必要があります。これが完了したら、ストレージを設定する必要があります。

2.1.17.2. イメージレジストリーストレージの設定

Image Registry Operator は、デフォルトストレージを提供しないプラットフォームでは最初は利用できません。インストール後に、レジストリー Operator を使用できるようにレジストリーをストレージを使用するように設定する必要があります。

実稼働クラスターに必要な永続ボリュームの設定に関する手順が示されます。該当する場合、空のディレクトリーをストレージの場所として設定する方法が表示されます。これは、実稼働以外のクラスターでのみ利用できます。

アップグレード時に Recreate ロールアウトストラテジーを使用して、イメージレジストリーがブロックストレージタイプを使用することを許可するための追加の手順が提供されます。

2.1.17.2.1. ベアメタルおよび他の手動インストールの場合のレジストリーストレージの設定

クラスター管理者は、インストール後にレジストリーをストレージを使用できるように設定する必要があります。

前提条件

  • cluster-admin ロールを持つユーザーとしてクラスターにアクセスできる。
  • ベアメタルなどの、手動でプロビジョニングされた Red Hat Enterprise Linux CoreOS (RHCOS) ノードを使用するクラスターがある。
  • Red Hat OpenShift Data Foundation などのクラスターのプロビジョニングされた永続ストレージがある。

    重要

    OpenShift Container Platform は、1 つのレプリカのみが存在する場合にイメージレジストリーストレージの ReadWriteOnce アクセスをサポートします。ReadWriteOnce アクセスでは、レジストリーが Recreate ロールアウト戦略を使用する必要もあります。2 つ以上のレプリカで高可用性をサポートするイメージレジストリーをデプロイするには、ReadWriteMany アクセスが必要です。

  • 100 Gi の容量がある。

手順

  1. レジストリーをストレージを使用できるように設定するには、configs.imageregistry/cluster リソースの spec.storage.pvc を変更します。

    注記

    共有ストレージを使用する場合は、外部からアクセスを防ぐためにセキュリティー設定を確認します。

  2. レジストリー Pod がないことを確認します。

    $ oc get pod -n openshift-image-registry -l docker-registry=default
    Copy to Clipboard Toggle word wrap

    出力例

    No resources found in openshift-image-registry namespace
    Copy to Clipboard Toggle word wrap

    注記

    出力にレジストリー Pod がある場合は、この手順を続行する必要はありません。

  3. レジストリー設定を確認します。

    $ oc edit configs.imageregistry.operator.openshift.io
    Copy to Clipboard Toggle word wrap

    出力例

    storage:
      pvc:
        claim:
    Copy to Clipboard Toggle word wrap

    claim フィールドを空のままにし、image-registry-storage PVC の自動作成を可能にします。

  4. clusteroperator ステータスを確認します。

    $ oc get clusteroperator image-registry
    Copy to Clipboard Toggle word wrap

    出力例

    NAME             VERSION              AVAILABLE   PROGRESSING   DEGRADED   SINCE   MESSAGE
    image-registry   4.19                 True        False         False      6h50m
    Copy to Clipboard Toggle word wrap

  5. イメージのビルドおよびプッシュを有効にするためにレジストリーが managed に設定されていることを確認します。

    • 以下を実行します。

      $ oc edit configs.imageregistry/cluster
      Copy to Clipboard Toggle word wrap

      次に、行を変更します。

      managementState: Removed
      Copy to Clipboard Toggle word wrap

      次のように変更してください。

      managementState: Managed
      Copy to Clipboard Toggle word wrap
2.1.17.2.2. 実稼働以外のクラスターでのイメージレジストリーのストレージの設定

Image Registry Operator のストレージを設定する必要があります。実稼働用以外のクラスターの場合、イメージレジストリーは空のディレクトリーに設定することができます。これを実行する場合、レジストリーを再起動するとすべてのイメージが失われます。

手順

  • イメージレジストリーストレージを空のディレクトリーに設定するには、以下を実行します。

    $ oc patch configs.imageregistry.operator.openshift.io cluster --type merge --patch '{"spec":{"storage":{"emptyDir":{}}}}'
    Copy to Clipboard Toggle word wrap
    警告

    実稼働用以外のクラスターにのみこのオプションを設定します。

    Image Registry Operator がそのコンポーネントを初期化する前にこのコマンドを実行する場合、oc patch コマンドは以下のエラーを出して失敗します。

    Error from server (NotFound): configs.imageregistry.operator.openshift.io "cluster" not found
    Copy to Clipboard Toggle word wrap

    数分待機した後に、このコマンドを再び実行します。

2.1.17.2.3. ベアメタルの場合のブロックレジストリーストレージの設定

イメージレジストリーがクラスター管理者によるアップグレード時にブロックストレージタイプを使用できるようにするには、Recreate ロールアウトストラテジーを使用できます。

重要

ブロックストレージボリューム (または永続ボリューム) はサポートされますが、実稼働クラスターでのイメージレジストリーと併用することは推奨されません。レジストリーに複数のレプリカを含めることができないため、ブロックストレージにレジストリーが設定されているインストールに高可用性はありません。

イメージレジストリーでブロックストレージボリュームを使用することを選択した場合は、ファイルシステムの persistent volume claim (PVC) を使用する必要があります。

手順

  1. 次のコマンドを入力してイメージレジストリーストレージをブロックストレージタイプとして設定し、レジストリーにパッチを適用して Recreate ロールアウトストラテジーを使用し、1 つの (1) レプリカのみで実行されるようにします。

    $ oc patch config.imageregistry.operator.openshift.io/cluster --type=merge -p '{"spec":{"rolloutStrategy":"Recreate","replicas":1}}'
    Copy to Clipboard Toggle word wrap
  2. ブロックストレージデバイスの PV をプロビジョニングし、そのボリュームの PVC を作成します。要求されたブロックボリュームは ReadWriteOnce (RWO) アクセスモードを使用します。

    1. 以下の内容で pvc.yaml ファイルを作成して VMware vSphere PersistentVolumeClaim オブジェクトを定義します。

      kind: PersistentVolumeClaim
      apiVersion: v1
      metadata:
        name: image-registry-storage 
      1
      
        namespace: openshift-image-registry 
      2
      
      spec:
        accessModes:
        - ReadWriteOnce 
      3
      
        resources:
          requests:
            storage: 100Gi 
      4
      Copy to Clipboard Toggle word wrap
      1
      PersistentVolumeClaim オブジェクトを表す一意の名前。
      2
      PersistentVolumeClaim オブジェクトの namespace (openshift-image-registry)。
      3
      永続ボリューム要求のアクセスモード。ReadWriteOnce では、ボリュームは単一ノードによって読み取り/書き込みパーミッションでマウントできます。
      4
      永続ボリューム要求のサイズ。
    2. 次のコマンドを入力して、ファイルから PersistentVolumeClaim オブジェクトを作成します。

      $ oc create -f pvc.yaml -n openshift-image-registry
      Copy to Clipboard Toggle word wrap
  3. 次のコマンドを入力して、正しい PVC を参照するようにレジストリー設定を編集します。

    $ oc edit config.imageregistry.operator.openshift.io -o yaml
    Copy to Clipboard Toggle word wrap

    出力例

    storage:
      pvc:
        claim: 
    1
    Copy to Clipboard Toggle word wrap

    1
    カスタム PVC を作成することにより、image-registry-storage PVC のデフォルトの自動作成の claim フィールドを空のままにできます。

2.1.18. user-provisioned infrastructure でのインストールの完了

Operator の設定が完了したら、独自に提供するインフラストラクチャーへのクラスターのインストールを完了できます。

前提条件

  • コントロールプレーンが初期化されています。
  • Operator の初期設定を完了済みです。

手順

  1. 以下のコマンドを使用して、すべてのクラスターコンポーネントがオンラインであることを確認します。

    $ watch -n5 oc get clusteroperators
    Copy to Clipboard Toggle word wrap

    出力例

    NAME                                       VERSION   AVAILABLE   PROGRESSING   DEGRADED   SINCE
    authentication                             4.19.0    True        False         False      19m
    baremetal                                  4.19.0    True        False         False      37m
    cloud-credential                           4.19.0    True        False         False      40m
    cluster-autoscaler                         4.19.0    True        False         False      37m
    config-operator                            4.19.0    True        False         False      38m
    console                                    4.19.0    True        False         False      26m
    csi-snapshot-controller                    4.19.0    True        False         False      37m
    dns                                        4.19.0    True        False         False      37m
    etcd                                       4.19.0    True        False         False      36m
    image-registry                             4.19.0    True        False         False      31m
    ingress                                    4.19.0    True        False         False      30m
    insights                                   4.19.0    True        False         False      31m
    kube-apiserver                             4.19.0    True        False         False      26m
    kube-controller-manager                    4.19.0    True        False         False      36m
    kube-scheduler                             4.19.0    True        False         False      36m
    kube-storage-version-migrator              4.19.0    True        False         False      37m
    machine-api                                4.19.0    True        False         False      29m
    machine-approver                           4.19.0    True        False         False      37m
    machine-config                             4.19.0    True        False         False      36m
    marketplace                                4.19.0    True        False         False      37m
    monitoring                                 4.19.0    True        False         False      29m
    network                                    4.19.0    True        False         False      38m
    node-tuning                                4.19.0    True        False         False      37m
    openshift-apiserver                        4.19.0    True        False         False      32m
    openshift-controller-manager               4.19.0    True        False         False      30m
    openshift-samples                          4.19.0    True        False         False      32m
    operator-lifecycle-manager                 4.19.0    True        False         False      37m
    operator-lifecycle-manager-catalog         4.19.0    True        False         False      37m
    operator-lifecycle-manager-packageserver   4.19.0    True        False         False      32m
    service-ca                                 4.19.0    True        False         False      38m
    storage                                    4.19.0    True        False         False      37m
    Copy to Clipboard Toggle word wrap

    あるいは、以下のコマンドを使用すると、すべてのクラスターが利用可能な場合に通知されます。また、このコマンドは認証情報を取得して表示します。

    $ ./openshift-install --dir <installation_directory> wait-for install-complete 
    1
    Copy to Clipboard Toggle word wrap
    1
    <installation_directory> には、インストールファイルを保存したディレクトリーへのパスを指定します。

    出力例

    INFO Waiting up to 30m0s for the cluster to initialize...
    Copy to Clipboard Toggle word wrap

    Cluster Version Operator が Kubernetes API サーバーから OpenShift Container Platform クラスターのデプロイを終了するとコマンドは成功します。

    重要
    • インストールプログラムが生成する Ignition 設定ファイルには、24 時間が経過すると期限切れになり、その後に更新される証明書が含まれます。証明書を更新する前にクラスターが停止し、24 時間経過した後にクラスターを再起動すると、クラスターは期限切れの証明書を自動的に復元します。例外として、kubelet 証明書を回復するために保留状態の node-bootstrapper 証明書署名要求 (CSR) を手動で承認する必要があります。詳細は、コントロールプレーン証明書の期限切れの状態からのリカバリー に関するドキュメントを参照してください。
    • 24 時間証明書はクラスターのインストール後 16 時間から 22 時間にローテーションするため、Ignition 設定ファイルは、生成後 12 時間以内に使用することを推奨します。12 時間以内に Ignition 設定ファイルを使用することにより、インストール中に証明書の更新が実行された場合のインストールの失敗を回避できます。
  2. Kubernetes API サーバーが Pod と通信していることを確認します。

    1. すべての Pod のリストを表示するには、以下のコマンドを使用します。

      $ oc get pods --all-namespaces
      Copy to Clipboard Toggle word wrap

      出力例

      NAMESPACE                         NAME                                            READY   STATUS      RESTARTS   AGE
      openshift-apiserver-operator      openshift-apiserver-operator-85cb746d55-zqhs8   1/1     Running     1          9m
      openshift-apiserver               apiserver-67b9g                                 1/1     Running     0          3m
      openshift-apiserver               apiserver-ljcmx                                 1/1     Running     0          1m
      openshift-apiserver               apiserver-z25h4                                 1/1     Running     0          2m
      openshift-authentication-operator authentication-operator-69d5d8bf84-vh2n8        1/1     Running     0          5m
      ...
      Copy to Clipboard Toggle word wrap

    2. 以下のコマンドを使用して、直前のコマンドの出力にリスト表示される Pod のログを表示します。

      $ oc logs <pod_name> -n <namespace> 
      1
      Copy to Clipboard Toggle word wrap
      1
      直前のコマンドの出力にあるように、Pod 名および namespace を指定します。

      Pod のログが表示される場合、Kubernetes API サーバーはクラスターマシンと通信できます。

  3. FCP (Fibre Channel Protocol) を使用したインストールでは、マルチパスを有効にするために追加の手順が必要です。インストール時にマルチパスを有効にしないでください。

    詳細は、インストール後のマシン設定タスク ドキュメントで、「RHCOS でのカーネル引数を使用したマルチパスの有効化」を参照してください。

2.1.19. OpenShift Container Platform の Telemetry アクセス

OpenShift Container Platform 4.19 では、Telemetry サービスにもインターネットアクセスが必要です。Telemetry サービスは、クラスターの健全性と更新の成功に関するメトリクスを提供するためにデフォルトで実行されます。クラスターがインターネットに接続されている場合、Telemetry は自動的に実行され、クラスターは OpenShift Cluster Manager に登録されます。

OpenShift Cluster Manager インベントリーが正常である (Telemetry によって自動的に維持、または OpenShift Cluster Manager を使用して手動で維持) ことを確認した後に、subscription watch を使用 して、アカウントまたはマルチクラスターレベルで OpenShift Container Platform サブスクリプションを追跡します。

2.1.20. 次のステップ

OpenShift Container Platform 4.19 では、カスタマイズしたネットワーク設定オプションを使用して、独自にプロビジョニングするベアメタルインフラストラクチャーにクラスターをインストールできます。ネットワーク設定をカスタマイズすることにより、クラスターは環境内の既存の IP アドレスの割り当てと共存でき、既存の MTU および VXLAN 設定と統合できます。

OpenShift Container Platform ネットワークをカスタマイズする場合、インストール時にほとんどのネットワーク設定パラメーターを設定する必要があります。実行中のクラスターで変更できるのは kubeProxy ネットワーク設定パラメーターのみです。

2.2.1. 前提条件

2.2.2. OpenShift Container Platform のインターネットアクセス

OpenShift Container Platform 4.19 では、クラスターをインストールするためにインターネットアクセスが必要です。

次のアクションを実行するには、インターネットにアクセスできる必要があります。

  • OpenShift Cluster Manager にアクセスし、インストールプログラムをダウンロードし、サブスクリプション管理を実行します。クラスターがインターネットにアクセスでき、Telemetry を無効にしていない場合、そのサービスによってクラスターのサブスクリプションが自動的に有効化されます。
  • クラスターのインストールに必要なパッケージを取得するために Quay.io にアクセスします。
  • クラスターの更新を実行するために必要なパッケージを取得します。
重要

クラスターでインターネットに直接アクセスできない場合、プロビジョニングする一部のタイプのインフラストラクチャーでネットワークが制限されたインストールを実行できます。このプロセスで、必要なコンテンツをダウンロードし、これを使用してミラーレジストリーにインストールパッケージを設定します。インストールタイプに応じて、クラスターのインストール環境でインターネットアクセスが不要となる場合があります。クラスターを更新する前に、ミラーレジストリーのコンテンツを更新します。

2.2.3. user-provisioned infrastructure を使用したクラスターの要件

user-provisioned infrastructure を含むクラスターの場合、必要なマシンすべてをデプロイする必要があります。

このセクションでは、user-provisioned infrastructure に OpenShift Container Platform をデプロイする要件を説明します。

2.2.3.1. クラスターのインストールに必要なマシン

最小の OpenShift Container Platform クラスターでは以下のホストが必要です。

Expand
表2.11 最低限必要なホスト
ホスト説明

1 つの一時的なブートストラップマシン

クラスターでは、ブートストラップマシンが OpenShift Container Platform クラスターを 3 つのコントロールプレーンマシンにデプロイする必要があります。クラスターのインストール後にブートストラップマシンを削除できます。

3 つのコントロールプレーンマシン

コントロールプレーンマシンは、コントロールプレーンを設定する Kubernetes および OpenShift Container Platform サービスを実行します。

少なくとも 2 つのコンピュートマシン (ワーカーマシンとしても知られる)。

OpenShift Container Platform ユーザーが要求するワークロードは、コンピュートマシンで実行されます。

注記

例外として、ゼロ (0) コンピュートマシンを 3 つのコントロールプレーンマシンのみで構成されるベアメタルクラスターで実行できます。これにより、テスト、開発、および実稼働に使用するための小規模なリソース効率の高いクラスターが、クラスター管理者および開発者に提供されます。1 つのコンピュートマシンの実行はサポートされていません。

重要

クラスターの高可用性を維持するには、これらのクラスターマシンに別の物理ホストを使用します。

ブートストラップおよびコントロールプレーンマシンでは、Red Hat Enterprise Linux CoreOS (RHCOS) をオペレーティングシステムとして使用する必要があります。ただし、コンピュートマシンは、Red Hat Enterprise Linux CoreOS (RHCOS)、Red Hat Enterprise Linux (RHEL) 8.6 以降から選択できます。

RHCOS は Red Hat Enterprise Linux (RHEL) 9.2 をベースとしており、そのハードウェア認定および要件がすべて継承されることに注意してください。Red Hat Enterprise Linux テクノロジーの機能と制限 を参照してください。

2.2.3.2. クラスターインストールの最小リソース要件

それぞれのクラスターマシンは、以下の最小要件を満たしている必要があります。

Expand
表2.12 最小リソース要件
マシンオペレーティングシステムCPU [1]RAMストレージ1 秒あたりの入出力 (IOPS) [2]

ブートストラップ

RHCOS

4

16 GB

100 GB

300

コントロールプレーン

RHCOS

4

16 GB

100 GB

300

Compute

RHCOS、RHEL 8.6 以降 [3]

2

8 GB

100 GB

300

  1. 1 つの CPU は、同時マルチスレッド (SMT) またはハイパースレッディングが有効にされていない場合に 1 つの物理コアと同等です。これが有効にされている場合、(コアごとのスレッド x コア数) x ソケット数 = CPU という数式を使用して対応する比率を計算します。
  2. OpenShift Container Platform および Kubernetes はディスクのパフォーマンスに敏感であり、特に 10 ms p99 fsync 期間を必要とするコントロールプレーンノード上の etcd には、高速ストレージが推奨されます。多くのクラウドプラットフォームでは、ストレージサイズと IOPS が連動してスケーリングされるため、十分なパフォーマンスを得るには、ストレージボリュームを過剰に割り当てる必要がある場合がある点に注意してください。
  3. すべての user-provisioned installation と同様に、クラスターで RHEL コンピュートマシンの使用を選択する場合は、システム更新の実行、パッチの適用、その他すべての必要なタスクの完了など、オペレーティングシステムのライフサイクルの管理と保守をすべて担当します。RHEL 7 コンピュートマシンの使用は非推奨となり、OpenShift Container Platform 4.10 以降で削除されています。
注記

OpenShift Container Platform バージョン 4.19 の場合、RHCOS は RHEL バージョン 9.6 に基づいています。これは、マイクロアーキテクチャー要件を更新します。次のリストには、各アーキテクチャーに必要な最小限の命令セットアーキテクチャー (ISA) が含まれています。

  • x86-64 アーキテクチャーには x86-64-v2 ISA が必要
  • ARM64 アーキテクチャーには ARMv8.0-A ISA が必要
  • IBM Power アーキテクチャーには Power 9 ISA が必要
  • s390x アーキテクチャーには z14 ISA が必要

詳細は、アーキテクチャー (RHEL ドキュメント) を参照してください。

プラットフォームのインスタンスタイプがクラスターマシンの最小要件を満たす場合、これは OpenShift Container Platform で使用することがサポートされます。

2.2.3.3. 証明書署名要求の管理

ユーザーがプロビジョニングするインフラストラクチャーを使用する場合、クラスターの自動マシン管理へのアクセスは制限されるため、インストール後にクラスターの証明書署名要求 (CSR) のメカニズムを提供する必要があります。kube-controller-manager は kubelet クライアント CSR のみを承認します。machine-approver は、kubelet 認証情報を使用して要求されるサービング証明書の有効性を保証できません。適切なマシンがこの要求を発行したかどうかを確認できないためです。kubelet 提供証明書の要求の有効性を検証し、それらを承認する方法を判別し、実装する必要があります。

2.2.3.4. user-provisioned infrastructure のネットワーク要件

すべての Red Hat Enterprise Linux CoreOS (RHCOS) マシンでは、起動時に initramfs でネットワークを設定し、Ignition 設定ファイルを取得する必要があります。

初回の起動時に、マシンには DHCP サーバーを使用して設定される IP アドレス設定、または必要な起動オプションを指定して静的に設定される IP アドレス設定が必要です。ネットワーク設定の確立後に、マシンは HTTP または HTTPS サーバーから Ignition 設定ファイルをダウンロードします。その後、Ignition 設定ファイルは各マシンの正確な状態を設定するために使用されます。Machine Config Operator はインストール後に、新しい証明書やキーの適用など、マシンへの追加の変更を完了します。

注記
  • クラスターマシンの長期管理に DHCP サーバーを使用することが推奨されます。DHCP サーバーが永続 IP アドレス、DNS サーバー情報、およびホスト名をクラスターマシンに提供するように設定されていることを確認します。
  • DHCP サービスが user-provisioned infrastructure で利用できない場合は、IP ネットワーク設定および DNS サーバーのアドレスを RHCOS のインストール時にノードに提供することができます。ISO イメージからインストールしている場合は、ブート引数として渡すことができます。静的 IP プロビジョニングと高度なネットワークオプションの詳細は、RHCOS のインストールと OpenShift Container Platform ブートストラッププロセスの開始 のセクションを参照してください。

Kubernetes API サーバーはクラスターマシンのノード名を解決できる必要があります。API サーバーおよびワーカーノードが異なるゾーンに置かれている場合、デフォルトの DNS 検索ゾーンを、API サーバーでノード名を解決できるように設定することができます。もう 1 つの実行可能な方法として、ノードオブジェクトとすべての DNS 要求の両方において、ホストを完全修飾ドメイン名で常に参照します。

2.2.3.4.1. DHCP を使用したクラスターノードのホスト名の設定

Red Hat Enterprise Linux CoreOS (RHCOS) マシンでは、ホスト名は NetworkManager 経由で設定されます。デフォルトでは、マシンは DHCP 経由でホスト名を取得します。ホスト名が DHCP によって提供されない場合、カーネル引数を介して静的に設定される場合、または別の方法でホスト名が取得される場合は、逆引き DNS ルックアップによって取得されます。逆引き DNS ルックアップは、ネットワークがノードで初期化された後に発生し、解決に時間がかかる場合があります。その他のシステムサービスは、これより前に起動し、ホスト名を localhost または同様のものとして検出できます。これを回避するには、DHCP を使用して各クラスターノードのホスト名を指定できます。

また、DHCP を介してホスト名を設定すると、DNS スプリットホライズンが実装されている環境での手動の DNS レコード名設定エラーを回避できます。

2.2.3.4.2. ネットワーク接続の要件

OpenShift Container Platform クラスターのコンポーネントが通信できるように、マシン間のネットワーク接続を設定する必要があります。すべてのマシンではクラスターの他のすべてのマシンのホスト名を解決できる必要があります。

このセクションでは、必要なポートの詳細を説明します。

重要

インターネットに接続された OpenShift Container Platform 環境では、プラットフォームコンテナーのイメージをプルし、Red Hat にテレメトリーデータを提供するために、すべてのノードがインターネットにアクセスできる必要があります。

Expand
表2.13 すべてのマシンからすべてのマシンへの通信に使用されるポート
プロトコルポート説明

ICMP

該当なし

ネットワーク到達性のテスト

TCP

1936

メトリクス

9000-9999

ホストレベルのサービス。ポート 9100-9101 のノードエクスポーター、ポート 9099 の Cluster Version Operator が含まれます。

10250-10259

Kubernetes が予約するデフォルトポート

22623

このポートは、マシン設定サーバーからのトラフィックを処理し、トラフィックをコントロールプレーンマシンに送信します。

UDP

4789

VXLAN

6081

Geneve

9000-9999

ポート 9100-9101 のノードエクスポーターを含む、ホストレベルのサービス。

500

IPsec IKE パケット

4500

IPsec NAT-T パケット

123

UDP ポート 123 のネットワークタイムプロトコル (NTP)外部 NTP タイムサーバーが設定されている場合は、UDP ポート 123 を開く必要があります。

TCP/UDP

30000-32767

Kubernetes ノードポート

ESP

該当なし

IPsec Encapsulating Security Payload (ESP)

Expand
表2.14 すべてのマシンからコントロールプレーンへの通信に使用されるポート
プロトコルポート説明

TCP

6443

Kubernetes API

Expand
表2.15 コントロールプレーンマシンからコントロールプレーンマシンへの通信に使用されるポート
プロトコルポート説明

TCP

2379-2380

etcd サーバーおよびピアポート

2.2.3.4.3. user-provisioned infrastructure の NTP 設定

OpenShift Container Platform クラスターは、デフォルトでパブリック Network Time Protocol (NTP) サーバーを使用するように設定されます。ローカルのエンタープライズ NTP サーバーを使用する必要があるか、クラスターが切断されたネットワークにデプロイされている場合は、特定のタイムサーバーを使用するようにクラスターを設定できます。詳細は、chrony タイムサービスの設定 のドキュメントを参照してください。

DHCP サーバーが NTP サーバー情報を提供する場合、Red Hat Enterprise Linux CoreOS (RHCOS) マシンの chrony タイムサービスは情報を読み取り、NTP サーバーとクロックを同期できます。

2.2.3.5. user-provisioned DNS 要件

OpenShift Container Platform のデプロイメントでは、以下のコンポーネントに DNS 名前解決が必要です。

  • The Kubernetes API
  • OpenShift Container Platform のアプリケーションワイルドカード
  • ブートストラップ、コントロールプレーンおよびコンピュートマシン

また、Kubernetes API、ブートストラップマシン、コントロールプレーンマシン、およびコンピュートマシンに逆引き DNS 解決も必要です。

DNS A/AAAA または CNAME レコードは名前解決に使用され、PTR レコードは逆引き名前解決に使用されます。ホスト名が DHCP によって提供されていない場合は、Red Hat Enterprise Linux CoreOS (RHCOS) は逆引きレコードを使用してすべてのノードのホスト名を設定するため、逆引きレコードは重要です。さらに、逆引きレコードは、OpenShift Container Platform が動作するために必要な証明書署名要求 (CSR) を生成するために使用されます。

注記

各クラスターノードにホスト名を提供するために DHCP サーバーを使用することが推奨されます。詳細は、user-provisioned infrastructure に関する DHCP の推奨事項 のセクションを参照してください。

以下の DNS レコードは、user-provisioned OpenShift Container Platform クラスターに必要で、これはインストール前に設定されている必要があります。各レコードで、<cluster_name> はクラスター名で、<base_domain> は、install-config.yaml ファイルに指定するベースドメインです。完全な DNS レコードは <component>.<cluster_name>.<base_domain>. の形式を取ります。

Expand
表2.16 必要な DNS レコード
コンポーネントレコード説明

Kubernetes API

api.<cluster_name>.<base_domain>.

API ロードバランサーを特定するための DNS A/AAAA または CNAME レコード、および DNS PTR レコード。これらのレコードは、クラスター外のクライアントおよびクラスター内のすべてのノードで解決できる必要があります。

api-int.<cluster_name>.<base_domain>.

API ロードバランサーを内部的に識別するための DNS A/AAAA または CNAME レコード、および DNS PTR レコード。これらのレコードは、クラスター内のすべてのノードで解決できる必要があります。

重要

API サーバーは、Kubernetes に記録されるホスト名でワーカーノードを解決できる必要があります。API サーバーがノード名を解決できない場合、プロキシーされる API 呼び出しが失敗し、Pod からログを取得できなくなる可能性があります。

ルート

*.apps.<cluster_name>.<base_domain>.

アプリケーション Ingress ロードバランサーを参照するワイルドカード DNS A/AAAA または CNAME レコード。アプリケーション Ingress ロードバランサーは、Ingress コントローラー Pod を実行するマシンをターゲットにします。Ingress コントローラー Pod はデフォルトでコンピュートマシンで実行されます。これらのレコードは、クラスター外のクライアントおよびクラスター内のすべてのノードで解決できる必要があります。

たとえば、console-openshift-console.apps.<cluster_name>.<base_domain> は、OpenShift Container Platform コンソールへのワイルドカードルートとして使用されます。

ブートストラップマシン

bootstrap.<cluster_name>.<base_domain>.

ブートストラップマシンを識別するための DNS A / AAAA または CNAME レコード、および DNS PTR レコード。これらのレコードは、クラスター内のノードで解決できる必要があります。

コントロールプレーンマシン

<control_plane><n>.<cluster_name>.<base_domain>.

コントロールプレーンノードの各マシンを特定するための DNS A/AAAA または CNAME レコードおよび DNS PTR レコード。これらのレコードは、クラスター内のノードで解決できる必要があります。

コンピュートマシン

<compute><n>.<cluster_name>.<base_domain>.

ワーカーノードの各マシンを特定するための DNS A/AAAA または CNAME レコード、および DNS PTR レコード。これらのレコードは、クラスター内のノードで解決できる必要があります。

注記

OpenShift Container Platform 4.4 以降では、DNS 設定で etcd ホストおよび SRV レコードを指定する必要はありません。

ヒント

dig コマンドを使用して、名前および逆引き名前解決を確認することができます。検証手順の詳細は、user-provisioned infrastructure の DNS 解決の検証 のセクションを参照してください。

2.2.3.5.1. user-provisioned クラスターの DNS 設定の例

このセクションでは、user-provisioned infrastructure に OpenShift Container Platform をデプロイするための DNS 要件を満たす A および PTR レコード設定サンプルを提供します。サンプルは、特定の DNS ソリューションを選択するためのアドバイスを提供することを目的としていません。

この例では、クラスター名は ocp4 で、ベースドメインは example.com です。

user-provisioned クラスターの DNS A レコードの設定例

BIND ゾーンファイルの以下の例は、user-provisioned クラスターの名前解決の A レコードの例を示しています。

例2.4 DNS ゾーンデータベースのサンプル

$TTL 1W
@	IN	SOA	ns1.example.com.	root (
			2019070700	; serial
			3H		; refresh (3 hours)
			30M		; retry (30 minutes)
			2W		; expiry (2 weeks)
			1W )		; minimum (1 week)
	IN	NS	ns1.example.com.
	IN	MX 10	smtp.example.com.
;
;
ns1.example.com.		IN	A	192.168.1.5
smtp.example.com.		IN	A	192.168.1.5
;
helper.example.com.		IN	A	192.168.1.5
helper.ocp4.example.com.	IN	A	192.168.1.5
;
api.ocp4.example.com.		IN	A	192.168.1.5 
1

api-int.ocp4.example.com.	IN	A	192.168.1.5 
2

;
*.apps.ocp4.example.com.	IN	A	192.168.1.5 
3

;
bootstrap.ocp4.example.com.	IN	A	192.168.1.96 
4

;
control-plane0.ocp4.example.com.	IN	A	192.168.1.97 
5

control-plane1.ocp4.example.com.	IN	A	192.168.1.98 
6

control-plane2.ocp4.example.com.	IN	A	192.168.1.99 
7

;
compute0.ocp4.example.com.	IN	A	192.168.1.11 
8

compute1.ocp4.example.com.	IN	A	192.168.1.7 
9

;
;EOF
Copy to Clipboard Toggle word wrap
1
Kubernetes API の名前解決を提供します。レコードは API ロードバランサーの IP アドレスを参照します。
2
Kubernetes API の名前解決を提供します。レコードは API ロードバランサーの IP アドレスを参照し、内部クラスター通信に使用されます。
3
ワイルドカードルートの名前解決を提供します。レコードは、アプリケーション Ingress ロードバランサーの IP アドレスを参照します。アプリケーション Ingress ロードバランサーは、Ingress コントローラー Pod を実行するマシンをターゲットにします。Ingress コントローラー Pod はデフォルトでコンピュートマシンで実行されます。
注記

この例では、同じロードバランサーが Kubernetes API およびアプリケーションの Ingress トラフィックに使用されます。実稼働のシナリオでは、API およびアプリケーション Ingress ロードバランサーを個別にデプロイし、それぞれのロードバランサーインフラストラクチャーを分離してスケーリングすることができます。

4
ブートストラップマシンの名前解決を提供します。
5 6 7
コントロールプレーンマシンの名前解決を提供します。
8 9
コンピュートマシンの名前解決を提供します。

user-provisioned クラスターの DNS PTR レコードの設定例

以下の BIND ゾーンファイルの例では、user-provisioned クラスターの逆引き名前解決の PTR レコードの例を示しています。

例2.5 逆引きレコードの DNS ゾーンデータベースの例

$TTL 1W
@	IN	SOA	ns1.example.com.	root (
			2019070700	; serial
			3H		; refresh (3 hours)
			30M		; retry (30 minutes)
			2W		; expiry (2 weeks)
			1W )		; minimum (1 week)
	IN	NS	ns1.example.com.
;
5.1.168.192.in-addr.arpa.	IN	PTR	api.ocp4.example.com. 
1

5.1.168.192.in-addr.arpa.	IN	PTR	api-int.ocp4.example.com. 
2

;
96.1.168.192.in-addr.arpa.	IN	PTR	bootstrap.ocp4.example.com. 
3

;
97.1.168.192.in-addr.arpa.	IN	PTR	control-plane0.ocp4.example.com. 
4

98.1.168.192.in-addr.arpa.	IN	PTR	control-plane1.ocp4.example.com. 
5

99.1.168.192.in-addr.arpa.	IN	PTR	control-plane2.ocp4.example.com. 
6

;
11.1.168.192.in-addr.arpa.	IN	PTR	compute0.ocp4.example.com. 
7

7.1.168.192.in-addr.arpa.	IN	PTR	compute1.ocp4.example.com. 
8

;
;EOF
Copy to Clipboard Toggle word wrap
1
Kubernetes API の逆引き DNS 解決を提供します。PTR レコードは、API ロードバランサーのレコード名を参照します。
2
Kubernetes API の逆引き DNS 解決を提供します。PTR レコードは、API ロードバランサーのレコード名を参照し、内部クラスター通信に使用されます。
3
ブートストラップマシンの逆引き DNS 解決を提供します。
4 5 6
コントロールプレーンマシンの逆引き DNS 解決を提供します。
7 8
コンピュートマシンの逆引き DNS 解決を提供します。
注記

PTR レコードは、OpenShift Container Platform アプリケーションのワイルドカードには必要ありません。

2.2.3.6. user-provisioned infrastructure の負荷分散要件

OpenShift Container Platform をインストールする前に、API およびアプリケーションの Ingress 負荷分散インフラストラクチャーをプロビジョニングする必要があります。実稼働のシナリオでは、API およびアプリケーション Ingress ロードバランサーを個別にデプロイし、それぞれのロードバランサーインフラストラクチャーを分離してスケーリングすることができます。

注記

Red Hat Enterprise Linux (RHEL) インスタンスを使用して API およびアプリケーション Ingress ロードバランサーをデプロイする場合は、RHEL サブスクリプションを別途購入する必要があります。

負荷分散インフラストラクチャーは以下の要件を満たす必要があります。

  1. API ロードバランサー: プラットフォームと対話およびプラットフォームを設定するためのユーザー向けの共通のエンドポイントを提供します。以下の条件を設定します。

    • Layer 4 の負荷分散のみ。これは、Raw TCP または SSL パススルーモードと呼ばれます。
    • ステートレス負荷分散アルゴリズム。オプションは、ロードバランサーの実装によって異なります。
    重要

    API ロードバランサーのセッションの永続性は設定しないでください。Kubernetes API サーバーのセッション永続性を設定すると、OpenShift Container Platform クラスターとクラスター内で実行される Kubernetes API の過剰なアプリケーショントラフィックによりパフォーマンスの問題が発生する可能性があります。

    ロードバランサーのフロントとバックの両方で以下のポートを設定します。

    Expand
    表2.17 API ロードバランサー
    ポートバックエンドマシン (プールメンバー)内部外部説明

    6443

    ブートストラップおよびコントロールプレーン。ブートストラップマシンがクラスターのコントロールプレーンを初期化した後に、ブートストラップマシンをロードバランサーから削除します。API サーバーのヘルスチェックプローブの /readyz エンドポイントを設定する必要があります。

    X

    X

    Kubernetes API サーバー

    22623

    ブートストラップおよびコントロールプレーン。ブートストラップマシンがクラスターのコントロールプレーンを初期化した後に、ブートストラップマシンをロードバランサーから削除します。

    X

     

    マシン設定サーバー

    注記

    ロードバランサーは、API サーバーが /readyz エンドポイントをオフにしてからプールから API サーバーインスタンスを削除するまで最大 30 秒かかるように設定する必要があります。/readyz の後の時間枠内でエラーが返されたり、正常になったりする場合は、エンドポイントが削除または追加されているはずです。5 秒または 10 秒ごとのプロービングで、2 回連続成功すると正常、3 回連続失敗すると異常と判断する設定は、十分にテストされた値です。

  2. Application Ingress ロードバランサー: クラスター外から送られるアプリケーショントラフィックの Ingress ポイントを提供します。Ingress ルーターの作業用の設定が OpenShift Container Platform クラスターに必要です。

    以下の条件を設定します。

    • Layer 4 の負荷分散のみ。これは、Raw TCP または SSL パススルーモードと呼ばれます。
    • 選択可能なオプションやプラットフォーム上でホストされるアプリケーションの種類に基づいて、接続ベースの永続化またはセッションベースの永続化が推奨されます。
    ヒント

    クライアントの実際の IP アドレスがアプリケーション Ingress ロードバランサーによって確認できる場合、ソースの IP ベースのセッション永続化を有効にすると、エンドツーエンドの TLS 暗号化を使用するアプリケーションのパフォーマンスを強化できます。

    ロードバランサーのフロントとバックの両方で以下のポートを設定します。

    Expand
    表2.18 アプリケーション Ingress ロードバランサー
    ポートバックエンドマシン (プールメンバー)内部外部説明

    443

    デフォルトで Ingress コントローラー Pod、コンピュート、またはワーカーを実行するマシン。

    X

    X

    HTTPS トラフィック

    80

    デフォルトで Ingress コントローラー Pod、コンピュート、またはワーカーを実行するマシン。

    X

    X

    HTTP トラフィック

    注記

    ゼロ (0) コンピュートノードで 3 ノードクラスターをデプロイする場合、Ingress コントローラー Pod はコントロールプレーンノードで実行されます。3 ノードクラスターデプロイメントでは、HTTP および HTTPS トラフィックをコントロールプレーンノードにルーティングするようにアプリケーション Ingress ロードバランサーを設定する必要があります。

2.2.3.6.1. user-provisioned クラスターのロードバランサーの設定例

このセクションでは、user-provisioned クラスターの負荷分散要件を満たす API およびアプリケーション Ingress ロードバランサーの設定例を説明します。この例は、HAProxy ロードバランサーの /etc/haproxy/haproxy.cfg 設定です。この例では、特定の負荷分散ソリューションを選択するためのアドバイスを提供することを目的としていません。

この例では、同じロードバランサーが Kubernetes API およびアプリケーションの Ingress トラフィックに使用されます。実稼働のシナリオでは、API およびアプリケーション Ingress ロードバランサーを個別にデプロイし、それぞれのロードバランサーインフラストラクチャーを分離してスケーリングすることができます。

注記

HAProxy をロードバランサーとして使用し、SELinux が enforcing に設定されている場合は、setsebool -P haproxy_connect_any=1 を実行して、HAProxy サービスが設定済みの TCP ポートにバインドできることを確認する必要があります。

例2.6 API およびアプリケーション Ingress ロードバランサーの設定例

global
  log         127.0.0.1 local2
  pidfile     /var/run/haproxy.pid
  maxconn     4000
  daemon
defaults
  mode                    http
  log                     global
  option                  dontlognull
  option http-server-close
  option                  redispatch
  retries                 3
  timeout http-request    10s
  timeout queue           1m
  timeout connect         10s
  timeout client          1m
  timeout server          1m
  timeout http-keep-alive 10s
  timeout check           10s
  maxconn                 3000
listen api-server-6443 
1

  bind *:6443
  mode tcp
  option  httpchk GET /readyz HTTP/1.0
  option  log-health-checks
  balance roundrobin
  server bootstrap bootstrap.ocp4.example.com:6443 verify none check check-ssl inter 10s fall 2 rise 3 backup 
2

  server master0 master0.ocp4.example.com:6443 weight 1 verify none check check-ssl inter 10s fall 2 rise 3
  server master1 master1.ocp4.example.com:6443 weight 1 verify none check check-ssl inter 10s fall 2 rise 3
  server master2 master2.ocp4.example.com:6443 weight 1 verify none check check-ssl inter 10s fall 2 rise 3
listen machine-config-server-22623 
3

  bind *:22623
  mode tcp
  server bootstrap bootstrap.ocp4.example.com:22623 check inter 1s backup 
4

  server master0 master0.ocp4.example.com:22623 check inter 1s
  server master1 master1.ocp4.example.com:22623 check inter 1s
  server master2 master2.ocp4.example.com:22623 check inter 1s
listen ingress-router-443 
5

  bind *:443
  mode tcp
  balance source
  server compute0 compute0.ocp4.example.com:443 check inter 1s
  server compute1 compute1.ocp4.example.com:443 check inter 1s
listen ingress-router-80 
6

  bind *:80
  mode tcp
  balance source
  server compute0 compute0.ocp4.example.com:80 check inter 1s
  server compute1 compute1.ocp4.example.com:80 check inter 1s
Copy to Clipboard Toggle word wrap
1
ポート 6443 は Kubernetes API トラフィックを処理し、コントロールプレーンマシンを参照します。
2 4
ブートストラップエントリーは、OpenShift Container Platform クラスターのインストール前に有効にし、ブートストラッププロセスの完了後にそれらを削除する必要があります。
3
ポート 22623 はマシン設定サーバートラフィックを処理し、コントロールプレーンマシンを参照します。
5
ポート 443 は HTTPS トラフィックを処理し、Ingress コントローラー Pod を実行するマシンを参照します。Ingress コントローラー Pod はデフォルトでコンピュートマシンで実行されます。
6
ポート 80 は HTTP トラフィックを処理し、Ingress コントローラー Pod を実行するマシンを参照します。Ingress コントローラー Pod はデフォルトでコンピュートマシンで実行されます。
注記

ゼロ (0) コンピュートノードで 3 ノードクラスターをデプロイする場合、Ingress コントローラー Pod はコントロールプレーンノードで実行されます。3 ノードクラスターデプロイメントでは、HTTP および HTTPS トラフィックをコントロールプレーンノードにルーティングするようにアプリケーション Ingress ロードバランサーを設定する必要があります。

ヒント

HAProxy をロードバランサーとして使用する場合は、HAProxy ノードで netstat -nltupe を実行して、ポート 644322623443、および 80haproxy プロセスがリッスンしていることを確認することができます。

2.2.4. カスタマイズされた br-ex ブリッジを含むマニフェストオブジェクトの作成

configure-ovs.sh シェルスクリプトを使用してベアメタルプラットフォームで br-ex ブリッジを設定する代わりに、NMState 設定ファイルを含む MachineConfig オブジェクトを作成できます。ホスト nmstate-configuration.service および nmstate.service により、クラスター内で実行される各ノードに NMState 設定ファイルが適用されます。

カスタマイズされた br-ex ブリッジを含むマニフェストオブジェクトを作成する場合は、次のユースケースを検討してください。

  • Open vSwitch (OVS) または OVN-Kubernetes br-ex ブリッジネットワークの変更など、ブリッジにインストール後の変更を加えたい場合。configure-ovs.sh シェルスクリプトは、ブリッジへのインストール後の変更をサポートしていません。
  • ホストまたはサーバーの IP アドレスで使用可能なインターフェイスとは異なるインターフェイスにブリッジをデプロイします。
  • configure-ovs.sh シェルスクリプトでは不可能な、ブリッジの高度な設定を実行したいと考えています。これらの設定にスクリプトを使用すると、ブリッジが複数のネットワークインターフェイスに接続できず、インターフェイス間のデータ転送が促進されない可能性があります。
注記

単一のネットワークインターフェイスコントローラー (NIC) とデフォルトのネットワーク設定を備えた環境が必要な場合は、configure-ovs.sh シェルスクリプトを使用します。

Red Hat Enterprise Linux CoreOS (RHCOS) をインストールしてシステムを再起動すると、Machine Config Operator がクラスター内の各ノードに Ignition 設定ファイルを注入し、各ノードが br-ex ブリッジネットワーク設定を受け取るようになります。設定の競合を防ぐために、configure-ovs.sh シェルスクリプトは、br-ex ブリッジを設定しない信号を受け取ります。

警告

次のインターフェイス名は予約されており、NMstate 設定では使用できません。

  • br-ext
  • br-int
  • br-local
  • br-nexthop
  • br0
  • ext-vxlan
  • ext
  • genev_sys_*
  • int
  • k8s-*
  • ovn-k8s-*
  • patch-br-*
  • tun0
  • vxlan_sys_*

前提条件

  • オプション: NMState 設定を検証できるように、nmstate API をインストールしました。

手順

  1. カスタマイズされた br-ex ブリッジネットワークの base64 情報をデコードした NMState 設定ファイルを作成します。

    カスタマイズされた br-ex ブリッジネットワークの NMState 設定の例

    interfaces:
    - name: enp2s0 
    1
    
      type: ethernet 
    2
    
      state: up 
    3
    
      ipv4:
        enabled: false 
    4
    
      ipv6:
        enabled: false
    - name: br-ex
      type: ovs-bridge
      state: up
      ipv4:
        enabled: false
        dhcp: false
      ipv6:
        enabled: false
        dhcp: false
      bridge:
        options:
          mcast-snooping-enable: true
        port:
        - name: enp2s0 
    5
    
        - name: br-ex
    - name: br-ex
      type: ovs-interface
      state: up
      copy-mac-from: enp2s0
      ipv4:
        enabled: true
        dhcp: true
        auto-route-metric: 48 
    6
    
      ipv6:
        enabled: true
        dhcp: true
        auto-route-metric: 48
    # ...
    Copy to Clipboard Toggle word wrap

    1
    インターフェイスの名前。
    2
    イーサネットのタイプ。
    3
    作成後のインターフェイスの要求された状態。
    4
    この例では、IPv4 と IPv6 を無効にします。
    5
    ブリッジが接続されるノードの NIC。
    6
    br-ex デフォルトルートに常に最高の優先度 (最も低いメトリック値) を付与するには、パラメーターを 48 に設定します。この設定により、NetworkManager サービスによって自動的に設定される他のインターフェイスとのルーティングの競合が防止されます。
  2. cat コマンドを使用して、NMState 設定の内容を base64 でエンコードします。

    $ cat <nmstate_configuration>.yaml | base64 
    1
    Copy to Clipboard Toggle word wrap
    1
    <nmstate_configuration> を NMState リソース YAML ファイルの名前に置き換えます。
  3. MachineConfig マニフェストファイルを作成し、次の例に類似したカスタマイズされた br-ex ブリッジネットワーク設定を定義します。

    apiVersion: machineconfiguration.openshift.io/v1
    kind: MachineConfig
    metadata:
      labels:
        machineconfiguration.openshift.io/role: worker
      name: 10-br-ex-worker 
    1
    
    spec:
      config:
        ignition:
          version: 3.2.0
        storage:
          files:
          - contents:
              source: data:text/plain;charset=utf-8;base64,<base64_encoded_nmstate_configuration> 
    2
    
            mode: 0644
            overwrite: true
            path: /etc/nmstate/openshift/worker-0.yml 
    3
    
          - contents:
              source: data:text/plain;charset=utf-8;base64,<base64_encoded_nmstate_configuration>
            mode: 0644
            overwrite: true
            path: /etc/nmstate/openshift/worker-1.yml 
    4
    
    # ...
    Copy to Clipboard Toggle word wrap
    1
    ポリシーの名前。
    2
    エンコードされた base64 情報を指定されたパスに書き込みます。
    3 4
    クラスター内の各ノードに対して、ノードへのホスト名パスと、マシンタイプに応じた base-64 でエンコードされた Ignition 設定ファイルデータを指定します。worker ロールは、クラスター内のノードのデフォルトロールです。MachineConfig マニフェストファイルで各ノードまたはすべてのノードに対して短いホスト名 (hostname -s で得られるもの) のパスを指定する際に、.yaml 拡張子は機能しません。

    クラスター内のすべてのノードに適用する単一のグローバル設定が /etc/nmstate/openshift/cluster.yml 設定ファイルで指定されている場合は、各ノードの短いホスト名パス (例: /etc/nmstate/openshift/<node_hostname>.yml) を指定する必要はありません。以下に例を示します。

    # ...
          - contents:
              source: data:text/plain;charset=utf-8;base64,<base64_encoded_nmstate_configuration>
            mode: 0644
            overwrite: true
            path: /etc/nmstate/openshift/cluster.yml
    # ...
    Copy to Clipboard Toggle word wrap

次のステップ

  • コンピュートノードをスケーリングして、クラスター内に存在する各コンピュートノードに、カスタマイズされた br-ex ブリッジを含むマニフェストオブジェクトを適用します。詳細は、関連情報 セクションの「クラスターの拡張」を参照してください。
2.2.4.1. 各マシンセットをコンピュートノードにスケーリング

カスタマイズされた br-ex ブリッジ設定を OpenShift Container Platform クラスター内のすべてのコンピュートノードに適用するには、MachineConfig カスタムリソース (CR) を編集し、そのロールを変更する必要があります。さらに、ホスト名、認証情報など、ベアメタルマシンの情報を定義する BareMetalHost CR を作成する必要があります。

これらのリソースを設定した後、マシンセットをスケーリングして、マシンセットが各コンピュートノードにリソース設定を適用し、ノードを再起動できるようにする必要があります。

前提条件

  • カスタマイズされた br-ex ブリッジ設定を含む MachineConfig マニフェストオブジェクトを作成しました。

手順

  1. 次のコマンドを入力して MachineConfig CR を編集します。

    $ oc edit mc <machineconfig_custom_resource_name>
    Copy to Clipboard Toggle word wrap
  2. 各コンピュートノード設定を CR に追加して、CR がクラスター内の定義済みコンピュートノードごとにロールを管理できるようにします。
  3. 最小限の静的 IP 設定を持つ extraworker-secret という名前の Secret オブジェクトを作成します。
  4. 次のコマンドを入力して、クラスター内の各ノードに extraworker-secret シークレットを適用します。このステップでは、各コンピュートノードに Ignition 設定ファイルへのアクセスを提供します。

    $ oc apply -f ./extraworker-secret.yaml
    Copy to Clipboard Toggle word wrap
  5. BareMetalHost リソースを作成し、preprovisioningNetworkDataName パラメーターでネットワークシークレットを指定します。

    ネットワークシークレットが添付された BareMetalHost リソースの例

    apiVersion: metal3.io/v1alpha1
    kind: BareMetalHost
    spec:
    # ...
      preprovisioningNetworkDataName: ostest-extraworker-0-network-config-secret
    # ...
    Copy to Clipboard Toggle word wrap

  6. クラスターの openshift-machine-api namespace 内で BareMetalHost オブジェクトを管理するために、次のコマンドを入力して namespace に変更します。

    $ oc project openshift-machine-api
    Copy to Clipboard Toggle word wrap
  7. マシンセットを取得します。

    $ oc get machinesets
    Copy to Clipboard Toggle word wrap
  8. 次のコマンドを入力して、各マシンセットをスケールします。このコマンドはマシンセットごとに実行する必要があります。

    $ oc scale machineset <machineset_name> --replicas=<n> 
    1
    Copy to Clipboard Toggle word wrap
    1
    <machineset_name> はマシンセットの名前です。<n> はコンピュートノードの数です。

2.2.5. クラスターで OVS balance-slb モードを有効にする

2 つ以上の物理インターフェイスがネットワークトラフィックを共有できるように、Open vSwitch (OVS) の balance-slb モードを有効にできます。balance-slb モードのインターフェイスは、ネットワークスイッチとのソースロードバランシングを必要とせずに、仮想化ワークロードを実行するクラスターにソース負荷分散 (SLB) 機能を提供できます。

現在、ソースロードバランシングはボンディングインターフェイスで実行されます。このインターフェイスは br-phy などの補助ブリッジに接続します。ソースロードバランシングは、Media Access Control (MAC) アドレスと仮想ローカルエリアネットワーク (VLAN) の組み合わせが複数存在する場合にのみ、負荷分散を行います。OVN-Kubernetes Pod のトラフィックはすべて同じ MAC アドレスと VLAN を使用するため、このトラフィックを多数の物理インターフェイス間で負荷分散することはできないことに注意してください。

次の図は、単純なクラスターインフラストラクチャーレイアウトでの balance-slb モードを示しています。仮想マシン (VM) は、特定の localnet NetworkAttachmentDefinition (NAD) カスタムリソース定義 (CRD)、NAD 0 または NAD 1 に接続します。各 NAD は、仮想マシンに基盤となる物理ネットワークへのアクセスを提供し、タグ付きまたはタグなしの VLAN トラフィックをサポートしています。br-ex OVS ブリッジは仮想マシンからのトラフィックを受信し、そのトラフィックを次の OVS ブリッジである br-phy に渡します。br-phy ブリッジは SLB ボンディングのコントローラーとして機能します。SLB ボンディングは、eno0eno1 などの物理インターフェイスリンクを介して、異なる仮想マシンポートからのトラフィックを分散します。さらに、どちらの物理インターフェイスからの Ingress トラフィックも、OVS ブリッジのセットを通過して仮想マシンに到達できます。

図2.2 2 つの NAD を持つローカルネット上で動作する OVS balance-slb モード

OVS ボンディングを使用して、balance-slb モードインターフェイスをプライマリーまたはセカンダリーネットワークタイプに統合できます。OVS ボンディングでは、次の点に注意してください。

  • OVN-Kubernetes CNI プラグインをサポートし、プラグインと簡単に統合できます。
  • ネイティブで balance-slb モードをサポートします。

前提条件

  • プライマリーネットワークに複数の物理インターフェイスが接続されており、それらのインターフェイスを MachineConfig ファイルで定義した。
  • マニフェストオブジェクトを作成し、カスタマイズした br-ex ブリッジをオブジェクト設定ファイルで定義した。
  • プライマリーネットワークに複数の物理インターフェイスが接続されており、それらのインターフェイスを NAD CRD ファイルで定義した。

手順

  1. クラスター内に存在するベアメタルホストごとに、クラスターの install-config.yaml ファイルで、次の例のように networkConfig セクションを定義します。

    # ...
    networkConfig:
      interfaces:
        - name: enp1s0 
    1
    
          type: ethernet
          state: up
          ipv4:
            dhcp: true
            enabled: true
          ipv6:
            enabled: false
        - name: enp2s0 
    2
    
          type: ethernet
          state: up
          mtu: 1500 
    3
    
          ipv4:
            dhcp: true
            enabled: true
          ipv6:
            dhcp: true
            enabled: true
        - name: enp3s0 
    4
    
          type: ethernet
          state: up
          mtu: 1500
          ipv4:
            enabled: false
          ipv6:
            enabled: false
    # ...
    Copy to Clipboard Toggle word wrap
    1
    プロビジョニングされるネットワークインターフェイスコントローラー (NIC) のインターフェイス。
    2
    ボンディングインターフェイス用の Ignition 設定ファイルを取り込む最初のボンディングされたインターフェイス。
    3
    ボンディングポートの br-ex 最大伝送単位 (MTU) を手動で設定します。
    4
    2 つ目のボンディングされたインターフェイスは、クラスターのインストール中に Ignition を実行する最小設定の一部です。
  2. NMState 設定ファイルで各ネットワークインターフェイスを定義します。

    多数のネットワークインターフェイスを定義する NMState 設定ファイルの例

    ovn:
      bridge-mappings:
        - localnet: localnet-network
          bridge: br-ex
          state: present
    interfaces:
      - name: br-ex
        type: ovs-bridge
        state: up
        bridge:
          allow-extra-patch-ports: true
          port:
            - name: br-ex
            - name: patch-ex-to-phy
        ovs-db:
          external_ids:
            bridge-uplink: "patch-ex-to-phy"
      - name: br-ex
        type: ovs-interface
        state: up
        mtu: 1500 
    1
    
        ipv4:
          enabled: true
          dhcp: true
          auto-route-metric: 48
        ipv6:
          enabled: false
          dhcp: false
          auto-route-metric: 48
      - name: br-phy
        type: ovs-bridge
        state: up
        bridge:
          allow-extra-patch-ports: true
          port:
            - name: patch-phy-to-ex
            - name: ovs-bond
              link-aggregation:
                mode: balance-slb
                port:
                  - name: enp2s0
                  - name: enp3s0
      - name: patch-ex-to-phy
        type: ovs-interface
        state: up
        patch:
          peer: patch-phy-to-ex
      - name: patch-phy-to-ex
        type: ovs-interface
        state: up
        patch:
          peer: patch-ex-to-phy
      - name: enp1s0
        type: ethernet
        state: up
        ipv4:
          dhcp: true
          enabled: true
        ipv6:
          enabled: false
      - name: enp2s0
        type: ethernet
        state: up
        mtu: 1500
        ipv4:
          enabled: false
        ipv6:
          enabled: false
      - name: enp3s0
        type: ethernet
        state: up
        mtu: 1500
        ipv4:
          enabled: false
        ipv6:
          enabled: false
    # ...
    Copy to Clipboard Toggle word wrap

    1
    ボンディングポートの br-ex MTU を手動で設定します。
  3. base64 コマンドを使用して、NMState 設定ファイルのインターフェイスコンテンツをエンコードします。

    $ base64 -w0  <nmstate_configuration>.yml 
    1
    Copy to Clipboard Toggle word wrap
    1
    -w0 オプションは、base64 エンコード操作中に行の折り返しを防止します。
  4. master ロールと worker ロールの MachineConfig マニフェストファイルを作成します。前のコマンドからの base64 エンコード文字列を各 MachineConfig マニフェストファイルに必ず埋め込んでください。次のマニフェストファイルの例では、クラスター内に存在するすべてのノードに対して master ロールを設定します。ノード固有の master ロールと worker ロールのマニフェストファイルを作成することもできます。

    apiVersion: machineconfiguration.openshift.io/v1
    kind: MachineConfig
    metadata:
      labels:
        machineconfiguration.openshift.io/role: master
      name: 10-br-ex-master 
    1
    
    spec:
      config:
        ignition:
          version: 3.2.0
        storage:
          files:
          - contents:
              source: data:text/plain;charset=utf-8;base64,<base64_encoded_nmstate_configuration> 
    2
    
            mode: 0644
            overwrite: true
            path: /etc/nmstate/openshift/cluster.yml 
    3
    Copy to Clipboard Toggle word wrap
    1
    ポリシーの名前。
    2
    エンコードされた base64 情報を指定されたパスに書き込みます。
    3
    cluster.yml ファイルへのパスを指定します。クラスター内の各ノードに対して、<node_short_hostname>.yml など、ノードへの短いホスト名パスを指定できます。
  5. MachineConfig マニフェストファイルを ./<installation_directory>/manifests ディレクトリーに保存します。<installation_directory> は、インストールプログラムがファイルを作成するディレクトリーです。

    Machine Config Operator (MCO) が各マニフェストファイルからコンテンツを取得し、ローリング更新中に選択されたすべてのノードにそのコンテンツを一貫して適用します。

2.2.6. user-provisioned infrastructure の準備

user-provisioned infrastructure に OpenShift Container Platform をインストールする前に、基礎となるインフラストラクチャーを準備する必要があります。

このセクションでは、OpenShift Container Platform インストールの準備としてクラスターインフラストラクチャーを設定するために必要な手順の概要を説明します。これには、クラスターノード用の IP ネットワークおよびネットワーク接続を設定し、ファイアウォール経由で必要なポートを有効にし、必要な DNS および負荷分散インフラストラクチャーの設定が含まれます。

準備後、クラスターインフラストラクチャーは、user-provisioned infrastructure を使用したクラスターの要件 セクションで説明されている要件を満たす必要があります。

前提条件

手順

  1. DHCP を使用して IP ネットワーク設定をクラスターノードに提供する場合は、DHCP サービスを設定します。

    1. ノードの永続 IP アドレスを DHCP サーバー設定に追加します。設定で、関連するネットワークインターフェイスの MAC アドレスを、各ノードの目的の IP アドレスと一致させます。
    2. DHCP を使用してクラスターマシンの IP アドレスを設定する場合、マシンは DHCP を介して DNS サーバー情報も取得します。DHCP サーバー設定を介してクラスターノードが使用する永続 DNS サーバーアドレスを定義します。

      注記

      DHCP サービスを使用しない場合、IP ネットワーク設定と DNS サーバーのアドレスを RHCOS インストール時にノードに指定する必要があります。ISO イメージからインストールしている場合は、ブート引数として渡すことができます。静的 IP プロビジョニングと高度なネットワークオプションの詳細は、RHCOS のインストールと OpenShift Container Platform ブートストラッププロセスの開始 のセクションを参照してください。

    3. DHCP サーバー設定でクラスターノードのホスト名を定義します。ホスト名に関する考慮事項の詳細は、DHCP を使用したクラスターノードのホスト名の設定 セクションを参照してください。

      注記

      DHCP サービスを使用しない場合、クラスターノードは逆引き DNS ルックアップを介してホスト名を取得します。

  2. ネットワークインフラストラクチャーがクラスターコンポーネント間の必要なネットワーク接続を提供することを確認します。要件に関する詳細は、user-provisioned infrastructure のネットワーク要件 のセクションを参照してください。
  3. OpenShift Container Platform クラスターコンポーネントで通信するために必要なポートを有効にするようにファイアウォールを設定します。必要なポートの詳細は、user-provisioned infrastructure のネットワーク要件 のセクションを参照してください。

    重要

    デフォルトで、ポート 1936 は OpenShift Container Platform クラスターにアクセスできます。これは、各コントロールプレーンノードがこのポートへのアクセスを必要とするためです。

    Ingress ロードバランサーを使用してこのポートを公開しないでください。これを実行すると、Ingress コントローラーに関連する統計やメトリクスなどの機密情報が公開される可能性があるためです。

  4. クラスターに必要な DNS インフラストラクチャーを設定します。

    1. Kubernetes API、アプリケーションワイルドカード、ブートストラップマシン、コントロールプレーンマシン、およびコンピュートマシンの DNS 名前解決を設定します。
    2. Kubernetes API、ブートストラップマシン、コントロールプレーンマシン、およびコンピュートマシンの逆引き DNS 解決を設定します。

      OpenShift Container Platform DNS 要件の詳細は、user-provisioned DNS 要件 のセクションを参照してください。

  5. DNS 設定を検証します。

    1. インストールノードから、Kubernetes API、ワイルドカードルート、およびクラスターノードのレコード名に対して DNS ルックアップを実行します。応答の IP アドレスが正しいコンポーネントに対応することを確認します。
    2. インストールノードから、ロードバランサーとクラスターノードの IP アドレスに対して逆引き DNS ルックアップを実行します。応答のレコード名が正しいコンポーネントに対応することを確認します。

      DNS 検証手順の詳細は、user-provisioned infrastructure の DNS 解決の検証 のセクションを参照してください。

  6. 必要な API およびアプリケーションの Ingress 負荷分散インフラストラクチャーをプロビジョニングします。要件に関する詳細は、user-provisioned infrastructure の負荷分散要件 のセクションを参照してください。
注記

一部の負荷分散ソリューションでは、負荷分散を初期化する前に、クラスターノードの DNS 名前解決を有効化する必要があります。

2.2.7. user-provisioned infrastructure の DNS 解決の検証

OpenShift Container Platform を user-provisioned infrastructure にインストールする前に、DNS 設定を検証できます。

重要

このセクションの検証手順は、クラスターのインストール前に正常に実行される必要があります。

前提条件

  • user-provisioned infrastructure に必要な DNS レコードを設定している。

手順

  1. インストールノードから、Kubernetes API、ワイルドカードルート、およびクラスターノードのレコード名に対して DNS ルックアップを実行します。応答に含まれる IP アドレスが正しいコンポーネントに対応することを確認します。

    1. Kubernetes API レコード名に対してルックアップを実行します。結果が API ロードバランサーの IP アドレスを参照することを確認します。

      $ dig +noall +answer @<nameserver_ip> api.<cluster_name>.<base_domain> 
      1
      Copy to Clipboard Toggle word wrap
      1
      <nameserver_ip> をネームサーバーの IP アドレスに、<cluster_name> をクラスター名に、<base_domain> をベースドメイン名に置き換えます。

      出力例

      api.ocp4.example.com.		604800	IN	A	192.168.1.5
      Copy to Clipboard Toggle word wrap

    2. Kubernetes 内部 API レコード名に対してルックアップを実行します。結果が API ロードバランサーの IP アドレスを参照することを確認します。

      $ dig +noall +answer @<nameserver_ip> api-int.<cluster_name>.<base_domain>
      Copy to Clipboard Toggle word wrap

      出力例

      api-int.ocp4.example.com.		604800	IN	A	192.168.1.5
      Copy to Clipboard Toggle word wrap

    3. *.apps.<cluster_name>.<base_domain> DNS ワイルドカードルックアップの例をテストします。すべてのアプリケーションのワイルドカードルックアップは、アプリケーション Ingress ロードバランサーの IP アドレスに解決する必要があります。

      $ dig +noall +answer @<nameserver_ip> random.apps.<cluster_name>.<base_domain>
      Copy to Clipboard Toggle word wrap

      出力例

      random.apps.ocp4.example.com.		604800	IN	A	192.168.1.5
      Copy to Clipboard Toggle word wrap

      注記

      出力例では、同じロードバランサーが Kubernetes API およびアプリケーションの Ingress トラフィックに使用されます。実稼働のシナリオでは、API およびアプリケーション Ingress ロードバランサーを個別にデプロイし、それぞれのロードバランサーインフラストラクチャーを分離してスケーリングすることができます。

      random は、別のワイルドカード値に置き換えることができます。たとえば、OpenShift Container Platform コンソールへのルートをクエリーできます。

      $ dig +noall +answer @<nameserver_ip> console-openshift-console.apps.<cluster_name>.<base_domain>
      Copy to Clipboard Toggle word wrap

      出力例

      console-openshift-console.apps.ocp4.example.com. 604800 IN	A 192.168.1.5
      Copy to Clipboard Toggle word wrap

    4. ブートストラップ DNS レコード名に対してルックアップを実行します。結果がブートストラップノードの IP アドレスを参照することを確認します。

      $ dig +noall +answer @<nameserver_ip> bootstrap.<cluster_name>.<base_domain>
      Copy to Clipboard Toggle word wrap

      出力例

      bootstrap.ocp4.example.com.		604800	IN	A	192.168.1.96
      Copy to Clipboard Toggle word wrap

    5. この方法を使用して、コントロールプレーンおよびコンピュートノードの DNS レコード名に対してルックアップを実行します。結果が各ノードの IP アドレスに対応していることを確認します。
  2. インストールノードから、ロードバランサーとクラスターノードの IP アドレスに対して逆引き DNS ルックアップを実行します。応答に含まれるレコード名が正しいコンポーネントに対応することを確認します。

    1. API ロードバランサーの IP アドレスに対して逆引き参照を実行します。応答に、Kubernetes API および Kubernetes 内部 API のレコード名が含まれていることを確認します。

      $ dig +noall +answer @<nameserver_ip> -x 192.168.1.5
      Copy to Clipboard Toggle word wrap

      出力例

      5.1.168.192.in-addr.arpa. 604800	IN	PTR	api-int.ocp4.example.com. 
      1
      
      5.1.168.192.in-addr.arpa. 604800	IN	PTR	api.ocp4.example.com. 
      2
      Copy to Clipboard Toggle word wrap

      1
      Kubernetes 内部 API のレコード名を指定します。
      2
      Kubernetes API のレコード名を指定します。
      注記

      PTR レコードは、OpenShift Container Platform アプリケーションのワイルドカードには必要ありません。アプリケーション Ingress ロードバランサーの IP アドレスに対する逆引き DNS 解決の検証手順は必要ありません。

    2. ブートストラップノードの IP アドレスに対して逆引き参照を実行します。結果がブートストラップノードの DNS レコード名を参照していることを確認します。

      $ dig +noall +answer @<nameserver_ip> -x 192.168.1.96
      Copy to Clipboard Toggle word wrap

      出力例

      96.1.168.192.in-addr.arpa. 604800	IN	PTR	bootstrap.ocp4.example.com.
      Copy to Clipboard Toggle word wrap

    3. この方法を使用して、コントロールプレーンおよびコンピュートノードの IP アドレスに対して逆引きルックアップを実行します。結果が各ノードの DNS レコード名に対応していることを確認します。

2.2.8. クラスターノードの SSH アクセス用のキーペアの生成

OpenShift Container Platform をインストールする際に、SSH パブリックキーをインストールプログラムに指定できます。キーは、Ignition 設定ファイルを介して Red Hat Enterprise Linux CoreOS (RHCOS) ノードに渡され、ノードへの SSH アクセスを認証するために使用されます。このキーは各ノードの core ユーザーの ~/.ssh/authorized_keys リストに追加され、パスワードなしの認証が可能になります。

キーがノードに渡されると、キーペアを使用して RHCOS ノードにユーザー core として SSH を実行できます。SSH 経由でノードにアクセスするには、秘密鍵のアイデンティティーをローカルユーザーの SSH で管理する必要があります。

インストールのデバッグまたは障害復旧を実行するためにクラスターノードに対して SSH を実行する場合は、インストールプロセスの間に SSH 公開鍵を指定する必要があります。./openshift-install gather コマンドでは、SSH 公開鍵がクラスターノードに配置されている必要もあります。

重要

障害復旧およびデバッグが必要な実稼働環境では、この手順を省略しないでください。

注記

プラットフォーム固有の方法で設定したキーではなく、ローカルキーを使用する必要があります。

手順

  1. クラスターノードへの認証に使用するローカルマシンに既存の SSH キーペアがない場合は、これを作成します。たとえば、Linux オペレーティングシステムを使用するコンピューターで以下のコマンドを実行します。

    $ ssh-keygen -t ed25519 -N '' -f <path>/<file_name> 
    1
    Copy to Clipboard Toggle word wrap
    1
    新しい SSH キーのパスとファイル名 (~/.ssh/id_ed25519 など) を指定します。既存のキーペアがある場合は、公開鍵が ~/.ssh ディレクトリーにあることを確認します。
    注記

    x86_64ppc64le、および s390x アーキテクチャーのみで FIPS 140-2/140-3 検証のために NIST に提出された RHEL 暗号化ライブラリーを使用する OpenShift Container Platform クラスターをインストールする予定がある場合は、ed25519 アルゴリズムを使用するキーを作成しないでください。代わりに、rsa アルゴリズムまたは ecdsa アルゴリズムを使用するキーを作成します。

  2. 公開 SSH キーを表示します。

    $ cat <path>/<file_name>.pub
    Copy to Clipboard Toggle word wrap

    たとえば、次のコマンドを実行して ~/.ssh/id_ed25519.pub 公開鍵を表示します。

    $ cat ~/.ssh/id_ed25519.pub
    Copy to Clipboard Toggle word wrap
  3. ローカルユーザーの SSH エージェントに SSH 秘密鍵 ID が追加されていない場合は、それを追加します。キーの SSH エージェント管理は、クラスターノードへのパスワードなしの SSH 認証、または ./openshift-install gather コマンドを使用する場合は必要になります。

    注記

    一部のディストリビューションでは、~/.ssh/id_rsa および ~/.ssh/id_dsa などのデフォルトの SSH 秘密鍵のアイデンティティーは自動的に管理されます。

    1. ssh-agent プロセスがローカルユーザーに対して実行されていない場合は、バックグラウンドタスクとして開始します。

      $ eval "$(ssh-agent -s)"
      Copy to Clipboard Toggle word wrap

      出力例

      Agent pid 31874
      Copy to Clipboard Toggle word wrap

      注記

      クラスターが FIPS モードにある場合は、FIPS 準拠のアルゴリズムのみを使用して SSH キーを生成します。鍵は RSA または ECDSA のいずれかである必要があります。

  4. SSH プライベートキーを ssh-agent に追加します。

    $ ssh-add <path>/<file_name> 
    1
    Copy to Clipboard Toggle word wrap
    1
    ~/.ssh/id_ed25519 などの、SSH プライベートキーのパスおよびファイル名を指定します。

    出力例

    Identity added: /home/<you>/<path>/<file_name> (<computer_name>)
    Copy to Clipboard Toggle word wrap

次のステップ

  • OpenShift Container Platform をインストールする際に、SSH パブリックキーをインストールプログラムに指定します。

2.2.9. インストールプログラムの取得

OpenShift Container Platform をインストールする前に、インストールに使用しているホストにインストールファイルをダウンロードします。

前提条件

  • 500 MB のローカルディスク領域がある Linux または macOS を実行するコンピューターが必要です。

手順

  1. Red Hat Hybrid Cloud Console の Cluster Type ページに移動します。Red Hat アカウントがある場合は、認証情報を使用してログインします。アカウントがない場合はこれを作成します。

    ヒント
  2. ページの Run it yourself セクションからインフラストラクチャープロバイダーを選択します。
  3. OpenShift Installer のドロップダウンメニューからホストオペレーティングシステムとアーキテクチャーを選択し、Download Installer をクリックします。
  4. ダウンロードしたファイルを、インストール設定ファイルを保存するディレクトリーに配置します。

    重要
    • インストールプログラムは、クラスターのインストールに使用するコンピューターにいくつかのファイルを作成します。クラスターのインストール完了後は、インストールプログラムおよびインストールプログラムが作成するファイルを保持する必要があります。クラスターを削除するには、両方のファイルが必要です。
    • インストールプログラムで作成されたファイルを削除しても、クラスターがインストール時に失敗した場合でもクラスターは削除されません。クラスターを削除するには、特定のクラウドプロバイダー用の OpenShift Container Platform のアンインストール手順を実行します。
  5. インストールプログラムを展開します。たとえば、Linux オペレーティングシステムを使用するコンピューターで以下のコマンドを実行します。

    $ tar -xvf openshift-install-linux.tar.gz
    Copy to Clipboard Toggle word wrap
  6. Red Hat OpenShift Cluster Manager からインストールプルシークレット をダウンロードします。このプルシークレットを使用し、OpenShift Container Platform コンポーネントのコンテナーイメージを提供する Quay.io など、組み込まれた各種の認証局によって提供されるサービスで認証できます。
ヒント

Red Hat カスタマーポータル からインストールプログラムを取得することもできます。このページでは、ダウンロードするインストールプログラムのバージョンを指定できます。ただし、このページにアクセスするには、有効なサブスクリプションが必要です。

2.2.10. OpenShift CLI のインストール

コマンドラインインターフェイスを使用して OpenShift Container Platform と対話するために OpenShift CLI (oc) をインストールすることができます。oc は Linux、Windows、または macOS にインストールできます。

重要

以前のバージョンの oc をインストールした場合、それを使用して OpenShift Container Platform のすべてのコマンドを実行することはできません。

新しいバージョンの oc をダウンロードしてインストールしてください。

2.2.10.1. Linux への OpenShift CLI のインストール

以下の手順を使用して、OpenShift CLI (oc) バイナリーを Linux にインストールできます。

手順

  1. Red Hat カスタマーポータルの Download OpenShift Container Platform ページに移動します。
  2. Product Variant リストからアーキテクチャーを選択します。
  3. Version リストから適切なバージョンを選択します。
  4. OpenShift v4.19 Linux Clients エントリーの横にある Download Now をクリックして、ファイルを保存します。
  5. アーカイブを展開します。

    $ tar xvf <file>
    Copy to Clipboard Toggle word wrap
  6. oc バイナリーを、PATH にあるディレクトリーに配置します。

    PATH を確認するには、以下のコマンドを実行します。

    $ echo $PATH
    Copy to Clipboard Toggle word wrap

検証

  • OpenShift CLI のインストール後に、oc コマンドを使用して利用できます。

    $ oc <command>
    Copy to Clipboard Toggle word wrap
2.2.10.2. Windows への OpenShift CLI のインストール

以下の手順を使用して、OpenShift CLI (oc) バイナリーを Windows にインストールできます。

手順

  1. Red Hat カスタマーポータルの Download OpenShift Container Platform ページに移動します。
  2. Version リストから適切なバージョンを選択します。
  3. OpenShift v4.19 Windows Client エントリーの横にある Download Now をクリックして、ファイルを保存します。
  4. ZIP プログラムでアーカイブを展開します。
  5. oc バイナリーを、PATH にあるディレクトリーに移動します。

    PATH を確認するには、コマンドプロンプトを開いて以下のコマンドを実行します。

    C:\> path
    Copy to Clipboard Toggle word wrap

検証

  • OpenShift CLI のインストール後に、oc コマンドを使用して利用できます。

    C:\> oc <command>
    Copy to Clipboard Toggle word wrap
2.2.10.3. macOS への OpenShift CLI のインストール

以下の手順を使用して、OpenShift CLI (oc) バイナリーを macOS にインストールできます。

手順

  1. Red Hat カスタマーポータルの Download OpenShift Container Platform ページに移動します。
  2. バージョン ドロップダウンリストから適切なバージョンを選択します。
  3. OpenShift v4.19 macOS Clients エントリーの横にある Download Now をクリックして、ファイルを保存します。

    注記

    macOS arm64 の場合は、OpenShift v4.19 macOS arm64 Client エントリーを選択します。

  4. アーカイブを展開し、解凍します。
  5. oc バイナリーをパスにあるディレクトリーに移動します。

    PATH を確認するには、ターミナルを開き、以下のコマンドを実行します。

    $ echo $PATH
    Copy to Clipboard Toggle word wrap

検証

  • oc コマンドを使用してインストールを確認します。

    $ oc <command>
    Copy to Clipboard Toggle word wrap

2.2.11. インストール設定ファイルの手動作成

クラスターをインストールするには、インストール設定ファイルを手動で作成する必要があります。

前提条件

  • インストールプログラムで使用するための SSH 公開鍵がローカルマシン上に存在する。この鍵は、デバッグや障害復旧のために、クラスターノードへの SSH 認証に使用できます。
  • OpenShift Container Platform インストールプログラムとクラスターのプルシークレットを取得している。

手順

  1. 必要なインストールアセットを保存するためのインストールディレクトリーを作成します。

    $ mkdir <installation_directory>
    Copy to Clipboard Toggle word wrap
    重要

    このディレクトリーは必ず作成してください。ブートストラップ X.509 証明書などの一部のインストールアセットは、有効期限が短いため、インストールディレクトリーを再利用しないでください。別のクラスターインストールの個別のファイルを再利用する必要がある場合は、それらをディレクトリーにコピーすることができます。ただし、インストールアセットのファイル名はリリース間で変更される可能性があります。インストールファイルを以前のバージョンの OpenShift Container Platform からコピーする場合は注意してください。

  2. 提供されているサンプルの install-config.yaml ファイルテンプレートをカスタマイズし、ファイルを <installation_directory> に保存します。

    注記

    この設定ファイルの名前を install-config.yaml と付ける必要があります。

  3. 多くのクラスターのインストールに使用できるように、install-config.yaml ファイルをバックアップします。

    重要

    インストールプロセスの次のステップで install-config.yaml ファイルを使用するため、今すぐこのファイルをバックアップしてください。

2.2.11.1. ベアメタルのサンプル install-config.yaml ファイル

install-config.yaml ファイルをカスタマイズして、OpenShift Container Platform クラスターのプラットフォームに関する詳細を指定するか、必要なパラメーターの値を変更することができます。

apiVersion: v1
baseDomain: example.com 
1

compute: 
2

- hyperthreading: Enabled 
3

  name: worker
  replicas: 0 
4

controlPlane: 
5

  hyperthreading: Enabled 
6

  name: master
  replicas: 3 
7

metadata:
  name: test 
8

networking:
  clusterNetwork:
  - cidr: 10.128.0.0/14 
9

    hostPrefix: 23 
10

  networkType: OVNKubernetes 
11

  serviceNetwork: 
12

  - 172.30.0.0/16
platform:
  none: {} 
13

fips: false 
14

pullSecret: '{"auths": ...}' 
15

sshKey: 'ssh-ed25519 AAAA...' 
16
Copy to Clipboard Toggle word wrap
1
クラスターのベースドメイン。すべての DNS レコードはこのベースのサブドメインである必要があり、クラスター名が含まれる必要があります。
2 5
controlPlane セクションは単一マッピングですが、compute セクションはマッピングのシーケンスになります。複数の異なるデータ構造の要件を満たすには、compute セクションの最初の行はハイフン - で始め、controlPlane セクションの最初の行はハイフンで始めることができません。1 つのコントロールプレーンプールのみが使用されます。
3 6
同時マルチスレッド (SMT) またはハイパースレッディングを有効/無効にするかどうかを指定します。デフォルトでは、SMT はマシンのコアのパフォーマンスを上げるために有効にされます。パラメーター値を Disabled に設定するとこれを無効にすることができます。SMT を無効にする場合、これをすべてのクラスターマシンで無効にする必要があります。これにはコントロールプレーンとコンピュートマシンの両方が含まれます。
注記

同時マルチスレッド (SMT) はデフォルトで有効になっています。SMT が BIOS 設定で有効になっていない場合は、hyperthreading パラメーターは効果がありません。

重要

BIOS または install-config.yaml ファイルであるかに関係なく hyperthreading を無効にする場合、容量計画においてマシンのパフォーマンスの大幅な低下が考慮に入れられていることを確認します。

4
OpenShift Container Platform を user-provisioned infrastructure にインストールする場合は、この値を 0 に設定する必要があります。installer-provisioned installation では、パラメーターはクラスターが作成し、管理するコンピュートマシンの数を制御します。user-provisioned installation では、クラスターのインストールの終了前にコンピュートマシンを手動でデプロイする必要があります。
注記

3 ノードクラスターをインストールする場合は、Red Hat Enterprise Linux CoreOS (RHCOS) マシンをインストールする際にコンピュートマシンをデプロイしないでください。

7
クラスターに追加するコントロールプレーンマシンの数。クラスターをこれらの値をクラスターの etcd エンドポイント数として使用するため、値はデプロイするコントロールプレーンマシンの数に一致する必要があります。
8
DNS レコードに指定したクラスター名。
9
Pod IP アドレスの割り当てに使用する IP アドレスのブロック。このブロックは既存の物理ネットワークと重複できません。これらの IP アドレスは Pod ネットワークに使用されます。外部ネットワークから Pod にアクセスする必要がある場合、ロードバランサーおよびルーターを、トラフィックを管理するように設定する必要があります。
注記

クラス E の CIDR 範囲は、将来の使用のために予約されています。クラス E CIDR 範囲を使用するには、ネットワーク環境がクラス E CIDR 範囲内の IP アドレスを受け入れるようにする必要があります。

10
それぞれの個別ノードに割り当てるサブネット接頭辞長。たとえば、hostPrefix23 に設定されている場合、各ノードに指定の cidr から /23 サブネットが割り当てられます。これにより、510 (2^(32 - 23) - 2) Pod IP アドレスが許可されます。外部ネットワークからのノードへのアクセスを提供する必要がある場合には、ロードバランサーおよびルーターを、トラフィックを管理するように設定します。
11
インストールするクラスターネットワークプラグイン。サポートされる値はデフォルト値の OVNKubernetes のみです。
12
サービス IP アドレスに使用する IP アドレスプール。1 つの IP アドレスプールのみを入力できます。このブロックは既存の物理ネットワークと重複できません。外部ネットワークからサービスにアクセスする必要がある場合、ロードバランサーおよびルーターを、トラフィックを管理するように設定します。
13
プラットフォームを none に設定する必要があります。プラットフォーム用に追加のプラットフォーム設定変数を指定することはできません。
重要

プラットフォームタイプ none でインストールされたクラスターは、Machine API を使用したコンピュートマシンの管理など、一部の機能を使用できません。この制限は、クラスターに接続されている計算マシンが、通常はこの機能をサポートするプラットフォームにインストールされている場合でも適用されます。このパラメーターは、インストール後に変更することはできません。

14
FIPS モードを有効または無効にするかどうか。デフォルトでは、FIPS モードは有効にされません。FIPS モードが有効にされている場合、OpenShift Container Platform が実行される Red Hat Enterprise Linux CoreOS (RHCOS) マシンがデフォルトの Kubernetes 暗号スイートをバイパスし、代わりに RHCOS で提供される暗号モジュールを使用します。
重要

クラスターで FIPS モードを有効にするには、FIPS モードで動作するように設定された Red Hat Enterprise Linux (RHEL) コンピューターからインストールプログラムを実行する必要があります。RHEL で FIPS モードを設定する方法の詳細は、RHEL から FIPS モードへの切り替え を参照してください。

FIPS モードでブートされた Red Hat Enterprise Linux (RHEL) または Red Hat Enterprise Linux CoreOS (RHCOS) を実行する場合、OpenShift Container Platform コアコンポーネントは、x86_64、ppc64le、および s390x アーキテクチャーのみで、FIPS 140-2/140-3 検証のために NIST に提出された RHEL 暗号化ライブラリーを使用します。

15
Red Hat OpenShift Cluster Manager からのプルシークレット。このプルシークレットを使用し、OpenShift Container Platform コンポーネントのコンテナーイメージを提供する Quay.io など、組み込まれた各種の認証局によって提供されるサービスで認証できます。
16
Red Hat Enterprise Linux CoreOS (RHCOS) の core ユーザーの SSH 公開鍵。
注記

インストールのデバッグまたは障害復旧を実行する必要のある実稼働用の OpenShift Container Platform クラスターでは、ssh-agent プロセスが使用する SSH キーを指定します。

2.2.12. ネットワーク設定フェーズ

OpenShift Container Platform をインストールする前に、ネットワーク設定をカスタマイズできる 2 つのフェーズがあります。

フェーズ 1

マニフェストファイルを作成する前に、install-config.yaml ファイルで以下のネットワーク関連のフィールドをカスタマイズできます。

  • networking.networkType
  • networking.clusterNetwork
  • networking.serviceNetwork
  • networking.machineNetwork
  • nodeNetworking

    詳細は、「インストール設定パラメーター」を参照してください。

    注記

    優先されるサブネットが配置されている Classless Inter-Domain Routing (CIDR) と一致するように networking.machineNetwork を設定します。

    重要

    CIDR 範囲 172.17.0.0/16libVirt によって予約されています。クラスター内のネットワークに 172.17.0.0/16 CIDR 範囲と重複する他の CIDR 範囲を使用することはできません。

フェーズ 2
openshift-install create manifests を実行してマニフェストファイルを作成した後に、変更するフィールドのみでカスタマイズされた Cluster Network Operator マニフェストを定義できます。マニフェストを使用して、高度なネットワーク設定を指定できます。

フェーズ 2 では、install-config.yaml ファイルのフェーズ 1 で指定した値をオーバーライドすることはできません。ただし、フェーズ 2 でネットワークプラグインをカスタマイズできます。

2.2.13. 高度なネットワーク設定の指定

ネットワークプラグインに高度なネットワーク設定を使用し、クラスターを既存のネットワーク環境に統合することができます。

高度なネットワーク設定は、クラスターのインストール前にのみ指定することができます。

重要

インストールプロブラムで作成される OpenShift Container Platform マニフェストファイルを変更してネットワーク設定をカスタマイズすることは、サポートされていません。以下の手順のように、作成するマニフェストファイルを適用することがサポートされています。

前提条件

  • install-config.yaml ファイルを作成し、これに対する変更を完了している。

手順

  1. インストールプログラムが含まれるディレクトリーに切り替え、マニフェストを作成します。

    $ ./openshift-install create manifests --dir <installation_directory> 
    1
    Copy to Clipboard Toggle word wrap
    1
    <installation_directory> は、クラスターの install-config.yaml ファイルが含まれるディレクトリーの名前を指定します。
  2. cluster-network-03-config.yml という名前の、高度なネットワーク設定用のスタブマニフェストファイルを <installation_directory>/manifests/ ディレクトリーに作成します。

    apiVersion: operator.openshift.io/v1
    kind: Network
    metadata:
      name: cluster
    spec:
    Copy to Clipboard Toggle word wrap
  3. 次の例のように、cluster-network-03-config.yml ファイルでクラスターの高度なネットワーク設定を指定します。

    OVN-Kubernetes ネットワークプロバイダーの IPsec を有効にする

    apiVersion: operator.openshift.io/v1
    kind: Network
    metadata:
      name: cluster
    spec:
      defaultNetwork:
        ovnKubernetesConfig:
          ipsecConfig:
            mode: Full
    Copy to Clipboard Toggle word wrap

  4. オプション: manifests/cluster-network-03-config.yml ファイルをバックアップします。インストールプログラムは、Ignition 設定ファイルの作成時に manifests/ ディレクトリーを使用します。
  5. コントロールプレーンマシンおよびコンピュート MachineSets を定義する Kubernetes マニフェストファイルを削除します。

    $ rm -f openshift/99_openshift-cluster-api_master-machines-*.yaml openshift/99_openshift-cluster-api_worker-machineset-*.yaml
    Copy to Clipboard Toggle word wrap

    これらのリソースを独自に作成および管理するため、それらを初期化する必要はありません。

    • MachineSet ファイルを保存して、マシン API を使用してコンピュートマシンを作成することができますが、環境に合わせてそれらへの参照を更新する必要があります。

2.2.14. Cluster Network Operator の設定

クラスターネットワークの設定は、Cluster Network Operator (CNO) 設定の一部として指定され、cluster という名前のカスタムリソース (CR) オブジェクトに保存されます。CR は operator.openshift.io API グループの Network API のフィールドを指定します。

CNO 設定は、Network.config.openshift.io API グループの Network API からクラスターのインストール時に以下のフィールドを継承します。

clusterNetwork
Pod IP アドレスの割り当てに使用する IP アドレスプール。
serviceNetwork
サービスの IP アドレスプール。
defaultNetwork.type
クラスターネットワークプラグイン。OVNKubernetes は、インストール時にサポートされる唯一のプラグインです。

defaultNetwork オブジェクトのフィールドを cluster という名前の CNO オブジェクトに設定することにより、クラスターのクラスターネットワークプラグイン設定を指定できます。

2.2.14.1. Cluster Network Operator 設定オブジェクト

Cluster Network Operator (CNO) のフィールドは以下の表で説明されています。

Expand
表2.19 Cluster Network Operator 設定オブジェクト
フィールドタイプ説明

metadata.name

string

CNO オブジェクトの名前。この名前は常に cluster です。

spec.clusterNetwork

array

Pod IP アドレスの割り当て、サブネット接頭辞の長さのクラスター内の個別ノードへの割り当てに使用される IP アドレスのブロックを指定するリストです。以下に例を示します。

spec:
  clusterNetwork:
  - cidr: 10.128.0.0/19
    hostPrefix: 23
  - cidr: 10.128.32.0/19
    hostPrefix: 23
Copy to Clipboard Toggle word wrap

spec.serviceNetwork

array

サービスの IP アドレスのブロック。OVN-Kubernetes ネットワークプラグインは、サービスネットワークに対して単一の IP アドレスブロックのみをサポートします。以下に例を示します。

spec:
  serviceNetwork:
  - 172.30.0.0/14
Copy to Clipboard Toggle word wrap

マニフェストを作成する前に、このフィールドを install-config.yaml ファイルでのみカスタマイズすることができます。この値は、マニフェストファイルでは読み取り専用です。

spec.defaultNetwork

object

クラスターネットワークのネットワークプラグインを設定します。

spec.additionalRoutingCapabilities.providers

array

この設定により、動的ルーティングプロバイダーが有効になります。ルートアドバタイズ機能には、FRR ルーティング機能プロバイダーが必要です。サポートされている値は FRR のみです。

  • FRR: FRR ルーティングプロバイダー
spec:
  additionalRoutingCapabilities:
    providers:
    - FRR
Copy to Clipboard Toggle word wrap

spec.kubeProxyConfig

object

このオブジェクトのフィールドは、kube-proxy 設定を指定します。OVN-Kubernetes クラスターネットワークプラグインを使用している場合、kube-proxy 設定は機能しません。

重要

複数のネットワークにオブジェクトをデプロイする必要があるクラスターの場合は、install-config.yaml ファイルで定義されている各ネットワークタイプの clusterNetwork.hostPrefix パラメーターに、必ず同じ値を指定してください。clusterNetwork.hostPrefix パラメーターにそれぞれ異なる値を設定すると、OVN-Kubernetes ネットワークプラグインに影響が及び、異なるノード間のオブジェクトトラフィックをプラグインが効果的にルーティングできなくなる可能性があります。

2.2.14.1.1. defaultNetwork オブジェクト設定

defaultNetwork オブジェクトの値は、以下の表で定義されます。

Expand
表2.20 defaultNetwork オブジェクト
フィールドタイプ説明

type

string

OVNKubernetes。Red Hat OpenShift Networking ネットワークプラグインは、インストール中に選択されます。この値は、クラスターのインストール後は変更できません。

注記

OpenShift Container Platform は、デフォルトで OVN-Kubernetes ネットワークプラグインを使用します。

ovnKubernetesConfig

object

このオブジェクトは、OVN-Kubernetes ネットワークプラグインに対してのみ有効です。

2.2.14.1.1.1. OVN-Kubernetes ネットワークプラグインの設定

次の表では、OVN-Kubernetes ネットワークプラグインの設定フィールドを説明します。

Expand
表2.21 ovnKubernetesConfig オブジェクト
フィールドタイプ説明

mtu

integer

Geneve (Generic Network Virtualization Encapsulation) オーバーレイネットワークの MTU (maximum transmission unit)。これは、プライマリーネットワークインターフェイスの MTU に基づいて自動的に検出されます。通常、検出された MTU を上書きする必要はありません。

自動検出した値が予想される値ではない場合は、ノード上のプライマリーネットワークインターフェイスの MTU が正しいことを確認します。このオプションを使用して、ノード上のプライマリーネットワークインターフェイスの MTU 値を変更することはできません。

クラスターで異なるノードに異なる MTU 値が必要な場合、この値をクラスター内の最小の MTU 値よりも 100 小さく設定する必要があります。たとえば、クラスター内の一部のノードでは MTU が 9001 であり、MTU が 1500 のクラスターもある場合には、この値を 1400 に設定する必要があります。

genevePort

integer

すべての Geneve パケットに使用するポート。デフォルト値は 6081 です。この値は、クラスターのインストール後は変更できません。

ipsecConfig

object

IPsec 設定をカスタマイズするための設定オブジェクトを指定します。

ipv4

object

IPv4 設定の設定オブジェクトを指定します。

ipv6

object

IPv6 設定の設定オブジェクトを指定します。

policyAuditConfig

object

ネットワークポリシー監査ロギングをカスタマイズする設定オブジェクトを指定します。指定されていない場合は、デフォルトの監査ログ設定が使用されます。

routeAdvertisements

string

クラスターネットワークルートをアドバタイズするかどうかを指定します。デフォルト値は、Disabled です。

  • Enabled: ルートをクラスターネットワークにインポートし、RouteAdvertisements オブジェクトで設定されているとおりに、クラスターネットワークルートをアドバタイズします。
  • Disabled: クラスターネットワークにルートをインポートしたり、クラスターネットワークルートをアドバタイズしたりしないでください。

gatewayConfig

object

オプション: Egress トラフィックのノードゲートウェイへの送信方法をカスタマイズするための設定オブジェクトを指定します。有効な値は SharedLocal です。デフォルト値は Shared です。デフォルト設定では、Open vSwitch (OVS) がトラフィックをノード IP インターフェイスに直接出力します。Local 設定では、トラフィックがホストネットワークを通過し、その結果、ホストのルーティングテーブルに適用されます。

注記

Egress トラフィックの移行中は、Cluster Network Operator (CNO) が変更を正常にロールアウトするまで、ワークロードとサービストラフィックに多少の中断が発生することが予想されます。

Expand
表2.22 ovnKubernetesConfig.ipv4 object
フィールドタイプ説明

internalTransitSwitchSubnet

string

既存のネットワークインフラストラクチャーが 100.88.0.0/16 IPv4 サブネットと重複している場合は、OVN-Kubernetes による内部使用のために別の IP アドレス範囲を指定できます。east-west トラフィックを可能にする分散トランジットスイッチのサブネット。このサブネットは、OVN-Kubernetes またはホスト自体で使用される他のサブネットと重複することはできません。クラスター内のノードごとに 1 つの IP アドレスを収容できる必要があります。

デフォルト値は 100.88.0.0/16 です。

internalJoinSubnet

string

既存のネットワークインフラストラクチャーが 100.64.0.0/16 IPv4 サブネットと重複している場合は、OVN-Kubernetes による内部使用のために別の IP アドレス範囲を指定できます。IP アドレス範囲が、OpenShift Container Platform インストールで使用される他のサブネットと重複しないようにする必要があります。IP アドレス範囲は、クラスターに追加できるノードの最大数より大きくする必要があります。たとえば、clusterNetwork.cidr 値が 10.128.0.0/14 で、clusterNetwork.hostPrefix 値が /23 の場合、ノードの最大数は 2^(23-14)=512 です。

デフォルト値は 100.64.0.0/16 です。

Expand
表2.23 ovnKubernetesConfig.ipv6 object
フィールドタイプ説明

internalTransitSwitchSubnet

string

既存のネットワークインフラストラクチャーが fd97::/64 IPv6 サブネットと重複する場合は、OVN-Kubernetes による内部使用のために別の IP アドレス範囲を指定できます。east-west トラフィックを可能にする分散トランジットスイッチのサブネット。このサブネットは、OVN-Kubernetes またはホスト自体で使用される他のサブネットと重複することはできません。クラスター内のノードごとに 1 つの IP アドレスを収容できる必要があります。

デフォルト値は fd97::/64 です。

internalJoinSubnet

string

既存のネットワークインフラストラクチャーが fd98::/64 IPv6 サブネットと重複する場合は、OVN-Kubernetes による内部使用のために別の IP アドレス範囲を指定できます。IP アドレス範囲が、OpenShift Container Platform インストールで使用される他のサブネットと重複しないようにする必要があります。IP アドレス範囲は、クラスターに追加できるノードの最大数より大きくする必要があります。

デフォルト値は fd98::/64 です。

Expand
表2.24 policyAuditConfig オブジェクト
フィールドタイプ説明

rateLimit

integer

ノードごとに毎秒生成されるメッセージの最大数。デフォルト値は、1 秒あたり 20 メッセージです。

maxFileSize

integer

監査ログの最大サイズ (バイト単位)。デフォルト値は 50000000 (50MB) です。

maxLogFiles

integer

保持されるログファイルの最大数。

destination

string

以下の追加の監査ログターゲットのいずれかになります。

libc
ホスト上の journald プロセスの libc syslog() 関数。
udp:<host>:<port>
syslog サーバー。<host>:<port> を syslog サーバーのホストおよびポートに置き換えます。
unix:<file>
<file> で指定された Unix ドメインソケットファイル。
null
監査ログを追加のターゲットに送信しないでください。

syslogFacility

string

RFC5424 で定義される kern などの syslog ファシリティー。デフォルト値は local0 です。

Expand
表2.25 gatewayConfig オブジェクト
フィールドタイプ説明

routingViaHost

boolean

Pod からホストネットワークスタックへの Egress トラフィックを送信するには、このフィールドを true に設定します。インストールおよびアプリケーションがカーネルルーティングテーブルに手動設定されたルートに依存するなど非常に特化されている場合には、Egress トラフィックをホストネットワークスタックにルーティングすることを推奨します。デフォルトでは、Egress トラフィックは OVN で処理され、クラスターを終了するために処理され、トラフィックはカーネルルーティングテーブルの特殊なルートによる影響を受けません。デフォルト値は false です。

このフィールドで、Open vSwitch ハードウェアオフロード機能との対話が可能になりました。このフィールドを true に設定すると、Egress トラフィックがホストネットワークスタックで処理されるため、パフォーマンス的に、オフロードによる利点は得られません。

ipForwarding

object

Network リソースの ipForwarding 仕様を使用して、OVN-Kubernetes マネージドインターフェイス上のすべてのトラフィックの IP フォワーディングを制御できます。Kubernetes 関連のトラフィックの IP フォワーディングのみを許可するには、Restricted を指定します。すべての IP トラフィックの転送を許可するには、Global を指定します。新規インストールの場合、デフォルトは Restricted です。OpenShift Container Platform 4.14 以降に更新する場合、デフォルトは Global です。

注記

デフォルト値の Restricted では、IP 転送がドロップされるように設定されます。

ipv4

object

オプション: IPv4 アドレスのホストからサービスへのトラフィック用の内部 OVN-Kubernetes マスカレードアドレスを設定するオブジェクトを指定します。

ipv6

object

オプション: IPv6 アドレスのホストからサービスへのトラフィックの内部 OVN-Kubernetes マスカレードアドレスを設定するオブジェクトを指定します。

Expand
表2.26 gatewayConfig.ipv4 object
フィールドタイプ説明

internalMasqueradeSubnet

string

ホストからサービスへのトラフィックを有効にするために内部的に使用されるマスカレード IPv4 アドレス。ホストは、これらの IP アドレスと共有ゲートウェイブリッジインターフェイスを使用して設定されます。デフォルト値は 169.254.169.0/29 です。

重要

OpenShift Container Platform 4.17 以降のバージョンでは、クラスターはデフォルトのマスカレードサブネットとして 169.254.0.0/17 を使用します。アップグレードされたクラスターの場合は、デフォルトのマスカレードサブネットに変更がありません。

Expand
表2.27 gatewayConfig.ipv6 object
フィールドタイプ説明

internalMasqueradeSubnet

string

ホストからサービスへのトラフィックを有効にするために内部的に使用されるマスカレード IPv6 アドレス。ホストは、これらの IP アドレスと共有ゲートウェイブリッジインターフェイスを使用して設定されます。デフォルト値は fd69::/125 です。

重要

OpenShift Container Platform 4.17 以降のバージョンでは、クラスターはデフォルトのマスカレードサブネットとして fd69::/112 を使用します。アップグレードされたクラスターの場合は、デフォルトのマスカレードサブネットに変更がありません。

Expand
表2.28 ipsecConfig オブジェクト
フィールドタイプ説明

mode

string

IPsec 実装の動作を指定します。次の値のいずれかである必要があります。

  • Disabled: クラスターノードで IPsec が有効になりません。
  • External: 外部ホストとのネットワークトラフィックに対して IPsec が有効になります。
  • Full: Pod トラフィックおよび外部ホストとのネットワークトラフィックに対して IPsec が有効になります。

IPSec が有効な OVN-Kubernetes 設定の例

defaultNetwork:
  type: OVNKubernetes
  ovnKubernetesConfig:
    mtu: 1400
    genevePort: 6081
    ipsecConfig:
      mode: Full
Copy to Clipboard Toggle word wrap

2.2.15. Ignition 設定ファイルの作成

クラスターマシンは手動で起動する必要があるため、クラスターがマシンを作成するために必要な Ignition 設定ファイルを生成する必要があります。

重要
  • インストールプログラムが生成する Ignition 設定ファイルには、24 時間が経過すると期限切れになり、その後に更新される証明書が含まれます。証明書を更新する前にクラスターが停止し、24 時間経過した後にクラスターを再起動すると、クラスターは期限切れの証明書を自動的に復元します。例外として、kubelet 証明書を回復するために保留状態の node-bootstrapper 証明書署名要求 (CSR) を手動で承認する必要があります。詳細は、コントロールプレーン証明書の期限切れの状態からのリカバリー に関するドキュメントを参照してください。
  • 24 時間証明書はクラスターのインストール後 16 時間から 22 時間にローテーションするため、Ignition 設定ファイルは、生成後 12 時間以内に使用することを推奨します。12 時間以内に Ignition 設定ファイルを使用することにより、インストール中に証明書の更新が実行された場合のインストールの失敗を回避できます。

前提条件

  • OpenShift Container Platform インストールプログラム、およびクラスターのプルシークレットを取得する。

手順

  • Ignition 設定ファイルを取得します。

    $ ./openshift-install create ignition-configs --dir <installation_directory> 
    1
    Copy to Clipboard Toggle word wrap
    1
    <installation_directory> の場合、インストールプログラムが作成するファイルを保存するためにディレクトリー名を指定します。
    重要

    install-config.yaml ファイルを作成している場合、それが含まれるディレクトリーを指定します。または、空のディレクトリーを指定します。ブートストラップ X.509 証明書などの一部のインストールアセットの有効期限は短く設定されているため、インストールディレクトリーを再利用することができません。別のクラスターインストールの個別のファイルを再利用する必要がある場合は、それらをディレクトリーにコピーすることができます。ただし、インストールアセットのファイル名はリリース間で変更される可能性があります。インストールファイルを以前のバージョンの OpenShift Container Platform からコピーする場合は注意してください。

    以下のファイルはディレクトリーに生成されます。

    .
    ├── auth
    │   ├── kubeadmin-password
    │   └── kubeconfig
    ├── bootstrap.ign
    ├── master.ign
    ├── metadata.json
    └── worker.ign
    Copy to Clipboard Toggle word wrap

2.2.16. RHCOS のインストールおよび OpenShift Container Platform ブートストラッププロセスの開始

OpenShift Container Platform を独自にプロビジョニングするベアメタルインフラストラクチャーにインストールするには、Red Hat Enterprise Linux CoreOS (RHCOS) をマシンにインストールする必要があります。RHCOS のインストール時に、インストールするマシンのタイプに、OpenShift Container Platform インストールプログラムによって生成された Ignition 設定ファイルを指定する必要があります。適切なネットワーク、DNS、および負荷分散インフラストラクチャーが設定されている場合、OpenShift Container Platform ブートストラッププロセスは RHCOS マシンの再起動後に自動的に開始されます。

RHCOS をマシンにインストールするには、ISO イメージまたはネットワーク PXE ブートを使用する手順のいずれかを実行します。

注記

このインストールガイドに含まれるコンピュートノードのデプロイメント手順は、RHCOS 固有のものです。代わりに RHEL ベースのコンピュートノードのデプロイを選択する場合は、システム更新の実行、パッチの適用、その他すべての必要なタスクの完了など、オペレーティングシステムのライフサイクルの管理と保守をすべて担当します。RHEL8 コンピュートマシンのみがサポートされています。

以下の方法を使用して、ISO および PXE のインストール時に RHCOS を設定できます。

  • カーネル引数: カーネル引数を使用してインストール固有の情報を提供できます。たとえば、HTTP サーバーにアップロードした RHCOS インストールファイルの場所と、インストールするノードタイプの Ignition 設定ファイルの場所を指定できます。PXE インストールの場合、APPEND パラメーターを使用して、ライブインストーラーのカーネルに引数を渡すことができます。ISO インストールの場合は、ライブインストール起動プロセスを中断してカーネル引数を追加できます。いずれのインストールの場合でも、特殊な coreos.inst.* 引数を使用してライブインストーラーに指示を与えたり、標準のカーネルサービスをオンまたはオフにするために標準のインストールブート引数を使用したりできます。
  • Ignition 設定: OpenShift Container Platform Ignition 設定ファイル (*.ign) は、インストールするノードのタイプに固有のものです。RHCOS のインストール時にブートストラップ、コントロールプレーン、またはコンピュートノードの Ignition 設定ファイルの場所を渡して、初回起動時に有効にされるようにします。特別なケースでは、ライブシステムに渡すために個別の制限付き Ignition 設定を作成できます。この Ignition 設定は、インストールが正常に完了したことをプロビジョニングシステムに報告するなどの一連のタスクを実行する可能性があります。この特別な Ignition 設定は、インストール済みシステムの初回ブート時に適用される coreos-installer によって使用されます。標準のコントロールプレーンおよびコンピュートノードの Ignition 設定をライブ ISO に直接指定しないでください。
  • coreos-installer: ライブ ISO インストーラーをシェルプロンプトで起動できます。これにより、初回のブート前にさまざまな方法で永続的なシステムの準備を行うことができます。特に、coreos-installer コマンドを実行すると、追加するさまざまなアーティファクトを特定し、ディスクパーティションを使用し、ネットワークを設定できます。場合によっては、ライブシステムで機能を設定し、それらをインストールされたシステムにコピーできます。

    注記

    バージョン 0.17.0-3 以降、coreos-installer プログラムを実行するには RHEL 9 以降が必要です。古いバージョンの coreos-installer を使用して、新しい OpenShift Container Platform リリースの RHCOS アーティファクトをカスタマイズし、メタルイメージをディスクにインストールすることもできます。coreos-installer バイナリーの古いバージョンは、coreos-installer image mirror ページからダウンロードできます。

ISO または PXE インストールを使用するかどうかは、状況によって異なります。PXE インストールには、利用可能な DHCP サービスとさらなる準備が必要ですが、インストールプロセスはさらに自動化することが可能です。ISO インストールは主に手動によるプロセスで、複数のマシンを設定する場合には使用しにくい可能性があります。

2.2.16.1. ISO イメージを使用した RHCOS のインストール

ISO イメージを使用してマシンに RHCOS をインストールできます。

前提条件

  • クラスターの Ignition 設定ファイルを作成している。
  • 適切なネットワーク、DNS、および負荷分散インフラストラクチャーを設定している。
  • お使いのコンピューターからアクセスでき、作成するマシンからもアクセスできる HTTP サーバーがある。
  • ネットワークやディスクパーティションなどのさまざまな機能の設定方法について、高度な RHCOS インストール設定 のセクションを確認している。

手順

  1. それぞれの Ignition 設定ファイルの SHA512 ダイジェストを取得します。たとえば、Linux を実行しているシステムで以下を使用して、bootstrap.ign Ignition 設定ファイルの SHA512 ダイジェストを取得できます。

    $ sha512sum <installation_directory>/bootstrap.ign
    Copy to Clipboard Toggle word wrap

    ダイジェストは、クラスターノードの Ignition 設定ファイルの信頼性を検証するために、後の手順で coreos-installer に提供されます。

  2. インストールプログラムが作成したブートストラップ、コントロールプレーン、およびコンピュートノード Ignition 設定ファイルを HTTP サーバーにアップロードします。これらのファイルの URL をメモします。

    重要

    HTTP サーバーに保存する前に、Ignition 設定で設定内容を追加したり、変更したりできます。インストールの完了後にコンピュートマシンをさらにクラスターに追加する予定の場合には、これらのファイルを削除しないでください。

  3. インストールホストから、Ignition 設定ファイルが URL で利用可能であることを確認します。以下の例では、ブートストラップノードの Ignition 設定ファイルを取得します。

    $ curl -k http://<HTTP_server>/bootstrap.ign 
    1
    Copy to Clipboard Toggle word wrap

    出力例

      % Total    % Received % Xferd  Average Speed   Time    Time     Time  Current
                                     Dload  Upload   Total   Spent    Left  Speed
      0     0    0     0    0     0      0      0 --:--:-- --:--:-- --:--:--     0{"ignition":{"version":"3.2.0"},"passwd":{"users":[{"name":"core","sshAuthorizedKeys":["ssh-rsa...
    Copy to Clipboard Toggle word wrap

    コマンドで bootstrap.ignmaster.ign または worker.ign に置き換え、コントロールプレーンおよびコンピュートノードの Ignition 設定ファイルも利用可能であることを検証します。

  4. RHCOS イメージのミラー ページから、オペレーティングシステムインスタンスをインストールするための推奨される方法に必要な RHCOS イメージを取得することは可能ですが、RHCOS イメージの正しいバージョンを取得するための推奨される方法は、openshift-install コマンドの出力から取得することです。

    $ openshift-install coreos print-stream-json | grep '\.iso[^.]'
    Copy to Clipboard Toggle word wrap

    出力例

    "location": "<url>/art/storage/releases/rhcos-4.19-aarch64/<release>/aarch64/rhcos-<release>-live.aarch64.iso",
    "location": "<url>/art/storage/releases/rhcos-4.19-ppc64le/<release>/ppc64le/rhcos-<release>-live.ppc64le.iso",
    "location": "<url>/art/storage/releases/rhcos-4.19-s390x/<release>/s390x/rhcos-<release>-live.s390x.iso",
    "location": "<url>/art/storage/releases/rhcos-4.19/<release>/x86_64/rhcos-<release>-live.x86_64.iso",
    Copy to Clipboard Toggle word wrap

    重要

    RHCOS イメージは OpenShift Container Platform の各リリースごとに変更されない可能性があります。インストールする OpenShift Container Platform バージョンと等しいか、それ以下のバージョンの内で最も新しいバージョンのイメージをダウンロードする必要があります。利用可能な場合は、OpenShift Container Platform バージョンに一致するイメージのバージョンを使用します。この手順には ISO イメージのみを使用します。RHCOS qcow2 イメージは、このインストールではサポートされません。

    ISO ファイルの名前は以下の例のようになります。

    rhcos-<version>-live.<architecture>.iso

  5. ISO を使用し、RHCOS インストールを開始します。以下のインストールオプションのいずれかを使用します。

    • ディスクに ISO イメージを書き込み、これを直接起動します。
    • Lights Out Management (LOM) インターフェイスを使用して ISO リダイレクトを使用します。
  6. オプションを指定したり、ライブ起動シーケンスを中断したりせずに、RHCOS ISO イメージを起動します。インストーラーが RHCOS ライブ環境でシェルプロンプトを起動するのを待ちます。

    注記

    RHCOS インストール起動プロセスを中断して、カーネル引数を追加できます。ただし、この ISO 手順では、カーネル引数を追加する代わりに、以下の手順で説明しているように coreos-installer コマンドを使用する必要があります。

  7. coreos-installer コマンドを実行し、インストール要件を満たすオプションを指定します。少なくとも、ノードタイプの Ignition 設定ファイルを参照する URL と、インストール先のデバイスを指定する必要があります。

    $ sudo coreos-installer install --ignition-url=http://<HTTP_server>/<node_type>.ign <device> \ 
    1
    
    --ignition-hash=sha512-<digest> 
    2
    Copy to Clipboard Toggle word wrap
    1 1
    core ユーザーにはインストールを実行するために必要な root 特権がないため、sudo を使用して coreos-installer コマンドを実行する必要があります。
    2
    --ignition-hash オプションは、Ignition 設定ファイルを HTTP URL を使用して取得し、クラスターノードの Ignition 設定ファイルの信頼性を検証するために必要です。<digest> は、先の手順で取得した Ignition 設定ファイル SHA512 ダイジェストです。
    注記

    TLS を使用する HTTPS サーバーを使用して Ignition 設定ファイルを提供する場合は、coreos-installer を実行する前に、内部認証局 (CA) をシステムのトラストストアに追加できます。

    以下の例では、/dev/sda デバイスへのブートストラップノードのインストールを初期化します。ブートストラップノードの Ignition 設定ファイルは、IP アドレス 192.168.1.2 で HTTP Web サーバーから取得されます。

    $ sudo coreos-installer install --ignition-url=http://192.168.1.2:80/installation_directory/bootstrap.ign /dev/sda \
    --ignition-hash=sha512-a5a2d43879223273c9b60af66b44202a1d1248fc01cf156c46d4a79f552b6bad47bc8cc78ddf0116e80c59d2ea9e32ba53bc807afbca581aa059311def2c3e3b
    Copy to Clipboard Toggle word wrap
  8. マシンのコンソールで RHCOS インストールの進捗を監視します。

    重要

    OpenShift Container Platform のインストールを開始する前に、各ノードでインストールが成功していることを確認します。インストールプロセスを監視すると、発生する可能性のある RHCOS インストールの問題の原因を特定する上でも役立ちます。

  9. RHCOS のインストール後、システムを再起動する必要があります。システムの再起動後、指定した Ignition 設定ファイルを適用します。
  10. コンソール出力をチェックして、Ignition が実行されたことを確認します。

    コマンドの例

    Ignition: ran on 2022/03/14 14:48:33 UTC (this boot)
    Ignition: user-provided config was applied
    Copy to Clipboard Toggle word wrap

  11. 継続してクラスターの他のマシンを作成します。

    重要

    この時点でブートストラップおよびコントロールプレーンマシンを作成する必要があります。コントロールプレーンマシンがデフォルトのスケジュール対象にされていない場合、OpenShift Container Platform のインストール前に少なくとも 2 つのコンピュートマシンも作成します。

    必要なネットワーク、DNS、およびロードバランサーインフラストラクチャーが配置されている場合、OpenShift Container Platform ブートストラッププロセスは RHCOS ノードの再起動後に自動的に起動します。

    注記

    RHCOS ノードには、core ユーザーのデフォルトのパスワードは含まれません。ノードには、ssh core@<node>.<cluster_name>.<base_domain> を、install_config.yaml ファイルで指定したパブリックキーとペアになる SSH プライベートキーへのアクセスのあるユーザーとして実行してアクセスできます。RHCOS を実行する OpenShift Container Platform 4 クラスターノードは変更できず、Operator を使用してクラスターの変更を適用します。SSH を使用したクラスターノードへのアクセスは推奨されません。ただし、インストールの問題を調査する際に、OpenShift Container Platform API が利用できない場合や、kubelet がターゲットノードで適切に機能しない場合、デバッグまたは障害復旧に SSH アクセスが必要になることがあります。

2.2.16.2. PXE または iPXE ブートを使用した RHCOS のインストール

PXE または iPXE ブートを使用してマシンに RHCOS をインストールできます。

前提条件

  • クラスターの Ignition 設定ファイルを作成している。
  • 適切なネットワーク、DNS および負荷分散インフラストラクチャーを設定している。
  • 適切な PXE または iPXE インフラストラクチャーを設定していること。
  • お使いのコンピューターからアクセスでき、作成するマシンからもアクセスできる HTTP サーバーがある。
  • ネットワークやディスクパーティションなどのさまざまな機能の設定方法について、高度な RHCOS インストール設定 のセクションを確認している。

手順

  1. インストールプログラムが作成したブートストラップ、コントロールプレーン、およびコンピュートノード Ignition 設定ファイルを HTTP サーバーにアップロードします。これらのファイルの URL をメモします。

    重要

    HTTP サーバーに保存する前に、Ignition 設定で設定内容を追加したり、変更したりできます。インストールの完了後にコンピュートマシンをさらにクラスターに追加する予定の場合には、これらのファイルを削除しないでください。

  2. インストールホストから、Ignition 設定ファイルが URL で利用可能であることを確認します。以下の例では、ブートストラップノードの Ignition 設定ファイルを取得します。

    $ curl -k http://<HTTP_server>/bootstrap.ign 
    1
    Copy to Clipboard Toggle word wrap

    出力例

      % Total    % Received % Xferd  Average Speed   Time    Time     Time  Current
                                     Dload  Upload   Total   Spent    Left  Speed
      0     0    0     0    0     0      0      0 --:--:-- --:--:-- --:--:--     0{"ignition":{"version":"3.2.0"},"passwd":{"users":[{"name":"core","sshAuthorizedKeys":["ssh-rsa...
    Copy to Clipboard Toggle word wrap

    コマンドで bootstrap.ignmaster.ign または worker.ign に置き換え、コントロールプレーンおよびコンピュートノードの Ignition 設定ファイルも利用可能であることを検証します。

  3. RHCOS イメージミラー ページからオペレーティングシステムインスタンスをインストールするための推奨される方法に必要な RHCOS kernelinitramfs、および rootfs ファイルを取得することは可能ですが、RHCOS ファイルの正しいバージョンを取得するための推奨される方法は、openshift-install コマンドの出力から取得することです。

    $ openshift-install coreos print-stream-json | grep -Eo '"https.*(kernel-|initramfs.|rootfs.)\w+(\.img)?"'
    Copy to Clipboard Toggle word wrap

    出力例

    "<url>/art/storage/releases/rhcos-4.19-aarch64/<release>/aarch64/rhcos-<release>-live-kernel-aarch64"
    "<url>/art/storage/releases/rhcos-4.19-aarch64/<release>/aarch64/rhcos-<release>-live-initramfs.aarch64.img"
    "<url>/art/storage/releases/rhcos-4.19-aarch64/<release>/aarch64/rhcos-<release>-live-rootfs.aarch64.img"
    "<url>/art/storage/releases/rhcos-4.19-ppc64le/49.84.202110081256-0/ppc64le/rhcos-<release>-live-kernel-ppc64le"
    "<url>/art/storage/releases/rhcos-4.19-ppc64le/<release>/ppc64le/rhcos-<release>-live-initramfs.ppc64le.img"
    "<url>/art/storage/releases/rhcos-4.19-ppc64le/<release>/ppc64le/rhcos-<release>-live-rootfs.ppc64le.img"
    "<url>/art/storage/releases/rhcos-4.19-s390x/<release>/s390x/rhcos-<release>-live-kernel-s390x"
    "<url>/art/storage/releases/rhcos-4.19-s390x/<release>/s390x/rhcos-<release>-live-initramfs.s390x.img"
    "<url>/art/storage/releases/rhcos-4.19-s390x/<release>/s390x/rhcos-<release>-live-rootfs.s390x.img"
    "<url>/art/storage/releases/rhcos-4.19/<release>/x86_64/rhcos-<release>-live-kernel-x86_64"
    "<url>/art/storage/releases/rhcos-4.19/<release>/x86_64/rhcos-<release>-live-initramfs.x86_64.img"
    "<url>/art/storage/releases/rhcos-4.19/<release>/x86_64/rhcos-<release>-live-rootfs.x86_64.img"
    Copy to Clipboard Toggle word wrap

    重要

    RHCOS アーティファクトは OpenShift Container Platform の各リリースごとに変更されない可能性があります。インストールする OpenShift Container Platform バージョンと等しいか、それ以下のバージョンの内で最も新しいバージョンのイメージをダウンロードする必要があります。この手順で説明されている適切な kernelinitramfs、および rootfs アーティファクトのみを使用します。RHCOS QCOW2 イメージは、このインストールタイプではサポートされません。

    ファイル名には、OpenShift Container Platform のバージョン番号が含まれます。以下の例のようになります。

    • kernel: rhcos-<version>-live-kernel-<architecture>
    • initramfs: rhcos-<version>-live-initramfs.<architecture>.img
    • rootfs: rhcos-<version>-live-rootfs.<architecture>.img
  4. rootfskernel、および initramfs ファイルを HTTP サーバーにアップロードします。

    重要

    インストールの完了後にコンピュートマシンをさらにクラスターに追加する予定の場合には、これらのファイルを削除しないでください。

  5. RHCOS のインストール後にマシンがローカルディスクから起動されるようにネットワークブートインフラストラクチャーを設定します。
  6. RHCOS イメージの PXE または iPXE インストールを設定し、インストールを開始します。

    ご使用の環境に関する以下の例で示されるメニューエントリーのいずれかを変更し、イメージおよび Ignition ファイルが適切にアクセスできることを確認します。

    • PXE(x86_64) の場合:

      DEFAULT pxeboot
      TIMEOUT 20
      PROMPT 0
      LABEL pxeboot
          KERNEL http://<HTTP_server>/rhcos-<version>-live-kernel-<architecture> 
      1
      
          APPEND initrd=http://<HTTP_server>/rhcos-<version>-live-initramfs.<architecture>.img coreos.live.rootfs_url=http://<HTTP_server>/rhcos-<version>-live-rootfs.<architecture>.img coreos.inst.install_dev=/dev/sda coreos.inst.ignition_url=http://<HTTP_server>/bootstrap.ign 
      2
       
      3
      Copy to Clipboard Toggle word wrap
      1 1
      HTTP サーバーにアップロードしたライブ kernel ファイルの場所を指定します。URL は HTTP、TFTP、または FTP である必要があります。HTTPS および NFS はサポートされません。
      2
      複数の NIC を使用する場合、ip オプションに単一インターフェイスを指定します。たとえば、eno1 という名前の NIC で DHCP を使用するには、ip=eno1:dhcp を設定します。
      3
      HTTP サーバーにアップロードした RHCOS ファイルの場所を指定します。initrd パラメーター値は initramfs ファイルの場所であり、coreos.live.rootfs_url パラメーター値は rootfs ファイルの場所、また coreos.inst.ignition_url パラメーター値はブートストラップ Ignition 設定ファイルの場所になります。APPEND 行にカーネル引数を追加して、ネットワークやその他の起動オプションを設定することもできます。
      注記

      この設定では、グラフィカルコンソールを使用するマシンでシリアルコンソールアクセスを有効にしません。別のコンソールを設定するには、APPEND 行に 1 つ以上の console= 引数を追加します。たとえば、console=tty0 console=ttyS0 を追加して、最初の PC シリアルポートをプライマリーコンソールとして、グラフィカルコンソールをセカンダリーコンソールとして設定します。詳細は、How does one set up a serial terminal and/or console in Red Hat Enterprise Linux? と、「高度な RHCOS インストール設定」セクションの「PXE および ISO インストール用シリアルコンソールの有効化」を参照してください。

    • iPXE (x86_64 + aarch64) の場合:

      kernel http://<HTTP_server>/rhcos-<version>-live-kernel-<architecture> initrd=main coreos.live.rootfs_url=http://<HTTP_server>/rhcos-<version>-live-rootfs.<architecture>.img coreos.inst.install_dev=/dev/sda coreos.inst.ignition_url=http://<HTTP_server>/bootstrap.ign 
      1
       
      2
      
      initrd --name main http://<HTTP_server>/rhcos-<version>-live-initramfs.<architecture>.img 
      3
      
      boot
      Copy to Clipboard Toggle word wrap
      1
      HTTP サーバーにアップロードした RHCOS ファイルの場所を指定します。kernel パラメーター値は kernel ファイルの場所であり、initrd=main 引数は UEFI システムでの起動に必要であり、coreos.live.rootfs_url パラメーター値は rootfs ファイルの場所であり、coreos.inst.ignition_url パラメーター値はブートストラップ Ignition 設定ファイルの場所になります。
      2
      複数の NIC を使用する場合、ip オプションに単一インターフェイスを指定します。たとえば、eno1 という名前の NIC で DHCP を使用するには、ip=eno1:dhcp を設定します。
      3
      HTTP サーバーにアップロードした initramfs ファイルの場所を指定します。
      注記

      この設定では、グラフィカルコンソールを使用するマシンでシリアルコンソールアクセスを有効にしません。別のコンソールを設定するには、kernel 行に console= 引数を 1 つ以上追加します。たとえば、console=tty0 console=ttyS0 を追加して、最初の PC シリアルポートをプライマリーコンソールとして、グラフィカルコンソールをセカンダリーコンソールとして設定します。詳細は、How does one set up a serial terminal and/or console in Red Hat Enterprise Linux? と、「高度な RHCOS インストール設定」セクションの「PXE および ISO インストール用シリアルコンソールの有効化」を参照してください。

      注記

      aarch64 アーキテクチャーで CoreOS kernel をネットワークブートするには、IMAGE_GZIP オプションが有効になっているバージョンの iPXE ビルドを使用する必要があります。iPXE の IMAGE_GZIP オプション を参照してください。

    • aarch64 上の PXE (第 2 段階として UEFI と Grub を使用) の場合:

      menuentry 'Install CoreOS' {
          linux rhcos-<version>-live-kernel-<architecture>  coreos.live.rootfs_url=http://<HTTP_server>/rhcos-<version>-live-rootfs.<architecture>.img coreos.inst.install_dev=/dev/sda coreos.inst.ignition_url=http://<HTTP_server>/bootstrap.ign 
      1
       
      2
      
          initrd rhcos-<version>-live-initramfs.<architecture>.img 
      3
      
      }
      Copy to Clipboard Toggle word wrap
      1
      HTTP/TFTP サーバーにアップロードした RHCOS ファイルの場所を指定します。kernel パラメーター値は、TFTP サーバー上の kernel ファイルの場所になります。coreos.live.rootfs_url パラメーター値は rootfs ファイルの場所であり、coreos.inst.ignition_url パラメーター値は HTTP サーバー上のブートストラップ Ignition 設定ファイルの場所になります。
      2
      複数の NIC を使用する場合、ip オプションに単一インターフェイスを指定します。たとえば、eno1 という名前の NIC で DHCP を使用するには、ip=eno1:dhcp を設定します。
      3
      TFTP サーバーにアップロードした initramfs ファイルの場所を指定します。
  7. マシンのコンソールで RHCOS インストールの進捗を監視します。

    重要

    OpenShift Container Platform のインストールを開始する前に、各ノードでインストールが成功していることを確認します。インストールプロセスを監視すると、発生する可能性のある RHCOS インストールの問題の原因を特定する上でも役立ちます。

  8. RHCOS のインストール後に、システムは再起動します。再起動中、システムは指定した Ignition 設定ファイルを適用します。
  9. コンソール出力をチェックして、Ignition が実行されたことを確認します。

    コマンドの例

    Ignition: ran on 2022/03/14 14:48:33 UTC (this boot)
    Ignition: user-provided config was applied
    Copy to Clipboard Toggle word wrap

  10. クラスターのマシンの作成を続行します。

    重要

    この時点でブートストラップおよびコントロールプレーンマシンを作成する必要があります。コントロールプレーンマシンがデフォルトのスケジュール対象にされていない場合、クラスターのインストール前に少なくとも 2 つのコンピュートマシンを作成します。

    必要なネットワーク、DNS、およびロードバランサーインフラストラクチャーが配置されている場合、OpenShift Container Platform ブートストラッププロセスは RHCOS ノードの再起動後に自動的に起動します。

    注記

    RHCOS ノードには、core ユーザーのデフォルトのパスワードは含まれません。ノードには、ssh core@<node>.<cluster_name>.<base_domain> を、install_config.yaml ファイルで指定したパブリックキーとペアになる SSH プライベートキーへのアクセスのあるユーザーとして実行してアクセスできます。RHCOS を実行する OpenShift Container Platform 4 クラスターノードは変更できず、Operator を使用してクラスターの変更を適用します。SSH を使用したクラスターノードへのアクセスは推奨されません。ただし、インストールの問題を調査する際に、OpenShift Container Platform API が利用できない場合や、kubelet がターゲットノードで適切に機能しない場合、デバッグまたは障害復旧に SSH アクセスが必要になることがあります。

2.2.16.3. 高度な RHCOS インストール設定

OpenShift Container Platform 用の Red Hat Enterprise Linux CoreOS (RHCOS) ノードを手動でプロビジョニングする主な利点は、デフォルトの OpenShift Container Platform インストール方法では利用できない設定を実行できることです。このセクションでは、以下のような手法で実行できるいくつかの設定を説明します。

  • カーネル引数をライブインストーラーに渡す
  • ライブシステムからの coreos-installer の手動による実行
  • ライブ ISO または PXE ブートイメージのカスタマイズ

このセクションで説明されている手動の Red Hat Enterprise Linux CoreOS (RHCOS) インストールの高度な設定トピックは、ディスクパーティション設定、ネットワーク、および複数の異なる方法での Ignition 設定の使用に関連しています。

2.2.16.3.1. PXE および ISO インストールの高度なネットワーキングオプションの使用

OpenShift Container Platform ノードのネットワークはデフォルトで DHCP を使用して、必要な設定をすべて収集します。静的 IP アドレスを設定したり、ボンディングなどの特別な設定を行う場合は、以下のいずれかの方法で実行できます。

  • ライブインストーラーの起動時に、特別なカーネルパラメーターを渡します。
  • マシン設定を使用してネットワークファイルをインストール済みシステムにコピーします。
  • ライブインストーラーのシェルプロンプトからネットワークを設定し、それらの設定をインストール済みシステムにコピーして、インストール済みシステムの初回起動時に有効になるようにします。

PXE または iPXE インストールを設定するには、以下のオプションのいずれかを使用します。

  • 「詳細な RHCOS インストールリファレンスの表」を参照してください。
  • マシン設定を使用してネットワークファイルをインストール済みシステムにコピーします。

ISO インストールを設定するには、以下の手順に従います。

手順

  1. ISO インストーラーを起動します。
  2. ライブシステムシェルプロンプトから、nmcli または nmtui などの利用可能な RHEL ツールを使用して、ライブシステムのネットワークを設定します。
  3. coreos-installer コマンドを実行してシステムをインストールし、--copy-network オプションを追加してネットワーク設定をコピーします。以下に例を示します。

    $ sudo coreos-installer install --copy-network \
         --ignition-url=http://host/worker.ign /dev/disk/by-id/scsi-<serial_number>
    Copy to Clipboard Toggle word wrap
    重要

    --copy-network オプションは、/etc/NetworkManager/system-connections にあるネットワーク設定のみをコピーします。特に、システムのホスト名はコピーされません。

  4. インストール済みのシステムで再起動します。
2.2.16.3.2. ディスクパーティション設定

ディスクパーティションは、Red Hat Enterprise Linux CoreOS (RHCOS) のインストール時に OpenShift Container Platform クラスターノードに作成されます。デフォルトのパーティション設定をオーバーライドしない限り、特定のアーキテクチャーの各 RHCOS ノードで同じパーティションレイアウトが使用されます。RHCOS のインストール時に、ルートファイルシステムのサイズが拡大し、ターゲットデバイスの残りの使用可能なスペースが使用されます。

重要

ノードでカスタムパーティションスキームを使用すると、OpenShift Container Platform が一部のノードパーティションでモニタリングやアラートを行わなくなる可能性があります。デフォルトのパーティション設定をオーバーライドする場合は、OpenShift Container Platform がホストファイルシステムを監視する方法の詳細について Understanding OpenShift File System Monitoring (eviction conditions) を参照してください。

OpenShift Container Platform は、次の 2 つのファイルシステム識別子を監視します。

  • nodefs: /var/lib/kubelet を含むファイルシステム
  • imagefs: /var/lib/containers を含むファイルシステム

デフォルトのパーティションスキームの場合、nodefsimagefs は同じルートファイルシステム (/) を監視します。

RHCOS を OpenShift Container Platform クラスターノードにインストールするときにデフォルトのパーティション設定をオーバーライドするには、別のパーティションを作成する必要があります。コンテナーとコンテナーイメージ用に別のストレージパーティションを追加する状況を考えてみましょう。たとえば、/var/lib/containers を別のパーティションにマウントすると、kubelet が /var/lib/containersimagefs ディレクトリーとして、ルートファイルシステムを nodefs ディレクトリーとして個別に監視します。

重要

より大きなファイルシステムをホストするためにディスクサイズを変更した場合は、別の /var/lib/containers パーティションを作成することを検討してください。多数の割り当てグループによって発生する CPU 時間の問題を軽減するには、xfs 形式のディスクのサイズを変更することを検討してください。

2.2.16.3.2.1. 個別の /var パーティションの作成

通常は、RHCOS のインストール時に作成されるデフォルトのディスクパーティションを使用する必要があります。ただし、拡張するディレクトリーの個別のパーティションの作成が必要となる場合もあります。

OpenShift Container Platform は、ストレージを /var ディレクトリーまたは /var のサブディレクトリーのいずれかに割り当てる単一のパーティションの追加をサポートします。以下に例を示します。

  • /var/lib/containers: イメージやコンテナーがシステムにさらに追加されると拡張するコンテナー関連のコンテンツを保持します。
  • /var/lib/etcd: etcd ストレージのパフォーマンスの最適化などの目的で分離する必要のあるデータを保持します。
  • /var: 監査などの目的に合わせて分離させる必要のあるデータを保持します。

    重要

    ディスクサイズが 100 GB を超える場合、特に 1 TB を超える場合は、別の /var パーティションを作成します。

/var ディレクトリーのコンテンツを個別に保存すると、必要に応じてこれらの領域のストレージの拡大を容易にし、後で OpenShift Container Platform を再インストールして、そのデータをそのまま保持することができます。この方法では、すべてのコンテナーを再度プルする必要はありません。また、システムの更新時に大きなログファイルをコピーする必要もありません。

/var ディレクトリーまたは /var のサブディレクトリーの個別のパーティションを使用すると、パーティション設定されたディレクトリーでのデータの増加によりルートファイルシステムが一杯になることを避けることもできます。

以下の手順では、インストールの準備フェーズでノードタイプの Ignition 設定ファイルにラップされるマシン設定マニフェストを追加して、別の /var パーティションを設定します。

手順

  1. インストールホストで、OpenShift Container Platform のインストールプログラムが含まれるディレクトリーに切り替え、クラスターの Kubernetes マニフェストを生成します。

    $ openshift-install create manifests --dir <installation_directory>
    Copy to Clipboard Toggle word wrap
  2. 追加のパーティションを設定する Butane 設定を作成します。たとえば、$HOME/clusterconfig/98-var-partition.bu ファイルに名前を付け、ディスクのデバイス名を worker システムのストレージデバイスの名前に変更し、必要に応じてストレージサイズを設定します。以下の例では、/var ディレクトリーを別のパーティションにマウントします。

    variant: openshift
    version: 4.19.0
    metadata:
      labels:
        machineconfiguration.openshift.io/role: worker
      name: 98-var-partition
    storage:
      disks:
      - device: /dev/disk/by-id/<device_name> 
    1
    
        partitions:
        - label: var
          start_mib: <partition_start_offset> 
    2
    
          size_mib: <partition_size> 
    3
    
          number: 5
      filesystems:
        - device: /dev/disk/by-partlabel/var
          path: /var
          format: xfs
          mount_options: [defaults, prjquota] 
    4
    
          with_mount_unit: true
    Copy to Clipboard Toggle word wrap
    1
    パーティションを設定する必要のあるディスクのストレージデバイス名。
    2
    データパーティションをブートディスクに追加する場合は、25000 のメビバイトの最小のオフセット値が推奨されます。ルートファイルシステムは、指定したオフセットまでの利用可能な領域をすべて埋めるためにサイズを自動的に変更します。オフセット値の指定がない場合や、指定した値が推奨される最小値よりも小さい場合、生成されるルートファイルシステムのサイズは小さ過ぎるため、RHCOS の再インストールでデータパーティションの最初の部分が上書きされる可能性があります。
    3
    データパーティションのサイズ (メビバイト単位)。
    4
    コンテナーストレージに使用されるファイルシステムでは、prjquota マウントオプションを有効にする必要があります。
    注記

    個別の /var パーティションを作成する場合、異なるインスタンスタイプに同じデバイス名がない場合は、コンピュートノードに異なるインスタンスタイプを使用することはできません。

  3. Butane config からマニフェストを作成し、clusterconfig/openshift ディレクトリーに保存します。たとえば、以下のコマンドを実行します。

    $ butane $HOME/clusterconfig/98-var-partition.bu -o $HOME/clusterconfig/openshift/98-var-partition.yaml
    Copy to Clipboard Toggle word wrap
  4. Ignition 設定ファイルを作成します。

    $ openshift-install create ignition-configs --dir <installation_directory> 
    1
    Copy to Clipboard Toggle word wrap
    1
    <installation_directory> には、同じインストールディレクトリーを指定します。

    Ignition 設定ファイルは、インストールディレクトリー内のブートストラップ、コントロールプレーン、およびコンピュートノード用に作成されます。

    .
    ├── auth
    │   ├── kubeadmin-password
    │   └── kubeconfig
    ├── bootstrap.ign
    ├── master.ign
    ├── metadata.json
    └── worker.ign
    Copy to Clipboard Toggle word wrap

    <installation_directory>/manifest ディレクトリーおよび <installation_directory>/openshift ディレクトリーのファイルは、98-var-partition カスタム MachineConfig オブジェクトが含まれるファイルを含む Ignition 設定ファイルにラップされます。

次のステップ

  • RHCOS のインストール時に Ignition 設定ファイルを参照して、カスタムディスクのパーティション設定を適用することができます。
2.2.16.3.2.2. 既存パーティションの保持

ISO インストールの場合は、インストーラーに 1 つ以上の既存パーティションを維持させる coreos-installer コマンドにオプションを追加することができます。PXE インストールの場合、coreos.inst.* オプションを APPEND パラメーターに追加して、パーティションを保持できます。

保存したパーティションは、既存の OpenShift Container Platform システムからのデータパーティションである可能性があります。パーティションラベルまたは番号のいずれかで保持する必要のあるディスクパーティションを特定できます。

注記

既存のパーティションを保存し、それらのパーティションが RHCOS の十分な領域を残さない場合、インストールは失敗します。この場合、保存したパーティションが破損することはありません。

ISO インストール時の既存パーティションの保持

この例では、パーティションラベルが data (data*) で始まるパーティションを保持します。

# coreos-installer install --ignition-url http://10.0.2.2:8080/user.ign \
--save-partlabel 'data*' \
/dev/disk/by-id/scsi-<serial_number>
Copy to Clipboard Toggle word wrap

以下の例では、ディスク上の 6 番目のパーティションを保持する方法で coreos-installer を実行する方法を説明しています。

# coreos-installer install --ignition-url http://10.0.2.2:8080/user.ign \
--save-partindex 6 /dev/disk/by-id/scsi-<serial_number>
Copy to Clipboard Toggle word wrap

この例では、パーティション 5 以上を保持します。

# coreos-installer install --ignition-url http://10.0.2.2:8080/user.ign \
--save-partindex 5- /dev/disk/by-id/scsi-<serial_number>
Copy to Clipboard Toggle word wrap

パーティションの保存が使用された以前の例では、coreos-installer はパーティションをすぐに再作成します。

PXE インストール時の既存パーティションの保持

この APPEND オプションは、パーティションラベルが 'data' ('data*') で始まるパーティションを保持します。

coreos.inst.save_partlabel=data*
Copy to Clipboard Toggle word wrap

この APPEND オプションは、パーティション 5 以上を保持します。

coreos.inst.save_partindex=5-
Copy to Clipboard Toggle word wrap

この APPEND オプションは、パーティション 6 を保持します。

coreos.inst.save_partindex=6
Copy to Clipboard Toggle word wrap
2.2.16.3.3. Ignition 設定の特定

RHCOS の手動インストールを実行する場合、提供できる Ignition 設定には 2 つのタイプがあり、それぞれを提供する理由もそれぞれ異なります。

  • Permanent install Ignition config: すべての手動の RHCOS インストールは、bootstrap.ignmaster.ign、および worker.ign などの openshift-installer が生成した Ignition 設定ファイルのいずれかを渡し、インストールを実行する必要があります。

    重要

    これらの Ignition 設定ファイルを直接変更することは推奨されません。前述のセクションの例で説明されているように、Ignition 設定ファイルにラップされるマニフェストファイルを更新できます。

    PXE インストールの場合、coreos.inst.ignition_url= オプションを使用して、APPEND 行に Ignition 設定を渡します。ISO インストールの場合、シェルプロンプトで ISO を起動した後に、--ignition-url= オプションを指定した coreos-installer コマンドラインで Ignition 設定を特定します。いずれの場合も、HTTP プロトコルおよび HTTPS プロトコルのみがサポートされます。

  • Live install Ignition config: このタイプは、coreos-installer customize サブコマンドとそのさまざまなオプションを使用して作成できます。この方法では、Ignition 設定はライブインストールメディアに渡され、起動直後に実行され、RHCOS システムがディスクにインストールされる前または後にセットアップタスクを実行します。この方法は、マシン設定を使用して実行できない高度なパーティション設定など、一度の適用後に再度適用する必要のないタスクの実行にのみ使用する必要があります。

    PXE または ISO ブートの場合、Ignition 設定を作成し、ignition.config.url= オプションに対して APPEND を実行し、Ignition 設定の場所を特定できます。また、ignition.firstboot ignition.platform.id=metal も追加する必要があります。追加しない場合は、ignition.config.url が無視されます。

2.2.16.3.4. デフォルトのコンソール設定

OpenShift Container Platform 4.19 ブートイメージからインストールされた Red Hat Enterprise Linux CoreOS (RHCOS) ノードは、ほとんどの仮想化セットアップおよびベアメタルセットアップに対応するためのデフォルトコンソールを使用します。クラウドおよび仮想化プラットフォームが異なれば、選択したアーキテクチャーに応じて、異なるデフォルト設定が使用される場合があります。ベアメタルインストールではカーネルのデフォルト設定が使用されます。これは通常、グラフィカルコンソールがプライマリーコンソールで、シリアルコンソールが無効になっていることを意味します。

デフォルトのコンソールが特定のハードウェア設定と一致しない場合や、デフォルトのコンソールを調整する必要がある特定のニーズがある場合があります。以下に例を示します。

  • デバッグ目的で、コンソールの緊急シェルにアクセスしたいと考えています。
  • クラウドプラットフォームは、グラフィカルコンソールへの対話型アクセスを提供しませんが、シリアルコンソールを提供します。
  • 複数のコンソールを有効にしたい。

コンソール設定は、ブートイメージから継承されます。これは、既存のクラスター内の新しいノードが、デフォルトのコンソールへの変更の影響を受けないことを意味します。

次の方法で、ベアメタルインストール用にコンソールを設定できます。

  • コマンドラインで手動で coreos-installer を使用する。
  • --dest-console オプションを指定した coreos-installer iso customize または coreos-installer pxe customize サブコマンドを使用して、プロセスを自動化するカスタムイメージを作成します。
注記

高度なカスタマイズを行うには、カーネル引数ではなく、coreos-installer iso または coreos-installer pxe サブコマンドを使用してコンソール設定を実行します。

2.2.16.3.5. PXE および ISO インストール用のシリアルコンソールの有効化

デフォルトでは、Red Hat Enterprise Linux CoreOS (RHCOS) シリアルコンソールは無効になっており、すべての出力はグラフィカルコンソールに書き込まれます。ISO インストール用にシリアルコンソールを有効にし、シリアルコンソールとグラフィカルコンソールの両方に出力が送信されるようにブートローダーを再設定できます。

手順

  1. ISO インストーラーを起動します。
  2. coreos-installer コマンドを実行してシステムをインストールし、--console オプションを 1 回追加してグラフィカルコンソールを指定し、2 回目にシリアルコンソールを指定します。

    $ coreos-installer install \
    --console=tty0 \
    1
    
    --console=ttyS0,<options> \
    2
    
    --ignition-url=http://host/worker.ign /dev/disk/by-id/scsi-<serial_number>
    Copy to Clipboard Toggle word wrap
    1
    望ましい 2 番目のコンソール。この場合は、グラフィカルコンソールです。このオプションを省略すると、グラフィカルコンソールが無効になります。
    2
    望ましいひとつ目のコンソール。この場合、シリアルコンソールです。options フィールドは、ボーレートとその他の設定を定義します。このフィールドの一般的な値は 115200n8 です。オプションが指定されていない場合、デフォルトのカーネル値である 9600n8 が使用されます。このオプションの形式の詳細は、Linux カーネルシリアルコンソール のドキュメントを参照してください。
  3. インストール済みのシステムで再起動します。

    注記

    coreos-installer install --append-karg オプションを使用し、console= でコンソールを指定すると、同様の結果が得られます。ただし、これはカーネルのコンソールのみを設定し、ブートローダーは設定しません。

PXE インストールを設定するには、coreos.inst.install_dev カーネルコマンドラインオプションが省略されていることを確認し、シェルプロンプトを使用して、上記の ISO インストール手順を使用して手動で coreos-installer を実行します。

2.2.16.3.6. ライブ RHCOS ISO または PXE インストールのカスタマイズ

ライブ ISO イメージまたは PXE 環境を使用して、Ignition 設定ファイルをイメージに直接挿入することで RHCOS をインストールできます。これにより、システムのプロビジョニングに使用できるカスタマイズされたイメージが作成されます。

ISO イメージの場合、これを行うメカニズムは coreos-installer iso customize サブコマンドです。これは設定に合わせて .iso ファイルを変更します。同様に、PXE 環境のメカニズムは、カスタマイズを含む新しい initramfs ファイルを作成する coreos-installer pxe customize サブコマンドです。

customize サブコマンドは、他のタイプのカスタマイズも埋め込むことができる汎用ツールです。次のタスクは、より一般的なカスタマイズの例です。

  • 企業のセキュリティーポリシーで使う必要がある場合に備えて、カスタム CA 証明書を挿入します。
  • カーネル引数を必要とせずにネットワーク設定を設定します。
  • 任意のプレインストールおよびポストインストールスクリプトまたはバイナリーを埋め込みます。
2.2.16.3.7. ライブ RHCOS ISO イメージのカスタマイズ

coreos-installer iso customize サブコマンドを使用して、ライブ RHCOS ISO イメージを直接カスタマイズできます。ISO イメージを起動すると、カスタマイズが自動的に適用されます。

この機能を使用して、RHCOS を自動的にインストールするように ISO イメージを設定できます。

手順

  1. coreos-installer イメージミラー ページから、coreos-installer バイナリーをダウンロードします。
  2. RHCOS イメージミラー ページと Ignition 設定ファイルから RHCOS ISO イメージを取得し、次のコマンドを実行して、Ignition 設定を ISO イメージに直接挿入します。

    $ coreos-installer iso customize rhcos-<version>-live.x86_64.iso \
        --dest-ignition bootstrap.ign \ 
    1
    
        --dest-device /dev/disk/by-id/scsi-<serial_number> 
    2
    Copy to Clipboard Toggle word wrap
    1
    openshift-installer インストールプログラムから生成される Ignition 設定ファイル。
    2
    このオプションを指定すると、ISO イメージは自動的にインストールを実行します。それ以外の場合は、イメージはインストール用に設定されたままになりますが、coreos.inst.install_dev カーネル引数を指定しない限り、自動的にはインストールされません。
  3. オプション: ISO イメージのカスタマイズを削除し、イメージを元の状態に戻すには、次のコマンドを実行します。

    $ coreos-installer iso reset rhcos-<version>-live.x86_64.iso
    Copy to Clipboard Toggle word wrap

    これで、ライブ ISO イメージを再カスタマイズしたり、元の状態で使用したりできます。

カスタマイズを適用すると、それ以降のすべての RHCOS 起動に影響します。

2.2.16.3.7.1. ライブインストール ISO イメージを変更して、シリアルコンソールを有効化

OpenShift Container Platform 4.12 以降でインストールされたクラスターでは、シリアルコンソールはデフォルトで無効になり、すべての出力がグラフィカルコンソールに書き込まれます。次の手順でシリアルコンソールを有効にできます。

手順

  1. coreos-installer イメージミラー ページから、coreos-installer バイナリーをダウンロードします。
  2. RHCOS イメージミラー ページから RHCOS ISO イメージを取得し、次のコマンドを実行して ISO イメージをカスタマイズし、シリアルコンソールが出力を受信できるようにします。

    $ coreos-installer iso customize rhcos-<version>-live.x86_64.iso \
      --dest-ignition <path> \
    1
    
      --dest-console tty0 \
    2
    
      --dest-console ttyS0,<options> \
    3
    
      --dest-device /dev/disk/by-id/scsi-<serial_number> 
    4
    Copy to Clipboard Toggle word wrap
    1
    インストールする Ignition 設定の場所。
    2
    望ましい 2 番目のコンソール。この場合は、グラフィカルコンソールです。このオプションを省略すると、グラフィカルコンソールが無効になります。
    3
    望ましいひとつ目のコンソール。この場合、シリアルコンソールです。options フィールドは、ボーレートとその他の設定を定義します。このフィールドの一般的な値は 115200n8 です。オプションが指定されていない場合、デフォルトのカーネル値である 9600n8 が使用されます。このオプションの形式の詳細は、Linux カーネルシリアルコンソール のドキュメントを参照してください。
    4
    インストール先として指定されたディスク。このオプションを省略すると、ISO イメージはインストールプログラムを自動的に実行しますが、coreos.inst.install_dev カーネル引数も指定しない限り失敗します。
    注記

    --dest-console オプションは、ライブ ISO システムではなく、インストールされたシステムに影響します。ライブ ISO システムのコンソールを変更するには、--live-karg-append オプションを使用し、console= でコンソールを指定します。

    カスタマイズが適用され、ISO イメージの後続のすべての起動に影響します。

  3. オプション: ISO イメージのカスタマイズを削除してイメージを元の状態に戻すには、次のコマンドを実行します。

    $ coreos-installer iso reset rhcos-<version>-live.x86_64.iso
    Copy to Clipboard Toggle word wrap

    ライブ ISO イメージを再カスタマイズするか、元の状態で使用できるようになりました。

2.2.16.3.7.2. カスタム認証局を使用するようにライブインストール ISO イメージを変更する

customize サブコマンドの --ignition-ca フラグを使用して、認証局 (CA) 証明書を Ignition に提供できます。CA 証明書は、インストールの起動時とインストール済みシステムのプロビジョニング時の両方で使用できます。

注記

カスタム CA 証明書は、Ignition がリモートリソースをフェッチする方法に影響しますが、システムにインストールされている証明書には影響しません。

手順

  1. coreos-installer イメージミラー ページから、coreos-installer バイナリーをダウンロードします。
  2. RHCOS イメージミラー ページから RHCOS ISO イメージを取得し、次のコマンドを実行して、カスタム CA で使用する ISO イメージをカスタマイズします。

    $ coreos-installer iso customize rhcos-<version>-live.x86_64.iso --ignition-ca cert.pem
    Copy to Clipboard Toggle word wrap
重要

coreos.inst.ignition_url カーネルパラメーターは、--ignition-ca フラグでは機能しません。クラスターごとにカスタマイズされたイメージを作成するには、--dest-ignition フラグを使用する必要があります。

カスタム CA 証明書を適用すると、それ以降のすべての RHCOS 起動に影響します。

NetworkManager キーファイルをライブ ISO イメージに埋め込み、customize サブコマンドの --network-keyfile フラグを使用してインストール済みシステムに渡すことができます。

警告

接続プロファイルを作成する際は、接続プロファイルのファイル名に .nmconnection ファイル名拡張子を使用する必要があります。.nmconnection ファイル名拡張子を使用しない場合、クラスターは接続プロファイルをライブ環境に適用しますが、クラスターが初めてノードを起動するときに設定が適用されないため、セットアップが機能しなくなります。

手順

  1. coreos-installer イメージミラー ページから、coreos-installer バイナリーをダウンロードします。
  2. ボンディングされたインターフェイスの接続プロファイルを作成します。たとえば、ローカルディレクトリーに次の内容の bond0.nmconnection ファイルを作成します。

    [connection]
    id=bond0
    type=bond
    interface-name=bond0
    multi-connect=1
    
    [bond]
    miimon=100
    mode=active-backup
    
    [ipv4]
    method=auto
    
    [ipv6]
    method=auto
    Copy to Clipboard Toggle word wrap
  3. ボンディングに追加するセカンダリーインターフェイスの接続プロファイルを作成します。たとえば、ローカルディレクトリーに次の内容の bond0-proxy-em1.nmconnection ファイルを作成します。

    [connection]
    id=em1
    type=ethernet
    interface-name=em1
    master=bond0
    multi-connect=1
    slave-type=bond
    Copy to Clipboard Toggle word wrap
  4. ボンディングに追加するセカンダリーインターフェイスの接続プロファイルを作成します。たとえば、ローカルディレクトリーに次の内容の bond0-proxy-em2.nmconnection ファイルを作成します。

    [connection]
    id=em2
    type=ethernet
    interface-name=em2
    master=bond0
    multi-connect=1
    slave-type=bond
    Copy to Clipboard Toggle word wrap
  5. RHCOS イメージミラー ページから RHCOS ISO イメージを取得し、次のコマンドを実行して、設定されたネットワークで ISO イメージをカスタマイズします。

    $ coreos-installer iso customize rhcos-<version>-live.x86_64.iso \
        --network-keyfile bond0.nmconnection \
        --network-keyfile bond0-proxy-em1.nmconnection \
        --network-keyfile bond0-proxy-em2.nmconnection
    Copy to Clipboard Toggle word wrap

    ネットワーク設定はライブシステムに適用され、宛先システムに引き継がれます。

2.2.16.3.7.4. iSCSI ブートデバイス用のライブインストール ISO イメージをカスタマイズする

ライブ RHCOS イメージのカスタマイズされたバージョンを使用して、自動マウント、起動、および設定用の iSCSI ターゲットとイニシエーターの値を設定できます。

前提条件

  1. RHCOS のインストール先となる iSCSI ターゲットがある。

手順

  1. coreos-installer イメージミラー ページから、coreos-installer バイナリーをダウンロードします。
  2. RHCOS イメージミラー ページから RHCOS ISO イメージを取得し、次の情報を使用して ISO イメージをカスタマイズするために、以下のコマンドを実行します。

    $ coreos-installer iso customize \
        --pre-install mount-iscsi.sh \ 
    1
    
        --post-install unmount-iscsi.sh \ 
    2
    
        --dest-device /dev/disk/by-path/<IP_address>:<port>-iscsi-<target_iqn>-lun-<lun> \ 
    3
    
        --dest-ignition config.ign \ 
    4
    
        --dest-karg-append rd.iscsi.initiator=<initiator_iqn> \ 
    5
    
        --dest-karg-append netroot=<target_iqn> \ 
    6
    
        -o custom.iso rhcos-<version>-live.x86_64.iso
    Copy to Clipboard Toggle word wrap
    1
    インストール前に実行されるスクリプト。iSCSI ターゲットをマウントするための iscsiadm コマンドと、マルチパス構成を有効にするコマンドが含まれている必要があります。
    2
    インストール後に実行されるスクリプト。iscsiadm --mode node --logout=all コマンドが含まれている必要があります。
    3
    宛先システムの場所。ターゲットポータルの IP アドレス、関連付けられたポート番号、IQN 形式のターゲット iSCSI ノード、および iSCSI 論理ユニット番号 (LUN) を指定する必要があります。
    4
    宛先システムの Ignition 設定。
    5
    IQN 形式の iSCSI イニシエーター、クライアントの名前。イニシエーターは iSCSI ターゲットに接続するセッションを形成します。
    6
    IQN 形式の iSCSI ターゲットまたはサーバーの名前。

    dracut でサポートされる iSCSI オプションの詳細は、dracut.cmdline man ページ を参照してください。

ライブ RHCOS イメージのカスタマイズされたバージョンを使用して、自動マウント、起動、および設定用の iSCSI ターゲットとイニシエーターの値を設定できます。

前提条件

  1. RHCOS のインストール先となる iSCSI ターゲットがある。
  2. オプション: iSCSI ターゲットをマルチパス化した。

手順

  1. coreos-installer イメージミラー ページから、coreos-installer バイナリーをダウンロードします。
  2. RHCOS イメージミラー ページから RHCOS ISO イメージを取得し、次の情報を使用して ISO イメージをカスタマイズするために、以下のコマンドを実行します。

    $ coreos-installer iso customize \
        --pre-install mount-iscsi.sh \ 
    1
    
        --post-install unmount-iscsi.sh \ 
    2
    
        --dest-device /dev/mapper/mpatha \ 
    3
    
        --dest-ignition config.ign \ 
    4
    
        --dest-karg-append rd.iscsi.firmware=1 \ 
    5
    
        --dest-karg-append rd.multipath=default \ 
    6
    
        -o custom.iso rhcos-<version>-live.x86_64.iso
    Copy to Clipboard Toggle word wrap
    1
    インストール前に実行されるスクリプト。iSCSI ターゲットをマウントするための iscsiadm コマンドと、マルチパス構成を有効にするコマンドが含まれている必要があります。
    2
    インストール後に実行されるスクリプト。iscsiadm --mode node --logout=all コマンドが含まれている必要があります。
    3
    デバイスへのパス。マルチパスを使用している場合は、マルチパスデバイス (/dev/mapper/mpatha) を使用します。複数のマルチパスデバイスが接続されている場合、または明示する場合、/dev/disk/by-path で使用可能な World Wide Name (WWN) シンボリックリンクを使用できます。
    4
    宛先システムの Ignition 設定。
    5
    iSCSI パラメーターは、BIOS ファームウェアから読み取られます。
    6
    オプション: マルチパス構成を有効にする場合は、このパラメーターを含めます。

    dracut でサポートされる iSCSI オプションの詳細は、dracut.cmdline man ページ を参照してください。

2.2.16.3.8. ライブ RHCOS PXE 環境のカスタマイズ

coreos-installer pxe customize サブコマンドを使用して、ライブ RHCOS PXE 環境を直接カスタマイズできます。PXE 環境を起動すると、カスタマイズが自動的に適用されます。

この機能を使用して、RHCOS を自動的にインストールするように PXE 環境を設定できます。

手順

  1. coreos-installer イメージミラー ページから、coreos-installer バイナリーをダウンロードします。
  2. RHCOS イメージミラー ページと Ignition 設定ファイルから、RHCOS kernelinitramfs、および rootfs ファイルを取得し、次のコマンドを実行して、Ignition 設定からのカスタマイズを含む新しい initramfs ファイルを作成します。

    $ coreos-installer pxe customize rhcos-<version>-live-initramfs.x86_64.img \
        --dest-ignition bootstrap.ign \ 
    1
    
        --dest-device /dev/disk/by-id/scsi-<serial_number> \ 
    2
    
        -o rhcos-<version>-custom-initramfs.x86_64.img 
    3
    Copy to Clipboard Toggle word wrap
    1
    openshift-installer から生成された Ignition 設定ファイル。
    2
    このオプションを指定すると、PXE 環境で自動的にインストールが実行されます。それ以外の場合は、イメージはインストール用に設定されたままになりますが、coreos.inst.install_dev カーネル引数を指定しない限り、自動的には設定されません。
    3
    PXE 設定でカスタマイズされた initramfs ファイルを使用します。ignition.firstboot および ignition.platform.id=metal カーネル引数が存在しない場合は追加します。

カスタマイズを適用すると、それ以降のすべての RHCOS 起動に影響します。

2.2.16.3.8.1. ライブインストール PXE 環境を変更して、シリアルコンソールを有効化。

OpenShift Container Platform 4.12 以降でインストールされたクラスターでは、シリアルコンソールはデフォルトで無効になり、すべての出力がグラフィカルコンソールに書き込まれます。次の手順でシリアルコンソールを有効にできます。

手順

  1. coreos-installer イメージミラー ページから、coreos-installer バイナリーをダウンロードします。
  2. RHCOS イメージミラー ページおよび Ignition 設定ファイルから RHCOS kernelinitramfs および rootfs ファイルを取得します。次のコマンドを実行して、シリアルコンソールが出力を受信できるようにする新しいカスタマイズされた initramfs ファイルを作成します。

    $ coreos-installer pxe customize rhcos-<version>-live-initramfs.x86_64.img \
      --dest-ignition <path> \
    1
    
      --dest-console tty0 \
    2
    
      --dest-console ttyS0,<options> \
    3
    
      --dest-device /dev/disk/by-id/scsi-<serial_number> \
    4
    
      -o rhcos-<version>-custom-initramfs.x86_64.img 
    5
    Copy to Clipboard Toggle word wrap
    1
    インストールする Ignition 設定の場所。
    2
    望ましい 2 番目のコンソール。この場合は、グラフィカルコンソールです。このオプションを省略すると、グラフィカルコンソールが無効になります。
    3
    望ましいひとつ目のコンソール。この場合、シリアルコンソールです。options フィールドは、ボーレートとその他の設定を定義します。このフィールドの一般的な値は 115200n8 です。オプションが指定されていない場合、デフォルトのカーネル値である 9600n8 が使用されます。このオプションの形式の詳細は、Linux カーネルシリアルコンソール のドキュメントを参照してください。
    4
    インストール先として指定されたディスク。このオプションを省略すると、PXE 環境は自動的にインストーラーを実行しますが、coreos.inst.install_dev カーネル引数も指定しない限り失敗します。
    5
    PXE 設定でカスタマイズされた initramfs ファイルを使用します。ignition.firstboot および ignition.platform.id=metal カーネル引数が存在しない場合は追加します。

    カスタマイズが適用され、PXE 環境の後続のすべての起動に影響します。

2.2.16.3.8.2. カスタム認証局を使用するようにライブインストール PXE 環境を変更する

customize サブコマンドの --ignition-ca フラグを使用して、認証局 (CA) 証明書を Ignition に提供できます。CA 証明書は、インストールの起動時とインストール済みシステムのプロビジョニング時の両方で使用できます。

注記

カスタム CA 証明書は、Ignition がリモートリソースをフェッチする方法に影響しますが、システムにインストールされている証明書には影響しません。

手順

  1. coreos-installer イメージミラー ページから、coreos-installer バイナリーをダウンロードします。
  2. RHCOS イメージミラー ページから、RHCOS kernelinitramfs、および rootfs ファイルを取得し、次のコマンドを実行して、カスタム CA で使用するための新しいカスタマイズされた initramfs ファイルを作成します。

    $ coreos-installer pxe customize rhcos-<version>-live-initramfs.x86_64.img \
        --ignition-ca cert.pem \
        -o rhcos-<version>-custom-initramfs.x86_64.img
    Copy to Clipboard Toggle word wrap
  3. PXE 設定でカスタマイズされた initramfs ファイルを使用します。ignition.firstboot および ignition.platform.id=metal カーネル引数が存在しない場合は追加します。
重要

coreos.inst.ignition_url カーネルパラメーターは、--ignition-ca フラグでは機能しません。クラスターごとにカスタマイズされたイメージを作成するには、--dest-ignition フラグを使用する必要があります。

カスタム CA 証明書を適用すると、それ以降のすべての RHCOS 起動に影響します。

NetworkManager キーファイルをライブ PXE 環境に埋め込み、customize サブコマンドの --network-keyfile フラグを使用して、インストール済みシステムに渡すことができます。

警告

接続プロファイルを作成する際は、接続プロファイルのファイル名に .nmconnection ファイル名拡張子を使用する必要があります。.nmconnection ファイル名拡張子を使用しない場合、クラスターは接続プロファイルをライブ環境に適用しますが、クラスターが初めてノードを起動するときに設定が適用されないため、セットアップが機能しなくなります。

手順

  1. coreos-installer イメージミラー ページから、coreos-installer バイナリーをダウンロードします。
  2. ボンディングされたインターフェイスの接続プロファイルを作成します。たとえば、ローカルディレクトリーに次の内容の bond0.nmconnection ファイルを作成します。

    [connection]
    id=bond0
    type=bond
    interface-name=bond0
    multi-connect=1
    
    [bond]
    miimon=100
    mode=active-backup
    
    [ipv4]
    method=auto
    
    [ipv6]
    method=auto
    Copy to Clipboard Toggle word wrap
  3. ボンディングに追加するセカンダリーインターフェイスの接続プロファイルを作成します。たとえば、ローカルディレクトリーに次の内容の bond0-proxy-em1.nmconnection ファイルを作成します。

    [connection]
    id=em1
    type=ethernet
    interface-name=em1
    master=bond0
    multi-connect=1
    slave-type=bond
    Copy to Clipboard Toggle word wrap
  4. ボンディングに追加するセカンダリーインターフェイスの接続プロファイルを作成します。たとえば、ローカルディレクトリーに次の内容の bond0-proxy-em2.nmconnection ファイルを作成します。

    [connection]
    id=em2
    type=ethernet
    interface-name=em2
    master=bond0
    multi-connect=1
    slave-type=bond
    Copy to Clipboard Toggle word wrap
  5. RHCOS イメージミラー ページから、RHCOS kernelinitramfs、および rootfs ファイルを取得し、次のコマンドを実行して、設定済みのネットワークを含む新しいカスタマイズされた initramfs ファイルを作成します。

    $ coreos-installer pxe customize rhcos-<version>-live-initramfs.x86_64.img \
        --network-keyfile bond0.nmconnection \
        --network-keyfile bond0-proxy-em1.nmconnection \
        --network-keyfile bond0-proxy-em2.nmconnection \
        -o rhcos-<version>-custom-initramfs.x86_64.img
    Copy to Clipboard Toggle word wrap
  6. PXE 設定でカスタマイズされた initramfs ファイルを使用します。ignition.firstboot および ignition.platform.id=metal カーネル引数が存在しない場合は追加します。

    ネットワーク設定はライブシステムに適用され、宛先システムに引き継がれます。

2.2.16.3.8.4. iSCSI ブートデバイス用のライブインストール PXE 環境をカスタマイズする

ライブ RHCOS イメージのカスタマイズされたバージョンを使用して、自動マウント、起動、および設定用の iSCSI ターゲットとイニシエーターの値を設定できます。

前提条件

  1. RHCOS のインストール先となる iSCSI ターゲットがある。

手順

  1. coreos-installer イメージミラー ページから、coreos-installer バイナリーをダウンロードします。
  2. RHCOS イメージミラー ページから、RHCOS kernelinitramfs、および rootfs ファイルを取得し、次のコマンドを実行して、次の情報を含む新しいカスタマイズされた initramfs ファイルを作成します。

    $ coreos-installer pxe customize \
        --pre-install mount-iscsi.sh \ 
    1
    
        --post-install unmount-iscsi.sh \ 
    2
    
        --dest-device /dev/disk/by-path/<IP_address>:<port>-iscsi-<target_iqn>-lun-<lun> \ 
    3
    
        --dest-ignition config.ign \ 
    4
    
        --dest-karg-append rd.iscsi.initiator=<initiator_iqn> \ 
    5
    
        --dest-karg-append netroot=<target_iqn> \ 
    6
    
        -o custom.img rhcos-<version>-live-initramfs.x86_64.img
    Copy to Clipboard Toggle word wrap
    1
    インストール前に実行されるスクリプト。iSCSI ターゲットをマウントするための iscsiadm コマンドと、マルチパス構成を有効にするコマンドが含まれている必要があります。
    2
    インストール後に実行されるスクリプト。iscsiadm --mode node --logout=all コマンドが含まれている必要があります。
    3
    宛先システムの場所。ターゲットポータルの IP アドレス、関連付けられたポート番号、IQN 形式のターゲット iSCSI ノード、および iSCSI 論理ユニット番号 (LUN) を指定する必要があります。
    4
    宛先システムの Ignition 設定。
    5
    IQN 形式の iSCSI イニシエーター、クライアントの名前。イニシエーターは iSCSI ターゲットに接続するセッションを形成します。
    6
    IQN 形式の iSCSI ターゲットまたはサーバーの名前。

    dracut でサポートされる iSCSI オプションの詳細は、dracut.cmdline man ページ を参照してください。

ライブ RHCOS イメージのカスタマイズされたバージョンを使用して、自動マウント、起動、および設定用の iSCSI ターゲットとイニシエーターの値を設定できます。

前提条件

  1. RHCOS のインストール先となる iSCSI ターゲットがある。
  2. オプション: iSCSI ターゲットをマルチパス化した。

手順

  1. coreos-installer イメージミラー ページから、coreos-installer バイナリーをダウンロードします。
  2. RHCOS イメージミラー ページから、RHCOS kernelinitramfs、および rootfs ファイルを取得し、次のコマンドを実行して、次の情報を含む新しいカスタマイズされた initramfs ファイルを作成します。

    $ coreos-installer pxe customize \
        --pre-install mount-iscsi.sh \ 
    1
    
        --post-install unmount-iscsi.sh \ 
    2
    
        --dest-device /dev/mapper/mpatha \ 
    3
    
        --dest-ignition config.ign \ 
    4
    
        --dest-karg-append rd.iscsi.firmware=1 \ 
    5
    
        --dest-karg-append rd.multipath=default \ 
    6
    
        -o custom.img rhcos-<version>-live-initramfs.x86_64.img
    Copy to Clipboard Toggle word wrap
    1
    インストール前に実行されるスクリプト。iSCSI ターゲットをマウントするための iscsiadm コマンドが含まれている必要があります。
    2
    インストール後に実行されるスクリプト。iscsiadm --mode node --logout=all コマンドが含まれている必要があります。
    3
    デバイスへのパス。マルチパスを使用している場合は、マルチパスデバイス (/dev/mapper/mpatha) を使用します。複数のマルチパスデバイスが接続されている場合、または明示する場合、/dev/disk/by-path で使用可能な World Wide Name (WWN) シンボリックリンクを使用できます。
    4
    宛先システムの Ignition 設定。
    5
    iSCSI パラメーターは、BIOS ファームウェアから読み取られます。
    6
    オプション: マルチパス構成を有効にする場合は、このパラメーターを含めます。

    dracut でサポートされる iSCSI オプションの詳細は、dracut.cmdline man ページ を参照してください。

2.2.16.3.9. 詳細の RHCOS インストールリファレンス

このセクションでは、Red Hat Enterprise Linux CoreOS (RHCOS) の手動インストールプロセスを変更できるようにするネットワーク設定および他の高度なオプションを説明します。以下の表では、RHCOS ライブインストーラーおよび coreos-installer コマンドで使用できるカーネル引数およびコマンドラインのオプションを説明します。

2.2.16.3.9.1. ISO インストールのネットワークおよびボンディングのオプション

ISO イメージから RHCOS をインストールする場合、そのイメージを起動してノードのネットワークを設定する際に手動でカーネル引数を追加できます。ネットワークの引数が指定されていない場合、RHCOS が Ignition 設定ファイルを取得するためにネットワークが必要であることを検知する際に、DHCP が initramfs でアクティベートされます。

重要

ネットワーク引数を手動で追加する場合は、rd.neednet=1 カーネル引数を追加して、ネットワークを initramfs で有効にする必要があります。

以下の情報は、ISO インストール用に RHCOS ノードでネットワークおよびボンディングを設定する例を示しています。この例では、ip=nameserver=、および bond= カーネル引数の使用方法を説明しています。

注記

順序は、カーネル引数の ip=nameserver=、および bond= を追加する場合に重要です。

ネットワークオプションは、システムの起動時に dracut ツールに渡されます。dracut でサポートされるネットワークオプションの詳細は、dracut.cmdline man ページ を参照してください。

次の例は、ISO インストールのネットワークオプションです。

2.2.16.3.9.1.1. DHCP または静的 IP アドレスの設定

IP アドレスを設定するには、DHCP (ip=dhcp) を使用するか、個別の静的 IP アドレス (ip=<host_ip>) を設定します。静的 IP を設定する場合、各ノードで DNS サーバー IP アドレス (nameserver=<dns_ip>) を特定する必要があります。次の例では、以下を設定します。

  • ノードの IP アドレス: 10.10.10.2
  • ゲートウェイアドレス: 10.10.10.254
  • ネットワーク: 255.255.255.0
  • ホスト名: core0.example.com
  • DNS サーバーアドレス: 4.4.4.41
  • auto-configuration の値を none に設定します。IP ネットワークが静的に設定されている場合には、自動設定は必要ありません。
ip=10.10.10.2::10.10.10.254:255.255.255.0:core0.example.com:enp1s0:none
nameserver=4.4.4.41
Copy to Clipboard Toggle word wrap
注記

DHCP を使用して RHCOS マシンの IP アドレスを設定する場合、マシンは DHCP を介して DNS サーバー情報も取得します。DHCP ベースのデプロイメントの場合、DHCP サーバー設定を使用して RHCOS ノードが使用する DNS サーバーアドレスを定義できます。

2.2.16.3.9.1.2. 静的ホスト名を使用しない IP アドレスの設定

静的ホスト名を割り当てずに IP アドレスを設定できます。静的ホスト名がユーザーによって設定されていない場合は、逆引き DNS ルックアップによって取得され、自動的に設定されます。静的ホスト名なしで IP アドレスを設定するには、次の例を参照してください。

  • ノードの IP アドレス: 10.10.10.2
  • ゲートウェイアドレス: 10.10.10.254
  • ネットワーク: 255.255.255.0
  • DNS サーバーアドレス: 4.4.4.41
  • auto-configuration の値を none に設定します。IP ネットワークが静的に設定されている場合には、自動設定は必要ありません。
ip=10.10.10.2::10.10.10.254:255.255.255.0::enp1s0:none
nameserver=4.4.4.41
Copy to Clipboard Toggle word wrap
2.2.16.3.9.1.3. 複数のネットワークインターフェイスの指定

複数の ip= エントリーを設定することで、複数のネットワークインターフェイスを指定できます。

ip=10.10.10.2::10.10.10.254:255.255.255.0:core0.example.com:enp1s0:none
ip=10.10.10.3::10.10.10.254:255.255.255.0:core0.example.com:enp2s0:none
Copy to Clipboard Toggle word wrap
2.2.16.3.9.1.4. デフォルトゲートウェイとルートの設定

オプション: rd.route= value を設定して、追加のネットワークへのルートを設定できます。

注記

1 つまたは複数のネットワークを設定する場合、1 つのデフォルトゲートウェイが必要です。追加のネットワークゲートウェイがプライマリーネットワークゲートウェイと異なる場合、デフォルトゲートウェイはプライマリーネットワークゲートウェイである必要があります。

  • 次のコマンドを実行して、デフォルトゲートウェイを設定します。

    ip=::10.10.10.254::::
    Copy to Clipboard Toggle word wrap
  • 次のコマンドを入力して、追加ネットワークのルートを設定します。

    rd.route=20.20.20.0/24:20.20.20.254:enp2s0
    Copy to Clipboard Toggle word wrap
2.2.16.3.9.1.5. 単一インターフェイスでの DHCP の無効化

2 つ以上のネットワークインターフェイスがあり、1 つのインターフェイスのみが使用される場合などに、1 つのインターフェイスで DHCP を無効にします。この例では、enp1s0 インターフェイスには静的ネットワーク設定があり、使用されていない enp2s0 では DHCP が無効になっています。

ip=10.10.10.2::10.10.10.254:255.255.255.0:core0.example.com:enp1s0:none
ip=::::core0.example.com:enp2s0:none
Copy to Clipboard Toggle word wrap
2.2.16.3.9.1.6. DHCP と静的 IP 設定の組み合わせ

以下のように、複数のネットワークインターフェイスを持つシステムで、DHCP および静的 IP 設定を組み合わせることができます。

ip=enp1s0:dhcp
ip=10.10.10.2::10.10.10.254:255.255.255.0:core0.example.com:enp2s0:none
Copy to Clipboard Toggle word wrap
2.2.16.3.9.1.7. 個々のインターフェイスでの VLAN の設定

オプション: vlan= パラメーターを使用して、個別のインターフェイスに VLAN を設定できます。

  • ネットワークインターフェイスで VLAN を設定し、静的 IP アドレスを使用するには、次のコマンドを実行します。

    ip=10.10.10.2::10.10.10.254:255.255.255.0:core0.example.com:enp2s0.100:none
    vlan=enp2s0.100:enp2s0
    Copy to Clipboard Toggle word wrap
  • ネットワークインターフェイスで VLAN を設定し、DHCP を使用するには、次のコマンドを実行します。

    ip=enp2s0.100:dhcp
    vlan=enp2s0.100:enp2s0
    Copy to Clipboard Toggle word wrap
2.2.16.3.9.1.8. 複数の DNS サーバーの指定

以下のように、各サーバーに nameserver= エントリーを追加して、複数の DNS サーバーを指定できます。

nameserver=1.1.1.1
nameserver=8.8.8.8
Copy to Clipboard Toggle word wrap

オプション: bond= オプションを使用して、複数のネットワークインターフェイスを単一のインターフェイスにボンディングできます。次の例を参照してください。

  • ボンディングされたインターフェイスを設定するための構文は、bond=<name>[:<network_interfaces>][:options] です。

    <name> はボンディングデバイス名 (bond0)、<network_interfaces> は物理 (イーサネット) インターフェイスのコンマ区切りのリスト (em1,em2) を表し、options はボンディングオプションのコンマ区切りのリストです。modinfo bonding を入力して、利用可能なオプションを表示します。

  • bond= を使用してボンディングされたインターフェイスを作成する場合は、ボンディングされたインターフェイスの IP アドレスの割り当て方法やその他の情報を指定する必要があります。

    • DHCP を使用するようにボンディングされたインターフェイスを設定するには、ボンドの IP アドレスを dhcp に設定します。以下に例を示します。

      bond=bond0:em1,em2:mode=active-backup
      ip=bond0:dhcp
      Copy to Clipboard Toggle word wrap
    • 静的 IP アドレスを使用するようにボンディングされたインターフェイスを設定するには、必要な特定の IP アドレスと関連情報を入力します。以下に例を示します。

      bond=bond0:em1,em2:mode=active-backup
      ip=10.10.10.2::10.10.10.254:255.255.255.0:core0.example.com:bond0:none
      Copy to Clipboard Toggle word wrap

オプション: bond= オプションを使用して、複数の SR-IOV ネットワークインターフェイスをデュアルポート NIC インターフェイスに結合できます。

各ノードで、次のタスクを実行する必要があります。

  1. SR-IOV デバイスの管理 のガイダンスに従って、SR-IOV 仮想機能 (VF) を作成します。「仮想マシンへの SR-IOV ネットワークデバイスの接続」セクションの手順に従います。
  2. ボンドを作成し、目的の VF をボンドに接続し、ネットワークボンディングの設定 のガイダンスに従って、ボンドリンクの状態を設定します。説明されている手順のいずれかに従って、結合を作成します。

次の例は、使用する必要がある構文を示しています。

  • 結合インターフェイスを設定するための構文は、bond=<name>[:<network_interfaces>][:options] です。

    <name> はボンディングデバイス名 (bond0)、<network_interfaces> は仮想機能 (VF) をカーネル内の既知の名前で表し、ip link コマンド (eno1f0eno2f0) の出力に表示されます。options は結合オプションのコンマ区切りリストです。modinfo bonding を入力して、利用可能なオプションを表示します。

  • bond= を使用してボンディングされたインターフェイスを作成する場合は、ボンディングされたインターフェイスの IP アドレスの割り当て方法やその他の情報を指定する必要があります。

    • DHCP を使用するようにボンディングされたインターフェイスを設定するには、ボンドの IP アドレスを dhcp に設定します。以下に例を示します。

      bond=bond0:eno1f0,eno2f0:mode=active-backup
      ip=bond0:dhcp
      Copy to Clipboard Toggle word wrap
    • 静的 IP アドレスを使用するようにボンディングされたインターフェイスを設定するには、必要な特定の IP アドレスと関連情報を入力します。以下に例を示します。

      bond=bond0:eno1f0,eno2f0:mode=active-backup
      ip=10.10.10.2::10.10.10.254:255.255.255.0:core0.example.com:bond0:none
      Copy to Clipboard Toggle word wrap
2.2.16.3.9.1.11. ネットワークチーミングの使用

任意: team= パラメーターを指定して、ボンディングの代わりにネットワークチーミングを使用できます。

  • チームインターフェイス設定の構文は team=name[:network_interfaces] です。

    name はチームデバイス名 (team0)、network_interfaces は物理 (イーサネット) インターフェイス (em1, em2) のコンマ区切りリストを表します。

注記

RHCOS が次のバージョンの RHEL に切り替わると、チーミングは非推奨になる予定です。詳細は、こちらの Red Hat ナレッジベース記事 を参照してください。

次の例を使用して、ネットワークチームを設定します。

team=team0:em1,em2
ip=team0:dhcp
Copy to Clipboard Toggle word wrap
2.2.16.3.9.2. ISO および PXE インストール用の coreos-installer オプション

RHCOS は、ISO イメージから RHCOS ライブ環境に起動した後に、コマンドプロンプトで coreos-installer install <options> <device> を実行してインストールできます。

以下の表は、coreos-installer コマンドに渡すことのできるサブコマンド、オプションおよび引数を示しています。

Expand
表2.29 coreos-installer サブコマンド、コマンドラインオプション、および引数

coreos-installer install サブコマンド

サブコマンド

説明

$ coreos-installer install <options> <device>

Ignition 設定を ISO イメージに埋め込みます。

coreos-installer install サブコマンドオプション

オプション

説明

-u--image-url <url>

イメージの URL を手動で指定します。

-f--image-file <path>

ローカルイメージファイルを手動で指定します。デバッグに使用されます。

-i--ignition-file <path>

ファイルから Ignition 設定を埋め込みます。

-I--ignition-url <URL>

URL から Ignition 設定を埋め込みます。

--ignition-hash <digest>

Ignition 設定の type-value をダイジェスト値を取得します。

-p--platform <name>

インストール済みシステムの Ignition プラットフォーム ID を上書きします。

--console <spec>

インストールされたシステムのカーネルとブートローダーコンソールを設定します。<spec> の形式の詳細は、Linux カーネルシリアルコンソール のドキュメントを参照してください。

--append-karg <arg>…​

インストール済みシステムにデフォルトのカーネル引数を追加します。

--delete-karg <arg>…​

インストール済みシステムからデフォルトのカーネル引数を削除します。

-n--copy-network

インストール環境からネットワーク設定をコピーします。

重要

--copy-network オプションは、/etc/NetworkManager/system-connections にあるネットワーク設定のみをコピーします。特に、システムのホスト名はコピーされません。

--network-dir <path>

-n を指定して使用する場合。デフォルトは /etc/NetworkManager/system-connections/ です。

--save-partlabel <lx>..

このラベル glob でパーティションを保存します。

--save-partindex <id>…​

この数または範囲でパーティションを保存します。

--insecure

RHCOS イメージ署名の検証を省略します。

--insecure-ignition

HTTPS またはハッシュなしで Ignition URL を許可します。

--architecture <name>

ターゲット CPU アーキテクチャー。有効な値は x86_64 および aarch64 です。

--preserve-on-error

エラー時のパーティションテーブルは消去しないでください。

-h--help

ヘルプ情報を表示します。

coreos-installer インストールサブコマンド引数

引数

説明

<device>

宛先デバイス。

coreos-installer ISO サブコマンド

サブコマンド

説明

$ coreos-installer iso customize <options> <ISO_image>

RHCOS ライブ ISO イメージをカスタマイズします。

coreos-installer iso reset <options> <ISO_image>

RHCOS ライブ ISO イメージをデフォルト設定に復元します。

coreos-installer iso ignition remove <options> <ISO_image>

ISO イメージから埋め込まれた Ignition 設定を削除します。

coreos-installer ISO カスタマイズサブコマンドオプション

オプション

説明

--dest-ignition <path>

指定された Ignition 設定ファイルを宛先システムの新しい設定フラグメントにマージします。

--dest-console <spec>

宛先システムのカーネルとブートローダーコンソールを指定します。

--dest-device <path>

指定した宛先デバイスをインストールして上書きします。

--dest-karg-append <arg>

宛先システムの各起動にカーネル引数を追加します。

--dest-karg-delete <arg>

宛先システムの各起動からカーネル引数を削除します。

--network-keyfile <path>

ライブシステムと宛先システムに指定された NetworkManager キーファイルを使用してネットワークを設定します。

--ignition-ca <path>

Ignition によって信頼される追加の TLS 認証局を指定します。

--pre-install <path>

インストールする前に、指定されたスクリプトを実行します。

--post-install <path>

インストール後に指定されたスクリプトを実行します。

--installer-config <path>

指定されたインストーラー設定ファイルを適用します。

--live-ignition <path>

指定された Ignition 設定ファイルをライブ環境の新しい設定フラグメントにマージします。

--live-karg-append <arg>

ライブ環境の各ブートにカーネル引数を追加します。

--live-karg-delete <arg>

ライブ環境の各ブートからカーネル引数を削除します。

--live-karg-replace <k=o=n>

ライブ環境の各起動で、key=old=new の形式でカーネル引数を置き換えます。

-f, --force

既存の Ignition 設定を上書きします。

-o--output <path>

新しい出力ファイルに ISO を書き込みます。

-h--help

ヘルプ情報を表示します。

coreos-installer PXE サブコマンド

サブコマンド

説明

これらのオプションすべてがすべてのサブコマンドで使用できる訳ではないことに注意してください。

coreos-installer pxe customize <options> <path>

RHCOS ライブ PXE ブート設定をカスタマイズします。

coreos-installer pxe ignition wrap <options>

イメージに Ignition 設定をラップします。

coreos-installer pxe ignition unwrap <options> <image_name>

イメージでラップされた Ignition 設定を表示します。

coreos-installer PXE はサブコマンドオプションをカスタマイズします

オプション

説明

これらのオプションすべてがすべてのサブコマンドで使用できる訳ではないことに注意してください。

--dest-ignition <path>

指定された Ignition 設定ファイルを宛先システムの新しい設定フラグメントにマージします。

--dest-console <spec>

宛先システムのカーネルとブートローダーコンソールを指定します。

--dest-device <path>

指定した宛先デバイスをインストールして上書きします。

--network-keyfile <path>

ライブシステムと宛先システムに指定された NetworkManager キーファイルを使用してネットワークを設定します。

--ignition-ca <path>

Ignition によって信頼される追加の TLS 認証局を指定します。

--pre-install <path>

インストールする前に、指定されたスクリプトを実行します。

post-install <path>

インストール後に指定されたスクリプトを実行します。

--installer-config <path>

指定されたインストーラー設定ファイルを適用します。

--live-ignition <path>

指定された Ignition 設定ファイルをライブ環境の新しい設定フラグメントにマージします。

-o, --output <path>

initramfs を新しい出力ファイルに書き込みます。

注記

このオプションは、PXE 環境に必要です。

-h--help

ヘルプ情報を表示します。

2.2.16.3.9.3. ISO または PXE インストールの coreos.inst ブートオプション

coreos.inst ブートパラメーターを RHCOS ライブインストーラーに渡して、ブート時に coreos-installer オプションを自動的に起動できます。これらは、標準のブート引数の追加として提供されます。

  • ISO インストールの場合、ブートローダーメニューで自動ブートを中断して coreos.inst オプションを追加できます。RHEL CoreOS (Live) メニューオプションが強調表示されている状態で TAB を押すと、自動ブートを中断できます。
  • PXE または iPXE インストールの場合、RHCOS ライブインストーラーのブート前に coreos.inst オプションを APPEND 行に追加する必要があります。

以下の表は、ISO および PXE インストールの RHCOS ライブインストーラーの coreos.inst ブートオプションを示しています。

Expand
表2.30 coreos.inst ブートオプション
引数説明

coreos.inst.install_dev

必須。インストール先のシステムのブロックデバイス。

注記

sda は許可されていますが、/dev/sda などの完全パスを使用することが推奨されます。

coreos.inst.ignition_url

オプション: インストール済みシステムに埋め込む Ignition 設定の URL。URL が指定されていない場合、Ignition 設定は埋め込まれません。HTTP プロトコルおよび HTTPS プロトコルのみがサポートされます。

coreos.inst.save_partlabel

オプション: インストール時に保存するパーティションのコンマ区切りのラベル。glob 形式のワイルドカードが許可されます。指定したパーティションは存在する必要はありません。

coreos.inst.save_partindex

オプション: インストール時に保存するパーティションのコンマ区切りのインデックス。範囲 m-n は許可され、m または n のいずれかを省略できます。指定したパーティションは存在する必要はありません。

coreos.inst.insecure

オプション: coreos.inst.image_url で署名なしと指定される OS イメージを許可します。

coreos.inst.image_url

オプション: 指定した RHCOS イメージをダウンロードし、インストールします。

  • この引数は実稼働環境では使用できず、デバッグの目的でのみ使用することが意図されています。
  • この引数は、ライブメディアに一致しないバージョンの RHCOS をインストールするために使用できますが、インストールするバージョンに一致するメディアを使用することが推奨されます。
  • coreos.inst.image_url を使用している場合は、coreos.inst.insecure も使用する必要があります。これは、ベアメタルメディアが OpenShift Container Platform について GPG で署名されていないためです。
  • HTTP プロトコルおよび HTTPS プロトコルのみがサポートされます。

coreos.inst.skip_reboot

オプション: システムはインストール後に再起動しません。インストールが完了するとプロンプトが表示され、インストール時に生じる内容を検査できます。この引数は実稼働環境では使用できず、デバッグの目的でのみ使用することが意図されています。

coreos.inst.platform_id

オプション: RHCOS イメージがインストールされるプラットフォームの Ignition プラットフォーム ID。デフォルトは metal です。このオプションは、VMware などのクラウドプロバイダーから Ignition 設定を要求するかどうかを決定します。例: coreos.inst.platform_id=vmware

ignition.config.url

オプション: ライブ起動の Ignition 設定の URL。たとえば、これは coreos-installer の起動方法をカスタマイズしたり、インストール前後にコードを実行するために使用できます。これはインストール済みシステムの Ignition 設定である coreos.inst.ignition_url とは異なります。

2.2.16.4. RHCOS のカーネル引数でのマルチパスの有効化

RHCOS はプライマリーディスクでのマルチパスをサポートするようになり、ハードウェア障害に対する対障害性が強化され、ホストの可用性を強化できるようになりました。

OpenShift Container Platform 4.8 以降でプロビジョニングされたノードのマルチパスを有効にできます。インストール後のサポートは、マシン設定を使用してマルチパスをアクティベートすることで利用できますが、インストール中にマルチパスを有効にすることが推奨されます。

非最適化パスに対して I/O があると、I/O システムエラーが発生するように設定するには、インストール時にマルチパスを有効にする必要があります。

重要

IBM Z® および IBM® LinuxONE では、インストール時にクラスターを設定した場合のみマルチパスを有効にできます。詳細は、IBM Z® および IBM® LinuxONE への z/VM を使用したクラスターのインストール の RHCOS の「インストールおよび OpenShift Container Platform ブートストラッププロセスの開始」を参照してください。

以下の手順では、インストール時にマルチパスを有効にし、coreos-installer install コマンドにカーネル引数を追加して、インストール済みシステム自体が初回起動からマルチパスを使用できるようにします。

注記

OpenShift Container Platform は、4.6 以前からアップグレードされたノードでの day-2 アクティビティーとしてのマルチパスの有効化をサポートしません。

前提条件

  • クラスターの Ignition 設定ファイルを作成している。
  • RHCOS のインストールと OpenShift Container Platform ブートストラッププロセスの開始 を確認した。

手順

  1. マルチパスを有効にして multipathd デーモンを起動するには、インストールホストで次のコマンドを実行します。

    $ mpathconf --enable && systemctl start multipathd.service
    Copy to Clipboard Toggle word wrap
    • 必要に応じて、PXE または ISO を起動する場合は、カーネルコマンドラインから rd.multipath=default を追加することで、マルチパスを有効にできます。
  2. coreos-installer プログラムを呼び出してカーネル引数を追加します。

    • マシンに接続されているマルチパスデバイスが 1 つしかない場合は、このデバイスは /dev/mapper/mpatha のパスで利用できます。以下に例を示します。

      $ coreos-installer install /dev/mapper/mpatha \
      1
      
      --ignition-url=http://host/worker.ign \
      --append-karg rd.multipath=default \
      --append-karg root=/dev/disk/by-label/dm-mpath-root \
      --append-karg rw
      Copy to Clipboard Toggle word wrap
      1
      1 つのマルチパスデバイスのパスを指定します。
    • 複数のマルチパスデバイスがマシンに接続している場合には、より明示的に /dev/mapper/mpatha を使用する代わりに、/dev/disk/by-id で利用可能な World Wide Name (WWN) シンボリックリンクを使用することが推奨されます。以下に例を示します。

      $ coreos-installer install /dev/disk/by-id/wwn-<wwn_ID> \
      1
      
      --ignition-url=http://host/worker.ign \
      --append-karg rd.multipath=default \
      --append-karg root=/dev/disk/by-label/dm-mpath-root \
      --append-karg rw
      Copy to Clipboard Toggle word wrap
      1
      マルチパス化されたデバイスの WWN ID を指定します。例: 0xx194e957fcedb4841

      特別な coreos.inst.* 引数を使用してライブインストーラーを指定する場合に、このシンボリックリンクを coreos.inst.install_dev カーネル引数として使用することもできます。詳細は、「RHCOS のインストールおよび OpenShift Container Platform ブートストラッププロセスの開始」を参照してください。

  3. インストール済みのシステムで再起動します。
  4. ワーカーノードのいずれかに移動し、(ホストの /proc/cmdline 内の) カーネルコマンドライン引数をリスト表示して、カーネル引数が機能していることを確認します。

    $ oc debug node/ip-10-0-141-105.ec2.internal
    Copy to Clipboard Toggle word wrap

    出力例

    Starting pod/ip-10-0-141-105ec2internal-debug ...
    To use host binaries, run `chroot /host`
    
    sh-4.2# cat /host/proc/cmdline
    ...
    rd.multipath=default root=/dev/disk/by-label/dm-mpath-root
    ...
    
    sh-4.2# exit
    Copy to Clipboard Toggle word wrap

    追加したカーネル引数が表示されるはずです。

2.2.16.4.1. セカンダリーディスクでのマルチパス構成の有効化

RHCOS はセカンダリーディスク上のマルチパス構成もサポートします。カーネル引数の代わりに、Ignition を使用してインストール時にセカンダリーディスクのマルチパス構成を有効にします。

前提条件

  • ディスクのパーティション設定 セクションを読了した。
  • RHCOS のカーネル引数でのマルチパスの有効化 を読了した。
  • Butane ユーティリティーをインストールした。

手順

  1. 次のような情報を含む Butane 設定を作成します。

    multipath-config.bu の例

    variant: openshift
    version: 4.19.0
    systemd:
      units:
        - name: mpath-configure.service
          enabled: true
          contents: |
            [Unit]
            Description=Configure Multipath on Secondary Disk
            ConditionFirstBoot=true
            ConditionPathExists=!/etc/multipath.conf
            Before=multipathd.service 
    1
    
            DefaultDependencies=no
    
            [Service]
            Type=oneshot
            ExecStart=/usr/sbin/mpathconf --enable 
    2
    
    
            [Install]
            WantedBy=multi-user.target
        - name: mpath-var-lib-container.service
          enabled: true
          contents: |
            [Unit]
            Description=Set Up Multipath On /var/lib/containers
            ConditionFirstBoot=true 
    3
    
            Requires=dev-mapper-mpatha.device
            After=dev-mapper-mpatha.device
            After=ostree-remount.service
            Before=kubelet.service
            DefaultDependencies=no
    
            [Service] 
    4
    
            Type=oneshot
            ExecStart=/usr/sbin/mkfs.xfs -L containers -m reflink=1 /dev/mapper/mpatha
            ExecStart=/usr/bin/mkdir -p /var/lib/containers
    
            [Install]
            WantedBy=multi-user.target
        - name: var-lib-containers.mount
          enabled: true
          contents: |
            [Unit]
            Description=Mount /var/lib/containers
            After=mpath-var-lib-containers.service
            Before=kubelet.service 
    5
    
    
            [Mount] 
    6
    
            What=/dev/disk/by-label/dm-mpath-containers
            Where=/var/lib/containers
            Type=xfs
    
            [Install]
            WantedBy=multi-user.target
    Copy to Clipboard Toggle word wrap

    1
    マルチパスデーモンを起動する前に設定を行う必要があります。
    2
    mpathconf ユーティリティーを起動します。
    3
    このフィールドの値は、true に設定する必要があります。
    4
    ファイルシステムとディレクトリー /var/lib/containers を作成します。
    5
    ノードを起動する前にデバイスをマウントする必要があります。
    6
    デバイスを /var/lib/containers マウントポイントにマウントします。この場所はシンボリックリンクにできません。
  2. 次のコマンドを実行して、Ignition 設定を作成します。

    $ butane --pretty --strict multipath-config.bu > multipath-config.ign
    Copy to Clipboard Toggle word wrap
  3. 初回起動時の RHCOS インストールプロセスの残りを続行します。

    重要

    プライマリーディスクもマルチパス化されていない限り、インストール中にコマンドラインに rd.multipath または root カーネル引数を追加しないでください。

2.2.16.5. iSCSI ブートデバイスに RHCOS を手動でインストールする

iSCSI ターゲットに、手動で RHCOS をインストールできます。

前提条件

  1. RHCOS ライブ環境にいる。
  2. RHCOS のインストール先となる iSCSI ターゲットがある。

手順

  1. 次のコマンドを実行して、ライブ環境から iSCSI ターゲットをマウントします。

    $ iscsiadm \
        --mode discovery \
        --type sendtargets
        --portal <IP_address> \ 
    1
    
        --login
    Copy to Clipboard Toggle word wrap
    1
    ターゲットポータルの IP アドレス。
  2. 次のコマンドを実行し、必要なカーネル引数を使用して、RHCOS を iSCSI ターゲットにインストールします。以下はその例です。

    $ coreos-installer install \
    /dev/disk/by-path/ip-<IP_address>:<port>-iscsi-<target_iqn>-lun-<lun> \ 
    1
    
    --append-karg rd.iscsi.initiator=<initiator_iqn> \ 
    2
    
    --append.karg netroot=<target_iqn> \ 
    3
    
    --console ttyS0,115200n8
    --ignition-file <path_to_file>
    Copy to Clipboard Toggle word wrap
    1
    インストール先の場所。ターゲットポータルの IP アドレス、関連付けられたポート番号、IQN 形式のターゲット iSCSI ノード、および iSCSI 論理ユニット番号 (LUN) を指定する必要があります。
    2
    IQN 形式の iSCSI イニシエーター、クライアントの名前。イニシエーターは iSCSI ターゲットに接続するセッションを形成します。
    3
    IQN 形式の iSCSI ターゲットまたはサーバーの名前。

    dracut でサポートされる iSCSI オプションの詳細は、dracut.cmdline man ページ を参照してください。

  3. 次のコマンドを実行して iSCSI ディスクをアンマウントします。

    $ iscsiadm --mode node --logoutall=all
    Copy to Clipboard Toggle word wrap

この手順は、coreos-installer iso customize または coreos-installer pxe customize サブコマンドを使用して実行することもできます。

2.2.16.6. iBFT を使用して iSCSI ブートデバイスに RHCOS をインストールする

完全にディスクレスなマシンでは、iSCSI ターゲットとイニシエーターの値を iBFT 経由で渡すことができます。iSCSI マルチパス構成もサポートされています。

前提条件

  1. RHCOS ライブ環境にいる。
  2. RHCOS のインストール先となる iSCSI ターゲットがある。
  3. オプション: iSCSI ターゲットをマルチパス化した。

手順

  1. 次のコマンドを実行して、ライブ環境から iSCSI ターゲットをマウントします。

    $ iscsiadm \
        --mode discovery \
        --type sendtargets
        --portal <IP_address> \ 
    1
    
        --login
    Copy to Clipboard Toggle word wrap
    1
    ターゲットポータルの IP アドレス。
  2. オプション: マルチパス構成を有効にし、次のコマンドでデーモンを起動します。

    $ mpathconf --enable && systemctl start multipathd.service
    Copy to Clipboard Toggle word wrap
  3. 次のコマンドを実行し、必要なカーネル引数を使用して、RHCOS を iSCSI ターゲットにインストールします。以下はその例です。

    $ coreos-installer install \
        /dev/mapper/mpatha \ 
    1
    
        --append-karg rd.iscsi.firmware=1 \ 
    2
    
        --append-karg rd.multipath=default \ 
    3
    
        --console ttyS0 \
        --ignition-file <path_to_file>
    Copy to Clipboard Toggle word wrap
    1
    マルチパス化された単一デバイスのパス。複数のマルチパスデバイスが接続されている場合、または明示する場合、/dev/disk/by-path で使用可能な World Wide Name (WWN) シンボリックリンクを使用できます。
    2
    iSCSI パラメーターは、BIOS ファームウェアから読み取られます。
    3
    オプション: マルチパス構成を有効にする場合は、このパラメーターを含めます。

    dracut でサポートされる iSCSI オプションの詳細は、dracut.cmdline man ページ を参照してください。

  4. iSCSI ディスクをアンマウントします。

    $ iscsiadm --mode node --logout=all
    Copy to Clipboard Toggle word wrap

この手順は、coreos-installer iso customize または coreos-installer pxe customize サブコマンドを使用して実行することもできます。

2.2.17. ブートストラッププロセスの完了まで待機する

OpenShift Container Platform ブートストラッププロセスは、初回のクラスターノードのディスクにインストールされている永続的な RHCOS 環境での起動後に開始します。Ignition 設定ファイルで指定される設定情報は、ブートストラッププロセスを初期化し、マシンに OpenShift Container Platform をインストールするために使用されます。ブートストラッププロセスが完了するまで待機する必要があります。

前提条件

  • クラスターの Ignition 設定ファイルを作成している。
  • 適切なネットワーク、DNS および負荷分散インフラストラクチャーを設定している。
  • インストールプログラムを取得し、クラスターの Ignition 設定ファイルを生成している。
  • RHCOS をクラスターマシンにインストールし、OpenShift Container Platform インストールプログラムで生成される Ignition 設定ファイルを指定している。
  • お使いのマシンでインターネットに直接アクセスできるか、HTTP または HTTPS プロキシーが利用できる。

手順

  1. ブートストラッププロセスをモニターします。

    $ ./openshift-install --dir <installation_directory> wait-for bootstrap-complete \ 
    1
    
        --log-level=info 
    2
    Copy to Clipboard Toggle word wrap
    1
    <installation_directory> には、インストールファイルを保存したディレクトリーへのパスを指定します。
    2
    異なるインストールの詳細情報を表示するには、info ではなく、warndebug、または error を指定します。

    出力例

    INFO Waiting up to 30m0s for the Kubernetes API at https://api.test.example.com:6443...
    INFO API v1.32.3 up
    INFO Waiting up to 30m0s for bootstrapping to complete...
    INFO It is now safe to remove the bootstrap resources
    Copy to Clipboard Toggle word wrap

    Kubernetes API サーバーでこれがコントロールプレーンマシンにブートストラップされていることを示すシグナルが出されるとコマンドは成功します。

  2. ブートストラッププロセスが完了したら、ブートストラップマシンをロードバランサーから削除します。

    重要

    この時点で、ブートストラップマシンをロードバランサーから削除する必要があります。さらに、ブートストラップマシン自体を削除し、再フォーマットすることができます。

2.2.18. CLI の使用によるクラスターへのログイン

クラスター kubeconfig ファイルをエクスポートし、デフォルトシステムユーザーとしてクラスターにログインできます。kubeconfig ファイルには、クライアントを正しいクラスターおよび API サーバーに接続するために CLI で使用されるクラスターに関する情報が含まれます。このファイルはクラスターに固有のファイルであり、OpenShift Container Platform のインストール時に作成されます。

前提条件

  • OpenShift Container Platform クラスターをデプロイしていること。
  • OpenShift CLI (oc) がインストールされている。

手順

  1. 次のコマンドを実行して、kubeadmin 認証情報をエクスポートします。

    $ export KUBECONFIG=<installation_directory>/auth/kubeconfig 
    1
    Copy to Clipboard Toggle word wrap
    1
    <installation_directory> には、インストールファイルを保存したディレクトリーへのパスを指定します。
  2. 次のコマンドを実行し、エクスポートされた設定を使用して oc コマンドを正常に実行できることを確認します。

    $ oc whoami
    Copy to Clipboard Toggle word wrap

    出力例

    system:admin
    Copy to Clipboard Toggle word wrap

2.2.19. マシンの証明書署名要求の承認

マシンをクラスターに追加する際に、追加したそれぞれのマシンに対して 2 つの保留状態の証明書署名要求 (CSR) が生成されます。これらの CSR が承認されていることを確認するか、必要な場合はそれらを承認してください。最初にクライアント要求を承認し、次にサーバー要求を承認する必要があります。

前提条件

  • マシンがクラスターに追加されています。

手順

  1. クラスターがマシンを認識していることを確認します。

    $ oc get nodes
    Copy to Clipboard Toggle word wrap

    出力例

    NAME      STATUS    ROLES   AGE  VERSION
    master-0  Ready     master  63m  v1.32.3
    master-1  Ready     master  63m  v1.32.3
    master-2  Ready     master  64m  v1.32.3
    Copy to Clipboard Toggle word wrap

    出力には作成したすべてのマシンがリスト表示されます。

    注記

    上記の出力には、一部の CSR が承認されるまで、ワーカーノード (ワーカーノードとも呼ばれる) が含まれない場合があります。

  2. 保留中の証明書署名要求 (CSR) を確認し、クラスターに追加したそれぞれのマシンのクライアントおよびサーバー要求に Pending または Approved ステータスが表示されていることを確認します。

    $ oc get csr
    Copy to Clipboard Toggle word wrap

    出力例

    NAME        AGE     REQUESTOR                                                                   CONDITION
    csr-8b2br   15m     system:serviceaccount:openshift-machine-config-operator:node-bootstrapper   Pending
    csr-8vnps   15m     system:serviceaccount:openshift-machine-config-operator:node-bootstrapper   Pending
    ...
    Copy to Clipboard Toggle word wrap

    この例では、2 つのマシンがクラスターに参加しています。このリストにはさらに多くの承認された CSR が表示される可能性があります。

  3. 追加したマシンの保留中の CSR すべてが Pending ステータスになった後に CSR が承認されない場合には、クラスターマシンの CSR を承認します。

    注記

    CSR のローテーションは自動的に実行されるため、クラスターにマシンを追加後 1 時間以内に CSR を承認してください。1 時間以内に承認しない場合には、証明書のローテーションが行われ、各ノードに 3 つ以上の証明書が存在するようになります。これらの証明書すべてを承認する必要があります。クライアントの CSR が承認された後に、Kubelet は提供証明書のセカンダリー CSR を作成します。これには、手動の承認が必要になります。次に、後続の提供証明書の更新要求は、Kubelet が同じパラメーターを持つ新規証明書を要求する場合に machine-approver によって自動的に承認されます。

    注記

    ベアメタルおよび他の user-provisioned infrastructure などのマシン API ではないプラットフォームで実行されているクラスターの場合、kubelet 提供証明書要求 (CSR) を自動的に承認する方法を実装する必要があります。要求が承認されない場合、API サーバーが kubelet に接続する際に提供証明書が必須であるため、oc execoc rsh、および oc logs コマンドは正常に実行できません。Kubelet エンドポイントにアクセスする操作には、この証明書の承認が必要です。この方法は新規 CSR の有無を監視し、CSR が system:node または system:admin グループの node-bootstrapper サービスアカウントによって提出されていることを確認し、ノードの ID を確認します。

    • それらを個別に承認するには、それぞれの有効な CSR に以下のコマンドを実行します。

      $ oc adm certificate approve <csr_name> 
      1
      Copy to Clipboard Toggle word wrap
      1
      <csr_name> は、現行の CSR のリストからの CSR の名前です。
    • すべての保留中の CSR を承認するには、以下のコマンドを実行します。

      $ oc get csr -o go-template='{{range .items}}{{if not .status}}{{.metadata.name}}{{"\n"}}{{end}}{{end}}' | xargs --no-run-if-empty oc adm certificate approve
      Copy to Clipboard Toggle word wrap
      注記

      一部の Operator は、一部の CSR が承認されるまで利用できない可能性があります。

  4. クライアント要求が承認されたら、クラスターに追加した各マシンのサーバー要求を確認する必要があります。

    $ oc get csr
    Copy to Clipboard Toggle word wrap

    出力例

    NAME        AGE     REQUESTOR                                                                   CONDITION
    csr-bfd72   5m26s   system:node:ip-10-0-50-126.us-east-2.compute.internal                       Pending
    csr-c57lv   5m26s   system:node:ip-10-0-95-157.us-east-2.compute.internal                       Pending
    ...
    Copy to Clipboard Toggle word wrap

  5. 残りの CSR が承認されず、それらが Pending ステータスにある場合、クラスターマシンの CSR を承認します。

    • それらを個別に承認するには、それぞれの有効な CSR に以下のコマンドを実行します。

      $ oc adm certificate approve <csr_name> 
      1
      Copy to Clipboard Toggle word wrap
      1
      <csr_name> は、現行の CSR のリストからの CSR の名前です。
    • すべての保留中の CSR を承認するには、以下のコマンドを実行します。

      $ oc get csr -o go-template='{{range .items}}{{if not .status}}{{.metadata.name}}{{"\n"}}{{end}}{{end}}' | xargs oc adm certificate approve
      Copy to Clipboard Toggle word wrap
  6. すべてのクライアントおよびサーバーの CSR が承認された後に、マシンのステータスが Ready になります。以下のコマンドを実行して、これを確認します。

    $ oc get nodes
    Copy to Clipboard Toggle word wrap

    出力例

    NAME      STATUS    ROLES   AGE  VERSION
    master-0  Ready     master  73m  v1.32.3
    master-1  Ready     master  73m  v1.32.3
    master-2  Ready     master  74m  v1.32.3
    worker-0  Ready     worker  11m  v1.32.3
    worker-1  Ready     worker  11m  v1.32.3
    Copy to Clipboard Toggle word wrap

    注記

    サーバー CSR の承認後にマシンが Ready ステータスに移行するまでに数分の時間がかかる場合があります。

関連情報

2.2.20. Operator の初期設定

コントロールプレーンの初期化後に、一部の Operator を利用可能にするためにそれらをすぐに設定する必要があります。

前提条件

  • コントロールプレーンが初期化されています。

手順

  1. クラスターコンポーネントがオンラインになることを確認します。

    $ watch -n5 oc get clusteroperators
    Copy to Clipboard Toggle word wrap

    出力例

    NAME                                       VERSION   AVAILABLE   PROGRESSING   DEGRADED   SINCE
    authentication                             4.19.0    True        False         False      19m
    baremetal                                  4.19.0    True        False         False      37m
    cloud-credential                           4.19.0    True        False         False      40m
    cluster-autoscaler                         4.19.0    True        False         False      37m
    config-operator                            4.19.0    True        False         False      38m
    console                                    4.19.0    True        False         False      26m
    csi-snapshot-controller                    4.19.0    True        False         False      37m
    dns                                        4.19.0    True        False         False      37m
    etcd                                       4.19.0    True        False         False      36m
    image-registry                             4.19.0    True        False         False      31m
    ingress                                    4.19.0    True        False         False      30m
    insights                                   4.19.0    True        False         False      31m
    kube-apiserver                             4.19.0    True        False         False      26m
    kube-controller-manager                    4.19.0    True        False         False      36m
    kube-scheduler                             4.19.0    True        False         False      36m
    kube-storage-version-migrator              4.19.0    True        False         False      37m
    machine-api                                4.19.0    True        False         False      29m
    machine-approver                           4.19.0    True        False         False      37m
    machine-config                             4.19.0    True        False         False      36m
    marketplace                                4.19.0    True        False         False      37m
    monitoring                                 4.19.0    True        False         False      29m
    network                                    4.19.0    True        False         False      38m
    node-tuning                                4.19.0    True        False         False      37m
    openshift-apiserver                        4.19.0    True        False         False      32m
    openshift-controller-manager               4.19.0    True        False         False      30m
    openshift-samples                          4.19.0    True        False         False      32m
    operator-lifecycle-manager                 4.19.0    True        False         False      37m
    operator-lifecycle-manager-catalog         4.19.0    True        False         False      37m
    operator-lifecycle-manager-packageserver   4.19.0    True        False         False      32m
    service-ca                                 4.19.0    True        False         False      38m
    storage                                    4.19.0    True        False         False      37m
    Copy to Clipboard Toggle word wrap

  2. 利用不可の Operator を設定します。
2.2.20.1. インストール時に削除されたイメージレジストリー

共有可能なオブジェクトストレージを提供しないプラットフォームでは、OpenShift Image Registry Operator 自体が Removed としてブートストラップされます。これにより、openshift-installer がそれらのプラットフォームタイプでのインストールを完了できます。

インストール後に、Image Registry Operator 設定を編集して managementStateRemoved から Managed に切り替える必要があります。これが完了したら、ストレージを設定する必要があります。

2.2.20.2. イメージレジストリーストレージの設定

Image Registry Operator は、デフォルトストレージを提供しないプラットフォームでは最初は利用できません。インストール後に、レジストリー Operator を使用できるようにレジストリーをストレージを使用するように設定する必要があります。

実稼働クラスターに必要な永続ボリュームの設定に関する手順が示されます。該当する場合、空のディレクトリーをストレージの場所として設定する方法が表示されます。これは、実稼働以外のクラスターでのみ利用できます。

アップグレード時に Recreate ロールアウトストラテジーを使用して、イメージレジストリーがブロックストレージタイプを使用することを許可するための追加の手順が提供されます。

2.2.20.3. ベアメタルの場合のブロックレジストリーストレージの設定

イメージレジストリーがクラスター管理者によるアップグレード時にブロックストレージタイプを使用できるようにするには、Recreate ロールアウトストラテジーを使用できます。

重要

ブロックストレージボリューム (または永続ボリューム) はサポートされますが、実稼働クラスターでのイメージレジストリーと併用することは推奨されません。レジストリーに複数のレプリカを含めることができないため、ブロックストレージにレジストリーが設定されているインストールに高可用性はありません。

イメージレジストリーでブロックストレージボリュームを使用することを選択した場合は、ファイルシステムの persistent volume claim (PVC) を使用する必要があります。

手順

  1. 次のコマンドを入力してイメージレジストリーストレージをブロックストレージタイプとして設定し、レジストリーにパッチを適用して Recreate ロールアウトストラテジーを使用し、1 つの (1) レプリカのみで実行されるようにします。

    $ oc patch config.imageregistry.operator.openshift.io/cluster --type=merge -p '{"spec":{"rolloutStrategy":"Recreate","replicas":1}}'
    Copy to Clipboard Toggle word wrap
  2. ブロックストレージデバイスの PV をプロビジョニングし、そのボリュームの PVC を作成します。要求されたブロックボリュームは ReadWriteOnce (RWO) アクセスモードを使用します。

    1. 以下の内容で pvc.yaml ファイルを作成して VMware vSphere PersistentVolumeClaim オブジェクトを定義します。

      kind: PersistentVolumeClaim
      apiVersion: v1
      metadata:
        name: image-registry-storage 
      1
      
        namespace: openshift-image-registry 
      2
      
      spec:
        accessModes:
        - ReadWriteOnce 
      3
      
        resources:
          requests:
            storage: 100Gi 
      4
      Copy to Clipboard Toggle word wrap
      1
      PersistentVolumeClaim オブジェクトを表す一意の名前。
      2
      PersistentVolumeClaim オブジェクトの namespace (openshift-image-registry)。
      3
      永続ボリューム要求のアクセスモード。ReadWriteOnce では、ボリュームは単一ノードによって読み取り/書き込みパーミッションでマウントできます。
      4
      永続ボリューム要求のサイズ。
    2. 次のコマンドを入力して、ファイルから PersistentVolumeClaim オブジェクトを作成します。

      $ oc create -f pvc.yaml -n openshift-image-registry
      Copy to Clipboard Toggle word wrap
  3. 次のコマンドを入力して、正しい PVC を参照するようにレジストリー設定を編集します。

    $ oc edit config.imageregistry.operator.openshift.io -o yaml
    Copy to Clipboard Toggle word wrap

    出力例

    storage:
      pvc:
        claim: 
    1
    Copy to Clipboard Toggle word wrap

    1
    カスタム PVC を作成することにより、image-registry-storage PVC のデフォルトの自動作成の claim フィールドを空のままにできます。

2.2.21. user-provisioned infrastructure でのインストールの完了

Operator の設定が完了したら、独自に提供するインフラストラクチャーへのクラスターのインストールを完了できます。

前提条件

  • コントロールプレーンが初期化されています。
  • Operator の初期設定を完了済みです。

手順

  1. 以下のコマンドを使用して、すべてのクラスターコンポーネントがオンラインであることを確認します。

    $ watch -n5 oc get clusteroperators
    Copy to Clipboard Toggle word wrap

    出力例

    NAME                                       VERSION   AVAILABLE   PROGRESSING   DEGRADED   SINCE
    authentication                             4.19.0    True        False         False      19m
    baremetal                                  4.19.0    True        False         False      37m
    cloud-credential                           4.19.0    True        False         False      40m
    cluster-autoscaler                         4.19.0    True        False         False      37m
    config-operator                            4.19.0    True        False         False      38m
    console                                    4.19.0    True        False         False      26m
    csi-snapshot-controller                    4.19.0    True        False         False      37m
    dns                                        4.19.0    True        False         False      37m
    etcd                                       4.19.0    True        False         False      36m
    image-registry                             4.19.0    True        False         False      31m
    ingress                                    4.19.0    True        False         False      30m
    insights                                   4.19.0    True        False         False      31m
    kube-apiserver                             4.19.0    True        False         False      26m
    kube-controller-manager                    4.19.0    True        False         False      36m
    kube-scheduler                             4.19.0    True        False         False      36m
    kube-storage-version-migrator              4.19.0    True        False         False      37m
    machine-api                                4.19.0    True        False         False      29m
    machine-approver                           4.19.0    True        False         False      37m
    machine-config                             4.19.0    True        False         False      36m
    marketplace                                4.19.0    True        False         False      37m
    monitoring                                 4.19.0    True        False         False      29m
    network                                    4.19.0    True        False         False      38m
    node-tuning                                4.19.0    True        False         False      37m
    openshift-apiserver                        4.19.0    True        False         False      32m
    openshift-controller-manager               4.19.0    True        False         False      30m
    openshift-samples                          4.19.0    True        False         False      32m
    operator-lifecycle-manager                 4.19.0    True        False         False      37m
    operator-lifecycle-manager-catalog         4.19.0    True        False         False      37m
    operator-lifecycle-manager-packageserver   4.19.0    True        False         False      32m
    service-ca                                 4.19.0    True        False         False      38m
    storage                                    4.19.0    True        False         False      37m
    Copy to Clipboard Toggle word wrap

    あるいは、以下のコマンドを使用すると、すべてのクラスターが利用可能な場合に通知されます。また、このコマンドは認証情報を取得して表示します。

    $ ./openshift-install --dir <installation_directory> wait-for install-complete 
    1
    Copy to Clipboard Toggle word wrap
    1
    <installation_directory> には、インストールファイルを保存したディレクトリーへのパスを指定します。

    出力例

    INFO Waiting up to 30m0s for the cluster to initialize...
    Copy to Clipboard Toggle word wrap

    Cluster Version Operator が Kubernetes API サーバーから OpenShift Container Platform クラスターのデプロイを終了するとコマンドは成功します。

    重要
    • インストールプログラムが生成する Ignition 設定ファイルには、24 時間が経過すると期限切れになり、その後に更新される証明書が含まれます。証明書を更新する前にクラスターが停止し、24 時間経過した後にクラスターを再起動すると、クラスターは期限切れの証明書を自動的に復元します。例外として、kubelet 証明書を回復するために保留状態の node-bootstrapper 証明書署名要求 (CSR) を手動で承認する必要があります。詳細は、コントロールプレーン証明書の期限切れの状態からのリカバリー に関するドキュメントを参照してください。
    • 24 時間証明書はクラスターのインストール後 16 時間から 22 時間にローテーションするため、Ignition 設定ファイルは、生成後 12 時間以内に使用することを推奨します。12 時間以内に Ignition 設定ファイルを使用することにより、インストール中に証明書の更新が実行された場合のインストールの失敗を回避できます。
  2. Kubernetes API サーバーが Pod と通信していることを確認します。

    1. すべての Pod のリストを表示するには、以下のコマンドを使用します。

      $ oc get pods --all-namespaces
      Copy to Clipboard Toggle word wrap

      出力例

      NAMESPACE                         NAME                                            READY   STATUS      RESTARTS   AGE
      openshift-apiserver-operator      openshift-apiserver-operator-85cb746d55-zqhs8   1/1     Running     1          9m
      openshift-apiserver               apiserver-67b9g                                 1/1     Running     0          3m
      openshift-apiserver               apiserver-ljcmx                                 1/1     Running     0          1m
      openshift-apiserver               apiserver-z25h4                                 1/1     Running     0          2m
      openshift-authentication-operator authentication-operator-69d5d8bf84-vh2n8        1/1     Running     0          5m
      ...
      Copy to Clipboard Toggle word wrap

    2. 以下のコマンドを使用して、直前のコマンドの出力にリスト表示される Pod のログを表示します。

      $ oc logs <pod_name> -n <namespace> 
      1
      Copy to Clipboard Toggle word wrap
      1
      直前のコマンドの出力にあるように、Pod 名および namespace を指定します。

      Pod のログが表示される場合、Kubernetes API サーバーはクラスターマシンと通信できます。

  3. FCP (Fibre Channel Protocol) を使用したインストールでは、マルチパスを有効にするために追加の手順が必要です。インストール時にマルチパスを有効にしないでください。

    詳細は、インストール後のマシン設定タスク ドキュメントで、「RHCOS でのカーネル引数を使用したマルチパスの有効化」を参照してください。

2.2.22. OpenShift Container Platform の Telemetry アクセス

OpenShift Container Platform 4.19 では、Telemetry サービスにもインターネットアクセスが必要です。Telemetry サービスは、クラスターの健全性と更新の成功に関するメトリクスを提供するためにデフォルトで実行されます。クラスターがインターネットに接続されている場合、Telemetry は自動的に実行され、クラスターは OpenShift Cluster Manager に登録されます。

OpenShift Cluster Manager インベントリーが正常である (Telemetry によって自動的に維持、または OpenShift Cluster Manager を使用して手動で維持) ことを確認した後に、subscription watch を使用 して、アカウントまたはマルチクラスターレベルで OpenShift Container Platform サブスクリプションを追跡します。

2.2.23. 次のステップ

2.3. 非接続環境でのユーザープロビジョニング型ベアメタルクラスターのインストール

OpenShift Container Platform 4.19 では、制限されたネットワーク内で独自にプロビジョニングするベアメタルインフラストラクチャーに、クラスターをインストールできます。

重要

以下の手順に従って仮想化環境またはクラウド環境にクラスターをデプロイすることができますが、ベアメタルプラットフォーム以外の場合は追加の考慮事項に注意してください。このような環境に OpenShift Container Platform クラスターをインストールする前に、guidelines for deploying OpenShift Container Platform on non-tested platforms の情報を確認してください。

2.3.1. 前提条件

2.3.2. ネットワークが制限された環境でのインストールについて

OpenShift Container Platform 4.19 では、ソフトウェアコンポーネントを取得するためにインターネットへのアクティブな接続を必要としないインストールを実行できます。ネットワークが制限された環境のインストールは、クラスターのインストール先となるクラウドプラットフォームに応じて、installer-provisioned infrastructure または user-provisioned infrastructure を使用して実行できます。

クラウドプラットフォーム上でネットワークが制限されたインストールの実行を選択した場合でも、そのクラウド API へのアクセスが必要になります。Amazon Web Service の Route 53 DNS や IAM サービスなどの一部のクラウド機能には、インターネットアクセスが必要です。ネットワークによっては、ベアメタルハードウェア、Nutanix、または VMware vSphere へのインストールに必要なインターネットアクセスが少なくて済む場合があります。

ネットワークが制限されたインストールを完了するには、OpenShift イメージレジストリーのコンテンツをミラーリングし、インストールメディアを含むレジストリーを作成する必要があります。このミラーは、インターネットと制限されたネットワークの両方にアクセスできるミラーホストで、または制限に対応する他の方法を使用して作成できます。

重要

user-provisioned installation の設定は複雑であるため、user-provisioned infrastructure を使用してネットワークが制限されたインストールを試行する前に、標準的な user-provisioned infrastructure を実行することを検討してください。このテストが完了すると、ネットワークが制限されたインストール時に発生する可能性のある問題の切り分けやトラブルシューティングがより容易になります。

2.3.2.1. その他の制限

ネットワークが制限された環境のクラスターには、以下の追加の制限および制約があります。

  • ClusterVersion ステータスには Unable to retrieve available updates エラーが含まれます。
  • デフォルトで、開発者カタログのコンテンツは、必要とされるイメージストリームタグにアクセスできないために使用できません。

2.3.3. OpenShift Container Platform のインターネットアクセス

OpenShift Container Platform 4.19 では、クラスターのインストールに必要なイメージを取得するために、インターネットにアクセスする必要があります。

次のアクションを実行するには、インターネットにアクセスできる必要があります。

  • OpenShift Cluster Manager にアクセスし、インストールプログラムをダウンロードし、サブスクリプション管理を実行します。クラスターがインターネットにアクセスでき、Telemetry を無効にしていない場合、そのサービスによってクラスターのサブスクリプションが自動的に有効化されます。
  • クラスターのインストールに必要なパッケージを取得するために Quay.io にアクセスします。
  • クラスターの更新を実行するために必要なパッケージを取得します。

2.3.4. user-provisioned infrastructure を使用したクラスターの要件

user-provisioned infrastructure を含むクラスターの場合、必要なマシンすべてをデプロイする必要があります。

このセクションでは、user-provisioned infrastructure に OpenShift Container Platform をデプロイする要件を説明します。

2.3.4.1. クラスターのインストールに必要なマシン

最小の OpenShift Container Platform クラスターでは以下のホストが必要です。

Expand
表2.31 最低限必要なホスト
ホスト説明

1 つの一時的なブートストラップマシン

クラスターでは、ブートストラップマシンが OpenShift Container Platform クラスターを 3 つのコントロールプレーンマシンにデプロイする必要があります。クラスターのインストール後にブートストラップマシンを削除できます。

3 つのコントロールプレーンマシン

コントロールプレーンマシンは、コントロールプレーンを設定する Kubernetes および OpenShift Container Platform サービスを実行します。

少なくとも 2 つのコンピュートマシン (ワーカーマシンとしても知られる)。

OpenShift Container Platform ユーザーが要求するワークロードは、コンピュートマシンで実行されます。

注記

例外として、ゼロ (0) コンピュートマシンを 3 つのコントロールプレーンマシンのみで構成されるベアメタルクラスターで実行できます。これにより、テスト、開発、および実稼働に使用するための小規模なリソース効率の高いクラスターが、クラスター管理者および開発者に提供されます。1 つのコンピュートマシンの実行はサポートされていません。

重要

クラスターの高可用性を維持するには、これらのクラスターマシンに別の物理ホストを使用します。

ブートストラップおよびコントロールプレーンマシンでは、Red Hat Enterprise Linux CoreOS (RHCOS) をオペレーティングシステムとして使用する必要があります。ただし、コンピュートマシンは、Red Hat Enterprise Linux CoreOS (RHCOS)、Red Hat Enterprise Linux (RHEL) 8.6 以降から選択できます。

RHCOS は Red Hat Enterprise Linux (RHEL) 9.2 をベースとしており、そのハードウェア認定および要件がすべて継承されることに注意してください。Red Hat Enterprise Linux テクノロジーの機能と制限 を参照してください。

2.3.4.2. クラスターインストールの最小リソース要件

それぞれのクラスターマシンは、以下の最小要件を満たしている必要があります。

Expand
表2.32 最小リソース要件
マシンオペレーティングシステムCPU [1]RAMストレージ1 秒あたりの入出力 (IOPS) [2]

ブートストラップ

RHCOS

4

16 GB

100 GB

300

コントロールプレーン

RHCOS

4

16 GB

100 GB

300

Compute

RHCOS、RHEL 8.6 以降 [3]

2

8 GB

100 GB

300

  1. 1 つの CPU は、同時マルチスレッド (SMT) またはハイパースレッディングが有効にされていない場合に 1 つの物理コアと同等です。これが有効にされている場合、(コアごとのスレッド x コア数) x ソケット数 = CPU という数式を使用して対応する比率を計算します。
  2. OpenShift Container Platform および Kubernetes はディスクのパフォーマンスに敏感であり、特に 10 ms p99 fsync 期間を必要とするコントロールプレーンノード上の etcd には、高速ストレージが推奨されます。多くのクラウドプラットフォームでは、ストレージサイズと IOPS が連動してスケーリングされるため、十分なパフォーマンスを得るには、ストレージボリュームを過剰に割り当てる必要がある場合がある点に注意してください。
  3. すべての user-provisioned installation と同様に、クラスターで RHEL コンピュートマシンの使用を選択する場合は、システム更新の実行、パッチの適用、その他すべての必要なタスクの完了など、オペレーティングシステムのライフサイクルの管理と保守をすべて担当します。RHEL 7 コンピュートマシンの使用は非推奨となり、OpenShift Container Platform 4.10 以降で削除されています。
注記

OpenShift Container Platform バージョン 4.19 の場合、RHCOS は RHEL バージョン 9.6 に基づいています。これは、マイクロアーキテクチャー要件を更新します。次のリストには、各アーキテクチャーに必要な最小限の命令セットアーキテクチャー (ISA) が含まれています。

  • x86-64 アーキテクチャーには x86-64-v2 ISA が必要
  • ARM64 アーキテクチャーには ARMv8.0-A ISA が必要
  • IBM Power アーキテクチャーには Power 9 ISA が必要
  • s390x アーキテクチャーには z14 ISA が必要

詳細は、アーキテクチャー (RHEL ドキュメント) を参照してください。

プラットフォームのインスタンスタイプがクラスターマシンの最小要件を満たす場合、これは OpenShift Container Platform で使用することがサポートされます。

2.3.4.3. 証明書署名要求の管理

ユーザーがプロビジョニングするインフラストラクチャーを使用する場合、クラスターの自動マシン管理へのアクセスは制限されるため、インストール後にクラスターの証明書署名要求 (CSR) のメカニズムを提供する必要があります。kube-controller-manager は kubelet クライアント CSR のみを承認します。machine-approver は、kubelet 認証情報を使用して要求されるサービング証明書の有効性を保証できません。適切なマシンがこの要求を発行したかどうかを確認できないためです。kubelet 提供証明書の要求の有効性を検証し、それらを承認する方法を判別し、実装する必要があります。

2.3.4.4. user-provisioned infrastructure のネットワーク要件

すべての Red Hat Enterprise Linux CoreOS (RHCOS) マシンでは、起動時に initramfs でネットワークを設定し、Ignition 設定ファイルを取得する必要があります。

初回の起動時に、マシンには DHCP サーバーを使用して設定される IP アドレス設定、または必要な起動オプションを指定して静的に設定される IP アドレス設定が必要です。ネットワーク設定の確立後に、マシンは HTTP または HTTPS サーバーから Ignition 設定ファイルをダウンロードします。その後、Ignition 設定ファイルは各マシンの正確な状態を設定するために使用されます。Machine Config Operator はインストール後に、新しい証明書やキーの適用など、マシンへの追加の変更を完了します。

注記
  • クラスターマシンの長期管理に DHCP サーバーを使用することが推奨されます。DHCP サーバーが永続 IP アドレス、DNS サーバー情報、およびホスト名をクラスターマシンに提供するように設定されていることを確認します。
  • DHCP サービスが user-provisioned infrastructure で利用できない場合は、IP ネットワーク設定および DNS サーバーのアドレスを RHCOS のインストール時にノードに提供することができます。ISO イメージからインストールしている場合は、ブート引数として渡すことができます。静的 IP プロビジョニングと高度なネットワークオプションの詳細は、RHCOS のインストールと OpenShift Container Platform ブートストラッププロセスの開始 のセクションを参照してください。

Kubernetes API サーバーはクラスターマシンのノード名を解決できる必要があります。API サーバーおよびワーカーノードが異なるゾーンに置かれている場合、デフォルトの DNS 検索ゾーンを、API サーバーでノード名を解決できるように設定することができます。もう 1 つの実行可能な方法として、ノードオブジェクトとすべての DNS 要求の両方において、ホストを完全修飾ドメイン名で常に参照します。

2.3.4.4.1. DHCP を使用したクラスターノードのホスト名の設定

Red Hat Enterprise Linux CoreOS (RHCOS) マシンでは、ホスト名は NetworkManager 経由で設定されます。デフォルトでは、マシンは DHCP 経由でホスト名を取得します。ホスト名が DHCP によって提供されない場合、カーネル引数を介して静的に設定される場合、または別の方法でホスト名が取得される場合は、逆引き DNS ルックアップによって取得されます。逆引き DNS ルックアップは、ネットワークがノードで初期化された後に発生し、解決に時間がかかる場合があります。その他のシステムサービスは、これより前に起動し、ホスト名を localhost または同様のものとして検出できます。これを回避するには、DHCP を使用して各クラスターノードのホスト名を指定できます。

また、DHCP を介してホスト名を設定すると、DNS スプリットホライズンが実装されている環境での手動の DNS レコード名設定エラーを回避できます。

2.3.4.4.2. ネットワーク接続の要件

OpenShift Container Platform クラスターのコンポーネントが通信できるように、マシン間のネットワーク接続を設定する必要があります。すべてのマシンではクラスターの他のすべてのマシンのホスト名を解決できる必要があります。

このセクションでは、必要なポートの詳細を説明します。

Expand
表2.33 すべてのマシンからすべてのマシンへの通信に使用されるポート
プロトコルポート説明

ICMP

該当なし

ネットワーク到達性のテスト

TCP

1936

メトリクス

9000-9999

ホストレベルのサービス。ポート 9100-9101 のノードエクスポーター、ポート 9099 の Cluster Version Operator が含まれます。

10250-10259

Kubernetes が予約するデフォルトポート

22623

このポートは、マシン設定サーバーからのトラフィックを処理し、トラフィックをコントロールプレーンマシンに送信します。

UDP

4789

VXLAN

6081

Geneve

9000-9999

ポート 9100-9101 のノードエクスポーターを含む、ホストレベルのサービス。

500

IPsec IKE パケット

4500

IPsec NAT-T パケット

123

UDP ポート 123 のネットワークタイムプロトコル (NTP)外部 NTP タイムサーバーが設定されている場合は、UDP ポート 123 を開く必要があります。

TCP/UDP

30000-32767

Kubernetes ノードポート

ESP

該当なし

IPsec Encapsulating Security Payload (ESP)

Expand
表2.34 すべてのマシンからコントロールプレーンへの通信に使用されるポート
プロトコルポート説明

TCP

6443

Kubernetes API

Expand
表2.35 コントロールプレーンマシンからコントロールプレーンマシンへの通信に使用されるポート
プロトコルポート説明

TCP

2379-2380

etcd サーバーおよびピアポート

2.3.4.4.3. user-provisioned infrastructure の NTP 設定

OpenShift Container Platform クラスターは、デフォルトでパブリック Network Time Protocol (NTP) サーバーを使用するように設定されます。ローカルのエンタープライズ NTP サーバーを使用する必要があるか、クラスターが切断されたネットワークにデプロイされている場合は、特定のタイムサーバーを使用するようにクラスターを設定できます。詳細は、chrony タイムサービスの設定 のドキュメントを参照してください。

DHCP サーバーが NTP サーバー情報を提供する場合、Red Hat Enterprise Linux CoreOS (RHCOS) マシンの chrony タイムサービスは情報を読み取り、NTP サーバーとクロックを同期できます。

2.3.4.5. user-provisioned DNS 要件

OpenShift Container Platform のデプロイメントでは、以下のコンポーネントに DNS 名前解決が必要です。

  • The Kubernetes API
  • OpenShift Container Platform のアプリケーションワイルドカード
  • ブートストラップ、コントロールプレーンおよびコンピュートマシン

また、Kubernetes API、ブートストラップマシン、コントロールプレーンマシン、およびコンピュートマシンに逆引き DNS 解決も必要です。

DNS A/AAAA または CNAME レコードは名前解決に使用され、PTR レコードは逆引き名前解決に使用されます。ホスト名が DHCP によって提供されていない場合は、Red Hat Enterprise Linux CoreOS (RHCOS) は逆引きレコードを使用してすべてのノードのホスト名を設定するため、逆引きレコードは重要です。さらに、逆引きレコードは、OpenShift Container Platform が動作するために必要な証明書署名要求 (CSR) を生成するために使用されます。

注記

各クラスターノードにホスト名を提供するために DHCP サーバーを使用することが推奨されます。詳細は、user-provisioned infrastructure に関する DHCP の推奨事項 のセクションを参照してください。

以下の DNS レコードは、user-provisioned OpenShift Container Platform クラスターに必要で、これはインストール前に設定されている必要があります。各レコードで、<cluster_name> はクラスター名で、<base_domain> は、install-config.yaml ファイルに指定するベースドメインです。完全な DNS レコードは <component>.<cluster_name>.<base_domain>. の形式を取ります。

Expand
表2.36 必要な DNS レコード
コンポーネントレコード説明

Kubernetes API

api.<cluster_name>.<base_domain>.

API ロードバランサーを特定するための DNS A/AAAA または CNAME レコード、および DNS PTR レコード。これらのレコードは、クラスター外のクライアントおよびクラスター内のすべてのノードで解決できる必要があります。

api-int.<cluster_name>.<base_domain>.

API ロードバランサーを内部的に識別するための DNS A/AAAA または CNAME レコード、および DNS PTR レコード。これらのレコードは、クラスター内のすべてのノードで解決できる必要があります。

重要

API サーバーは、Kubernetes に記録されるホスト名でワーカーノードを解決できる必要があります。API サーバーがノード名を解決できない場合、プロキシーされる API 呼び出しが失敗し、Pod からログを取得できなくなる可能性があります。

ルート

*.apps.<cluster_name>.<base_domain>.

アプリケーション Ingress ロードバランサーを参照するワイルドカード DNS A/AAAA または CNAME レコード。アプリケーション Ingress ロードバランサーは、Ingress コントローラー Pod を実行するマシンをターゲットにします。Ingress コントローラー Pod はデフォルトでコンピュートマシンで実行されます。これらのレコードは、クラスター外のクライアントおよびクラスター内のすべてのノードで解決できる必要があります。

たとえば、console-openshift-console.apps.<cluster_name>.<base_domain> は、OpenShift Container Platform コンソールへのワイルドカードルートとして使用されます。

ブートストラップマシン

bootstrap.<cluster_name>.<base_domain>.

ブートストラップマシンを識別するための DNS A / AAAA または CNAME レコード、および DNS PTR レコード。これらのレコードは、クラスター内のノードで解決できる必要があります。

コントロールプレーンマシン

<control_plane><n>.<cluster_name>.<base_domain>.

コントロールプレーンノードの各マシンを特定するための DNS A/AAAA または CNAME レコードおよび DNS PTR レコード。これらのレコードは、クラスター内のノードで解決できる必要があります。

コンピュートマシン

<compute><n>.<cluster_name>.<base_domain>.

ワーカーノードの各マシンを特定するための DNS A/AAAA または CNAME レコード、および DNS PTR レコード。これらのレコードは、クラスター内のノードで解決できる必要があります。

注記

OpenShift Container Platform 4.4 以降では、DNS 設定で etcd ホストおよび SRV レコードを指定する必要はありません。

ヒント

dig コマンドを使用して、名前および逆引き名前解決を確認することができます。検証手順の詳細は、user-provisioned infrastructure の DNS 解決の検証 のセクションを参照してください。

2.3.4.5.1. user-provisioned クラスターの DNS 設定の例

このセクションでは、user-provisioned infrastructure に OpenShift Container Platform をデプロイするための DNS 要件を満たす A および PTR レコード設定サンプルを提供します。サンプルは、特定の DNS ソリューションを選択するためのアドバイスを提供することを目的としていません。

この例では、クラスター名は ocp4 で、ベースドメインは example.com です。

user-provisioned クラスターの DNS A レコードの設定例

BIND ゾーンファイルの以下の例は、user-provisioned クラスターの名前解決の A レコードの例を示しています。

例2.7 DNS ゾーンデータベースのサンプル

$TTL 1W
@	IN	SOA	ns1.example.com.	root (
			2019070700	; serial
			3H		; refresh (3 hours)
			30M		; retry (30 minutes)
			2W		; expiry (2 weeks)
			1W )		; minimum (1 week)
	IN	NS	ns1.example.com.
	IN	MX 10	smtp.example.com.
;
;
ns1.example.com.		IN	A	192.168.1.5
smtp.example.com.		IN	A	192.168.1.5
;
helper.example.com.		IN	A	192.168.1.5
helper.ocp4.example.com.	IN	A	192.168.1.5
;
api.ocp4.example.com.		IN	A	192.168.1.5 
1

api-int.ocp4.example.com.	IN	A	192.168.1.5 
2

;
*.apps.ocp4.example.com.	IN	A	192.168.1.5 
3

;
bootstrap.ocp4.example.com.	IN	A	192.168.1.96 
4

;
control-plane0.ocp4.example.com.	IN	A	192.168.1.97 
5

control-plane1.ocp4.example.com.	IN	A	192.168.1.98 
6

control-plane2.ocp4.example.com.	IN	A	192.168.1.99 
7

;
compute0.ocp4.example.com.	IN	A	192.168.1.11 
8

compute1.ocp4.example.com.	IN	A	192.168.1.7 
9

;
;EOF
Copy to Clipboard Toggle word wrap
1
Kubernetes API の名前解決を提供します。レコードは API ロードバランサーの IP アドレスを参照します。
2
Kubernetes API の名前解決を提供します。レコードは API ロードバランサーの IP アドレスを参照し、内部クラスター通信に使用されます。
3
ワイルドカードルートの名前解決を提供します。レコードは、アプリケーション Ingress ロードバランサーの IP アドレスを参照します。アプリケーション Ingress ロードバランサーは、Ingress コントローラー Pod を実行するマシンをターゲットにします。Ingress コントローラー Pod はデフォルトでコンピュートマシンで実行されます。
注記

この例では、同じロードバランサーが Kubernetes API およびアプリケーションの Ingress トラフィックに使用されます。実稼働のシナリオでは、API およびアプリケーション Ingress ロードバランサーを個別にデプロイし、それぞれのロードバランサーインフラストラクチャーを分離してスケーリングすることができます。

4
ブートストラップマシンの名前解決を提供します。
5 6 7
コントロールプレーンマシンの名前解決を提供します。
8 9
コンピュートマシンの名前解決を提供します。

user-provisioned クラスターの DNS PTR レコードの設定例

以下の BIND ゾーンファイルの例では、user-provisioned クラスターの逆引き名前解決の PTR レコードの例を示しています。

例2.8 逆引きレコードの DNS ゾーンデータベースの例

$TTL 1W
@	IN	SOA	ns1.example.com.	root (
			2019070700	; serial
			3H		; refresh (3 hours)
			30M		; retry (30 minutes)
			2W		; expiry (2 weeks)
			1W )		; minimum (1 week)
	IN	NS	ns1.example.com.
;
5.1.168.192.in-addr.arpa.	IN	PTR	api.ocp4.example.com. 
1

5.1.168.192.in-addr.arpa.	IN	PTR	api-int.ocp4.example.com. 
2

;
96.1.168.192.in-addr.arpa.	IN	PTR	bootstrap.ocp4.example.com. 
3

;
97.1.168.192.in-addr.arpa.	IN	PTR	control-plane0.ocp4.example.com. 
4

98.1.168.192.in-addr.arpa.	IN	PTR	control-plane1.ocp4.example.com. 
5

99.1.168.192.in-addr.arpa.	IN	PTR	control-plane2.ocp4.example.com. 
6

;
11.1.168.192.in-addr.arpa.	IN	PTR	compute0.ocp4.example.com. 
7

7.1.168.192.in-addr.arpa.	IN	PTR	compute1.ocp4.example.com. 
8

;
;EOF
Copy to Clipboard Toggle word wrap
1
Kubernetes API の逆引き DNS 解決を提供します。PTR レコードは、API ロードバランサーのレコード名を参照します。
2
Kubernetes API の逆引き DNS 解決を提供します。PTR レコードは、API ロードバランサーのレコード名を参照し、内部クラスター通信に使用されます。
3
ブートストラップマシンの逆引き DNS 解決を提供します。
4 5 6
コントロールプレーンマシンの逆引き DNS 解決を提供します。
7 8
コンピュートマシンの逆引き DNS 解決を提供します。
注記

PTR レコードは、OpenShift Container Platform アプリケーションのワイルドカードには必要ありません。

2.3.4.6. user-provisioned infrastructure の負荷分散要件

OpenShift Container Platform をインストールする前に、API およびアプリケーションの Ingress 負荷分散インフラストラクチャーをプロビジョニングする必要があります。実稼働のシナリオでは、API およびアプリケーション Ingress ロードバランサーを個別にデプロイし、それぞれのロードバランサーインフラストラクチャーを分離してスケーリングすることができます。

注記

Red Hat Enterprise Linux (RHEL) インスタンスを使用して API およびアプリケーション Ingress ロードバランサーをデプロイする場合は、RHEL サブスクリプションを別途購入する必要があります。

負荷分散インフラストラクチャーは以下の要件を満たす必要があります。

  1. API ロードバランサー: プラットフォームと対話およびプラットフォームを設定するためのユーザー向けの共通のエンドポイントを提供します。以下の条件を設定します。

    • Layer 4 の負荷分散のみ。これは、Raw TCP または SSL パススルーモードと呼ばれます。
    • ステートレス負荷分散アルゴリズム。オプションは、ロードバランサーの実装によって異なります。
    重要

    API ロードバランサーのセッションの永続性は設定しないでください。Kubernetes API サーバーのセッション永続性を設定すると、OpenShift Container Platform クラスターとクラスター内で実行される Kubernetes API の過剰なアプリケーショントラフィックによりパフォーマンスの問題が発生する可能性があります。

    ロードバランサーのフロントとバックの両方で以下のポートを設定します。

    Expand
    表2.37 API ロードバランサー
    ポートバックエンドマシン (プールメンバー)内部外部説明

    6443

    ブートストラップおよびコントロールプレーン。ブートストラップマシンがクラスターのコントロールプレーンを初期化した後に、ブートストラップマシンをロードバランサーから削除します。API サーバーのヘルスチェックプローブの /readyz エンドポイントを設定する必要があります。

    X

    X

    Kubernetes API サーバー

    22623

    ブートストラップおよびコントロールプレーン。ブートストラップマシンがクラスターのコントロールプレーンを初期化した後に、ブートストラップマシンをロードバランサーから削除します。

    X

     

    マシン設定サーバー

    注記

    ロードバランサーは、API サーバーが /readyz エンドポイントをオフにしてからプールから API サーバーインスタンスを削除するまで最大 30 秒かかるように設定する必要があります。/readyz の後の時間枠内でエラーが返されたり、正常になったりする場合は、エンドポイントが削除または追加されているはずです。5 秒または 10 秒ごとのプロービングで、2 回連続成功すると正常、3 回連続失敗すると異常と判断する設定は、十分にテストされた値です。

  2. Application Ingress ロードバランサー: クラスター外から送られるアプリケーショントラフィックの Ingress ポイントを提供します。Ingress ルーターの作業用の設定が OpenShift Container Platform クラスターに必要です。

    以下の条件を設定します。

    • Layer 4 の負荷分散のみ。これは、Raw TCP または SSL パススルーモードと呼ばれます。
    • 選択可能なオプションやプラットフォーム上でホストされるアプリケーションの種類に基づいて、接続ベースの永続化またはセッションベースの永続化が推奨されます。
    ヒント

    クライアントの実際の IP アドレスがアプリケーション Ingress ロードバランサーによって確認できる場合、ソースの IP ベースのセッション永続化を有効にすると、エンドツーエンドの TLS 暗号化を使用するアプリケーションのパフォーマンスを強化できます。

    ロードバランサーのフロントとバックの両方で以下のポートを設定します。

    Expand
    表2.38 アプリケーション Ingress ロードバランサー
    ポートバックエンドマシン (プールメンバー)内部外部説明

    443

    デフォルトで Ingress コントローラー Pod、コンピュート、またはワーカーを実行するマシン。

    X

    X

    HTTPS トラフィック

    80

    デフォルトで Ingress コントローラー Pod、コンピュート、またはワーカーを実行するマシン。

    X

    X

    HTTP トラフィック

    注記

    ゼロ (0) コンピュートノードで 3 ノードクラスターをデプロイする場合、Ingress コントローラー Pod はコントロールプレーンノードで実行されます。3 ノードクラスターデプロイメントでは、HTTP および HTTPS トラフィックをコントロールプレーンノードにルーティングするようにアプリケーション Ingress ロードバランサーを設定する必要があります。

2.3.4.6.1. user-provisioned クラスターのロードバランサーの設定例

このセクションでは、user-provisioned クラスターの負荷分散要件を満たす API およびアプリケーション Ingress ロードバランサーの設定例を説明します。この例は、HAProxy ロードバランサーの /etc/haproxy/haproxy.cfg 設定です。この例では、特定の負荷分散ソリューションを選択するためのアドバイスを提供することを目的としていません。

この例では、同じロードバランサーが Kubernetes API およびアプリケーションの Ingress トラフィックに使用されます。実稼働のシナリオでは、API およびアプリケーション Ingress ロードバランサーを個別にデプロイし、それぞれのロードバランサーインフラストラクチャーを分離してスケーリングすることができます。

注記

HAProxy をロードバランサーとして使用し、SELinux が enforcing に設定されている場合は、setsebool -P haproxy_connect_any=1 を実行して、HAProxy サービスが設定済みの TCP ポートにバインドできることを確認する必要があります。

例2.9 API およびアプリケーション Ingress ロードバランサーの設定例

global
  log         127.0.0.1 local2
  pidfile     /var/run/haproxy.pid
  maxconn     4000
  daemon
defaults
  mode                    http
  log                     global
  option                  dontlognull
  option http-server-close
  option                  redispatch
  retries                 3
  timeout http-request    10s
  timeout queue           1m
  timeout connect         10s
  timeout client          1m
  timeout server          1m
  timeout http-keep-alive 10s
  timeout check           10s
  maxconn                 3000
listen api-server-6443 
1

  bind *:6443
  mode tcp
  option  httpchk GET /readyz HTTP/1.0
  option  log-health-checks
  balance roundrobin
  server bootstrap bootstrap.ocp4.example.com:6443 verify none check check-ssl inter 10s fall 2 rise 3 backup 
2

  server master0 master0.ocp4.example.com:6443 weight 1 verify none check check-ssl inter 10s fall 2 rise 3
  server master1 master1.ocp4.example.com:6443 weight 1 verify none check check-ssl inter 10s fall 2 rise 3
  server master2 master2.ocp4.example.com:6443 weight 1 verify none check check-ssl inter 10s fall 2 rise 3
listen machine-config-server-22623 
3

  bind *:22623
  mode tcp
  server bootstrap bootstrap.ocp4.example.com:22623 check inter 1s backup 
4

  server master0 master0.ocp4.example.com:22623 check inter 1s
  server master1 master1.ocp4.example.com:22623 check inter 1s
  server master2 master2.ocp4.example.com:22623 check inter 1s
listen ingress-router-443 
5

  bind *:443
  mode tcp
  balance source
  server compute0 compute0.ocp4.example.com:443 check inter 1s
  server compute1 compute1.ocp4.example.com:443 check inter 1s
listen ingress-router-80 
6

  bind *:80
  mode tcp
  balance source
  server compute0 compute0.ocp4.example.com:80 check inter 1s
  server compute1 compute1.ocp4.example.com:80 check inter 1s
Copy to Clipboard Toggle word wrap
1
ポート 6443 は Kubernetes API トラフィックを処理し、コントロールプレーンマシンを参照します。
2 4
ブートストラップエントリーは、OpenShift Container Platform クラスターのインストール前に有効にし、ブートストラッププロセスの完了後にそれらを削除する必要があります。
3
ポート 22623 はマシン設定サーバートラフィックを処理し、コントロールプレーンマシンを参照します。
5
ポート 443 は HTTPS トラフィックを処理し、Ingress コントローラー Pod を実行するマシンを参照します。Ingress コントローラー Pod はデフォルトでコンピュートマシンで実行されます。
6
ポート 80 は HTTP トラフィックを処理し、Ingress コントローラー Pod を実行するマシンを参照します。Ingress コントローラー Pod はデフォルトでコンピュートマシンで実行されます。
注記

ゼロ (0) コンピュートノードで 3 ノードクラスターをデプロイする場合、Ingress コントローラー Pod はコントロールプレーンノードで実行されます。3 ノードクラスターデプロイメントでは、HTTP および HTTPS トラフィックをコントロールプレーンノードにルーティングするようにアプリケーション Ingress ロードバランサーを設定する必要があります。

ヒント

HAProxy をロードバランサーとして使用する場合は、HAProxy ノードで netstat -nltupe を実行して、ポート 644322623443、および 80haproxy プロセスがリッスンしていることを確認することができます。

2.3.5. カスタマイズされた br-ex ブリッジを含むマニフェストオブジェクトの作成

configure-ovs.sh シェルスクリプトを使用してベアメタルプラットフォームで br-ex ブリッジを設定する代わりに、NMState 設定ファイルを含む MachineConfig オブジェクトを作成できます。ホスト nmstate-configuration.service および nmstate.service により、クラスター内で実行される各ノードに NMState 設定ファイルが適用されます。

カスタマイズされた br-ex ブリッジを含むマニフェストオブジェクトを作成する場合は、次のユースケースを検討してください。

  • Open vSwitch (OVS) または OVN-Kubernetes br-ex ブリッジネットワークの変更など、ブリッジにインストール後の変更を加えたい場合。configure-ovs.sh シェルスクリプトは、ブリッジへのインストール後の変更をサポートしていません。
  • ホストまたはサーバーの IP アドレスで使用可能なインターフェイスとは異なるインターフェイスにブリッジをデプロイします。
  • configure-ovs.sh シェルスクリプトでは不可能な、ブリッジの高度な設定を実行したいと考えています。これらの設定にスクリプトを使用すると、ブリッジが複数のネットワークインターフェイスに接続できず、インターフェイス間のデータ転送が促進されない可能性があります。
注記

単一のネットワークインターフェイスコントローラー (NIC) とデフォルトのネットワーク設定を備えた環境が必要な場合は、configure-ovs.sh シェルスクリプトを使用します。

Red Hat Enterprise Linux CoreOS (RHCOS) をインストールしてシステムを再起動すると、Machine Config Operator がクラスター内の各ノードに Ignition 設定ファイルを注入し、各ノードが br-ex ブリッジネットワーク設定を受け取るようになります。設定の競合を防ぐために、configure-ovs.sh シェルスクリプトは、br-ex ブリッジを設定しない信号を受け取ります。

警告

次のインターフェイス名は予約されており、NMstate 設定では使用できません。

  • br-ext
  • br-int
  • br-local
  • br-nexthop
  • br0
  • ext-vxlan
  • ext
  • genev_sys_*
  • int
  • k8s-*
  • ovn-k8s-*
  • patch-br-*
  • tun0
  • vxlan_sys_*

前提条件

  • オプション: NMState 設定を検証できるように、nmstate API をインストールしました。

手順

  1. カスタマイズされた br-ex ブリッジネットワークの base64 情報をデコードした NMState 設定ファイルを作成します。

    カスタマイズされた br-ex ブリッジネットワークの NMState 設定の例

    interfaces:
    - name: enp2s0 
    1
    
      type: ethernet 
    2
    
      state: up 
    3
    
      ipv4:
        enabled: false 
    4
    
      ipv6:
        enabled: false
    - name: br-ex
      type: ovs-bridge
      state: up
      ipv4:
        enabled: false
        dhcp: false
      ipv6:
        enabled: false
        dhcp: false
      bridge:
        options:
          mcast-snooping-enable: true
        port:
        - name: enp2s0 
    5
    
        - name: br-ex
    - name: br-ex
      type: ovs-interface
      state: up
      copy-mac-from: enp2s0
      ipv4:
        enabled: true
        dhcp: true
        auto-route-metric: 48 
    6
    
      ipv6:
        enabled: true
        dhcp: true
        auto-route-metric: 48
    # ...
    Copy to Clipboard Toggle word wrap

    1
    インターフェイスの名前。
    2
    イーサネットのタイプ。
    3
    作成後のインターフェイスの要求された状態。
    4
    この例では、IPv4 と IPv6 を無効にします。
    5
    ブリッジが接続されるノードの NIC。
    6
    br-ex デフォルトルートに常に最高の優先度 (最も低いメトリック値) を付与するには、パラメーターを 48 に設定します。この設定により、NetworkManager サービスによって自動的に設定される他のインターフェイスとのルーティングの競合が防止されます。
  2. cat コマンドを使用して、NMState 設定の内容を base64 でエンコードします。

    $ cat <nmstate_configuration>.yaml | base64 
    1
    Copy to Clipboard Toggle word wrap
    1
    <nmstate_configuration> を NMState リソース YAML ファイルの名前に置き換えます。
  3. MachineConfig マニフェストファイルを作成し、次の例に類似したカスタマイズされた br-ex ブリッジネットワーク設定を定義します。

    apiVersion: machineconfiguration.openshift.io/v1
    kind: MachineConfig
    metadata:
      labels:
        machineconfiguration.openshift.io/role: worker
      name: 10-br-ex-worker 
    1
    
    spec:
      config:
        ignition:
          version: 3.2.0
        storage:
          files:
          - contents:
              source: data:text/plain;charset=utf-8;base64,<base64_encoded_nmstate_configuration> 
    2
    
            mode: 0644
            overwrite: true
            path: /etc/nmstate/openshift/worker-0.yml 
    3
    
          - contents:
              source: data:text/plain;charset=utf-8;base64,<base64_encoded_nmstate_configuration>
            mode: 0644
            overwrite: true
            path: /etc/nmstate/openshift/worker-1.yml 
    4
    
    # ...
    Copy to Clipboard Toggle word wrap
    1
    ポリシーの名前。
    2
    エンコードされた base64 情報を指定されたパスに書き込みます。
    3 4
    クラスター内の各ノードに対して、ノードへのホスト名パスと、マシンタイプに応じた base-64 でエンコードされた Ignition 設定ファイルデータを指定します。worker ロールは、クラスター内のノードのデフォルトロールです。MachineConfig マニフェストファイルで各ノードまたはすべてのノードに対して短いホスト名 (hostname -s で得られるもの) のパスを指定する際に、.yaml 拡張子は機能しません。

    クラスター内のすべてのノードに適用する単一のグローバル設定が /etc/nmstate/openshift/cluster.yml 設定ファイルで指定されている場合は、各ノードの短いホスト名パス (例: /etc/nmstate/openshift/<node_hostname>.yml) を指定する必要はありません。以下に例を示します。

    # ...
          - contents:
              source: data:text/plain;charset=utf-8;base64,<base64_encoded_nmstate_configuration>
            mode: 0644
            overwrite: true
            path: /etc/nmstate/openshift/cluster.yml
    # ...
    Copy to Clipboard Toggle word wrap

次のステップ

  • コンピュートノードをスケーリングして、クラスター内に存在する各コンピュートノードに、カスタマイズされた br-ex ブリッジを含むマニフェストオブジェクトを適用します。詳細は、関連情報 セクションの「クラスターの拡張」を参照してください。
2.3.5.1. 各マシンセットをコンピュートノードにスケーリング

カスタマイズされた br-ex ブリッジ設定を OpenShift Container Platform クラスター内のすべてのコンピュートノードに適用するには、MachineConfig カスタムリソース (CR) を編集し、そのロールを変更する必要があります。さらに、ホスト名、認証情報など、ベアメタルマシンの情報を定義する BareMetalHost CR を作成する必要があります。

これらのリソースを設定した後、マシンセットをスケーリングして、マシンセットが各コンピュートノードにリソース設定を適用し、ノードを再起動できるようにする必要があります。

前提条件

  • カスタマイズされた br-ex ブリッジ設定を含む MachineConfig マニフェストオブジェクトを作成しました。

手順

  1. 次のコマンドを入力して MachineConfig CR を編集します。

    $ oc edit mc <machineconfig_custom_resource_name>
    Copy to Clipboard Toggle word wrap
  2. 各コンピュートノード設定を CR に追加して、CR がクラスター内の定義済みコンピュートノードごとにロールを管理できるようにします。
  3. 最小限の静的 IP 設定を持つ extraworker-secret という名前の Secret オブジェクトを作成します。
  4. 次のコマンドを入力して、クラスター内の各ノードに extraworker-secret シークレットを適用します。このステップでは、各コンピュートノードに Ignition 設定ファイルへのアクセスを提供します。

    $ oc apply -f ./extraworker-secret.yaml
    Copy to Clipboard Toggle word wrap
  5. BareMetalHost リソースを作成し、preprovisioningNetworkDataName パラメーターでネットワークシークレットを指定します。

    ネットワークシークレットが添付された BareMetalHost リソースの例

    apiVersion: metal3.io/v1alpha1
    kind: BareMetalHost
    spec:
    # ...
      preprovisioningNetworkDataName: ostest-extraworker-0-network-config-secret
    # ...
    Copy to Clipboard Toggle word wrap

  6. クラスターの openshift-machine-api namespace 内で BareMetalHost オブジェクトを管理するために、次のコマンドを入力して namespace に変更します。

    $ oc project openshift-machine-api
    Copy to Clipboard Toggle word wrap
  7. マシンセットを取得します。

    $ oc get machinesets
    Copy to Clipboard Toggle word wrap
  8. 次のコマンドを入力して、各マシンセットをスケールします。このコマンドはマシンセットごとに実行する必要があります。

    $ oc scale machineset <machineset_name> --replicas=<n> 
    1
    Copy to Clipboard Toggle word wrap
    1
    <machineset_name> はマシンセットの名前です。<n> はコンピュートノードの数です。

2.3.6. クラスターで OVS balance-slb モードを有効にする

2 つ以上の物理インターフェイスがネットワークトラフィックを共有できるように、Open vSwitch (OVS) の balance-slb モードを有効にできます。balance-slb モードのインターフェイスは、ネットワークスイッチとのソースロードバランシングを必要とせずに、仮想化ワークロードを実行するクラスターにソース負荷分散 (SLB) 機能を提供できます。

現在、ソースロードバランシングはボンディングインターフェイスで実行されます。このインターフェイスは br-phy などの補助ブリッジに接続します。ソースロードバランシングは、Media Access Control (MAC) アドレスと仮想ローカルエリアネットワーク (VLAN) の組み合わせが複数存在する場合にのみ、負荷分散を行います。OVN-Kubernetes Pod のトラフィックはすべて同じ MAC アドレスと VLAN を使用するため、このトラフィックを多数の物理インターフェイス間で負荷分散することはできないことに注意してください。

次の図は、単純なクラスターインフラストラクチャーレイアウトでの balance-slb モードを示しています。仮想マシン (VM) は、特定の localnet NetworkAttachmentDefinition (NAD) カスタムリソース定義 (CRD)、NAD 0 または NAD 1 に接続します。各 NAD は、仮想マシンに基盤となる物理ネットワークへのアクセスを提供し、タグ付きまたはタグなしの VLAN トラフィックをサポートしています。br-ex OVS ブリッジは仮想マシンからのトラフィックを受信し、そのトラフィックを次の OVS ブリッジである br-phy に渡します。br-phy ブリッジは SLB ボンディングのコントローラーとして機能します。SLB ボンディングは、eno0eno1 などの物理インターフェイスリンクを介して、異なる仮想マシンポートからのトラフィックを分散します。さらに、どちらの物理インターフェイスからの Ingress トラフィックも、OVS ブリッジのセットを通過して仮想マシンに到達できます。

図2.3 2 つの NAD を持つローカルネット上で動作する OVS balance-slb モード

OVS ボンディングを使用して、balance-slb モードインターフェイスをプライマリーまたはセカンダリーネットワークタイプに統合できます。OVS ボンディングでは、次の点に注意してください。

  • OVN-Kubernetes CNI プラグインをサポートし、プラグインと簡単に統合できます。
  • ネイティブで balance-slb モードをサポートします。

前提条件

  • プライマリーネットワークに複数の物理インターフェイスが接続されており、それらのインターフェイスを MachineConfig ファイルで定義した。
  • マニフェストオブジェクトを作成し、カスタマイズした br-ex ブリッジをオブジェクト設定ファイルで定義した。
  • プライマリーネットワークに複数の物理インターフェイスが接続されており、それらのインターフェイスを NAD CRD ファイルで定義した。

手順

  1. クラスター内に存在するベアメタルホストごとに、クラスターの install-config.yaml ファイルで、次の例のように networkConfig セクションを定義します。

    # ...
    networkConfig:
      interfaces:
        - name: enp1s0 
    1
    
          type: ethernet
          state: up
          ipv4:
            dhcp: true
            enabled: true
          ipv6:
            enabled: false
        - name: enp2s0 
    2
    
          type: ethernet
          state: up
          mtu: 1500 
    3
    
          ipv4:
            dhcp: true
            enabled: true
          ipv6:
            dhcp: true
            enabled: true
        - name: enp3s0 
    4
    
          type: ethernet
          state: up
          mtu: 1500
          ipv4:
            enabled: false
          ipv6:
            enabled: false
    # ...
    Copy to Clipboard Toggle word wrap
    1
    プロビジョニングされるネットワークインターフェイスコントローラー (NIC) のインターフェイス。
    2
    ボンディングインターフェイス用の Ignition 設定ファイルを取り込む最初のボンディングされたインターフェイス。
    3
    ボンディングポートの br-ex 最大伝送単位 (MTU) を手動で設定します。
    4
    2 つ目のボンディングされたインターフェイスは、クラスターのインストール中に Ignition を実行する最小設定の一部です。
  2. NMState 設定ファイルで各ネットワークインターフェイスを定義します。

    多数のネットワークインターフェイスを定義する NMState 設定ファイルの例

    ovn:
      bridge-mappings:
        - localnet: localnet-network
          bridge: br-ex
          state: present
    interfaces:
      - name: br-ex
        type: ovs-bridge
        state: up
        bridge:
          allow-extra-patch-ports: true
          port:
            - name: br-ex
            - name: patch-ex-to-phy
        ovs-db:
          external_ids:
            bridge-uplink: "patch-ex-to-phy"
      - name: br-ex
        type: ovs-interface
        state: up
        mtu: 1500 
    1
    
        ipv4:
          enabled: true
          dhcp: true
          auto-route-metric: 48
        ipv6:
          enabled: false
          dhcp: false
          auto-route-metric: 48
      - name: br-phy
        type: ovs-bridge
        state: up
        bridge:
          allow-extra-patch-ports: true
          port:
            - name: patch-phy-to-ex
            - name: ovs-bond
              link-aggregation:
                mode: balance-slb
                port:
                  - name: enp2s0
                  - name: enp3s0
      - name: patch-ex-to-phy
        type: ovs-interface
        state: up
        patch:
          peer: patch-phy-to-ex
      - name: patch-phy-to-ex
        type: ovs-interface
        state: up
        patch:
          peer: patch-ex-to-phy
      - name: enp1s0
        type: ethernet
        state: up
        ipv4:
          dhcp: true
          enabled: true
        ipv6:
          enabled: false
      - name: enp2s0
        type: ethernet
        state: up
        mtu: 1500
        ipv4:
          enabled: false
        ipv6:
          enabled: false
      - name: enp3s0
        type: ethernet
        state: up
        mtu: 1500
        ipv4:
          enabled: false
        ipv6:
          enabled: false
    # ...
    Copy to Clipboard Toggle word wrap

    1
    ボンディングポートの br-ex MTU を手動で設定します。
  3. base64 コマンドを使用して、NMState 設定ファイルのインターフェイスコンテンツをエンコードします。

    $ base64 -w0  <nmstate_configuration>.yml 
    1
    Copy to Clipboard Toggle word wrap
    1
    -w0 オプションは、base64 エンコード操作中に行の折り返しを防止します。
  4. master ロールと worker ロールの MachineConfig マニフェストファイルを作成します。前のコマンドからの base64 エンコード文字列を各 MachineConfig マニフェストファイルに必ず埋め込んでください。次のマニフェストファイルの例では、クラスター内に存在するすべてのノードに対して master ロールを設定します。ノード固有の master ロールと worker ロールのマニフェストファイルを作成することもできます。

    apiVersion: machineconfiguration.openshift.io/v1
    kind: MachineConfig
    metadata:
      labels:
        machineconfiguration.openshift.io/role: master
      name: 10-br-ex-master 
    1
    
    spec:
      config:
        ignition:
          version: 3.2.0
        storage:
          files:
          - contents:
              source: data:text/plain;charset=utf-8;base64,<base64_encoded_nmstate_configuration> 
    2
    
            mode: 0644
            overwrite: true
            path: /etc/nmstate/openshift/cluster.yml 
    3
    Copy to Clipboard Toggle word wrap
    1
    ポリシーの名前。
    2
    エンコードされた base64 情報を指定されたパスに書き込みます。
    3
    cluster.yml ファイルへのパスを指定します。クラスター内の各ノードに対して、<node_short_hostname>.yml など、ノードへの短いホスト名パスを指定できます。
  5. MachineConfig マニフェストファイルを ./<installation_directory>/manifests ディレクトリーに保存します。<installation_directory> は、インストールプログラムがファイルを作成するディレクトリーです。

    Machine Config Operator (MCO) が各マニフェストファイルからコンテンツを取得し、ローリング更新中に選択されたすべてのノードにそのコンテンツを一貫して適用します。

2.3.7. user-provisioned infrastructure の準備

user-provisioned infrastructure に OpenShift Container Platform をインストールする前に、基礎となるインフラストラクチャーを準備する必要があります。

このセクションでは、OpenShift Container Platform インストールの準備としてクラスターインフラストラクチャーを設定するために必要な手順の概要を説明します。これには、クラスターノード用の IP ネットワークおよびネットワーク接続を設定し、ファイアウォール経由で必要なポートを有効にし、必要な DNS および負荷分散インフラストラクチャーの設定が含まれます。

準備後、クラスターインフラストラクチャーは、user-provisioned infrastructure を使用したクラスターの要件 セクションで説明されている要件を満たす必要があります。

前提条件

手順

  1. DHCP を使用して IP ネットワーク設定をクラスターノードに提供する場合は、DHCP サービスを設定します。

    1. ノードの永続 IP アドレスを DHCP サーバー設定に追加します。設定で、関連するネットワークインターフェイスの MAC アドレスを、各ノードの目的の IP アドレスと一致させます。
    2. DHCP を使用してクラスターマシンの IP アドレスを設定する場合、マシンは DHCP を介して DNS サーバー情報も取得します。DHCP サーバー設定を介してクラスターノードが使用する永続 DNS サーバーアドレスを定義します。

      注記

      DHCP サービスを使用しない場合、IP ネットワーク設定と DNS サーバーのアドレスを RHCOS インストール時にノードに指定する必要があります。ISO イメージからインストールしている場合は、ブート引数として渡すことができます。静的 IP プロビジョニングと高度なネットワークオプションの詳細は、RHCOS のインストールと OpenShift Container Platform ブートストラッププロセスの開始 のセクションを参照してください。

    3. DHCP サーバー設定でクラスターノードのホスト名を定義します。ホスト名に関する考慮事項の詳細は、DHCP を使用したクラスターノードのホスト名の設定 セクションを参照してください。

      注記

      DHCP サービスを使用しない場合、クラスターノードは逆引き DNS ルックアップを介してホスト名を取得します。

  2. ネットワークインフラストラクチャーがクラスターコンポーネント間の必要なネットワーク接続を提供することを確認します。要件に関する詳細は、user-provisioned infrastructure のネットワーク要件 のセクションを参照してください。
  3. OpenShift Container Platform クラスターコンポーネントで通信するために必要なポートを有効にするようにファイアウォールを設定します。必要なポートの詳細は、user-provisioned infrastructure のネットワーク要件 のセクションを参照してください。

    重要

    デフォルトで、ポート 1936 は OpenShift Container Platform クラスターにアクセスできます。これは、各コントロールプレーンノードがこのポートへのアクセスを必要とするためです。

    Ingress ロードバランサーを使用してこのポートを公開しないでください。これを実行すると、Ingress コントローラーに関連する統計やメトリクスなどの機密情報が公開される可能性があるためです。

  4. クラスターに必要な DNS インフラストラクチャーを設定します。

    1. Kubernetes API、アプリケーションワイルドカード、ブートストラップマシン、コントロールプレーンマシン、およびコンピュートマシンの DNS 名前解決を設定します。
    2. Kubernetes API、ブートストラップマシン、コントロールプレーンマシン、およびコンピュートマシンの逆引き DNS 解決を設定します。

      OpenShift Container Platform DNS 要件の詳細は、user-provisioned DNS 要件 のセクションを参照してください。

  5. DNS 設定を検証します。

    1. インストールノードから、Kubernetes API、ワイルドカードルート、およびクラスターノードのレコード名に対して DNS ルックアップを実行します。応答の IP アドレスが正しいコンポーネントに対応することを確認します。
    2. インストールノードから、ロードバランサーとクラスターノードの IP アドレスに対して逆引き DNS ルックアップを実行します。応答のレコード名が正しいコンポーネントに対応することを確認します。

      DNS 検証手順の詳細は、user-provisioned infrastructure の DNS 解決の検証 のセクションを参照してください。

  6. 必要な API およびアプリケーションの Ingress 負荷分散インフラストラクチャーをプロビジョニングします。要件に関する詳細は、user-provisioned infrastructure の負荷分散要件 のセクションを参照してください。
注記

一部の負荷分散ソリューションでは、負荷分散を初期化する前に、クラスターノードの DNS 名前解決を有効化する必要があります。

2.3.8. user-provisioned infrastructure の DNS 解決の検証

OpenShift Container Platform を user-provisioned infrastructure にインストールする前に、DNS 設定を検証できます。

重要

このセクションの検証手順は、クラスターのインストール前に正常に実行される必要があります。

前提条件

  • user-provisioned infrastructure に必要な DNS レコードを設定している。

手順

  1. インストールノードから、Kubernetes API、ワイルドカードルート、およびクラスターノードのレコード名に対して DNS ルックアップを実行します。応答に含まれる IP アドレスが正しいコンポーネントに対応することを確認します。

    1. Kubernetes API レコード名に対してルックアップを実行します。結果が API ロードバランサーの IP アドレスを参照することを確認します。

      $ dig +noall +answer @<nameserver_ip> api.<cluster_name>.<base_domain> 
      1
      Copy to Clipboard Toggle word wrap
      1
      <nameserver_ip> をネームサーバーの IP アドレスに、<cluster_name> をクラスター名に、<base_domain> をベースドメイン名に置き換えます。

      出力例

      api.ocp4.example.com.		604800	IN	A	192.168.1.5
      Copy to Clipboard Toggle word wrap

    2. Kubernetes 内部 API レコード名に対してルックアップを実行します。結果が API ロードバランサーの IP アドレスを参照することを確認します。

      $ dig +noall +answer @<nameserver_ip> api-int.<cluster_name>.<base_domain>
      Copy to Clipboard Toggle word wrap

      出力例

      api-int.ocp4.example.com.		604800	IN	A	192.168.1.5
      Copy to Clipboard Toggle word wrap

    3. *.apps.<cluster_name>.<base_domain> DNS ワイルドカードルックアップの例をテストします。すべてのアプリケーションのワイルドカードルックアップは、アプリケーション Ingress ロードバランサーの IP アドレスに解決する必要があります。

      $ dig +noall +answer @<nameserver_ip> random.apps.<cluster_name>.<base_domain>
      Copy to Clipboard Toggle word wrap

      出力例

      random.apps.ocp4.example.com.		604800	IN	A	192.168.1.5
      Copy to Clipboard Toggle word wrap

      注記

      出力例では、同じロードバランサーが Kubernetes API およびアプリケーションの Ingress トラフィックに使用されます。実稼働のシナリオでは、API およびアプリケーション Ingress ロードバランサーを個別にデプロイし、それぞれのロードバランサーインフラストラクチャーを分離してスケーリングすることができます。

      random は、別のワイルドカード値に置き換えることができます。たとえば、OpenShift Container Platform コンソールへのルートをクエリーできます。

      $ dig +noall +answer @<nameserver_ip> console-openshift-console.apps.<cluster_name>.<base_domain>
      Copy to Clipboard Toggle word wrap

      出力例

      console-openshift-console.apps.ocp4.example.com. 604800 IN	A 192.168.1.5
      Copy to Clipboard Toggle word wrap

    4. ブートストラップ DNS レコード名に対してルックアップを実行します。結果がブートストラップノードの IP アドレスを参照することを確認します。

      $ dig +noall +answer @<nameserver_ip> bootstrap.<cluster_name>.<base_domain>
      Copy to Clipboard Toggle word wrap

      出力例

      bootstrap.ocp4.example.com.		604800	IN	A	192.168.1.96
      Copy to Clipboard Toggle word wrap

    5. この方法を使用して、コントロールプレーンおよびコンピュートノードの DNS レコード名に対してルックアップを実行します。結果が各ノードの IP アドレスに対応していることを確認します。
  2. インストールノードから、ロードバランサーとクラスターノードの IP アドレスに対して逆引き DNS ルックアップを実行します。応答に含まれるレコード名が正しいコンポーネントに対応することを確認します。

    1. API ロードバランサーの IP アドレスに対して逆引き参照を実行します。応答に、Kubernetes API および Kubernetes 内部 API のレコード名が含まれていることを確認します。

      $ dig +noall +answer @<nameserver_ip> -x 192.168.1.5
      Copy to Clipboard Toggle word wrap

      出力例

      5.1.168.192.in-addr.arpa. 604800	IN	PTR	api-int.ocp4.example.com. 
      1
      
      5.1.168.192.in-addr.arpa. 604800	IN	PTR	api.ocp4.example.com. 
      2
      Copy to Clipboard Toggle word wrap

      1
      Kubernetes 内部 API のレコード名を指定します。
      2
      Kubernetes API のレコード名を指定します。
      注記

      PTR レコードは、OpenShift Container Platform アプリケーションのワイルドカードには必要ありません。アプリケーション Ingress ロードバランサーの IP アドレスに対する逆引き DNS 解決の検証手順は必要ありません。

    2. ブートストラップノードの IP アドレスに対して逆引き参照を実行します。結果がブートストラップノードの DNS レコード名を参照していることを確認します。

      $ dig +noall +answer @<nameserver_ip> -x 192.168.1.96
      Copy to Clipboard Toggle word wrap

      出力例

      96.1.168.192.in-addr.arpa. 604800	IN	PTR	bootstrap.ocp4.example.com.
      Copy to Clipboard Toggle word wrap

    3. この方法を使用して、コントロールプレーンおよびコンピュートノードの IP アドレスに対して逆引きルックアップを実行します。結果が各ノードの DNS レコード名に対応していることを確認します。

2.3.9. クラスターノードの SSH アクセス用のキーペアの生成

OpenShift Container Platform をインストールする際に、SSH パブリックキーをインストールプログラムに指定できます。キーは、Ignition 設定ファイルを介して Red Hat Enterprise Linux CoreOS (RHCOS) ノードに渡され、ノードへの SSH アクセスを認証するために使用されます。このキーは各ノードの core ユーザーの ~/.ssh/authorized_keys リストに追加され、パスワードなしの認証が可能になります。

キーがノードに渡されると、キーペアを使用して RHCOS ノードにユーザー core として SSH を実行できます。SSH 経由でノードにアクセスするには、秘密鍵のアイデンティティーをローカルユーザーの SSH で管理する必要があります。

インストールのデバッグまたは障害復旧を実行するためにクラスターノードに対して SSH を実行する場合は、インストールプロセスの間に SSH 公開鍵を指定する必要があります。./openshift-install gather コマンドでは、SSH 公開鍵がクラスターノードに配置されている必要もあります。

重要

障害復旧およびデバッグが必要な実稼働環境では、この手順を省略しないでください。

注記

プラットフォーム固有の方法で設定したキーではなく、ローカルキーを使用する必要があります。

手順

  1. クラスターノードへの認証に使用するローカルマシンに既存の SSH キーペアがない場合は、これを作成します。たとえば、Linux オペレーティングシステムを使用するコンピューターで以下のコマンドを実行します。

    $ ssh-keygen -t ed25519 -N '' -f <path>/<file_name> 
    1
    Copy to Clipboard Toggle word wrap
    1
    新しい SSH キーのパスとファイル名 (~/.ssh/id_ed25519 など) を指定します。既存のキーペアがある場合は、公開鍵が ~/.ssh ディレクトリーにあることを確認します。
    注記

    x86_64ppc64le、および s390x アーキテクチャーのみで FIPS 140-2/140-3 検証のために NIST に提出された RHEL 暗号化ライブラリーを使用する OpenShift Container Platform クラスターをインストールする予定がある場合は、ed25519 アルゴリズムを使用するキーを作成しないでください。代わりに、rsa アルゴリズムまたは ecdsa アルゴリズムを使用するキーを作成します。

  2. 公開 SSH キーを表示します。

    $ cat <path>/<file_name>.pub
    Copy to Clipboard Toggle word wrap

    たとえば、次のコマンドを実行して ~/.ssh/id_ed25519.pub 公開鍵を表示します。

    $ cat ~/.ssh/id_ed25519.pub
    Copy to Clipboard Toggle word wrap
  3. ローカルユーザーの SSH エージェントに SSH 秘密鍵 ID が追加されていない場合は、それを追加します。キーの SSH エージェント管理は、クラスターノードへのパスワードなしの SSH 認証、または ./openshift-install gather コマンドを使用する場合は必要になります。

    注記

    一部のディストリビューションでは、~/.ssh/id_rsa および ~/.ssh/id_dsa などのデフォルトの SSH 秘密鍵のアイデンティティーは自動的に管理されます。

    1. ssh-agent プロセスがローカルユーザーに対して実行されていない場合は、バックグラウンドタスクとして開始します。

      $ eval "$(ssh-agent -s)"
      Copy to Clipboard Toggle word wrap

      出力例

      Agent pid 31874
      Copy to Clipboard Toggle word wrap

      注記

      クラスターが FIPS モードにある場合は、FIPS 準拠のアルゴリズムのみを使用して SSH キーを生成します。鍵は RSA または ECDSA のいずれかである必要があります。

  4. SSH プライベートキーを ssh-agent に追加します。

    $ ssh-add <path>/<file_name> 
    1
    Copy to Clipboard Toggle word wrap
    1
    ~/.ssh/id_ed25519 などの、SSH プライベートキーのパスおよびファイル名を指定します。

    出力例

    Identity added: /home/<you>/<path>/<file_name> (<computer_name>)
    Copy to Clipboard Toggle word wrap

次のステップ

  • OpenShift Container Platform をインストールする際に、SSH パブリックキーをインストールプログラムに指定します。クラスターを独自にプロビジョニングするインフラストラクチャーにインストールする場合は、キーをインストールプログラムに指定する必要があります。

2.3.10. インストール設定ファイルの手動作成

クラスターをインストールするには、インストール設定ファイルを手動で作成する必要があります。

前提条件

  • インストールプログラムで使用するための SSH 公開鍵がローカルマシン上に存在する。この鍵は、デバッグや障害復旧のために、クラスターノードへの SSH 認証に使用できます。
  • OpenShift Container Platform インストールプログラムとクラスターのプルシークレットを取得している。
  • リポジトリーのミラーリングに使用するコマンドの出力で imageContentSources セクションを取得します。
  • ミラーレジストリーの証明書の内容を取得する。

手順

  1. 必要なインストールアセットを保存するためのインストールディレクトリーを作成します。

    $ mkdir <installation_directory>
    Copy to Clipboard Toggle word wrap
    重要

    このディレクトリーは必ず作成してください。ブートストラップ X.509 証明書などの一部のインストールアセットは、有効期限が短いため、インストールディレクトリーを再利用しないでください。別のクラスターインストールの個別のファイルを再利用する必要がある場合は、それらをディレクトリーにコピーすることができます。ただし、インストールアセットのファイル名はリリース間で変更される可能性があります。インストールファイルを以前のバージョンの OpenShift Container Platform からコピーする場合は注意してください。

  2. 提供されているサンプルの install-config.yaml ファイルテンプレートをカスタマイズし、ファイルを <installation_directory> に保存します。

    注記

    この設定ファイルの名前を install-config.yaml と付ける必要があります。

    • docker.io などの、RHCOS がデフォルトで信頼するレジストリーを使用しない限り、additionalTrustBundle セクションにミラーリポジトリーの証明書の内容を指定する必要があります。ほとんどの場合、ミラーの証明書を指定する必要があります。
    • リポジトリーのミラーリングに使用するコマンドの出力の imageContentSources セクションを組み込む必要があります。
    重要
    • ImageContentSourcePolicy ファイルは、ミラーリングプロセスの終了後に oc mirror の出力として生成されます。
    • oc mirror コマンドは、ImageContentSourcePolicy の定義に必要な YAML を含む ImageContentSourcePolicy ファイルを生成します。このファイルからテキストをコピーし、install-config.yaml ファイルに貼り付けます。
    • 'oc mirror' コマンドを 2 回実行する必要があります。初めて oc mirror コマンドを実行すると、完全な ImageContentSourcePolicy ファイルが取得されます。oc mirror コマンドを 2 回目に実行すると、1 回目と 2 回目の実行の差のみが得られます。この動作のため、これらのファイルを 1 つの完全な ImageContentSourcePolicy ファイルにマージする必要がある場合に備えて、常にこれらのファイルのバックアップを保持する必要があります。これら 2 つの出力ファイルのバックアップを保持すると、完全な ImageContentSourcePolicy ファイルが確実に作成されます。
  3. 多くのクラスターのインストールに使用できるように、install-config.yaml ファイルをバックアップします。

    重要

    インストールプロセスの次のステップで install-config.yaml ファイルを使用するため、今すぐこのファイルをバックアップしてください。

2.3.10.1. ベアメタルのサンプル install-config.yaml ファイル

install-config.yaml ファイルをカスタマイズして、OpenShift Container Platform クラスターのプラットフォームに関する詳細を指定するか、必要なパラメーターの値を変更することができます。

apiVersion: v1
baseDomain: example.com 
1

compute: 
2

- hyperthreading: Enabled 
3

  name: worker
  replicas: 0 
4

controlPlane: 
5

  hyperthreading: Enabled 
6

  name: master
  replicas: 3 
7

metadata:
  name: test 
8

networking:
  clusterNetwork:
  - cidr: 10.128.0.0/14 
9

    hostPrefix: 23 
10

  networkType: OVNKubernetes 
11

  serviceNetwork: 
12

  - 172.30.0.0/16
platform:
  none: {} 
13

fips: false 
14

pullSecret: '{"auths":{"<local_registry>": {"auth": "<credentials>","email": "you@example.com"}}}' 
15

sshKey: 'ssh-ed25519 AAAA...' 
16

additionalTrustBundle: | 
17

  -----BEGIN CERTIFICATE-----
  ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ
  -----END CERTIFICATE-----
imageContentSources: 
18

- mirrors:
  - <local_registry>/<local_repository_name>/release
  source: quay.io/openshift-release-dev/ocp-release
- mirrors:
  - <local_registry>/<local_repository_name>/release
  source: quay.io/openshift-release-dev/ocp-v4.0-art-dev
Copy to Clipboard Toggle word wrap
1
クラスターのベースドメイン。すべての DNS レコードはこのベースのサブドメインである必要があり、クラスター名が含まれる必要があります。
2 5
controlPlane セクションは単一マッピングですが、compute セクションはマッピングのシーケンスになります。複数の異なるデータ構造の要件を満たすには、compute セクションの最初の行はハイフン - で始め、controlPlane セクションの最初の行はハイフンで始めることができません。1 つのコントロールプレーンプールのみが使用されます。
3 6
同時マルチスレッド (SMT) またはハイパースレッディングを有効/無効にするかどうかを指定します。デフォルトでは、SMT はマシンのコアのパフォーマンスを上げるために有効にされます。パラメーター値を Disabled に設定するとこれを無効にすることができます。SMT を無効にする場合、これをすべてのクラスターマシンで無効にする必要があります。これにはコントロールプレーンとコンピュートマシンの両方が含まれます。
注記

同時マルチスレッド (SMT) はデフォルトで有効になっています。SMT が BIOS 設定で有効になっていない場合は、hyperthreading パラメーターは効果がありません。

重要

BIOS または install-config.yaml ファイルであるかに関係なく hyperthreading を無効にする場合、容量計画においてマシンのパフォーマンスの大幅な低下が考慮に入れられていることを確認します。

4
OpenShift Container Platform を user-provisioned infrastructure にインストールする場合は、この値を 0 に設定する必要があります。installer-provisioned installation では、パラメーターはクラスターが作成し、管理するコンピュートマシンの数を制御します。user-provisioned installation では、クラスターのインストールの終了前にコンピュートマシンを手動でデプロイする必要があります。
注記

3 ノードクラスターをインストールする場合は、Red Hat Enterprise Linux CoreOS (RHCOS) マシンをインストールする際にコンピュートマシンをデプロイしないでください。

7
クラスターに追加するコントロールプレーンマシンの数。クラスターをこれらの値をクラスターの etcd エンドポイント数として使用するため、値はデプロイするコントロールプレーンマシンの数に一致する必要があります。
8
DNS レコードに指定したクラスター名。
9
Pod IP アドレスの割り当てに使用する IP アドレスのブロック。このブロックは既存の物理ネットワークと重複できません。これらの IP アドレスは Pod ネットワークに使用されます。外部ネットワークから Pod にアクセスする必要がある場合、ロードバランサーおよびルーターを、トラフィックを管理するように設定する必要があります。
注記

クラス E の CIDR 範囲は、将来の使用のために予約されています。クラス E CIDR 範囲を使用するには、ネットワーク環境がクラス E CIDR 範囲内の IP アドレスを受け入れるようにする必要があります。

10
それぞれの個別ノードに割り当てるサブネット接頭辞長。たとえば、hostPrefix23 に設定されている場合、各ノードに指定の cidr から /23 サブネットが割り当てられます。これにより、510 (2^(32 - 23) - 2) Pod IP アドレスが許可されます。外部ネットワークからのノードへのアクセスを提供する必要がある場合には、ロードバランサーおよびルーターを、トラフィックを管理するように設定します。
11
インストールするクラスターネットワークプラグイン。サポートされる値はデフォルト値の OVNKubernetes のみです。
12
サービス IP アドレスに使用する IP アドレスプール。1 つの IP アドレスプールのみを入力できます。このブロックは既存の物理ネットワークと重複できません。外部ネットワークからサービスにアクセスする必要がある場合、ロードバランサーおよびルーターを、トラフィックを管理するように設定します。
13
プラットフォームを none に設定する必要があります。プラットフォーム用に追加のプラットフォーム設定変数を指定することはできません。
重要

プラットフォームタイプ none でインストールされたクラスターは、Machine API を使用したコンピュートマシンの管理など、一部の機能を使用できません。この制限は、クラスターに接続されている計算マシンが、通常はこの機能をサポートするプラットフォームにインストールされている場合でも適用されます。このパラメーターは、インストール後に変更することはできません。

14
FIPS モードを有効または無効にするかどうか。デフォルトでは、FIPS モードは有効にされません。FIPS モードが有効にされている場合、OpenShift Container Platform が実行される Red Hat Enterprise Linux CoreOS (RHCOS) マシンがデフォルトの Kubernetes 暗号スイートをバイパスし、代わりに RHCOS で提供される暗号モジュールを使用します。
重要

クラスターで FIPS モードを有効にするには、FIPS モードで動作するように設定された Red Hat Enterprise Linux (RHEL) コンピューターからインストールプログラムを実行する必要があります。RHEL で FIPS モードを設定する方法の詳細は、RHEL から FIPS モードへの切り替え を参照してください。

FIPS モードでブートされた Red Hat Enterprise Linux (RHEL) または Red Hat Enterprise Linux CoreOS (RHCOS) を実行する場合、OpenShift Container Platform コアコンポーネントは、x86_64、ppc64le、および s390x アーキテクチャーのみで、FIPS 140-2/140-3 検証のために NIST に提出された RHEL 暗号化ライブラリーを使用します。

15
<local_registry> には、レジストリードメイン名と、ミラーレジストリーがコンテンツを提供するために使用するポートをオプションで指定します。例: registry.example.com または registry.example.com:5000<credentials> に、ミラーレジストリーの base64 でエンコードされたユーザー名およびパスワードを指定します。
16
Red Hat Enterprise Linux CoreOS (RHCOS) の core ユーザーの SSH 公開鍵。
注記

インストールのデバッグまたは障害復旧を実行する必要のある実稼働用の OpenShift Container Platform クラスターでは、ssh-agent プロセスが使用する SSH キーを指定します。

17
ミラーレジストリーに使用した証明書ファイルの内容を指定します。
18
リポジトリーのミラーリングに使用したコマンドの出力に従って、imageContentSources セクションを指定します。
重要
  • oc adm release mirror コマンドを使用する場合は、imageContentSources セクションの出力を使用します。
  • oc mirror コマンドを使用する場合は、コマンドの実行によって生成される ImageContentSourcePolicy ファイルの repositoryDigestMirrors セクションを使用します。
  • ImageContentSourcePolicy は非推奨になりました。詳細は、イメージレジストリーリポジトリーミラーリングの設定 を参照してください。
2.3.10.2. インストール時のクラスター全体のプロキシーの設定

実稼働環境では、インターネットへの直接アクセスを拒否し、代わりに HTTP または HTTPS プロキシーを使用することができます。プロキシー設定を install-config.yaml ファイルで行うことにより、新規の OpenShift Container Platform クラスターをプロキシーを使用するように設定できます。

注記

ベアメタルインストールでは、install-config.yaml ファイルの networking.machineNetwork[].cidr フィールドで指定される範囲にあるノード IP アドレスを割り当てない場合、それらを proxy.noProxy フィールドに含める必要があります。

前提条件

  • 既存の install-config.yaml ファイルがある。
  • クラスターがアクセスする必要のあるサイトを確認済みで、それらのいずれかがプロキシーをバイパスする必要があるかどうかを判別している。デフォルトで、すべてのクラスター Egress トラフィック (クラスターをホストするクラウドに関するクラウドプロバイダー API に対する呼び出しを含む) はプロキシーされます。プロキシーを必要に応じてバイパスするために、サイトを Proxy オブジェクトの spec.noProxy フィールドに追加している。

    注記

    Proxy オブジェクトの status.noProxy フィールドには、インストール設定の networking.machineNetwork[].cidrnetworking.clusterNetwork[].cidr、および networking.serviceNetwork[] フィールドの値が設定されます。

    Amazon Web Services (AWS)、Google Cloud Platform (GCP)、Microsoft Azure、および Red Hat OpenStack Platform (RHOSP) へのインストールの場合、Proxy オブジェクトの status.noProxy フィールドには、インスタンスメタデータのエンドポイント (169.254.169.254) も設定されます。

手順

  1. install-config.yaml ファイルを編集し、プロキシー設定を追加します。以下に例を示します。

    apiVersion: v1
    baseDomain: my.domain.com
    proxy:
      httpProxy: http://<username>:<pswd>@<ip>:<port> 
    1
    
      httpsProxy: https://<username>:<pswd>@<ip>:<port> 
    2
    
      noProxy: example.com 
    3
    
    additionalTrustBundle: | 
    4
    
        -----BEGIN CERTIFICATE-----
        <MY_TRUSTED_CA_CERT>
        -----END CERTIFICATE-----
    additionalTrustBundlePolicy: <policy_to_add_additionalTrustBundle> 
    5
    Copy to Clipboard Toggle word wrap
    1
    クラスター外の HTTP 接続を作成するために使用するプロキシー URL。URL スキームは http である必要があります。
    2
    クラスター外で HTTPS 接続を作成するために使用するプロキシー URL。
    3
    プロキシーから除外するための宛先ドメイン名、IP アドレス、または他のネットワーク CIDR のコンマ区切りのリスト。サブドメインのみと一致するように、ドメインの前に . を付けます。たとえば、.y.comx.y.com に一致しますが、y.com には一致しません。* を使用し、すべての宛先のプロキシーをバイパスします。
    4
    指定されている場合、インストールプログラムは HTTPS 接続のプロキシーに必要な 1 つ以上の追加の CA 証明書が含まれる user-ca-bundle という名前の設定マップを openshift-config namespace に生成します。次に Cluster Network Operator は、これらのコンテンツを Red Hat Enterprise Linux CoreOS (RHCOS) 信頼バンドルにマージする trusted-ca-bundle config map を作成し、この config map は Proxy オブジェクトの trustedCA フィールドで参照されます。additionalTrustBundle フィールドは、プロキシーのアイデンティティー証明書が RHCOS 信頼バンドルからの認証局によって署名されない限り必要になります。
    5
    オプション: trustedCA フィールドの user-ca-bundle 設定マップを参照する Proxy オブジェクトの設定を決定するポリシー。許可される値は Proxyonly および Always です。Proxyonly を使用して、http/https プロキシーが設定されている場合にのみ user-ca-bundle 設定マップを参照します。Always を使用して、常に user-ca-bundle 設定マップを参照します。デフォルト値は Proxyonly です。
    注記

    インストールプログラムは、プロキシーの readinessEndpoints フィールドをサポートしません。

    注記

    インストーラーがタイムアウトした場合は、インストーラーの wait-for コマンドを使用してデプロイメントを再起動してからデプロイメントを完了します。以下に例を示します。

    $ ./openshift-install wait-for install-complete --log-level debug
    Copy to Clipboard Toggle word wrap
  2. ファイルを保存し、OpenShift Container Platform のインストール時にこれを参照します。

インストールプログラムは、指定の install-config.yaml ファイルのプロキシー設定を使用する cluster という名前のクラスター全体のプロキシーを作成します。プロキシー設定が指定されていない場合、cluster Proxy オブジェクトが依然として作成されますが、これには spec がありません。

注記

cluster という名前の Proxy オブジェクトのみがサポートされ、追加のプロキシーを作成することはできません。

2.3.10.3. 3 ノードクラスターの設定

オプションで、3 台のコントロールプレーンマシンのみで構成されるベアメタルクラスターに、ゼロコンピュートマシンをデプロイできます。これにより、テスト、開発、および実稼働に使用するための小規模なリソース効率の高いクラスターが、クラスター管理者および開発者に提供されます。

3 ノードの OpenShift Container Platform 環境では、3 つのコントロールプレーンマシンがスケジュール対象となります。つまり、アプリケーションのワークロードがそれらで実行されるようにスケジュールされます。

前提条件

  • 既存の install-config.yaml ファイルがある。

手順

  • 以下の compute スタンザに示されるように、コンピュートレプリカの数が install-config.yaml ファイルで 0 に設定されることを確認します。

    compute:
    - name: worker
      platform: {}
      replicas: 0
    Copy to Clipboard Toggle word wrap
    注記

    デプロイするコンピュートマシンの数にかかわらず、OpenShift Container Platform を user-provisioned infrastructure にインストールする際に、コンピュートマシンの replicas パラメーターの値を 0 に設定する必要があります。installer-provisioned installation では、パラメーターはクラスターが作成し、管理するコンピュートマシンの数を制御します。これは、コンピュートマシンが手動でデプロイされる、user-provisioned installation には適用されません。

3 ノードのクラスターのインストールで、以下の手順を実行します。

  • ゼロ (0) コンピュートノードで 3 ノードクラスターをデプロイする場合、Ingress コントローラー Pod はコントロールプレーンノードで実行されます。3 ノードクラスターデプロイメントでは、HTTP および HTTPS トラフィックをコントロールプレーンノードにルーティングするようにアプリケーション Ingress ロードバランサーを設定する必要があります。詳細は、user-provisioned infrastructure の負荷分散要件 のセクションを参照してください。
  • 以下の手順で Kubernetes マニフェストファイルを作成する際に、<installation_directory>/manifests/cluster-scheduler-02-config.yml ファイルの mastersSchedulable パラメーターが true に設定されていることを確認します。これにより、アプリケーションのワークロードがコントロールプレーンノードで実行できます。
  • Red Hat Enterprise Linux CoreOS (RHCOS) マシンを作成する際は、コンピュートノードをデプロイしないでください。

2.3.11. Kubernetes マニフェストおよび Ignition 設定ファイルの作成

一部のクラスター定義ファイルを変更し、クラスターマシンを手動で起動する必要があるため、クラスターがマシンを設定するために必要な Kubernetes マニフェストと Ignition 設定ファイルを生成する必要があります。

インストール設定ファイルは Kubernetes マニフェストに変換されます。マニフェストは Ignition 設定ファイルにラップされます。これはクラスターマシンを設定するために後で使用されます。

重要
  • OpenShift Container Platform のインストールプログラムが生成する Ignition 設定ファイルには、24 時間が経過すると期限切れになり、その後に更新される証明書が含まれます。証明書を更新する前にクラスターが停止し、24 時間経過した後にクラスターを再起動すると、クラスターは期限切れの証明書を自動的に復元します。例外として、kubelet 証明書を回復するために保留状態の node-bootstrapper 証明書署名要求 (CSR) を手動で承認する必要があります。詳細は、コントロールプレーン証明書の期限切れの状態からのリカバリー に関するドキュメントを参照してください。
  • 24 時間証明書はクラスターのインストール後 16 時間から 22 時間にローテーションするため、Ignition 設定ファイルは、生成後 12 時間以内に使用することを推奨します。12 時間以内に Ignition 設定ファイルを使用することにより、インストール中に証明書の更新が実行された場合のインストールの失敗を回避できます。

前提条件

  • OpenShift Container Platform インストールプログラムを取得していること。ネットワークが制限されたインストールでは、これらのファイルがミラーホスト上に置かれます。
  • install-config.yaml インストール設定ファイルを作成していること。

手順

  1. OpenShift Container Platform のインストールプログラムが含まれるディレクトリーに切り替え、クラスターの Kubernetes マニフェストを生成します。

    $ ./openshift-install create manifests --dir <installation_directory> 
    1
    Copy to Clipboard Toggle word wrap
    1
    <installation_directory> には、作成した install-config.yaml ファイルが含まれるインストールディレクトリーを指定します。
    警告

    3 ノードクラスターをインストールしている場合は、以下の手順を省略してコントロールプレーンノードをスケジュール対象にします。

    重要

    コントロールプレーンノードをデフォルトのスケジュール不可からスケジュール可に設定するには、追加のサブスクリプションが必要です。これは、コントロールプレーンノードがコンピュートノードになるためです。

  2. <installation_directory>/manifests/cluster-scheduler-02-config.yml Kubernetes マニフェストファイルの mastersSchedulable パラメーターが false に設定されていることを確認します。この設定により、Pod がコントロールプレーンマシンにスケジュールされなくなります。

    1. <installation_directory>/manifests/cluster-scheduler-02-config.yml ファイルを開きます。
    2. mastersSchedulable パラメーターを見つけ、これが false に設定されていることを確認します。
    3. ファイルを保存し、終了します。
  3. Ignition 設定ファイルを作成するには、インストールプログラムが含まれるディレクトリーから以下のコマンドを実行します。

    $ ./openshift-install create ignition-configs --dir <installation_directory> 
    1
    Copy to Clipboard Toggle word wrap
    1
    <installation_directory> には、同じインストールディレクトリーを指定します。

    Ignition 設定ファイルは、インストールディレクトリー内のブートストラップ、コントロールプレーン、およびコンピュートノード用に作成されます。kubeadmin-password および kubeconfig ファイルが ./<installation_directory>/auth ディレクトリーに作成されます。

    .
    ├── auth
    │   ├── kubeadmin-password
    │   └── kubeconfig
    ├── bootstrap.ign
    ├── master.ign
    ├── metadata.json
    └── worker.ign
    Copy to Clipboard Toggle word wrap

2.3.12. chrony タイムサービスの設定

chrony タイムサービス (chronyd) で使用されるタイムサーバーおよび関連する設定は、chrony.conf ファイルのコンテンツを変更し、それらのコンテンツをマシン設定としてノードに渡して設定する必要があります。

手順

  1. chrony.conf ファイルのコンテンツを含む Butane 設定を作成します。たとえば、ワーカーノードで chrony を設定するには、99-worker-chrony.bu ファイルを作成します。

    注記

    設定ファイルで指定する Butane のバージョン は、OpenShift Container Platform のバージョンと同じである必要があり、末尾は常に 0 です。たとえば、4.19.0 などです。Butane の詳細は、「Butane を使用したマシン設定の作成」を参照してください。

    variant: openshift
    version: 4.19.0
    metadata:
      name: 99-worker-chrony 
    1
    
      labels:
        machineconfiguration.openshift.io/role: worker 
    2
    
    storage:
      files:
      - path: /etc/chrony.conf
        mode: 0644 
    3
    
        overwrite: true
        contents:
          inline: |
            pool 0.rhel.pool.ntp.org iburst 
    4
    
            driftfile /var/lib/chrony/drift
            makestep 1.0 3
            rtcsync
            logdir /var/log/chrony
    Copy to Clipboard Toggle word wrap
    1 2
    コントロールプレーンノードでは、これらの両方の場所で worker の代わりに master を使用します。
    3
    マシン設定ファイルの mode フィールドに 8 進数の値でモードを指定します。ファイルを作成し、変更を適用すると、mode は 10 進数の値に変換されます。oc get mc <mc-name> -o yaml コマンドで YAML ファイルを確認できます。
    4
    DHCP サーバーが提供するものなど、有効な到達可能なタイムソースを指定します。
    注記

    全マシン間の通信の場合、UDP 上の Network Time Protocol (NTP) はポート 123 です。外部 NTP タイムサーバーが設定されている場合は、UDP ポート 123 を開く必要があります。

  2. Butane を使用して、ノードに配信される設定を含む MachineConfig オブジェクトファイル (99-worker-chrony.yaml) を生成します。

    $ butane 99-worker-chrony.bu -o 99-worker-chrony.yaml
    Copy to Clipboard Toggle word wrap
  3. 以下の 2 つの方法のいずれかで設定を適用します。

    • クラスターがまだ起動していない場合は、マニフェストファイルを生成した後に、MachineConfig オブジェクトファイルを <installation_directory>/openshift ディレクトリーに追加してから、クラスターの作成を続行します。
    • クラスターがすでに実行中の場合は、ファイルを適用します。

      $ oc apply -f ./99-worker-chrony.yaml
      Copy to Clipboard Toggle word wrap

2.3.13. RHCOS のインストールおよび OpenShift Container Platform ブートストラッププロセスの開始

OpenShift Container Platform を独自にプロビジョニングするベアメタルインフラストラクチャーにインストールするには、Red Hat Enterprise Linux CoreOS (RHCOS) をマシンにインストールする必要があります。RHCOS のインストール時に、インストールするマシンのタイプに、OpenShift Container Platform インストールプログラムによって生成された Ignition 設定ファイルを指定する必要があります。適切なネットワーク、DNS、および負荷分散インフラストラクチャーが設定されている場合、OpenShift Container Platform ブートストラッププロセスは RHCOS マシンの再起動後に自動的に開始されます。

RHCOS をマシンにインストールするには、ISO イメージまたはネットワーク PXE ブートを使用する手順のいずれかを実行します。

注記

このインストールガイドに含まれるコンピュートノードのデプロイメント手順は、RHCOS 固有のものです。代わりに RHEL ベースのコンピュートノードのデプロイを選択する場合は、システム更新の実行、パッチの適用、その他すべての必要なタスクの完了など、オペレーティングシステムのライフサイクルの管理と保守をすべて担当します。RHEL8 コンピュートマシンのみがサポートされています。

以下の方法を使用して、ISO および PXE のインストール時に RHCOS を設定できます。

  • カーネル引数: カーネル引数を使用してインストール固有の情報を提供できます。たとえば、HTTP サーバーにアップロードした RHCOS インストールファイルの場所と、インストールするノードタイプの Ignition 設定ファイルの場所を指定できます。PXE インストールの場合、APPEND パラメーターを使用して、ライブインストーラーのカーネルに引数を渡すことができます。ISO インストールの場合は、ライブインストール起動プロセスを中断してカーネル引数を追加できます。いずれのインストールの場合でも、特殊な coreos.inst.* 引数を使用してライブインストーラーに指示を与えたり、標準のカーネルサービスをオンまたはオフにするために標準のインストールブート引数を使用したりできます。
  • Ignition 設定: OpenShift Container Platform Ignition 設定ファイル (*.ign) は、インストールするノードのタイプに固有のものです。RHCOS のインストール時にブートストラップ、コントロールプレーン、またはコンピュートノードの Ignition 設定ファイルの場所を渡して、初回起動時に有効にされるようにします。特別なケースでは、ライブシステムに渡すために個別の制限付き Ignition 設定を作成できます。この Ignition 設定は、インストールが正常に完了したことをプロビジョニングシステムに報告するなどの一連のタスクを実行する可能性があります。この特別な Ignition 設定は、インストール済みシステムの初回ブート時に適用される coreos-installer によって使用されます。標準のコントロールプレーンおよびコンピュートノードの Ignition 設定をライブ ISO に直接指定しないでください。
  • coreos-installer: ライブ ISO インストーラーをシェルプロンプトで起動できます。これにより、初回のブート前にさまざまな方法で永続的なシステムの準備を行うことができます。特に、coreos-installer コマンドを実行すると、追加するさまざまなアーティファクトを特定し、ディスクパーティションを使用し、ネットワークを設定できます。場合によっては、ライブシステムで機能を設定し、それらをインストールされたシステムにコピーできます。

    注記

    バージョン 0.17.0-3 以降、coreos-installer プログラムを実行するには RHEL 9 以降が必要です。古いバージョンの coreos-installer を使用して、新しい OpenShift Container Platform リリースの RHCOS アーティファクトをカスタマイズし、メタルイメージをディスクにインストールすることもできます。coreos-installer バイナリーの古いバージョンは、coreos-installer image mirror ページからダウンロードできます。

ISO または PXE インストールを使用するかどうかは、状況によって異なります。PXE インストールには、利用可能な DHCP サービスとさらなる準備が必要ですが、インストールプロセスはさらに自動化することが可能です。ISO インストールは主に手動によるプロセスで、複数のマシンを設定する場合には使用しにくい可能性があります。

2.3.13.1. ISO イメージを使用した RHCOS のインストール

ISO イメージを使用してマシンに RHCOS をインストールできます。

前提条件

  • クラスターの Ignition 設定ファイルを作成している。
  • 適切なネットワーク、DNS、および負荷分散インフラストラクチャーを設定している。
  • お使いのコンピューターからアクセスでき、作成するマシンからもアクセスできる HTTP サーバーがある。
  • ネットワークやディスクパーティションなどのさまざまな機能の設定方法について、高度な RHCOS インストール設定 のセクションを確認している。

手順

  1. それぞれの Ignition 設定ファイルの SHA512 ダイジェストを取得します。たとえば、Linux を実行しているシステムで以下を使用して、bootstrap.ign Ignition 設定ファイルの SHA512 ダイジェストを取得できます。

    $ sha512sum <installation_directory>/bootstrap.ign
    Copy to Clipboard Toggle word wrap

    ダイジェストは、クラスターノードの Ignition 設定ファイルの信頼性を検証するために、後の手順で coreos-installer に提供されます。

  2. インストールプログラムが作成したブートストラップ、コントロールプレーン、およびコンピュートノード Ignition 設定ファイルを HTTP サーバーにアップロードします。これらのファイルの URL をメモします。

    重要

    HTTP サーバーに保存する前に、Ignition 設定で設定内容を追加したり、変更したりできます。インストールの完了後にコンピュートマシンをさらにクラスターに追加する予定の場合には、これらのファイルを削除しないでください。

  3. インストールホストから、Ignition 設定ファイルが URL で利用可能であることを確認します。以下の例では、ブートストラップノードの Ignition 設定ファイルを取得します。

    $ curl -k http://<HTTP_server>/bootstrap.ign 
    1
    Copy to Clipboard Toggle word wrap

    出力例

      % Total    % Received % Xferd  Average Speed   Time    Time     Time  Current
                                     Dload  Upload   Total   Spent    Left  Speed
      0     0    0     0    0     0      0      0 --:--:-- --:--:-- --:--:--     0{"ignition":{"version":"3.2.0"},"passwd":{"users":[{"name":"core","sshAuthorizedKeys":["ssh-rsa...
    Copy to Clipboard Toggle word wrap

    コマンドで bootstrap.ignmaster.ign または worker.ign に置き換え、コントロールプレーンおよびコンピュートノードの Ignition 設定ファイルも利用可能であることを検証します。

  4. RHCOS イメージのミラー ページから、オペレーティングシステムインスタンスをインストールするための推奨される方法に必要な RHCOS イメージを取得することは可能ですが、RHCOS イメージの正しいバージョンを取得するための推奨される方法は、openshift-install コマンドの出力から取得することです。

    $ openshift-install coreos print-stream-json | grep '\.iso[^.]'
    Copy to Clipboard Toggle word wrap

    出力例

    "location": "<url>/art/storage/releases/rhcos-4.19-aarch64/<release>/aarch64/rhcos-<release>-live.aarch64.iso",
    "location": "<url>/art/storage/releases/rhcos-4.19-ppc64le/<release>/ppc64le/rhcos-<release>-live.ppc64le.iso",
    "location": "<url>/art/storage/releases/rhcos-4.19-s390x/<release>/s390x/rhcos-<release>-live.s390x.iso",
    "location": "<url>/art/storage/releases/rhcos-4.19/<release>/x86_64/rhcos-<release>-live.x86_64.iso",
    Copy to Clipboard Toggle word wrap

    重要

    RHCOS イメージは OpenShift Container Platform の各リリースごとに変更されない可能性があります。インストールする OpenShift Container Platform バージョンと等しいか、それ以下のバージョンの内で最も新しいバージョンのイメージをダウンロードする必要があります。利用可能な場合は、OpenShift Container Platform バージョンに一致するイメージのバージョンを使用します。この手順には ISO イメージのみを使用します。RHCOS qcow2 イメージは、このインストールではサポートされません。

    ISO ファイルの名前は以下の例のようになります。

    rhcos-<version>-live.<architecture>.iso

  5. ISO を使用し、RHCOS インストールを開始します。以下のインストールオプションのいずれかを使用します。

    • ディスクに ISO イメージを書き込み、これを直接起動します。
    • Lights Out Management (LOM) インターフェイスを使用して ISO リダイレクトを使用します。
  6. オプションを指定したり、ライブ起動シーケンスを中断したりせずに、RHCOS ISO イメージを起動します。インストーラーが RHCOS ライブ環境でシェルプロンプトを起動するのを待ちます。

    注記

    RHCOS インストール起動プロセスを中断して、カーネル引数を追加できます。ただし、この ISO 手順では、カーネル引数を追加する代わりに、以下の手順で説明しているように coreos-installer コマンドを使用する必要があります。

  7. coreos-installer コマンドを実行し、インストール要件を満たすオプションを指定します。少なくとも、ノードタイプの Ignition 設定ファイルを参照する URL と、インストール先のデバイスを指定する必要があります。

    $ sudo coreos-installer install --ignition-url=http://<HTTP_server>/<node_type>.ign <device> \ 
    1
    
    --ignition-hash=sha512-<digest> --offline 
    2
    Copy to Clipboard Toggle word wrap
    1 1
    core ユーザーにはインストールを実行するために必要な root 特権がないため、sudo を使用して coreos-installer コマンドを実行する必要があります。
    2
    --ignition-hash オプションは、Ignition 設定ファイルを HTTP URL を使用して取得し、クラスターノードの Ignition 設定ファイルの信頼性を検証するために必要です。<digest> は、先の手順で取得した Ignition 設定ファイル SHA512 ダイジェストです。
    注記

    TLS を使用する HTTPS サーバーを使用して Ignition 設定ファイルを提供する場合は、coreos-installer を実行する前に、内部認証局 (CA) をシステムのトラストストアに追加できます。

    以下の例では、/dev/sda デバイスへのブートストラップノードのインストールを初期化します。ブートストラップノードの Ignition 設定ファイルは、IP アドレス 192.168.1.2 で HTTP Web サーバーから取得されます。

    $ sudo coreos-installer install --ignition-url=http://192.168.1.2:80/installation_directory/bootstrap.ign /dev/sda \
    --ignition-hash=sha512-a5a2d43879223273c9b60af66b44202a1d1248fc01cf156c46d4a79f552b6bad47bc8cc78ddf0116e80c59d2ea9e32ba53bc807afbca581aa059311def2c3e3b \
    --offline
    Copy to Clipboard Toggle word wrap
  8. マシンのコンソールで RHCOS インストールの進捗を監視します。

    重要

    OpenShift Container Platform のインストールを開始する前に、各ノードでインストールが成功していることを確認します。インストールプロセスを監視すると、発生する可能性のある RHCOS インストールの問題の原因を特定する上でも役立ちます。

  9. RHCOS のインストール後、システムを再起動する必要があります。システムの再起動後、指定した Ignition 設定ファイルを適用します。
  10. コンソール出力をチェックして、Ignition が実行されたことを確認します。

    コマンドの例

    Ignition: ran on 2022/03/14 14:48:33 UTC (this boot)
    Ignition: user-provided config was applied
    Copy to Clipboard Toggle word wrap

  11. 継続してクラスターの他のマシンを作成します。

    重要

    この時点でブートストラップおよびコントロールプレーンマシンを作成する必要があります。コントロールプレーンマシンがデフォルトのスケジュール対象にされていない場合、OpenShift Container Platform のインストール前に少なくとも 2 つのコンピュートマシンも作成します。

    必要なネットワーク、DNS、およびロードバランサーインフラストラクチャーが配置されている場合、OpenShift Container Platform ブートストラッププロセスは RHCOS ノードの再起動後に自動的に起動します。

    注記

    RHCOS ノードには、core ユーザーのデフォルトのパスワードは含まれません。ノードには、ssh core@<node>.<cluster_name>.<base_domain> を、install_config.yaml ファイルで指定したパブリックキーとペアになる SSH プライベートキーへのアクセスのあるユーザーとして実行してアクセスできます。RHCOS を実行する OpenShift Container Platform 4 クラスターノードは変更できず、Operator を使用してクラスターの変更を適用します。SSH を使用したクラスターノードへのアクセスは推奨されません。ただし、インストールの問題を調査する際に、OpenShift Container Platform API が利用できない場合や、kubelet がターゲットノードで適切に機能しない場合、デバッグまたは障害復旧に SSH アクセスが必要になることがあります。

2.3.13.2. PXE または iPXE ブートを使用した RHCOS のインストール

PXE または iPXE ブートを使用してマシンに RHCOS をインストールできます。

前提条件

  • クラスターの Ignition 設定ファイルを作成している。
  • 適切なネットワーク、DNS および負荷分散インフラストラクチャーを設定している。
  • 適切な PXE または iPXE インフラストラクチャーを設定していること。
  • お使いのコンピューターからアクセスでき、作成するマシンからもアクセスできる HTTP サーバーがある。
  • ネットワークやディスクパーティションなどのさまざまな機能の設定方法について、高度な RHCOS インストール設定 のセクションを確認している。

手順

  1. インストールプログラムが作成したブートストラップ、コントロールプレーン、およびコンピュートノード Ignition 設定ファイルを HTTP サーバーにアップロードします。これらのファイルの URL をメモします。

    重要

    HTTP サーバーに保存する前に、Ignition 設定で設定内容を追加したり、変更したりできます。インストールの完了後にコンピュートマシンをさらにクラスターに追加する予定の場合には、これらのファイルを削除しないでください。

  2. インストールホストから、Ignition 設定ファイルが URL で利用可能であることを確認します。以下の例では、ブートストラップノードの Ignition 設定ファイルを取得します。

    $ curl -k http://<HTTP_server>/bootstrap.ign 
    1
    Copy to Clipboard Toggle word wrap

    出力例

      % Total    % Received % Xferd  Average Speed   Time    Time     Time  Current
                                     Dload  Upload   Total   Spent    Left  Speed
      0     0    0     0    0     0      0      0 --:--:-- --:--:-- --:--:--     0{"ignition":{"version":"3.2.0"},"passwd":{"users":[{"name":"core","sshAuthorizedKeys":["ssh-rsa...
    Copy to Clipboard Toggle word wrap

    コマンドで bootstrap.ignmaster.ign または worker.ign に置き換え、コントロールプレーンおよびコンピュートノードの Ignition 設定ファイルも利用可能であることを検証します。

  3. RHCOS イメージミラー ページからオペレーティングシステムインスタンスをインストールするための推奨される方法に必要な RHCOS kernelinitramfs、および rootfs ファイルを取得することは可能ですが、RHCOS ファイルの正しいバージョンを取得するための推奨される方法は、openshift-install コマンドの出力から取得することです。

    $ openshift-install coreos print-stream-json | grep -Eo '"https.*(kernel-|initramfs.|rootfs.)\w+(\.img)?"'
    Copy to Clipboard Toggle word wrap

    出力例

    "<url>/art/storage/releases/rhcos-4.19-aarch64/<release>/aarch64/rhcos-<release>-live-kernel-aarch64"
    "<url>/art/storage/releases/rhcos-4.19-aarch64/<release>/aarch64/rhcos-<release>-live-initramfs.aarch64.img"
    "<url>/art/storage/releases/rhcos-4.19-aarch64/<release>/aarch64/rhcos-<release>-live-rootfs.aarch64.img"
    "<url>/art/storage/releases/rhcos-4.19-ppc64le/49.84.202110081256-0/ppc64le/rhcos-<release>-live-kernel-ppc64le"
    "<url>/art/storage/releases/rhcos-4.19-ppc64le/<release>/ppc64le/rhcos-<release>-live-initramfs.ppc64le.img"
    "<url>/art/storage/releases/rhcos-4.19-ppc64le/<release>/ppc64le/rhcos-<release>-live-rootfs.ppc64le.img"
    "<url>/art/storage/releases/rhcos-4.19-s390x/<release>/s390x/rhcos-<release>-live-kernel-s390x"
    "<url>/art/storage/releases/rhcos-4.19-s390x/<release>/s390x/rhcos-<release>-live-initramfs.s390x.img"
    "<url>/art/storage/releases/rhcos-4.19-s390x/<release>/s390x/rhcos-<release>-live-rootfs.s390x.img"
    "<url>/art/storage/releases/rhcos-4.19/<release>/x86_64/rhcos-<release>-live-kernel-x86_64"
    "<url>/art/storage/releases/rhcos-4.19/<release>/x86_64/rhcos-<release>-live-initramfs.x86_64.img"
    "<url>/art/storage/releases/rhcos-4.19/<release>/x86_64/rhcos-<release>-live-rootfs.x86_64.img"
    Copy to Clipboard Toggle word wrap

    重要

    RHCOS アーティファクトは OpenShift Container Platform の各リリースごとに変更されない可能性があります。インストールする OpenShift Container Platform バージョンと等しいか、それ以下のバージョンの内で最も新しいバージョンのイメージをダウンロードする必要があります。この手順で説明されている適切な kernelinitramfs、および rootfs アーティファクトのみを使用します。RHCOS QCOW2 イメージは、このインストールタイプではサポートされません。

    ファイル名には、OpenShift Container Platform のバージョン番号が含まれます。以下の例のようになります。

    • kernel: rhcos-<version>-live-kernel-<architecture>
    • initramfs: rhcos-<version>-live-initramfs.<architecture>.img
    • rootfs: rhcos-<version>-live-rootfs.<architecture>.img
  4. rootfskernel、および initramfs ファイルを HTTP サーバーにアップロードします。

    重要

    インストールの完了後にコンピュートマシンをさらにクラスターに追加する予定の場合には、これらのファイルを削除しないでください。

  5. RHCOS のインストール後にマシンがローカルディスクから起動されるようにネットワークブートインフラストラクチャーを設定します。
  6. RHCOS イメージの PXE または iPXE インストールを設定し、インストールを開始します。

    ご使用の環境に関する以下の例で示されるメニューエントリーのいずれかを変更し、イメージおよび Ignition ファイルが適切にアクセスできることを確認します。

    • PXE(x86_64) の場合:

      DEFAULT pxeboot
      TIMEOUT 20
      PROMPT 0
      LABEL pxeboot
          KERNEL http://<HTTP_server>/rhcos-<version>-live-kernel-<architecture> 
      1
      
          APPEND initrd=http://<HTTP_server>/rhcos-<version>-live-initramfs.<architecture>.img coreos.live.rootfs_url=http://<HTTP_server>/rhcos-<version>-live-rootfs.<architecture>.img coreos.inst.install_dev=/dev/sda coreos.inst.ignition_url=http://<HTTP_server>/bootstrap.ign 
      2
       
      3
      Copy to Clipboard Toggle word wrap
      1 1
      HTTP サーバーにアップロードしたライブ kernel ファイルの場所を指定します。URL は HTTP、TFTP、または FTP である必要があります。HTTPS および NFS はサポートされません。
      2
      複数の NIC を使用する場合、ip オプションに単一インターフェイスを指定します。たとえば、eno1 という名前の NIC で DHCP を使用するには、ip=eno1:dhcp を設定します。
      3
      HTTP サーバーにアップロードした RHCOS ファイルの場所を指定します。initrd パラメーター値は initramfs ファイルの場所であり、coreos.live.rootfs_url パラメーター値は rootfs ファイルの場所、また coreos.inst.ignition_url パラメーター値はブートストラップ Ignition 設定ファイルの場所になります。APPEND 行にカーネル引数を追加して、ネットワークやその他の起動オプションを設定することもできます。
      注記

      この設定では、グラフィカルコンソールを使用するマシンでシリアルコンソールアクセスを有効にしません。別のコンソールを設定するには、APPEND 行に 1 つ以上の console= 引数を追加します。たとえば、console=tty0 console=ttyS0 を追加して、最初の PC シリアルポートをプライマリーコンソールとして、グラフィカルコンソールをセカンダリーコンソールとして設定します。詳細は、How does one set up a serial terminal and/or console in Red Hat Enterprise Linux? と、「高度な RHCOS インストール設定」セクションの「PXE および ISO インストール用シリアルコンソールの有効化」を参照してください。

    • iPXE (x86_64 + aarch64) の場合:

      kernel http://<HTTP_server>/rhcos-<version>-live-kernel-<architecture> initrd=main coreos.live.rootfs_url=http://<HTTP_server>/rhcos-<version>-live-rootfs.<architecture>.img coreos.inst.install_dev=/dev/sda coreos.inst.ignition_url=http://<HTTP_server>/bootstrap.ign 
      1
       
      2
      
      initrd --name main http://<HTTP_server>/rhcos-<version>-live-initramfs.<architecture>.img 
      3
      
      boot
      Copy to Clipboard Toggle word wrap
      1
      HTTP サーバーにアップロードした RHCOS ファイルの場所を指定します。kernel パラメーター値は kernel ファイルの場所であり、initrd=main 引数は UEFI システムでの起動に必要であり、coreos.live.rootfs_url パラメーター値は rootfs ファイルの場所であり、coreos.inst.ignition_url パラメーター値はブートストラップ Ignition 設定ファイルの場所になります。
      2
      複数の NIC を使用する場合、ip オプションに単一インターフェイスを指定します。たとえば、eno1 という名前の NIC で DHCP を使用するには、ip=eno1:dhcp を設定します。
      3
      HTTP サーバーにアップロードした initramfs ファイルの場所を指定します。
      注記

      この設定では、グラフィカルコンソールを使用するマシンでシリアルコンソールアクセスを有効にしません。別のコンソールを設定するには、kernel 行に console= 引数を 1 つ以上追加します。たとえば、console=tty0 console=ttyS0 を追加して、最初の PC シリアルポートをプライマリーコンソールとして、グラフィカルコンソールをセカンダリーコンソールとして設定します。詳細は、How does one set up a serial terminal and/or console in Red Hat Enterprise Linux? と、「高度な RHCOS インストール設定」セクションの「PXE および ISO インストール用シリアルコンソールの有効化」を参照してください。

      注記

      aarch64 アーキテクチャーで CoreOS kernel をネットワークブートするには、IMAGE_GZIP オプションが有効になっているバージョンの iPXE ビルドを使用する必要があります。iPXE の IMAGE_GZIP オプション を参照してください。

    • aarch64 上の PXE (第 2 段階として UEFI と Grub を使用) の場合:

      menuentry 'Install CoreOS' {
          linux rhcos-<version>-live-kernel-<architecture>  coreos.live.rootfs_url=http://<HTTP_server>/rhcos-<version>-live-rootfs.<architecture>.img coreos.inst.install_dev=/dev/sda coreos.inst.ignition_url=http://<HTTP_server>/bootstrap.ign 
      1
       
      2
      
          initrd rhcos-<version>-live-initramfs.<architecture>.img 
      3
      
      }
      Copy to Clipboard Toggle word wrap
      1
      HTTP/TFTP サーバーにアップロードした RHCOS ファイルの場所を指定します。kernel パラメーター値は、TFTP サーバー上の kernel ファイルの場所になります。coreos.live.rootfs_url パラメーター値は rootfs ファイルの場所であり、coreos.inst.ignition_url パラメーター値は HTTP サーバー上のブートストラップ Ignition 設定ファイルの場所になります。
      2
      複数の NIC を使用する場合、ip オプションに単一インターフェイスを指定します。たとえば、eno1 という名前の NIC で DHCP を使用するには、ip=eno1:dhcp を設定します。
      3
      TFTP サーバーにアップロードした initramfs ファイルの場所を指定します。
  7. マシンのコンソールで RHCOS インストールの進捗を監視します。

    重要

    OpenShift Container Platform のインストールを開始する前に、各ノードでインストールが成功していることを確認します。インストールプロセスを監視すると、発生する可能性のある RHCOS インストールの問題の原因を特定する上でも役立ちます。

  8. RHCOS のインストール後に、システムは再起動します。再起動中、システムは指定した Ignition 設定ファイルを適用します。
  9. コンソール出力をチェックして、Ignition が実行されたことを確認します。

    コマンドの例

    Ignition: ran on 2022/03/14 14:48:33 UTC (this boot)
    Ignition: user-provided config was applied
    Copy to Clipboard Toggle word wrap

  10. クラスターのマシンの作成を続行します。

    重要

    この時点でブートストラップおよびコントロールプレーンマシンを作成する必要があります。コントロールプレーンマシンがデフォルトのスケジュール対象にされていない場合、クラスターのインストール前に少なくとも 2 つのコンピュートマシンを作成します。

    必要なネットワーク、DNS、およびロードバランサーインフラストラクチャーが配置されている場合、OpenShift Container Platform ブートストラッププロセスは RHCOS ノードの再起動後に自動的に起動します。

    注記

    RHCOS ノードには、core ユーザーのデフォルトのパスワードは含まれません。ノードには、ssh core@<node>.<cluster_name>.<base_domain> を、install_config.yaml ファイルで指定したパブリックキーとペアになる SSH プライベートキーへのアクセスのあるユーザーとして実行してアクセスできます。RHCOS を実行する OpenShift Container Platform 4 クラスターノードは変更できず、Operator を使用してクラスターの変更を適用します。SSH を使用したクラスターノードへのアクセスは推奨されません。ただし、インストールの問題を調査する際に、OpenShift Container Platform API が利用できない場合や、kubelet がターゲットノードで適切に機能しない場合、デバッグまたは障害復旧に SSH アクセスが必要になることがあります。

2.3.13.3. 高度な RHCOS インストール設定

OpenShift Container Platform 用の Red Hat Enterprise Linux CoreOS (RHCOS) ノードを手動でプロビジョニングする主な利点は、デフォルトの OpenShift Container Platform インストール方法では利用できない設定を実行できることです。このセクションでは、以下のような手法で実行できるいくつかの設定を説明します。

  • カーネル引数をライブインストーラーに渡す
  • ライブシステムからの coreos-installer の手動による実行
  • ライブ ISO または PXE ブートイメージのカスタマイズ

このセクションで説明されている手動の Red Hat Enterprise Linux CoreOS (RHCOS) インストールの高度な設定トピックは、ディスクパーティション設定、ネットワーク、および複数の異なる方法での Ignition 設定の使用に関連しています。

2.3.13.3.1. PXE および ISO インストールの高度なネットワーキングオプションの使用

OpenShift Container Platform ノードのネットワークはデフォルトで DHCP を使用して、必要な設定をすべて収集します。静的 IP アドレスを設定したり、ボンディングなどの特別な設定を行う場合は、以下のいずれかの方法で実行できます。

  • ライブインストーラーの起動時に、特別なカーネルパラメーターを渡します。
  • マシン設定を使用してネットワークファイルをインストール済みシステムにコピーします。
  • ライブインストーラーのシェルプロンプトからネットワークを設定し、それらの設定をインストール済みシステムにコピーして、インストール済みシステムの初回起動時に有効になるようにします。

PXE または iPXE インストールを設定するには、以下のオプションのいずれかを使用します。

  • 「詳細な RHCOS インストールリファレンスの表」を参照してください。
  • マシン設定を使用してネットワークファイルをインストール済みシステムにコピーします。

ISO インストールを設定するには、以下の手順に従います。

手順

  1. ISO インストーラーを起動します。
  2. ライブシステムシェルプロンプトから、nmcli または nmtui などの利用可能な RHEL ツールを使用して、ライブシステムのネットワークを設定します。
  3. coreos-installer コマンドを実行してシステムをインストールし、--copy-network オプションを追加してネットワーク設定をコピーします。以下に例を示します。

    $ sudo coreos-installer install --copy-network \
    --ignition-url=http://host/worker.ign \
    --offline \
    /dev/disk/by-id/scsi-<serial_number>
    Copy to Clipboard Toggle word wrap
    重要

    --copy-network オプションは、/etc/NetworkManager/system-connections にあるネットワーク設定のみをコピーします。特に、システムのホスト名はコピーされません。

  4. インストール済みのシステムで再起動します。
2.3.13.3.2. ディスクパーティション設定

ディスクパーティションは、Red Hat Enterprise Linux CoreOS (RHCOS) のインストール時に OpenShift Container Platform クラスターノードに作成されます。デフォルトのパーティション設定をオーバーライドしない限り、特定のアーキテクチャーの各 RHCOS ノードで同じパーティションレイアウトが使用されます。RHCOS のインストール時に、ルートファイルシステムのサイズが拡大し、ターゲットデバイスの残りの使用可能なスペースが使用されます。

重要

ノードでカスタムパーティションスキームを使用すると、OpenShift Container Platform が一部のノードパーティションでモニタリングやアラートを行わなくなる可能性があります。デフォルトのパーティション設定をオーバーライドする場合は、OpenShift Container Platform がホストファイルシステムを監視する方法の詳細について Understanding OpenShift File System Monitoring (eviction conditions) を参照してください。

OpenShift Container Platform は、次の 2 つのファイルシステム識別子を監視します。

  • nodefs: /var/lib/kubelet を含むファイルシステム
  • imagefs: /var/lib/containers を含むファイルシステム

デフォルトのパーティションスキームの場合、nodefsimagefs は同じルートファイルシステム (/) を監視します。

RHCOS を OpenShift Container Platform クラスターノードにインストールするときにデフォルトのパーティション設定をオーバーライドするには、別のパーティションを作成する必要があります。コンテナーとコンテナーイメージ用に別のストレージパーティションを追加する状況を考えてみましょう。たとえば、/var/lib/containers を別のパーティションにマウントすると、kubelet が /var/lib/containersimagefs ディレクトリーとして、ルートファイルシステムを nodefs ディレクトリーとして個別に監視します。

重要

より大きなファイルシステムをホストするためにディスクサイズを変更した場合は、別の /var/lib/containers パーティションを作成することを検討してください。多数の割り当てグループによって発生する CPU 時間の問題を軽減するには、xfs 形式のディスクのサイズを変更することを検討してください。

2.3.13.3.2.1. 個別の /var パーティションの作成

通常は、RHCOS のインストール時に作成されるデフォルトのディスクパーティションを使用する必要があります。ただし、拡張するディレクトリーの個別のパーティションの作成が必要となる場合もあります。

OpenShift Container Platform は、ストレージを /var ディレクトリーまたは /var のサブディレクトリーのいずれかに割り当てる単一のパーティションの追加をサポートします。以下に例を示します。

  • /var/lib/containers: イメージやコンテナーがシステムにさらに追加されると拡張するコンテナー関連のコンテンツを保持します。
  • /var/lib/etcd: etcd ストレージのパフォーマンスの最適化などの目的で分離する必要のあるデータを保持します。
  • /var: 監査などの目的に合わせて分離させる必要のあるデータを保持します。

    重要

    ディスクサイズが 100 GB を超える場合、特に 1 TB を超える場合は、別の /var パーティションを作成します。

/var ディレクトリーのコンテンツを個別に保存すると、必要に応じてこれらの領域のストレージの拡大を容易にし、後で OpenShift Container Platform を再インストールして、そのデータをそのまま保持することができます。この方法では、すべてのコンテナーを再度プルする必要はありません。また、システムの更新時に大きなログファイルをコピーする必要もありません。

/var ディレクトリーまたは /var のサブディレクトリーの個別のパーティションを使用すると、パーティション設定されたディレクトリーでのデータの増加によりルートファイルシステムが一杯になることを避けることもできます。

以下の手順では、インストールの準備フェーズでノードタイプの Ignition 設定ファイルにラップされるマシン設定マニフェストを追加して、別の /var パーティションを設定します。

手順

  1. インストールホストで、OpenShift Container Platform のインストールプログラムが含まれるディレクトリーに切り替え、クラスターの Kubernetes マニフェストを生成します。

    $ openshift-install create manifests --dir <installation_directory>
    Copy to Clipboard Toggle word wrap
  2. 追加のパーティションを設定する Butane 設定を作成します。たとえば、$HOME/clusterconfig/98-var-partition.bu ファイルに名前を付け、ディスクのデバイス名を worker システムのストレージデバイスの名前に変更し、必要に応じてストレージサイズを設定します。以下の例では、/var ディレクトリーを別のパーティションにマウントします。

    variant: openshift
    version: 4.19.0
    metadata:
      labels:
        machineconfiguration.openshift.io/role: worker
      name: 98-var-partition
    storage:
      disks:
      - device: /dev/disk/by-id/<device_name> 
    1
    
        partitions:
        - label: var
          start_mib: <partition_start_offset> 
    2
    
          size_mib: <partition_size> 
    3
    
          number: 5
      filesystems:
        - device: /dev/disk/by-partlabel/var
          path: /var
          format: xfs
          mount_options: [defaults, prjquota] 
    4
    
          with_mount_unit: true
    Copy to Clipboard Toggle word wrap
    1
    パーティションを設定する必要のあるディスクのストレージデバイス名。
    2
    データパーティションをブートディスクに追加する場合は、25000 のメビバイトの最小のオフセット値が推奨されます。ルートファイルシステムは、指定したオフセットまでの利用可能な領域をすべて埋めるためにサイズを自動的に変更します。オフセット値の指定がない場合や、指定した値が推奨される最小値よりも小さい場合、生成されるルートファイルシステムのサイズは小さ過ぎるため、RHCOS の再インストールでデータパーティションの最初の部分が上書きされる可能性があります。
    3
    データパーティションのサイズ (メビバイト単位)。
    4
    コンテナーストレージに使用されるファイルシステムでは、prjquota マウントオプションを有効にする必要があります。
    注記

    個別の /var パーティションを作成する場合、異なるインスタンスタイプに同じデバイス名がない場合は、コンピュートノードに異なるインスタンスタイプを使用することはできません。

  3. Butane config からマニフェストを作成し、clusterconfig/openshift ディレクトリーに保存します。たとえば、以下のコマンドを実行します。

    $ butane $HOME/clusterconfig/98-var-partition.bu -o $HOME/clusterconfig/openshift/98-var-partition.yaml
    Copy to Clipboard Toggle word wrap
  4. Ignition 設定ファイルを作成します。

    $ openshift-install create ignition-configs --dir <installation_directory> 
    1
    Copy to Clipboard Toggle word wrap
    1
    <installation_directory> には、同じインストールディレクトリーを指定します。

    Ignition 設定ファイルは、インストールディレクトリー内のブートストラップ、コントロールプレーン、およびコンピュートノード用に作成されます。

    .
    ├── auth
    │   ├── kubeadmin-password
    │   └── kubeconfig
    ├── bootstrap.ign
    ├── master.ign
    ├── metadata.json
    └── worker.ign
    Copy to Clipboard Toggle word wrap

    <installation_directory>/manifest ディレクトリーおよび <installation_directory>/openshift ディレクトリーのファイルは、98-var-partition カスタム MachineConfig オブジェクトが含まれるファイルを含む Ignition 設定ファイルにラップされます。

次のステップ

  • RHCOS のインストール時に Ignition 設定ファイルを参照して、カスタムディスクのパーティション設定を適用することができます。
2.3.13.3.2.2. 既存パーティションの保持

ISO インストールの場合は、インストーラーに 1 つ以上の既存パーティションを維持させる coreos-installer コマンドにオプションを追加することができます。PXE インストールの場合、coreos.inst.* オプションを APPEND パラメーターに追加して、パーティションを保持できます。

保存したパーティションは、既存の OpenShift Container Platform システムからのデータパーティションである可能性があります。パーティションラベルまたは番号のいずれかで保持する必要のあるディスクパーティションを特定できます。

注記

既存のパーティションを保存し、それらのパーティションが RHCOS の十分な領域を残さない場合、インストールは失敗します。この場合、保存したパーティションが破損することはありません。

ISO インストール時の既存パーティションの保持

この例では、パーティションラベルが data (data*) で始まるパーティションを保持します。

# coreos-installer install --ignition-url http://10.0.2.2:8080/user.ign \
--save-partlabel 'data*' \
--offline \
/dev/disk/by-id/scsi-<serial_number>
Copy to Clipboard Toggle word wrap

以下の例では、ディスク上の 6 番目のパーティションを保持する方法で coreos-installer を実行する方法を説明しています。

# coreos-installer install --ignition-url http://10.0.2.2:8080/user.ign \
--save-partindex 6 \
--offline \
/dev/disk/by-id/scsi-<serial_number>
Copy to Clipboard Toggle word wrap

この例では、パーティション 5 以上を保持します。

# coreos-installer install --ignition-url http://10.0.2.2:8080/user.ign \
--save-partindex 5- \
--offline \
/dev/disk/by-id/scsi-<serial_number>
Copy to Clipboard Toggle word wrap

パーティションの保存が使用された以前の例では、coreos-installer はパーティションをすぐに再作成します。

PXE インストール時の既存パーティションの保持

この APPEND オプションは、パーティションラベルが 'data' ('data*') で始まるパーティションを保持します。

coreos.inst.save_partlabel=data*
Copy to Clipboard Toggle word wrap

この APPEND オプションは、パーティション 5 以上を保持します。

coreos.inst.save_partindex=5-
Copy to Clipboard Toggle word wrap

この APPEND オプションは、パーティション 6 を保持します。

coreos.inst.save_partindex=6
Copy to Clipboard Toggle word wrap
2.3.13.3.3. Ignition 設定の特定

RHCOS の手動インストールを実行する場合、提供できる Ignition 設定には 2 つのタイプがあり、それぞれを提供する理由もそれぞれ異なります。

  • Permanent install Ignition config: すべての手動の RHCOS インストールは、bootstrap.ignmaster.ign、および worker.ign などの openshift-installer が生成した Ignition 設定ファイルのいずれかを渡し、インストールを実行する必要があります。

    重要

    これらの Ignition 設定ファイルを直接変更することは推奨されません。前述のセクションの例で説明されているように、Ignition 設定ファイルにラップされるマニフェストファイルを更新できます。

    PXE インストールの場合、coreos.inst.ignition_url= オプションを使用して、APPEND 行に Ignition 設定を渡します。ISO インストールの場合、シェルプロンプトで ISO を起動した後に、--ignition-url= オプションを指定した coreos-installer コマンドラインで Ignition 設定を特定します。いずれの場合も、HTTP プロトコルおよび HTTPS プロトコルのみがサポートされます。

  • Live install Ignition config: このタイプは、coreos-installer customize サブコマンドとそのさまざまなオプションを使用して作成できます。この方法では、Ignition 設定はライブインストールメディアに渡され、起動直後に実行され、RHCOS システムがディスクにインストールされる前または後にセットアップタスクを実行します。この方法は、マシン設定を使用して実行できない高度なパーティション設定など、一度の適用後に再度適用する必要のないタスクの実行にのみ使用する必要があります。

    PXE または ISO ブートの場合、Ignition 設定を作成し、ignition.config.url= オプションに対して APPEND を実行し、Ignition 設定の場所を特定できます。また、ignition.firstboot ignition.platform.id=metal も追加する必要があります。追加しない場合は、ignition.config.url が無視されます。

2.3.13.3.4. デフォルトのコンソール設定

OpenShift Container Platform 4.19 ブートイメージからインストールされた Red Hat Enterprise Linux CoreOS (RHCOS) ノードは、ほとんどの仮想化セットアップおよびベアメタルセットアップに対応するためのデフォルトコンソールを使用します。クラウドおよび仮想化プラットフォームが異なれば、選択したアーキテクチャーに応じて、異なるデフォルト設定が使用される場合があります。ベアメタルインストールではカーネルのデフォルト設定が使用されます。これは通常、グラフィカルコンソールがプライマリーコンソールで、シリアルコンソールが無効になっていることを意味します。

デフォルトのコンソールが特定のハードウェア設定と一致しない場合や、デフォルトのコンソールを調整する必要がある特定のニーズがある場合があります。以下に例を示します。

  • デバッグ目的で、コンソールの緊急シェルにアクセスしたいと考えています。
  • クラウドプラットフォームは、グラフィカルコンソールへの対話型アクセスを提供しませんが、シリアルコンソールを提供します。
  • 複数のコンソールを有効にしたい。

コンソール設定は、ブートイメージから継承されます。これは、既存のクラスター内の新しいノードが、デフォルトのコンソールへの変更の影響を受けないことを意味します。

次の方法で、ベアメタルインストール用にコンソールを設定できます。

  • コマンドラインで手動で coreos-installer を使用する。
  • --dest-console オプションを指定した coreos-installer iso customize または coreos-installer pxe customize サブコマンドを使用して、プロセスを自動化するカスタムイメージを作成します。
注記

高度なカスタマイズを行うには、カーネル引数ではなく、coreos-installer iso または coreos-installer pxe サブコマンドを使用してコンソール設定を実行します。

2.3.13.3.5. PXE および ISO インストール用のシリアルコンソールの有効化

デフォルトでは、Red Hat Enterprise Linux CoreOS (RHCOS) シリアルコンソールは無効になっており、すべての出力はグラフィカルコンソールに書き込まれます。ISO インストール用にシリアルコンソールを有効にし、シリアルコンソールとグラフィカルコンソールの両方に出力が送信されるようにブートローダーを再設定できます。

手順

  1. ISO インストーラーを起動します。
  2. coreos-installer コマンドを実行してシステムをインストールし、--console オプションを 1 回追加してグラフィカルコンソールを指定し、2 回目にシリアルコンソールを指定します。

    $ coreos-installer install \
    --console=tty0 \
    1
    
    --console=ttyS0,<options> \
    2
    
    --ignition-url=http://host/worker.ign \
    --offline \
    /dev/disk/by-id/scsi-<serial_number>
    Copy to Clipboard Toggle word wrap
    1
    望ましい 2 番目のコンソール。この場合は、グラフィカルコンソールです。このオプションを省略すると、グラフィカルコンソールが無効になります。
    2
    望ましいひとつ目のコンソール。この場合、シリアルコンソールです。options フィールドは、ボーレートとその他の設定を定義します。このフィールドの一般的な値は 115200n8 です。オプションが指定されていない場合、デフォルトのカーネル値である 9600n8 が使用されます。このオプションの形式の詳細は、Linux カーネルシリアルコンソール のドキュメントを参照してください。
  3. インストール済みのシステムで再起動します。

    注記

    coreos-installer install --append-karg オプションを使用し、console= でコンソールを指定すると、同様の結果が得られます。ただし、これはカーネルのコンソールのみを設定し、ブートローダーは設定しません。

PXE インストールを設定するには、coreos.inst.install_dev カーネルコマンドラインオプションが省略されていることを確認し、シェルプロンプトを使用して、上記の ISO インストール手順を使用して手動で coreos-installer を実行します。

2.3.13.3.6. ライブ RHCOS ISO または PXE インストールのカスタマイズ

ライブ ISO イメージまたは PXE 環境を使用して、Ignition 設定ファイルをイメージに直接挿入することで RHCOS をインストールできます。これにより、システムのプロビジョニングに使用できるカスタマイズされたイメージが作成されます。

ISO イメージの場合、これを行うメカニズムは coreos-installer iso customize サブコマンドです。これは設定に合わせて .iso ファイルを変更します。同様に、PXE 環境のメカニズムは、カスタマイズを含む新しい initramfs ファイルを作成する coreos-installer pxe customize サブコマンドです。

customize サブコマンドは、他のタイプのカスタマイズも埋め込むことができる汎用ツールです。次のタスクは、より一般的なカスタマイズの例です。

  • 企業のセキュリティーポリシーで使う必要がある場合に備えて、カスタム CA 証明書を挿入します。
  • カーネル引数を必要とせずにネットワーク設定を設定します。
  • 任意のプレインストールおよびポストインストールスクリプトまたはバイナリーを埋め込みます。
2.3.13.3.7. ライブ RHCOS ISO イメージのカスタマイズ

coreos-installer iso customize サブコマンドを使用して、ライブ RHCOS ISO イメージを直接カスタマイズできます。ISO イメージを起動すると、カスタマイズが自動的に適用されます。

この機能を使用して、RHCOS を自動的にインストールするように ISO イメージを設定できます。

手順

  1. coreos-installer イメージミラー ページから、coreos-installer バイナリーをダウンロードします。
  2. RHCOS イメージミラー ページと Ignition 設定ファイルから RHCOS ISO イメージを取得し、次のコマンドを実行して、Ignition 設定を ISO イメージに直接挿入します。

    $ coreos-installer iso customize rhcos-<version>-live.x86_64.iso \
        --dest-ignition bootstrap.ign \ 
    1
    
        --dest-device /dev/disk/by-id/scsi-<serial_number> 
    2
    Copy to Clipboard Toggle word wrap
    1
    openshift-installer インストールプログラムから生成される Ignition 設定ファイル。
    2
    このオプションを指定すると、ISO イメージは自動的にインストールを実行します。それ以外の場合は、イメージはインストール用に設定されたままになりますが、coreos.inst.install_dev カーネル引数を指定しない限り、自動的にはインストールされません。
  3. オプション: ISO イメージのカスタマイズを削除し、イメージを元の状態に戻すには、次のコマンドを実行します。

    $ coreos-installer iso reset rhcos-<version>-live.x86_64.iso
    Copy to Clipboard Toggle word wrap

    これで、ライブ ISO イメージを再カスタマイズしたり、元の状態で使用したりできます。

カスタマイズを適用すると、それ以降のすべての RHCOS 起動に影響します。

2.3.13.3.7.1. ライブインストール ISO イメージを変更して、シリアルコンソールを有効化

OpenShift Container Platform 4.12 以降でインストールされたクラスターでは、シリアルコンソールはデフォルトで無効になり、すべての出力がグラフィカルコンソールに書き込まれます。次の手順でシリアルコンソールを有効にできます。

手順

  1. coreos-installer イメージミラー ページから、coreos-installer バイナリーをダウンロードします。
  2. RHCOS イメージミラー ページから RHCOS ISO イメージを取得し、次のコマンドを実行して ISO イメージをカスタマイズし、シリアルコンソールが出力を受信できるようにします。

    $ coreos-installer iso customize rhcos-<version>-live.x86_64.iso \
      --dest-ignition <path> \
    1
    
      --dest-console tty0 \
    2
    
      --dest-console ttyS0,<options> \
    3
    
      --dest-device /dev/disk/by-id/scsi-<serial_number> 
    4
    Copy to Clipboard Toggle word wrap
    1
    インストールする Ignition 設定の場所。
    2
    望ましい 2 番目のコンソール。この場合は、グラフィカルコンソールです。このオプションを省略すると、グラフィカルコンソールが無効になります。
    3
    望ましいひとつ目のコンソール。この場合、シリアルコンソールです。options フィールドは、ボーレートとその他の設定を定義します。このフィールドの一般的な値は 115200n8 です。オプションが指定されていない場合、デフォルトのカーネル値である 9600n8 が使用されます。このオプションの形式の詳細は、Linux カーネルシリアルコンソール のドキュメントを参照してください。
    4
    インストール先として指定されたディスク。このオプションを省略すると、ISO イメージはインストールプログラムを自動的に実行しますが、coreos.inst.install_dev カーネル引数も指定しない限り失敗します。
    注記

    --dest-console オプションは、ライブ ISO システムではなく、インストールされたシステムに影響します。ライブ ISO システムのコンソールを変更するには、--live-karg-append オプションを使用し、console= でコンソールを指定します。

    カスタマイズが適用され、ISO イメージの後続のすべての起動に影響します。

  3. オプション: ISO イメージのカスタマイズを削除してイメージを元の状態に戻すには、次のコマンドを実行します。

    $ coreos-installer iso reset rhcos-<version>-live.x86_64.iso
    Copy to Clipboard Toggle word wrap

    ライブ ISO イメージを再カスタマイズするか、元の状態で使用できるようになりました。

2.3.13.3.7.2. カスタム認証局を使用するようにライブインストール ISO イメージを変更する

customize サブコマンドの --ignition-ca フラグを使用して、認証局 (CA) 証明書を Ignition に提供できます。CA 証明書は、インストールの起動時とインストール済みシステムのプロビジョニング時の両方で使用できます。

注記

カスタム CA 証明書は、Ignition がリモートリソースをフェッチする方法に影響しますが、システムにインストールされている証明書には影響しません。

手順

  1. coreos-installer イメージミラー ページから、coreos-installer バイナリーをダウンロードします。
  2. RHCOS イメージミラー ページから RHCOS ISO イメージを取得し、次のコマンドを実行して、カスタム CA で使用する ISO イメージをカスタマイズします。

    $ coreos-installer iso customize rhcos-<version>-live.x86_64.iso --ignition-ca cert.pem
    Copy to Clipboard Toggle word wrap
重要

coreos.inst.ignition_url カーネルパラメーターは、--ignition-ca フラグでは機能しません。クラスターごとにカスタマイズされたイメージを作成するには、--dest-ignition フラグを使用する必要があります。

カスタム CA 証明書を適用すると、それ以降のすべての RHCOS 起動に影響します。

NetworkManager キーファイルをライブ ISO イメージに埋め込み、customize サブコマンドの --network-keyfile フラグを使用してインストール済みシステムに渡すことができます。

警告

接続プロファイルを作成する際は、接続プロファイルのファイル名に .nmconnection ファイル名拡張子を使用する必要があります。.nmconnection ファイル名拡張子を使用しない場合、クラスターは接続プロファイルをライブ環境に適用しますが、クラスターが初めてノードを起動するときに設定が適用されないため、セットアップが機能しなくなります。

手順

  1. coreos-installer イメージミラー ページから、coreos-installer バイナリーをダウンロードします。
  2. ボンディングされたインターフェイスの接続プロファイルを作成します。たとえば、ローカルディレクトリーに次の内容の bond0.nmconnection ファイルを作成します。

    [connection]
    id=bond0
    type=bond
    interface-name=bond0
    multi-connect=1
    
    [bond]
    miimon=100
    mode=active-backup
    
    [ipv4]
    method=auto
    
    [ipv6]
    method=auto
    Copy to Clipboard Toggle word wrap
  3. ボンディングに追加するセカンダリーインターフェイスの接続プロファイルを作成します。たとえば、ローカルディレクトリーに次の内容の bond0-proxy-em1.nmconnection ファイルを作成します。

    [connection]
    id=em1
    type=ethernet
    interface-name=em1
    master=bond0
    multi-connect=1
    slave-type=bond
    Copy to Clipboard Toggle word wrap
  4. ボンディングに追加するセカンダリーインターフェイスの接続プロファイルを作成します。たとえば、ローカルディレクトリーに次の内容の bond0-proxy-em2.nmconnection ファイルを作成します。

    [connection]
    id=em2
    type=ethernet
    interface-name=em2
    master=bond0
    multi-connect=1
    slave-type=bond
    Copy to Clipboard Toggle word wrap
  5. RHCOS イメージミラー ページから RHCOS ISO イメージを取得し、次のコマンドを実行して、設定されたネットワークで ISO イメージをカスタマイズします。

    $ coreos-installer iso customize rhcos-<version>-live.x86_64.iso \
        --network-keyfile bond0.nmconnection \
        --network-keyfile bond0-proxy-em1.nmconnection \
        --network-keyfile bond0-proxy-em2.nmconnection
    Copy to Clipboard Toggle word wrap

    ネットワーク設定はライブシステムに適用され、宛先システムに引き継がれます。

2.3.13.3.7.4. iSCSI ブートデバイス用のライブインストール ISO イメージをカスタマイズする

ライブ RHCOS イメージのカスタマイズされたバージョンを使用して、自動マウント、起動、および設定用の iSCSI ターゲットとイニシエーターの値を設定できます。

前提条件

  1. RHCOS のインストール先となる iSCSI ターゲットがある。

手順

  1. coreos-installer イメージミラー ページから、coreos-installer バイナリーをダウンロードします。
  2. RHCOS イメージミラー ページから RHCOS ISO イメージを取得し、次の情報を使用して ISO イメージをカスタマイズするために、以下のコマンドを実行します。

    $ coreos-installer iso customize \
        --pre-install mount-iscsi.sh \ 
    1
    
        --post-install unmount-iscsi.sh \ 
    2
    
        --dest-device /dev/disk/by-path/<IP_address>:<port>-iscsi-<target_iqn>-lun-<lun> \ 
    3
    
        --dest-ignition config.ign \ 
    4
    
        --dest-karg-append rd.iscsi.initiator=<initiator_iqn> \ 
    5
    
        --dest-karg-append netroot=<target_iqn> \ 
    6
    
        -o custom.iso rhcos-<version>-live.x86_64.iso
    Copy to Clipboard Toggle word wrap
    1
    インストール前に実行されるスクリプト。iSCSI ターゲットをマウントするための iscsiadm コマンドと、マルチパス構成を有効にするコマンドが含まれている必要があります。
    2
    インストール後に実行されるスクリプト。iscsiadm --mode node --logout=all コマンドが含まれている必要があります。
    3
    宛先システムの場所。ターゲットポータルの IP アドレス、関連付けられたポート番号、IQN 形式のターゲット iSCSI ノード、および iSCSI 論理ユニット番号 (LUN) を指定する必要があります。
    4
    宛先システムの Ignition 設定。
    5
    IQN 形式の iSCSI イニシエーター、クライアントの名前。イニシエーターは iSCSI ターゲットに接続するセッションを形成します。
    6
    IQN 形式の iSCSI ターゲットまたはサーバーの名前。

    dracut でサポートされる iSCSI オプションの詳細は、dracut.cmdline man ページ を参照してください。

ライブ RHCOS イメージのカスタマイズされたバージョンを使用して、自動マウント、起動、および設定用の iSCSI ターゲットとイニシエーターの値を設定できます。

前提条件

  1. RHCOS のインストール先となる iSCSI ターゲットがある。
  2. オプション: iSCSI ターゲットをマルチパス化した。

手順

  1. coreos-installer イメージミラー ページから、coreos-installer バイナリーをダウンロードします。
  2. RHCOS イメージミラー ページから RHCOS ISO イメージを取得し、次の情報を使用して ISO イメージをカスタマイズするために、以下のコマンドを実行します。

    $ coreos-installer iso customize \
        --pre-install mount-iscsi.sh \ 
    1
    
        --post-install unmount-iscsi.sh \ 
    2
    
        --dest-device /dev/mapper/mpatha \ 
    3
    
        --dest-ignition config.ign \ 
    4
    
        --dest-karg-append rd.iscsi.firmware=1 \ 
    5
    
        --dest-karg-append rd.multipath=default \ 
    6
    
        -o custom.iso rhcos-<version>-live.x86_64.iso
    Copy to Clipboard Toggle word wrap
    1
    インストール前に実行されるスクリプト。iSCSI ターゲットをマウントするための iscsiadm コマンドと、マルチパス構成を有効にするコマンドが含まれている必要があります。
    2
    インストール後に実行されるスクリプト。iscsiadm --mode node --logout=all コマンドが含まれている必要があります。
    3
    デバイスへのパス。マルチパスを使用している場合は、マルチパスデバイス (/dev/mapper/mpatha) を使用します。複数のマルチパスデバイスが接続されている場合、または明示する場合、/dev/disk/by-path で使用可能な World Wide Name (WWN) シンボリックリンクを使用できます。
    4
    宛先システムの Ignition 設定。
    5
    iSCSI パラメーターは、BIOS ファームウェアから読み取られます。
    6
    オプション: マルチパス構成を有効にする場合は、このパラメーターを含めます。

    dracut でサポートされる iSCSI オプションの詳細は、dracut.cmdline man ページ を参照してください。

2.3.13.3.8. ライブ RHCOS PXE 環境のカスタマイズ

coreos-installer pxe customize サブコマンドを使用して、ライブ RHCOS PXE 環境を直接カスタマイズできます。PXE 環境を起動すると、カスタマイズが自動的に適用されます。

この機能を使用して、RHCOS を自動的にインストールするように PXE 環境を設定できます。

手順

  1. coreos-installer イメージミラー ページから、coreos-installer バイナリーをダウンロードします。
  2. RHCOS イメージミラー ページと Ignition 設定ファイルから、RHCOS kernelinitramfs、および rootfs ファイルを取得し、次のコマンドを実行して、Ignition 設定からのカスタマイズを含む新しい initramfs ファイルを作成します。

    $ coreos-installer pxe customize rhcos-<version>-live-initramfs.x86_64.img \
        --dest-ignition bootstrap.ign \ 
    1
    
        --dest-device /dev/disk/by-id/scsi-<serial_number> \ 
    2
    
        -o rhcos-<version>-custom-initramfs.x86_64.img 
    3
    Copy to Clipboard Toggle word wrap
    1
    openshift-installer から生成された Ignition 設定ファイル。
    2
    このオプションを指定すると、PXE 環境で自動的にインストールが実行されます。それ以外の場合は、イメージはインストール用に設定されたままになりますが、coreos.inst.install_dev カーネル引数を指定しない限り、自動的には設定されません。
    3
    PXE 設定でカスタマイズされた initramfs ファイルを使用します。ignition.firstboot および ignition.platform.id=metal カーネル引数が存在しない場合は追加します。

カスタマイズを適用すると、それ以降のすべての RHCOS 起動に影響します。

2.3.13.3.8.1. ライブインストール PXE 環境を変更して、シリアルコンソールを有効化。

OpenShift Container Platform 4.12 以降でインストールされたクラスターでは、シリアルコンソールはデフォルトで無効になり、すべての出力がグラフィカルコンソールに書き込まれます。次の手順でシリアルコンソールを有効にできます。

手順

  1. coreos-installer イメージミラー ページから、coreos-installer バイナリーをダウンロードします。
  2. RHCOS イメージミラー ページおよび Ignition 設定ファイルから RHCOS kernelinitramfs および rootfs ファイルを取得します。次のコマンドを実行して、シリアルコンソールが出力を受信できるようにする新しいカスタマイズされた initramfs ファイルを作成します。

    $ coreos-installer pxe customize rhcos-<version>-live-initramfs.x86_64.img \
      --dest-ignition <path> \
    1
    
      --dest-console tty0 \
    2
    
      --dest-console ttyS0,<options> \
    3
    
      --dest-device /dev/disk/by-id/scsi-<serial_number> \
    4
    
      -o rhcos-<version>-custom-initramfs.x86_64.img 
    5
    Copy to Clipboard Toggle word wrap
    1
    インストールする Ignition 設定の場所。
    2
    望ましい 2 番目のコンソール。この場合は、グラフィカルコンソールです。このオプションを省略すると、グラフィカルコンソールが無効になります。
    3
    望ましいひとつ目のコンソール。この場合、シリアルコンソールです。options フィールドは、ボーレートとその他の設定を定義します。このフィールドの一般的な値は 115200n8 です。オプションが指定されていない場合、デフォルトのカーネル値である 9600n8 が使用されます。このオプションの形式の詳細は、Linux カーネルシリアルコンソール のドキュメントを参照してください。
    4
    インストール先として指定されたディスク。このオプションを省略すると、PXE 環境は自動的にインストーラーを実行しますが、coreos.inst.install_dev カーネル引数も指定しない限り失敗します。
    5
    PXE 設定でカスタマイズされた initramfs ファイルを使用します。ignition.firstboot および ignition.platform.id=metal カーネル引数が存在しない場合は追加します。

    カスタマイズが適用され、PXE 環境の後続のすべての起動に影響します。

2.3.13.3.8.2. カスタム認証局を使用するようにライブインストール PXE 環境を変更する

customize サブコマンドの --ignition-ca フラグを使用して、認証局 (CA) 証明書を Ignition に提供できます。CA 証明書は、インストールの起動時とインストール済みシステムのプロビジョニング時の両方で使用できます。

注記

カスタム CA 証明書は、Ignition がリモートリソースをフェッチする方法に影響しますが、システムにインストールされている証明書には影響しません。

手順

  1. coreos-installer イメージミラー ページから、coreos-installer バイナリーをダウンロードします。
  2. RHCOS イメージミラー ページから、RHCOS kernelinitramfs、および rootfs ファイルを取得し、次のコマンドを実行して、カスタム CA で使用するための新しいカスタマイズされた initramfs ファイルを作成します。

    $ coreos-installer pxe customize rhcos-<version>-live-initramfs.x86_64.img \
        --ignition-ca cert.pem \
        -o rhcos-<version>-custom-initramfs.x86_64.img
    Copy to Clipboard Toggle word wrap
  3. PXE 設定でカスタマイズされた initramfs ファイルを使用します。ignition.firstboot および ignition.platform.id=metal カーネル引数が存在しない場合は追加します。
重要

coreos.inst.ignition_url カーネルパラメーターは、--ignition-ca フラグでは機能しません。クラスターごとにカスタマイズされたイメージを作成するには、--dest-ignition フラグを使用する必要があります。

カスタム CA 証明書を適用すると、それ以降のすべての RHCOS 起動に影響します。

NetworkManager キーファイルをライブ PXE 環境に埋め込み、customize サブコマンドの --network-keyfile フラグを使用して、インストール済みシステムに渡すことができます。

警告

接続プロファイルを作成する際は、接続プロファイルのファイル名に .nmconnection ファイル名拡張子を使用する必要があります。.nmconnection ファイル名拡張子を使用しない場合、クラスターは接続プロファイルをライブ環境に適用しますが、クラスターが初めてノードを起動するときに設定が適用されないため、セットアップが機能しなくなります。

手順

  1. coreos-installer イメージミラー ページから、coreos-installer バイナリーをダウンロードします。
  2. ボンディングされたインターフェイスの接続プロファイルを作成します。たとえば、ローカルディレクトリーに次の内容の bond0.nmconnection ファイルを作成します。

    [connection]
    id=bond0
    type=bond
    interface-name=bond0
    multi-connect=1
    
    [bond]
    miimon=100
    mode=active-backup
    
    [ipv4]
    method=auto
    
    [ipv6]
    method=auto
    Copy to Clipboard Toggle word wrap
  3. ボンディングに追加するセカンダリーインターフェイスの接続プロファイルを作成します。たとえば、ローカルディレクトリーに次の内容の bond0-proxy-em1.nmconnection ファイルを作成します。

    [connection]
    id=em1
    type=ethernet
    interface-name=em1
    master=bond0
    multi-connect=1
    slave-type=bond
    Copy to Clipboard Toggle word wrap
  4. ボンディングに追加するセカンダリーインターフェイスの接続プロファイルを作成します。たとえば、ローカルディレクトリーに次の内容の bond0-proxy-em2.nmconnection ファイルを作成します。

    [connection]
    id=em2
    type=ethernet
    interface-name=em2
    master=bond0
    multi-connect=1
    slave-type=bond
    Copy to Clipboard Toggle word wrap
  5. RHCOS イメージミラー ページから、RHCOS kernelinitramfs、および rootfs ファイルを取得し、次のコマンドを実行して、設定済みのネットワークを含む新しいカスタマイズされた initramfs ファイルを作成します。

    $ coreos-installer pxe customize rhcos-<version>-live-initramfs.x86_64.img \
        --network-keyfile bond0.nmconnection \
        --network-keyfile bond0-proxy-em1.nmconnection \
        --network-keyfile bond0-proxy-em2.nmconnection \
        -o rhcos-<version>-custom-initramfs.x86_64.img
    Copy to Clipboard Toggle word wrap
  6. PXE 設定でカスタマイズされた initramfs ファイルを使用します。ignition.firstboot および ignition.platform.id=metal カーネル引数が存在しない場合は追加します。

    ネットワーク設定はライブシステムに適用され、宛先システムに引き継がれます。

2.3.13.3.8.4. iSCSI ブートデバイス用のライブインストール PXE 環境をカスタマイズする

ライブ RHCOS イメージのカスタマイズされたバージョンを使用して、自動マウント、起動、および設定用の iSCSI ターゲットとイニシエーターの値を設定できます。

前提条件

  1. RHCOS のインストール先となる iSCSI ターゲットがある。

手順

  1. coreos-installer イメージミラー ページから、coreos-installer バイナリーをダウンロードします。
  2. RHCOS イメージミラー ページから、RHCOS kernelinitramfs、および rootfs ファイルを取得し、次のコマンドを実行して、次の情報を含む新しいカスタマイズされた initramfs ファイルを作成します。

    $ coreos-installer pxe customize \
        --pre-install mount-iscsi.sh \ 
    1
    
        --post-install unmount-iscsi.sh \ 
    2
    
        --dest-device /dev/disk/by-path/<IP_address>:<port>-iscsi-<target_iqn>-lun-<lun> \ 
    3
    
        --dest-ignition config.ign \ 
    4
    
        --dest-karg-append rd.iscsi.initiator=<initiator_iqn> \ 
    5
    
        --dest-karg-append netroot=<target_iqn> \ 
    6
    
        -o custom.img rhcos-<version>-live-initramfs.x86_64.img
    Copy to Clipboard Toggle word wrap
    1
    インストール前に実行されるスクリプト。iSCSI ターゲットをマウントするための iscsiadm コマンドと、マルチパス構成を有効にするコマンドが含まれている必要があります。
    2
    インストール後に実行されるスクリプト。iscsiadm --mode node --logout=all コマンドが含まれている必要があります。
    3
    宛先システムの場所。ターゲットポータルの IP アドレス、関連付けられたポート番号、IQN 形式のターゲット iSCSI ノード、および iSCSI 論理ユニット番号 (LUN) を指定する必要があります。
    4
    宛先システムの Ignition 設定。
    5
    IQN 形式の iSCSI イニシエーター、クライアントの名前。イニシエーターは iSCSI ターゲットに接続するセッションを形成します。
    6
    IQN 形式の iSCSI ターゲットまたはサーバーの名前。

    dracut でサポートされる iSCSI オプションの詳細は、dracut.cmdline man ページ を参照してください。

ライブ RHCOS イメージのカスタマイズされたバージョンを使用して、自動マウント、起動、および設定用の iSCSI ターゲットとイニシエーターの値を設定できます。

前提条件

  1. RHCOS のインストール先となる iSCSI ターゲットがある。
  2. オプション: iSCSI ターゲットをマルチパス化した。

手順

  1. coreos-installer イメージミラー ページから、coreos-installer バイナリーをダウンロードします。
  2. RHCOS イメージミラー ページから、RHCOS kernelinitramfs、および rootfs ファイルを取得し、次のコマンドを実行して、次の情報を含む新しいカスタマイズされた initramfs ファイルを作成します。

    $ coreos-installer pxe customize \
        --pre-install mount-iscsi.sh \ 
    1
    
        --post-install unmount-iscsi.sh \ 
    2
    
        --dest-device /dev/mapper/mpatha \ 
    3
    
        --dest-ignition config.ign \ 
    4
    
        --dest-karg-append rd.iscsi.firmware=1 \ 
    5
    
        --dest-karg-append rd.multipath=default \ 
    6
    
        -o custom.img rhcos-<version>-live-initramfs.x86_64.img
    Copy to Clipboard Toggle word wrap
    1
    インストール前に実行されるスクリプト。iSCSI ターゲットをマウントするための iscsiadm コマンドが含まれている必要があります。
    2
    インストール後に実行されるスクリプト。iscsiadm --mode node --logout=all コマンドが含まれている必要があります。
    3
    デバイスへのパス。マルチパスを使用している場合は、マルチパスデバイス (/dev/mapper/mpatha) を使用します。複数のマルチパスデバイスが接続されている場合、または明示する場合、/dev/disk/by-path で使用可能な World Wide Name (WWN) シンボリックリンクを使用できます。
    4
    宛先システムの Ignition 設定。
    5
    iSCSI パラメーターは、BIOS ファームウェアから読み取られます。
    6
    オプション: マルチパス構成を有効にする場合は、このパラメーターを含めます。

    dracut でサポートされる iSCSI オプションの詳細は、dracut.cmdline man ページ を参照してください。

2.3.13.3.9. 詳細の RHCOS インストールリファレンス

このセクションでは、Red Hat Enterprise Linux CoreOS (RHCOS) の手動インストールプロセスを変更できるようにするネットワーク設定および他の高度なオプションを説明します。以下の表では、RHCOS ライブインストーラーおよび coreos-installer コマンドで使用できるカーネル引数およびコマンドラインのオプションを説明します。

2.3.13.3.9.1. ISO インストールのネットワークおよびボンディングのオプション

ISO イメージから RHCOS をインストールする場合、そのイメージを起動してノードのネットワークを設定する際に手動でカーネル引数を追加できます。ネットワークの引数が指定されていない場合、RHCOS が Ignition 設定ファイルを取得するためにネットワークが必要であることを検知する際に、DHCP が initramfs でアクティベートされます。

重要

ネットワーク引数を手動で追加する場合は、rd.neednet=1 カーネル引数を追加して、ネットワークを initramfs で有効にする必要があります。

以下の情報は、ISO インストール用に RHCOS ノードでネットワークおよびボンディングを設定する例を示しています。この例では、ip=nameserver=、および bond= カーネル引数の使用方法を説明しています。

注記

順序は、カーネル引数の ip=nameserver=、および bond= を追加する場合に重要です。

ネットワークオプションは、システムの起動時に dracut ツールに渡されます。dracut でサポートされるネットワークオプションの詳細は、dracut.cmdline man ページ を参照してください。

次の例は、ISO インストールのネットワークオプションです。

2.3.13.3.9.1.1. DHCP または静的 IP アドレスの設定

IP アドレスを設定するには、DHCP (ip=dhcp) を使用するか、個別の静的 IP アドレス (ip=<host_ip>) を設定します。静的 IP を設定する場合、各ノードで DNS サーバー IP アドレス (nameserver=<dns_ip>) を特定する必要があります。次の例では、以下を設定します。

  • ノードの IP アドレス: 10.10.10.2
  • ゲートウェイアドレス: 10.10.10.254
  • ネットワーク: 255.255.255.0
  • ホスト名: core0.example.com
  • DNS サーバーアドレス: 4.4.4.41
  • auto-configuration の値を none に設定します。IP ネットワークが静的に設定されている場合には、自動設定は必要ありません。
ip=10.10.10.2::10.10.10.254:255.255.255.0:core0.example.com:enp1s0:none
nameserver=4.4.4.41
Copy to Clipboard Toggle word wrap
注記

DHCP を使用して RHCOS マシンの IP アドレスを設定する場合、マシンは DHCP を介して DNS サーバー情報も取得します。DHCP ベースのデプロイメントの場合、DHCP サーバー設定を使用して RHCOS ノードが使用する DNS サーバーアドレスを定義できます。

2.3.13.3.9.1.2. 静的ホスト名を使用しない IP アドレスの設定

静的ホスト名を割り当てずに IP アドレスを設定できます。静的ホスト名がユーザーによって設定されていない場合は、逆引き DNS ルックアップによって取得され、自動的に設定されます。静的ホスト名なしで IP アドレスを設定するには、次の例を参照してください。

  • ノードの IP アドレス: 10.10.10.2
  • ゲートウェイアドレス: 10.10.10.254
  • ネットワーク: 255.255.255.0
  • DNS サーバーアドレス: 4.4.4.41
  • auto-configuration の値を none に設定します。IP ネットワークが静的に設定されている場合には、自動設定は必要ありません。
ip=10.10.10.2::10.10.10.254:255.255.255.0::enp1s0:none
nameserver=4.4.4.41
Copy to Clipboard Toggle word wrap
2.3.13.3.9.1.3. 複数のネットワークインターフェイスの指定

複数の ip= エントリーを設定することで、複数のネットワークインターフェイスを指定できます。

ip=10.10.10.2::10.10.10.254:255.255.255.0:core0.example.com:enp1s0:none
ip=10.10.10.3::10.10.10.254:255.255.255.0:core0.example.com:enp2s0:none
Copy to Clipboard Toggle word wrap
2.3.13.3.9.1.4. デフォルトゲートウェイとルートの設定

オプション: rd.route= value を設定して、追加のネットワークへのルートを設定できます。

注記

1 つまたは複数のネットワークを設定する場合、1 つのデフォルトゲートウェイが必要です。追加のネットワークゲートウェイがプライマリーネットワークゲートウェイと異なる場合、デフォルトゲートウェイはプライマリーネットワークゲートウェイである必要があります。

  • 次のコマンドを実行して、デフォルトゲートウェイを設定します。

    ip=::10.10.10.254::::
    Copy to Clipboard Toggle word wrap
  • 次のコマンドを入力して、追加ネットワークのルートを設定します。

    rd.route=20.20.20.0/24:20.20.20.254:enp2s0
    Copy to Clipboard Toggle word wrap
2.3.13.3.9.1.5. 単一インターフェイスでの DHCP の無効化

2 つ以上のネットワークインターフェイスがあり、1 つのインターフェイスのみが使用される場合などに、1 つのインターフェイスで DHCP を無効にします。この例では、enp1s0 インターフェイスには静的ネットワーク設定があり、使用されていない enp2s0 では DHCP が無効になっています。

ip=10.10.10.2::10.10.10.254:255.255.255.0:core0.example.com:enp1s0:none
ip=::::core0.example.com:enp2s0:none
Copy to Clipboard Toggle word wrap
2.3.13.3.9.1.6. DHCP と静的 IP 設定の組み合わせ

以下のように、複数のネットワークインターフェイスを持つシステムで、DHCP および静的 IP 設定を組み合わせることができます。

ip=enp1s0:dhcp
ip=10.10.10.2::10.10.10.254:255.255.255.0:core0.example.com:enp2s0:none
Copy to Clipboard Toggle word wrap
2.3.13.3.9.1.7. 個々のインターフェイスでの VLAN の設定

オプション: vlan= パラメーターを使用して、個別のインターフェイスに VLAN を設定できます。

  • ネットワークインターフェイスで VLAN を設定し、静的 IP アドレスを使用するには、次のコマンドを実行します。

    ip=10.10.10.2::10.10.10.254:255.255.255.0:core0.example.com:enp2s0.100:none
    vlan=enp2s0.100:enp2s0
    Copy to Clipboard Toggle word wrap
  • ネットワークインターフェイスで VLAN を設定し、DHCP を使用するには、次のコマンドを実行します。

    ip=enp2s0.100:dhcp
    vlan=enp2s0.100:enp2s0
    Copy to Clipboard Toggle word wrap
2.3.13.3.9.1.8. 複数の DNS サーバーの指定

以下のように、各サーバーに nameserver= エントリーを追加して、複数の DNS サーバーを指定できます。

nameserver=1.1.1.1
nameserver=8.8.8.8
Copy to Clipboard Toggle word wrap

オプション: bond= オプションを使用して、複数のネットワークインターフェイスを単一のインターフェイスにボンディングできます。次の例を参照してください。

  • ボンディングされたインターフェイスを設定するための構文は、bond=<name>[:<network_interfaces>][:options] です。

    <name> はボンディングデバイス名 (bond0)、<network_interfaces> は物理 (イーサネット) インターフェイスのコンマ区切りのリスト (em1,em2) を表し、options はボンディングオプションのコンマ区切りのリストです。modinfo bonding を入力して、利用可能なオプションを表示します。

  • bond= を使用してボンディングされたインターフェイスを作成する場合は、ボンディングされたインターフェイスの IP アドレスの割り当て方法やその他の情報を指定する必要があります。

    • DHCP を使用するようにボンディングされたインターフェイスを設定するには、ボンドの IP アドレスを dhcp に設定します。以下に例を示します。

      bond=bond0:em1,em2:mode=active-backup
      ip=bond0:dhcp
      Copy to Clipboard Toggle word wrap
    • 静的 IP アドレスを使用するようにボンディングされたインターフェイスを設定するには、必要な特定の IP アドレスと関連情報を入力します。以下に例を示します。

      bond=bond0:em1,em2:mode=active-backup
      ip=10.10.10.2::10.10.10.254:255.255.255.0:core0.example.com:bond0:none
      Copy to Clipboard Toggle word wrap

オプション: bond= オプションを使用して、複数の SR-IOV ネットワークインターフェイスをデュアルポート NIC インターフェイスに結合できます。

各ノードで、次のタスクを実行する必要があります。

  1. SR-IOV デバイスの管理 のガイダンスに従って、SR-IOV 仮想機能 (VF) を作成します。「仮想マシンへの SR-IOV ネットワークデバイスの接続」セクションの手順に従います。
  2. ボンドを作成し、目的の VF をボンドに接続し、ネットワークボンディングの設定 のガイダンスに従って、ボンドリンクの状態を設定します。説明されている手順のいずれかに従って、結合を作成します。

次の例は、使用する必要がある構文を示しています。

  • 結合インターフェイスを設定するための構文は、bond=<name>[:<network_interfaces>][:options] です。

    <name> はボンディングデバイス名 (bond0)、<network_interfaces> は仮想機能 (VF) をカーネル内の既知の名前で表し、ip link コマンド (eno1f0eno2f0) の出力に表示されます。options は結合オプションのコンマ区切りリストです。modinfo bonding を入力して、利用可能なオプションを表示します。

  • bond= を使用してボンディングされたインターフェイスを作成する場合は、ボンディングされたインターフェイスの IP アドレスの割り当て方法やその他の情報を指定する必要があります。

    • DHCP を使用するようにボンディングされたインターフェイスを設定するには、ボンドの IP アドレスを dhcp に設定します。以下に例を示します。

      bond=bond0:eno1f0,eno2f0:mode=active-backup
      ip=bond0:dhcp
      Copy to Clipboard Toggle word wrap
    • 静的 IP アドレスを使用するようにボンディングされたインターフェイスを設定するには、必要な特定の IP アドレスと関連情報を入力します。以下に例を示します。

      bond=bond0:eno1f0,eno2f0:mode=active-backup
      ip=10.10.10.2::10.10.10.254:255.255.255.0:core0.example.com:bond0:none
      Copy to Clipboard Toggle word wrap
2.3.13.3.9.1.11. ネットワークチーミングの使用

任意: team= パラメーターを指定して、ボンディングの代わりにネットワークチーミングを使用できます。

  • チームインターフェイス設定の構文は team=name[:network_interfaces] です。

    name はチームデバイス名 (team0)、network_interfaces は物理 (イーサネット) インターフェイス (em1, em2) のコンマ区切りリストを表します。

注記

RHCOS が次のバージョンの RHEL に切り替わると、チーミングは非推奨になる予定です。詳細は、こちらの Red Hat ナレッジベース記事 を参照してください。

次の例を使用して、ネットワークチームを設定します。

team=team0:em1,em2
ip=team0:dhcp
Copy to Clipboard Toggle word wrap
2.3.13.3.9.2. ISO および PXE インストール用の coreos-installer オプション

RHCOS は、ISO イメージから RHCOS ライブ環境に起動した後に、コマンドプロンプトで coreos-installer install <options> <device> を実行してインストールできます。

以下の表は、coreos-installer コマンドに渡すことのできるサブコマンド、オプションおよび引数を示しています。

Expand
表2.39 coreos-installer サブコマンド、コマンドラインオプション、および引数

coreos-installer install サブコマンド

サブコマンド

説明

$ coreos-installer install <options> <device>

Ignition 設定を ISO イメージに埋め込みます。

coreos-installer install サブコマンドオプション

オプション

説明

-u--image-url <url>

イメージの URL を手動で指定します。

-f--image-file <path>

ローカルイメージファイルを手動で指定します。デバッグに使用されます。

-i--ignition-file <path>

ファイルから Ignition 設定を埋め込みます。

-I--ignition-url <URL>

URL から Ignition 設定を埋め込みます。

--ignition-hash <digest>

Ignition 設定の type-value をダイジェスト値を取得します。

-p--platform <name>

インストール済みシステムの Ignition プラットフォーム ID を上書きします。

--console <spec>

インストールされたシステムのカーネルとブートローダーコンソールを設定します。<spec> の形式の詳細は、Linux カーネルシリアルコンソール のドキュメントを参照してください。

--append-karg <arg>…​

インストール済みシステムにデフォルトのカーネル引数を追加します。

--delete-karg <arg>…​

インストール済みシステムからデフォルトのカーネル引数を削除します。

-n--copy-network

インストール環境からネットワーク設定をコピーします。

重要

--copy-network オプションは、/etc/NetworkManager/system-connections にあるネットワーク設定のみをコピーします。特に、システムのホスト名はコピーされません。

--network-dir <path>

-n を指定して使用する場合。デフォルトは /etc/NetworkManager/system-connections/ です。

--save-partlabel <lx>..

このラベル glob でパーティションを保存します。

--save-partindex <id>…​

この数または範囲でパーティションを保存します。

--insecure

RHCOS イメージ署名の検証を省略します。

--insecure-ignition

HTTPS またはハッシュなしで Ignition URL を許可します。

--architecture <name>

ターゲット CPU アーキテクチャー。有効な値は x86_64 および aarch64 です。

--preserve-on-error

エラー時のパーティションテーブルは消去しないでください。

-h--help

ヘルプ情報を表示します。

coreos-installer インストールサブコマンド引数

引数

説明

<device>

宛先デバイス。

coreos-installer ISO サブコマンド

サブコマンド

説明

$ coreos-installer iso customize <options> <ISO_image>

RHCOS ライブ ISO イメージをカスタマイズします。

coreos-installer iso reset <options> <ISO_image>

RHCOS ライブ ISO イメージをデフォルト設定に復元します。

coreos-installer iso ignition remove <options> <ISO_image>

ISO イメージから埋め込まれた Ignition 設定を削除します。

coreos-installer ISO カスタマイズサブコマンドオプション

オプション

説明

--dest-ignition <path>

指定された Ignition 設定ファイルを宛先システムの新しい設定フラグメントにマージします。

--dest-console <spec>

宛先システムのカーネルとブートローダーコンソールを指定します。

--dest-device <path>

指定した宛先デバイスをインストールして上書きします。

--dest-karg-append <arg>

宛先システムの各起動にカーネル引数を追加します。

--dest-karg-delete <arg>

宛先システムの各起動からカーネル引数を削除します。

--network-keyfile <path>

ライブシステムと宛先システムに指定された NetworkManager キーファイルを使用してネットワークを設定します。

--ignition-ca <path>

Ignition によって信頼される追加の TLS 認証局を指定します。

--pre-install <path>

インストールする前に、指定されたスクリプトを実行します。

--post-install <path>

インストール後に指定されたスクリプトを実行します。

--installer-config <path>

指定されたインストーラー設定ファイルを適用します。

--live-ignition <path>

指定された Ignition 設定ファイルをライブ環境の新しい設定フラグメントにマージします。

--live-karg-append <arg>

ライブ環境の各ブートにカーネル引数を追加します。

--live-karg-delete <arg>

ライブ環境の各ブートからカーネル引数を削除します。

--live-karg-replace <k=o=n>

ライブ環境の各起動で、key=old=new の形式でカーネル引数を置き換えます。

-f, --force

既存の Ignition 設定を上書きします。

-o--output <path>

新しい出力ファイルに ISO を書き込みます。

-h--help

ヘルプ情報を表示します。

coreos-installer PXE サブコマンド

サブコマンド

説明

これらのオプションすべてがすべてのサブコマンドで使用できる訳ではないことに注意してください。

coreos-installer pxe customize <options> <path>

RHCOS ライブ PXE ブート設定をカスタマイズします。

coreos-installer pxe ignition wrap <options>

イメージに Ignition 設定をラップします。

coreos-installer pxe ignition unwrap <options> <image_name>

イメージでラップされた Ignition 設定を表示します。

coreos-installer PXE はサブコマンドオプションをカスタマイズします

オプション

説明

これらのオプションすべてがすべてのサブコマンドで使用できる訳ではないことに注意してください。

--dest-ignition <path>

指定された Ignition 設定ファイルを宛先システムの新しい設定フラグメントにマージします。

--dest-console <spec>

宛先システムのカーネルとブートローダーコンソールを指定します。

--dest-device <path>

指定した宛先デバイスをインストールして上書きします。

--network-keyfile <path>

ライブシステムと宛先システムに指定された NetworkManager キーファイルを使用してネットワークを設定します。

--ignition-ca <path>

Ignition によって信頼される追加の TLS 認証局を指定します。

--pre-install <path>

インストールする前に、指定されたスクリプトを実行します。

post-install <path>

インストール後に指定されたスクリプトを実行します。

--installer-config <path>

指定されたインストーラー設定ファイルを適用します。

--live-ignition <path>

指定された Ignition 設定ファイルをライブ環境の新しい設定フラグメントにマージします。

-o, --output <path>

initramfs を新しい出力ファイルに書き込みます。

注記

このオプションは、PXE 環境に必要です。

-h--help

ヘルプ情報を表示します。

2.3.13.3.9.3. ISO または PXE インストールの coreos.inst ブートオプション

coreos.inst ブートパラメーターを RHCOS ライブインストーラーに渡して、ブート時に coreos-installer オプションを自動的に起動できます。これらは、標準のブート引数の追加として提供されます。

  • ISO インストールの場合、ブートローダーメニューで自動ブートを中断して coreos.inst オプションを追加できます。RHEL CoreOS (Live) メニューオプションが強調表示されている状態で TAB を押すと、自動ブートを中断できます。
  • PXE または iPXE インストールの場合、RHCOS ライブインストーラーのブート前に coreos.inst オプションを APPEND 行に追加する必要があります。

以下の表は、ISO および PXE インストールの RHCOS ライブインストーラーの coreos.inst ブートオプションを示しています。

Expand
表2.40 coreos.inst ブートオプション
引数説明

coreos.inst.install_dev

必須。インストール先のシステムのブロックデバイス。

注記

sda は許可されていますが、/dev/sda などの完全パスを使用することが推奨されます。

coreos.inst.ignition_url

オプション: インストール済みシステムに埋め込む Ignition 設定の URL。URL が指定されていない場合、Ignition 設定は埋め込まれません。HTTP プロトコルおよび HTTPS プロトコルのみがサポートされます。

coreos.inst.save_partlabel

オプション: インストール時に保存するパーティションのコンマ区切りのラベル。glob 形式のワイルドカードが許可されます。指定したパーティションは存在する必要はありません。

coreos.inst.save_partindex

オプション: インストール時に保存するパーティションのコンマ区切りのインデックス。範囲 m-n は許可され、m または n のいずれかを省略できます。指定したパーティションは存在する必要はありません。

coreos.inst.insecure

オプション: coreos.inst.image_url で署名なしと指定される OS イメージを許可します。

coreos.inst.image_url

オプション: 指定した RHCOS イメージをダウンロードし、インストールします。

  • この引数は実稼働環境では使用できず、デバッグの目的でのみ使用することが意図されています。
  • この引数は、ライブメディアに一致しないバージョンの RHCOS をインストールするために使用できますが、インストールするバージョンに一致するメディアを使用することが推奨されます。
  • coreos.inst.image_url を使用している場合は、coreos.inst.insecure も使用する必要があります。これは、ベアメタルメディアが OpenShift Container Platform について GPG で署名されていないためです。
  • HTTP プロトコルおよび HTTPS プロトコルのみがサポートされます。

coreos.inst.skip_reboot

オプション: システムはインストール後に再起動しません。インストールが完了するとプロンプトが表示され、インストール時に生じる内容を検査できます。この引数は実稼働環境では使用できず、デバッグの目的でのみ使用することが意図されています。

coreos.inst.platform_id

オプション: RHCOS イメージがインストールされるプラットフォームの Ignition プラットフォーム ID。デフォルトは metal です。このオプションは、VMware などのクラウドプロバイダーから Ignition 設定を要求するかどうかを決定します。例: coreos.inst.platform_id=vmware

ignition.config.url

オプション: ライブ起動の Ignition 設定の URL。たとえば、これは coreos-installer の起動方法をカスタマイズしたり、インストール前後にコードを実行するために使用できます。これはインストール済みシステムの Ignition 設定である coreos.inst.ignition_url とは異なります。

2.3.13.4. RHCOS のカーネル引数でのマルチパスの有効化

RHCOS はプライマリーディスクでのマルチパスをサポートするようになり、ハードウェア障害に対する対障害性が強化され、ホストの可用性を強化できるようになりました。

OpenShift Container Platform 4.8 以降でプロビジョニングされたノードのマルチパスを有効にできます。インストール後のサポートは、マシン設定を使用してマルチパスをアクティベートすることで利用できますが、インストール中にマルチパスを有効にすることが推奨されます。

非最適化パスに対して I/O があると、I/O システムエラーが発生するように設定するには、インストール時にマルチパスを有効にする必要があります。

重要

IBM Z® および IBM® LinuxONE では、インストール時にクラスターを設定した場合のみマルチパスを有効にできます。詳細は、IBM Z® および IBM® LinuxONE への z/VM を使用したクラスターのインストール の RHCOS の「インストールおよび OpenShift Container Platform ブートストラッププロセスの開始」を参照してください。

以下の手順では、インストール時にマルチパスを有効にし、coreos-installer install コマンドにカーネル引数を追加して、インストール済みシステム自体が初回起動からマルチパスを使用できるようにします。

注記

OpenShift Container Platform は、4.6 以前からアップグレードされたノードでの day-2 アクティビティーとしてのマルチパスの有効化をサポートしません。

前提条件

  • クラスターの Ignition 設定ファイルを作成している。
  • RHCOS のインストールと OpenShift Container Platform ブートストラッププロセスの開始 を確認した。

手順

  1. マルチパスを有効にして multipathd デーモンを起動するには、インストールホストで次のコマンドを実行します。

    $ mpathconf --enable && systemctl start multipathd.service
    Copy to Clipboard Toggle word wrap
    • 必要に応じて、PXE または ISO を起動する場合は、カーネルコマンドラインから rd.multipath=default を追加することで、マルチパスを有効にできます。
  2. coreos-installer プログラムを呼び出してカーネル引数を追加します。

    • マシンに接続されているマルチパスデバイスが 1 つしかない場合は、このデバイスは /dev/mapper/mpatha のパスで利用できます。以下に例を示します。

      $ coreos-installer install /dev/mapper/mpatha \
      1
      
      --ignition-url=http://host/worker.ign \
      --append-karg rd.multipath=default \
      --append-karg root=/dev/disk/by-label/dm-mpath-root \
      --append-karg rw \
      --offline
      Copy to Clipboard Toggle word wrap
      1
      1 つのマルチパスデバイスのパスを指定します。
    • 複数のマルチパスデバイスがマシンに接続している場合には、より明示的に /dev/mapper/mpatha を使用する代わりに、/dev/disk/by-id で利用可能な World Wide Name (WWN) シンボリックリンクを使用することが推奨されます。以下に例を示します。

      $ coreos-installer install /dev/disk/by-id/wwn-<wwn_ID> \
      1
      
      --ignition-url=http://host/worker.ign \
      --append-karg rd.multipath=default \
      --append-karg root=/dev/disk/by-label/dm-mpath-root \
      --append-karg rw \
      --offline
      Copy to Clipboard Toggle word wrap
      1
      マルチパス化されたデバイスの WWN ID を指定します。例: 0xx194e957fcedb4841

      特別な coreos.inst.* 引数を使用してライブインストーラーを指定する場合に、このシンボリックリンクを coreos.inst.install_dev カーネル引数として使用することもできます。詳細は、「RHCOS のインストールおよび OpenShift Container Platform ブートストラッププロセスの開始」を参照してください。

  3. インストール済みのシステムで再起動します。
  4. ワーカーノードのいずれかに移動し、(ホストの /proc/cmdline 内の) カーネルコマンドライン引数をリスト表示して、カーネル引数が機能していることを確認します。

    $ oc debug node/ip-10-0-141-105.ec2.internal
    Copy to Clipboard Toggle word wrap

    出力例

    Starting pod/ip-10-0-141-105ec2internal-debug ...
    To use host binaries, run `chroot /host`
    
    sh-4.2# cat /host/proc/cmdline
    ...
    rd.multipath=default root=/dev/disk/by-label/dm-mpath-root
    ...
    
    sh-4.2# exit
    Copy to Clipboard Toggle word wrap

    追加したカーネル引数が表示されるはずです。

2.3.13.4.1. セカンダリーディスクでのマルチパス構成の有効化

RHCOS はセカンダリーディスク上のマルチパス構成もサポートします。カーネル引数の代わりに、Ignition を使用してインストール時にセカンダリーディスクのマルチパス構成を有効にします。

前提条件

  • ディスクのパーティション設定 セクションを読了した。
  • RHCOS のカーネル引数でのマルチパスの有効化 を読了した。
  • Butane ユーティリティーをインストールした。

手順

  1. 次のような情報を含む Butane 設定を作成します。

    multipath-config.bu の例

    variant: openshift
    version: 4.19.0
    systemd:
      units:
        - name: mpath-configure.service
          enabled: true
          contents: |
            [Unit]
            Description=Configure Multipath on Secondary Disk
            ConditionFirstBoot=true
            ConditionPathExists=!/etc/multipath.conf
            Before=multipathd.service 
    1
    
            DefaultDependencies=no
    
            [Service]
            Type=oneshot
            ExecStart=/usr/sbin/mpathconf --enable 
    2
    
    
            [Install]
            WantedBy=multi-user.target
        - name: mpath-var-lib-container.service
          enabled: true
          contents: |
            [Unit]
            Description=Set Up Multipath On /var/lib/containers
            ConditionFirstBoot=true 
    3
    
            Requires=dev-mapper-mpatha.device
            After=dev-mapper-mpatha.device
            After=ostree-remount.service
            Before=kubelet.service
            DefaultDependencies=no
    
            [Service] 
    4
    
            Type=oneshot
            ExecStart=/usr/sbin/mkfs.xfs -L containers -m reflink=1 /dev/mapper/mpatha
            ExecStart=/usr/bin/mkdir -p /var/lib/containers
    
            [Install]
            WantedBy=multi-user.target
        - name: var-lib-containers.mount
          enabled: true
          contents: |
            [Unit]
            Description=Mount /var/lib/containers
            After=mpath-var-lib-containers.service
            Before=kubelet.service 
    5
    
    
            [Mount] 
    6
    
            What=/dev/disk/by-label/dm-mpath-containers
            Where=/var/lib/containers
            Type=xfs
    
            [Install]
            WantedBy=multi-user.target
    Copy to Clipboard Toggle word wrap

    1
    マルチパスデーモンを起動する前に設定を行う必要があります。
    2
    mpathconf ユーティリティーを起動します。
    3
    このフィールドの値は、true に設定する必要があります。
    4
    ファイルシステムとディレクトリー /var/lib/containers を作成します。
    5
    ノードを起動する前にデバイスをマウントする必要があります。
    6
    デバイスを /var/lib/containers マウントポイントにマウントします。この場所はシンボリックリンクにできません。
  2. 次のコマンドを実行して、Ignition 設定を作成します。

    $ butane --pretty --strict multipath-config.bu > multipath-config.ign
    Copy to Clipboard Toggle word wrap
  3. 初回起動時の RHCOS インストールプロセスの残りを続行します。

    重要

    プライマリーディスクもマルチパス化されていない限り、インストール中にコマンドラインに rd.multipath または root カーネル引数を追加しないでください。

2.3.13.5. iSCSI ブートデバイスに RHCOS を手動でインストールする

iSCSI ターゲットに、手動で RHCOS をインストールできます。

前提条件

  1. RHCOS ライブ環境にいる。
  2. RHCOS のインストール先となる iSCSI ターゲットがある。

手順

  1. 次のコマンドを実行して、ライブ環境から iSCSI ターゲットをマウントします。

    $ iscsiadm \
        --mode discovery \
        --type sendtargets
        --portal <IP_address> \ 
    1
    
        --login
    Copy to Clipboard Toggle word wrap
    1
    ターゲットポータルの IP アドレス。
  2. 次のコマンドを実行し、必要なカーネル引数を使用して、RHCOS を iSCSI ターゲットにインストールします。以下はその例です。

    $ coreos-installer install \
    /dev/disk/by-path/ip-<IP_address>:<port>-iscsi-<target_iqn>-lun-<lun> \ 
    1
    
    --append-karg rd.iscsi.initiator=<initiator_iqn> \ 
    2
    
    --append.karg netroot=<target_iqn> \ 
    3
    
    --console ttyS0,115200n8 \
    --ignition-file <path_to_file> \
    --offline
    Copy to Clipboard Toggle word wrap
    1
    インストール先の場所。ターゲットポータルの IP アドレス、関連付けられたポート番号、IQN 形式のターゲット iSCSI ノード、および iSCSI 論理ユニット番号 (LUN) を指定する必要があります。
    2
    IQN 形式の iSCSI イニシエーター、クライアントの名前。イニシエーターは iSCSI ターゲットに接続するセッションを形成します。
    3
    IQN 形式の iSCSI ターゲットまたはサーバーの名前。

    dracut でサポートされる iSCSI オプションの詳細は、dracut.cmdline man ページ を参照してください。

  3. 次のコマンドを実行して iSCSI ディスクをアンマウントします。

    $ iscsiadm --mode node --logoutall=all
    Copy to Clipboard Toggle word wrap

この手順は、coreos-installer iso customize または coreos-installer pxe customize サブコマンドを使用して実行することもできます。

2.3.13.6. iBFT を使用して iSCSI ブートデバイスに RHCOS をインストールする

完全にディスクレスなマシンでは、iSCSI ターゲットとイニシエーターの値を iBFT 経由で渡すことができます。iSCSI マルチパス構成もサポートされています。

前提条件

  1. RHCOS ライブ環境にいる。
  2. RHCOS のインストール先となる iSCSI ターゲットがある。
  3. オプション: iSCSI ターゲットをマルチパス化した。

手順

  1. 次のコマンドを実行して、ライブ環境から iSCSI ターゲットをマウントします。

    $ iscsiadm \
        --mode discovery \
        --type sendtargets
        --portal <IP_address> \ 
    1
    
        --login
    Copy to Clipboard Toggle word wrap
    1
    ターゲットポータルの IP アドレス。
  2. オプション: マルチパス構成を有効にし、次のコマンドでデーモンを起動します。

    $ mpathconf --enable && systemctl start multipathd.service
    Copy to Clipboard Toggle word wrap
  3. 次のコマンドを実行し、必要なカーネル引数を使用して、RHCOS を iSCSI ターゲットにインストールします。以下はその例です。

    $ coreos-installer install \
        /dev/mapper/mpatha \ 
    1
    
        --append-karg rd.iscsi.firmware=1 \ 
    2
    
        --append-karg rd.multipath=default \ 
    3
    
        --console ttyS0 \
        --ignition-file <path_to_file> \
        --offline
    Copy to Clipboard Toggle word wrap
    1
    マルチパス化された単一デバイスのパス。複数のマルチパスデバイスが接続されている場合、または明示する場合、/dev/disk/by-path で使用可能な World Wide Name (WWN) シンボリックリンクを使用できます。
    2
    iSCSI パラメーターは、BIOS ファームウェアから読み取られます。
    3
    オプション: マルチパス構成を有効にする場合は、このパラメーターを含めます。

    dracut でサポートされる iSCSI オプションの詳細は、dracut.cmdline man ページ を参照してください。

  4. iSCSI ディスクをアンマウントします。

    $ iscsiadm --mode node --logout=all
    Copy to Clipboard Toggle word wrap

この手順は、coreos-installer iso customize または coreos-installer pxe customize サブコマンドを使用して実行することもできます。

2.3.14. ブートストラッププロセスの完了まで待機する

OpenShift Container Platform ブートストラッププロセスは、初回のクラスターノードのディスクにインストールされている永続的な RHCOS 環境での起動後に開始します。Ignition 設定ファイルで指定される設定情報は、ブートストラッププロセスを初期化し、マシンに OpenShift Container Platform をインストールするために使用されます。ブートストラッププロセスが完了するまで待機する必要があります。

前提条件

  • クラスターの Ignition 設定ファイルを作成している。
  • 適切なネットワーク、DNS および負荷分散インフラストラクチャーを設定している。
  • インストールプログラムを取得し、クラスターの Ignition 設定ファイルを生成している。
  • RHCOS をクラスターマシンにインストールし、OpenShift Container Platform インストールプログラムで生成される Ignition 設定ファイルを指定している。

手順

  1. ブートストラッププロセスをモニターします。

    $ ./openshift-install --dir <installation_directory> wait-for bootstrap-complete \ 
    1
    
        --log-level=info 
    2
    Copy to Clipboard Toggle word wrap
    1
    <installation_directory> には、インストールファイルを保存したディレクトリーへのパスを指定します。
    2
    異なるインストールの詳細情報を表示するには、info ではなく、warndebug、または error を指定します。

    出力例

    INFO Waiting up to 30m0s for the Kubernetes API at https://api.test.example.com:6443...
    INFO API v1.32.3 up
    INFO Waiting up to 30m0s for bootstrapping to complete...
    INFO It is now safe to remove the bootstrap resources
    Copy to Clipboard Toggle word wrap

    Kubernetes API サーバーでこれがコントロールプレーンマシンにブートストラップされていることを示すシグナルが出されるとコマンドは成功します。

  2. ブートストラッププロセスが完了したら、ブートストラップマシンをロードバランサーから削除します。

    重要

    この時点で、ブートストラップマシンをロードバランサーから削除する必要があります。さらに、ブートストラップマシン自体を削除し、再フォーマットすることができます。

2.3.15. CLI の使用によるクラスターへのログイン

クラスター kubeconfig ファイルをエクスポートし、デフォルトシステムユーザーとしてクラスターにログインできます。kubeconfig ファイルには、クライアントを正しいクラスターおよび API サーバーに接続するために CLI で使用されるクラスターに関する情報が含まれます。このファイルはクラスターに固有のファイルであり、OpenShift Container Platform のインストール時に作成されます。

前提条件

  • OpenShift Container Platform クラスターをデプロイしていること。
  • OpenShift CLI (oc) がインストールされている。

手順

  1. 次のコマンドを実行して、kubeadmin 認証情報をエクスポートします。

    $ export KUBECONFIG=<installation_directory>/auth/kubeconfig 
    1
    Copy to Clipboard Toggle word wrap
    1
    <installation_directory> には、インストールファイルを保存したディレクトリーへのパスを指定します。
  2. 次のコマンドを実行し、エクスポートされた設定を使用して oc コマンドを正常に実行できることを確認します。

    $ oc whoami
    Copy to Clipboard Toggle word wrap

    出力例

    system:admin
    Copy to Clipboard Toggle word wrap

2.3.16. マシンの証明書署名要求の承認

マシンをクラスターに追加する際に、追加したそれぞれのマシンに対して 2 つの保留状態の証明書署名要求 (CSR) が生成されます。これらの CSR が承認されていることを確認するか、必要な場合はそれらを承認してください。最初にクライアント要求を承認し、次にサーバー要求を承認する必要があります。

前提条件

  • マシンがクラスターに追加されています。

手順

  1. クラスターがマシンを認識していることを確認します。

    $ oc get nodes
    Copy to Clipboard Toggle word wrap

    出力例

    NAME      STATUS    ROLES   AGE  VERSION
    master-0  Ready     master  63m  v1.32.3
    master-1  Ready     master  63m  v1.32.3
    master-2  Ready     master  64m  v1.32.3
    Copy to Clipboard Toggle word wrap

    出力には作成したすべてのマシンがリスト表示されます。

    注記

    上記の出力には、一部の CSR が承認されるまで、ワーカーノード (ワーカーノードとも呼ばれる) が含まれない場合があります。

  2. 保留中の証明書署名要求 (CSR) を確認し、クラスターに追加したそれぞれのマシンのクライアントおよびサーバー要求に Pending または Approved ステータスが表示されていることを確認します。

    $ oc get csr
    Copy to Clipboard Toggle word wrap

    出力例

    NAME        AGE     REQUESTOR                                                                   CONDITION
    csr-8b2br   15m     system:serviceaccount:openshift-machine-config-operator:node-bootstrapper   Pending
    csr-8vnps   15m     system:serviceaccount:openshift-machine-config-operator:node-bootstrapper   Pending
    ...
    Copy to Clipboard Toggle word wrap

    この例では、2 つのマシンがクラスターに参加しています。このリストにはさらに多くの承認された CSR が表示される可能性があります。

  3. 追加したマシンの保留中の CSR すべてが Pending ステータスになった後に CSR が承認されない場合には、クラスターマシンの CSR を承認します。

    注記

    CSR のローテーションは自動的に実行されるため、クラスターにマシンを追加後 1 時間以内に CSR を承認してください。1 時間以内に承認しない場合には、証明書のローテーションが行われ、各ノードに 3 つ以上の証明書が存在するようになります。これらの証明書すべてを承認する必要があります。クライアントの CSR が承認された後に、Kubelet は提供証明書のセカンダリー CSR を作成します。これには、手動の承認が必要になります。次に、後続の提供証明書の更新要求は、Kubelet が同じパラメーターを持つ新規証明書を要求する場合に machine-approver によって自動的に承認されます。

    注記

    ベアメタルおよび他の user-provisioned infrastructure などのマシン API ではないプラットフォームで実行されているクラスターの場合、kubelet 提供証明書要求 (CSR) を自動的に承認する方法を実装する必要があります。要求が承認されない場合、API サーバーが kubelet に接続する際に提供証明書が必須であるため、oc execoc rsh、および oc logs コマンドは正常に実行できません。Kubelet エンドポイントにアクセスする操作には、この証明書の承認が必要です。この方法は新規 CSR の有無を監視し、CSR が system:node または system:admin グループの node-bootstrapper サービスアカウントによって提出されていることを確認し、ノードの ID を確認します。

    • それらを個別に承認するには、それぞれの有効な CSR に以下のコマンドを実行します。

      $ oc adm certificate approve <csr_name> 
      1
      Copy to Clipboard Toggle word wrap
      1
      <csr_name> は、現行の CSR のリストからの CSR の名前です。
    • すべての保留中の CSR を承認するには、以下のコマンドを実行します。

      $ oc get csr -o go-template='{{range .items}}{{if not .status}}{{.metadata.name}}{{"\n"}}{{end}}{{end}}' | xargs --no-run-if-empty oc adm certificate approve
      Copy to Clipboard Toggle word wrap
      注記

      一部の Operator は、一部の CSR が承認されるまで利用できない可能性があります。

  4. クライアント要求が承認されたら、クラスターに追加した各マシンのサーバー要求を確認する必要があります。

    $ oc get csr
    Copy to Clipboard Toggle word wrap

    出力例

    NAME        AGE     REQUESTOR                                                                   CONDITION
    csr-bfd72   5m26s   system:node:ip-10-0-50-126.us-east-2.compute.internal                       Pending
    csr-c57lv   5m26s   system:node:ip-10-0-95-157.us-east-2.compute.internal                       Pending
    ...
    Copy to Clipboard Toggle word wrap

  5. 残りの CSR が承認されず、それらが Pending ステータスにある場合、クラスターマシンの CSR を承認します。

    • それらを個別に承認するには、それぞれの有効な CSR に以下のコマンドを実行します。

      $ oc adm certificate approve <csr_name> 
      1
      Copy to Clipboard Toggle word wrap
      1
      <csr_name> は、現行の CSR のリストからの CSR の名前です。
    • すべての保留中の CSR を承認するには、以下のコマンドを実行します。

      $ oc get csr -o go-template='{{range .items}}{{if not .status}}{{.metadata.name}}{{"\n"}}{{end}}{{end}}' | xargs oc adm certificate approve
      Copy to Clipboard Toggle word wrap
  6. すべてのクライアントおよびサーバーの CSR が承認された後に、マシンのステータスが Ready になります。以下のコマンドを実行して、これを確認します。

    $ oc get nodes
    Copy to Clipboard Toggle word wrap

    出力例

    NAME      STATUS    ROLES   AGE  VERSION
    master-0  Ready     master  73m  v1.32.3
    master-1  Ready     master  73m  v1.32.3
    master-2  Ready     master  74m  v1.32.3
    worker-0  Ready     worker  11m  v1.32.3
    worker-1  Ready     worker  11m  v1.32.3
    Copy to Clipboard Toggle word wrap

    注記

    サーバー CSR の承認後にマシンが Ready ステータスに移行するまでに数分の時間がかかる場合があります。

関連情報

2.3.17. Operator の初期設定

コントロールプレーンの初期化後に、一部の Operator を利用可能にするためにそれらをすぐに設定する必要があります。

前提条件

  • コントロールプレーンが初期化されています。

手順

  1. クラスターコンポーネントがオンラインになることを確認します。

    $ watch -n5 oc get clusteroperators
    Copy to Clipboard Toggle word wrap

    出力例

    NAME                                       VERSION   AVAILABLE   PROGRESSING   DEGRADED   SINCE
    authentication                             4.19.0    True        False         False      19m
    baremetal                                  4.19.0    True        False         False      37m
    cloud-credential                           4.19.0    True        False         False      40m
    cluster-autoscaler                         4.19.0    True        False         False      37m
    config-operator                            4.19.0    True        False         False      38m
    console                                    4.19.0    True        False         False      26m
    csi-snapshot-controller                    4.19.0    True        False         False      37m
    dns                                        4.19.0    True        False         False      37m
    etcd                                       4.19.0    True        False         False      36m
    image-registry                             4.19.0    True        False         False      31m
    ingress                                    4.19.0    True        False         False      30m
    insights                                   4.19.0    True        False         False      31m
    kube-apiserver                             4.19.0    True        False         False      26m
    kube-controller-manager                    4.19.0    True        False         False      36m
    kube-scheduler                             4.19.0    True        False         False      36m
    kube-storage-version-migrator              4.19.0    True        False         False      37m
    machine-api                                4.19.0    True        False         False      29m
    machine-approver                           4.19.0    True        False         False      37m
    machine-config                             4.19.0    True        False         False      36m
    marketplace                                4.19.0    True        False         False      37m
    monitoring                                 4.19.0    True        False         False      29m
    network                                    4.19.0    True        False         False      38m
    node-tuning                                4.19.0    True        False         False      37m
    openshift-apiserver                        4.19.0    True        False         False      32m
    openshift-controller-manager               4.19.0    True        False         False      30m
    openshift-samples                          4.19.0    True        False         False      32m
    operator-lifecycle-manager                 4.19.0    True        False         False      37m
    operator-lifecycle-manager-catalog         4.19.0    True        False         False      37m
    operator-lifecycle-manager-packageserver   4.19.0    True        False         False      32m
    service-ca                                 4.19.0    True        False         False      38m
    storage                                    4.19.0    True        False         False      37m
    Copy to Clipboard Toggle word wrap

  2. 利用不可の Operator を設定します。
2.3.17.1. デフォルトの OperatorHub カタログソースの無効化

Red Hat によって提供されるコンテンツを調達する Operator カタログおよびコミュニティープロジェクトは、OpenShift Container Platform のインストール時にデフォルトで OperatorHub に設定されます。ネットワークが制限された環境では、クラスター管理者としてデフォルトのカタログを無効にする必要があります。

手順

  • disableAllDefaultSources: trueOperatorHub オブジェクトに追加して、デフォルトカタログのソースを無効にします。

    $ oc patch OperatorHub cluster --type json \
        -p '[{"op": "add", "path": "/spec/disableAllDefaultSources", "value": true}]'
    Copy to Clipboard Toggle word wrap
ヒント

または、Web コンソールを使用してカタログソースを管理できます。AdministrationCluster SettingsConfigurationOperatorHub ページから、Sources タブをクリックして、個別のソースを作成、更新、削除、無効化、有効化できます。

2.3.17.2. イメージレジストリーストレージの設定

Image Registry Operator は、デフォルトストレージを提供しないプラットフォームでは最初は利用できません。インストール後に、レジストリー Operator を使用できるようにレジストリーをストレージを使用するように設定する必要があります。

実稼働クラスターに必要な永続ボリュームの設定に関する手順が示されます。該当する場合、空のディレクトリーをストレージの場所として設定する方法が表示されます。これは、実稼働以外のクラスターでのみ利用できます。

アップグレード時に Recreate ロールアウトストラテジーを使用して、イメージレジストリーがブロックストレージタイプを使用することを許可するための追加の手順が提供されます。

2.3.17.2.1. イメージレジストリーの管理状態の変更

イメージレジストリーを起動するには、Image Registry Operator 設定の managementStateRemoved から Managed に変更する必要があります。

手順

  • managementState Image Registry Operator 設定を Removed から Managed に変更します。以下に例を示します。

    $ oc patch configs.imageregistry.operator.openshift.io cluster --type merge --patch '{"spec":{"managementState":"Managed"}}'
    Copy to Clipboard Toggle word wrap
2.3.17.2.2. ベアメタルおよび他の手動インストールの場合のレジストリーストレージの設定

クラスター管理者は、インストール後にレジストリーをストレージを使用できるように設定する必要があります。

前提条件

  • cluster-admin ロールを持つユーザーとしてクラスターにアクセスできる。
  • ベアメタルなどの、手動でプロビジョニングされた Red Hat Enterprise Linux CoreOS (RHCOS) ノードを使用するクラスターがある。
  • Red Hat OpenShift Data Foundation などのクラスターのプロビジョニングされた永続ストレージがある。

    重要

    OpenShift Container Platform は、1 つのレプリカのみが存在する場合にイメージレジストリーストレージの ReadWriteOnce アクセスをサポートします。ReadWriteOnce アクセスでは、レジストリーが Recreate ロールアウト戦略を使用する必要もあります。2 つ以上のレプリカで高可用性をサポートするイメージレジストリーをデプロイするには、ReadWriteMany アクセスが必要です。

  • 100 Gi の容量がある。

手順

  1. レジストリーをストレージを使用できるように設定するには、configs.imageregistry/cluster リソースの spec.storage.pvc を変更します。

    注記

    共有ストレージを使用する場合は、外部からアクセスを防ぐためにセキュリティー設定を確認します。

  2. レジストリー Pod がないことを確認します。

    $ oc get pod -n openshift-image-registry -l docker-registry=default
    Copy to Clipboard Toggle word wrap

    出力例

    No resources found in openshift-image-registry namespace
    Copy to Clipboard Toggle word wrap

    注記

    出力にレジストリー Pod がある場合は、この手順を続行する必要はありません。

  3. レジストリー設定を確認します。

    $ oc edit configs.imageregistry.operator.openshift.io
    Copy to Clipboard Toggle word wrap

    出力例

    storage:
      pvc:
        claim:
    Copy to Clipboard Toggle word wrap

    claim フィールドを空のままにし、image-registry-storage PVC の自動作成を可能にします。

  4. clusteroperator ステータスを確認します。

    $ oc get clusteroperator image-registry
    Copy to Clipboard Toggle word wrap

    出力例

    NAME             VERSION              AVAILABLE   PROGRESSING   DEGRADED   SINCE   MESSAGE
    image-registry   4.19                 True        False         False      6h50m
    Copy to Clipboard Toggle word wrap

  5. イメージのビルドおよびプッシュを有効にするためにレジストリーが managed に設定されていることを確認します。

    • 以下を実行します。

      $ oc edit configs.imageregistry/cluster
      Copy to Clipboard Toggle word wrap

      次に、行を変更します。

      managementState: Removed
      Copy to Clipboard Toggle word wrap

      次のように変更してください。

      managementState: Managed
      Copy to Clipboard Toggle word wrap
2.3.17.2.3. 実稼働以外のクラスターでのイメージレジストリーのストレージの設定

Image Registry Operator のストレージを設定する必要があります。実稼働用以外のクラスターの場合、イメージレジストリーは空のディレクトリーに設定することができます。これを実行する場合、レジストリーを再起動するとすべてのイメージが失われます。

手順

  • イメージレジストリーストレージを空のディレクトリーに設定するには、以下を実行します。

    $ oc patch configs.imageregistry.operator.openshift.io cluster --type merge --patch '{"spec":{"storage":{"emptyDir":{}}}}'
    Copy to Clipboard Toggle word wrap
    警告

    実稼働用以外のクラスターにのみこのオプションを設定します。

    Image Registry Operator がそのコンポーネントを初期化する前にこのコマンドを実行する場合、oc patch コマンドは以下のエラーを出して失敗します。

    Error from server (NotFound): configs.imageregistry.operator.openshift.io "cluster" not found
    Copy to Clipboard Toggle word wrap

    数分待機した後に、このコマンドを再び実行します。

2.3.17.2.4. ベアメタルの場合のブロックレジストリーストレージの設定

イメージレジストリーがクラスター管理者によるアップグレード時にブロックストレージタイプを使用できるようにするには、Recreate ロールアウトストラテジーを使用できます。

重要

ブロックストレージボリューム (または永続ボリューム) はサポートされますが、実稼働クラスターでのイメージレジストリーと併用することは推奨されません。レジストリーに複数のレプリカを含めることができないため、ブロックストレージにレジストリーが設定されているインストールに高可用性はありません。

イメージレジストリーでブロックストレージボリュームを使用することを選択した場合は、ファイルシステムの persistent volume claim (PVC) を使用する必要があります。

手順

  1. 次のコマンドを入力してイメージレジストリーストレージをブロックストレージタイプとして設定し、レジストリーにパッチを適用して Recreate ロールアウトストラテジーを使用し、1 つの (1) レプリカのみで実行されるようにします。

    $ oc patch config.imageregistry.operator.openshift.io/cluster --type=merge -p '{"spec":{"rolloutStrategy":"Recreate","replicas":1}}'
    Copy to Clipboard Toggle word wrap
  2. ブロックストレージデバイスの PV をプロビジョニングし、そのボリュームの PVC を作成します。要求されたブロックボリュームは ReadWriteOnce (RWO) アクセスモードを使用します。

    1. 以下の内容で pvc.yaml ファイルを作成して VMware vSphere PersistentVolumeClaim オブジェクトを定義します。

      kind: PersistentVolumeClaim
      apiVersion: v1
      metadata:
        name: image-registry-storage 
      1
      
        namespace: openshift-image-registry 
      2
      
      spec:
        accessModes:
        - ReadWriteOnce 
      3
      
        resources:
          requests:
            storage: 100Gi 
      4
      Copy to Clipboard Toggle word wrap
      1
      PersistentVolumeClaim オブジェクトを表す一意の名前。
      2
      PersistentVolumeClaim オブジェクトの namespace (openshift-image-registry)。
      3
      永続ボリューム要求のアクセスモード。ReadWriteOnce では、ボリュームは単一ノードによって読み取り/書き込みパーミッションでマウントできます。
      4
      永続ボリューム要求のサイズ。
    2. 次のコマンドを入力して、ファイルから PersistentVolumeClaim オブジェクトを作成します。

      $ oc create -f pvc.yaml -n openshift-image-registry
      Copy to Clipboard Toggle word wrap
  3. 次のコマンドを入力して、正しい PVC を参照するようにレジストリー設定を編集します。

    $ oc edit config.imageregistry.operator.openshift.io -o yaml
    Copy to Clipboard Toggle word wrap

    出力例

    storage:
      pvc:
        claim: 
    1
    Copy to Clipboard Toggle word wrap

    1
    カスタム PVC を作成することにより、image-registry-storage PVC のデフォルトの自動作成の claim フィールドを空のままにできます。

2.3.18. user-provisioned infrastructure でのインストールの完了

Operator の設定が完了したら、独自に提供するインフラストラクチャーへのクラスターのインストールを完了できます。

前提条件

  • コントロールプレーンが初期化されています。
  • Operator の初期設定を完了済みです。

手順

  1. 以下のコマンドを使用して、すべてのクラスターコンポーネントがオンラインであることを確認します。

    $ watch -n5 oc get clusteroperators
    Copy to Clipboard Toggle word wrap

    出力例

    NAME                                       VERSION   AVAILABLE   PROGRESSING   DEGRADED   SINCE
    authentication                             4.19.0    True        False         False      19m
    baremetal                                  4.19.0    True        False         False      37m
    cloud-credential                           4.19.0    True        False         False      40m
    cluster-autoscaler                         4.19.0    True        False         False      37m
    config-operator                            4.19.0    True        False         False      38m
    console                                    4.19.0    True        False         False      26m
    csi-snapshot-controller                    4.19.0    True        False         False      37m
    dns                                        4.19.0    True        False         False      37m
    etcd                                       4.19.0    True        False         False      36m
    image-registry                             4.19.0    True        False         False      31m
    ingress                                    4.19.0    True        False         False      30m
    insights                                   4.19.0    True        False         False      31m
    kube-apiserver                             4.19.0    True        False         False      26m
    kube-controller-manager                    4.19.0    True        False         False      36m
    kube-scheduler                             4.19.0    True        False         False      36m
    kube-storage-version-migrator              4.19.0    True        False         False      37m
    machine-api                                4.19.0    True        False         False      29m
    machine-approver                           4.19.0    True        False         False      37m
    machine-config                             4.19.0    True        False         False      36m
    marketplace                                4.19.0    True        False         False      37m
    monitoring                                 4.19.0    True        False         False      29m
    network                                    4.19.0    True        False         False      38m
    node-tuning                                4.19.0    True        False         False      37m
    openshift-apiserver                        4.19.0    True        False         False      32m
    openshift-controller-manager               4.19.0    True        False         False      30m
    openshift-samples                          4.19.0    True        False         False      32m
    operator-lifecycle-manager                 4.19.0    True        False         False      37m
    operator-lifecycle-manager-catalog         4.19.0    True        False         False      37m
    operator-lifecycle-manager-packageserver   4.19.0    True        False         False      32m
    service-ca                                 4.19.0    True        False         False      38m
    storage                                    4.19.0    True        False         False      37m
    Copy to Clipboard Toggle word wrap

    あるいは、以下のコマンドを使用すると、すべてのクラスターが利用可能な場合に通知されます。また、このコマンドは認証情報を取得して表示します。

    $ ./openshift-install --dir <installation_directory> wait-for install-complete 
    1
    Copy to Clipboard Toggle word wrap
    1
    <installation_directory> には、インストールファイルを保存したディレクトリーへのパスを指定します。

    出力例

    INFO Waiting up to 30m0s for the cluster to initialize...
    Copy to Clipboard Toggle word wrap

    Cluster Version Operator が Kubernetes API サーバーから OpenShift Container Platform クラスターのデプロイを終了するとコマンドは成功します。

    重要
    • インストールプログラムが生成する Ignition 設定ファイルには、24 時間が経過すると期限切れになり、その後に更新される証明書が含まれます。証明書を更新する前にクラスターが停止し、24 時間経過した後にクラスターを再起動すると、クラスターは期限切れの証明書を自動的に復元します。例外として、kubelet 証明書を回復するために保留状態の node-bootstrapper 証明書署名要求 (CSR) を手動で承認する必要があります。詳細は、コントロールプレーン証明書の期限切れの状態からのリカバリー に関するドキュメントを参照してください。
    • 24 時間証明書はクラスターのインストール後 16 時間から 22 時間にローテーションするため、Ignition 設定ファイルは、生成後 12 時間以内に使用することを推奨します。12 時間以内に Ignition 設定ファイルを使用することにより、インストール中に証明書の更新が実行された場合のインストールの失敗を回避できます。
  2. Kubernetes API サーバーが Pod と通信していることを確認します。

    1. すべての Pod のリストを表示するには、以下のコマンドを使用します。

      $ oc get pods --all-namespaces
      Copy to Clipboard Toggle word wrap

      出力例

      NAMESPACE                         NAME                                            READY   STATUS      RESTARTS   AGE
      openshift-apiserver-operator      openshift-apiserver-operator-85cb746d55-zqhs8   1/1     Running     1          9m
      openshift-apiserver               apiserver-67b9g                                 1/1     Running     0          3m
      openshift-apiserver               apiserver-ljcmx                                 1/1     Running     0          1m
      openshift-apiserver               apiserver-z25h4                                 1/1     Running     0          2m
      openshift-authentication-operator authentication-operator-69d5d8bf84-vh2n8        1/1     Running     0          5m
      ...
      Copy to Clipboard Toggle word wrap

    2. 以下のコマンドを使用して、直前のコマンドの出力にリスト表示される Pod のログを表示します。

      $ oc logs <pod_name> -n <namespace> 
      1
      Copy to Clipboard Toggle word wrap
      1
      直前のコマンドの出力にあるように、Pod 名および namespace を指定します。

      Pod のログが表示される場合、Kubernetes API サーバーはクラスターマシンと通信できます。

  3. FCP (Fibre Channel Protocol) を使用したインストールでは、マルチパスを有効にするために追加の手順が必要です。インストール時にマルチパスを有効にしないでください。

    詳細は、インストール後のマシン設定タスク ドキュメントで、「RHCOS でのカーネル引数を使用したマルチパスの有効化」を参照してください。

  4. Cluster registration ページでクラスターを登録します。

2.3.19. OpenShift Container Platform の Telemetry アクセス

OpenShift Container Platform 4.19 では、Telemetry サービスにもインターネットアクセスが必要です。Telemetry サービスは、クラスターの健全性と更新の成功に関するメトリクスを提供するためにデフォルトで実行されます。クラスターがインターネットに接続されている場合、Telemetry は自動的に実行され、クラスターは OpenShift Cluster Manager に登録されます。

OpenShift Cluster Manager インベントリーが正常である (Telemetry によって自動的に維持、または OpenShift Cluster Manager を使用して手動で維持) ことを確認した後に、subscription watch を使用 して、アカウントまたはマルチクラスターレベルで OpenShift Container Platform サブスクリプションを追跡します。

2.3.20. 次のステップ

2.4. Bare Metal Operator を使用したユーザープロビジョニングクラスターのスケーリング

user-provisioned infrastructure クラスターをデプロイした後、Bare Metal Operator (BMO) およびその他の metal3 コンポーネントを使用して、クラスター内のベアメタルホストをスケーリングできます。このアプローチは、ユーザーがプロビジョニングしたクラスターをより自動化された方法でスケーリングするために役立ちます。

Bare Metal Operator (BMO) およびその他の metal3 コンポーネントを使用して、user-provisioned infrastructure クラスターをスケーリングできます。user-provisioned infrastructure のインストールには、Machine API Operator が含まれていません。通常は Machine API Operator がクラスター内のベアメタルノードのライフサイクルを管理します。しかし、Machine API Operator がなくても、BMO およびその他の metal3 コンポーネントを使用して、ユーザーがプロビジョニングしたクラスター内のノードをスケーリングすることは可能です。

2.4.1.1. ユーザーがプロビジョニングしたクラスターをスケーリングするための前提条件
  • user-provisioned infrastructure クラスターをベアメタルにインストールしました。
  • ホストへのベースボード管理コントローラー (BMC) アクセス権限がある。
2.4.1.2. ユーザーがプロビジョニングしたクラスターのスケーリングに関する制限事項
  • Bare Metal Operator (BMO) では、プロビジョニングネットワークを使用して、user-provisioned infrastructure クラスターをスケーリングすることはできません。

    • したがって、仮想メディアネットワークの起動をサポートするベアメタルホストドライバー (redfish-virtualmediaidrac-virtualmedia など) のみを使用できます。
  • BMO を使用して、user-provisioned infrastructure クラスター内の MachineSet オブジェクトをスケーリングすることはできません。

Provisioning カスタムリソース (CR) を作成して、user-provisioned infrastructure クラスターで Metal プラットフォームコンポーネントを有効にします。

前提条件

  • user-provisioned infrastructure クラスターをベアメタルにインストールしました。

手順

  1. Provisioning CR を作成します。

    1. 次の YAML を provisioning.yaml ファイルに保存します。

      apiVersion: metal3.io/v1alpha1
      kind: Provisioning
      metadata:
        name: provisioning-configuration
      spec:
        provisioningNetwork: "Disabled"
        watchAllNamespaces: false
      Copy to Clipboard Toggle word wrap
      注記

      OpenShift Container Platform 4.19 では、Bare Metal Operator を使用してユーザーがプロビジョニングしたクラスターをスケーリングする場合、プロビジョニングネットワークの有効化がサポートされません。

  2. 次のコマンドを実行して、Provisioning CR を作成します。

    $ oc create -f provisioning.yaml
    Copy to Clipboard Toggle word wrap

    出力例

    provisioning.metal3.io/provisioning-configuration created
    Copy to Clipboard Toggle word wrap

検証

  • 次のコマンドを実行して、プロビジョニングサービスが実行されていることを確認します。

    $ oc get pods -n openshift-machine-api
    Copy to Clipboard Toggle word wrap

    出力例

    NAME                                                  READY   STATUS    RESTARTS        AGE
    cluster-autoscaler-operator-678c476f4c-jjdn5          2/2     Running   0               5d21h
    cluster-baremetal-operator-6866f7b976-gmvgh           2/2     Running   0               5d21h
    control-plane-machine-set-operator-7d8566696c-bh4jz   1/1     Running   0               5d21h
    ironic-proxy-64bdw                                    1/1     Running   0               5d21h
    ironic-proxy-rbggf                                    1/1     Running   0               5d21h
    ironic-proxy-vj54c                                    1/1     Running   0               5d21h
    machine-api-controllers-544d6849d5-tgj9l              7/7     Running   1 (5d21h ago)   5d21h
    machine-api-operator-5c4ff4b86d-6fjmq                 2/2     Running   0               5d21h
    metal3-6d98f84cc8-zn2mx                               5/5     Running   0               5d21h
    metal3-image-customization-59d745768d-bhrp7           1/1     Running   0               5d21h
    Copy to Clipboard Toggle word wrap

Bare Metal Operator (BMO) を使用して、BareMetalHost カスタムリソース (CR) を作成すると、ユーザーがプロビジョニングしたクラスターにベアメタルホストをプロビジョニングできます。

注記

BMO を使用してベアメタルホストをクラスターにプロビジョニングすると、BareMetalHost カスタムリソースの spec.externallyProvisioned 仕様がデフォルトで false に設定されます。spec.externallyProvisioned 仕様を true に設定しないでください。この設定により予期しない動作が発生するためです。

前提条件

  • ユーザーがプロビジョニングしたベアメタルクラスターを作成しました。
  • ホストへのベースボード管理コントローラー (BMC) アクセス権限がある。
  • Provisioning CR を作成して、クラスターにプロビジョニングサービスをデプロイしました。

手順

  1. ベアメタルノードの設定ファイルを作成します。静的設定を使用するか、DHCP サーバーを使用するかに応じて、次のサンプル bmh.yaml ファイルのいずれかを選択します。YAML 内の値を環境に合わせて置き換えて、ニーズに合わせて設定します。

    • 静的設定でデプロイする場合は、次の bmh.yaml ファイルを作成します。

      ---
      apiVersion: v1
      kind: Secret
      metadata:
        name: openshift-worker-<num>-network-config-secret 
      1
      
        namespace: openshift-machine-api
      type: Opaque
      stringData:
        nmstate: | 
      2
      
          interfaces: 
      3
      
          - name: <nic1_name> 
      4
      
            type: ethernet
            state: up
            ipv4:
              address:
              - ip: <ip_address> 
      5
      
                prefix-length: 24
              enabled: true
          dns-resolver:
            config:
              server:
              - <dns_ip_address> 
      6
      
          routes:
            config:
            - destination: 0.0.0.0/0
              next-hop-address: <next_hop_ip_address> 
      7
      
              next-hop-interface: <next_hop_nic1_name> 
      8
      
      ---
      apiVersion: v1
      kind: Secret
      metadata:
        name: openshift-worker-<num>-bmc-secret
        namespace: openshift-machine-api
      type: Opaque
      data:
        username: <base64_of_uid> 
      9
      
        password: <base64_of_pwd>
      ---
      apiVersion: metal3.io/v1alpha1
      kind: BareMetalHost
      metadata:
        name: openshift-worker-<num>
        namespace: openshift-machine-api
      spec:
        online: true
        bootMACAddress: <nic1_mac_address> 
      10
      
        bmc:
          address: <protocol>://<bmc_url> 
      11
      
          credentialsName: openshift-worker-<num>-bmc-secret
          disableCertificateVerification: false
        customDeploy:
          method: install_coreos
        userData:
          name: worker-user-data-managed
          namespace: openshift-machine-api
        rootDeviceHints:
          deviceName: <root_device_hint> 
      12
      
        preprovisioningNetworkDataName: openshift-worker-<num>-network-config-secret
      Copy to Clipboard Toggle word wrap
      1
      namecredentialsName、および preprovisioningNetworkDataName フィールドのすべての <num> を、ベアメタルノードの一意のコンピュートノード番号に置き換えます。
      2
      NMState YAML 構文を追加して、ホストインターフェイスを設定します。新しく作成されたノードのネットワークインターフェイスを設定するには、ネットワーク設定が含まれるシークレットの名前を指定します。nmstate 構文に従って、ノードのネットワーク設定を定義します。NMState 構文の設定の詳細は、「ベアメタルノードの準備」を参照してください。
      3
      オプション: nmstate を使用してネットワークインターフェイスを設定しており、インターフェイスを無効にする場合は、IP アドレスを enabled: false に設定して state: up を設定します。
      4
      <nic1_name> は、ベアメタルノードの最初のネットワークインターフェイスコントローラー (NIC) の名前に置き換えます。
      5
      <ip_address> は、ベアメタルノードの NIC の IP アドレスに置き換えます。
      6
      <dns_ip_address> は、ベアメタルノードの DNS リゾルバーの IP アドレスに置き換えます。
      7
      <next_hop_ip_address> は、ベアメタルノードの外部ゲートウェイの IP アドレスに置き換えます。
      8
      <next_hop_nic1_name> は、ベアメタルノードの外部ゲートウェイの名前に置き換えます。
      9
      <base64_of_uid><base64_of_pwd> は、ユーザー名とパスワードの base64 文字列に置き換えます。
      10
      <nic1_mac_address> は、ベアメタルノードの最初の NIC の MAC アドレスに置き換えます。追加の BMC 設定オプションは、「BMC アドレス指定」のセクションを参照してください。
      11
      <protocol> は、IPMI、Redfish などの BMC プロトコルに置き換えます。<bmc_url> は、ベアメタルノードのベースボード管理コントローラーの URL に置き換えます。
      12
      オプション: ルートデバイスのヒントを指定する場合は、<root_device_hint> をデバイスパスに置き換えます。詳細は、「ルートデバイスのヒント」を参照してください。
    • nmstate を使用して静的設定でネットワークインターフェイスを設定する場合は、IP アドレスを enabled: false に設定して state: up を設定します。

      ---
      apiVersion: v1
      kind: Secret
      metadata:
        name: openshift-worker-<num>-network-config-secret
        namespace: openshift-machine-api
       # ...
      interfaces:
        - name: <nic_name>
          type: ethernet
          state: up
          ipv4:
            enabled: false
          ipv6:
            enabled: false
      # ...
      Copy to Clipboard Toggle word wrap
    • DHCP 設定でデプロイする場合は、次の bmh.yaml ファイルを作成します。

      ---
      apiVersion: v1
      kind: Secret
      metadata:
        name: openshift-worker-<num>-bmc-secret 
      1
      
        namespace: openshift-machine-api
      type: Opaque
      data:
        username: <base64_of_uid> 
      2
      
        password: <base64_of_pwd>
      ---
      apiVersion: metal3.io/v1alpha1
      kind: BareMetalHost
      metadata:
        name: openshift-worker-<num>
        namespace: openshift-machine-api
      spec:
        online: true
        bootMACAddress: <nic1_mac_address> 
      3
      
        bmc:
          address: <protocol>://<bmc_url> 
      4
      
          credentialsName: openshift-worker-<num>-bmc
          disableCertificateVerification: false
        customDeploy:
          method: install_coreos
        userData:
          name: worker-user-data-managed
          namespace: openshift-machine-api
        rootDeviceHints:
          deviceName: <root_device_hint> 
      5
      Copy to Clipboard Toggle word wrap
      1
      name および credentialsName フィールドの <num> は、ベアメタルノードの一意のコンピュートノード番号に置き換えます。
      2
      <base64_of_uid><base64_of_pwd> は、ユーザー名とパスワードの base64 文字列に置き換えます。
      3
      <nic1_mac_address> は、ベアメタルノードの最初の NIC の MAC アドレスに置き換えます。追加の BMC 設定オプションは、「BMC アドレス指定」のセクションを参照してください。
      4
      <protocol> は、IPMI、Redfish などの BMC プロトコルに置き換えます。<bmc_url> は、ベアメタルノードのベースボード管理コントローラーの URL に置き換えます。
      5
      オプション: ルートデバイスのヒントを指定する場合は、<root_device_hint> をデバイスパスに置き換えます。詳細は、「ルートデバイスのヒント」を参照してください。
      重要

      既存のベアメタルノードの MAC アドレスが、プロビジョニングしようとしているベアメタルホストの MAC アドレスと一致する場合、インストールが失敗します。ホストの登録、検査、クリーニング、またはその他の手順が失敗した場合、Bare Metal Operator がインストールを継続的に再試行します。詳細は、「クラスター内の新しいホストをプロビジョニングする際の重複する MAC アドレスの診断」を参照してください。

  2. 次のコマンドを実行してベアメタルノードを作成します。

    $ oc create -f bmh.yaml
    Copy to Clipboard Toggle word wrap

    出力例

    secret/openshift-worker-<num>-network-config-secret created
    secret/openshift-worker-<num>-bmc-secret created
    baremetalhost.metal3.io/openshift-worker-<num> created
    Copy to Clipboard Toggle word wrap

  3. 次のコマンドを実行してベアメタルノードを検査します。

    $ oc -n openshift-machine-api get bmh openshift-worker-<num>
    Copy to Clipboard Toggle word wrap

    ここでは、以下のようになります。

    <num>

    コンピュートノード番号を指定します。

    出力例

    NAME                    STATE       CONSUMER   ONLINE   ERROR
    openshift-worker-<num>  provisioned true
    Copy to Clipboard Toggle word wrap

  4. すべての証明書署名要求 (CSR) を承認します。

    1. 次のコマンドを実行して、保留中の CSR のリストを取得します。

      $ oc get csr
      Copy to Clipboard Toggle word wrap

      出力例

      NAME        AGE   SIGNERNAME                                    REQUESTOR                                         REQUESTEDDURATION CONDITION
      csr-gfm9f   33s   kubernetes.io/kube-apiserver-client-kubelet   system:serviceaccount:openshift-machine-config-o
      perator:node-bootstrapper   <none>              Pending
      Copy to Clipboard Toggle word wrap

    2. 次のコマンドを実行して、CSR を承認します。

      $ oc adm certificate approve <csr_name>
      Copy to Clipboard Toggle word wrap

      出力例

      certificatesigningrequest.certificates.k8s.io/<csr_name> approved
      Copy to Clipboard Toggle word wrap

検証

  • 次のコマンドを実行して、ノードの準備ができていることを確認します。

    $ oc get nodes
    Copy to Clipboard Toggle word wrap

    出力例

    NAME        STATUS   ROLES           AGE     VERSION
    app1        Ready    worker          47s     v1.24.0+dc5a2fd
    controller1 Ready    master,worker   2d22h   v1.24.0+dc5a2fd
    Copy to Clipboard Toggle word wrap

オプションで、Bare Metal Operator (BMO) を使用して、既存のホストの BareMetalHost オブジェクトを作成すると、ユーザーがプロビジョニングしたクラスターで既存のベアメタルコントローラーホストを管理できます。ユーザーがプロビジョニングした既存のホストを管理する必要はありません。ただし、それらをインベントリー目的で外部プロビジョニングされたホストとして登録することはできます。

重要

BMO を使用して、既存のホストを管理するには、BareMetalHost カスタムリソースの spec.externallyProvisioned 仕様を true に設定して、BMO がホストを再プロビジョニングしないようにする必要があります。

前提条件

  • ユーザーがプロビジョニングしたベアメタルクラスターを作成しました。
  • ホストへのベースボード管理コントローラー (BMC) アクセス権限がある。
  • Provisioning CR を作成して、クラスターにプロビジョニングサービスをデプロイしました。

手順

  1. Secret CR と BareMetalHost CR を作成します。

    1. 次の YAML を controller.yaml ファイルに保存します。

      ---
      apiVersion: v1
      kind: Secret
      metadata:
        name: controller1-bmc
        namespace: openshift-machine-api
      type: Opaque
      data:
        username: <base64_of_uid>
        password: <base64_of_pwd>
      ---
      apiVersion: metal3.io/v1alpha1
      kind: BareMetalHost
      metadata:
        name: controller1
        namespace: openshift-machine-api
      spec:
        bmc:
          address: <protocol>://<bmc_url> 
      1
      
          credentialsName: "controller1-bmc"
        bootMACAddress: <nic1_mac_address>
        customDeploy:
          method: install_coreos
        externallyProvisioned: true 
      2
      
        online: true
        userData:
          name: controller-user-data-managed
          namespace: openshift-machine-api
      Copy to Clipboard Toggle word wrap
      1
      仮想メディアネットワークの起動をサポートするベアメタルホストドライバー (redfish-virtualmediaidrac-virtualmedia など) のみを使用できます。
      2
      BMO がベアメタルコントローラーホストを再プロビジョニングしないようにするには、値を true に設定する必要があります。
  2. 次のコマンドを実行して、ベアメタルホストオブジェクトを作成します。

    $ oc create -f controller.yaml
    Copy to Clipboard Toggle word wrap

    出力例

    secret/controller1-bmc created
    baremetalhost.metal3.io/controller1 created
    Copy to Clipboard Toggle word wrap

検証

  • 次のコマンドを実行して、BMO がベアメタルホストオブジェクトを作成したことを確認します。

    $ oc get bmh -A
    Copy to Clipboard Toggle word wrap

    出力例

    NAMESPACE               NAME          STATE                    CONSUMER   ONLINE   ERROR   AGE
    openshift-machine-api   controller1   externally provisioned              true             13s
    Copy to Clipboard Toggle word wrap

2.4.5. BMO を使用して、ユーザーがプロビジョニングしたクラスターからホストを削除する

Bare Metal Operator (BMO) を使用して、ユーザーがプロビジョニングしたクラスターからベアメタルホストを削除できます。

前提条件

  • ユーザーがプロビジョニングしたベアメタルクラスターを作成しました。
  • ホストへのベースボード管理コントローラー (BMC) アクセス権限がある。
  • Provisioning CR を作成して、クラスターにプロビジョニングサービスをデプロイしました。

手順

  1. 次のコマンドを実行して、ノードをスケジューリング対象から外してドレインします。

    $ oc adm drain app1 --force --ignore-daemonsets=true
    Copy to Clipboard Toggle word wrap

    出力例

    node/app1 cordoned
    WARNING: ignoring DaemonSet-managed Pods: openshift-cluster-node-tuning-operator/tuned-tvthg, openshift-dns/dns-
    default-9q6rz, openshift-dns/node-resolver-zvt42, openshift-image-registry/node-ca-mzxth, openshift-ingress-cana
    ry/ingress-canary-qq5lf, openshift-machine-config-operator/machine-config-daemon-v79dm, openshift-monitoring/nod
    e-exporter-2vn59, openshift-multus/multus-additional-cni-plugins-wssvj, openshift-multus/multus-fn8tg, openshift
    -multus/network-metrics-daemon-5qv55, openshift-network-diagnostics/network-check-target-jqxn2, openshift-ovn-ku
    bernetes/ovnkube-node-rsvqg
    evicting pod openshift-operator-lifecycle-manager/collect-profiles-27766965-258vp
    evicting pod openshift-operator-lifecycle-manager/collect-profiles-27766950-kg5mk
    evicting pod openshift-operator-lifecycle-manager/collect-profiles-27766935-stf4s
    pod/collect-profiles-27766965-258vp evicted
    pod/collect-profiles-27766950-kg5mk evicted
    pod/collect-profiles-27766935-stf4s evicted
    node/app1 drained
    Copy to Clipboard Toggle word wrap

  2. BareMetalHost CR から customDeploy 仕様を削除します。

    1. 次のコマンドを実行して、ホストの BareMetalHost CR を編集します。

      $ oc edit bmh -n openshift-machine-api <host_name>
      Copy to Clipboard Toggle word wrap
    2. spec.customDeploy および spec.customDeploy.method の行を削除します。

      ...
        customDeploy:
          method: install_coreos
      Copy to Clipboard Toggle word wrap
    3. 次のコマンドを実行して、ホストのプロビジョニング状態が deprovisioning に変わることを確認します。

      $ oc get bmh -A
      Copy to Clipboard Toggle word wrap

      出力例

      NAMESPACE               NAME          STATE                    CONSUMER   ONLINE   ERROR   AGE
      openshift-machine-api   controller1   externally provisioned              true             58m
      openshift-machine-api   worker1       deprovisioning                      true             57m
      Copy to Clipboard Toggle word wrap

  3. BareMetalHost の状態が available に変わったら、次のコマンドを実行してホストを削除します。

    $ oc delete bmh -n openshift-machine-api <bmh_name>
    Copy to Clipboard Toggle word wrap
    注記

    このステップは、BareMetalHost CR を編集しなくても実行できます。BareMetalHost の状態が deprovisioning から available に変わるまでに、しばらく時間がかかる場合があります。

  4. 次のコマンドを実行して、ノードを削除します。

    $ oc delete node <node_name>
    Copy to Clipboard Toggle word wrap

検証

  • 次のコマンドを実行して、ノードが削除されたことを確認します。

    $ oc get nodes
    Copy to Clipboard Toggle word wrap

    出力例

    NAME          STATUS   ROLES           AGE     VERSION
    controller1   Ready    master,worker   2d23h   v1.24.0+dc5a2fd
    Copy to Clipboard Toggle word wrap

2.5. ベアメタルのインストール設定パラメーター

OpenShift Container Platform クラスターをデプロイする前に、環境の詳細を記述するカスタマイズされた install-config.yaml インストール設定ファイルを指定します。

2.5.1. ベアメタルで利用可能なインストール設定パラメーター

以下の表に、インストールプロセスの一部として設定できる必須、オプション、およびベアメタル固有のインストール設定パラメーターを示します。

重要

インストール後は、これらのパラメーターを install-config.yaml ファイルで変更することはできません。

2.5.1.1. 必須設定パラメーター

必須のインストール設定パラメーターは、以下の表で説明されています。

Expand
表2.41 必須パラメーター
パラメーター説明
apiVersion:
Copy to Clipboard Toggle word wrap

install-config.yaml コンテンツの API バージョン。現在のバージョンは v1 です。インストールプログラムは、古い API バージョンもサポートしている場合があります。

値: 文字列

baseDomain:
Copy to Clipboard Toggle word wrap

クラウドプロバイダーのベースドメイン。ベースドメインは、OpenShift Container Platform クラスターコンポーネントへのルートを作成するために使用されます。クラスターの完全な DNS 名は、<metadata.name>.<baseDomain> 形式を使用する baseDomainmetadata.name パラメーターの値を組み合わせたものです。

値: example.com などの完全修飾ドメイン名またはサブドメイン名。

metadata:
Copy to Clipboard Toggle word wrap

Kubernetes リソース ObjectMeta。ここからは name パラメーターのみが消費されます。

値: オブジェクト

metadata:
  name:
Copy to Clipboard Toggle word wrap

クラスターの名前。クラスターの DNS レコードはすべて {{.metadata.name}}.{{.baseDomain}} のサブドメインです。

値: 小文字とハイフン (-) からなる文字列 (例: dev)。

platform:
Copy to Clipboard Toggle word wrap

インストールを実行する特定のプラットフォームの設定: awsbaremetalazuregcpibmcloudnutanixopenstackpowervsvsphere、または {}platform.<platform> パラメーターに関する追加情報は、以下の表で特定のプラットフォームを参照してください。

値: オブジェクト

pullSecret:
Copy to Clipboard Toggle word wrap

Red Hat OpenShift Cluster Manager からプルシークレット を取得して、Quay.io などのサービスから OpenShift Container Platform コンポーネントのコンテナーイメージをダウンロードすることを認証します。

値:

{
   "auths":{
      "cloud.openshift.com":{
         "auth":"b3Blb=",
         "email":"you@example.com"
      },
      "quay.io":{
         "auth":"b3Blb=",
         "email":"you@example.com"
      }
   }
}
Copy to Clipboard Toggle word wrap
2.5.1.2. ネットワーク設定パラメーター

既存のネットワークインフラストラクチャーの要件に基づいて、インストール設定をカスタマイズできます。たとえば、クラスターネットワークの IP アドレスブロックを拡張したり、デフォルトとは異なる IP アドレスブロックを設定したりすることができます。

クラスターのネットワークパラメーターを設定する前に、次の情報を考慮してください。

  • Red Hat OpenShift Networking OVN-Kubernetes ネットワークプラグインを使用する場合、IPv4 と IPv6 の両方のアドレスファミリーがサポートされます。
  • IPv4 アドレスと非リンクローカル IPv6 アドレスの両方をサポートするネットワークを持つ OpenShift Container Platform クラスターにノードをデプロイした場合は、デュアルスタックネットワークを使用するようにクラスターを設定します。

    • デュアルスタックネットワークに設定されたクラスターでは、IPv4 と IPv6 の両方のトラフィックがデフォルトゲートウェイとして同じネットワークインターフェイスを使用する必要があります。これにより、複数のネットワークインターフェイスコントローラー (NIC) 環境で、使用可能なネットワークインターフェイスに基づいて、使用する NIC をクラスターが検出できるようになります。詳細は、OVN-Kubernetes ネットワークプラグインについて の「OVN-Kubernetes IPv6 とデュアルスタックの制限」を参照してください。
    • ネットワーク接続の問題を防ぐために、デュアルスタックネットワークをサポートするホストにシングルスタック IPv4 クラスターをインストールしないでください。

両方の IP アドレスファミリーを使用するようにクラスターを設定する場合は、次の要件を確認してください。

  • どちらの IP ファミリーも、デフォルトゲートウェイに同じネットワークインターフェイスを使用する必要があります。
  • 両方の IP ファミリーにデフォルトゲートウェイが必要です。
  • すべてのネットワーク設定パラメーターに対して、IPv4 アドレスと IPv6 アドレスを同じ順序で指定する必要があります。たとえば、次の設定では、IPv4 アドレスが IPv6 アドレスの前に記載されています。

    networking:
      clusterNetwork:
      - cidr: 10.128.0.0/14
        hostPrefix: 23
      - cidr: fd00:10:128::/56
        hostPrefix: 64
      serviceNetwork:
      - 172.30.0.0/16
      - fd00:172:16::/112
    Copy to Clipboard Toggle word wrap
Expand
表2.42 ネットワークパラメーター
パラメーター説明
networking:
Copy to Clipboard Toggle word wrap

クラスターのネットワークの設定。

値: オブジェクト

注記

インストール後に networking オブジェクトによって指定されたパラメーターを変更することはできません。

networking:
  networkType:
Copy to Clipboard Toggle word wrap

インストールする Red Hat OpenShift Networking ネットワークプラグイン。

値: OVNKubernetesOVNKubernetes は、Linux ネットワークおよび Linux サーバーと Windows サーバーの両方を含むハイブリッドネットワーク用の Container Network Interface (CNI) プラグインです。デフォルトの値は OVNKubernetes です。

networking:
  clusterNetwork:
Copy to Clipboard Toggle word wrap

Pod の IP アドレスブロック。

デフォルト値は 10.128.0.0/14 で、ホストの接頭辞は /23 です。

複数の IP アドレスブロックを指定する場合は、ブロックが重複しないようにしてください。

値: オブジェクトの配列。以下に例を示します。

networking:
  clusterNetwork:
  - cidr: 10.128.0.0/14
    hostPrefix: 23
  - cidr: fd01::/48
    hostPrefix: 64
Copy to Clipboard Toggle word wrap
networking:
  clusterNetwork:
    cidr:
Copy to Clipboard Toggle word wrap

networking.clusterNetwork を使用する場合に必須です。IP アドレスブロック。

OVN-Kubernetes ネットワークプラグインを使用する場合は、IPv4 および IPv6 ネットワークを指定できます。

値: Classless Inter-Domain Routing (CIDR) 表記の IP アドレスブロック。IPv4 ブロックの接頭辞長は 0 から 32 の間になります。IPv6 ブロックの接頭辞長は 0 から 128 までです。例: 10.128.0.0/14 または fd01::/48

networking:
  clusterNetwork:
    hostPrefix:
Copy to Clipboard Toggle word wrap

それぞれの個別ノードに割り当てるサブネット接頭辞長。たとえば、hostPrefix23 に設定される場合、各ノードに指定の cidr から /23 サブネットが割り当てられます。hostPrefix 値の 23 は、510 (2^(32 - 23) - 2) Pod IP アドレスを提供します。

値: サブネット接頭辞。

IPv4 ネットワークの場合、デフォルト値は 23 です。IPv6 ネットワークの場合、デフォルト値は 64 です。デフォルト値は、IPv6 の最小値でもあります。

networking:
  serviceNetwork:
Copy to Clipboard Toggle word wrap

サービスの IP アドレスブロック。デフォルト値は 172.30.0.0/16 です。

OVN-Kubernetes ネットワークプラグインは、サービスネットワークに対して単一の IP アドレスブロックのみをサポートします。

OVN-Kubernetes ネットワークプラグインを使用する場合、IPv4 および IPv6 アドレスファミリーの両方に IP アドレスブロックを指定できます。

値: CIDR 形式の IP アドレスブロックを含む配列。以下に例を示します。

networking:
  serviceNetwork:
   - 172.30.0.0/16
   - fd02::/112
Copy to Clipboard Toggle word wrap
networking:
  machineNetwork:
Copy to Clipboard Toggle word wrap

マシンの IP アドレスブロック。

複数の IP アドレスブロックを指定する場合は、ブロックが重複しないようにしてください。

値: オブジェクトの配列。以下に例を示します。

networking:
  machineNetwork:
  - cidr: 10.0.0.0/16
Copy to Clipboard Toggle word wrap
networking:
  machineNetwork:
    cidr:
Copy to Clipboard Toggle word wrap

networking.machineNetwork を使用する場合に必須です。IP アドレスブロック。libvirt と IBM Power® Virtual Server を除くすべてのプラットフォームのデフォルト値は 10.0.0.0/16 です。libvirt の場合、デフォルト値は 192.168.126.0/24 です。IBM Power® Virtual Server の場合、デフォルト値は 192.168.0.0/24 です。

値: CIDR 表記の IP ネットワークブロック。

例: 10.0.0.0/16 または fd00::/48

注記

優先される NIC が置かれている CIDR に一致する networking.machineNetwork を設定します。

networking:
  ovnKubernetesConfig:
    ipv4:
      internalJoinSubnet:
Copy to Clipboard Toggle word wrap

ovn-kubernetes によって内部的に使用される IPv4 join サブネットを設定します。このサブネットは、ノードネットワークを含め、OpenShift Container Platform が使用している他のサブネットと重複することはできません。サブネットのサイズは、ノード数より大きくする必要があります。インストール後に値を変更することはできません。

値: CIDR 表記の IP ネットワークブロック。デフォルト値は 100.64.0.0/16 です。

2.5.1.3. オプションの設定パラメーター

オプションのインストール設定パラメーターは、以下の表で説明されています。

Expand
表2.43 オプションのパラメーター
パラメーター説明
additionalTrustBundle:
Copy to Clipboard Toggle word wrap

ノードの信頼済み証明書ストアに追加される PEM でエンコードされた X.509 証明書バンドル。このトラストバンドルは、プロキシーが設定されている場合にも使用される可能性があります。

値: 文字列

capabilities:
Copy to Clipboard Toggle word wrap

オプションのコアクラスターコンポーネントのインストールを制御します。オプションのコンポーネントを無効にすることで、OpenShift Container Platform クラスターのフットプリントを削減できます。詳細は、インストール の「クラスター機能ページ」を参照してください。

値: 文字列の配列

capabilities:
  baselineCapabilitySet:
Copy to Clipboard Toggle word wrap

有効にするオプション機能の初期セットを選択します。有効な値は Nonev4.11v4.12vCurrent です。デフォルト値は vCurrent です。

値: 文字列

capabilities:
  additionalEnabledCapabilities:
Copy to Clipboard Toggle word wrap

オプションの機能のセットを、baselineCapabilitySet で指定したものを超えて拡張します。このパラメーターでは複数の機能を指定できます。

値: 文字列の配列

cpuPartitioningMode:
Copy to Clipboard Toggle word wrap

ワークロードパーティション設定を使用して、OpenShift Container Platform サービス、クラスター管理ワークロード、およびインフラストラクチャー Pod を分離し、予約された CPU セットで実行できます。ワークロードパーティショニングを有効にできるのはインストール時のみです。インストール後は無効にできません。このフィールドはワークロードのパーティショニングを有効にしますが、特定の CPU を使用するようにワークロードを設定するわけではありません。詳細は、スケーラビリティとパフォーマンス セクションの ワークロードパーティショニング ページを参照してください。

値: None または AllNodes。デフォルト値は None です。

compute:
Copy to Clipboard Toggle word wrap

コンピュートノードを構成するマシンの設定。

値: MachinePool オブジェクトの配列。

compute:
  architecture:
Copy to Clipboard Toggle word wrap

プール内のマシンの命令セットアーキテクチャーを決定します。現在、さまざまなアーキテクチャーのクラスターはサポートされていません。すべてのプールは同じアーキテクチャーを指定する必要があります。有効な値は、amd64arm64 です。

値: 文字列

compute:
  hyperthreading:
Copy to Clipboard Toggle word wrap

コンピュートマシンで同時マルチスレッドまたは hyperthreading を有効/無効にするかどうか。デフォルトでは、同時マルチスレッドはマシンのコアのパフォーマンスを上げるために有効化されます。

重要

同時マルチスレッドを無効にする場合は、容量計画においてマシンパフォーマンスの大幅な低下が考慮に入れられていることを確認します。

値: Enabled または Disabled

compute:
  name:
Copy to Clipboard Toggle word wrap

compute を使用する場合に必須です。マシンプールの名前。

値: worker

compute:
  platform:
Copy to Clipboard Toggle word wrap

compute を使用する場合に必須です。このパラメーターを使用して、ワーカーマシンをホストするクラウドプロバイダーを指定します。このパラメーターの値は controlPlane.platform パラメーターの値に一致する必要があります。

値: awsazuregcpibmcloudnutanixopenstackpowervsvsphere、または {}

compute:
  replicas:
Copy to Clipboard Toggle word wrap

プロビジョニングするコンピュートマシン (ワーカーマシンとしても知られる) の数。

値: 2 以上の正の整数。デフォルト値は 3 です。

featureSet:
Copy to Clipboard Toggle word wrap

機能セットのクラスターを有効にします。機能セットは、デフォルトで有効にされない OpenShift Container Platform 機能のコレクションです。インストール中に機能セットを有効にする方法の詳細は、「機能ゲートの使用による各種機能の有効化」を参照してください。

値: 文字列。TechPreviewNoUpgrade など、有効にする機能セットの名前。

controlPlane:
Copy to Clipboard Toggle word wrap

コントロールプレーンを構成するマシンの設定。

値: MachinePool オブジェクトの配列。

controlPlane:
  architecture:
Copy to Clipboard Toggle word wrap

プール内のマシンの命令セットアーキテクチャーを決定します。現在、さまざまなアーキテクチャーのクラスターはサポートされていません。すべてのプールは同じアーキテクチャーを指定する必要があります。有効な値は、amd64arm64 です。

値: 文字列

controlPlane:
  hyperthreading:
Copy to Clipboard Toggle word wrap

コントロールプレーンマシンで同時マルチスレッドまたは hyperthreading を有効/無効にするかどうか。デフォルトでは、同時マルチスレッドはマシンのコアのパフォーマンスを上げるために有効化されます。

重要

同時マルチスレッドを無効にする場合は、容量計画においてマシンパフォーマンスの大幅な低下が考慮に入れられていることを確認します。

値: Enabled または Disabled

controlPlane:
  name:
Copy to Clipboard Toggle word wrap

controlPlane を使用する場合に必須です。マシンプールの名前。

値: master

controlPlane:
  platform:
Copy to Clipboard Toggle word wrap

controlPlane を使用する場合に必須です。このパラメーターを使用して、コントロールプレーンマシンをホストするクラウドプロバイダーを指定します。このパラメーターの値は compute.platform パラメーターの値に一致する必要があります。

値: awsazuregcpibmcloudnutanixopenstackpowervsvsphere、または {}

controlPlane:
  replicas:
Copy to Clipboard Toggle word wrap

プロビジョニングするコントロールプレーンマシンの数。

値: サポートされる値は 3 です。シングルノード OpenShift をデプロイする場合は 1 です。

credentialsMode:
Copy to Clipboard Toggle word wrap

Cloud Credential Operator (CCO) モード。モードを指定しないと、CCO は指定された認証情報の機能を動的に判別しようとします。この場合、複数のモードがサポートされるプラットフォームで Mint モードが優先されます。

注記

すべてのクラウドプロバイダーですべての CCO モードがサポートされているわけではありません。CCO モードの詳細は、認証と認可 コンテンツの「クラウドプロバイダーの認証情報の管理」を参照してください。

値: MintPassthroughManual、または空の文字列 ("")。

fips:
Copy to Clipboard Toggle word wrap

FIPS モードを有効または無効にします。デフォルトは false (無効) です。FIPS モードを有効にすると、OpenShift Container Platform が稼働している Red Hat Enterprise Linux CoreOS (RHCOS) マシンで、デフォルトの Kubernetes 暗号化スイートが無視され、代わりに RHCOS が提供する暗号化モジュールが使用されます。

重要

クラスターで FIPS モードを有効にするには、FIPS モードで動作するように設定された Red Hat Enterprise Linux (RHEL) コンピューターからインストールプログラムを実行する必要があります。RHEL で FIPS モードを設定する方法の詳細は、RHEL から FIPS モードへの切り替え を参照してください。

FIPS モードでブートされた Red Hat Enterprise Linux (RHEL) または Red Hat Enterprise Linux CoreOS (RHCOS) を実行する場合、OpenShift Container Platform コアコンポーネントは、x86_64、ppc64le、および s390x アーキテクチャーのみで、FIPS 140-2/140-3 検証のために NIST に提出された RHEL 暗号化ライブラリーを使用します。

重要

Azure File ストレージを使用している場合、FIPS モードを有効にすることはできません。

値: false または true

imageContentSources:
Copy to Clipboard Toggle word wrap

release-image コンテンツのソースおよびリポジトリー。

値: オブジェクトの配列。この表の以下の行で説明されているように、source およびオプションで mirrors が含まれます。

imageContentSources:
  source:
Copy to Clipboard Toggle word wrap

imageContentSources を使用する場合に必須です。ユーザーが参照するリポジトリーを指定します (例: イメージプル仕様)。

値: 文字列

imageContentSources:
  mirrors:
Copy to Clipboard Toggle word wrap

同じイメージが含まれている可能性があるリポジトリーを 1 つ以上指定します。

値: 文字列の配列

publish:
Copy to Clipboard Toggle word wrap

Kubernetes API、OpenShift ルートなどのクラスターのユーザーに表示されるエンドポイントをパブリッシュまたは公開する方法。

値: Internal または External。デフォルト値は External です。

このパラメーターを Internal に設定することは、クラウド以外のプラットフォームではサポートされません。

重要

フィールドの値が Internal に設定されている場合、クラスターが機能しなくなります。詳細は、BZ#1953035 を参照してください。

sshKey:
Copy to Clipboard Toggle word wrap

クラスターマシンへのアクセスを認証するための SSH キー。

注記

インストールのデバッグまたは障害復旧を実行する必要のある実稼働用の OpenShift Container Platform クラスターでは、ssh-agent プロセスが使用する SSH キーを指定します。

値: たとえば、sshKey: ssh-ed25519 AAAA.. です。

第3章 installer-provisioned infrastructure

3.1. 概要

ベアメタルノードへの installer-provisioned installation は、OpenShift Container Platform クラスターが実行されるインフラストラクチャーをデプロイおよび設定します。このガイドでは、installer-provisioned ベアメタルのインストールを正常に行うための方法論を提供します。次の図は、デプロイメントのフェーズ 1 におけるインストール環境を示しています。

インストールの場合、前の図の主要な要素は次のとおりです。

  • プロビジョナー: インストールプログラムを実行し、新しい OpenShift Container Platform クラスターのコントロールプレーンをデプロイするブートストラップ VM をホストする物理マシン。
  • Bootstrap VM: OpenShift Container Platform クラスターのデプロイプロセスで使用される仮想マシン。
  • ネットワークブリッジ: ブートストラップ VM は、ネットワークブリッジ eno1 および eno2 を介して、ベアメタルネットワークとプロビジョニングネットワーク (存在する場合) に接続します。
  • API VIP: API 仮想 IP アドレス (VIP) は、コントロールプレーンノード全体で API サーバーのフェイルオーバーを提供するために使用されます。API VIP はまずブートストラップ仮想マシンにあります。スクリプトは、サービスを起動する前に keepalived.conf 設定ファイルを生成します。VIP は、ブートストラッププロセスが完了し、ブートストラップ仮想マシンが停止すると、コントロールプレーンノードの 1 つに移動します。

デプロイメントのフェーズ 2 では、プロビジョナーがブートストラップ VM を自動的に破棄し、仮想 IP アドレス (VIP) を適切なノードに移動します。

keepalived.conf ファイルは、コントロールプレーンマシンにブートストラップ VM よりも低い仮想ルーター冗長プロトコル (VRRP) の優先順位を設定します。これにより、API VIP がブートストラップ VM からコントロールプレーンに移動する前に、コントロールプレーンマシン上の API が完全に機能することが保証されます。API VIP がコントロールプレーンノードの 1 つに移動すると、外部クライアントから API VIP ルートに送信されたトラフィックが、そのコントロールプレーンノードで実行している haproxy ロードバランサーに移動します。haproxy のこのインスタンスは、コントロールプレーンノード全体で API VIP トラフィックを分散します。

Ingress 仮想 IP はコンピュートノードに移動します。keepalived インスタンスは Ingress VIP も管理します。

次の図は、デプロイメントのフェーズ 2 を示しています:

これ以降、プロビジョナーが使用するノードを削除または再利用できます。ここから、追加のプロビジョニングタスクはすべてコントロールプレーンによって実行されます。

注記

installer-provisioned infrastructure によるインストールの場合、ポート 53 が CoreDNS によってノードレベルで公開され、他のルーティング可能なネットワークからアクセスできるようになります。

重要

プロビジョニングネットワークは任意ですが、PXE ブートには必要です。プロビジョニングネットワークなしでデプロイする場合は、redfish-virtualmedia または idrac-virtualmedia などの仮想メディアベースボード管理コントローラー (BMC) アドレス指定オプションを使用する必要があります。

3.2. 前提条件

OpenShift Container Platform の installer-provisioned installation には、以下が必要です。

  1. 1 つの Red Hat Enterprise Linux (RHEL) 9.x がインストールされているプロビジョナーノード。プロビジョナーは、インストール後に削除できます。
  2. 3 つのコントロールプレーンノード
  3. ベースボード管理コントローラー (BMC) の各ノードへのアクセス。
  4. 1 つ以上のネットワーク:

    1. 1 つの必須のルーティング可能なネットワーク
    2. 1 つのオプションのプロビジョニングネットワーク
    3. 1 つのオプションの管理ネットワーク

OpenShift Container Platform の installer-provisioned installation を開始する前に、ハードウェア環境が以下の要件を満たしていることを確認してください。

3.2.1. ノードの要件

installer-provisioned installation には、ハードウェアノードの各種の要件があります。

  • CPU architecture: すべてのノードは x86_64 または aarch64 CPU アーキテクチャーを使用する必要があります。
  • 同様のノード: Red Hat では、ノードにロールごとに同じ設定を指定することを推奨しています。つまり Red Hat では、同じ CPU、メモリー、ストレージ設定の同じブランドおよびモデルのノードを使用することを推奨しています。
  • ベースボード管理コントローラー: provisioner ノードは、各 OpenShift Container Platform クラスターノードのベースボード管理コントローラー (BMC) にアクセスできる必要があります。IPMI、Redfish、またはプロプライエタリープロトコルを使用できます。
  • 最新の生成: ノードは最新の生成されたノードである必要があります。installer-provisioned installation は、ノード間で互換性を確保する必要のある BMC プロトコルに依存します。また、RHEL 9 には RAID コントローラーの最新のドライバーが同梱されています。ノードが、provisioner ノードの RHEL 9.x と、コントロールプレーンおよびワーカーノードの RHCOS 9.x をサポートするために必要な新しいバージョンのノードでであることを確認します。
  • レジストリーノード: (オプション) 非接続のミラーリングされていないレジストリーを設定する場合、レジストリーは独自のノードに置くことが推奨されます。
  • プロビジョナーノード: installer-provisioned installation には 1 つの provisioner ノードが必要です。
  • コントロールプレーン: installer-provisioned installation には、高可用性を実現するために 3 つのコントロールプレーンノードが必要です。3 つのコントロールプレーンノードのみで OpenShift Container Platform クラスターをデプロイして、コントロールプレーンノードをワーカーノードとしてスケジュール可能にすることができます。小規模なクラスターでは、開発、実稼働およびテスト時の管理者および開発者に対するリソース効率が高くなります。
  • ワーカーノード: 必須ではありませんが、一般的な実稼働クラスターには複数のワーカーノードがあります。

    重要

    ワーカーノードが 1 つしかないクラスターは、パフォーマンスが低下した状態のルーターおよび Ingress トラフィックでデプロイされるので、デプロイしないでください。

  • ネットワークインターフェイス: 各ノードでは、ルーティング可能な baremetal ネットワークに 1 つ以上のネットワークインターフェイスが必要です。デプロイメントに provisioning ネットワークを使用する場合、各ノードに provisioning ネットワーク用に 1 つのネットワークインターフェイスが必要になります。provisioning ネットワークの使用はデフォルト設定です。

    注記

    同じサブネット上の 1 つのネットワークカード (NIC) のみが、ゲートウェイ経由でトラフィックをルーティングできます。デフォルトでは、アドレス解決プロトコル (ARP) は番号が最も小さい NIC を使用します。ネットワーク負荷分散が期待どおりに機能するようにするには、同じサブネット内の各ノードに 1 つの NIC を使用します。同じサブネット内のノードに複数の NIC を使用する場合は、単一のボンディングまたはチームインターフェイスを使用します。次に、エイリアス IP アドレスの形式で他の IP アドレスをそのインターフェイスに追加します。ネットワークインターフェイスレベルでフォールトトレランスまたは負荷分散が必要な場合は、ボンディングまたはチームインターフェイスでエイリアス IP アドレスを使用します。または、同じサブネットでセカンダリー NIC を無効にするか、IP アドレスがないことを確認できます。

  • Unified Extensible Firmware Interface (UEFI): installer-provisioned installation では、provisioning ネットワークで IPv6 アドレスを使用する場合に、すべての OpenShift Container Platform ノードで UEFI ブートが必要になります。さらに、UEFI Device PXE Settings (UEFI デバイス PXE 設定) は provisioning ネットワーク NIC で IPv6 プロトコルを使用するように設定する必要がありますが、provisioning ネットワークを省略すると、この要件はなくなります。

    重要

    ISO イメージなどの仮想メディアからインストールを開始する場合は、古い UEFI ブートテーブルエントリーをすべて削除します。ブートテーブルに、ファームウェアによって提供される一般的なエントリーではないエントリーが含まれている場合、インストールは失敗する可能性があります。

  • Secure Boot: 多くの実稼働シナリオでは、UEFI ファームウェアドライバー、EFI アプリケーション、オペレーティングシステムなど、信頼できるソフトウェアのみを使用してノードが起動することを確認するために、Secure Boot が有効にされているノードが必要です。手動またはマネージドの Secure Boot を使用してデプロイすることができます。

    1. 手動: 手動で Secure Boot を使用して OpenShift Container Platform クラスターをデプロイするには、UEFI ブートモードおよび Secure Boot を各コントロールプレーンノードおよび各ワーカーノードで有効にする必要があります。Red Hat は、installer-provisioned installation で Redfish 仮想メディアを使用している場合にのみ、手動で有効にした UEFI および Secure Boot で、Secure Boot をサポートします。詳細は、「ノードの設定」セクションの「手動での Secure Boot のノードの設定」を参照してください。
    2. マネージド: マネージド Secure Boot で OpenShift Container Platform クラスターをデプロイするには、install-config.yaml ファイルで bootMode の値を UEFISecureBoot に設定する必要があります。Red Hat は、第 10 世代 HPE ハードウェアおよび 13 世代 Dell ハードウェア (ファームウェアバージョン 2.75.75.75 以上を実行) でマネージド Secure Boot を使用した installer-provisioned installation のみをサポートします。マネージド Secure Boot を使用したデプロイには、Redfish 仮想メディアは必要ありません。詳細は、「OpenShift インストールの環境のセットアップ」セクションの「マネージド Secure Boot の設定」を参照してください。

      注記

      Red Hat は、セキュアブートの自己生成キーまたは他のキーの管理をサポートしていません。

3.2.2. クラスターインストールの最小リソース要件

それぞれのクラスターマシンは、以下の最小要件を満たしている必要があります。

Expand
表3.1 最小リソース要件
マシンオペレーティングシステムCPU [1]RAMストレージ1 秒あたりの入出力 (IOPS) [2]

ブートストラップ

RHEL

4

16 GB

100 GB

300

コントロールプレーン

RHCOS

4

16 GB

100 GB

300

Compute

RHCOS

2

8 GB

100 GB

300

  1. 1 つの CPU は、同時マルチスレッド (SMT) またはハイパースレッディングが有効にされていない場合に 1 つの物理コアと同等です。これが有効にされている場合、(コアごとのスレッド x コア数) x ソケット数 = CPU という数式を使用して対応する比率を計算します。
  2. OpenShift Container Platform と Kubernetes は、ディスクのパフォーマンスの影響を受けるため、特にコントロールプレーンノードの etcd には、より高速なストレージが推奨されます。多くのクラウドプラットフォームでは、ストレージサイズと IOPS が連動してスケーリングされるため、十分なパフォーマンスを得るには、ストレージボリュームを過剰に割り当てる必要がある場合がある点に注意してください。
注記

OpenShift Container Platform バージョン 4.19 の場合、RHCOS は RHEL バージョン 9.6 に基づいています。これは、マイクロアーキテクチャー要件を更新します。次のリストには、各アーキテクチャーに必要な最小限の命令セットアーキテクチャー (ISA) が含まれています。

  • x86-64 アーキテクチャーには x86-64-v2 ISA が必要
  • ARM64 アーキテクチャーには ARMv8.0-A ISA が必要
  • IBM Power アーキテクチャーには Power 9 ISA が必要
  • s390x アーキテクチャーには z14 ISA が必要

詳細は、アーキテクチャー (RHEL ドキュメント) を参照してください。

プラットフォームのインスタンスタイプがクラスターマシンの最小要件を満たす場合、これは OpenShift Container Platform で使用することがサポートされます。

3.2.3. OpenShift 仮想化のためのベアメタルクラスターの計画

OpenShift 仮想化を使用する場合は、ベアメタルクラスターをインストールする前に、いくつかの要件を認識することが重要です。

  • ライブマイグレーション機能を使用する場合は、クラスターのインストール時に 複数のワーカーノードが必要です。これは、ライブマイグレーションではクラスターレベルの高可用性 (HA) フラグを true に設定する必要があるためです。HA フラグは、クラスターのインストール時に設定され、後で変更することはできません。クラスターのインストール時に定義されたワーカーノードが 2 つ未満の場合、クラスターの存続期間中、HA フラグは false に設定されます。

    注記

    単一ノードのクラスターに OpenShift Virtualization をインストールできますが、単一ノードの OpenShift は高可用性をサポートしていません。

  • ライブマイグレーションには共有ストレージが必要です。OpenShift Virtualization のストレージは、ReadWriteMany (RWX) アクセスモードをサポートし、使用する必要があります。
  • Single Root I/O Virtualization (SR-IOV) を使用する予定の場合は、ネットワークインターフェイスコントローラー (NIC) が OpenShift Container Platform でサポートされていることを確認してください。

3.2.4. 仮想メディアを使用したインストールのファームウェア要件

installer-provisioned OpenShift Container Platform クラスターのインストールプログラムは、Redfish 仮想メディアとのハードウェアおよびファームウェアの互換性を検証します。ノードファームウェアに互換性がない場合、インストールプログラムはノードへのインストールを開始しません。以下の表は、Redfish 仮想メディアを使用してデプロイされる installer-provisioned OpenShift Container Platform クラスターで機能するようにテストおよび検証された最小ファームウェアバージョンの一覧です。

注記

Red Hat は、ファームウェア、ハードウェア、またはその他のサードパーティーコンポーネントの組み合わせをすべてテストしません。サードパーティーサポートの詳細は、Red Hat サードパーティーサポートポリシー を参照してください。ファームウェアの更新は、ノードのハードウェアドキュメントを参照するか、ハードウェアベンダーにお問い合わせください。

Expand
表3.2 HP ハードウェアと Redfish 仮想メディアのファームウェアの互換性
モデル管理ファームウェアのバージョン

第 11 世代

iLO6

1.57 以降

第 10 世代

iLO5

2.63 以降

Expand
表3.3 Redfish 仮想メディアを使用した Dell ハードウェアのファームウェアの互換性
モデル管理ファームウェアのバージョン

第 16 世代

iDRAC 9

v7.10.70.00

第 15 世代

iDRAC 9

v6.10.30.00、v7.10.50.00、v7.10.70.00

第 14 世代

iDRAC 9

v6.10.30.00

Expand
表3.4 Redfish 仮想メディアを使用した Cisco UCS ハードウェアのファームウェア互換性
モデル管理ファームウェアのバージョン

UCS X シリーズサーバー

Intersight Managed Mode

5.2(2) 以降

FI 接続 UCS C シリーズサーバー

Intersight Managed Mode

4.3 以降

スタンドアロン UCS C シリーズサーバー

スタンドアロン/Intersight

4.3 以降

注記

UCSHCL で、サーバーが Red Hat Enterprise Linux CoreOS (RHCOS) をサポートしていることを必ず確認してください。

3.2.5. ベアメタル向け NC-SI ハードウェア要件

ベアメタル上に Network Controller Sideband Interface (NC-SI) を備えた OpenShift Container Platform 4.19 以降をデプロイするには、NC-SI をサポートするベースボード管理コントローラー (BMC) とネットワークインターフェイスカード (NIC) を備えたハードウェアを使用する必要があります。NC-SI により、BMC はシステム NIC をホストと共有できるようになり、電源オフ時に BMC 接続が失われないように DisablePowerOff 機能が必要になります。

Expand
表3.5 NC-SI のサーバー互換性
ベンターモデル生成管理

Dell

PowerEdge

第 14 世代以降

iDRAC 9 以降 (Redfish、IPMI、racadm、WS-MAN)

HPE

ProLiant

第 10 世代以降

iLO 5 以降 (Redfish、IPMI、iLO RESTful API)

Lenovo

ThinkSystem SR

第 1 世代以降

XClarity Controller (Redfish、IPMI、プロプライエタリー API)

Supermicro

SuperServer

X11 シリーズ以降

Supermicro BMC (Redfish、IPMI、プロプライエタリー Web/CLI)

Intel

Server Systems

S2600BP 以降

Intel BMC (Redfish、IPMI、プロプライエタリー API)

Fujitsu

PRIMERGY

M4 シリーズ以降

iRMC S5 以降 (Redfish、IPMI、プロプライエタリー Web/CLI)

Cisco

UCS C シリーズ

M5 シリーズ以降

Cisco IMC (Redfish、IPMI、プロプライエタリー XML API)

Expand
表3.6 NC-SI と互換性のあるネットワークインターフェイスカード (NIC)
ベンターモデルSpecifications

Broadcom

NetXtreme BCM5720、BCM57416、BCM57504

ギガビットおよび 10/25/100GbE、RMII サイドバンド、Redfish、IPMI、ベンダープロトコルをサポートします。

Intel

I210、X710、XXV710、E810

ギガビットから 100GbE、RMII および SMBus サイドバンド、Redfish、IPMI、ベンダープロトコルをサポートします。

NVIDIA

ConnectX-5、ConnectX-6、ConnectX-7

25/50/100/200/400GbE、RMII サイドバンド、Redfish、IPMI、NVIDIA BMC API をサポートします。

NVIDIA

BlueField-2 以降

200/400GbE、Redfish、IPMI、NVIDIA BMC API をサポートします。

Marvell/Cavium

ThunderX CN88xx、FastLinQ QL41000

10/25/50GbE、RMII サイドバンド、Redfish、IPMI、ベンダープロトコルをサポートします。

Mellanox (NVIDIA)

MCX4121A-ACAT、MCX512A-ACAT

10/25/50GbE、RMII サイドバンド、Redfish、IPMI、Mellanox API をサポートします。

注記

互換性は BMC、NIC、およびファームウェアの設定に依存するため、ベンダーのドキュメントで NC-SI のサポートを確認してください。NC-SI NIC では、共有 NIC 機能を有効にするために互換性のある BMC が必要です。

3.2.6. ネットワーク要件

OpenShift Container Platform の installer-provisioned installation には、複数のネットワーク要件があります。まず、installer-provisioned installation では、各ベアメタルノードにオペレーティングシステムをプロビジョニングするためのルーティング不可能な provisioning ネットワークをオプションで使用します。次に、installer-provisioned installation では、ルーティング可能な baremetal ネットワークを使用します。

3.2.6.1. 必須ポートが開いていることを確認する

クラスター間で特定のノードが開いてなければ、installer-provisioned によるインストールは正常に完了しません。ファーエッジワーカーノードに別のサブネットを使用する場合などの特定の状況では、これらのサブネット内のノードが、次の必須ポートで他のサブネット内のノードと通信できることを確認する必要があります。

Expand
表3.7 必須ポート
ポート説明

6768

プロビジョニングネットワークを使用する場合、クラスターノードは、ポート 67 および 68 を使用して、プロビジョニングネットワークインターフェイス経由で dnsmasq DHCP サーバーにアクセスします。

69

プロビジョニングネットワークを使用する場合、クラスターノードはプロビジョニングネットワークインターフェイスを使用してポート 69 で TFTP サーバーと通信します。TFTP サーバーはブートストラップ仮想マシン上で実行されます。ブートストラップ仮想マシンはプロビジョナーノード上で実行されます。

80

イメージキャッシュオプションを使用しない場合、または仮想メディアを使用する場合、プロビジョナーノードからクラスターノードに Red Hat Enterprise Linux CoreOS (RHCOS) イメージをストリーミングするには、プロビジョナーノードのポート 80baremetal マシンのネットワークインターフェイス上で開いている必要があります。

123

クラスターノードは、baremetal マシンネットワークを使用して、ポート 123 の NTP サーバーにアクセスする必要があります。

5050

Ironic Inspector API は、コントロールプレーンノード上で実行され、ポート 5050 でリッスンします。Inspector API は、ベアメタルノードのハードウェア特性に関する情報を収集するハードウェアイントロスペクションを担当します。

5051

ポート 5050 はポート 5051 をプロキシーとして使用します。

6180

仮想メディアを使用して TLS を使用せずにデプロイする場合、ワーカーノードのベースボード管理コントローラー (BMC) が RHCOS イメージにアクセスできるように、プロビジョナーノードとコントロールプレーンノードのポート 6180 は、baremetal マシンのネットワークインターフェイスで開いている必要があります。OpenShift Container Platform 4.13 以降、デフォルトの HTTP ポートは 6180 です。

6183

仮想メディアを使用して TLS でデプロイする場合、ワーカーノードの BMC が RHCOS イメージにアクセスできるように、プロビジョナーノードとコントロールプレーンノードのポート 6183 は、baremetal マシンのネットワークインターフェイスで開いている必要があります。

6385

Ironic API サーバーは、最初はブートストラップ仮想マシン上で実行され、その後はコントロールプレーンノード上で実行され、ポート 6385 でリッスンします。Ironic API を使用すると、クライアントは Ironic と対話して、新しいノードの登録、電源状態の管理、イメージのデプロイ、ハードウェアのクリーニングなどの操作を含むベアメタルノードのプロビジョニングと管理を行うことができます。

6388

ポート 6385 はポート 6388 をプロキシーとして使用します。

8080

TLS なしでイメージキャッシュを使用する場合、ポート 8080 がプロビジョナーノードで開いており、クラスターノードの BMC インターフェイスからアクセスできる必要があります。

8083

TLS ありでイメージキャッシュオプションを使用する場合、ポート 8083 がプロビジョナーノードで開いており、クラスターノードの BMC インターフェイスからアクセスできる必要があります。

9999

デフォルトでは、Ironic Python Agent (IPA) は、ポート 9999 で Ironic conductor サービスからの API 呼び出しを TCP リッスンします。IPA が実行されているベアメタルノードと Ironic conductor サービス間の通信には、このポートが使用されます。

3.2.6.2. ネットワーク MTU の増加

OpenShift Container Platform をデプロイする前に、ネットワークの最大伝送単位 (MTU) を 1500 以上に増やします。MTU が 1500 未満の場合、ノードの起動に使用される Ironic イメージが Ironic インスペクター Pod との通信に失敗し、検査が失敗する可能性があります。これが発生すると、インストールにノードを使用できないため、インストールが停止します。

3.2.6.3. NIC の設定

OpenShift Container Platform は、2 つのネットワークを使用してデプロイします。

  • provisioning: provisioning ネットワークは、OpenShift Container Platform クラスターの一部である基礎となるオペレーティングシステムを各ノードにプロビジョニングするために使用されるオプションのルーティング不可能なネットワークです。各クラスターノードの provisioning ネットワークのネットワークインターフェイスには、BIOS または UEFI が PXE ブートに設定されている必要があります。

    provisioningNetworkInterface 設定は、コントロールプレーンノード上の provisioning ネットワークの NIC 名を指定します。これは、コントロールプレーンノードと同じでなければなりません。bootMACAddress 設定は、provisioning ネットワーク用に各ノードで特定の NIC を指定する手段を提供します。

    provisioning ネットワークは任意ですが、PXE ブートには必要です。provisioning ネットワークなしでデプロイする場合、redfish-virtualmediaidrac-virtualmedia などの仮想メディア BMC アドレス指定オプションを使用する必要があります。

  • baremetal: baremetal ネットワークはルーティング可能なネットワークです。NIC が provisioning ネットワークを使用するように設定されていない場合には、baremetal ネットワークとのインターフェイスには任意の NIC を使用することができます。
重要

VLAN を使用する場合、それぞれの NIC は、適切なネットワークに対応する別個の VLAN 上にある必要があります。

3.2.6.4. DNS 要件

クライアントは、baremetal ネットワークで OpenShift Container Platform クラスターにアクセスします。ネットワーク管理者は、正規名の拡張がクラスター名であるサブドメインまたはサブゾーンを設定する必要があります。

<cluster_name>.<base_domain>
Copy to Clipboard Toggle word wrap

以下に例を示します。

test-cluster.example.com
Copy to Clipboard Toggle word wrap

OpenShift Container Platform には、クラスターメンバーシップ情報を使用して A/AAAA レコードを生成する機能が含まれます。これにより、ノード名が IP アドレスに解決されます。ノードが API に登録されると、クラスターは CoreDNS-mDNS を使用せずにこれらのノード情報を分散できます。これにより、マルチキャスト DNS に関連付けられたネットワークトラフィックがなくなります。

CoreDNS を正しく機能させるには、アップストリームの DNS サーバーへの TCP 接続と UDP 接続の両方が必要です。アップストリームの DNS サーバーが OpenShift Container Platform クラスターノードから TCP 接続と UDP 接続の両方を受信できることを確認します。

OpenShift Container Platform のデプロイメントでは、以下のコンポーネントに DNS 名前解決が必要です。

  • The Kubernetes API
  • OpenShift Container Platform のアプリケーションワイルドカード Ingress API

A/AAAA レコードは名前解決に使用され、PTR レコードは逆引き名前解決に使用されます。Red Hat Enterprise Linux CoreOS (RHCOS) は、逆引きレコードまたは DHCP を使用して、すべてのノードのホスト名を設定します。

installer-provisioned installation には、クラスターメンバーシップ情報を使用して A/AAAA レコードを生成する機能が含まれています。これにより、ノード名が IP アドレスに解決されます。各レコードで、<cluster_name> はクラスター名で、<base_domain> は、install-config.yaml ファイルに指定するベースドメインです。完全な DNS レコードは <component>.<cluster_name>.<base_domain>. の形式を取ります。

Expand
表3.8 必要な DNS レコード
コンポーネントレコード説明

Kubernetes API

api.<cluster_name>.<base_domain>.

A/AAAA レコードと PTR レコード。API ロードバランサーを識別します。これらのレコードは、クラスター外のクライアントおよびクラスター内のすべてのノードで解決できる必要があります。

ルート

*.apps.<cluster_name>.<base_domain>.

ワイルドカード A/AAAA レコードは、アプリケーションの Ingress ロードバランサーを参照します。アプリケーション Ingress ロードバランサーは、Ingress コントローラー Pod を実行するノードをターゲットにします。Ingress Controller Pod は、デフォルトでワーカーノードで実行されます。これらのレコードは、クラスター外のクライアントおよびクラスター内のすべてのノードで解決できる必要があります。

たとえば、console-openshift-console.apps.<cluster_name>.<base_domain> は、OpenShift Container Platform コンソールへのワイルドカードルートとして使用されます。

ヒント

dig コマンドを使用して、DNS 解決を確認できます。

3.2.6.5. Dynamic Host Configuration Protocol (DHCP) の要件

デフォルトでは、installer-provisioned installation は、provisioning ネットワーク用に DHCP を有効にして ironic-dnsmasq をデプロイします。provisioningNetwork 設定が、デフォルト値の managed に設定されている場合、provisioning ネットワーク上で他の DHCP サーバーを実行することはできません。provisioning ネットワーク上で DHCP サーバーを実行している場合は、install-config.yaml ファイルで provisioningNetwork 設定を unmanaged に設定する必要があります。

ネットワーク管理者は、外部 DHCP サーバー上の baremetal ネットワーク用に、OpenShift Container Platform クラスター内の各ノードの IP アドレスを予約する必要があります。

3.2.6.6. DHCP サーバーを使用するノードの IP アドレスの確保

baremetal ネットワークの場合、ネットワーク管理者は、以下を含むいくつかの IP アドレスを予約する必要があります。

  1. 2 つの一意の仮想 IP アドレス。

    • API エンドポイントの 1 つの仮想 IP アドレス。
    • ワイルドカード Ingress エンドポイントの 1 つの仮想 IP アドレス
  2. プロビジョナーノードの 1 つの IP アドレス
  3. コントロールプレーンノードごとに 1 つの IP アドレス。
  4. 各ワーカーノードの 1 つの IP アドレス (適用可能な場合)
IP アドレスの予約し、それらを静的 IP アドレスにする

一部の管理者は、各ノードの IP アドレスが DHCP サーバーがない状態で一定になるように静的 IP アドレスの使用を選択します。NMState を使用して静的 IP アドレスを設定する場合は、「OpenShift インストールの環境のセットアップ」セクションの「ホストネットワークインターフェイスの設定 (オプション)」を参照してください。

外部ロードバランサーとコントロールプレーンノード間のネットワーク

外部の負荷分散サービスとコントロールプレーンノードは同じ L2 ネットワークで実行する必要があります。また、VLAN を使用して負荷分散サービスとコントロールプレーンノード間のトラフィックをルーティングする際に同じ VLAN で実行する必要があります。

重要

ストレージインターフェイスには、DHCP 予約または静的 IP が必要です。

以下の表は、完全修飾ドメイン名の具体例を示しています。API およびネームサーバーのアドレスは、正規名の拡張で始まります。コントロールプレーンおよびワーカーノードのホスト名は例であるため、任意のホストの命名規則を使用することができます。

Expand
使用法ホスト名IP

API

api.<cluster_name>.<base_domain>

<ip>

Ingress LB (アプリケーション)

*.apps.<cluster_name>.<base_domain>

<ip>

プロビジョナーノード

provisioner.<cluster_name>.<base_domain>

<ip>

Control-plane-0

openshift-control-plane-0.<cluster_name>.<base_domain>

<ip>

Control-plane-1

openshift-control-plane-1.<cluster_name>-.<base_domain>

<ip>

Control-plane-2

openshift-control-plane-2.<cluster_name>.<base_domain>

<ip>

Worker-0

openshift-worker-0.<cluster_name>.<base_domain>

<ip>

Worker-1

openshift-worker-1.<cluster_name>.<base_domain>

<ip>

Worker-n

openshift-worker-n.<cluster_name>.<base_domain>

<ip>

注記

DHCP 予約を作成しない場合、Kubernetes API ノード、プロビジョナーノード、コントロールプレーンノード、およびワーカーノードのホスト名を設定するために、インストールプログラムで逆引き DNS 解決が必要になります。

3.2.6.7. プロビジョナーノードの要件

インストール設定でプロビジョナーノードの MAC アドレスを指定する必要があります。通常、bootMacAddress 仕様は PXE ネットワークブートに関連付けられています。ただし、Ironic プロビジョニングサービスでは、クラスターの検査中またはクラスター内のノードの再デプロイ中にノードを識別するために、bootMacAddress 仕様も必要です。

プロビジョナーノードには、ネットワークの起動、DHCP と DNS の解決、およびローカルネットワーク通信のためのレイヤー 2 接続が必要です。プロビジョナーノードには、仮想メディアの起動にレイヤー 3 接続が必要です。

3.2.6.8. ネットワークタイムプロトコル (NTP)

クラスター内の各 OpenShift Container Platform ノードは NTP サーバーにアクセスできる必要があります。OpenShift Container Platform ノードは NTP を使用してクロックを同期します。たとえば、クラスターノードは検証を必要とする SSL/TLS 証明書を使用しますが、ノード間の日付と時刻が同期していないと、検証が失敗する可能性があります。

重要

各クラスターノードの BIOS 設定で一貫性のあるクロックの日付と時刻の形式を定義してください。そうしないと、インストールが失敗する可能性があります。

切断されたクラスター上で NTP サーバーとして機能するようにコントロールプレーンノードを再設定し、コントロールプレーンノードから時間を取得するようにワーカーノードを再設定することができます。

3.2.6.9. 帯域外管理 IP アドレスのポートアクセス

帯域外管理 IP アドレスは、ノードとは別のネットワーク上にあります。インストール中に帯域外管理がプロビジョナーノードと確実に通信できるようにするには、帯域外管理 IP アドレスに、プロビジョナーノードおよび OpenShift Container Platform コントロールプレーンノード上のポート 6180 へのアクセスを許可する必要があります。TLS ポート 6183 は、たとえば Redfish などを使用する仮想メディアのインストールに必要です。

3.2.7. ノードの設定

3.2.7.1. provisioning ネットワークを使用する場合のノードの設定

クラスター内の各ノードには、適切なインストールを行うために以下の設定が必要です。

警告

ノード間で一致していないと、インストールに失敗します。

クラスターノードには 3 つ以上の NIC を追加できますが、インストールプロセスでは最初の 2 つの NIC のみに焦点が当てられます。以下の表では、NIC1 は OpenShift Container Platform クラスターのインストールにのみ使用されるルーティング不可能なネットワーク (provisioning) です。

Expand
NICネットワークVLAN

NIC1

provisioning

<provisioning_vlan>

NIC2

baremetal

<baremetal_vlan>

プロビジョナーノードでの Red Hat Enterprise Linux (RHEL) 9.x インストールプロセスは異なる可能性があります。ローカルの Satellite サーバー、PXE サーバー、PXE 対応の NIC2 を使用して Red Hat Enterprise Linux (RHEL) 9.x をインストールする場合は、以下のようになります。

Expand
PXEブート順序

NIC1 PXE 対応の provisioning ネットワーク

1

NIC2 baremetal ネットワークPXE 対応はオプションです。

2

注記

他のすべての NIC で PXE が無効になっていることを確認します。

コントロールプレーンおよびワーカーノードを以下のように設定します。

Expand
PXEブート順序

NIC1 PXE 対応 (プロビジョニングネットワーク)

1

3.2.7.2. provisioning ネットワークを使用しないノードの設定

インストールプロセスには、1 つの NIC が必要です。

Expand
NICネットワークVLAN

NICx

baremetal

<baremetal_vlan>

NICx は、OpenShift Container Platform クラスターのインストールに使用されるルーティング可能なネットワーク (baremetal) であり、インターネットにルーティング可能です。

重要

provisioning ネットワークは任意ですが、PXE ブートには必要です。provisioning ネットワークなしでデプロイする場合、redfish-virtualmediaidrac-virtualmedia などの仮想メディア BMC アドレス指定オプションを使用する必要があります。

3.2.7.3. 手動での Secure Boot のノードの設定

Secure Boot は、ノードが UEFI ファームウェアドライバー、EFI アプリケーション、オペレーティングシステムなどの信頼できるソフトウェアのみを使用していることを確認できない場合は、ノードの起動を阻止します。

注記

Red Hat は、Redfish 仮想メディアを使用してデプロイする場合にのみ、手動で設定された Secure Boot をサポートします。

Secure Boot を手動で有効にするには、ノードのハードウェアガイドを参照し、以下を実行してください。

手順

  1. ノードを起動し、BIOS メニューを入力します。
  2. ノードのブートモードを UEFI Enabled に設定します。
  3. Secure Boot を有効にします。
重要

Red Hat は、自己生成したキーを使用する Secure Boot をサポートしません。

3.2.8. アウトオブバンド管理

ノードには通常、ベースボード管理コントローラー (BMC) が使用する追加の NIC があります。この BMC はプロビジョナーノードからアクセスできる必要があります。

各ノードは、アウトオブバンド管理を介してアクセスできる必要があります。アウトオブバンド管理ネットワークを使用する場合、OpenShift Container Platform のインストールを正常に行うには、プロビジョナーノードがアウトオブバンド管理ネットワークにアクセスできる必要があります。

アウトオブバンド管理の設定は、このドキュメントの範囲外です。アウトオブバンド管理用に別の管理ネットワークを使用すると、パフォーマンスが向上し、セキュリティーが強化されます。ただし、provisioning ネットワークまたはベアメタルネットワークの使用は有効なオプションになります。

注記

ブートストラップ仮想マシンには、最大 2 つのネットワークインターフェイスがあります。帯域外管理用に別の管理ネットワークを設定し、プロビジョニングネットワークを使用している場合、ブートストラップ仮想マシンでは、いずれかのネットワークインターフェイスを介して管理ネットワークへのルーティングアクセスが必要になります。このシナリオでは、ブートストラップ仮想マシンは 3 つのネットワークにアクセスできます。

  • ベアメタルネットワーク
  • プロビジョニングネットワーク
  • 管理インターフェイスの 1 つを介してルーティングされる管理ネットワーク

3.2.9. インストールに必要なデータ

OpenShift Container Platform クラスターのインストール前に、すべてのクラスターノードから以下の情報を収集します。

  • アウトオブバンド管理 IP

      • Dell (iDRAC) IP
      • HP (iLO) IP
      • Fujitsu (iRMC) IP

provisioning ネットワークを使用する場合

  • NIC (provisioning) MAC アドレス
  • NIC (baremetal) MAC アドレス

provisioning ネットワークを省略する場合

  • NIC (baremetal) MAC アドレス

3.2.10. ノードの検証チェックリスト

provisioning ネットワークを使用する場合

  • ❏ NIC1 VLAN が provisioning ネットワーに設定されている。
  • provisioning ネットワークの NIC1 は、プロビジョナー、コントロールプレーン、およびワーカーノードで PXE 対応として使用できる。
  • ❏ NIC2 VLAN が baremetal ネットワークに設定されている。
  • ❏ PXE が他のすべての NIC で無効にされている。
  • ❏ DNS は API および Ingress エンドポイントで設定されている。
  • ❏ コントロールプレーンおよびワーカーノードが設定されている。
  • ❏ すべてのノードがアウトオブバンド管理でアクセス可能である。
  • ❏ (オプション) 別個の管理ネットワークが作成されている。
  • ❏ インストールに必要なデータ。

provisioning ネットワークを省略する場合

  • ❏ NIC1 VLAN が baremetal ネットワークに設定されている。
  • ❏ DNS は API および Ingress エンドポイントで設定されている。
  • ❏ コントロールプレーンおよびワーカーノードが設定されている。
  • ❏ すべてのノードがアウトオブバンド管理でアクセス可能である。
  • ❏ (オプション) 別個の管理ネットワークが作成されている。
  • ❏ インストールに必要なデータ。

3.2.11. インストールの概要

インストールプログラムは対話型モードをサポートしています。ただし、すべてのベアメタルホストのプロビジョニングの詳細と関連するクラスターの詳細を含む install-config.yaml ファイルを事前に準備することができます。

インストールプログラムは install-config.yaml ファイルを読み込み、管理者はマニフェストを生成し、すべての前提条件を確認します。

インストールプログラムは次のタスクを実行します。

  • クラスター内のすべてのノードを登録する
  • ブートストラップ仮想マシン (VM) を起動する
  • 次のコンテナーを持つ、metal プラットフォームコンポーネントを systemd サービスとして起動する

    • Ironic-dnsmasq: プロビジョニングネットワーク上のさまざまなノードのプロビジョニングインターフェイスに IP アドレスを引き渡す役割を担う DHCP サーバー。Ironic-dnsmasq は、プロビジョニングネットワークを使用して OpenShift Container Platform クラスターをデプロイする場合にのみ有効になります。
    • Ironic-httpd: イメージをノードに送信するために使用される HTTP サーバー。
    • Image-customization
    • Ironic
    • Ironic-inspector (OpenShift Container Platform 4.16 以前で利用可能)
    • Ironic-ramdisk-logs
    • Extract-machine-os
    • Provisioning-interface
    • Metal3-baremetal-operator

ノードは検証フェーズに入り、Ironic がベースボード管理コントローラー (BMC) にアクセスするための認証情報を検証した後、各ノードは 管理可能 な状態に移行します。

ノードが管理可能な状態になると、検査 フェーズが開始されます。検査フェーズでは、ハードウェアが OpenShift Container Platform の正常なデプロイメントに必要な最小要件を満たしていることを確認します。

install-config.yaml ファイルには、プロビジョニングネットワークの詳細が記述されています。ブートストラップ仮想マシンでは、インストールプログラムは Pre-Boot Execution Environment (PXE) を使用して、Ironic Python Agent (IPA) がロードされているすべてのノードにライブイメージをプッシュします。仮想メディアを使用する場合、各ノードの BMC に直接接続してイメージを仮想的にアタッチします。

PXE ブートを使用する場合、プロセスを開始するためにすべてのノードが再起動します。

  • ブートストラップ仮想マシン上で実行されている ironic-dnsmasq サービスは、ノードと TFTP ブートサーバーの IP アドレスを提供します。
  • 最初のブートソフトウェアは、HTTP 経由でルートファイルシステムをロードします。
  • ブートストラップ仮想マシン上の ironic サービスは、各ノードからハードウェア情報を受信します。

ノードはクリーニング状態になり、各ノードは設定を続行する前にすべてのディスクをクリーニングする必要があります。

クリーニング状態が終了すると、ノードは使用可能な状態になり、インストールプログラムはノードをデプロイ状態に移動します。

IPA は coreos-installer コマンドを実行して、install-config.yaml ファイルの rootDeviceHints パラメーターで定義されたディスクに Red Hat Enterprise Linux CoreOS (RHCOS) イメージをインストールします。ノードは RHCOS を使用して起動します。

インストールプログラムは、コントロールプレーンノードを設定した後、ブートストラップ仮想マシンからコントロールプレーンノードに制御を移動し、ブートストラップ仮想マシンを削除します。

ベアメタル Operator は、ワーカー、ストレージ、およびインフラノードのデプロイメントを継続します。

インストールが完了すると、ノードはアクティブ状態に移行します。その後、インストール後の設定やその他の Day 2 タスクに進むことができます。

3.3. OpenShift インストールの環境のセットアップ

3.3.1. RHEL のプロビジョナーノードへのインストール

前提条件の設定が完了したら、次のステップとして RHEL 9.x をプロビジョナーノードにインストールします。インストーラーは、OpenShift Container Platform クラスターをインストールする間にプロビジョナーノードをオーケレーターとして使用します。このドキュメントの目的上、RHEL のプロビジョナーノードへのインストールは対象外です。ただし、オプションには、RHEL Satellite サーバー、PXE、またはインストールメディアの使用も含まれますが、これらに限定されません。

3.3.2. OpenShift Container Platform インストールのプロビジョナーノードの準備

環境を準備するには、以下の手順を実行します。

手順

  1. ssh でプロビジョナーノードにログインします。
  2. root 以外のユーザー (kni) を作成し、そのユーザーに sudo 権限を付与します。

    # useradd kni
    Copy to Clipboard Toggle word wrap
    # passwd kni
    Copy to Clipboard Toggle word wrap
    # echo "kni ALL=(root) NOPASSWD:ALL" | tee -a /etc/sudoers.d/kni
    Copy to Clipboard Toggle word wrap
    # chmod 0440 /etc/sudoers.d/kni
    Copy to Clipboard Toggle word wrap
  3. 新規ユーザーの ssh キーを作成します。

    # su - kni -c "ssh-keygen -t ed25519 -f /home/kni/.ssh/id_rsa -N ''"
    Copy to Clipboard Toggle word wrap
  4. プロビジョナーノードで新規ユーザーとしてログインします。

    # su - kni
    Copy to Clipboard Toggle word wrap
  5. Red Hat Subscription Manager を使用してプロビジョナーノードを登録します。

    $ sudo subscription-manager register --username=<user> --password=<pass> --auto-attach
    Copy to Clipboard Toggle word wrap
    $ sudo subscription-manager repos --enable=rhel-9-for-<architecture>-appstream-rpms --enable=rhel-9-for-<architecture>-baseos-rpms
    Copy to Clipboard Toggle word wrap
    注記

    Red Hat Subscription Manager の詳細は、コマンドラインツールを使用した RHEL システムの登録 を参照してください。

  6. 以下のパッケージをインストールします。

    $ sudo dnf install -y libvirt qemu-kvm mkisofs python3-devel jq ipmitool
    Copy to Clipboard Toggle word wrap
  7. ユーザーを変更して、新たに作成したユーザーに libvirt グループを追加します。

    $ sudo usermod --append --groups libvirt <user>
    Copy to Clipboard Toggle word wrap
  8. firewalld を再起動して、http サービスを有効にします。

    $ sudo systemctl start firewalld
    Copy to Clipboard Toggle word wrap
    $ sudo firewall-cmd --zone=public --add-service=http --permanent
    Copy to Clipboard Toggle word wrap
    $ sudo firewall-cmd --reload
    Copy to Clipboard Toggle word wrap
  9. モジュラー libvirt デーモンのソケットを起動します。

    $ for drv in qemu interface network nodedev nwfilter secret storage; do sudo systemctl start virt${drv}d{,-ro,-admin}.socket; done
    Copy to Clipboard Toggle word wrap
  10. default ストレージプールを作成して、これを起動します。

    $ sudo virsh pool-define-as --name default --type dir --target /var/lib/libvirt/images
    Copy to Clipboard Toggle word wrap
    $ sudo virsh pool-start default
    Copy to Clipboard Toggle word wrap
    $ sudo virsh pool-autostart default
    Copy to Clipboard Toggle word wrap
  11. pull-secret.txt ファイルを作成します。

    $ vim pull-secret.txt
    Copy to Clipboard Toggle word wrap

    Web ブラウザーで、Install OpenShift on Bare Metal with installer-provisioned infrastructure に移動します。Copy pull secret をクリックします。pull-secret.txt ファイルにコンテンツを貼り付け、そのコンテンツを kni ユーザーのホームディレクトリーに保存します。

3.3.3. NTP サーバーの同期を確認する

OpenShift Container Platform インストールプログラムは、chrony Network Time Protocol (NTP) サービスをクラスターノードにインストールします。インストールを完了するには、各ノードが NTP タイムサーバーにアクセスできる必要があります。chrony サービスを使用して、NTP サーバーの同期を確認できます。

切断されたクラスターの場合は、コントロールプレーンノード上で NTP サーバーを設定する必要があります。詳細は、関連情報 セクションを参照してください。

前提条件

  • ターゲットノードに chrony パッケージがインストールされました。

手順

  1. ssh コマンドを使用してノードにログインします。
  2. 次のコマンドを実行して、ノードで利用可能な NTP サーバーを表示します。

    $ chronyc sources
    Copy to Clipboard Toggle word wrap

    出力例

    MS Name/IP address         Stratum Poll Reach LastRx Last sample
    ===============================================================================
    ^+ time.cloudflare.com           3  10   377   187   -209us[ -209us] +/-   32ms
    ^+ t1.time.ir2.yahoo.com         2  10   377   185  -4382us[-4382us] +/-   23ms
    ^+ time.cloudflare.com           3  10   377   198   -996us[-1220us] +/-   33ms
    ^* brenbox.westnet.ie            1  10   377   193  -9538us[-9761us] +/-   24ms
    Copy to Clipboard Toggle word wrap

  3. ping コマンドを使用して、ノードが NTP サーバーにアクセスできることを確認します。次に例を示します。

    $ ping time.cloudflare.com
    Copy to Clipboard Toggle word wrap

    出力例

    PING time.cloudflare.com (162.159.200.123) 56(84) bytes of data.
    64 bytes from time.cloudflare.com (162.159.200.123): icmp_seq=1 ttl=54 time=32.3 ms
    64 bytes from time.cloudflare.com (162.159.200.123): icmp_seq=2 ttl=54 time=30.9 ms
    64 bytes from time.cloudflare.com (162.159.200.123): icmp_seq=3 ttl=54 time=36.7 ms
    ...
    Copy to Clipboard Toggle word wrap

3.3.4. ネットワークの設定

インストールの前に、プロビジョナーノードでネットワークを設定する必要があります。installer-provisioned クラスターは、ベアメタルブリッジとネットワーク、およびオプションのプロビジョニングブリッジとネットワークを使用してデプロイされます。

注記

Web コンソールからネットワークを設定することもできます。

手順

  1. 次のコマンドを実行して、ベアメタルネットワーク NIC 名をエクスポートします。

    $ export PUB_CONN=<baremetal_nic_name>
    Copy to Clipboard Toggle word wrap
  2. ベアメタルネットワークを設定します。

    注記

    これらの手順を実行した後、SSH 接続が切断される場合があります。

    1. DHCP を使用するネットワークの場合は、次のコマンドを実行します。

      $ sudo nohup bash -c "
          nmcli con down \"$PUB_CONN\"
          nmcli con delete \"$PUB_CONN\"
          # RHEL 8.1 appends the word \"System\" in front of the connection, delete in case it exists
          nmcli con down \"System $PUB_CONN\"
          nmcli con delete \"System $PUB_CONN\"
          nmcli connection add ifname baremetal type bridge <con_name> baremetal bridge.stp no 
      1
      
          nmcli con add type bridge-slave ifname \"$PUB_CONN\" master baremetal
          pkill dhclient;dhclient baremetal
      "
      Copy to Clipboard Toggle word wrap
      1
      <con_name> を接続名に置き換えます。
    2. 静的 IP アドレスを使用し、DHCP ネットワークを使用しないネットワークの場合は、次のコマンドを実行します。

      $ sudo nohup bash -c "
          nmcli con down \"$PUB_CONN\"
          nmcli con delete \"$PUB_CONN\"
          # RHEL 8.1 appends the word \"System\" in front of the connection, delete in case it exists
          nmcli con down \"System $PUB_CONN\"
          nmcli con delete \"System $PUB_CONN\"
          nmcli connection add ifname baremetal type bridge con-name baremetal bridge.stp no ipv4.method manual ipv4.addr "x.x.x.x/yy" ipv4.gateway "a.a.a.a" ipv4.dns "b.b.b.b" 
      1
      
          nmcli con add type bridge-slave ifname \"$PUB_CONN\" master baremetal
          nmcli con up baremetal
      "
      Copy to Clipboard Toggle word wrap
      1
      <con_name> を接続名に置き換えます。x.x.x.x/yy をネットワークの IP アドレスと CIDR に置き換えます。a.a.a.a をネットワークゲートウェイに置き換えます。b.b.b.b を DNS サーバーの IP アドレスに置き換えます。
  3. オプション: プロビジョニングネットワークを使用してデプロイする場合は、次のコマンドを実行してプロビジョニングネットワークの NIC 名をエクスポートします。

    $ export PROV_CONN=<prov_nic_name>
    Copy to Clipboard Toggle word wrap
  4. オプション: プロビジョニングネットワークを使用してデプロイする場合は、次のコマンドを実行してプロビジョニングネットワークを設定します。

    $ sudo nohup bash -c "
        nmcli con down \"$PROV_CONN\"
        nmcli con delete \"$PROV_CONN\"
        nmcli connection add ifname provisioning type bridge con-name provisioning
        nmcli con add type bridge-slave ifname \"$PROV_CONN\" master provisioning
        nmcli connection modify provisioning ipv6.addresses fd00:1101::1/64 ipv6.method manual
        nmcli con down provisioning
        nmcli con up provisioning
    "
    Copy to Clipboard Toggle word wrap
    注記

    これらの手順を実行した後、SSH 接続が切断される場合があります。

    IPv6 アドレスは、ベアメタルネットワーク経由でルーティングできない任意のアドレスにすることができます。

    IPv6 アドレスを使用する場合に UEFI PXE 設定が有効にされており、UEFI PXE 設定が IPv6 プロトコルに設定されていることを確認します。

  5. オプション: プロビジョニングネットワークを使用してデプロイする場合は、次のコマンドを実行して、プロビジョニングネットワーク接続で IPv4 アドレスを設定します。

    $ nmcli connection modify provisioning ipv4.addresses 172.22.0.254/24 ipv4.method manual
    Copy to Clipboard Toggle word wrap
  6. 次のコマンドを実行して、provisioner ノードに SSH で戻ります (必要な場合)。

    # ssh kni@provisioner.<cluster-name>.<domain>
    Copy to Clipboard Toggle word wrap
  7. 次のコマンドを実行して、接続ブリッジが適切に作成されたことを確認します。

    $ sudo nmcli con show
    Copy to Clipboard Toggle word wrap

    出力例

    NAME               UUID                                  TYPE      DEVICE
    baremetal          4d5133a5-8351-4bb9-bfd4-3af264801530  bridge    baremetal
    provisioning       43942805-017f-4d7d-a2c2-7cb3324482ed  bridge    provisioning
    virbr0             d9bca40f-eee1-410b-8879-a2d4bb0465e7  bridge    virbr0
    bridge-slave-eno1  76a8ed50-c7e5-4999-b4f6-6d9014dd0812  ethernet  eno1
    bridge-slave-eno2  f31c3353-54b7-48de-893a-02d2b34c4736  ethernet  eno2
    Copy to Clipboard Toggle word wrap

3.3.5. カスタマイズされた br-ex ブリッジを含むマニフェストオブジェクトの作成

configure-ovs.sh シェルスクリプトを使用してベアメタルプラットフォームで br-ex ブリッジを設定する代わりに、NMState 設定ファイルを含む MachineConfig オブジェクトを作成できます。ホスト nmstate-configuration.service および nmstate.service により、クラスター内で実行される各ノードに NMState 設定ファイルが適用されます。

カスタマイズされた br-ex ブリッジを含むマニフェストオブジェクトを作成する場合は、次のユースケースを検討してください。

  • Open vSwitch (OVS) または OVN-Kubernetes br-ex ブリッジネットワークの変更など、ブリッジにインストール後の変更を加えたい場合。configure-ovs.sh シェルスクリプトは、ブリッジへのインストール後の変更をサポートしていません。
  • ホストまたはサーバーの IP アドレスで使用可能なインターフェイスとは異なるインターフェイスにブリッジをデプロイします。
  • configure-ovs.sh シェルスクリプトでは不可能な、ブリッジの高度な設定を実行したいと考えています。これらの設定にスクリプトを使用すると、ブリッジが複数のネットワークインターフェイスに接続できず、インターフェイス間のデータ転送が促進されない可能性があります。
注記

単一のネットワークインターフェイスコントローラー (NIC) とデフォルトのネットワーク設定を備えた環境が必要な場合は、configure-ovs.sh シェルスクリプトを使用します。

Red Hat Enterprise Linux CoreOS (RHCOS) をインストールしてシステムを再起動すると、Machine Config Operator がクラスター内の各ノードに Ignition 設定ファイルを注入し、各ノードが br-ex ブリッジネットワーク設定を受け取るようになります。設定の競合を防ぐために、configure-ovs.sh シェルスクリプトは、br-ex ブリッジを設定しない信号を受け取ります。

警告

次のインターフェイス名は予約されており、NMstate 設定では使用できません。

  • br-ext
  • br-int
  • br-local
  • br-nexthop
  • br0
  • ext-vxlan
  • ext
  • genev_sys_*
  • int
  • k8s-*
  • ovn-k8s-*
  • patch-br-*
  • tun0
  • vxlan_sys_*

前提条件

  • オプション: NMState 設定を検証できるように、nmstate API をインストールしました。

手順

  1. カスタマイズされた br-ex ブリッジネットワークの base64 情報をデコードした NMState 設定ファイルを作成します。

    カスタマイズされた br-ex ブリッジネットワークの NMState 設定の例

    interfaces:
    - name: enp2s0 
    1
    
      type: ethernet 
    2
    
      state: up 
    3
    
      ipv4:
        enabled: false 
    4
    
      ipv6:
        enabled: false
    - name: br-ex
      type: ovs-bridge
      state: up
      ipv4:
        enabled: false
        dhcp: false
      ipv6:
        enabled: false
        dhcp: false
      bridge:
        options:
          mcast-snooping-enable: true
        port:
        - name: enp2s0 
    5
    
        - name: br-ex
    - name: br-ex
      type: ovs-interface
      state: up
      copy-mac-from: enp2s0
      ipv4:
        enabled: true
        dhcp: true
        auto-route-metric: 48 
    6
    
      ipv6:
        enabled: true
        dhcp: true
        auto-route-metric: 48
    # ...
    Copy to Clipboard Toggle word wrap

    1
    インターフェイスの名前。
    2
    イーサネットのタイプ。
    3
    作成後のインターフェイスの要求された状態。
    4
    この例では、IPv4 と IPv6 を無効にします。
    5
    ブリッジが接続されるノードの NIC。
    6
    br-ex デフォルトルートに常に最高の優先度 (最も低いメトリック値) を付与するには、パラメーターを 48 に設定します。この設定により、NetworkManager サービスによって自動的に設定される他のインターフェイスとのルーティングの競合が防止されます。
  2. cat コマンドを使用して、NMState 設定の内容を base64 でエンコードします。

    $ cat <nmstate_configuration>.yaml | base64 
    1
    Copy to Clipboard Toggle word wrap
    1
    <nmstate_configuration> を NMState リソース YAML ファイルの名前に置き換えます。
  3. MachineConfig マニフェストファイルを作成し、次の例に類似したカスタマイズされた br-ex ブリッジネットワーク設定を定義します。

    apiVersion: machineconfiguration.openshift.io/v1
    kind: MachineConfig
    metadata:
      labels:
        machineconfiguration.openshift.io/role: worker
      name: 10-br-ex-worker 
    1
    
    spec:
      config:
        ignition:
          version: 3.2.0
        storage:
          files:
          - contents:
              source: data:text/plain;charset=utf-8;base64,<base64_encoded_nmstate_configuration> 
    2
    
            mode: 0644
            overwrite: true
            path: /etc/nmstate/openshift/worker-0.yml 
    3
    
          - contents:
              source: data:text/plain;charset=utf-8;base64,<base64_encoded_nmstate_configuration>
            mode: 0644
            overwrite: true
            path: /etc/nmstate/openshift/worker-1.yml 
    4
    
    # ...
    Copy to Clipboard Toggle word wrap
    1
    ポリシーの名前。
    2
    エンコードされた base64 情報を指定されたパスに書き込みます。
    3 4
    クラスター内の各ノードに対して、ノードへのホスト名パスと、マシンタイプに応じた base-64 でエンコードされた Ignition 設定ファイルデータを指定します。worker ロールは、クラスター内のノードのデフォルトロールです。MachineConfig マニフェストファイルで各ノードまたはすべてのノードに対して短いホスト名 (hostname -s で得られるもの) のパスを指定する際に、.yaml 拡張子は機能しません。

    クラスター内のすべてのノードに適用する単一のグローバル設定が /etc/nmstate/openshift/cluster.yml 設定ファイルで指定されている場合は、各ノードの短いホスト名パス (例: /etc/nmstate/openshift/<node_hostname>.yml) を指定する必要はありません。以下に例を示します。

    # ...
          - contents:
              source: data:text/plain;charset=utf-8;base64,<base64_encoded_nmstate_configuration>
            mode: 0644
            overwrite: true
            path: /etc/nmstate/openshift/cluster.yml
    # ...
    Copy to Clipboard Toggle word wrap

次のステップ

  • コンピュートノードをスケーリングして、クラスター内に存在する各コンピュートノードに、カスタマイズされた br-ex ブリッジを含むマニフェストオブジェクトを適用します。詳細は、関連情報 セクションの「クラスターの拡張」を参照してください。
3.3.5.1. 各マシンセットをコンピュートノードにスケーリング

カスタマイズされた br-ex ブリッジ設定を OpenShift Container Platform クラスター内のすべてのコンピュートノードに適用するには、MachineConfig カスタムリソース (CR) を編集し、そのロールを変更する必要があります。さらに、ホスト名、認証情報など、ベアメタルマシンの情報を定義する BareMetalHost CR を作成する必要があります。

これらのリソースを設定した後、マシンセットをスケーリングして、マシンセットが各コンピュートノードにリソース設定を適用し、ノードを再起動できるようにする必要があります。

前提条件

  • カスタマイズされた br-ex ブリッジ設定を含む MachineConfig マニフェストオブジェクトを作成しました。

手順

  1. 次のコマンドを入力して MachineConfig CR を編集します。

    $ oc edit mc <machineconfig_custom_resource_name>
    Copy to Clipboard Toggle word wrap
  2. 各コンピュートノード設定を CR に追加して、CR がクラスター内の定義済みコンピュートノードごとにロールを管理できるようにします。
  3. 最小限の静的 IP 設定を持つ extraworker-secret という名前の Secret オブジェクトを作成します。
  4. 次のコマンドを入力して、クラスター内の各ノードに extraworker-secret シークレットを適用します。このステップでは、各コンピュートノードに Ignition 設定ファイルへのアクセスを提供します。

    $ oc apply -f ./extraworker-secret.yaml
    Copy to Clipboard Toggle word wrap
  5. BareMetalHost リソースを作成し、preprovisioningNetworkDataName パラメーターでネットワークシークレットを指定します。

    ネットワークシークレットが添付された BareMetalHost リソースの例

    apiVersion: metal3.io/v1alpha1
    kind: BareMetalHost
    spec:
    # ...
      preprovisioningNetworkDataName: ostest-extraworker-0-network-config-secret
    # ...
    Copy to Clipboard Toggle word wrap

  6. クラスターの openshift-machine-api namespace 内で BareMetalHost オブジェクトを管理するために、次のコマンドを入力して namespace に変更します。

    $ oc project openshift-machine-api
    Copy to Clipboard Toggle word wrap
  7. マシンセットを取得します。

    $ oc get machinesets
    Copy to Clipboard Toggle word wrap
  8. 次のコマンドを入力して、各マシンセットをスケールします。このコマンドはマシンセットごとに実行する必要があります。

    $ oc scale machineset <machineset_name> --replicas=<n> 
    1
    Copy to Clipboard Toggle word wrap
    1
    <machineset_name> はマシンセットの名前です。<n> はコンピュートノードの数です。

3.3.6. クラスターで OVS balance-slb モードを有効にする

2 つ以上の物理インターフェイスがネットワークトラフィックを共有できるように、Open vSwitch (OVS) の balance-slb モードを有効にできます。balance-slb モードのインターフェイスは、ネットワークスイッチとのソースロードバランシングを必要とせずに、仮想化ワークロードを実行するクラスターにソース負荷分散 (SLB) 機能を提供できます。

現在、ソースロードバランシングはボンディングインターフェイスで実行されます。このインターフェイスは br-phy などの補助ブリッジに接続します。ソースロードバランシングは、Media Access Control (MAC) アドレスと仮想ローカルエリアネットワーク (VLAN) の組み合わせが複数存在する場合にのみ、負荷分散を行います。OVN-Kubernetes Pod のトラフィックはすべて同じ MAC アドレスと VLAN を使用するため、このトラフィックを多数の物理インターフェイス間で負荷分散することはできないことに注意してください。

次の図は、単純なクラスターインフラストラクチャーレイアウトでの balance-slb モードを示しています。仮想マシン (VM) は、特定の localnet NetworkAttachmentDefinition (NAD) カスタムリソース定義 (CRD)、NAD 0 または NAD 1 に接続します。各 NAD は、仮想マシンに基盤となる物理ネットワークへのアクセスを提供し、タグ付きまたはタグなしの VLAN トラフィックをサポートしています。br-ex OVS ブリッジは仮想マシンからのトラフィックを受信し、そのトラフィックを次の OVS ブリッジである br-phy に渡します。br-phy ブリッジは SLB ボンディングのコントローラーとして機能します。SLB ボンディングは、eno0eno1 などの物理インターフェイスリンクを介して、異なる仮想マシンポートからのトラフィックを分散します。さらに、どちらの物理インターフェイスからの Ingress トラフィックも、OVS ブリッジのセットを通過して仮想マシンに到達できます。

図3.1 2 つの NAD を持つローカルネット上で動作する OVS balance-slb モード

OVS ボンディングを使用して、balance-slb モードインターフェイスをプライマリーまたはセカンダリーネットワークタイプに統合できます。OVS ボンディングでは、次の点に注意してください。

  • OVN-Kubernetes CNI プラグインをサポートし、プラグインと簡単に統合できます。
  • ネイティブで balance-slb モードをサポートします。

前提条件

  • プライマリーネットワークに複数の物理インターフェイスが接続されており、それらのインターフェイスを MachineConfig ファイルで定義した。
  • マニフェストオブジェクトを作成し、カスタマイズした br-ex ブリッジをオブジェクト設定ファイルで定義した。
  • プライマリーネットワークに複数の物理インターフェイスが接続されており、それらのインターフェイスを NAD CRD ファイルで定義した。

手順

  1. クラスター内に存在するベアメタルホストごとに、クラスターの install-config.yaml ファイルで、次の例のように networkConfig セクションを定義します。

    # ...
    networkConfig:
      interfaces:
        - name: enp1s0 
    1
    
          type: ethernet
          state: up
          ipv4:
            dhcp: true
            enabled: true
          ipv6:
            enabled: false
        - name: enp2s0 
    2
    
          type: ethernet
          state: up
          mtu: 1500 
    3
    
          ipv4:
            dhcp: true
            enabled: true
          ipv6:
            dhcp: true
            enabled: true
        - name: enp3s0 
    4
    
          type: ethernet
          state: up
          mtu: 1500
          ipv4:
            enabled: false
          ipv6:
            enabled: false
    # ...
    Copy to Clipboard Toggle word wrap
    1
    プロビジョニングされるネットワークインターフェイスコントローラー (NIC) のインターフェイス。
    2
    ボンディングインターフェイス用の Ignition 設定ファイルを取り込む最初のボンディングされたインターフェイス。
    3
    ボンディングポートの br-ex 最大伝送単位 (MTU) を手動で設定します。
    4
    2 つ目のボンディングされたインターフェイスは、クラスターのインストール中に Ignition を実行する最小設定の一部です。
  2. NMState 設定ファイルで各ネットワークインターフェイスを定義します。

    多数のネットワークインターフェイスを定義する NMState 設定ファイルの例

    ovn:
      bridge-mappings:
        - localnet: localnet-network
          bridge: br-ex
          state: present
    interfaces:
      - name: br-ex
        type: ovs-bridge
        state: up
        bridge:
          allow-extra-patch-ports: true
          port:
            - name: br-ex
            - name: patch-ex-to-phy
        ovs-db:
          external_ids:
            bridge-uplink: "patch-ex-to-phy"
      - name: br-ex
        type: ovs-interface
        state: up
        mtu: 1500 
    1
    
        ipv4:
          enabled: true
          dhcp: true
          auto-route-metric: 48
        ipv6:
          enabled: false
          dhcp: false
          auto-route-metric: 48
      - name: br-phy
        type: ovs-bridge
        state: up
        bridge:
          allow-extra-patch-ports: true
          port:
            - name: patch-phy-to-ex
            - name: ovs-bond
              link-aggregation:
                mode: balance-slb
                port:
                  - name: enp2s0
                  - name: enp3s0
      - name: patch-ex-to-phy
        type: ovs-interface
        state: up
        patch:
          peer: patch-phy-to-ex
      - name: patch-phy-to-ex
        type: ovs-interface
        state: up
        patch:
          peer: patch-ex-to-phy
      - name: enp1s0
        type: ethernet
        state: up
        ipv4:
          dhcp: true
          enabled: true
        ipv6:
          enabled: false
      - name: enp2s0
        type: ethernet
        state: up
        mtu: 1500
        ipv4:
          enabled: false
        ipv6:
          enabled: false
      - name: enp3s0
        type: ethernet
        state: up
        mtu: 1500
        ipv4:
          enabled: false
        ipv6:
          enabled: false
    # ...
    Copy to Clipboard Toggle word wrap

    1
    ボンディングポートの br-ex MTU を手動で設定します。
  3. base64 コマンドを使用して、NMState 設定ファイルのインターフェイスコンテンツをエンコードします。

    $ base64 -w0  <nmstate_configuration>.yml 
    1
    Copy to Clipboard Toggle word wrap
    1
    -w0 オプションは、base64 エンコード操作中に行の折り返しを防止します。
  4. master ロールと worker ロールの MachineConfig マニフェストファイルを作成します。前のコマンドからの base64 エンコード文字列を各 MachineConfig マニフェストファイルに必ず埋め込んでください。次のマニフェストファイルの例では、クラスター内に存在するすべてのノードに対して master ロールを設定します。ノード固有の master ロールと worker ロールのマニフェストファイルを作成することもできます。

    apiVersion: machineconfiguration.openshift.io/v1
    kind: MachineConfig
    metadata:
      labels:
        machineconfiguration.openshift.io/role: master
      name: 10-br-ex-master 
    1
    
    spec:
      config:
        ignition:
          version: 3.2.0
        storage:
          files:
          - contents:
              source: data:text/plain;charset=utf-8;base64,<base64_encoded_nmstate_configuration> 
    2
    
            mode: 0644
            overwrite: true
            path: /etc/nmstate/openshift/cluster.yml 
    3
    Copy to Clipboard Toggle word wrap
    1
    ポリシーの名前。
    2
    エンコードされた base64 情報を指定されたパスに書き込みます。
    3
    cluster.yml ファイルへのパスを指定します。クラスター内の各ノードに対して、<node_short_hostname>.yml など、ノードへの短いホスト名パスを指定できます。
  5. MachineConfig マニフェストファイルを ./<installation_directory>/manifests ディレクトリーに保存します。<installation_directory> は、インストールプログラムがファイルを作成するディレクトリーです。

    Machine Config Operator (MCO) が各マニフェストファイルからコンテンツを取得し、ローリング更新中に選択されたすべてのノードにそのコンテンツを一貫して適用します。

3.3.7. サブネット間の通信を確立する

一般的な OpenShift Container Platform クラスターのセットアップでは、コントロールプレーンとコンピュートノードを含むすべてのノードが同じネットワーク内に存在します。ただし、エッジコンピューティングのシナリオでは、コンピュートノードをエッジの近くに配置することが有益な場合があります。その場合、コントロールプレーンやローカルコンピュートノードが使用するサブネットとは異なるネットワークセグメントまたはサブネットをリモートノードに使用することもよくあります。このようなセットアップにより、エッジのレイテンシーが減少し、拡張性が向上します。

OpenShift Container Platform をインストールする前に、リモートノードを含むエッジサブネットがコントロールプレーンノードを含むサブネットに到達し、コントロールプレーンからのトラフィックも受信できるように、ネットワークを適切に設定する必要があります。

重要

クラスターのインストール中に、install-config.yaml 設定ファイルのネットワーク設定でノードに永続的な IP アドレスを割り当てます。これを行わないと、ノードに一時的な IP アドレスが割り当てられ、トラフィックがノードに到達する方法に影響する可能性があります。たとえば、ノードに一時的な IP アドレスが割り当てられていて、ノードに対して結合されたインターフェイスを設定した場合、結合されたインターフェイスは別の IP アドレスを受け取る可能性があります。

デフォルトのロードバランサーの代わりにユーザー管理のロードバランサーを設定することで、同じサブネットまたは複数のサブネットでコントロールプレーンノードを実行できます。複数のサブネット環境を使用すると、ハードウェア障害やネットワーク停止によって OpenShift Container Platform クラスターが失敗するリスクを軽減できます。詳細は、「ユーザー管理ロードバランサーのサービス」および「ユーザー管理ロードバランサーの設定」を参照してください。

複数のサブネット環境でコントロールプレーンノードを実行するには、次の主要なタスクを完了する必要があります。

  • install-config.yaml ファイルの loadBalancer.type パラメーターで UserManaged を指定して、デフォルトのロードバランサーの代わりにユーザー管理のロードバランサーを設定します。
  • install-config.yaml ファイルの ingressVIPs および apiVIPs パラメーターでユーザー管理のロードバランサーのアドレスを設定します。
  • 複数のサブネットの Classless Inter-Domain Routing (CIDR) とユーザー管理のロードバランサーの IP アドレスを、install-config.yaml ファイルの networking.machineNetworks パラメーターに追加します。
注記

複数のサブネットを持つクラスターをデプロイするには、redfish-virtualmediaidrac-virtualmedia などの仮想メディアを使用する必要があります。

この手順では、2 番目のサブネットにあるリモートコンピュートノードが 1 番目のサブネットにあるコントロールプレーンノードと効果的に通信できるようにするために必要なネットワーク設定と、1 番目のサブネットにあるコントロールプレーンノードが 2 番目のサブネットにあるリモートコンピュートノードと効果的に通信できるようにするために必要なネットワーク設定を詳しく説明します。

この手順では、クラスターは 2 つのサブネットにまたがります。

  • 1 番目のサブネット (10.0.0.0) には、コントロールプレーンとローカルコンピュートノードが含まれています。
  • 2 番目のサブネット (192.168.0.0) には、エッジコンピュートノードが含まれています。

手順

  1. 1 番目のサブネットが 2 番目のサブネットと通信するように設定します。

    1. 次のコマンドを実行して、コントロールプレーンノードに root としてログインします。

      $ sudo su -
      Copy to Clipboard Toggle word wrap
    2. 次のコマンドを実行して、ネットワークインターフェイスの名前を取得します。

      # nmcli dev status
      Copy to Clipboard Toggle word wrap
    3. 次のコマンドを実行して、ゲートウェイを経由する 2 番目のサブネット (192.168.0.0) へのルートを追加します。

      # nmcli connection modify <interface_name> +ipv4.routes "192.168.0.0/24 via <gateway>"
      Copy to Clipboard Toggle word wrap

      <interface_name> をインターフェイス名に置き換えます。<gateway> を実際のゲートウェイの IP アドレスに置き換えます。

      # nmcli connection modify eth0 +ipv4.routes "192.168.0.0/24 via 192.168.0.1"
      Copy to Clipboard Toggle word wrap

    4. 次のコマンドを実行して変更を適用します。

      # nmcli connection up <interface_name>
      Copy to Clipboard Toggle word wrap

      <interface_name> をインターフェイス名に置き換えます。

    5. ルーティングテーブルを検証して、ルートが正常に追加されたことを確認します。

      # ip route
      Copy to Clipboard Toggle word wrap
    6. 1 番目のサブネットの各コントロールプレーンノードに対して前の手順を繰り返します。

      注記

      コマンドは、実際のインターフェイス名とゲートウェイに合わせて調整してください。

  2. 1 番目のサブネットと通信するように 2 番目のサブネットを設定します。

    1. 次のコマンドを実行して、リモートコンピュートノードに root としてログインします。

      $ sudo su -
      Copy to Clipboard Toggle word wrap
    2. 次のコマンドを実行して、ネットワークインターフェイスの名前を取得します。

      # nmcli dev status
      Copy to Clipboard Toggle word wrap
    3. 次のコマンドを実行して、ゲートウェイを経由する最初のサブネット (10.0.0.0) へのルートを追加します。

      # nmcli connection modify <interface_name> +ipv4.routes "10.0.0.0/24 via <gateway>"
      Copy to Clipboard Toggle word wrap

      <interface_name> をインターフェイス名に置き換えます。<gateway> を実際のゲートウェイの IP アドレスに置き換えます。

      # nmcli connection modify eth0 +ipv4.routes "10.0.0.0/24 via 10.0.0.1"
      Copy to Clipboard Toggle word wrap

    4. 次のコマンドを実行して変更を適用します。

      # nmcli connection up <interface_name>
      Copy to Clipboard Toggle word wrap

      <interface_name> をインターフェイス名に置き換えます。

    5. 次のコマンドを実行して、ルーティングテーブルを検証し、ルートが正常に追加されたことを確認します。

      # ip route
      Copy to Clipboard Toggle word wrap
    6. 2 番目のサブネット内の各コンピュートノードに対して、上記の手順を繰り返します。

      注記

      コマンドは、実際のインターフェイス名とゲートウェイに合わせて調整してください。

  3. ネットワークを設定したら、接続をテストして、リモートノードがコントロールプレーンノードに到達できること、およびコントロールプレーンノードがリモートノードに到達できることを確認します。

    1. 1 番目のサブネットのコントロールプレーンノードから、次のコマンドを実行して、2 番目のサブネットのリモートノードに ping を実行します。

      $ ping <remote_node_ip_address>
      Copy to Clipboard Toggle word wrap

      ping が成功した場合は、1 番目のサブネットのコントロールプレーンノードが 2 番目のサブネットのリモートノードに到達できています。応答がない場合は、ネットワーク設定を確認し、ノードに対して手順を繰り返します。

    2. 2 番目のサブネットのリモートノードから、次のコマンドを実行して、1 番目のサブネットのコントロールプレーンノードに ping を実行します。

      $ ping <control_plane_node_ip_address>
      Copy to Clipboard Toggle word wrap

      ping が成功した場合は、2 番目のサブネットのリモートコンピュートノードが 1 番目のサブネットのコントロールプレーンに到達できています。応答がない場合は、ネットワーク設定を確認し、ノードに対して手順を繰り返します。

3.3.8. OpenShift Container Platform インストーラーの取得

インストールプログラムの stable-4.x バージョンと選択したアーキテクチャーを使用して、OpenShift Container Platform の一般公開の安定バージョンをデプロイします。

$ export VERSION=stable-4.19
Copy to Clipboard Toggle word wrap
$ export RELEASE_ARCH=<architecture>
Copy to Clipboard Toggle word wrap
$ export RELEASE_IMAGE=$(curl -s https://mirror.openshift.com/pub/openshift-v4/$RELEASE_ARCH/clients/ocp/$VERSION/release.txt | grep 'Pull From: quay.io' | awk -F ' ' '{print $3}')
Copy to Clipboard Toggle word wrap

3.3.9. OpenShift Container Platform インストーラーの展開

インストーラーを取得したら、インストーラーを展開します。

手順

  1. 環境変数を設定します。

    $ export cmd=openshift-baremetal-install
    Copy to Clipboard Toggle word wrap
    $ export pullsecret_file=~/pull-secret.txt
    Copy to Clipboard Toggle word wrap
    $ export extract_dir=$(pwd)
    Copy to Clipboard Toggle word wrap
  2. oc バイナリーを取得します。

    $ curl -s https://mirror.openshift.com/pub/openshift-v4/clients/ocp/$VERSION/openshift-client-linux.tar.gz | tar zxvf - oc
    Copy to Clipboard Toggle word wrap
  3. インストーラーを実行します。

    $ sudo cp oc /usr/local/bin
    Copy to Clipboard Toggle word wrap
    $ oc adm release extract --registry-config "${pullsecret_file}" --command=$cmd --to "${extract_dir}" ${RELEASE_IMAGE}
    Copy to Clipboard Toggle word wrap
    $ sudo cp openshift-baremetal-install /usr/local/bin
    Copy to Clipboard Toggle word wrap

3.3.10. RHCOS イメージキャッシュの作成

イメージキャッシングを使用するには、ブートストラップ VM がクラスターノードをプロビジョニングするために使用する Red Hat Enterprise Linux CoreOS(RHCOS) イメージをダウンロードする必要があります。イメージのキャッシュはオプションですが、帯域幅が制限されているネットワークでインストールプログラムを実行する場合に特に便利です。

注記

正しいイメージがリリースペイロードにあるため、インストールプログラムは、clusterOSImage RHCOS イメージを必要としなくなりました。

帯域幅が制限されたネットワークでインストールプログラムを実行していて、RHCOS イメージのダウンロードに 15〜20 分以上かかる場合、インストールプログラムはタイムアウトになります。このような場合、Web サーバーでイメージをキャッシュすることができます。

警告

HTTPD サーバーに対して TLS を有効にする場合、ルート証明書がクライアントによって信頼された機関によって署名されていることを確認し、OpenShift Container Platform ハブおよびスポーククラスターと HTTPD サーバー間の信頼された証明書チェーンを検証する必要があります。信頼されていない証明書で設定されたサーバーを使用すると、イメージがイメージ作成サービスにダウンロードされなくなります。信頼されていない HTTPS サーバーの使用はサポートされていません。

イメージを含むコンテナーをインストールします。

手順

  1. podman をインストールします。

    $ sudo dnf install -y podman
    Copy to Clipboard Toggle word wrap
  2. RHCOS イメージのキャッシュに使用されるファイアウォールのポート 8080 を開きます。

    $ sudo firewall-cmd --add-port=8080/tcp --zone=public --permanent
    Copy to Clipboard Toggle word wrap
    $ sudo firewall-cmd --reload
    Copy to Clipboard Toggle word wrap
  3. bootstraposimage を保存するディレクトリーを作成します。

    $ mkdir /home/kni/rhcos_image_cache
    Copy to Clipboard Toggle word wrap
  4. 新規に作成されたディレクトリーに適切な SELinux コンテキストを設定します。

    $ sudo semanage fcontext -a -t httpd_sys_content_t "/home/kni/rhcos_image_cache(/.*)?"
    Copy to Clipboard Toggle word wrap
    $ sudo restorecon -Rv /home/kni/rhcos_image_cache/
    Copy to Clipboard Toggle word wrap
  5. インストールプログラムがブートストラップ VM にデプロイする RHCOS イメージの URI を取得します。

    $ export RHCOS_QEMU_URI=$(/usr/local/bin/openshift-baremetal-install coreos print-stream-json | jq -r --arg ARCH "$(arch)" '.architectures[$ARCH].artifacts.qemu.formats["qcow2.gz"].disk.location')
    Copy to Clipboard Toggle word wrap
  6. インストールプログラムがブートストラップ VM にデプロイするイメージの名前を取得します。

    $ export RHCOS_QEMU_NAME=${RHCOS_QEMU_URI##*/}
    Copy to Clipboard Toggle word wrap
  7. ブートストラップ仮想マシンにデプロイされる RHCOS イメージの SHA ハッシュを取得します。

    $ export RHCOS_QEMU_UNCOMPRESSED_SHA256=$(/usr/local/bin/openshift-baremetal-install coreos print-stream-json | jq -r --arg ARCH "$(arch)" '.architectures[$ARCH].artifacts.qemu.formats["qcow2.gz"].disk["uncompressed-sha256"]')
    Copy to Clipboard Toggle word wrap
  8. イメージをダウンロードして、/home/kni/rhcos_image_cache ディレクトリーに配置します。

    $ curl -L ${RHCOS_QEMU_URI} -o /home/kni/rhcos_image_cache/${RHCOS_QEMU_NAME}
    Copy to Clipboard Toggle word wrap
  9. 新しいファイルの SELinux タイプが httpd_sys_content_t であることを確認します。

    $ ls -Z /home/kni/rhcos_image_cache
    Copy to Clipboard Toggle word wrap
  10. Pod を作成します。

    $ podman run -d --name rhcos_image_cache \
    1
    
    -v /home/kni/rhcos_image_cache:/var/www/html \
    -p 8080:8080/tcp \
    registry.access.redhat.com/ubi9/httpd-24
    Copy to Clipboard Toggle word wrap
    1
    rhcos_image_cache という名前のキャッシング Web サーバーを作成します。この Pod は、デプロイメント用に install-config.yaml ファイルの bootstrapOSImage イメージを提供します。
  11. bootstrapOSImage 設定を生成します。

    $ export BAREMETAL_IP=$(ip addr show dev baremetal | awk '/inet /{print $2}' | cut -d"/" -f1)
    Copy to Clipboard Toggle word wrap
    $ export BOOTSTRAP_OS_IMAGE="http://${BAREMETAL_IP}:8080/${RHCOS_QEMU_NAME}?sha256=${RHCOS_QEMU_UNCOMPRESSED_SHA256}"
    Copy to Clipboard Toggle word wrap
    $ echo "    bootstrapOSImage=${BOOTSTRAP_OS_IMAGE}"
    Copy to Clipboard Toggle word wrap
  12. platform.baremetal 下の install-config.yaml ファイルに必要な設定を追加します。

    platform:
      baremetal:
        bootstrapOSImage: <bootstrap_os_image>  
    1
    Copy to Clipboard Toggle word wrap
    1
    <bootstrap_os_image>$BOOTSTRAP_OS_IMAGE の値に置き換えます。

    詳細は、「install-config.yaml ファイルの設定」セクションを参照してください。

3.3.11. ユーザー管理ロードバランサーのサービス

デフォルトのロードバランサーの代わりに、ユーザーが管理するロードバランサーを使用するように OpenShift Container Platform クラスターを設定できます。

重要

ユーザー管理ロードバランサーの設定は、ベンダーのロードバランサーによって異なります。

このセクションの情報と例は、ガイドラインのみを目的としています。ベンダーのロードバランサーに関する詳細は、ベンダーのドキュメントを参照してください。

Red Hat は、ユーザー管理ロードバランサーに対して次のサービスをサポートしています。

  • Ingress Controller
  • OpenShift API
  • OpenShift MachineConfig API

ユーザー管理ロードバランサーに対して、これらのサービスの 1 つを設定するか、すべてを設定するかを選択できます。一般的な設定オプションは、Ingress Controller サービスのみを設定することです。次の図は、各サービスの詳細を示しています。

図3.2 OpenShift Container Platform 環境で動作する Ingress Controller を示すネットワークワークフローの例

図3.3 OpenShift Container Platform 環境で動作する OpenShift API を示すネットワークワークフローの例

図3.4 OpenShift Container Platform 環境で動作する OpenShift MachineConfig API を示すネットワークワークフローの例

ユーザー管理ロードバランサーでは、次の設定オプションがサポートされています。

  • ノードセレクターを使用して、Ingress Controller を特定のノードのセットにマッピングします。このセットの各ノードに静的 IP アドレスを割り当てるか、Dynamic Host Configuration Protocol (DHCP) から同じ IP アドレスを受け取るように各ノードを設定する必要があります。インフラストラクチャーノードは通常、このタイプの設定を受け取ります。
  • サブネット上のすべての IP アドレスをターゲットにします。この設定では、ロードバランサーターゲットを再設定せずにネットワーク内でノードを作成および破棄できるため、メンテナンスオーバーヘッドを削減できます。/27/28 などの小規模なネットワーク上に設定されたマシンを使用して Ingress Pod をデプロイする場合、ロードバランサーのターゲットを簡素化できます。

    ヒント

    マシン config プールのリソースを確認することで、ネットワーク内に存在するすべての IP アドレスをリスト表示できます。

OpenShift Container Platform クラスターのユーザー管理ロードバランサーを設定する前に、以下の情報を考慮してください。

  • フロントエンド IP アドレスの場合、フロントエンド IP アドレス、Ingress Controller のロードバランサー、および API ロードバランサーに同じ IP アドレスを使用できます。この機能は、ベンダーのドキュメントを確認してください。
  • バックエンド IP アドレスの場合、ユーザー管理ロードバランサーの有効期間中に OpenShift Container Platform コントロールプレーンノードの IP アドレスが変更されないことを確認します。次のいずれかのアクションを実行すると、これを実現できます。

    • 各コントロールプレーンノードに静的 IP アドレスを割り当てます。
    • ノードが DHCP リースを要求するたびに、DHCP から同じ IP アドレスを受信するように各ノードを設定します。ベンダーによっては、DHCP リースは IP 予約または静的 DHCP 割り当ての形式になる場合があります。
  • Ingress Controller バックエンドサービスのユーザー管理ロードバランサーで Ingress Controller を実行する各ノードを手動で定義します。たとえば、Ingress Controller が未定義のノードに移動すると、接続が停止する可能性があります。
3.3.11.1. ユーザー管理ロードバランサーの設定

デフォルトのロードバランサーの代わりに、ユーザーが管理するロードバランサーを使用するように OpenShift Container Platform クラスターを設定できます。

重要

ユーザー管理ロードバランサーを設定する前に、「ユーザー管理ロードバランサーのサービス」セクションを必ずお読みください。

ユーザー管理ロードバランサー用に設定するサービスに適用される次の前提条件をお読みください。

注記

クラスター上で実行される MetalLB は、ユーザー管理ロードバランサーとして機能します。

OpenShift API の前提条件

  • フロントエンド IP アドレスを定義している。
  • TCP ポート 6443 および 22623 は、ロードバランサーのフロントエンド IP アドレスで公開されている。以下の項目を確認します。

    • ポート 6443 が OpenShift API サービスにアクセスできる。
    • ポート 22623 が Ignition 起動設定をノードに提供できる。
  • フロントエンド IP アドレスとポート 6443 へは、OpenShift Container Platform クラスターの外部の場所にいるシステムのすべてのユーザーがアクセスできる。
  • フロントエンド IP アドレスとポート 22623 は、OpenShift Container Platform ノードからのみ到達できる。
  • ロードバランサーバックエンドは、ポート 6443 および 22623 の OpenShift Container Platform コントロールプレーンノードと通信できる。

Ingress Controller の前提条件

  • フロントエンド IP アドレスを定義している。
  • TCP ポート 443 および 80 はロードバランサーのフロントエンド IP アドレスで公開されている。
  • フロントエンドの IP アドレス、ポート 80、ポート 443 へは、OpenShift Container Platform クラスターの外部の場所にあるシステムの全ユーザーがアクセスできる。
  • フロントエンドの IP アドレス、ポート 80、ポート 443 は、OpenShift Container Platform クラスターで動作するすべてのノードから到達できる。
  • ロードバランサーバックエンドは、ポート 80、443、および 1936 で Ingress Controller を実行する OpenShift Container Platform ノードと通信できる。

ヘルスチェック URL 仕様の前提条件

ほとんどのロードバランサーは、サービスが使用可能か使用不可かを判断するヘルスチェック URL を指定して設定できます。OpenShift Container Platform は、OpenShift API、Machine Configuration API、および Ingress Controller バックエンドサービスのこれらのヘルスチェックを提供します。

次の例は、前にリスト表示したバックエンドサービスのヘルスチェック仕様を示しています。

Kubernetes API ヘルスチェック仕様の例

Path: HTTPS:6443/readyz
Healthy threshold: 2
Unhealthy threshold: 2
Timeout: 10
Interval: 10
Copy to Clipboard Toggle word wrap

Machine Config API ヘルスチェック仕様の例

Path: HTTPS:22623/healthz
Healthy threshold: 2
Unhealthy threshold: 2
Timeout: 10
Interval: 10
Copy to Clipboard Toggle word wrap

Ingress Controller のヘルスチェック仕様の例

Path: HTTP:1936/healthz/ready
Healthy threshold: 2
Unhealthy threshold: 2
Timeout: 5
Interval: 10
Copy to Clipboard Toggle word wrap

手順

  1. HAProxy Ingress Controller を設定して、ポート 6443、22623、443、および 80 でロードバランサーからクラスターへのアクセスを有効化できるようにします。必要に応じて、HAProxy 設定で単一のサブネットの IP アドレスまたは複数のサブネットの IP アドレスを指定できます。

    1 つのサブネットをリストした HAProxy 設定の例

    # ...
    listen my-cluster-api-6443
        bind 192.168.1.100:6443
        mode tcp
        balance roundrobin
      option httpchk
      http-check connect
      http-check send meth GET uri /readyz
      http-check expect status 200
        server my-cluster-master-2 192.168.1.101:6443 check inter 10s rise 2 fall 2
        server my-cluster-master-0 192.168.1.102:6443 check inter 10s rise 2 fall 2
        server my-cluster-master-1 192.168.1.103:6443 check inter 10s rise 2 fall 2
    
    listen my-cluster-machine-config-api-22623
        bind 192.168.1.100:22623
        mode tcp
        balance roundrobin
      option httpchk
      http-check connect
      http-check send meth GET uri /healthz
      http-check expect status 200
        server my-cluster-master-2 192.168.1.101:22623 check inter 10s rise 2 fall 2
        server my-cluster-master-0 192.168.1.102:22623 check inter 10s rise 2 fall 2
        server my-cluster-master-1 192.168.1.103:22623 check inter 10s rise 2 fall 2
    
    listen my-cluster-apps-443
        bind 192.168.1.100:443
        mode tcp
        balance roundrobin
      option httpchk
      http-check connect
      http-check send meth GET uri /healthz/ready
      http-check expect status 200
        server my-cluster-worker-0 192.168.1.111:443 check port 1936 inter 10s rise 2 fall 2
        server my-cluster-worker-1 192.168.1.112:443 check port 1936 inter 10s rise 2 fall 2
        server my-cluster-worker-2 192.168.1.113:443 check port 1936 inter 10s rise 2 fall 2
    
    listen my-cluster-apps-80
       bind 192.168.1.100:80
       mode tcp
       balance roundrobin
      option httpchk
      http-check connect
      http-check send meth GET uri /healthz/ready
      http-check expect status 200
        server my-cluster-worker-0 192.168.1.111:80 check port 1936 inter 10s rise 2 fall 2
        server my-cluster-worker-1 192.168.1.112:80 check port 1936 inter 10s rise 2 fall 2
        server my-cluster-worker-2 192.168.1.113:80 check port 1936 inter 10s rise 2 fall 2
    # ...
    Copy to Clipboard Toggle word wrap

    複数のサブネットをリストした HAProxy 設定の例

    # ...
    listen api-server-6443
        bind *:6443
        mode tcp
          server master-00 192.168.83.89:6443 check inter 1s
          server master-01 192.168.84.90:6443 check inter 1s
          server master-02 192.168.85.99:6443 check inter 1s
          server bootstrap 192.168.80.89:6443 check inter 1s
    
    listen machine-config-server-22623
        bind *:22623
        mode tcp
          server master-00 192.168.83.89:22623 check inter 1s
          server master-01 192.168.84.90:22623 check inter 1s
          server master-02 192.168.85.99:22623 check inter 1s
          server bootstrap 192.168.80.89:22623 check inter 1s
    
    listen ingress-router-80
        bind *:80
        mode tcp
        balance source
          server worker-00 192.168.83.100:80 check inter 1s
          server worker-01 192.168.83.101:80 check inter 1s
    
    listen ingress-router-443
        bind *:443
        mode tcp
        balance source
          server worker-00 192.168.83.100:443 check inter 1s
          server worker-01 192.168.83.101:443 check inter 1s
    
    listen ironic-api-6385
        bind *:6385
        mode tcp
        balance source
          server master-00 192.168.83.89:6385 check inter 1s
          server master-01 192.168.84.90:6385 check inter 1s
          server master-02 192.168.85.99:6385 check inter 1s
          server bootstrap 192.168.80.89:6385 check inter 1s
    
    listen inspector-api-5050
        bind *:5050
        mode tcp
        balance source
          server master-00 192.168.83.89:5050 check inter 1s
          server master-01 192.168.84.90:5050 check inter 1s
          server master-02 192.168.85.99:5050 check inter 1s
          server bootstrap 192.168.80.89:5050 check inter 1s
    # ...
    Copy to Clipboard Toggle word wrap

  2. curl CLI コマンドを使用して、ユーザー管理ロードバランサーとそのリソースが動作していることを確認します。

    1. 次のコマンドを実行して応答を観察し、クラスターマシン設定 API が Kubernetes API サーバーリソースにアクセスできることを確認します。

      $ curl https://<loadbalancer_ip_address>:6443/version --insecure
      Copy to Clipboard Toggle word wrap

      設定が正しい場合は、応答として JSON オブジェクトを受信します。

      {
        "major": "1",
        "minor": "11+",
        "gitVersion": "v1.11.0+ad103ed",
        "gitCommit": "ad103ed",
        "gitTreeState": "clean",
        "buildDate": "2019-01-09T06:44:10Z",
        "goVersion": "go1.10.3",
        "compiler": "gc",
        "platform": "linux/amd64"
      }
      Copy to Clipboard Toggle word wrap
    2. 次のコマンドを実行して出力を確認し、クラスターマシン設定 API がマシン設定サーバーリソースからアクセスできることを確認します。

      $ curl -v https://<loadbalancer_ip_address>:22623/healthz --insecure
      Copy to Clipboard Toggle word wrap

      設定が正しい場合、コマンドの出力には次の応答が表示されます。

      HTTP/1.1 200 OK
      Content-Length: 0
      Copy to Clipboard Toggle word wrap
    3. 次のコマンドを実行して出力を確認し、コントローラーがポート 80 の Ingress Controller リソースにアクセスできることを確認します。

      $ curl -I -L -H "Host: console-openshift-console.apps.<cluster_name>.<base_domain>" http://<load_balancer_front_end_IP_address>
      Copy to Clipboard Toggle word wrap

      設定が正しい場合、コマンドの出力には次の応答が表示されます。

      HTTP/1.1 302 Found
      content-length: 0
      location: https://console-openshift-console.apps.ocp4.private.opequon.net/
      cache-control: no-cache
      Copy to Clipboard Toggle word wrap
    4. 次のコマンドを実行して出力を確認し、コントローラーがポート 443 の Ingress Controller リソースにアクセスできることを確認します。

      $ curl -I -L --insecure --resolve console-openshift-console.apps.<cluster_name>.<base_domain>:443:<Load Balancer Front End IP Address> https://console-openshift-console.apps.<cluster_name>.<base_domain>
      Copy to Clipboard Toggle word wrap

      設定が正しい場合、コマンドの出力には次の応答が表示されます。

      HTTP/1.1 200 OK
      referrer-policy: strict-origin-when-cross-origin
      set-cookie: csrf-token=UlYWOyQ62LWjw2h003xtYSKlh1a0Py2hhctw0WmV2YEdhJjFyQwWcGBsja261dGLgaYO0nxzVErhiXt6QepA7g==; Path=/; Secure; SameSite=Lax
      x-content-type-options: nosniff
      x-dns-prefetch-control: off
      x-frame-options: DENY
      x-xss-protection: 1; mode=block
      date: Wed, 04 Oct 2023 16:29:38 GMT
      content-type: text/html; charset=utf-8
      set-cookie: 1e2670d92730b515ce3a1bb65da45062=1bf5e9573c9a2760c964ed1659cc1673; path=/; HttpOnly; Secure; SameSite=None
      cache-control: private
      Copy to Clipboard Toggle word wrap
  3. ユーザー管理ロードバランサーのフロントエンド IP アドレスをターゲットにするようにクラスターの DNS レコードを設定します。ロードバランサー経由で、クラスター API およびアプリケーションの DNS サーバーのレコードを更新する必要があります。

    変更された DNS レコードの例

    <load_balancer_ip_address>  A  api.<cluster_name>.<base_domain>
    A record pointing to Load Balancer Front End
    Copy to Clipboard Toggle word wrap

    <load_balancer_ip_address>   A apps.<cluster_name>.<base_domain>
    A record pointing to Load Balancer Front End
    Copy to Clipboard Toggle word wrap
    重要

    DNS の伝播では、各 DNS レコードが使用可能になるまでに時間がかかる場合があります。各レコードを検証する前に、各 DNS レコードが伝播されることを確認してください。

  4. OpenShift Container Platform クラスターでユーザー管理ロードバランサーを使用するには、クラスターの install-config.yaml ファイルで次の設定を指定する必要があります。

    # ...
    platform:
      baremetal:
        loadBalancer:
          type: UserManaged 
    1
    
        apiVIPs:
        - <api_ip> 
    2
    
        ingressVIPs:
        - <ingress_ip> 
    3
    
    # ...
    Copy to Clipboard Toggle word wrap
    1
    クラスターのユーザー管理ロードバランサーを指定するには、type パラメーターに UserManaged を設定します。パラメーターのデフォルトは OpenShiftManagedDefault で、これはデフォルトの内部ロードバランサーを示します。openshift-kni-infra namespace で定義されたサービスの場合、ユーザー管理ロードバランサーは coredns サービスをクラスター内の Pod にデプロイできますが、keepalived および haproxy サービスは無視します。
    2
    ユーザー管理ロードバランサーを指定する場合に必須のパラメーターです。Kubernetes API がユーザー管理ロードバランサーと通信できるように、ユーザー管理ロードバランサーのパブリック IP アドレスを指定します。
    3
    ユーザー管理ロードバランサーを指定する場合に必須のパラメーターです。ユーザー管理ロードバランサーのパブリック IP アドレスを指定して、ユーザー管理ロードバランサーがクラスターの Ingress トラフィックを管理できるようにします。

検証

  1. curl CLI コマンドを使用して、ユーザー管理ロードバランサーと DNS レコード設定が動作していることを確認します。

    1. 次のコマンドを実行して出力を確認し、クラスター API にアクセスできることを確認します。

      $ curl https://api.<cluster_name>.<base_domain>:6443/version --insecure
      Copy to Clipboard Toggle word wrap

      設定が正しい場合は、応答として JSON オブジェクトを受信します。

      {
        "major": "1",
        "minor": "11+",
        "gitVersion": "v1.11.0+ad103ed",
        "gitCommit": "ad103ed",
        "gitTreeState": "clean",
        "buildDate": "2019-01-09T06:44:10Z",
        "goVersion": "go1.10.3",
        "compiler": "gc",
        "platform": "linux/amd64"
        }
      Copy to Clipboard Toggle word wrap
    2. 次のコマンドを実行して出力を確認し、クラスターマシン設定にアクセスできることを確認します。

      $ curl -v https://api.<cluster_name>.<base_domain>:22623/healthz --insecure
      Copy to Clipboard Toggle word wrap

      設定が正しい場合、コマンドの出力には次の応答が表示されます。

      HTTP/1.1 200 OK
      Content-Length: 0
      Copy to Clipboard Toggle word wrap
    3. 以下のコマンドを実行して出力を確認し、ポートで各クラスターアプリケーションにアクセスできることを確認します。

      $ curl http://console-openshift-console.apps.<cluster_name>.<base_domain> -I -L --insecure
      Copy to Clipboard Toggle word wrap

      設定が正しい場合、コマンドの出力には次の応答が表示されます。

      HTTP/1.1 302 Found
      content-length: 0
      location: https://console-openshift-console.apps.<cluster-name>.<base domain>/
      cache-control: no-cacheHTTP/1.1 200 OK
      referrer-policy: strict-origin-when-cross-origin
      set-cookie: csrf-token=39HoZgztDnzjJkq/JuLJMeoKNXlfiVv2YgZc09c3TBOBU4NI6kDXaJH1LdicNhN1UsQWzon4Dor9GWGfopaTEQ==; Path=/; Secure
      x-content-type-options: nosniff
      x-dns-prefetch-control: off
      x-frame-options: DENY
      x-xss-protection: 1; mode=block
      date: Tue, 17 Nov 2020 08:42:10 GMT
      content-type: text/html; charset=utf-8
      set-cookie: 1e2670d92730b515ce3a1bb65da45062=9b714eb87e93cf34853e87a92d6894be; path=/; HttpOnly; Secure; SameSite=None
      cache-control: private
      Copy to Clipboard Toggle word wrap
    4. 次のコマンドを実行して出力を確認し、ポート 443 で各クラスターアプリケーションにアクセスできることを確認します。

      $ curl https://console-openshift-console.apps.<cluster_name>.<base_domain> -I -L --insecure
      Copy to Clipboard Toggle word wrap

      設定が正しい場合、コマンドの出力には次の応答が表示されます。

      HTTP/1.1 200 OK
      referrer-policy: strict-origin-when-cross-origin
      set-cookie: csrf-token=UlYWOyQ62LWjw2h003xtYSKlh1a0Py2hhctw0WmV2YEdhJjFyQwWcGBsja261dGLgaYO0nxzVErhiXt6QepA7g==; Path=/; Secure; SameSite=Lax
      x-content-type-options: nosniff
      x-dns-prefetch-control: off
      x-frame-options: DENY
      x-xss-protection: 1; mode=block
      date: Wed, 04 Oct 2023 16:29:38 GMT
      content-type: text/html; charset=utf-8
      set-cookie: 1e2670d92730b515ce3a1bb65da45062=1bf5e9573c9a2760c964ed1659cc1673; path=/; HttpOnly; Secure; SameSite=None
      cache-control: private
      Copy to Clipboard Toggle word wrap

3.3.12. DHCP を使用したクラスターノードのホスト名の設定

Red Hat Enterprise Linux CoreOS (RHCOS) マシンでは、NetworkManager がホスト名を設定します。デフォルトでは、DHCP が NetworkManager にホスト名を提供します。これが推奨される方法です。NetworkManager は、次の場合に逆 DNS ルックアップを通じてホスト名を取得します。

  • DHCP がホスト名を提供しない場合
  • カーネル引数を使用してホスト名を設定する場合
  • 別の方法でホスト名を設定する場合

逆 DNS ルックアップは、ノード上でネットワークが初期化された後に実行し、NetworkManager がホスト名を設定するのにかかる時間が長くなる可能性があります。NetworkManager がホスト名を設定する前に他のシステムサービスが起動することがあり、その場合は、それらのサービスが localhost などのデフォルトのホスト名を使用する可能性があります。

ヒント

DHCP を使用して各クラスターノードにホスト名を提供することで、ホスト名の設定の遅延を回避できます。また、DHCP を介してホスト名を設定すると、DNS スプリットホライズンが実装されている環境での手動の DNS レコード名設定エラーを回避できます。

3.3.13. ローカルアービターノードの設定

クラスターのインフラストラクチャーコストを削減しながら高可用性 (HA) を維持するために、2 つのコントロールプレーンノードと 1 つのローカルアービターノードを使用して、OpenShift Container Platform クラスターを設定できます。この設定はベアメタルインストールでのみサポートされます。

重要

ローカルアービターノードの設定は、テクノロジープレビュー機能です。テクノロジープレビュー機能は、Red Hat 製品のサービスレベルアグリーメント (SLA) の対象外であり、機能的に完全ではないことがあります。Red Hat は、実稼働環境でこれらを使用することを推奨していません。テクノロジープレビュー機能は、最新の製品機能をいち早く提供して、開発段階で機能のテストを行い、フィードバックを提供していただくことを目的としています。

Red Hat のテクノロジープレビュー機能のサポート範囲に関する詳細は、テクノロジープレビュー機能のサポート範囲 を参照してください。

ローカルアービターノードは、コントロールプレーンのクォーラム決定に参加する低コストの共存マシンです。標準のコントロールプレーンノードとは異なり、アービターノードはコントロールプレーンサービスの完全なセットを実行しません。この設定を使用すると、3 つのコントロールプレーンノードではなく 2 つの完全にプロビジョニングされたコントロールプレーンノードのみを使用して、クラスター内の HA を維持できます。

重要

ローカルアービタノードのみを設定できます。リモートアービタノードはサポートされていません。

2 つのコントロールプレーンノードと 1 つのローカルアービターノードを含むクラスターをデプロイするには、install-config.yaml ファイルで次のノードを定義する必要があります。

  • 2 つのコントロールプレーンノード
  • 1 つのアービターノード

アービターノード機能を有効にするには、FeatureGate カスタムリソース (CR) で TechPreviewNoUpgrade 機能セットを有効にする必要があります。フィーチャーゲートの詳細は、「フィーチャーゲートについて」を参照してください。

アービタノードは、次の最小システム要件を満たしている必要があります。

  • 2 つのスレッド
  • 8 GB の RAM
  • 120 GB の SSD または同等のストレージ

アービタノードは、ディスク I/O を含むエンドツーエンドのレイテンシーが 500 ミリ秒未満のネットワーク環境に配置する必要があります。レイテンシーの高い環境では、etcd のスロープロファイルを適用する必要がある場合があります。

コントロールプレーンノードは、次の最小システム要件を満たしている必要があります。

  • 4 つのスレッド
  • 16 GB のメモリー
  • 120 GB の SSD または同等のストレージ

さらに、コントロールプレーンノードにもワークロードに対応できる十分なストレージが必要です。

前提条件

  • OpenShift CLI (oc) とインストールプログラムをダウンロードしている。
  • OpenShift CLI (oc) にログインしている。

手順

  1. install-config.yaml ファイルを編集して、コントロールプレーンノードとともにアービターノードを定義します。

    アービターノードをデプロイするための install-config.yaml 設定の例

    apiVersion: v1
    baseDomain: devcluster.openshift.com
    compute:
      - architecture: amd64
        hyperthreading: Enabled
        name: worker
        platform: {}
        replicas: 0
    arbiter: 
    1
    
      architecture: amd64
      hyperthreading: Enabled
      replicas: 1 
    2
    
      name: arbiter 
    3
    
      platform:
        baremetal: {}
    controlPlane: 
    4
    
      architecture: amd64
      hyperthreading: Enabled
      name: master
      platform:
        baremetal: {}
      replicas: 2 
    5
    
    featureSet: TechPreviewNoUpgrade
    platform:
      baremetal:
    # ...
        hosts:
          - name: cluster-master-0
            role: master
    # ...
          - name: cluster-master-1
            role: master
            ...
          - name: cluster-arbiter-0
            role: arbiter
    # ...
    Copy to Clipboard Toggle word wrap

    1
    アービターマシンプールを定義します。アービターノードを含むクラスターをデプロイするには、このフィールドを設定する必要があります。
    2
    アービタープールの replicas フィールドを 1 に設定します。このフィールドを 1 より大きい値に設定することはできません。
    3
    アービターマシンプールの名前を指定します。
    4
    コントロールプレーンのマシンプールを定義します。
    5
    アービタープールが定義されると、2 つのコントロールプレーンレプリカが有効になります。
  2. 変更した install-config.yaml ファイルを保存します。

3.3.14. install-config.yaml ファイルの設定

3.3.14.1. install-config.yaml ファイルの設定

install-config.yaml ファイルには、追加の詳細情報が必要です。ほとんどの情報は、インストールプログラムと結果として作成されるクラスターに、完全に管理できる使用可能なハードウェアを十分に説明しています。

注記

正しいイメージがリリースペイロードにあるため、インストールプログラムは、clusterOSImage RHCOS イメージを必要としなくなりました。

  1. install-config.yaml を設定します。pullSecretsshKey など、環境に合わせて適切な変数を変更します。

    apiVersion: v1
    baseDomain: <domain>
    metadata:
      name: <cluster_name>
    networking:
      machineNetwork:
      - cidr: <public_cidr>
      networkType: OVNKubernetes
    compute:
    - name: worker
      replicas: 2 
    1
    
    controlPlane:
      name: master
      replicas: 3
      platform:
        baremetal: {}
    platform:
      baremetal:
        additionalNTPServers: 
    2
    
          - <ntp_domain_or_ip>
        apiVIPs:
          - <api_ip>
        ingressVIPs:
          - <wildcard_ip>
        provisioningNetworkCIDR: <CIDR>
        bootstrapExternalStaticIP: <bootstrap_static_ip_address> 
    3
    
        bootstrapExternalStaticGateway: <bootstrap_static_gateway> 
    4
    
        bootstrapExternalStaticDNS: <bootstrap_static_dns> 
    5
    
        hosts:
          - name: openshift-master-0
            role: master
            bmc:
              address: ipmi://<out_of_band_ip> 
    6
    
              username: <user>
              password: <password>
            bootMACAddress: <NIC1_mac_address>
            rootDeviceHints:
             deviceName: "<installation_disk_drive_path>" 
    7
    
          - name: <openshift_master_1>
            role: master
            bmc:
              address: ipmi://<out_of_band_ip>
              username: <user>
              password: <password>
            bootMACAddress: <NIC1_mac_address>
            rootDeviceHints:
             deviceName: "<installation_disk_drive_path>"
          - name: <openshift_master_2>
            role: master
            bmc:
              address: ipmi://<out_of_band_ip>
              username: <user>
              password: <password>
            bootMACAddress: <NIC1_mac_address>
            rootDeviceHints:
             deviceName: "<installation_disk_drive_path>"
          - name: <openshift_worker_0>
            role: worker
            bmc:
              address: ipmi://<out_of_band_ip>
              username: <user>
              password: <password>
            bootMACAddress: <NIC1_mac_address>
          - name: <openshift_worker_1>
            role: worker
            bmc:
              address: ipmi://<out_of_band_ip>
              username: <user>
              password: <password>
            bootMACAddress: <NIC1_mac_address>
            rootDeviceHints:
             deviceName: "<installation_disk_drive_path>"
    pullSecret: '<pull_secret>'
    sshKey: '<ssh_pub_key>'
    Copy to Clipboard Toggle word wrap
    1
    OpenShift Container Platform クラスターの一部であるコンピュートノードの数に基づいて、コンピュートマシンをスケーリングします。replicas 値の有効なオプションは 0 で、2 以上の整数です。3 ノードクラスターのみが含まれる 3 ノードクラスターをデプロイするには、レプリカ数を 0 に設定します。3 ノードクラスターは、テスト、開発、本番に使用できる、より小さく、よりリソース効率の良いクラスターです。コンピュートノードが 1 つだけのクラスターをインストールすることはできません。
    2
    クラスターホストのクロックが同期していない場合に各ホスト設定に追加する追加 NTP サーバーのドメイン名または IP アドレスのリスト (任意)。
    3
    静的 IP アドレスを使用してクラスターをデプロイする場合、ベアメタルネットワークに DHCP サーバーがない場合は、bootstrapExternalStaticIP 設定を設定して、ブートストラップ仮想マシンの静的 IP アドレスを指定する必要があります。
    4
    静的 IP アドレスを使用してクラスターをデプロイする場合、ベアメタルネットワークに DHCP サーバーがない場合は、bootstrapExternalStaticGateway 設定を設定して、ブートストラップ仮想マシンのゲートウェイ IP アドレスを指定する必要があります。
    5
    静的 IP アドレスを使用してクラスターをデプロイする場合、ベアメタルネットワークに DHCP サーバーがない場合は、bootstrapExternalStaticDNS 設定を設定して、ブートストラップ仮想マシンの DNS アドレスを指定する必要があります。
    6
    その他のオプションは、BMC アドレス指定のセクションを参照してください。
    7
    インストールディスクドライブへのパスを設定するには、ディスクのカーネル名を入力します。たとえば、/dev/sda です。
    重要

    ディスクの検出順序は保証されていないため、複数のディスクを持つマシンでは、起動オプションによってディスクのカーネル名が変わる可能性があります。たとえば、/dev/sda/dev/sdb になり、その逆も同様です。この問題を回避するには、ディスクの World Wide Name (WWN) や /dev/disk/by-path/ などの永続的なディスク属性を使用する必要があります。ストレージの場所への /dev/disk/by-path/<device_path> リンクを使用することを推奨します。ディスク WWN を使用するには、deviceName パラメーターを wwnWithExtension パラメーターに置き換えます。使用するパラメーターに応じて、次のいずれかの値を入力します。

    • ディスク名。たとえば、/dev/sda、または /dev/disk/by-path/ です。
    • ディスクの WWN。たとえば、"0x64cd98f04fde100024684cf3034da5c2" です。ディスク WWN 値が 16 進数値ではなく文字列値として使用されるように、ディスク WWN 値を引用符で囲んで入力してください。

    これらの rootDeviceHints パラメーター要件を満たさない場合、次のエラーが発生する可能性があります。

    ironic-inspector inspection failed: No disks satisfied root device hints
    Copy to Clipboard Toggle word wrap
    注記

    OpenShift Container Platform 4.12 より前では、クラスターインストールプログラムが、apiVIP および ingressVIP 設定の IPv4 アドレスまたは IPv6 アドレスのみを受け入れていました。OpenShift Container Platform 4.12 以降では、これらの設定は非推奨です。代わりに、apiVIPs および ingressVIPs 設定でリスト形式を使用して、IPv4 アドレス、IPv6 アドレス、または両方の IP アドレス形式を指定してください。

  2. クラスター設定を保存するディレクトリーを作成します。

    $ mkdir ~/clusterconfigs
    Copy to Clipboard Toggle word wrap
  3. install-config.yaml ファイルを新しいディレクトリーにコピーします。

    $ cp install-config.yaml ~/clusterconfigs
    Copy to Clipboard Toggle word wrap
  4. OpenShift Container Platform クラスターをインストールする前に、すべてのベアメタルノードの電源がオフになっていることを確認します。

    $ ipmitool -I lanplus -U <user> -P <password> -H <management-server-ip> power off
    Copy to Clipboard Toggle word wrap
  5. 以前に試行したデプロイメントにより古いブートストラップリソースが残っている場合は、これを削除します。

    for i in $(sudo virsh list | tail -n +3 | grep bootstrap | awk {'print $2'});
    do
      sudo virsh destroy $i;
      sudo virsh undefine $i;
      sudo virsh vol-delete $i --pool $i;
      sudo virsh vol-delete $i.ign --pool $i;
      sudo virsh pool-destroy $i;
      sudo virsh pool-undefine $i;
    done
    Copy to Clipboard Toggle word wrap
3.3.14.2. 追加の install-config パラメーター

install-config.yaml ファイルに必要なパラメーター hosts パラメーターおよび bmc パラメーターは、以下の表を参照してください。

Expand
表3.9 必須パラメーター
パラメーターデフォルト説明

baseDomain

 

クラスターのドメイン名。たとえば、example.com です。

bootMode

UEFI

ノードのブートモード。オプションは、legacyUEFI、および UEFISecureBoot です。bootMode が設定されていない場合は、ノードを検査する間に Ironic がこれを設定します。

platform:
  baremetal:
    bootstrapExternalStaticDNS
Copy to Clipboard Toggle word wrap
 

ブートストラップノードの静的ネットワーク DNS。ベアメタルネットワークに Dynamic Host Configuration Protocol (DHCP) サーバーがない場合に、静的 IP アドレスを使用してクラスターをデプロイする場合は、この値を設定する必要があります。この値を設定しないと、インストールプログラムが bootstrapExternalStaticGateway の値を使用します。そのため、ゲートウェイと DNS の IP アドレス値が異なる場合に問題が発生します。

platform:
  baremetal:
    bootstrapExternalStaticIP
Copy to Clipboard Toggle word wrap
 

ブートストラップ VM の静的 IP アドレス。ベアメタルネットワークに DHCP サーバーがない場合に、静的 IP アドレスを使用してクラスターをデプロイする場合は、この値を設定する必要があります。

platform:
  baremetal:
    bootstrapExternalStaticGateway
Copy to Clipboard Toggle word wrap
 

ブートストラップ VM のゲートウェイの静的 IP アドレス。ベアメタルネットワークに DHCP サーバーがない場合に、静的 IP アドレスを使用してクラスターをデプロイする場合は、この値を設定する必要があります。

sshKey

 

sshKey 設定には、コントロールプレーンノードとコンピュートノードにアクセスするために必要な、~/.ssh/id_rsa.pub ファイル内のキーを含めます。通常、このキーは provisioner ノードのキーです。

pullSecret

 

pullSecret 設定には、プロビジョナーノードを準備するときに Install OpenShift on Bare Metal ページからダウンロードしたプルシークレットのコピーを含めます。

metadata:
    name:
Copy to Clipboard Toggle word wrap
 

OpenShift Container Platform クラスターの名前。たとえば、openshift です。

networking:
    machineNetwork:
    - cidr:
Copy to Clipboard Toggle word wrap
 

外部ネットワークの公開 CIDR (Classless Inter-Domain Routing)。たとえば、10.0.0.0/24 です。

compute:
  - name: worker
Copy to Clipboard Toggle word wrap
 

OpenShift Container Platform クラスターでは、ノードがゼロの場合でも、コンピュートノードに名前を付ける必要があります。

compute:
    replicas: 2
Copy to Clipboard Toggle word wrap
 

replicas は、OpenShift Container Platform クラスターのコンピュートノードの数を設定します。

controlPlane:
    name: master
Copy to Clipboard Toggle word wrap
 

OpenShift Container Platform クラスターでは、コントロールプレーンノードに名前が必要です。

controlPlane:
    replicas: 3
Copy to Clipboard Toggle word wrap
 

replicas は、OpenShift Container Platform クラスターの一部として含まれるコントロールプレーンノードの数を設定します。

arbiter:
    name: arbiter
Copy to Clipboard Toggle word wrap
 

OpenShift Container Platform クラスターでは、アービターノードの名前が必要です。

arbiter:
    replicas: 1
Copy to Clipboard Toggle word wrap
 

replicas パラメーターは、OpenShift Container Platform クラスターのアービターノードの数を設定します。

provisioningNetworkInterface

 

ベアメタルネットワークに接続されたノード上のネットワークインターフェイス名。OpenShift Container Platform 4.9 以降のリリースのために、NIC の名前を識別するために provisioningNetworkInterface 設定を使用する代わりに、Ironic が NIC の IP アドレスを識別できるように bootMACAddress 設定を使用します。

defaultMachinePlatform

 

プラットフォーム設定なしでマシンプールに使用されるデフォルト設定。

apiVIPs

 

(オプション) Kubernetes API 通信の仮想 IP アドレス。

この設定は、install-config.yaml ファイルで MachineNetwork パラメーターからの予約済み IP として指定するか、デフォルト名が正しく解決されるように DNS で事前設定する必要があります。install-config.yaml ファイルの apiVIPs 設定に値を追加するときは、FQDN ではなく仮想 IP アドレスを使用します。デュアルスタックネットワークを使用する場合、プライマリー IP アドレスは IPv4 ネットワークからのものにする必要があります。設定されていないと、インストールプログラムは api.<cluster_name>.<base_domain> を使用して DNS から IP アドレスを取得します。

注記

OpenShift Container Platform 4.12 より前では、クラスターのインストールプログラムは apiVIP 設定の IPv4 アドレスまたは IPv6 アドレスのみを受け入れていました。OpenShift Container Platform 4.12 以降から、apiVIP 設定は非推奨になりました。代わりに、apiVIPs 設定のリスト形式を使用して、IPv4 アドレス、IPv6 アドレス、または両方の IP アドレス形式を指定します。

disableCertificateVerification

False

redfish および redfish-virtualmedia では、このパラメーターで BMC アドレスを管理する必要があります。BMC アドレスに自己署名証明書を使用する場合は、値を True にする必要があります。

ingressVIPs

 

(オプション) Ingress トラフィックの仮想 IP アドレス。

この設定は、install-config.yaml ファイルで MachineNetwork パラメーターからの予約済み IP として指定するか、デフォルト名が正しく解決されるように DNS で事前設定する必要があります。install-config.yaml ファイルの ingressVIPs 構成設定に値を追加するときは、FQDN ではなく仮想 IP アドレスを使用してください。デュアルスタックネットワークを使用する場合、プライマリー IP アドレスは IPv4 ネットワークからのものにする必要があります。設定されていないと、インストールプログラムは test.apps.<cluster_name>.<base_domain> を使用して DNS から IP アドレスを取得します。

注記

OpenShift Container Platform 4.12 より前では、クラスターのインストールプログラムは ingressVIP 設定の IPv4 アドレスまたは IPv6 アドレスのみを受け入れていました。OpenShift Container Platform 4.12 以降では、ingressVIP 設定は非推奨です。代わりに、ingressVIPs 設定のリスト形式を使用して、IPv4 アドレス、IPv6 アドレス、または両方の IP アドレス形式を指定します。

Expand
表3.10 オプションのパラメーター
パラメーターデフォルト説明
platform:
  baremetal:
    additionalNTPServers:
    - <ip_address_or_domain_name>
Copy to Clipboard Toggle word wrap
 

各ホストに追加する追加 NTP サーバーのリスト (任意)。IP アドレスまたはドメイン名を使用して各 NTP サーバーを指定できます。追加 NTP サーバーは、クラスターホストのクロックが同期されていない場合にインストール前のクロック同期を有効にするユーザー定義の NTP サーバーです。

provisioningDHCPRange

172.22.0.10,172.22.0.100

プロビジョニングネットワークでノードの IP 範囲を定義します。

provisioningNetworkCIDR

172.22.0.0/24

プロビジョニングに使用するネットワークの CIDR。このオプションは、プロビジョニングネットワークのデフォルトのアドレス範囲を使用しない場合に、インストールプログラムに必要です。

clusterProvisioningIP

provisioningNetworkCIDR の 3 番目の IP アドレス。

プロビジョニングサービスが実行されるクラスター内の IP アドレス。デフォルトは、プロビジョニングサブネットの 3 番目の IP アドレスに設定されます。たとえば、172.22.0.3 です。

bootstrapProvisioningIP

provisioningNetworkCIDR の 2 番目の IP アドレス

インストールプログラムがコントロールプレーン (マスター) ノードをデプロイしている間にプロビジョニングサービスが実行されるブートストラップ仮想マシンの IP アドレス。デフォルトは、プロビジョニングサブネットの 2 番目の IP アドレスに設定されます。たとえば、172.22.0.2 または 2620:52:0:1307::2 です。

externalBridge

baremetal

ベアメタルネットワークに接続されたハイパーバイザーのベアメタルブリッジの名前。

provisioningBridge

provisioning

プロビジョニングネットワークに接続されている provisioner ホストのプロビジョニングブリッジの名前。

architecture

 

クラスターのホストアーキテクチャーを定義します。有効な値は amd64 または arm64 です。

defaultMachinePlatform

 

プラットフォーム設定なしでマシンプールに使用されるデフォルト設定。

bootstrapOSImage

 

ブートストラップノードのデフォルトのオペレーティングシステムイメージを上書きするための URL。URL にはイメージの SHA-256 ハッシュが含まれている必要があります。たとえば、https://mirror.openshift.com/rhcos-<version>-qemu.qcow2.gz?sha256=<uncompressed_sha256> です。

provisioningNetwork

 

provisioningNetwork 設定は、クラスターがプロビジョニングネットワークを使用するかどうかを決定します。これが存在すると、設定はクラスターがネットワークを管理するかどうかも決定します。

Disabled: プロビジョニングネットワークの要件を無効にするには、このパラメーターを Disabled に設定します。Disabled に設定する場合、仮想メディアベースのプロビジョニングのみを使用するか、Assisted Installer を使用してクラスターを起動する必要があります。Disabled に設定し、電源管理を使用する場合、BMC がベアメタルネットワークからアクセスできる必要があります。Disabled に設定する場合、インストールプログラムがプロビジョニングサービスに使用する、ベアメタルネットワークの 2 つの IP アドレスを指定する必要があります。

Managed: DHCP、TFTP などを含むプロビジョニングネットワークを完全に管理するには、このパラメーターを Managed (デフォルト) に設定します。

Unmanaged: このパラメーターを Unmanaged に設定してプロビジョニングネットワークを引き続き有効にしますが、DHCP の手動設定を行います。仮想メディアのプロビジョニングが推奨されますが、必要に応じて PXE を引き続き利用できます。

httpProxy

 

このパラメーターを、環境内で使用する適切な HTTP プロキシーに設定します。

httpsProxy

 

このパラメーターを、環境内で使用する適切な HTTPS プロキシーに設定します。

noProxy

 

このパラメーターを、環境内のプロキシーの使用に対する例外のリストに設定します。

3.3.14.2.1. ホスト

hosts パラメーターは、クラスターのビルドに使用される個別のベアメタルアセットのリストです。

Expand
表3.11 ホスト
名前デフォルト説明

name

 

詳細情報に関連付ける BareMetalHost リソースの名前。たとえば、openshift-master-0 です。

role

 

ベアメタルノードのロール。master (コントロールプレーンノード) または worker (コンピュートノード) のいずれか。

bmc

 

ベースボード管理コントローラーの接続詳細。詳細は、BMC アドレス指定のセクションを参照してください。

bootMACAddress

 

ホストがプロビジョニングネットワークに使用する NIC の MAC アドレス。Ironic は、bootMACAddress 設定を使用して IP アドレスを取得します。次に、ホストにバインドします。

注記

プロビジョニングネットワークを無効にした場合は、ホストから有効な MAC アドレスを提供する必要があります。

networkConfig

 

このオプションのパラメーターを設定して、ホストのネットワークインターフェイスを設定します。詳細は、「(オプション) ホストネットワークインターフェイスの設定」を参照してください。

3.3.14.3. BMC アドレス指定

ほとんどのベンダーは、Intelligent Platform Management Interface(IPMI) でベースボード管理コントローラー (BMC) アドレスに対応しています。IPMI は通信を暗号化しません。これは、セキュリティーが保護された管理ネットワークまたは専用の管理ネットワークを介したデータセンター内での使用に適しています。ベンダーを確認して、Redfish ネットワークブートをサポートしているかどうかを確認します。Redfish は、コンバージド、ハイブリッド IT および Software Defined Data Center (SDDC) 向けのシンプルでセキュアな管理を行います。Redfish は人による判読が可能、かつ機械対応が可能であり、インターネットや Web サービスの標準を活用して、最新のツールチェーンに情報を直接公開します。ハードウェアが Redfish ネットワークブートに対応していない場合には、IPMI を使用します。

ノードが Registering 状態にある間、インストール中に BMC アドレスを変更できます。ノードの Registering 状態が終了した後に BMC アドレスを変更する必要がある場合は、ノードを Ironic から切断し、BareMetalHost リソースを編集して、ノードを Ironic に再接続する必要があります。詳細は、BareMetalHost リソースの編集 セクションを参照してください。

3.3.14.3.1. IPMI

IPMI を使用するホストは ipmi://<out-of-band-ip>:<port> アドレス形式を使用します。これは、指定がない場合はポート 623 にデフォルトで設定されます。以下の例は、install-config.yaml ファイル内の IPMI 設定を示しています。

platform:
  baremetal:
    hosts:
      - name: openshift-master-0
        role: master
        bmc:
          address: ipmi://<out-of-band-ip>
          username: <user>
          password: <password>
Copy to Clipboard Toggle word wrap
重要

BMC アドレス指定に IPMI を使用して PXE ブートする場合は、provisioning ネットワークが必要です。provisioning ネットワークなしでは、PXE ブートホストを行うことはできません。provisioning ネットワークなしでデプロイする場合、redfish-virtualmediaidrac-virtualmedia などの仮想メディア BMC アドレス指定オプションを使用する必要があります。詳細は、「HPE iLO の BMC アドレス指定」セクションの「HPE iLO の Redfish 仮想メディア」、または「Dell iDRAC の BMC アドレス指定」セクションの「Dell iDRAC の Redfish 仮想メディア」を参照してください。

3.3.14.3.2. Redfish ネットワークブート

Redfish を有効にするには、redfish:// または redfish+http:// を使用して TLS を無効にします。インストーラーには、ホスト名または IP アドレスとシステム ID へのパスの両方が必要です。以下の例は、install-config.yaml ファイル内の Redfish 設定を示しています。

platform:
  baremetal:
    hosts:
      - name: openshift-master-0
        role: master
        bmc:
          address: redfish://<out-of-band-ip>/redfish/v1/Systems/1
          username: <user>
          password: <password>
Copy to Clipboard Toggle word wrap

アウトオブバンド管理のアドレスには認証局証明書を用意することを推奨します。ただし、自己署名証明書を使用する場合は、bmc 設定に disableCertificateVerification: True を含める必要があります。以下の例は、install-config.yaml ファイル内の disableCertificateVerification: True 設定パラメーターを使用する Redfish 設定を示しています。

platform:
  baremetal:
    hosts:
      - name: openshift-master-0
        role: master
        bmc:
          address: redfish://<out-of-band-ip>/redfish/v1/Systems/1
          username: <user>
          password: <password>
          disableCertificateVerification: True
Copy to Clipboard Toggle word wrap
3.3.14.4. Redfish API のサポートの確認

Redfish API を使用してインストールする場合、ベアメタル上で installer-provisioned infrastructure を使用する際に、インストールプログラムはベースボード管理コントローラー (BMC) 上の複数の Redfish エンドポイントを呼び出します。Redfish を使用する場合は、インストール前に BMC がすべての Redfish API をサポートしていることを確認してください。

手順

  1. 次のコマンドを実行して、BMC の IP アドレスまたはホスト名を設定します。

    $ export SERVER=<ip_address> 
    1
    Copy to Clipboard Toggle word wrap
    1
    <ip_address> を、BMC の IP アドレスまたはホスト名に置き換えます。
  2. 次のコマンドを実行して、システムの ID を設定します。

    $ export SystemID=<system_id> 
    1
    Copy to Clipboard Toggle word wrap
    1
    <system_id> をシステム ID に置き換えます。たとえば、System.Embedded.1 または 1 です。詳細は、以下のベンダー固有 BMC セクションを参照してください。

Redfish API のリスト

  1. 次のコマンドを実行して、power on のサポートを確認します。

    $ curl -u $USER:$PASS -X POST -H'Content-Type: application/json' -H'Accept: application/json' -d '{"ResetType": "On"}' https://$SERVER/redfish/v1/Systems/$SystemID/Actions/ComputerSystem.Reset
    Copy to Clipboard Toggle word wrap
  2. 次のコマンドを実行して、power off のサポートを確認します。

    $ curl -u $USER:$PASS -X POST -H'Content-Type: application/json' -H'Accept: application/json' -d '{"ResetType": "ForceOff"}' https://$SERVER/redfish/v1/Systems/$SystemID/Actions/ComputerSystem.Reset
    Copy to Clipboard Toggle word wrap
  3. 次のコマンドを実行して、pxe を使用する一時的なブート実装を確認します。

    $ curl -u $USER:$PASS -X PATCH -H "Content-Type: application/json" -H "If-Match: <ETAG>"  https://$Server/redfish/v1/Systems/$SystemID/ -d '{"Boot": {"BootSourceOverrideTarget": "pxe", "BootSourceOverrideEnabled": "Once"}}
    Copy to Clipboard Toggle word wrap
  4. 次のコマンドを実行して、Legacy または UEFI を使用するファームウェアブートモードの設定ステータスを確認します。

    $ curl -u $USER:$PASS -X PATCH -H "Content-Type: application/json" -H "If-Match: <ETAG>"  https://$Server/redfish/v1/Systems/$SystemID/ -d '{"Boot": {"BootSourceOverrideMode":"UEFI"}}
    Copy to Clipboard Toggle word wrap

Redfish 仮想メディア API のリスト

  1. 次のコマンドを実行して、cd または dvd を使用する一時ブートデバイスを設定できるか確認します。

    $ curl -u $USER:$PASS -X PATCH -H "Content-Type: application/json" -H "If-Match: <ETAG>" https://$Server/redfish/v1/Systems/$SystemID/ -d '{"Boot": {"BootSourceOverrideTarget": "cd", "BootSourceOverrideEnabled": "Once"}}'
    Copy to Clipboard Toggle word wrap
  2. 仮想メディアは、ハードウェアに応じて POST または PATCH を使用する場合があります。次のいずれかのコマンドを実行して、仮想メディアをマウントできるかどうかを確認します。

    $ curl -u $USER:$PASS -X POST -H "Content-Type: application/json" https://$Server/redfish/v1/Managers/$ManagerID/VirtualMedia/$VmediaId -d '{"Image": "https://example.com/test.iso", "TransferProtocolType": "HTTPS", "UserName": "", "Password":""}'
    Copy to Clipboard Toggle word wrap
    $ curl -u $USER:$PASS -X PATCH -H "Content-Type: application/json" -H "If-Match: <ETAG>" https://$Server/redfish/v1/Managers/$ManagerID/VirtualMedia/$VmediaId -d '{"Image": "https://example.com/test.iso", "TransferProtocolType": "HTTPS", "UserName": "", "Password":""}'
    Copy to Clipboard Toggle word wrap
注記

Redfish API の PowerOn および PowerOff コマンドは、Redfish 仮想メディア API と同じです。一部のハードウェアでは、VirtualMedia リソースが Managers/$ManagerID ではなく Systems/$SystemID にのみ存在する場合があります。VirtualMedia リソースの場合、UserNamePassword のフィールドはオプションです。

重要

TransferProtocolTypes でサポートされているパラメータータイプは、HTTPSHTTP のみです。

3.3.14.5. Dell iDRAC の BMC アドレス指定

bmc エントリーの address 設定は、URL スキーム内のコントローラーのタイプとネットワーク上の場所を含む、OpenShift Container Platform クラスターノードに接続するための URL です。各 bmc エントリーの username 設定では、Administrator 権限を持つユーザーを指定する必要があります。

platform:
  baremetal:
    hosts:
      - name: <hostname>
        role: <master | worker>
        bmc:
          address: <address> 
1

          username: <user> 
2

          password: <password>
Copy to Clipboard Toggle word wrap
1
address 設定ではプロトコルを指定します。
2
username 設定では、Administrator 権限を持つユーザーを指定する必要があります。

Dell ハードウェアの場合、Red Hat は統合 Dell Remote Access Controller (iDRAC) 仮想メディア、Redfish ネットワークブート、および IPMI をサポートします。

3.3.14.5.1. Dell iDRAC の BMC アドレス形式
Expand
プロトコルアドレスのフォーマット

iDRAC 仮想メディア

idrac-virtualmedia://<out_of_band_ip>/redfish/v1/Systems/System.Embedded.1

Redfish ネットワークブート

redfish://<out_of_band_ip>/redfish/v1/Systems/System.Embedded.1

IPMI

ipmi://<out_of_band_ip>

重要

idrac-virtualmedia を Redfish 仮想メディアのプロトコルとして使用します。redfish-virtualmedia は Dell ハードウェアでは機能しません。Dell の idrac-virtualmedia は、Dell の OEM 拡張機能が含まれる Redfish 標準を使用します。

詳細は、以下のセクションを参照してください。

3.3.14.5.2. Dell iDRAC の Redfish 仮想メディア

Dell サーバーの Redfish 仮想メディアには、address 設定で idrac-virtualmedia:// を使用します。redfish-virtualmedia:// を使用しても機能しません。

注記

idrac-virtualmedia:// を Redfish 仮想メディアのプロトコルとして使用します。redfish-virtualmedia:// の使用は、idrac-virtualmedia:// プロトコルが idrac ハードウェアタイプおよび Ironic の Redfish プロトコルに対応しているため、Dell ハードウェアでは機能しません。Dell の idrac-virtualmedia:// プロトコルは、Dell の OEM 拡張機能が含まれる Redfish 標準を使用します。Ironic は、WSMAN プロトコルのある idrac タイプもサポートします。したがって、Dell ハードウェア上の仮想メディアで Redfish を使用する際に予期しない動作を回避するために、idrac-virtualmedia:// を指定する必要があります。

以下の例は、install-config.yaml ファイル内で iDRAC 仮想メディアを使用する方法を示しています。

platform:
  baremetal:
    hosts:
      - name: openshift-master-0
        role: master
        bmc:
          address: idrac-virtualmedia://<out_of_band_ip>/redfish/v1/Systems/System.Embedded.1
          username: <user>
          password: <password>
Copy to Clipboard Toggle word wrap

アウトオブバンド管理のアドレスには認証局証明書を用意することを推奨します。ただし、自己署名証明書を使用する場合は、bmc 設定に disableCertificateVerification: True を含める必要があります。

注記

OpenShift Container Platform クラスターノードについて、iDRAC コンソールで AutoAttach が有効にされていることを確認します。メニューパスは ConfigurationVirtual MediaAttach ModeAutoAttach です。

次の例は、install-config.yaml ファイル内の disableCertificateVerification: True 設定パラメーターを使用した Redfish 設定を示しています。

platform:
  baremetal:
    hosts:
      - name: openshift-master-0
        role: master
        bmc:
          address: idrac-virtualmedia://<out_of_band_ip>/redfish/v1/Systems/System.Embedded.1
          username: <user>
          password: <password>
          disableCertificateVerification: True
Copy to Clipboard Toggle word wrap
3.3.14.5.3. iDRAC の Redfish ネットワークブート

Redfish を有効にするには、redfish:// または redfish+http:// を使用してトランスポート層セキュリティー (TLS) を無効にします。インストールプログラムにより、ホスト名または IP アドレスとシステム ID へのパスが求められます。以下の例は、install-config.yaml ファイル内の Redfish 設定を示しています。

platform:
  baremetal:
    hosts:
      - name: openshift-master-0
        role: master
        bmc:
          address: redfish://<out_of_band_ip>/redfish/v1/Systems/System.Embedded.1
          username: <user>
          password: <password>
Copy to Clipboard Toggle word wrap

アウトオブバンド管理のアドレスには認証局証明書を用意することを推奨します。ただし、自己署名証明書を使用する場合は、bmc 設定に disableCertificateVerification: True を含める必要があります。次の例は、install-config.yaml ファイル内の disableCertificateVerification: True 設定パラメーターを使用した Redfish 設定を示しています。

platform:
  baremetal:
    hosts:
      - name: openshift-master-0
        role: master
        bmc:
          address: redfish://<out_of_band_ip>/redfish/v1/Systems/System.Embedded.1
          username: <user>
          password: <password>
          disableCertificateVerification: True
Copy to Clipboard Toggle word wrap
注記

ファームウェアバージョン 04.40.00.00 を使用する Dell iDRAC 9 と、ベアメタルデプロイメントで installer-provisioned installation 用の 5.xx シリーズを含むすべてのリリースには既知の問題があります。Virtual Console プラグインは、HTML5 の拡張バージョンである eHTML5 にデフォルト設定されているため、InsertVirtualMedia ワークフローで問題が発生します。この問題を回避するには、HTML5 を使用するようにプラグインを設定します。メニューパスは以下の通りです。ConfigurationVirtual consolePlug-in TypeHTML5

OpenShift Container Platform クラスターノードについて、iDRAC コンソールで AutoAttach が有効にされていることを確認します。メニューパスは以下のようになります。ConfigurationVirtual MediaAttach ModeAutoAttach

3.3.14.6. HPE iLO の BMC アドレス指定

それぞれの bmc エントリーの address フィールドは、URL スキーム内のコントローラーのタイプやネットワーク上のその場所を含む、OpenShift Container Platform クラスターノードに接続する URL です。

platform:
  baremetal:
    hosts:
      - name: <hostname>
        role: <master | worker>
        bmc:
          address: <address> 
1

          username: <user>
          password: <password>
Copy to Clipboard Toggle word wrap
1
address 設定ではプロトコルを指定します。

HPE integrated Lights Out (iLO) の場合、Red Hat は Redfish 仮想メディア、Redfish ネットワークブート、および IPMI をサポートします。

Expand
表3.12 HPE iLO の BMC アドレス形式
プロトコルアドレスのフォーマット

Redfish 仮想メディア

redfish-virtualmedia://<out-of-band-ip>/redfish/v1/Systems/1

Redfish ネットワークブート

redfish://<out-of-band-ip>/redfish/v1/Systems/1

IPMI

ipmi://<out-of-band-ip>

詳細は、以下のセクションを参照してください。

3.3.14.6.1. HPE iLO の Redfish 仮想メディア

HPE サーバーの Redfish 仮想メディアを有効にするには、address 設定で redfish-virtualmedia:// を使用します。以下の例は、install-config.yaml ファイル内で Redfish 仮想メディアを使用する方法を示しています。

platform:
  baremetal:
    hosts:
      - name: openshift-master-0
        role: master
        bmc:
          address: redfish-virtualmedia://<out-of-band-ip>/redfish/v1/Systems/1
          username: <user>
          password: <password>
Copy to Clipboard Toggle word wrap

アウトオブバンド管理のアドレスには認証局証明書を用意することを推奨します。ただし、自己署名証明書を使用する場合は、bmc 設定に disableCertificateVerification: True を含める必要があります。以下の例は、install-config.yaml ファイル内の disableCertificateVerification: True 設定パラメーターを使用する Redfish 設定を示しています。

platform:
  baremetal:
    hosts:
      - name: openshift-master-0
        role: master
        bmc:
          address: redfish-virtualmedia://<out-of-band-ip>/redfish/v1/Systems/1
          username: <user>
          password: <password>
          disableCertificateVerification: True
Copy to Clipboard Toggle word wrap
注記

Ironic は、仮想メディアで iLO4 をサポートしないので、Redfish 仮想メディアは、iLO4 を実行する第 9 世代のシステムではサポートされません。

3.3.14.6.2. HPE iLO の Redfish ネットワークブート

Redfish を有効にするには、redfish:// または redfish+http:// を使用して TLS を無効にします。インストーラーには、ホスト名または IP アドレスとシステム ID へのパスの両方が必要です。以下の例は、install-config.yaml ファイル内の Redfish 設定を示しています。

platform:
  baremetal:
    hosts:
      - name: openshift-master-0
        role: master
        bmc:
          address: redfish://<out-of-band-ip>/redfish/v1/Systems/1
          username: <user>
          password: <password>
Copy to Clipboard Toggle word wrap

アウトオブバンド管理のアドレスには認証局証明書を用意することを推奨します。ただし、自己署名証明書を使用する場合は、bmc 設定に disableCertificateVerification: True を含める必要があります。以下の例は、install-config.yaml ファイル内の disableCertificateVerification: True 設定パラメーターを使用する Redfish 設定を示しています。

platform:
  baremetal:
    hosts:
      - name: openshift-master-0
        role: master
        bmc:
          address: redfish://<out-of-band-ip>/redfish/v1/Systems/1
          username: <user>
          password: <password>
          disableCertificateVerification: True
Copy to Clipboard Toggle word wrap
3.3.14.7. Fujitsu iRMC の BMC アドレス指定

それぞれの bmc エントリーの address フィールドは、URL スキーム内のコントローラーのタイプやネットワーク上のその場所を含む、OpenShift Container Platform クラスターノードに接続する URL です。

platform:
  baremetal:
    hosts:
      - name: <hostname>
        role: <master | worker>
        bmc:
          address: <address> 
1

          username: <user>
          password: <password>
Copy to Clipboard Toggle word wrap
1
address 設定ではプロトコルを指定します。

Fujitsu ハードウェアの場合、Red Hat は、統合 Remote Management Controller (iRMC) および IPMI をサポートします。

Expand
表3.13 Fujitsu iRMC の BMC アドレス形式
プロトコルアドレスのフォーマット

iRMC

irmc://<out-of-band-ip>

IPMI

ipmi://<out-of-band-ip>

iRMC

Fujitsu ノードは irmc://<out-of-band-ip> を使用し、デフォルトではポート 443 に設定されます。以下の例は、install-config.yaml ファイル内の iRMC 設定を示しています。

platform:
  baremetal:
    hosts:
      - name: openshift-master-0
        role: master
        bmc:
          address: irmc://<out-of-band-ip>
          username: <user>
          password: <password>
Copy to Clipboard Toggle word wrap
注記

現在 Fujitsu は、ベアメタルへの installer-provisioned installation 用に iRMC S5 ファームウェアバージョン 3.05P 以降をサポートしています。

3.3.14.8. Cisco CIMC の BMC アドレス指定

それぞれの bmc エントリーの address フィールドは、URL スキーム内のコントローラーのタイプやネットワーク上のその場所を含む、OpenShift Container Platform クラスターノードに接続する URL です。

platform:
  baremetal:
    hosts:
      - name: <hostname>
        role: <master | worker>
        bmc:
          address: <address> 
1

          username: <user>
          password: <password>
Copy to Clipboard Toggle word wrap
1
address 設定ではプロトコルを指定します。

Cisco UCS C シリーズおよび X シリーズサーバーの場合、Red Hat は Cisco Integrated Management Controller (CIMC) をサポートしています。

Expand
表3.14 Cisco CIMC の BMC アドレス形式
プロトコルアドレスのフォーマット

Redfish 仮想メディア

redfish-virtualmedia://<server_kvm_ip>/redfish/v1/Systems/<serial_number>

Cisco UCS C シリーズおよび X シリーズサーバーで Redfish 仮想メディアを有効にするには、address 設定で redfish-virtualmedia:// を使用します。以下の例は、install-config.yaml ファイル内で Redfish 仮想メディアを使用する方法を示しています。

platform:
  baremetal:
    hosts:
      - name: openshift-master-0
        role: master
        bmc:
          address: redfish-virtualmedia://<server_kvm_ip>/redfish/v1/Systems/<serial_number>
          username: <user>
          password: <password>
Copy to Clipboard Toggle word wrap

アウトオブバンド管理のアドレスには認証局証明書を用意することを推奨します。ただし、自己署名証明書を使用する場合は、bmc 設定に disableCertificateVerification: True を含める必要があります。次の例は、install-config.yaml ファイル内の disableCertificateVerification: True 設定パラメーターを使用した Redfish 設定を示しています。

platform:
  baremetal:
    hosts:
      - name: openshift-master-0
        role: master
        bmc:
          address: redfish-virtualmedia://<server_kvm_ip>/redfish/v1/Systems/<serial_number>
          username: <user>
          password: <password>
          disableCertificateVerification: True
Copy to Clipboard Toggle word wrap
3.3.14.9. ルートデバイスのヒント

rootDeviceHints パラメーターは、インストーラーが Red Hat Enterprise Linux CoreOS (RHCOS) イメージを特定のデバイスにプロビジョニングできるようにします。インストーラーは、検出順にデバイスを検査し、検出された値をヒントの値と比較します。インストーラーは、ヒント値に一致する最初に検出されたデバイスを使用します。この設定は複数のヒントを組み合わせることができますが、デバイスは、インストーラーがこれを選択できるようにすべてのヒントに一致する必要があります。

Expand
表3.15 サブフィールド
サブフィールド説明

deviceName

/dev/vda/dev/disk/by-path/ などの Linux デバイス名を含む文字列。

注記

ストレージの場所への /dev/disk/by-path/<device_path> リンクを使用することを推奨します。

ヒントは、実際の値と完全に一致する必要があります。

hctl

0:0:0:0 などの SCSI バスアドレスを含む文字列。ヒントは、実際の値と完全に一致する必要があります。

model

ベンダー固有のデバイス識別子を含む文字列。ヒントは、実際の値のサブ文字列になります。

vendor

デバイスのベンダーまたは製造元の名前が含まれる文字列。ヒントは、実際の値のサブ文字列になります。

serialNumber

デバイスのシリアル番号を含む文字列。ヒントは、実際の値と完全に一致する必要があります。

minSizeGigabytes

デバイスの最小サイズ (ギガバイト単位) を表す整数。

wwn

一意のストレージ ID を含む文字列。ヒントは、実際の値と完全に一致する必要があります。

wwnWithExtension

ベンダー拡張が追加された一意のストレージ ID を含む文字列。ヒントは、実際の値と完全に一致する必要があります。

wwnVendorExtension

一意のベンダーストレージ ID を含む文字列。ヒントは、実際の値と完全に一致する必要があります。

rotational

デバイスがローテーションするディスクである (true) か、そうでないか (false) を示すブール値。

使用例

     - name: master-0
       role: master
       bmc:
         address: ipmi://10.10.0.3:6203
         username: admin
         password: redhat
       bootMACAddress: de:ad:be:ef:00:40
       rootDeviceHints:
         deviceName: "/dev/sda"
Copy to Clipboard Toggle word wrap

3.3.14.10. プロキシーの設定

プロキシーを使用して OpenShift Container Platform クラスターをデプロイするには、install-config.yaml ファイルに以下の変更を加えます。

手順

  1. proxy キーマッピングの下にプロキシー値を追加します。

    apiVersion: v1
    baseDomain: <domain>
    proxy:
      httpProxy: http://USERNAME:PASSWORD@proxy.example.com:PORT
      httpsProxy: https://USERNAME:PASSWORD@proxy.example.com:PORT
      noProxy: <WILDCARD_OF_DOMAIN>,<PROVISIONING_NETWORK/CIDR>,<BMC_ADDRESS_RANGE/CIDR>
    Copy to Clipboard Toggle word wrap

    以下は、値を含む noProxy の例です。

    noProxy: .example.com,172.22.0.0/24,10.10.0.0/24
    Copy to Clipboard Toggle word wrap
  2. プロキシーを有効な状態にして、対応するキー/値のペアでプロキシーの適切な値を設定します。

    主な留意事項:

    • プロキシーに HTTPS プロキシーがない場合、httpsProxy の値を https:// から http:// に変更します。
    • クラスターがプロビジョニングネットワークを使用する場合は、それを noProxy 設定に含めます。そうしないと、インストールプログラムは失敗します。
    • プロビジョナーノード内の環境変数としてすべてのプロキシー設定を設定します。たとえば、HTTP_PROXYHTTPS_PROXY、および NO_PROXY が含まれます。
3.3.14.11. プロビジョニングネットワークを使用しないデプロイ

provisioning ネットワークなしに OpenShift Container Platform をデプロイするには、install-config.yaml ファイルに以下の変更を加えます。

platform:
  baremetal:
    apiVIPs:
      - <api_VIP>
    ingressVIPs:
      - <ingress_VIP>
    provisioningNetwork: "Disabled" 
1
Copy to Clipboard Toggle word wrap
1
provisioningNetwork 設定を追加して、必要な場合はこれを Disabled に設定します。
重要

PXE ブートには provisioning ネットワークが必要です。provisioning ネットワークなしでデプロイする場合、redfish-virtualmediaidrac-virtualmedia などの仮想メディア BMC アドレス指定オプションを使用する必要があります。詳細は、「HPE iLO の BMC アドレス指定」セクションの「HPE iLO の Redfish 仮想メディア」、または「Dell iDRAC の BMC アドレス指定」セクションの「Dell iDRAC の Redfish 仮想メディア」を参照してください。

3.3.14.12. デュアルスタックネットワークを使用したデプロイメント

OpenShift Container Platform クラスターのデュアルスタックネットワークでは、クラスターノードの IPv4 および IPv6 アドレスエンドポイントを設定できます。クラスターノードの IPv4 および IPv6 アドレスエンドポイントを設定するには、install-config.yaml ファイルで machineNetworkclusterNetwork、および serviceNetwork 設定を編集します。それぞれの設定には、それぞれ 2 つの CIDR エントリーが必要です。プライマリーアドレスファミリーとして IPv4 ファミリーを持つクラスターの場合は、最初に IPv4 設定を指定します。プライマリーアドレスファミリーとして IPv6 ファミリーを持つクラスターの場合は、最初に IPv6 設定を指定します。

machineNetwork:
- cidr: {{ extcidrnet }}
- cidr: {{ extcidrnet6 }}
clusterNetwork:
- cidr: 10.128.0.0/14
  hostPrefix: 23
- cidr: fd02::/48
  hostPrefix: 64
serviceNetwork:
- 172.30.0.0/16
- fd03::/112
Copy to Clipboard Toggle word wrap
重要

ベアメタルプラットフォームで、install-config.yaml ファイルの networkConfig セクションで NMState 設定を指定した場合は、クラスターをデュアルスタックネットワークにデプロイできない問題を解決するために、interfaces.wait-ip: ipv4+ipv6 を NMState YAML ファイルに追加し、あし。

wait-ip パラメーターを含む NMState YAML 設定ファイルの例

networkConfig:
  nmstate:
    interfaces:
    - name: <interface_name>
# ...
      wait-ip: ipv4+ipv6
# ...
Copy to Clipboard Toggle word wrap

IPv4 および IPv6 アドレスを使用するアプリケーションのクラスターへのインターフェイスを提供するには、Ingress VIP および API VIP サービスの IPv4 および IPv6 仮想 IP (VIP) アドレスエンドポイントを設定します。IPv4 および IPv6 アドレスエンドポイントを設定するには、install-config.yaml ファイルで apiVIPs および ingressVIPs 設定を編集します。apiVIPs および ingressVIPs 設定では、リスト形式を使用します。リストの順序は、各サービスのプライマリーおよびセカンダリー VIP アドレスを示しています。

platform:
  baremetal:
    apiVIPs:
      - <api_ipv4>
      - <api_ipv6>
    ingressVIPs:
      - <wildcard_ipv4>
      - <wildcard_ipv6>
Copy to Clipboard Toggle word wrap
注記

デュアルスタックネットワーク設定のクラスターの場合、IPv4 アドレスと IPv6 アドレスの両方を同じインターフェイスに割り当てる必要があります。

3.3.14.13. ホストネットワークインターフェイスの設定

インストールの前に、install-config.yaml ファイルで networkConfig 設定を設定し、NMState を使用してホストネットワークインターフェイスを設定できます。

この機能の最も一般的な使用例は、ベアメタルネットワークで静的 IP アドレスを指定することですが、ストレージネットワークなどの他のネットワークを設定することもできます。この機能は、VLAN、VXLAN、ブリッジ、ボンド、ルート、MTU、DNS リゾルバー設定など、他の NMState 機能をサポートします。

警告

クラスターの DNS リゾルバー設定で、サポートされていない rotate オプションを設定しないでください。このオプションは、内部 API の DNS 解決機能を妨害します。

前提条件

  • 静的 IP アドレスを持つ各ノードの有効なホスト名で PTR DNS レコードを設定する。
  • NMState CLI (nmstate) をインストールする。
重要

プロビジョニングネットワークを使用する場合は、Ironic の dnsmasq ツールを使用して設定してください。完全に静的なデプロイメントを行うには、仮想メディアを使用する必要があります。

手順

  1. オプション: インストールプログラムは NMState YAML 構文をチェックしないため、install-config.yaml ファイルに NMState 構文を含める前に、nmstatectl gc を使用して NMState 構文をテストすることを検討してください。

    注記

    YAML 構文にエラーがあると、ネットワーク設定の適用に失敗する可能性があります。YAML 構文を検証して管理することは、デプロイ後に Kubernetes NMState を使用して変更を適用するときや、クラスターを拡張するときに役立ちます。

    1. NMState YAML ファイルを作成します。

      interfaces: 
      1
      
      - name: <nic1_name>
        type: ethernet
        state: up
        ipv4:
          address:
          - ip: <ip_address>
            prefix-length: 24
          enabled: true
      dns-resolver:
        config:
          server:
          - <dns_ip_address>
      routes:
        config:
        - destination: 0.0.0.0/0
          next-hop-address: <next_hop_ip_address>
          next-hop-interface: <next_hop_nic1_name>
      Copy to Clipboard Toggle word wrap
      1
      <nic1_name><ip_address><dns_ip_address><next_hop_ip_address>、および <next_hop_nic1_name> を適切な値に置き換えます。
    2. 次のコマンドを実行して、設定ファイルをテストします。

      $ nmstatectl gc <nmstate_yaml_file>
      Copy to Clipboard Toggle word wrap

      <nmstate_yaml_file> を設定ファイル名に置き換えます。

  2. install-config.yaml ファイル内のホストに NMState 設定を追加して、networkConfig 設定を使用します。

        hosts:
          - name: openshift-master-0
            role: master
            bmc:
              address: redfish+http://<out_of_band_ip>/redfish/v1/Systems/
              username: <user>
              password: <password>
              disableCertificateVerification: null
            bootMACAddress: <NIC1_mac_address>
            bootMode: UEFI
            rootDeviceHints:
              deviceName: "/dev/sda"
            networkConfig: 
    1
    
              interfaces: 
    2
    
              - name: <nic1_name>
                type: ethernet
                state: up
                ipv4:
                  address:
                  - ip: <ip_address>
                    prefix-length: 24
                  enabled: true
              dns-resolver:
                config:
                  server:
                  - <dns_ip_address>
              routes:
                config:
                - destination: 0.0.0.0/0
                  next-hop-address: <next_hop_ip_address>
                  next-hop-interface: <next_hop_nic1_name>
    Copy to Clipboard Toggle word wrap
    1
    NMState YAML 構文を追加して、ホストインターフェイスを設定します。
    2
    <nic1_name><ip_address><dns_ip_address><next_hop_ip_address>、および <next_hop_nic1_name> を適切な値に置き換えます。
    重要

    クラスターをデプロイした後、install-config.yaml ファイルの networkConfig 設定を変更して、ホストネットワークインターフェイスを変更することはできません。Kubernetes NMState Operator を使用して、デプロイ後にホストネットワークインターフェイスに変更を加えます。

3.3.14.14. サブネット用のホストネットワークインターフェイスの設定

エッジコンピューティングのシナリオでは、コンピュートノードをエッジの近くに配置することが有益な場合があります。サブネット内のリモートノードを見つけるために、コントロールプレーンサブネットやローカルコンピュートノードに使用したものとは異なるネットワークセグメントまたはサブネットをリモートノードに使用できます。エッジコンピューティングシナリオ用にサブネットを設定することで、エッジのレイテンシーが短縮され、拡張性が向上します。

重要

デフォルトのロードバランサー OpenShiftManagedDefault を使用してリモートノードを OpenShift Container Platform クラスターに追加する場合は、すべてのコントロールプレーンノードが同じサブネット内で実行されている必要があります。複数のサブネットを使用する場合、マニフェストを使用して、コントロールプレーンノード上で実行されるように Ingress VIP を設定することもできます。詳細は、「コントロールプレーンで実行するネットワークコンポーネントの設定」を参照してください。

「サブネット間の通信を確立する」セクションの説明どおりにリモートノードに異なるネットワークセグメントまたはサブネットを確立した場合、ワーカーが静的 IP アドレス、ボンディング、またはその他の高度なネットワークを使用している場合は、machineNetwork 設定でサブネットを指定する必要があります。各リモートノードの networkConfig パラメーターでノード IP アドレスを設定する場合、静的 IP アドレスを使用する際に、コントロールプレーンノードを含むサブネットのゲートウェイと DNS サーバーも指定する必要があります。これにより、リモートノードがコントロールプレーンを含むサブネットに到達し、コントロールプレーンからネットワークトラフィックを受信できるようになります。

注記

複数のサブネットを持つクラスターをデプロイするには、redfish-virtualmediaidrac-virtualmedia などの仮想メディアを使用する必要があります。リモートノードがローカルプロビジョニングネットワークにアクセスできないためです。

手順

  1. 静的 IP アドレスを使用する場合は、install-config.yaml ファイルの machineNetwork にサブネットを追加します。

    networking:
      machineNetwork:
      - cidr: 10.0.0.0/24
      - cidr: 192.168.0.0/24
      networkType: OVNKubernetes
    Copy to Clipboard Toggle word wrap
  2. 静的 IP アドレスまたはボンディングなどの高度なネットワークを使用する場合は、NMState 構文を使用して、各エッジコンピュートノードの networkConfig パラメーターにゲートウェイと DNS 設定を追加します。

    networkConfig:
      interfaces:
      - name: <interface_name> 
    1
    
        type: ethernet
        state: up
        ipv4:
          enabled: true
          dhcp: false
          address:
          - ip: <node_ip> 
    2
    
            prefix-length: 24
          gateway: <gateway_ip> 
    3
    
      dns-resolver:
        config:
          server:
          - <dns_ip> 
    4
    Copy to Clipboard Toggle word wrap
    1
    <interface_name> をインターフェイス名に置き換えます。
    2
    <node_ip> をノードの IP アドレスに置き換えます。
    3
    <gateway_ip> をゲートウェイの IP アドレスに置き換えます。
    4
    <dns_ip> を DNS サーバーの IP アドレスに置き換えます。
3.3.14.15. デュアルスタックネットワーク内における SLAAC のアドレス生成モードの設定

Stateless Address AutoConfiguration (SLAAC) を使用するデュアルスタッククラスターの場合は、ipv6.addr-gen-mode ネットワーク設定のグローバル値を指定する必要があります。NMState を使用してこの値を設定し、RAM ディスクとクラスター設定ファイルを設定できます。これらの場所で一貫した ipv6.addr-gen-mode を設定しないと、クラスター内の CSR リソースと BareMetalHost リソース間で IPv6 アドレスの不一致が発生する可能性があります。

前提条件

  • NMState CLI (nmstate) をインストールする。

手順

  1. オプション: インストールプログラムは NMState YAML 構文をチェックしないため、install-config.yaml ファイルに含める前に nmstatectl gc コマンドを使用して NMState YAML 構文をテストすることを検討してください。

    1. NMState YAML ファイルを作成します。

      interfaces:
      - name: eth0
        ipv6:
          addr-gen-mode: <address_mode> 
      1
      Copy to Clipboard Toggle word wrap
      1
      <address_mode> を、クラスター内の IPv6 アドレスに必要なアドレス生成モードのタイプに置き換えます。有効な値は、eui64stable-privacy、または random です。
    2. 次のコマンドを実行して、設定ファイルをテストします。

      $ nmstatectl gc <nmstate_yaml_file> 
      1
      Copy to Clipboard Toggle word wrap
      1
      <nmstate_yaml_file> を、テスト設定ファイルの名前に置き換えます。
  2. NMState 設定を、install-config.yaml ファイル内の hosts.networkConfig セクションに追加します。

        hosts:
          - name: openshift-master-0
            role: master
            bmc:
              address: redfish+http://<out_of_band_ip>/redfish/v1/Systems/
              username: <user>
              password: <password>
              disableCertificateVerification: null
            bootMACAddress: <NIC1_mac_address>
            bootMode: UEFI
            rootDeviceHints:
              deviceName: "/dev/sda"
            networkConfig:
              interfaces:
              - name: eth0
                ipv6:
                  addr-gen-mode: <address_mode> 
    1
    
    ...
    Copy to Clipboard Toggle word wrap
    1
    <address_mode> を、クラスター内の IPv6 アドレスに必要なアドレス生成モードのタイプに置き換えます。有効な値は、eui64stable-privacy、または random です。
3.3.14.16. デュアルポート NIC 用のホストネットワークインターフェイスの設定

インストール前に、install-config.yaml ファイルで networkConfig を設定し、NMState を使用してデュアルポートネットワークインターフェイスコントローラー (NIC) をサポートすることで、ホストネットワークインターフェイスを設定できます。

OpenShift Virtualization は以下のボンドモードのみをサポートします。

  • mode=1 active-backup
  • mode=2 balance-xor
  • mode=4 802.3ad

前提条件

  • 静的 IP アドレスを持つ各ノードの有効なホスト名で PTR DNS レコードを設定する。
  • NMState CLI (nmstate) をインストールする。
注記

YAML 構文にエラーがあると、ネットワーク設定の適用に失敗する可能性があります。YAML 構文を検証して管理することは、デプロイ後に Kubernetes NMState を使用して変更を適用するときや、クラスターを拡張するときに役立ちます。

手順

  1. install-config.yaml ファイル内のホストの networkConfig フィールドに NMState 設定を追加します。

        hosts:
          - name: worker-0
            role: worker
            bmc:
              address: redfish+http://<out_of_band_ip>/redfish/v1/Systems/
              username: <user>
              password: <password>
              disableCertificateVerification: false
            bootMACAddress: <NIC1_mac_address>
            bootMode: UEFI
            networkConfig: 
    1
    
              interfaces: 
    2
    
               - name: eno1 
    3
    
                 type: ethernet 
    4
    
                 state: up
                 mac-address: 0c:42:a1:55:f3:06
                 ipv4:
                   enabled: true
                   dhcp: false 
    5
    
                 ethernet:
                   sr-iov:
                     total-vfs: 2 
    6
    
                 ipv6:
                   enabled: false
                   dhcp: false
               - name: sriov:eno1:0
                 type: ethernet
                 state: up 
    7
    
                 ipv4:
                   enabled: false 
    8
    
                 ipv6:
                   enabled: false
               - name: sriov:eno1:1
                 type: ethernet
                 state: down
               - name: eno2
                 type: ethernet
                 state: up
                 mac-address: 0c:42:a1:55:f3:07
                 ipv4:
                   enabled: true
                 ethernet:
                   sr-iov:
                     total-vfs: 2
                 ipv6:
                   enabled: false
               - name: sriov:eno2:0
                 type: ethernet
                 state: up
                 ipv4:
                   enabled: false
                 ipv6:
                   enabled: false
               - name: sriov:eno2:1
                 type: ethernet
                 state: down
               - name: bond0
                 type: bond
                 state: up
                 min-tx-rate: 100 
    9
    
                 max-tx-rate: 200 
    10
    
                 link-aggregation:
                   mode: active-backup 
    11
    
                   options:
                     primary: sriov:eno1:0 
    12
    
                   port:
                     - sriov:eno1:0
                     - sriov:eno2:0
                 ipv4:
                   address:
                     - ip: 10.19.16.57 
    13
    
                       prefix-length: 23
                   dhcp: false
                   enabled: true
                 ipv6:
                   enabled: false
              dns-resolver:
                config:
                  server:
                    - 10.11.5.160
                    - 10.2.70.215
              routes:
                config:
                  - destination: 0.0.0.0/0
                    next-hop-address: 10.19.17.254
                    next-hop-interface: bond0 
    14
    
                    table-id: 254
    Copy to Clipboard Toggle word wrap
    1
    networkConfig フィールドには、ホストのネットワーク設定に関する情報を含めます。interfacesdns-resolverroutes などのサブフィールドがあります。
    2
    interfaces フィールドは、ホスト用に定義されたネットワークインターフェイスの配列です。
    3
    インターフェイスの名前。
    4
    インターフェイスのタイプ。この例では、イーサネットインターフェイスを作成します。
    5
    厳密に必要ではない場合、物理機能 (PF) の DHCP を無効にするには、これを false に設定します。
    6
    インスタンス化する SR-IOV 仮想機能 (VF) の数に設定します。
    7
    これを up に設定します。
    8
    ボンドに接続された VF の IPv4 アドレス指定を無効にするには、これを false に設定します。
    9
    VF の最小伝送速度 (Mbps) を設定します。このサンプル値は、100 Mbps のレートを設定します。
    • この値は、最大伝送レート以下である必要があります。
    • Intel NIC は min-tx-rate パラメーターをサポートしていません。詳細は、BZ#1772847 を参照してください。
    10
    VF の最大伝送速度 (Mbps) を設定します。このサンプル値は、200 Mbps のレートを設定します。
    11
    必要なボンディングモードを設定します。
    12
    ボンディングインターフェイスの優先ポートを設定します。ボンディングは、プライマリーデバイスをボンディングインターフェイスの最初のデバイスとして使用します。ボンディングは、障害が発生しない限り、プライマリーデバイスインターフェイスを放棄しません。この設定が特に役立つのは、ボンディングインターフェイスの NIC の 1 つが高速なため、大規模な負荷に対応できる場合です。この設定は、ボンディングインターフェイスが active-backup モード (モード 1) の場合にのみ有効です。
    13
    ボンドインターフェイスの静的 IP アドレスを設定します。これはノードの IP アドレスです。
    14
    デフォルトルートのゲートウェイとして bond0 を設定します。
    重要

    クラスターをデプロイした後は、install-config.yaml ファイルの networkConfig 設定を変更してホストネットワークインターフェイスを変更することはできません。Kubernetes NMState Operator を使用して、デプロイ後にホストネットワークインターフェイスに変更を加えます。

3.3.14.17. 複数のクラスターノードの設定

同じ設定で OpenShift Container Platform クラスターノードを同時に設定できます。複数のクラスターノードを設定すると、各ノードの冗長な情報が install-config.yaml ファイルに追加されることを回避できます。このファイルには、クラスター内の複数のノードに同一の設定を適用するための特定のパラメーターが含まれています。

コンピュートノードは、コントローラーノードとは別に設定されます。ただし、両方のノードタイプの設定では、install-config.yaml ファイルで強調表示されているパラメーターを使用して、マルチノード設定を有効にします。次の例に示すように、networkConfig パラメーターを BOND に設定します。

hosts:
- name: ostest-master-0
 [...]
 networkConfig: &BOND
   interfaces:
   - name: bond0
     type: bond
     state: up
     ipv4:
       dhcp: true
       enabled: true
     link-aggregation:
       mode: active-backup
       port:
       - enp2s0
       - enp3s0
- name: ostest-master-1
 [...]
 networkConfig: *BOND
- name: ostest-master-2
 [...]
 networkConfig: *BOND
Copy to Clipboard Toggle word wrap
注記

複数のクラスターノードの設定は、installer-provisioned infrastructure での初期デプロイメントでのみ使用できます。

3.3.14.18. マネージドセキュアブートの設定

redfishredfish-virtualmediaidrac-virtualmedia などの Redfish BMC アドレス指定を使用して、installer-provisioned クラスターをデプロイする際に管理対象 Secure Boot を有効にすることができます。マネージド Secure Boot を有効にするには、bootMode 設定を各ノードに追加します。

hosts:
  - name: openshift-master-0
    role: master
    bmc:
      address: redfish://<out_of_band_ip> 
1

      username: <username>
      password: <password>
    bootMACAddress: <NIC1_mac_address>
    rootDeviceHints:
     deviceName: "/dev/sda"
    bootMode: UEFISecureBoot 
2
Copy to Clipboard Toggle word wrap

1
bmc.address 設定は、redfishredfish-virtualmedia、または idrac-virtualmedia をプロトコルとして使用することを確認します。詳細は、「HPE iLO の BMC アドレス指定」または「Dell iDRAC の BMC アドレス指定」を参照してください。
2
bootMode 設定は、デフォルトで UEFI となります。これを UEFISecureBoot に変更して、マネージド Secure Boot を有効にします。
注記

ノードがマネージド Secure Boot をサポートできるようにするには、「前提条件」の「ノードの設定」を参照してください。ノードがマネージド Secure Boot に対応していない場合には、「ノードの設定」セクションの「手動での Secure Boot のノードの設定」を参照してください。Secure Boot を手動で設定するには、Redfish 仮想メディアが必要です。

注記

IPMI は Secure Boot 管理機能を提供しないため、Red Hat では IPMI による Secure Boot のサポートはありません。

3.3.15. マニフェスト設定ファイル

3.3.15.1. OpenShift Container Platform マニフェストの作成
  1. OpenShift Container Platform マニフェストを作成します。

    $ ./openshift-baremetal-install --dir ~/clusterconfigs create manifests
    Copy to Clipboard Toggle word wrap
    INFO Consuming Install Config from target directory
    WARNING Making control-plane schedulable by setting MastersSchedulable to true for Scheduler cluster settings
    WARNING Discarding the OpenShift Manifest that was provided in the target directory because its dependencies are dirty and it needs to be regenerated
    Copy to Clipboard Toggle word wrap
3.3.15.2. 非接続クラスター向けの NTP 設定

OpenShift Container Platform は、クラスターノードに chrony Network Time Protocol (NTP) サービスをインストールします。

OpenShift Container Platform のノードは、適切に実行するために日付と時刻が一致している必要があります。コンピュートノードがコントロールプレーンノード上の NTP サーバーから日付と時刻を取得すると、ルーティング可能なネットワークに接続していないために上位層の NTP サーバーにアクセスできないクラスターのインストールと操作が可能になります。

手順

  1. 次のコマンドを使用して、インストールホストに Butane をインストールします。

    $ sudo dnf -y install butane
    Copy to Clipboard Toggle word wrap
  2. コントロールプレーンノードの chrony.conf ファイルのコンテンツを含む Butane 設定 (99-master-chrony-conf-override.bu) を作成します。

    注記

    Butane の詳細は、「Butane を使用したマシン設定の作成」を参照してください。

    Butane 設定例

    variant: openshift
    version: 4.19.0
    metadata:
      name: 99-master-chrony-conf-override
      labels:
        machineconfiguration.openshift.io/role: master
    storage:
      files:
        - path: /etc/chrony.conf
          mode: 0644
          overwrite: true
          contents:
            inline: |
              # Use public servers from the pool.ntp.org project.
              # Please consider joining the pool (https://www.pool.ntp.org/join.html).
    
              # The Machine Config Operator manages this file
              server openshift-master-0.<cluster-name>.<domain> iburst 
    1
    
              server openshift-master-1.<cluster-name>.<domain> iburst
              server openshift-master-2.<cluster-name>.<domain> iburst
    
              stratumweight 0
              driftfile /var/lib/chrony/drift
              rtcsync
              makestep 10 3
              bindcmdaddress 127.0.0.1
              bindcmdaddress ::1
              keyfile /etc/chrony.keys
              commandkey 1
              generatecommandkey
              noclientlog
              logchange 0.5
              logdir /var/log/chrony
    
              # Configure the control plane nodes to serve as local NTP servers
              # for all compute nodes, even if they are not in sync with an
              # upstream NTP server.
    
              # Allow NTP client access from the local network.
              allow all
              # Serve time even if not synchronized to a time source.
              local stratum 3 orphan
    Copy to Clipboard Toggle word wrap

    1
    <cluster-name> はクラスターの名前に置き換え、<domain> は完全修飾ドメイン名に置き換える必要があります。
  3. Butane を使用して、コントロールプレーンノードに配信される設定が含まれる MachineConfig オブジェクトファイル (99-master-chrony-conf-override.yaml) を生成します。

    $ butane 99-master-chrony-conf-override.bu -o 99-master-chrony-conf-override.yaml
    Copy to Clipboard Toggle word wrap
  4. コントロールプレーンノード上の NTP サーバーを参照するコンピュートノードの chrony.conf ファイルの内容を含む Butane 設定 99-worker-chrony-conf-override.bu を作成します。

    Butane 設定例

    variant: openshift
    version: 4.19.0
    metadata:
      name: 99-worker-chrony-conf-override
      labels:
        machineconfiguration.openshift.io/role: worker
    storage:
      files:
        - path: /etc/chrony.conf
          mode: 0644
          overwrite: true
          contents:
            inline: |
              # The Machine Config Operator manages this file.
              server openshift-master-0.<cluster-name>.<domain> iburst 
    1
    
              server openshift-master-1.<cluster-name>.<domain> iburst
              server openshift-master-2.<cluster-name>.<domain> iburst
    
              stratumweight 0
              driftfile /var/lib/chrony/drift
              rtcsync
              makestep 10 3
              bindcmdaddress 127.0.0.1
              bindcmdaddress ::1
              keyfile /etc/chrony.keys
              commandkey 1
              generatecommandkey
              noclientlog
              logchange 0.5
              logdir /var/log/chrony
    Copy to Clipboard Toggle word wrap

    1
    <cluster-name> はクラスターの名前に置き換え、<domain> は完全修飾ドメイン名に置き換える必要があります。
  5. Butane を使用して、ワーカーノードに配信される設定が含まれる MachineConfig オブジェクトファイル (99-worker-chrony-conf-override.yaml) を生成します。

    $ butane 99-worker-chrony-conf-override.bu -o 99-worker-chrony-conf-override.yaml
    Copy to Clipboard Toggle word wrap
3.3.15.3. コントロールプレーンで実行されるネットワークコンポーネントの設定

ネットワークコンポーネントは、コントロールプレーンノードでのみ実行するように設定できます。デフォルトで、OpenShift Container Platform はマシン設定プールの任意のノードが ingressVIP 仮想 IP アドレスをホストできるようにします。ただし、環境によっては、コントロールプレーンノードとは別のサブネットにコンピュートノードがデプロイされるため、コントロールプレーンノードで実行するために ingressVIP 仮想 IP アドレスを設定する必要があります。

重要

リモートノードを別々のサブネットにデプロイする場合は、コントロールプレーンノード専用に ingressVIP 仮想 IP アドレスを配置する必要があります。

手順

  1. install-config.yaml ファイルを保存するディレクトリーに移動します。

    $ cd ~/clusterconfigs
    Copy to Clipboard Toggle word wrap
  2. manifests サブディレクトリーに切り替えます。

    $ cd manifests
    Copy to Clipboard Toggle word wrap
  3. cluster-network-avoid-workers-99-config.yaml という名前のファイルを作成します。

    $ touch cluster-network-avoid-workers-99-config.yaml
    Copy to Clipboard Toggle word wrap
  4. エディターで cluster-network-avoid-workers-99-config.yaml ファイルを開き、Operator 設定を記述するカスタムリソース (CR) を入力します。

    apiVersion: machineconfiguration.openshift.io/v1
    kind: MachineConfig
    metadata:
      name: 50-worker-fix-ipi-rwn
      labels:
        machineconfiguration.openshift.io/role: worker
    spec:
      config:
        ignition:
          version: 3.2.0
        storage:
          files:
            - path: /etc/kubernetes/manifests/keepalived.yaml
              mode: 0644
              contents:
                source: data:,
    Copy to Clipboard Toggle word wrap

    このマニフェストは、ingressVIP 仮想 IP アドレスをコントロールプレーンノードに配置します。また、このマニフェストは、コントロールプレーンノードにのみ以下のプロセスをデプロイします。

    • openshift-ingress-operator
    • keepalived
  5. cluster-network-avoid-workers-99-config.yaml ファイルを保存します。
  6. manifests/cluster-ingress-default-ingresscontroller.yaml ファイルを作成します。

    apiVersion: operator.openshift.io/v1
    kind: IngressController
    metadata:
      name: default
      namespace: openshift-ingress-operator
    spec:
      nodePlacement:
        nodeSelector:
          matchLabels:
            node-role.kubernetes.io/master: ""
    Copy to Clipboard Toggle word wrap
  7. manifests ディレクトリーのバックアップの作成を検討してください。インストーラーは、クラスターの作成時に manifests/ ディレクトリーを削除します。
  8. cluster-scheduler-02-config.yml マニフェストを変更し、mastersSchedulable フィールドを true に設定して、コントロールプレーンノードをスケジュール対象にします。デフォルトでは、コントロールプレーンノードはスケジュール対象ではありません。以下に例を示します。

    $ sed -i "s;mastersSchedulable: false;mastersSchedulable: true;g" clusterconfigs/manifests/cluster-scheduler-02-config.yml
    Copy to Clipboard Toggle word wrap
    注記

    この手順の完了後にコントロールプレーンノードをスケジュールできない場合には、クラスターのデプロイに失敗します。

3.3.15.4. コンピュートノードへのルーターのデプロイ

インストール時に、インストールプログラムはルーター Pod をコンピュートノードにデプロイします。デフォルトでは、インストールプログラムは 2 つのルーター Pod をインストールします。デプロイされたクラスターが、OpenShift Container Platform クラスター内のサービスに対して予定される外部トラフィック負荷を処理するために追加のルーターを必要とする場合、yaml ファイルを作成して適切なルーターレプリカ数を設定できます。

重要

コンピュートノードが 1 つだけのクラスターのデプロイはサポートされていません。ルーターのレプリカを変更すると、1 つのコンピュートノードでデプロイする場合の degraded 状態の問題が解決されますが、クラスターで Ingress API の高可用性が失われるため、実稼働環境には適していません。

注記

デフォルトでは、インストールプログラムは 2 つのルーターをデプロイします。クラスターにコンピュートノードがない場合、インストールプログラムはデフォルトで 2 つのルーターをコントロールプレーンノードにデプロイします。

手順

  1. router-replicas.yaml ファイルを作成します。

    apiVersion: operator.openshift.io/v1
    kind: IngressController
    metadata:
      name: default
      namespace: openshift-ingress-operator
    spec:
      replicas: <num-of-router-pods>
      endpointPublishingStrategy:
        type: HostNetwork
      nodePlacement:
        nodeSelector:
          matchLabels:
            node-role.kubernetes.io/worker: ""
    Copy to Clipboard Toggle word wrap
    注記

    <num-of-router-pods> を適切な値に置き換えます。1 つのコンピュートノードのみを使用する場合は、replicas:1 に設定します。3 つ以上のコンピュートノードを使用する場合は、必要に応じて、replicas: をデフォルト値 2 から増やすことができます。

  2. router-replicas.yaml ファイルを保存し、これを clusterconfigs/openshift ディレクトリーにコピーします。

    $ cp ~/router-replicas.yaml clusterconfigs/openshift/99_router-replicas.yaml
    Copy to Clipboard Toggle word wrap
3.3.15.5. BIOS の設定

次の手順では、インストールプロセス中に BIOS を設定します。

手順

  1. マニフェストを作成します。
  2. ノードに対応する BareMetalHost リソースファイルを変更します。

    $ vim clusterconfigs/openshift/99_openshift-cluster-api_hosts-*.yaml
    Copy to Clipboard Toggle word wrap
  3. BIOS 設定を BareMetalHost リソースの spec セクションに追加します。

    spec:
      firmware:
        simultaneousMultithreadingEnabled: true
        sriovEnabled: true
        virtualizationEnabled: true
    Copy to Clipboard Toggle word wrap
    注記

    Red Hat は 3 つの BIOS 設定をサポートしています。BMC タイプ irmc のサーバーのみがサポートされます。他のタイプのサーバーは現在サポートされていません。

  4. クラスターを作成します。
3.3.15.6. RAID の設定

次の手順では、インストールプロセス中にベースボード管理コントローラー (BMC) を使用して Redundant Array of Independent Disks (RAID) を構成します。

注記

ノードにハードウェア RAID を設定する場合は、ノードにサポートされている RAID コントローラーがあることを確認してください。OpenShift Container Platform 4.19 は、ソフトウェア RAID をサポートしていません。

Expand
表3.16 ベンダーによるハードウェア RAID のサポート
ベンターBMC とプロトコルファームウェアのバージョンRAID レベル

Fujitsu

iRMC

該当なし

0、1、5、6、10

Dell

iDRAC と Redfish

バージョン 6.10.30.20 以降

0、1、5

手順

  1. マニフェストを作成します。
  2. ノードに対応する BareMetalHost リソースを変更します。

    $ vim clusterconfigs/openshift/99_openshift-cluster-api_hosts-*.yaml
    Copy to Clipboard Toggle word wrap
    注記

    OpenShift Container Platform 4.19 はソフトウェア RAID をサポートしていないため、次の例ではハードウェア RAID 設定を使用します。

    1. 特定の RAID 設定を spec セクションに追加した場合、これが原因でノードは preparing フェーズで元の RAID 設定を削除し、RAID で指定された設定を実行します。以下に例を示します。

      spec:
        raid:
          hardwareRAIDVolumes:
          - level: "0" 
      1
      
            name: "sda"
            numberOfPhysicalDisks: 1
            rotational: true
            sizeGibibytes: 0
      Copy to Clipboard Toggle word wrap
      1
      level は必須フィールドであり、その他はオプションのフィールドです。
    2. spec セクションに空の RAID 設定を追加した場合、空の設定が原因で、ノードは preparing フェーズで元の RAID 設定を削除しますが、新しい設定は実行しません。以下に例を示します。

      spec:
        raid:
          hardwareRAIDVolumes: []
      Copy to Clipboard Toggle word wrap
    3. spec セクションに raid フィールドを追加しない場合、元の RAID 設定は削除されず、新しい設定は実行されません。
  3. クラスターを作成します。
3.3.15.7. ノード上のストレージの設定

Machine Config Operator (MCO) によって管理される MachineConfig オブジェクトを作成することにより、OpenShift Container Platform ノード上のオペレーティングシステムに変更を加えることができます。

MachineConfig 仕様には、最初の起動時にマシンを設定するための点火設定が含まれています。この設定オブジェクトを使用して、OpenShift Container Platform マシン上で実行されているファイル、systemd サービス、およびその他のオペレーティングシステム機能を変更できます。

手順

ignition config を使用して、ノード上のストレージを設定します。次の MachineSet マニフェストの例は、プライマリーノード上のデバイスにパーティションを追加する方法を示しています。この例では、インストール前にマニフェストを適用して、プライマリーノードでサイズが 16 GiB の recovery という名前のパーティションを設定します。

  1. custom-partitions.yaml ファイルを作成し、パーティションレイアウトを含む MachineConfig オブジェクトを含めます。

    apiVersion: machineconfiguration.openshift.io/v1
    kind: MachineConfig
    metadata:
      labels:
        machineconfiguration.openshift.io/role: primary
      name: 10_primary_storage_config
    spec:
      config:
        ignition:
          version: 3.2.0
        storage:
          disks:
            - device: </dev/xxyN>
              partitions:
                - label: recovery
                  startMiB: 32768
                  sizeMiB: 16384
          filesystems:
            - device: /dev/disk/by-partlabel/recovery
              label: recovery
              format: xfs
    Copy to Clipboard Toggle word wrap
  2. custom-partitions.yaml ファイルを保存して、clusterconfigs/openshift ディレクトリーにコピーします。

    $ cp ~/<MachineConfig_manifest> ~/clusterconfigs/openshift
    Copy to Clipboard Toggle word wrap

3.3.16. 非接続レジストリーの作成

インストールレジストリーのローカルコピーを使用して OpenShift Container Platform クラスターをインストールする必要がある場合があります。これにより、クラスターノードがインターネットにアクセスできないネットワーク上にあるため、ネットワークの効率が高まる可能性があります。

レジストリーのローカルまたはミラーリングされたコピーには、以下が必要です。

  • レジストリーの証明書。これには、自己署名証明書を使用できます。
  • システム上のコンテナーが提供する Web サーバー。
  • 証明書およびローカルリポジトリーの情報が含まれる更新されたプルシークレット。
注記

レジストリーノードでの非接続レジストリーの作成はオプションです。レジストリーノードで切断されたレジストリーを作成する必要がある場合は、次のサブセクションをすべて完了する必要があります。

3.3.16.1. 前提条件
3.3.16.2. ミラーリングされたレジストリーをホストするためのレジストリーノードの準備

ベアメタルでミラー化されたレジストリーをホストする前に、次の手順を完了する必要があります。

手順

  1. レジストリーノードでファイアウォールポートを開きます。

    $ sudo firewall-cmd --add-port=5000/tcp --zone=libvirt  --permanent
    Copy to Clipboard Toggle word wrap
    $ sudo firewall-cmd --add-port=5000/tcp --zone=public   --permanent
    Copy to Clipboard Toggle word wrap
    $ sudo firewall-cmd --reload
    Copy to Clipboard Toggle word wrap
  2. レジストリーノードに必要なパッケージをインストールします。

    $ sudo yum -y install python3 podman httpd httpd-tools jq
    Copy to Clipboard Toggle word wrap
  3. リポジトリー情報が保持されるディレクトリー構造を作成します。

    $ sudo mkdir -p /opt/registry/{auth,certs,data}
    Copy to Clipboard Toggle word wrap

以下の手順を実行して、切断されたレジストリーの OpenShift Container Platform イメージリポジトリーをミラーリングします。

前提条件

  • ミラーホストがインターネットにアクセスできる。
  • ネットワークが制限された環境で使用するミラーレジストリーを設定し、設定した証明書および認証情報にアクセスできる。
  • Red Hat OpenShift Cluster Manager からプルシークレット をダウンロードし、ミラーリポジトリーへの認証を組み込むように変更している。

手順

  1. Download OpenShift Container Platform ページを確認して、インストールする OpenShift Container Platform のバージョンを判別し、Repository Tags ページで対応するタグを判別します。
  2. 必要な環境変数を設定します。

    1. リリースバージョンをエクスポートします。

      $ OCP_RELEASE=<release_version>
      Copy to Clipboard Toggle word wrap

      <release_version> について、インストールする OpenShift Container Platform のバージョンに対応するタグを指定します (例: 4.5.4)。

    2. ローカルレジストリー名とホストポートをエクスポートします。

      $ LOCAL_REGISTRY='<local_registry_host_name>:<local_registry_host_port>'
      Copy to Clipboard Toggle word wrap

      <local_registry_host_name> には、ミラーレジストリーのレジストリードメイン名を指定し、<local_registry_host_port> には、コンテンツの送信に使用するポートを指定します。

    3. ローカルリポジトリー名をエクスポートします。

      $ LOCAL_REPOSITORY='<local_repository_name>'
      Copy to Clipboard Toggle word wrap

      <local_repository_name> には、ocp4/openshift4 などのレジストリーに作成するリポジトリーの名前を指定します。

    4. ミラーリングするリポジトリーの名前をエクスポートします。

      $ PRODUCT_REPO='openshift-release-dev'
      Copy to Clipboard Toggle word wrap

      実稼働環境のリリースの場合には、openshift-release-dev を指定する必要があります。

    5. パスをレジストリープルシークレットにエクスポートします。

      $ LOCAL_SECRET_JSON='<path_to_pull_secret>'
      Copy to Clipboard Toggle word wrap

      <path_to_pull_secret> には、作成したミラーレジストリーのプルシークレットの絶対パスおよびファイル名を指定します。

    6. リリースミラーをエクスポートします。

      $ RELEASE_NAME="ocp-release"
      Copy to Clipboard Toggle word wrap

      実稼働環境のリリースは、ocp-release を指定する必要があります。

    7. クラスターのアーキテクチャーのタイプをエクスポートします。

      $ ARCHITECTURE=<cluster_architecture> 
      1
      Copy to Clipboard Toggle word wrap
      1
      x86_64aarch64s390x、または ppc64le など、クラスターのアーキテクチャーを指定します。
    8. ミラーリングされたイメージをホストするためにディレクトリーへのパスをエクスポートします。

      $ REMOVABLE_MEDIA_PATH=<path> 
      1
      Copy to Clipboard Toggle word wrap
      1
      最初のスラッシュ (/) 文字を含む完全パスを指定します。
  3. バージョンイメージをミラーレジストリーにミラーリングします。

    • ミラーホストがインターネットにアクセスできない場合は、以下の操作を実行します。

      1. リムーバブルメディアをインターネットに接続しているシステムに接続します。
      2. ミラーリングするイメージおよび設定マニフェストを確認します。

        $ oc adm release mirror -a ${LOCAL_SECRET_JSON}  \
             --from=quay.io/${PRODUCT_REPO}/${RELEASE_NAME}:${OCP_RELEASE}-${ARCHITECTURE} \
             --to=${LOCAL_REGISTRY}/${LOCAL_REPOSITORY} \
             --to-release-image=${LOCAL_REGISTRY}/${LOCAL_REPOSITORY}:${OCP_RELEASE}-${ARCHITECTURE} --dry-run
        Copy to Clipboard Toggle word wrap
      3. 直前のコマンドの出力の imageContentSources セクション全体を記録します。ミラーの情報はミラーリングされたリポジトリーに一意であり、インストール時に imageContentSources セクションを install-config.yaml ファイルに追加する必要があります。
      4. イメージをリムーバブルメディア上のディレクトリーにミラーリングします。

        $ oc adm release mirror -a ${LOCAL_SECRET_JSON} --to-dir=${REMOVABLE_MEDIA_PATH}/mirror quay.io/${PRODUCT_REPO}/${RELEASE_NAME}:${OCP_RELEASE}-${ARCHITECTURE}
        Copy to Clipboard Toggle word wrap
      5. メディアをネットワークが制限された環境に移し、イメージをローカルコンテナーレジストリーにアップロードします。

        $ oc image mirror -a ${LOCAL_SECRET_JSON} --from-dir=${REMOVABLE_MEDIA_PATH}/mirror "file://openshift/release:${OCP_RELEASE}*" ${LOCAL_REGISTRY}/${LOCAL_REPOSITORY} 
        1
        Copy to Clipboard Toggle word wrap
        1
        REMOVABLE_MEDIA_PATH の場合、イメージのミラーリング時に指定した同じパスを使用する必要があります。
    • ローカルコンテナーレジストリーがミラーホストに接続されている場合は、以下の操作を実行します。

      1. 以下のコマンドを使用して、リリースイメージをローカルレジストリーに直接プッシュします。

        $ oc adm release mirror -a ${LOCAL_SECRET_JSON}  \
             --from=quay.io/${PRODUCT_REPO}/${RELEASE_NAME}:${OCP_RELEASE}-${ARCHITECTURE} \
             --to=${LOCAL_REGISTRY}/${LOCAL_REPOSITORY} \
             --to-release-image=${LOCAL_REGISTRY}/${LOCAL_REPOSITORY}:${OCP_RELEASE}-${ARCHITECTURE}
        Copy to Clipboard Toggle word wrap

        このコマンドは、リリース情報をダイジェストとしてプルします。その出力には、クラスターのインストール時に必要な imageContentSources データが含まれます。

      2. 直前のコマンドの出力の imageContentSources セクション全体を記録します。ミラーの情報はミラーリングされたリポジトリーに一意であり、インストール時に imageContentSources セクションを install-config.yaml ファイルに追加する必要があります。

        注記

        ミラーリングプロセス中にイメージ名に Quay.io のパッチが適用され、podman イメージにはブートストラップ仮想マシンのレジストリーに Quay.io が表示されます。

  4. ミラーリングしたコンテンツに基づくインストールプログラムを作成するために、インストールプログラムを展開してリリースに固定します。

    • ミラーホストがインターネットにアクセスできない場合は、以下のコマンドを実行します。

      $ oc adm release extract -a ${LOCAL_SECRET_JSON} --command=openshift-baremetal-install "${LOCAL_REGISTRY}/${LOCAL_REPOSITORY}:${OCP_RELEASE}"
      Copy to Clipboard Toggle word wrap
    • ローカルコンテナーレジストリーがミラーホストに接続されている場合は、以下のコマンドを実行します。

      $ oc adm release extract -a ${LOCAL_SECRET_JSON} --command=openshift-baremetal-install "${LOCAL_REGISTRY}/${LOCAL_REPOSITORY}:${OCP_RELEASE}-${ARCHITECTURE}"
      Copy to Clipboard Toggle word wrap
      重要

      選択した OpenShift Container Platform のバージョンに適したイメージを確実に使用するために、ミラーリングしたコンテンツからインストールプログラムを展開する必要があります。

      インターネット接続のあるマシンで、このステップを実行する必要があります。

      非接続環境を使用している場合には、must-gather の一部として --image フラグを使用し、ペイロードイメージを参照します。

  5. installer-provisioned infrastructure を使用するクラスターの場合は、以下のコマンドを実行します。

    $ openshift-baremetal-install
    Copy to Clipboard Toggle word wrap
3.3.16.4. 非接続レジストリーを使用するように install-config.yaml ファイルを変更する

プロビジョナーノードでは、install-config.yaml ファイルは pull-secret-update.txt ファイルから新たに作成された pull-secret を使用する必要があります。install-config.yaml ファイルには、非接続レジストリーノードの証明書およびレジストリー情報も含まれる必要があります。

手順

  1. 非接続レジストリーノードの証明書を install-config.yaml ファイルに追加します。

    $ echo "additionalTrustBundle: |" >> install-config.yaml
    Copy to Clipboard Toggle word wrap

    証明書は "additionalTrustBundle: |" 行に従い、通常は 2 つのスペースで適切にインデントされる必要があります。

    $ sed -e 's/^/  /' /opt/registry/certs/domain.crt >> install-config.yaml
    Copy to Clipboard Toggle word wrap
  2. レジストリーのミラー情報を install-config.yaml ファイルに追加します。

    $ echo "imageContentSources:" >> install-config.yaml
    Copy to Clipboard Toggle word wrap
    $ echo "- mirrors:" >> install-config.yaml
    Copy to Clipboard Toggle word wrap
    $ echo "  - registry.example.com:5000/ocp4/openshift4" >> install-config.yaml
    Copy to Clipboard Toggle word wrap

    registry.example.com をレジストリーの完全修飾ドメイン名に置き換えます。

    $ echo "  source: quay.io/openshift-release-dev/ocp-release" >> install-config.yaml
    Copy to Clipboard Toggle word wrap
    $ echo "- mirrors:" >> install-config.yaml
    Copy to Clipboard Toggle word wrap
    $ echo "  - registry.example.com:5000/ocp4/openshift4" >> install-config.yaml
    Copy to Clipboard Toggle word wrap

    registry.example.com をレジストリーの完全修飾ドメイン名に置き換えます。

    $ echo "  source: quay.io/openshift-release-dev/ocp-v4.0-art-dev" >> install-config.yaml
    Copy to Clipboard Toggle word wrap

3.3.17. インストールの検証チェックリスト

  • ❏ OpenShift Container Platform インストーラーが取得されている。
  • ❏ OpenShift Container Platform インストーラーが展開されている。
  • install-config.yaml の必須パラメーターが設定されている。
  • install-config.yamlhosts パラメーターが設定されている。
  • install-config.yamlbmc パラメーターが設定されている。
  • bmc address フィールドで設定されている値の変換が適用されている。
  • ❏ OpenShift Container Platform マニフェストが作成されている。
  • ❏ (オプション) コンピュートノードにルーターがデプロイされている。
  • ❏ (オプション) 切断されたレジストリーを作成している。
  • ❏ (オプション) 非接続レジストリー設定が使用されている場合にこれを検証する。

3.4. クラスターのインストール

3.4.1. 以前のインストールのクリーンアップ

以前にデプロイが失敗した場合は、OpenShift Container Platform を再度デプロイする前に、失敗した試行のアーティファクトを削除します。

手順

  1. OpenShift Container Platform クラスターをインストールする前に、次のコマンドを使用して、すべてのベアメタルノードの電源をオフにします。

    $ ipmitool -I lanplus -U <user> -P <password> -H <management_server_ip> power off
    Copy to Clipboard Toggle word wrap
  2. 次のスクリプトを使用して、以前のデプロイ試行時に残った古いブートストラップリソースをすべて削除します。

    for i in $(sudo virsh list | tail -n +3 | grep bootstrap | awk {'print $2'});
    do
      sudo virsh destroy $i;
      sudo virsh undefine $i;
      sudo virsh vol-delete $i --pool $i;
      sudo virsh vol-delete $i.ign --pool $i;
      sudo virsh pool-destroy $i;
      sudo virsh pool-undefine $i;
    done
    Copy to Clipboard Toggle word wrap
  3. 次のコマンドを使用して、以前のインストールにより生成されたアーティファクトを削除します。

    $ cd ; /bin/rm -rf auth/ bootstrap.ign master.ign worker.ign metadata.json \
    .openshift_install.log .openshift_install_state.json
    Copy to Clipboard Toggle word wrap
  4. 次のコマンドを使用して、OpenShift Container Platform マニフェストを再作成します。

    $ ./openshift-baremetal-install --dir ~/clusterconfigs create manifests
    Copy to Clipboard Toggle word wrap

3.4.2. OpenShift Container Platform インストーラーを使用したクラスターのデプロイ

OpenShift Container Platform インストーラーを実行します。

$ ./openshift-baremetal-install --dir ~/clusterconfigs --log-level debug create cluster
Copy to Clipboard Toggle word wrap

3.4.3. インストールの進行状況を追跡

デプロイメントプロセスで、tail コマンドを install ディレクトリーフォルダーの .openshift_install.log ログファイルに対して実行して、インストールの全体のステータスを確認できます。

$ tail -f /path/to/install-dir/.openshift_install.log
Copy to Clipboard Toggle word wrap

3.4.4. 静的 IP アドレス設定の検証

クラスターノードの DHCP 予約で無限リースが指定されている場合、インストーラーがノードを正常にプロビジョニングした後に、dispatcher スクリプトはノードのネットワーク設定をチェックします。ネットワーク設定に無限 DHCP リースが含まれているとスクリプトが判断すると、DHCP リースの IP アドレスを静的 IP アドレスとして使用して新規接続を作成します。

注記

dispatcher スクリプトは、クラスター内の他のノードのプロビジョニングの進行中に、正常にプロビジョニングされたノードで実行される場合があります。

ネットワーク設定が正しく機能していることを確認します。

手順

  1. ノードのネットワークインターフェイス設定を確認してください。
  2. DHCP サーバーをオフにし、OpenShift Container Platform ノードを再起動して、ネットワーク設定が適切に機能していることを確認します。

3.5. インストールのトラブルシューティング

3.5.1. インストールプログラムワークフローのトラブルシューティング

インストール環境のトラブルシューティングを行う前に、ベアメタルへの installer-provisioned installation の全体的なフローを理解することが重要です。次の図は、環境のトラブルシューティングフローをステップごとに示したものです。

Flow-Diagram-1

ワークフロー 1/4 は、install-config.yaml ファイルにエラーがある場合や Red Hat Enterprise Linux CoreOS (RHCOS) イメージにアクセスできない場合のトラブルシューティングのワークフローを説明しています。トラブルシューティングに関する提案は、install-config.yaml のトラブルシューティング を参照してください。

Flow-Diagram-2

ワークフロー 2/4 は、ブートストラップ仮想マシンの問題クラスターノードを起動できないブートストラップ仮想マシン、および ログの検査 に関するトラブルシューティングのワークフローを説明しています。provisioning ネットワークなしに OpenShift Container Platform クラスターをインストールする場合は、このワークフローは適用されません。

Flow-Diagram-3

ワークフロー 3/4 は、PXE ブートしないクラスターノード のトラブルシューティングワークフローを示しています。Redfish 仮想メディアを使用してインストールする場合、インストールプログラムによるノードのデプロイに必要な最小ファームウェア要件を各ノードが満たしている必要があります。詳細は、前提条件 セクションの 仮想メディアを使用したインストールのファームウェア要件 を参照してください。

Flow-Diagram-4

ワークフロー 4/4 は、アクセスできない API から 検証済みのインストール までのトラブルシューティングワークフローを示しています。

3.5.2. install-config.yaml のトラブルシューティング

install-config.yaml 設定ファイルは、OpenShift Container Platform クラスターの一部であるすべてのノードを表します。このファイルには、apiVersionbaseDomainimageContentSources、および仮想 IP アドレスのみで構成されるがこれらに制限されない必要なオプションが含まれます。OpenShift Container Platform クラスターのデプロイメントの初期段階でエラーが発生した場合、エラーは install-config.yaml 設定ファイルにある可能性があります。

手順

  1. YAML-tips のガイドラインを使用します。
  2. syntax-check を使用して YAML 構文が正しいことを確認します。
  3. Red Hat Enterprise Linux CoreOS (RHCOS) QEMU イメージが適切に定義され、install-config.yaml で提供される URL 経由でアクセスできることを確認します。以下に例を示します。

    $ curl -s -o /dev/null -I -w "%{http_code}\n" http://webserver.example.com:8080/rhcos-44.81.202004250133-0-qemu.<architecture>.qcow2.gz?sha256=7d884b46ee54fe87bbc3893bf2aa99af3b2d31f2e19ab5529c60636fbd0f1ce7
    Copy to Clipboard Toggle word wrap

    出力が 200 の場合、ブートストラップ仮想マシンイメージを保存する Web サーバーからの有効な応答があります。

3.5.3. ブートストラップ仮想マシンの問題のトラブルシューティング

OpenShift Container Platform インストールプログラムは、OpenShift Container Platform クラスターノードのプロビジョニングを処理するブートストラップノードの仮想マシンを起動します。

手順

  1. インストールプログラムをトリガー後の約 10 分から 15 分後に、virsh コマンドを使用してブートストラップ仮想マシンが機能していることを確認します。

    $ sudo virsh list
    Copy to Clipboard Toggle word wrap
     Id    Name                           State
     --------------------------------------------
     12    openshift-xf6fq-bootstrap      running
    Copy to Clipboard Toggle word wrap
    注記

    ブートストラップ仮想マシンの名前は常にクラスター名で始まり、その後にランダムな文字セットが続き、"bootstrap" という単語で終わります。

  2. 10 - 15 分経ってもブートストラップ仮想マシンが実行されない場合は、次のコマンドを実行して、システム上で libvirtd が実行されていることを確認します。

    $ systemctl status libvirtd
    Copy to Clipboard Toggle word wrap
    ● libvirtd.service - Virtualization daemon
       Loaded: loaded (/usr/lib/systemd/system/libvirtd.service; enabled; vendor preset: enabled)
       Active: active (running) since Tue 2020-03-03 21:21:07 UTC; 3 weeks 5 days ago
         Docs: man:libvirtd(8)
               https://libvirt.org
     Main PID: 9850 (libvirtd)
        Tasks: 20 (limit: 32768)
       Memory: 74.8M
       CGroup: /system.slice/libvirtd.service
               ├─ 9850 /usr/sbin/libvirtd
    Copy to Clipboard Toggle word wrap

    ブートストラップ仮想マシンが動作している場合は、これにログインします。

  3. virsh console コマンドを使用して、ブートストラップ仮想マシンの IP アドレスを見つけます。

    $ sudo virsh console example.com
    Copy to Clipboard Toggle word wrap
    Connected to domain example.com
    Escape character is ^]
    Red Hat Enterprise Linux CoreOS 43.81.202001142154.0 (Ootpa) 4.3
    SSH host key: SHA256:BRWJktXZgQQRY5zjuAV0IKZ4WM7i4TiUyMVanqu9Pqg (ED25519)
    SSH host key: SHA256:7+iKGA7VtG5szmk2jB5gl/5EZ+SNcJ3a2g23o0lnIio (ECDSA)
    SSH host key: SHA256:DH5VWhvhvagOTaLsYiVNse9ca+ZSW/30OOMed8rIGOc (RSA)
    ens3:  fd35:919d:4042:2:c7ed:9a9f:a9ec:7
    ens4: 172.22.0.2 fe80::1d05:e52e:be5d:263f
    localhost login:
    Copy to Clipboard Toggle word wrap
    重要

    provisioning ネットワークなしで OpenShift Container Platform クラスターをデプロイする場合、172.22.0.2 などのプライベート IP アドレスではなく、パブリック IP アドレスを使用する必要があります。

  4. IP アドレスを取得したら、ssh コマンドを使用してブートストラップ仮想マシンにログインします。

    注記

    直前の手順のコンソール出力では、ens3 で提供される IPv6 IP アドレスまたは ens4 で提供される IPv4 IP を使用できます。

    $ ssh core@172.22.0.2
    Copy to Clipboard Toggle word wrap

ブートストラップ仮想マシンへのログインに成功しない場合は、以下いずれかのシナリオが発生した可能性があります。

  • 172.22.0.0/24 ネットワークにアクセスできない。プロビジョナーと provisioning ネットワークブリッジ間のネットワーク接続を確認します。この問題は、provisioning ネットワークを使用している場合に発生することがあります。
  • パブリックネットワーク経由でブートストラップ仮想マシンにアクセスできない。baremetal ネットワークで SSH を試行する際に、provisioner ホストの、とくに baremetal ネットワークブリッジについて接続を確認します。
  • Permission denied (publickey,password,keyboard-interactive) が出される。ブートストラップ仮想マシンへのアクセスを試行すると、Permission denied エラーが発生する可能性があります。仮想マシンへのログインを試行するユーザーの SSH キーが install-config.yaml ファイル内で設定されていることを確認します。
3.5.3.1. ブートストラップ仮想マシンがクラスターノードを起動できない

デプロイメント時に、ブートストラップ仮想マシンがクラスターノードの起動に失敗する可能性があり、これにより、仮想マシンがノードに RHCOS イメージをプロビジョニングできなくなります。このシナリオは、以下の原因で発生する可能性があります。

  • install-config.yaml ファイルに関連する問題。
  • ベアメタルネットワークを使用してアウトオブバンド (out-of-band) ネットワークアクセスに関する問題

この問題を確認するには、ironic に関連する 3 つのコンテナーを使用できます。

  • ironic
  • ironic-inspector

手順

  1. ブートストラップ仮想マシンにログインします。

    $ ssh core@172.22.0.2
    Copy to Clipboard Toggle word wrap
  2. コンテナーログを確認するには、以下を実行します。

    [core@localhost ~]$ sudo podman logs -f <container_name>
    Copy to Clipboard Toggle word wrap

    <container_name>ironic または ironic-inspector のいずれかに置き換えます。コントロールプレーンノードが PXE から起動しないという問題が発生した場合は、ironic Pod を確認してください。ironic Pod は、IPMI 経由でノードにログインしようとするため、クラスターノードを起動しようとする試みに関する情報を含んでいます。

考えられる理由

クラスターノードは、デプロイメントの開始時に ON 状態にある可能性があります。

解決策

IPMI でのインストールを開始する前に、OpenShift Container Platform クラスターノードの電源をオフにします。

$ ipmitool -I lanplus -U root -P <password> -H <out_of_band_ip> power off
Copy to Clipboard Toggle word wrap
3.5.3.2. ログの検査

RHCOS イメージのダウンロードまたはアクセスに問題が発生した場合には、最初に install-config.yaml 設定ファイルで URL が正しいことを確認します。

RHCOS イメージをホストする内部 Web サーバーの例

bootstrapOSImage: http://<ip:port>/rhcos-43.81.202001142154.0-qemu.<architecture>.qcow2.gz?sha256=9d999f55ff1d44f7ed7c106508e5deecd04dc3c06095d34d36bf1cd127837e0c
clusterOSImage: http://<ip:port>/rhcos-43.81.202001142154.0-openstack.<architecture>.qcow2.gz?sha256=a1bda656fa0892f7b936fdc6b6a6086bddaed5dafacedcd7a1e811abb78fe3b0
Copy to Clipboard Toggle word wrap

coreos-downloader コンテナーは、Web サーバーまたは外部の quay.io レジストリー (install-config.yaml 設定ファイルで指定されている方) からリソースをダウンロードします。coreos-downloader コンテナーが稼働していることを確認し、必要に応じて、そのログを調べます。

手順

  1. ブートストラップ仮想マシンにログインします。

    $ ssh core@172.22.0.2
    Copy to Clipboard Toggle word wrap
  2. 次のコマンドを実行して、ブートストラップ VM 内の coreos-downloader コンテナーのステータスを確認します。

    [core@localhost ~]$ sudo podman logs -f coreos-downloader
    Copy to Clipboard Toggle word wrap

    ブートストラップ仮想マシンがイメージへの URL にアクセスできない場合、curl コマンドを使用して、仮想マシンがイメージにアクセスできることを確認します。

  3. すべてのコンテナーがデプロイメントフェーズで起動されているかどうかを示す bootkube ログを検査するには、以下を実行します。

    [core@localhost ~]$ journalctl -xe
    Copy to Clipboard Toggle word wrap
    [core@localhost ~]$ journalctl -b -f -u bootkube.service
    Copy to Clipboard Toggle word wrap
  4. dnsmasqmariadbhttpd、および ironic を含むすべての Pod が実行中であることを確認します。

    [core@localhost ~]$ sudo podman ps
    Copy to Clipboard Toggle word wrap
  5. Pod に問題がある場合には、問題のあるコンテナーのログを確認します。ironic サービスのログを確認するには、次のコマンドを実行します。

    [core@localhost ~]$ sudo podman logs ironic
    Copy to Clipboard Toggle word wrap

3.5.4. 利用できない Kubernetes API の調査

Kubernetes API が利用できない場合は、コントロールプレーンノードをチェックして、正しいコンポーネントが実行されていることを確認します。また、ホスト名の解決も確認してください。

手順

  1. 次のコマンドを実行して、各コントロールプレーンノードで etcd が実行されていることを確認します。

    $ sudo crictl logs $(sudo crictl ps --pod=$(sudo crictl pods --name=etcd-member --quiet) --quiet)
    Copy to Clipboard Toggle word wrap
  2. 上記のコマンドが失敗した場合は、次のコマンドを実行して、Kubelet により etcd Pod が作成されたことを確認します。

    $ sudo crictl pods --name=etcd-member
    Copy to Clipboard Toggle word wrap

    Pod がない場合は、etcd を調査します。

  3. 次のコマンドを使用して、クラスターノードに localhost.localdomain だけでなく完全修飾ドメイン名があることを確認します。

    $ hostname
    Copy to Clipboard Toggle word wrap

    ホスト名が設定されていない場合、正しいホスト名を設定します。以下に例を示します。

    $ sudo hostnamectl set-hostname <hostname>
    Copy to Clipboard Toggle word wrap
  4. dig コマンドを使用して、各ノードの DNS サーバーでの名前解決が正しいことを確認します。

    $ dig api.<cluster_name>.example.com
    Copy to Clipboard Toggle word wrap
    ; <<>> DiG 9.11.4-P2-RedHat-9.11.4-26.P2.el8 <<>> api.<cluster_name>.example.com
    ;; global options: +cmd
    ;; Got answer:
    ;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 37551
    ;; flags: qr aa rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 1, ADDITIONAL: 2
    
    ;; OPT PSEUDOSECTION:
    ; EDNS: version: 0, flags:; udp: 4096
    ; COOKIE: 866929d2f8e8563582af23f05ec44203d313e50948d43f60 (good)
    ;; QUESTION SECTION:
    ;api.<cluster_name>.example.com. IN A
    
    ;; ANSWER SECTION:
    api.<cluster_name>.example.com. 10800 IN	A 10.19.13.86
    
    ;; AUTHORITY SECTION:
    <cluster_name>.example.com. 10800 IN NS	<cluster_name>.example.com.
    
    ;; ADDITIONAL SECTION:
    <cluster_name>.example.com. 10800 IN A	10.19.14.247
    
    ;; Query time: 0 msec
    ;; SERVER: 10.19.14.247#53(10.19.14.247)
    ;; WHEN: Tue May 19 20:30:59 UTC 2020
    ;; MSG SIZE  rcvd: 140
    Copy to Clipboard Toggle word wrap

    前述の例の出力は、api.<cluster_name>.example.com VIP の適切な IP アドレスが 10.19.13.86 であることを示しています。この IP アドレスは baremetal 上にある必要があります。

3.5.5. クラスターの初期化失敗のトラブルシューティング

インストールプログラムは、Cluster Version Operator を使用して、OpenShift Container Platform クラスターのすべてのコンポーネントを作成します。インストールプログラムがクラスターの初期化に失敗した場合は、ClusterVersion オブジェクトと ClusterOperator オブジェクトから最も重要な情報を取得できます。

手順

  1. 次のコマンドを実行して ClusterVersion オブジェクトを検査します。

    $ oc --kubeconfig=${INSTALL_DIR}/auth/kubeconfig get clusterversion -o yaml
    Copy to Clipboard Toggle word wrap

    出力例

    apiVersion: config.openshift.io/v1
    kind: ClusterVersion
    metadata:
      creationTimestamp: 2019-02-27T22:24:21Z
      generation: 1
      name: version
      resourceVersion: "19927"
      selfLink: /apis/config.openshift.io/v1/clusterversions/version
      uid: 6e0f4cf8-3ade-11e9-9034-0a923b47ded4
    spec:
      channel: stable-4.1
      clusterID: 5ec312f9-f729-429d-a454-61d4906896ca
    status:
      availableUpdates: null
      conditions:
      - lastTransitionTime: 2019-02-27T22:50:30Z
        message: Done applying 4.1.1
        status: "True"
        type: Available
      - lastTransitionTime: 2019-02-27T22:50:30Z
        status: "False"
        type: Failing
      - lastTransitionTime: 2019-02-27T22:50:30Z
        message: Cluster version is 4.1.1
        status: "False"
        type: Progressing
      - lastTransitionTime: 2019-02-27T22:24:31Z
        message: 'Unable to retrieve available updates: unknown version 4.1.1
        reason: RemoteFailed
        status: "False"
        type: RetrievedUpdates
      desired:
        image: registry.svc.ci.openshift.org/openshift/origin-release@sha256:91e6f754975963e7db1a9958075eb609ad226968623939d262d1cf45e9dbc39a
        version: 4.1.1
      history:
      - completionTime: 2019-02-27T22:50:30Z
        image: registry.svc.ci.openshift.org/openshift/origin-release@sha256:91e6f754975963e7db1a9958075eb609ad226968623939d262d1cf45e9dbc39a
        startedTime: 2019-02-27T22:24:31Z
        state: Completed
        version: 4.1.1
      observedGeneration: 1
      versionHash: Wa7as_ik1qE=
    Copy to Clipboard Toggle word wrap

  2. 次のコマンドを実行して状態を表示します。

    $ oc --kubeconfig=${INSTALL_DIR}/auth/kubeconfig get clusterversion version \
         -o=jsonpath='{range .status.conditions[*]}{.type}{" "}{.status}{" "}{.message}{"\n"}{end}'
    Copy to Clipboard Toggle word wrap

    最も重要な状態は、FailingAvailableProgressing です。

    出力例

    Available True Done applying 4.1.1
    Failing False
    Progressing False Cluster version is 4.0.0-0.alpha-2019-02-26-194020
    RetrievedUpdates False Unable to retrieve available updates: unknown version 4.1.1
    Copy to Clipboard Toggle word wrap

  3. 次のコマンドを実行して ClusterOperator オブジェクトを検査します。

    $ oc --kubeconfig=${INSTALL_DIR}/auth/kubeconfig get clusteroperator
    Copy to Clipboard Toggle word wrap

    このコマンドは、クラスター Operators のステータスを返します。

    出力例

    NAME                                  VERSION   AVAILABLE   PROGRESSING   FAILING   SINCE
    cluster-baremetal-operator                      True        False         False     17m
    cluster-autoscaler                              True        False         False     17m
    cluster-storage-operator                        True        False         False     10m
    console                                         True        False         False     7m21s
    dns                                             True        False         False     31m
    image-registry                                  True        False         False     9m58s
    ingress                                         True        False         False     10m
    kube-apiserver                                  True        False         False     28m
    kube-controller-manager                         True        False         False     21m
    kube-scheduler                                  True        False         False     25m
    machine-api                                     True        False         False     17m
    machine-config                                  True        False         False     17m
    marketplace-operator                            True        False         False     10m
    monitoring                                      True        False         False     8m23s
    network                                         True        False         False     13m
    node-tuning                                     True        False         False     11m
    openshift-apiserver                             True        False         False     15m
    openshift-authentication                        True        False         False     20m
    openshift-cloud-credential-operator             True        False         False     18m
    openshift-controller-manager                    True        False         False     10m
    openshift-samples                               True        False         False     8m42s
    operator-lifecycle-manager                      True        False         False     17m
    service-ca                                      True        False         False     30m
    Copy to Clipboard Toggle word wrap

  4. 次のコマンドを実行して、個々のクラスター Operator を検査します。

    $ oc --kubeconfig=${INSTALL_DIR}/auth/kubeconfig get clusteroperator <operator> -oyaml 
    1
    Copy to Clipboard Toggle word wrap
    1
    <operator> は、クラスター Operator の名前に置き換えます。このコマンドは、クラスター Operator のステータスが Available にならない理由、または Failed になる理由を特定するために使用できます。

    出力例

    apiVersion: config.openshift.io/v1
    kind: ClusterOperator
    metadata:
      creationTimestamp: 2019-02-27T22:47:04Z
      generation: 1
      name: monitoring
      resourceVersion: "24677"
      selfLink: /apis/config.openshift.io/v1/clusteroperators/monitoring
      uid: 9a6a5ef9-3ae1-11e9-bad4-0a97b6ba9358
    spec: {}
    status:
      conditions:
      - lastTransitionTime: 2019-02-27T22:49:10Z
        message: Successfully rolled out the stack.
        status: "True"
        type: Available
      - lastTransitionTime: 2019-02-27T22:49:10Z
        status: "False"
        type: Progressing
      - lastTransitionTime: 2019-02-27T22:49:10Z
        status: "False"
        type: Failing
      extension: null
      relatedObjects: null
      version: ""
    Copy to Clipboard Toggle word wrap

  5. クラスター Operator のステータス条件を取得するには、次のコマンドを実行します。

    $ oc --kubeconfig=${INSTALL_DIR}/auth/kubeconfig get clusteroperator <operator> \
         -o=jsonpath='{range .status.conditions[*]}{.type}{" "}{.status}{" "}{.message}{"\n"}{end}'
    Copy to Clipboard Toggle word wrap

    <operator> は、上記のいずれかの Operator の名前に置き換えます。

    出力例

    Available True Successfully rolled out the stack
    Progressing False
    Failing False
    Copy to Clipboard Toggle word wrap

  6. クラスター Operator が所有するオブジェクトのリストを取得するには、次のコマンドを実行します。

    oc --kubeconfig=${INSTALL_DIR}/auth/kubeconfig get clusteroperator kube-apiserver \
       -o=jsonpath='{.status.relatedObjects}'
    Copy to Clipboard Toggle word wrap

    出力例

    [map[resource:kubeapiservers group:operator.openshift.io name:cluster] map[group: name:openshift-config resource:namespaces] map[group: name:openshift-config-managed resource:namespaces] map[group: name:openshift-kube-apiserver-operator resource:namespaces] map[group: name:openshift-kube-apiserver resource:namespaces]]
    Copy to Clipboard Toggle word wrap

3.5.6. コンソール URL の取得に失敗した場合のトラブルシューティング

インストールプログラムは、openshift-console namespace 内の [route][route-object] を使用して、OpenShift Container Platform コンソールの URL を取得します。インストールプログラムがコンソールの URL の取得に失敗した場合は、次の手順に従います。

手順

  1. 次のコマンドを実行して、コンソールルーターが Available 状態か Failing 状態かを確認します。

    $ oc --kubeconfig=${INSTALL_DIR}/auth/kubeconfig get clusteroperator console -oyaml
    Copy to Clipboard Toggle word wrap
    apiVersion: config.openshift.io/v1
    kind: ClusterOperator
    metadata:
      creationTimestamp: 2019-02-27T22:46:57Z
      generation: 1
      name: console
      resourceVersion: "19682"
      selfLink: /apis/config.openshift.io/v1/clusteroperators/console
      uid: 960364aa-3ae1-11e9-bad4-0a97b6ba9358
    spec: {}
    status:
      conditions:
      - lastTransitionTime: 2019-02-27T22:46:58Z
        status: "False"
        type: Failing
      - lastTransitionTime: 2019-02-27T22:50:12Z
        status: "False"
        type: Progressing
      - lastTransitionTime: 2019-02-27T22:50:12Z
        status: "True"
        type: Available
      - lastTransitionTime: 2019-02-27T22:46:57Z
        status: "True"
        type: Upgradeable
      extension: null
      relatedObjects:
      - group: operator.openshift.io
        name: cluster
        resource: consoles
      - group: config.openshift.io
        name: cluster
        resource: consoles
      - group: oauth.openshift.io
        name: console
        resource: oauthclients
      - group: ""
        name: openshift-console-operator
        resource: namespaces
      - group: ""
        name: openshift-console
        resource: namespaces
      versions: null
    Copy to Clipboard Toggle word wrap
  2. 次のコマンドを実行して、コンソール URL を手動で取得します。

    $ oc --kubeconfig=${INSTALL_DIR}/auth/kubeconfig get route console -n openshift-console \
         -o=jsonpath='{.spec.host}' console-openshift-console.apps.adahiya-1.devcluster.openshift.com
    Copy to Clipboard Toggle word wrap

3.5.7. kubeconfig に Ingress 証明書を追加できない場合のトラブルシューティング

インストールプログラムは、${INSTALL_DIR}/auth/kubeconfig 内の信頼できるクライアント認証局のリストにデフォルトの Ingress 証明書を追加します。インストールプログラムが Ingress 証明書を kubeconfig ファイルに追加できない場合は、クラスターから証明書を取得して追加できます。

手順

  1. 次のコマンドを使用して、クラスターから証明書を取得します。

    $ oc --kubeconfig=${INSTALL_DIR}/auth/kubeconfig get configmaps default-ingress-cert \
         -n openshift-config-managed -o=jsonpath='{.data.ca-bundle\.crt}'
    Copy to Clipboard Toggle word wrap
    -----BEGIN CERTIFICATE-----
    MIIC/TCCAeWgAwIBAgIBATANBgkqhkiG9w0BAQsFADAuMSwwKgYDVQQDDCNjbHVz
    dGVyLWluZ3Jlc3Mtb3BlcmF0b3JAMTU1MTMwNzU4OTAeFw0xOTAyMjcyMjQ2Mjha
    Fw0yMTAyMjYyMjQ2MjlaMC4xLDAqBgNVBAMMI2NsdXN0ZXItaW5ncmVzcy1vcGVy
    YXRvckAxNTUxMzA3NTg5MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEA
    uCA4fQ+2YXoXSUL4h/mcvJfrgpBfKBW5hfB8NcgXeCYiQPnCKblH1sEQnI3VC5Pk
    2OfNCF3PUlfm4i8CHC95a7nCkRjmJNg1gVrWCvS/ohLgnO0BvszSiRLxIpuo3C4S
    EVqqvxValHcbdAXWgZLQoYZXV7RMz8yZjl5CfhDaaItyBFj3GtIJkXgUwp/5sUfI
    LDXW8MM6AXfuG+kweLdLCMm3g8WLLfLBLvVBKB+4IhIH7ll0buOz04RKhnYN+Ebw
    tcvFi55vwuUCWMnGhWHGEQ8sWm/wLnNlOwsUz7S1/sW8nj87GFHzgkaVM9EOnoNI
    gKhMBK9ItNzjrP6dgiKBCQIDAQABoyYwJDAOBgNVHQ8BAf8EBAMCAqQwEgYDVR0T
    AQH/BAgwBgEB/wIBADANBgkqhkiG9w0BAQsFAAOCAQEAq+vi0sFKudaZ9aUQMMha
    CeWx9CZvZBblnAWT/61UdpZKpFi4eJ2d33lGcfKwHOi2NP/iSKQBebfG0iNLVVPz
    vwLbSG1i9R9GLdAbnHpPT9UG6fLaDIoKpnKiBfGENfxeiq5vTln2bAgivxrVlyiq
    +MdDXFAWb6V4u2xh6RChI7akNsS3oU9PZ9YOs5e8vJp2YAEphht05X0swA+X8V8T
    C278FFifpo0h3Q0Dbv8Rfn4UpBEtN4KkLeS+JeT+0o2XOsFZp7Uhr9yFIodRsnNo
    H/Uwmab28ocNrGNiEVaVH6eTTQeeZuOdoQzUbClElpVmkrNGY0M42K0PvOQ/e7+y
    AQ==
    -----END CERTIFICATE-----
    Copy to Clipboard Toggle word wrap
  2. ${INSTALL_DIR}/auth/kubeconfig ファイルの client-certificate-authority-data フィールドに証明書を追加します。

3.5.8. クラスターノードへの SSH アクセスのトラブルシューティング

セキュリティーを強化するために、デフォルトではクラスターの外部からクラスターに SSH 接続することは禁止されています。ただし、プロビジョナーノードからコントロールプレーンノードとワーカーノードにアクセスすることはできます。プロビジョナーノードからクラスターノードに SSH 接続できない場合、クラスターノードがブートストラップ仮想マシンを待機している可能性があります。コントロールプレーンノードはブートストラップ仮想マシンからブート設定を取得します。コントロールプレーンノードはブート設定を取得しないと、正常に起動できません。

手順

  1. ノードに物理的にアクセスできる場合は、コンソールの出力をチェックして、正常に起動したかどうかを確認します。ノードがまだブート設定を取得中の場合は、ブートストラップ仮想マシンに問題がある可能性があります。
  2. install-config.yaml ファイルで sshKey: '<ssh_pub_key>' が設定されていることを確認します。<ssh_pub_key> は、プロビジョナーノード上の kni ユーザーの公開鍵です。

3.5.9. クラスターノードが PXE ブートしない

OpenShift Container Platform クラスターノードが PXE ブートしない場合、PXE ブートしないクラスターノードで以下のチェックを実行します。この手順は、provisioning ネットワークなしで OpenShift Container Platform クラスターをインストールする場合には適用されません。

手順

  1. provisioning ネットワークへのネットワークの接続を確認します。
  2. PXE が provisioning ネットワークの NIC で有効にされており、PXE がその他のすべての NIC について無効にされていることを確認します。
  3. install-config.yaml 設定ファイルに、provisioning ネットワークに接続されている NIC の rootDeviceHints パラメーターとブート MAC アドレスが含まれていることを確認します。以下に例を示します。

    コントロールプレーンノードの設定

    bootMACAddress: 24:6E:96:1B:96:90 # MAC of bootable provisioning NIC
    Copy to Clipboard Toggle word wrap

    ワーカーノード設定

    bootMACAddress: 24:6E:96:1B:96:90 # MAC of bootable provisioning NIC
    Copy to Clipboard Toggle word wrap

3.5.10. インストールしてもワーカーノードが作成されない

インストールプログラムはワーカーノードを直接プロビジョニングしません。代わりに、Machine API Operator が、サポートされているプラットフォーム上でノードをスケールアップおよびスケールダウンします。クラスターのインターネット接続の速度によって異なりますが、15 - 20 分経ってもワーカーノードが作成されない場合は、Machine API Operator を調査してください。

手順

  1. 次のコマンドを実行して、Machine API Operator を確認します。

    $ oc --kubeconfig=${INSTALL_DIR}/auth/kubeconfig \
       --namespace=openshift-machine-api get deployments
    Copy to Clipboard Toggle word wrap

    ご使用の環境で ${INSTALL_DIR} が設定されていない場合は、値をインストールディレクトリーの名前に置き換えます。

    出力例

    NAME                          READY   UP-TO-DATE   AVAILABLE   AGE
    cluster-autoscaler-operator   1/1     1            1           86m
    cluster-baremetal-operator    1/1     1            1           86m
    machine-api-controllers       1/1     1            1           85m
    machine-api-operator          1/1     1            1           86m
    Copy to Clipboard Toggle word wrap

  2. 次のコマンドを実行して、マシンコントローラーのログを確認します。

    $ oc --kubeconfig=${INSTALL_DIR}/auth/kubeconfig \
         --namespace=openshift-machine-api logs deployments/machine-api-controllers \
         --container=machine-controller
    Copy to Clipboard Toggle word wrap

3.5.11. Cluster Network Operator のトラブルシューティング

Cluster Network Operator は、ネットワークコンポーネントのデプロイを担当します。この Operator は、コントロールプレーンノードが起動した後、インストールプログラムがブートストラップコントロールプレーンを削除する前に、インストールプロセスの初期段階で実行されます。この Operator に問題がある場合、インストールプログラムに問題がある可能性があります。

手順

  1. 次のコマンドを実行して、ネットワーク設定が存在することを確認します。

    $ oc get network -o yaml cluster
    Copy to Clipboard Toggle word wrap

    存在しない場合は、インストールプログラムによって作成されていません。理由を確認するには、次のコマンドを実行します。

    $ openshift-install create manifests
    Copy to Clipboard Toggle word wrap

    マニフェストを確認して、インストールプログラムがネットワーク設定を作成しなかった理由を特定します。

  2. 次のコマンドを入力して、ネットワークが実行中であることを確認します。

    $ oc get po -n openshift-network-operator
    Copy to Clipboard Toggle word wrap

3.5.12. BMC を使用して、新しいベアメタルホストを検出できない

場合によっては、リモート仮想メディア共有をマウントできないため、インストールプログラムが新しいベアメタルホストを検出できず、エラーが発生することがあります。

以下に例を示します。

ProvisioningError 51s metal3-baremetal-controller Image provisioning failed: Deploy step deploy.deploy failed with BadRequestError: HTTP POST
https://<bmc_address>/redfish/v1/Managers/iDRAC.Embedded.1/VirtualMedia/CD/Actions/VirtualMedia.InsertMedia
returned code 400.
Base.1.8.GeneralError: A general error has occurred. See ExtendedInfo for more information
Extended information: [
  {
    "Message": "Unable to mount remote share https://<ironic_address>/redfish/boot-<uuid>.iso.",
    "MessageArgs": [
      "https://<ironic_address>/redfish/boot-<uuid>.iso"
    ],
    "MessageArgs@odata.count": 1,
    "MessageId": "IDRAC.2.5.RAC0720",
    "RelatedProperties": [
      "#/Image"
    ],
    "RelatedProperties@odata.count": 1,
    "Resolution": "Retry the operation.",
    "Severity": "Informational"
  }
].
Copy to Clipboard Toggle word wrap

この状況で、認証局が不明な仮想メディアを使用している場合は、不明な認証局を信頼するように、ベースボード管理コントローラー (BMC) のリモートファイル共有設定を行って、このエラーを回避できます。

注記

この解決策は、Dell iDRAC 9 およびファームウェアバージョン 5.10.50 を搭載した OpenShift Container Platform 4.11 でテストされました。

3.5.13. クラスターに参加できないワーカーノードのトラブルシューティング

installer-provisioned クラスターは、api-int.<cluster_name>.<base_domain> URL の DNS エントリーが含まれる DNS サーバーと共にデプロイされます。クラスター内のノードが外部またはアップストリーム DNS サーバーを使用して api-int.<cluster_name>.<base_domain> URL を解決し、そのようなエントリーがない場合、ワーカーノードはクラスターに参加できない可能性があります。クラスター内のすべてのノードがドメイン名を解決できることを確認します。

手順

  1. DNS A/AAAA または CNAME レコードを追加して、API ロードバランサーを内部的に識別します。たとえば、dnsmasq を使用する場合は、dnsmasq.conf 設定ファイルを変更します。

    $ sudo nano /etc/dnsmasq.conf
    Copy to Clipboard Toggle word wrap
    address=/api-int.<cluster_name>.<base_domain>/<IP_address>
    address=/api-int.mycluster.example.com/192.168.1.10
    address=/api-int.mycluster.example.com/2001:0db8:85a3:0000:0000:8a2e:0370:7334
    Copy to Clipboard Toggle word wrap
  2. DNS PTR レコードを追加して、API ロードバランサーを内部的に識別します。たとえば、dnsmasq を使用する場合は、dnsmasq.conf 設定ファイルを変更します。

    $ sudo nano /etc/dnsmasq.conf
    Copy to Clipboard Toggle word wrap
    ptr-record=<IP_address>.in-addr.arpa,api-int.<cluster_name>.<base_domain>
    ptr-record=10.1.168.192.in-addr.arpa,api-int.mycluster.example.com
    Copy to Clipboard Toggle word wrap
  3. DNS サーバーを再起動します。たとえば、dnsmasq を使用する場合は、以下のコマンドを実行します。

    $ sudo systemctl restart dnsmasq
    Copy to Clipboard Toggle word wrap

これらのレコードは、クラスター内のすべてのノードで解決できる必要があります。

3.5.14. 以前のインストールのクリーンアップ

以前にデプロイが失敗した場合は、OpenShift Container Platform を再度デプロイする前に、失敗した試行のアーティファクトを削除します。

手順

  1. OpenShift Container Platform クラスターをインストールする前に、次のコマンドを使用して、すべてのベアメタルノードの電源をオフにします。

    $ ipmitool -I lanplus -U <user> -P <password> -H <management_server_ip> power off
    Copy to Clipboard Toggle word wrap
  2. 次のスクリプトを使用して、以前のデプロイ試行時に残った古いブートストラップリソースをすべて削除します。

    for i in $(sudo virsh list | tail -n +3 | grep bootstrap | awk {'print $2'});
    do
      sudo virsh destroy $i;
      sudo virsh undefine $i;
      sudo virsh vol-delete $i --pool $i;
      sudo virsh vol-delete $i.ign --pool $i;
      sudo virsh pool-destroy $i;
      sudo virsh pool-undefine $i;
    done
    Copy to Clipboard Toggle word wrap
  3. 次のコマンドを使用して、以前のインストールにより生成されたアーティファクトを削除します。

    $ cd ; /bin/rm -rf auth/ bootstrap.ign master.ign worker.ign metadata.json \
    .openshift_install.log .openshift_install_state.json
    Copy to Clipboard Toggle word wrap
  4. 次のコマンドを使用して、OpenShift Container Platform マニフェストを再作成します。

    $ ./openshift-baremetal-install --dir ~/clusterconfigs create manifests
    Copy to Clipboard Toggle word wrap

3.5.15. レジストリーの作成に関する問題

非接続レジストリーの作成時に、レジストリーのミラーリングを試行する際に "User Not Authorized" エラーが発生する場合があります。このエラーは、新規の認証を既存の pull-secret.txt ファイルに追加できない場合に生じる可能性があります。

手順

  1. 認証が正常に行われていることを確認します。

    $ /usr/local/bin/oc adm release mirror \
      -a pull-secret-update.json
      --from=$UPSTREAM_REPO \
      --to-release-image=$LOCAL_REG/$LOCAL_REPO:${VERSION} \
      --to=$LOCAL_REG/$LOCAL_REPO
    Copy to Clipboard Toggle word wrap
    注記

    インストールイメージのミラーリングに使用される変数の出力例:

    UPSTREAM_REPO=${RELEASE_IMAGE}
    LOCAL_REG=<registry_FQDN>:<registry_port>
    LOCAL_REPO='ocp4/openshift4'
    Copy to Clipboard Toggle word wrap

    RELEASE_IMAGE および VERSION の値は、OpenShift インストールの環境のセットアップ セクションの OpenShift Installer の取得 の手順で設定されています。

  2. レジストリーのミラーリング後に、非接続環境でこれにアクセスできることを確認します。

    $ curl -k -u <user>:<password> https://registry.example.com:<registry_port>/v2/_catalog
    {"repositories":["<Repo_Name>"]}
    Copy to Clipboard Toggle word wrap

3.5.16. その他の問題点

3.5.16.1. runtime network not ready エラーへの対応

クラスターのデプロイメント後に、以下のエラーが発生する可能性があります。

`runtime network not ready: NetworkReady=false reason:NetworkPluginNotReady message:Network plugin returns error: Missing CNI default network`
Copy to Clipboard Toggle word wrap

Cluster Network Operator は、インストールプログラムによって作成される特別なオブジェクトに応じてネットワークコンポーネントをデプロイします。これは、コントロールプレーン (マスター) ノードが起動した後、ブートストラップコントロールプレーンが停止する前にインストールプロセスの初期段階で実行されます。これは、コントロールプレーン (マスター) ノードの起動の長い遅延や apiserver の通信の問題など、より判別しにくいインストールプログラムの問題を示している可能性があります。

手順

  1. openshift-network-operator namespace の Pod を検査します。

    $ oc get all -n openshift-network-operator
    Copy to Clipboard Toggle word wrap
    NAME                                    READY STATUS            RESTARTS   AGE
    pod/network-operator-69dfd7b577-bg89v   0/1   ContainerCreating 0          149m
    Copy to Clipboard Toggle word wrap
  2. provisioner ノードで、ネットワーク設定が存在することを判別します。

    $ kubectl get network.config.openshift.io cluster -oyaml
    Copy to Clipboard Toggle word wrap
    apiVersion: config.openshift.io/v1
    kind: Network
    metadata:
      name: cluster
    spec:
      serviceNetwork:
      - 172.30.0.0/16
      clusterNetwork:
      - cidr: 10.128.0.0/14
        hostPrefix: 23
      networkType: OVNKubernetes
    Copy to Clipboard Toggle word wrap

    存在しない場合は、インストールプログラムによって作成されていません。インストールプログラムによって作成されなかった理由を確認するには、次のコマンドを実行します。

    $ openshift-install create manifests
    Copy to Clipboard Toggle word wrap
  3. network-operator が実行されていることを確認します。

    $ kubectl -n openshift-network-operator get pods
    Copy to Clipboard Toggle word wrap
  4. ログを取得します。

    $ kubectl -n openshift-network-operator logs -l "name=network-operator"
    Copy to Clipboard Toggle word wrap

    3 つ以上のコントロールプレーンノードを持つ高可用性クラスターでは、Operator がリーダー選択を実行し、他のすべての Operator がスリープ状態になります。詳細は、Troubleshooting を参照してください。

3.5.16.2. "No disk found with matching rootDeviceHints" エラーメッセージへの対処

クラスターをデプロイした後、次のエラーメッセージが表示される場合があります。

No disk found with matching rootDeviceHints
Copy to Clipboard Toggle word wrap

No disk found with matching rootDeviceHints エラーメッセージに対処するための一時的な回避策は、rootDeviceHintsminSizeGigabytes: 300 に変更することです。

rootDeviceHints 設定を変更した後、CoreOS を起動し、次のコマンドを使用してディスク情報を確認します。

$ udevadm info /dev/sda
Copy to Clipboard Toggle word wrap

DL360 Gen 10 サーバーを使用している場合は、/dev/sda デバイス名が割り当てられている SD カードスロットがあることに注意してください。サーバーに SD カードが存在しない場合は、競合が発生する可能性があります。サーバーの BIOS 設定で SD カードスロットが無効になっていることを確認してください。

minSizeGigabytes の回避策が要件を満たしていない場合は、rootDeviceHints/dev/sda に戻さないといけない場合があります。この変更により、Ironic イメージが正常に起動できるようになります。

この問題を解決する別の方法は、ディスクのシリアル ID を使用することです。ただし、シリアル ID を見つけるのは困難な場合があり、設定ファイルが読みにくくなる可能性があることに注意してください。このパスを選択する場合は、前に説明したコマンドを使用してシリアル ID を収集し、それを設定に組み込んでください。

3.5.16.3. クラスターノードが DHCP 経由で正しい IPv6 アドレスを取得しない

クラスターノードが DHCP 経由で正しい IPv6 アドレスを取得しない場合は、以下の点を確認してください。

  1. 予約された IPv6 アドレスが DHCP 範囲外にあることを確認します。
  2. DHCP サーバーの IP アドレス予約では、予約で正しい DUID (DHCP 固有識別子) が指定されていることを確認します。以下に例を示します。

    # This is a dnsmasq dhcp reservation, 'id:00:03:00:01' is the client id and '18:db:f2:8c:d5:9f' is the MAC Address for the NIC
    id:00:03:00:01:18:db:f2:8c:d5:9f,openshift-master-1,[2620:52:0:1302::6]
    Copy to Clipboard Toggle word wrap
  3. Route Announcement が機能していることを確認します。
  4. DHCP サーバーが、IP アドレス範囲を提供する必要なインターフェイスでリッスンしていることを確認します。
3.5.16.4. クラスターノードが DHCP 経由で正しいホスト名を取得しない

IPv6 のデプロイメント時に、クラスターノードは DHCP でホスト名を取得する必要があります。NetworkManager はホスト名をすぐに割り当てない場合があります。コントロールプレーン (マスター) ノードは、以下のようなエラーを報告する可能性があります。

Failed Units: 2
  NetworkManager-wait-online.service
  nodeip-configuration.service
Copy to Clipboard Toggle word wrap

このエラーは、最初に DHCP サーバーからホスト名を受信せずにクラスターノードが起動する可能性があることを示しています。これにより、kubeletlocalhost.localdomain ホスト名で起動します。エラーに対処するには、ノードによるホスト名の更新を強制します。

手順

  1. hostname を取得します。

    [core@master-X ~]$ hostname
    Copy to Clipboard Toggle word wrap

    ホスト名が localhost の場合は、以下の手順に進みます。

    注記

    X はコントロールプレーンノード番号です。

  2. クラスターノードによる DHCP リースの更新を強制します。

    [core@master-X ~]$ sudo nmcli con up "<bare_metal_nic>"
    Copy to Clipboard Toggle word wrap

    <bare_metal_nic> を、baremetal ネットワークに対応する有線接続に置き換えます。

  3. hostname を再度確認します。

    [core@master-X ~]$ hostname
    Copy to Clipboard Toggle word wrap
  4. ホスト名が localhost.localdomain の場合は、NetworkManager を再起動します。

    [core@master-X ~]$ sudo systemctl restart NetworkManager
    Copy to Clipboard Toggle word wrap
  5. ホスト名がまだ localhost.localdomain の場合は、数分待機してから再度確認します。ホスト名が localhost.localdomain のままの場合は、直前の手順を繰り返します。
  6. nodeip-configuration サービスを再起動します。

    [core@master-X ~]$ sudo systemctl restart nodeip-configuration.service
    Copy to Clipboard Toggle word wrap

    このサービスは、正しいホスト名の参照で kubelet サービスを再設定します。

  7. kubelet が直前の手順で変更された後にユニットファイル定義を再読み込みします。

    [core@master-X ~]$ sudo systemctl daemon-reload
    Copy to Clipboard Toggle word wrap
  8. kubelet サービスを再起動します。

    [core@master-X ~]$ sudo systemctl restart kubelet.service
    Copy to Clipboard Toggle word wrap
  9. kubelet が正しいホスト名で起動されていることを確認します。

    [core@master-X ~]$ sudo journalctl -fu kubelet.service
    Copy to Clipboard Toggle word wrap

再起動時など、クラスターの稼働後にクラスターノードが正しいホスト名を取得しない場合、クラスターの csr は保留中になります。csr は承認 しません。承認すると、他の問題が生じる可能性があります。

csr の対応

  1. クラスターで CSR を取得します。

    $ oc get csr
    Copy to Clipboard Toggle word wrap
  2. 保留中の csrSubject Name: localhost.localdomain が含まれているかどうかを確認します。

    $ oc get csr <pending_csr> -o jsonpath='{.spec.request}' | base64 --decode | openssl req -noout -text
    Copy to Clipboard Toggle word wrap
  3. Subject Name: localhost.localdomain が含まれる csr を削除します。

    $ oc delete csr <wrong_csr>
    Copy to Clipboard Toggle word wrap
3.5.16.5. ルートがエンドポイントに到達しない

インストールプロセス時に、VRRP (Virtual Router Redundancy Protocol) の競合が発生する可能性があります。この競合は、特定のクラスター名を使用してクラスターデプロイメントの一部であった、以前に使用された OpenShift Container Platform ノードが依然として実行中であるものの、同じクラスター名を使用した現在の OpenShift Container Platform クラスターデプロイメントの一部ではない場合に発生する可能性があります。たとえば、クラスターはクラスター名 openshift を使用してデプロイされ、3 つのコントロールプレーン (マスター) ノードと 3 つのワーカーノードをデプロイします。後に、別のインストールで同じクラスター名 openshift が使用されますが、この再デプロイメントは 3 つのコントロールプレーン (マスター) ノードのみをインストールし、以前のデプロイメントの 3 つのワーカーノードを ON 状態のままにします。これにより、VRID (Virtual Router Identifier) の競合が発生し、VRRP が競合する可能性があります。

  1. ルートを取得します。

    $ oc get route oauth-openshift
    Copy to Clipboard Toggle word wrap
  2. サービスエンドポイントを確認します。

    $ oc get svc oauth-openshift
    Copy to Clipboard Toggle word wrap
    NAME              TYPE        CLUSTER-IP      EXTERNAL-IP   PORT(S)   AGE
    oauth-openshift   ClusterIP   172.30.19.162   <none>        443/TCP   59m
    Copy to Clipboard Toggle word wrap
  3. コントロールプレーン (マスター) ノードからサービスへのアクセスを試行します。

    [core@master0 ~]$ curl -k https://172.30.19.162
    Copy to Clipboard Toggle word wrap
    {
      "kind": "Status",
      "apiVersion": "v1",
      "metadata": {
      },
      "status": "Failure",
      "message": "forbidden: User \"system:anonymous\" cannot get path \"/\"",
      "reason": "Forbidden",
      "details": {
      },
      "code": 403
    Copy to Clipboard Toggle word wrap
  4. provisioner ノードからの authentication-operator エラーを特定します。

    $ oc logs deployment/authentication-operator -n openshift-authentication-operator
    Copy to Clipboard Toggle word wrap
    Event(v1.ObjectReference{Kind:"Deployment", Namespace:"openshift-authentication-operator", Name:"authentication-operator", UID:"225c5bd5-b368-439b-9155-5fd3c0459d98", APIVersion:"apps/v1", ResourceVersion:"", FieldPath:""}): type: 'Normal' reason: 'OperatorStatusChanged' Status for clusteroperator/authentication changed: Degraded message changed from "IngressStateEndpointsDegraded: All 2 endpoints for oauth-server are reporting"
    Copy to Clipboard Toggle word wrap

解決策

  1. すべてのデプロイメントのクラスター名が一意であり、競合が発生しないことを確認します。
  2. 同じクラスター名を使用するクラスターデプロイメントの一部ではない不正なノードをすべてオフにします。そうしないと、OpenShift Container Platform クラスターの認証 Pod が正常に起動されなくなる可能性があります。
3.5.16.6. 初回起動時の Ignition の失敗

初回起動時に、Ignition 設定が失敗する可能性があります。

手順

  1. Ignition 設定が失敗したノードに接続します。

    Failed Units: 1
      machine-config-daemon-firstboot.service
    Copy to Clipboard Toggle word wrap
  2. machine-config-daemon-firstboot サービスを再起動します。

    [core@worker-X ~]$ sudo systemctl restart machine-config-daemon-firstboot.service
    Copy to Clipboard Toggle word wrap
3.5.16.7. NTP が同期しない

OpenShift Container Platform クラスターのデプロイメントは、クラスターノード間の NTP の同期クロックによって異なります。同期クロックがない場合、時間の差が 2 秒を超えるとクロックのドリフトによりデプロイメントが失敗する可能性があります。

手順

  1. クラスターノードの AGE の差異の有無を確認します。以下に例を示します。

    $ oc get nodes
    Copy to Clipboard Toggle word wrap
    NAME                         STATUS   ROLES    AGE   VERSION
    master-0.cloud.example.com   Ready    master   145m   v1.32.3
    master-1.cloud.example.com   Ready    master   135m   v1.32.3
    master-2.cloud.example.com   Ready    master   145m   v1.32.3
    worker-2.cloud.example.com   Ready    worker   100m   v1.32.3
    Copy to Clipboard Toggle word wrap
  2. クロックのドリフトによる一貫性のないタイミングの遅延を確認します。以下に例を示します。

    $ oc get bmh -n openshift-machine-api
    Copy to Clipboard Toggle word wrap
    master-1   error registering master-1  ipmi://<out_of_band_ip>
    Copy to Clipboard Toggle word wrap
    $ sudo timedatectl
    Copy to Clipboard Toggle word wrap
                   Local time: Tue 2020-03-10 18:20:02 UTC
               Universal time: Tue 2020-03-10 18:20:02 UTC
                     RTC time: Tue 2020-03-10 18:36:53
                    Time zone: UTC (UTC, +0000)
    System clock synchronized: no
                  NTP service: active
              RTC in local TZ: no
    Copy to Clipboard Toggle word wrap

既存のクラスターでのクロックドリフトへの対応

  1. ノードに配信される chrony.conf ファイルの内容を含む Butane 設定ファイルを作成します。以下の例で、99-master-chrony.bu を作成して、ファイルをコントロールプレーンノードに追加します。ワーカーノードのファイルを変更するか、ワーカーロールに対してこの手順を繰り返すことができます。

    注記

    Butane の詳細は、「Butane を使用したマシン設定の作成」を参照してください。

    variant: openshift
    version: 4.19.0
    metadata:
      name: 99-master-chrony
      labels:
        machineconfiguration.openshift.io/role: master
    storage:
      files:
      - path: /etc/chrony.conf
        mode: 0644
        overwrite: true
        contents:
          inline: |
            server <NTP_server> iburst 
    1
    
            stratumweight 0
            driftfile /var/lib/chrony/drift
            rtcsync
            makestep 10 3
            bindcmdaddress 127.0.0.1
            bindcmdaddress ::1
            keyfile /etc/chrony.keys
            commandkey 1
            generatecommandkey
            noclientlog
            logchange 0.5
            logdir /var/log/chrony
    Copy to Clipboard Toggle word wrap
    1
    <NTP_server> を NTP サーバーの IP アドレスに置き換えます。
  2. Butane を使用して、ノードに配信される設定を含む MachineConfig オブジェクトファイル (99-master-chrony.yaml) を生成します。

    $ butane 99-master-chrony.bu -o 99-master-chrony.yaml
    Copy to Clipboard Toggle word wrap
  3. MachineConfig オブジェクトファイルを適用します。

    $ oc apply -f 99-master-chrony.yaml
    Copy to Clipboard Toggle word wrap
  4. System clock synchronized の値が yes であることを確認します。

    $ sudo timedatectl
    Copy to Clipboard Toggle word wrap
                   Local time: Tue 2020-03-10 19:10:02 UTC
               Universal time: Tue 2020-03-10 19:10:02 UTC
                     RTC time: Tue 2020-03-10 19:36:53
                    Time zone: UTC (UTC, +0000)
    System clock synchronized: yes
                  NTP service: active
              RTC in local TZ: no
    Copy to Clipboard Toggle word wrap

    デプロイメントの前にクロック同期を設定するには、マニフェストファイルを生成し、このファイルを openshift ディレクトリーに追加します。以下に例を示します。

    $ cp chrony-masters.yaml ~/clusterconfigs/openshift/99_masters-chrony-configuration.yaml
    Copy to Clipboard Toggle word wrap

    クラスターの作成を継続します。

3.5.17. インストールの確認

インストール後、インストールプログラムによってノードと Pod が正常にデプロイされたことを確認します。

手順

  1. OpenShift Container Platform クラスターノードが適切にインストールされると、以下の Ready 状態が STATUS 列に表示されます。

    $ oc get nodes
    Copy to Clipboard Toggle word wrap
    NAME                   STATUS   ROLES           AGE  VERSION
    master-0.example.com   Ready    master,worker   4h   v1.32.3
    master-1.example.com   Ready    master,worker   4h   v1.32.3
    master-2.example.com   Ready    master,worker   4h   v1.32.3
    Copy to Clipboard Toggle word wrap
  2. インストールプログラムによってすべての Pod が正常にデプロイされたことを確認します。以下のコマンドは、実行中の Pod、または出力の一部として完了した Pod を削除します。

    $ oc get pods --all-namespaces | grep -iv running | grep -iv complete
    Copy to Clipboard Toggle word wrap

第4章 インストール後の設定

ベアメタルクラスターを正常にデプロイした後、次のインストール後の手順を検討してください。

4.1. Cluster API について

OpenShift Container Platform 4.19 以降のリリースでは、Cluster API を使用してマシンを管理できます。

重要

Cluster API を使用したマシン管理は、テクノロジープレビュー機能のみです。テクノロジープレビュー機能は、Red Hat 製品のサービスレベルアグリーメント (SLA) の対象外であり、機能的に完全ではないことがあります。Red Hat は、実稼働環境でこれらを使用することを推奨していません。テクノロジープレビュー機能は、最新の製品機能をいち早く提供して、開発段階で機能のテストを行い、フィードバックを提供していただくことを目的としています。

Red Hat のテクノロジープレビュー機能のサポート範囲に関する詳細は、テクノロジープレビュー機能のサポート範囲 を参照してください。

クラスターのインストールが完了したら、Cluster API を使用してコンピュートノードプロビジョニング管理アクションを実行できます。Cluster API を使用すると、コンピュートノードマシンセットとマシンを動的に管理できます。ただし、コントロールプレーンマシンはサポートされていません。

4.2. 非接続クラスター向けの NTP 設定

OpenShift Container Platform は、クラスターノードに chrony Network Time Protocol (NTP) サービスをインストールします。次の手順を使用して、コントロールプレーンノードに NTP サーバーを設定し、デプロイが成功した後にコンピュートノードをコントロールプレーンノードの NTP クライアントとして設定します。

OpenShift Container Platform のノードは、適切に実行するために日付と時刻が一致している必要があります。コンピュートノードがコントロールプレーンノード上の NTP サーバーから日付と時刻を取得すると、ルーティング可能なネットワークに接続していないために上位層の NTP サーバーにアクセスできないクラスターのインストールと操作が可能になります。

手順

  1. 次のコマンドを使用して、インストールホストに Butane をインストールします。

    $ sudo dnf -y install butane
    Copy to Clipboard Toggle word wrap
  2. コントロールプレーンノードの chrony.conf ファイルのコンテンツを含む Butane 設定 (99-master-chrony-conf-override.bu) を作成します。

    注記

    Butane の詳細は、「Butane を使用したマシン設定の作成」を参照してください。

    Butane 設定例

    variant: openshift
    version: 4.19.0
    metadata:
      name: 99-master-chrony-conf-override
      labels:
        machineconfiguration.openshift.io/role: master
    storage:
      files:
        - path: /etc/chrony.conf
          mode: 0644
          overwrite: true
          contents:
            inline: |
              # Use public servers from the pool.ntp.org project.
              # Please consider joining the pool (https://www.pool.ntp.org/join.html).
    
              # The Machine Config Operator manages this file
              server openshift-master-0.<cluster-name>.<domain> iburst 
    1
    
              server openshift-master-1.<cluster-name>.<domain> iburst
              server openshift-master-2.<cluster-name>.<domain> iburst
    
              stratumweight 0
              driftfile /var/lib/chrony/drift
              rtcsync
              makestep 10 3
              bindcmdaddress 127.0.0.1
              bindcmdaddress ::1
              keyfile /etc/chrony.keys
              commandkey 1
              generatecommandkey
              noclientlog
              logchange 0.5
              logdir /var/log/chrony
    
              # Configure the control plane nodes to serve as local NTP servers
              # for all compute nodes, even if they are not in sync with an
              # upstream NTP server.
    
              # Allow NTP client access from the local network.
              allow all
              # Serve time even if not synchronized to a time source.
              local stratum 3 orphan
    Copy to Clipboard Toggle word wrap

    1
    <cluster-name> はクラスターの名前に置き換え、<domain> は完全修飾ドメイン名に置き換える必要があります。
  3. Butane を使用して、コントロールプレーンノードに配信される設定が含まれる MachineConfig オブジェクトファイル (99-master-chrony-conf-override.yaml) を生成します。

    $ butane 99-master-chrony-conf-override.bu -o 99-master-chrony-conf-override.yaml
    Copy to Clipboard Toggle word wrap
  4. コントロールプレーンノード上の NTP サーバーを参照するコンピュートノードの chrony.conf ファイルの内容を含む Butane 設定 99-worker-chrony-conf-override.bu を作成します。

    Butane 設定例

    variant: openshift
    version: 4.19.0
    metadata:
      name: 99-worker-chrony-conf-override
      labels:
        machineconfiguration.openshift.io/role: worker
    storage:
      files:
        - path: /etc/chrony.conf
          mode: 0644
          overwrite: true
          contents:
            inline: |
              # The Machine Config Operator manages this file.
              server openshift-master-0.<cluster-name>.<domain> iburst 
    1
    
              server openshift-master-1.<cluster-name>.<domain> iburst
              server openshift-master-2.<cluster-name>.<domain> iburst
    
              stratumweight 0
              driftfile /var/lib/chrony/drift
              rtcsync
              makestep 10 3
              bindcmdaddress 127.0.0.1
              bindcmdaddress ::1
              keyfile /etc/chrony.keys
              commandkey 1
              generatecommandkey
              noclientlog
              logchange 0.5
              logdir /var/log/chrony
    Copy to Clipboard Toggle word wrap

    1
    <cluster-name> はクラスターの名前に置き換え、<domain> は完全修飾ドメイン名に置き換える必要があります。
  5. Butane を使用して、ワーカーノードに配信される設定が含まれる MachineConfig オブジェクトファイル (99-worker-chrony-conf-override.yaml) を生成します。

    $ butane 99-worker-chrony-conf-override.bu -o 99-worker-chrony-conf-override.yaml
    Copy to Clipboard Toggle word wrap
  6. 99-master-chrony-conf-override.yaml ポリシーをコントロールプレーンノードに適用します。

    $ oc apply -f 99-master-chrony-conf-override.yaml
    Copy to Clipboard Toggle word wrap

    出力例

    machineconfig.machineconfiguration.openshift.io/99-master-chrony-conf-override created
    Copy to Clipboard Toggle word wrap

  7. 99-worker-chrony-conf-override.yaml ポリシーをコンピュートノードに適用します。

    $ oc apply -f 99-worker-chrony-conf-override.yaml
    Copy to Clipboard Toggle word wrap

    出力例

    machineconfig.machineconfiguration.openshift.io/99-worker-chrony-conf-override created
    Copy to Clipboard Toggle word wrap

  8. 適用された NTP 設定のステータスを確認します。

    $ oc describe machineconfigpool
    Copy to Clipboard Toggle word wrap

4.3. インストール後のプロビジョニングネットワークの有効化

ベアメタルクラスター用の Assisted Installer および installer-provisioned installation は、provisioning ネットワークなしでクラスターをデプロイする機能を提供します。この機能は、概念実証クラスターや、各ノードのベースボード管理コントローラーが baremetal ネットワークを介してルーティング可能な場合に Redfish 仮想メディアのみを使用してデプロイするなどのシナリオ向けです。

Cluster Baremetal Operator (CBO) を使用してインストール後に provisioning ネットワークを有効にすることができます。

前提条件

  • すべてのワーカーノードおよびコントロールプレーンノードに接続されている専用の物理ネットワークが存在する必要があります。
  • ネイティブのタグなしの物理ネットワークを分離する必要があります。
  • provisioningNetwork 設定が Managed に設定されている場合、ネットワークには DHCP サーバーを含めることはできません。
  • OpenShift Container Platform 4.10 の provisioningInterface 設定を省略して、bootMACAddress 設定を使用できます。

手順

  1. provisioningInterface 設定を設定する場合、まずクラスターノードのプロビジョニングインターフェイス名を特定します。たとえば、eth0 または eno1 などです。
  2. クラスターノードの provisioning ネットワークインターフェイスで Preboot eXecution Environment (PXE) を有効にします。
  3. provisioning ネットワークの現在の状態を取得して、これをプロビジョニングカスタムリソース (CR) ファイルに保存します。

    $ oc get provisioning -o yaml > enable-provisioning-nw.yaml
    Copy to Clipboard Toggle word wrap
  4. プロビジョニング CR ファイルを変更します。

    $ vim ~/enable-provisioning-nw.yaml
    Copy to Clipboard Toggle word wrap

    provisioningNetwork 設定までスクロールダウンして、これを Disabled から Managed に変更します。次に、provisioningNetwork 設定の後に、provisioningIPprovisioningNetworkCIDRprovisioningDHCPRangeprovisioningInterface、および watchAllNameSpaces 設定を追加します。各設定に適切な値を指定します。

    apiVersion: v1
    items:
    - apiVersion: metal3.io/v1alpha1
      kind: Provisioning
      metadata:
        name: provisioning-configuration
      spec:
        provisioningNetwork: 
    1
    
        provisioningIP: 
    2
    
        provisioningNetworkCIDR: 
    3
    
        provisioningDHCPRange: 
    4
    
        provisioningInterface: 
    5
    
        watchAllNameSpaces: 
    6
    Copy to Clipboard Toggle word wrap
    1
    provisioningNetwork は、ManagedUnmanaged、または Disabled のいずれかになります。Managed に設定すると、Metal3 はプロビジョニングネットワークを管理し、CBO は設定済みの DHCP サーバーで Metal3 Pod をデプロイします。Unmanaged に設定すると、システム管理者は DHCP サーバーを手動で設定します。
    2
    provisioningIP は、DHCP サーバーおよび ironic がネットワークのプロビジョニングために使用する静的 IP アドレスです。この静的 IP アドレスは、DHCP 範囲外の provisioning 内でなければなりません。この設定を設定する場合は、provisioning ネットワークが Disabled の場合でも、有効な IP アドレスが必要です。静的 IP アドレスは metal3 Pod にバインドされます。metal3 Pod が失敗し、別のサーバーに移動する場合、静的 IP アドレスも新しいサーバーに移動します。
    3
    Classless Inter-Domain Routing (CIDR) アドレス。この設定を設定する場合は、provisioning ネットワークが Disabled の場合でも、有効な CIDR アドレスが必要です。例: 192.168.0.1/24
    4
    DHCP の範囲。この設定は、Managed プロビジョニングネットワークにのみ適用されます。provisioning ネットワークが Disabled の場合は、この設定を省略します。例: 192.168.0.64, 192.168.0.253
    5
    クラスターノードの provisioning インターフェイス用の NIC 名。provisioningInterface 設定は、Managed および Unmanaged プロビジョニングネットワークにのみ適用されます。provisioning ネットワークが Disabled の場合に、provisioningInterface 設定が省略されます。代わりに bootMACAddress 設定を使用するように provisioningInterface 設定を省略します。
    6
    metal3 がデフォルトの openshift-machine-api namespace 以外の namespace を監視するようにするには、この設定を true に設定します。デフォルト値は false です。
  5. 変更をプロビジョニング CR ファイルに保存します。
  6. プロビジョニング CR ファイルをクラスターに適用します。

    $ oc apply -f enable-provisioning-nw.yaml
    Copy to Clipboard Toggle word wrap

4.4. カスタマイズされた br-ex ブリッジを含むマニフェストオブジェクトの作成

configure-ovs.sh シェルスクリプトを使用してベアメタルプラットフォームで br-ex ブリッジを設定する代わりに、NMState 設定ファイルを含む NodeNetworkConfigurationPolicy (NNCP) カスタムリソース (CR) を作成することもできます。Kubernetes NMState Operator がその NMState 設定ファイルを使用して、カスタマイズされた br-ex ブリッジネットワーク設定をクラスター内の各ノードに作成します。

重要

NodeNetworkConfigurationPolicy CR を作成したら、クラスターのインストール中に作成された NMState 設定ファイルの内容を NNCP CR にコピーしてください。NNCP CR のファイルが不完全な場合、ファイルに記述されているネットワークポリシーをクラスター内のノードに適用できません。

この機能は、次のタスクをサポートします。

  • クラスターの最大転送単位 (MTU) を変更します。
  • MIImon (Media Independent Interface Monitor)、ボンディングモード、Quality of Service (QoS) などのさまざまなボンディングインターフェイスの属性を変更します。
  • DNS 値を更新しています。

カスタマイズされた br-ex ブリッジを含むマニフェストオブジェクトを作成する場合は、次のユースケースを検討してください。

  • Open vSwitch (OVS) または OVN-Kubernetes br-ex ブリッジネットワークの変更など、ブリッジにインストール後の変更を加えたい場合。configure-ovs.sh シェルスクリプトは、ブリッジへのインストール後の変更をサポートしていません。
  • ホストまたはサーバーの IP アドレスで使用可能なインターフェイスとは異なるインターフェイスにブリッジをデプロイします。
  • configure-ovs.sh シェルスクリプトでは不可能な、ブリッジの高度な設定を実行したいと考えています。これらの設定にスクリプトを使用すると、ブリッジが複数のネットワークインターフェイスに接続できず、インターフェイス間のデータ転送が促進されない可能性があります。
警告

次のインターフェイス名は予約されており、NMstate 設定では使用できません。

  • br-ext
  • br-int
  • br-local
  • br-nexthop
  • br0
  • ext-vxlan
  • ext
  • genev_sys_*
  • int
  • k8s-*
  • ovn-k8s-*
  • patch-br-*
  • tun0
  • vxlan_sys_*

前提条件

  • configure-ovs の代替方法を使用して、カスタマイズされた br-ex を設定している。
  • Kubernetes NMState Operator がインストールされている。

手順

  • NodeNetworkConfigurationPolicy (NNCP) CR を作成し、カスタマイズされた br-ex ブリッジネットワーク設定を定義します。必要に応じて、ipv4.address.ipipv6.address.ip、またはその両方のパラメーターにマスカレード IP を設定するようにしてください。NNCP CR には常にマスカレード IP アドレスを含めてください。このアドレスは使用中の IP アドレスブロックと一致する必要があります。

    重要

    インストール後のタスクとして、既存の NNCP CR で定義したカスタマイズされた br-ex ブリッジのほとんどのパラメーター (カスタマイズされた br-ex ブリッジのプライマリー IP アドレスを除く) を設定できます。

    シングルスタッククラスターネットワークをデュアルスタッククラスターネットワークに変換する場合、NNCP CR でセカンダリー IPv6 アドレスは追加または変更できますが、既存のプライマリー IP アドレスは変更できません。

    IPv6 および IPv4 マスカレード IP アドレスを設定する NNCP CR の例

    apiVersion: nmstate.io/v1
    kind: NodeNetworkConfigurationPolicy
    metadata:
      name: worker-0-br-ex 
    1
    
    spec:
      nodeSelector:
        kubernetes.io/hostname: worker-0
        desiredState:
        interfaces:
        - name: enp2s0 
    2
    
          type: ethernet 
    3
    
          state: up 
    4
    
          ipv4:
            enabled: false 
    5
    
          ipv6:
            enabled: false
        - name: br-ex
          type: ovs-bridge
          state: up
          ipv4:
            enabled: false
            dhcp: false
          ipv6:
            enabled: false
            dhcp: false
          bridge:
            options:
              mcast-snooping-enable: true
            port:
            - name: enp2s0 
    6
    
            - name: br-ex
        - name: br-ex
          type: ovs-interface
          state: up
          copy-mac-from: enp2s0
          ipv4:
            enabled: true
            dhcp: true
            auto-route-metric: 48 
    7
    
            address:
            - ip: "169.254.169.2"
              prefix-length: 29
          ipv6:
            enabled: true
            dhcp: true
            auto-route-metric: 48
            address:
            - ip: "fd69::2"
            prefix-length: 125
    # ...
    Copy to Clipboard Toggle word wrap

    1
    ポリシーの名前。
    2
    インターフェイスの名前。
    3
    イーサネットのタイプ。
    4
    作成後のインターフェイスの要求された状態。
    5
    この例では、IPv4 と IPv6 を無効にします。
    6
    ブリッジが接続されているノード NIC。
    7
    br-ex デフォルトルートに常に最高の優先度 (最も低いメトリック値) を付与するには、パラメーターを 48 に設定します。この設定により、NetworkManager サービスによって自動的に設定される他のインターフェイスとのルーティングの競合が防止されます。

次のステップ

  • コンピュートノードをスケーリングして、クラスター内に存在する各コンピュートノードに、カスタマイズされた br-ex ブリッジを含むマニフェストオブジェクトを適用します。詳細は、関連情報 セクションの「クラスターの拡張」を参照してください。

4.5. カスタマイズした br-ex ブリッジに中断を伴う変更を加える

状況によっては、計画的なメンテナンスやネットワーク設定の更新のために、中断を伴う変更を br-ex ブリッジに加える必要があります。br-ex ブリッジは、ワークロードから発信されるすべての外部ネットワークトラフィックのゲートウェイです。そのため、このブリッジに変更を加えると、Pod と仮想マシン (VM) が外部ネットワークから一時的に切断される可能性があります。

次の手順では、実行中のクラスターワークロードへの影響を最小限に抑えながら、中断を伴う変更を br-ex ブリッジに加える例を示します。

クラスター内のすべてのノードに br-ex ブリッジの変更を反映するには、クラスターを再起動する必要があります。既存の MachineConfig オブジェクトを編集しても再起動操作は強制されません。そのため、クラスターの再起動操作を強制するには、追加の MachineConfig オブジェクトを作成する必要があります。

重要

Red Hat は、インストール後のタスクとしてノードの IP アドレスを変更することをサポートしていません。

前提条件

  • br-ex ブリッジを含むマニフェストオブジェクトを作成した。
  • br-ex ブリッジが設定されたクラスターをデプロイした。

手順

  1. br-ex ブリッジネットワークインターフェイスをカスタマイズするために、クラスターのインストール時に作成した NMState 設定ファイルに変更を加えます。

    重要

    MachineConfig オブジェクトを保存する前に、変更したパラメーター値を確認してください。間違った値を入力してファイルを保存すると、ファイルを元の状態に復元できなくなり、クラスターのネットワーク機能に影響が生じます。

  2. 次のコマンドを入力して、base64 コマンドを使用して NMState 設定の内容を再エンコードします。

    $ base64 -w0 <nmstate_configuration>.yml 
    1
    Copy to Clipboard Toggle word wrap
    1
    <nmstate_configuration> を NMState リソース YAML ファイルの名前に置き換えます。
  3. クラスターのインストール時に作成した MachineConfig マニフェストファイルを更新し、カスタマイズした br-ex ブリッジネットワークインターフェイスを再定義します。
  4. 次のコマンドを入力して、MachineConfig オブジェクトの更新をクラスターに適用します。

    $ oc apply -f <machine_config>.yml
    Copy to Clipboard Toggle word wrap
  5. 最小限の MachineConfig オブジェクトを作成します。ファイルの設定は変更しないでください。

    apiVersion: machineconfiguration.openshift.io/v1
    kind: MachineConfig
    metadata:
      labels:
        machineconfiguration.openshift.io/role: master
      name: 10-force-reboot-master
    spec:
      config:
        ignition:
          version: 3.2.0
        storage:
          files:
          - contents:
              source: data:text/plain;charset=utf-8;base64,
            mode: 0644
            overwrite: true
            path: /etc/force-reboot
    ---
    apiVersion: machineconfiguration.openshift.io/v1
    kind: MachineConfig
    metadata:
      labels:
        machineconfiguration.openshift.io/role: worker
      name: 10-force-reboot-worker
    spec:
      config:
        ignition:
          version: 3.2.0
        storage:
          files:
          - contents:
              source: data:text/plain;charset=utf-8;base64,
            mode: 0644
            overwrite: true
            path: /etc/force-reboot
    # ...
    Copy to Clipboard Toggle word wrap
  6. 次のコマンドを入力して、最小限の MachineConfig オブジェクト設定をクラスターに適用し、再起動操作を開始します。

    $ oc apply -f <bare_machine_config>.yml
    Copy to Clipboard Toggle word wrap
  7. 次のコマンドを入力して、クラスター内の各ノードが再起動が完了したことを示す Ready ステータスになっていることを確認します。

    $ oc get nodes
    Copy to Clipboard Toggle word wrap
  8. 次のコマンドを入力して、最小限の MachineConfig オブジェクトを削除します。

    $ oc delete machineconfig <machine_config_name>
    Copy to Clipboard Toggle word wrap

検証

  • nmstatectl ツールを使用して次のコマンドを実行し、br-ex ブリッジインターフェイスの設定を確認します。このツールは、MachineConfig オブジェクトをデプロイした場所ではなく、br-ex ブリッジインターフェイスを実行するノードを確認します。

    $ sudo nmstatectl show br-ex
    Copy to Clipboard Toggle word wrap

4.6. ユーザー管理ロードバランサーのサービス

デフォルトのロードバランサーの代わりに、ユーザーが管理するロードバランサーを使用するように OpenShift Container Platform クラスターを設定できます。

重要

ユーザー管理ロードバランサーの設定は、ベンダーのロードバランサーによって異なります。

このセクションの情報と例は、ガイドラインのみを目的としています。ベンダーのロードバランサーに関する詳細は、ベンダーのドキュメントを参照してください。

Red Hat は、ユーザー管理ロードバランサーに対して次のサービスをサポートしています。

  • Ingress Controller
  • OpenShift API
  • OpenShift MachineConfig API

ユーザー管理ロードバランサーに対して、これらのサービスの 1 つを設定するか、すべてを設定するかを選択できます。一般的な設定オプションは、Ingress Controller サービスのみを設定することです。次の図は、各サービスの詳細を示しています。

図4.1 OpenShift Container Platform 環境で動作する Ingress Controller を示すネットワークワークフローの例

図4.2 OpenShift Container Platform 環境で動作する OpenShift API を示すネットワークワークフローの例

図4.3 OpenShift Container Platform 環境で動作する OpenShift MachineConfig API を示すネットワークワークフローの例

ユーザー管理ロードバランサーでは、次の設定オプションがサポートされています。

  • ノードセレクターを使用して、Ingress Controller を特定のノードのセットにマッピングします。このセットの各ノードに静的 IP アドレスを割り当てるか、Dynamic Host Configuration Protocol (DHCP) から同じ IP アドレスを受け取るように各ノードを設定する必要があります。インフラストラクチャーノードは通常、このタイプの設定を受け取ります。
  • サブネット上のすべての IP アドレスをターゲットにします。この設定では、ロードバランサーターゲットを再設定せずにネットワーク内でノードを作成および破棄できるため、メンテナンスオーバーヘッドを削減できます。/27/28 などの小規模なネットワーク上に設定されたマシンを使用して Ingress Pod をデプロイする場合、ロードバランサーのターゲットを簡素化できます。

    ヒント

    マシン config プールのリソースを確認することで、ネットワーク内に存在するすべての IP アドレスをリスト表示できます。

OpenShift Container Platform クラスターのユーザー管理ロードバランサーを設定する前に、以下の情報を考慮してください。

  • フロントエンド IP アドレスの場合、フロントエンド IP アドレス、Ingress Controller のロードバランサー、および API ロードバランサーに同じ IP アドレスを使用できます。この機能は、ベンダーのドキュメントを確認してください。
  • バックエンド IP アドレスの場合、ユーザー管理ロードバランサーの有効期間中に OpenShift Container Platform コントロールプレーンノードの IP アドレスが変更されないことを確認します。次のいずれかのアクションを実行すると、これを実現できます。

    • 各コントロールプレーンノードに静的 IP アドレスを割り当てます。
    • ノードが DHCP リースを要求するたびに、DHCP から同じ IP アドレスを受信するように各ノードを設定します。ベンダーによっては、DHCP リースは IP 予約または静的 DHCP 割り当ての形式になる場合があります。
  • Ingress Controller バックエンドサービスのユーザー管理ロードバランサーで Ingress Controller を実行する各ノードを手動で定義します。たとえば、Ingress Controller が未定義のノードに移動すると、接続が停止する可能性があります。

4.6.1. ユーザー管理ロードバランサーの設定

デフォルトのロードバランサーの代わりに、ユーザーが管理するロードバランサーを使用するように OpenShift Container Platform クラスターを設定できます。

重要

ユーザー管理ロードバランサーを設定する前に、「ユーザー管理ロードバランサーのサービス」セクションを必ずお読みください。

ユーザー管理ロードバランサー用に設定するサービスに適用される次の前提条件をお読みください。

注記

クラスター上で実行される MetalLB は、ユーザー管理ロードバランサーとして機能します。

OpenShift API の前提条件

  • フロントエンド IP アドレスを定義している。
  • TCP ポート 6443 および 22623 は、ロードバランサーのフロントエンド IP アドレスで公開されている。以下の項目を確認します。

    • ポート 6443 が OpenShift API サービスにアクセスできる。
    • ポート 22623 が Ignition 起動設定をノードに提供できる。
  • フロントエンド IP アドレスとポート 6443 へは、OpenShift Container Platform クラスターの外部の場所にいるシステムのすべてのユーザーがアクセスできる。
  • フロントエンド IP アドレスとポート 22623 は、OpenShift Container Platform ノードからのみ到達できる。
  • ロードバランサーバックエンドは、ポート 6443 および 22623 の OpenShift Container Platform コントロールプレーンノードと通信できる。

Ingress Controller の前提条件

  • フロントエンド IP アドレスを定義している。
  • TCP ポート 443 および 80 はロードバランサーのフロントエンド IP アドレスで公開されている。
  • フロントエンドの IP アドレス、ポート 80、ポート 443 へは、OpenShift Container Platform クラスターの外部の場所にあるシステムの全ユーザーがアクセスできる。
  • フロントエンドの IP アドレス、ポート 80、ポート 443 は、OpenShift Container Platform クラスターで動作するすべてのノードから到達できる。
  • ロードバランサーバックエンドは、ポート 80、443、および 1936 で Ingress Controller を実行する OpenShift Container Platform ノードと通信できる。

ヘルスチェック URL 仕様の前提条件

ほとんどのロードバランサーは、サービスが使用可能か使用不可かを判断するヘルスチェック URL を指定して設定できます。OpenShift Container Platform は、OpenShift API、Machine Configuration API、および Ingress Controller バックエンドサービスのこれらのヘルスチェックを提供します。

次の例は、前にリスト表示したバックエンドサービスのヘルスチェック仕様を示しています。

Kubernetes API ヘルスチェック仕様の例

Path: HTTPS:6443/readyz
Healthy threshold: 2
Unhealthy threshold: 2
Timeout: 10
Interval: 10
Copy to Clipboard Toggle word wrap

Machine Config API ヘルスチェック仕様の例

Path: HTTPS:22623/healthz
Healthy threshold: 2
Unhealthy threshold: 2
Timeout: 10
Interval: 10
Copy to Clipboard Toggle word wrap

Ingress Controller のヘルスチェック仕様の例

Path: HTTP:1936/healthz/ready
Healthy threshold: 2
Unhealthy threshold: 2
Timeout: 5
Interval: 10
Copy to Clipboard Toggle word wrap

手順

  1. HAProxy Ingress Controller を設定して、ポート 6443、22623、443、および 80 でロードバランサーからクラスターへのアクセスを有効化できるようにします。必要に応じて、HAProxy 設定で単一のサブネットの IP アドレスまたは複数のサブネットの IP アドレスを指定できます。

    1 つのサブネットをリストした HAProxy 設定の例

    # ...
    listen my-cluster-api-6443
        bind 192.168.1.100:6443
        mode tcp
        balance roundrobin
      option httpchk
      http-check connect
      http-check send meth GET uri /readyz
      http-check expect status 200
        server my-cluster-master-2 192.168.1.101:6443 check inter 10s rise 2 fall 2
        server my-cluster-master-0 192.168.1.102:6443 check inter 10s rise 2 fall 2
        server my-cluster-master-1 192.168.1.103:6443 check inter 10s rise 2 fall 2
    
    listen my-cluster-machine-config-api-22623
        bind 192.168.1.100:22623
        mode tcp
        balance roundrobin
      option httpchk
      http-check connect
      http-check send meth GET uri /healthz
      http-check expect status 200
        server my-cluster-master-2 192.168.1.101:22623 check inter 10s rise 2 fall 2
        server my-cluster-master-0 192.168.1.102:22623 check inter 10s rise 2 fall 2
        server my-cluster-master-1 192.168.1.103:22623 check inter 10s rise 2 fall 2
    
    listen my-cluster-apps-443
        bind 192.168.1.100:443
        mode tcp
        balance roundrobin
      option httpchk
      http-check connect
      http-check send meth GET uri /healthz/ready
      http-check expect status 200
        server my-cluster-worker-0 192.168.1.111:443 check port 1936 inter 10s rise 2 fall 2
        server my-cluster-worker-1 192.168.1.112:443 check port 1936 inter 10s rise 2 fall 2
        server my-cluster-worker-2 192.168.1.113:443 check port 1936 inter 10s rise 2 fall 2
    
    listen my-cluster-apps-80
       bind 192.168.1.100:80
       mode tcp
       balance roundrobin
      option httpchk
      http-check connect
      http-check send meth GET uri /healthz/ready
      http-check expect status 200
        server my-cluster-worker-0 192.168.1.111:80 check port 1936 inter 10s rise 2 fall 2
        server my-cluster-worker-1 192.168.1.112:80 check port 1936 inter 10s rise 2 fall 2
        server my-cluster-worker-2 192.168.1.113:80 check port 1936 inter 10s rise 2 fall 2
    # ...
    Copy to Clipboard Toggle word wrap

    複数のサブネットをリストした HAProxy 設定の例

    # ...
    listen api-server-6443
        bind *:6443
        mode tcp
          server master-00 192.168.83.89:6443 check inter 1s
          server master-01 192.168.84.90:6443 check inter 1s
          server master-02 192.168.85.99:6443 check inter 1s
          server bootstrap 192.168.80.89:6443 check inter 1s
    
    listen machine-config-server-22623
        bind *:22623
        mode tcp
          server master-00 192.168.83.89:22623 check inter 1s
          server master-01 192.168.84.90:22623 check inter 1s
          server master-02 192.168.85.99:22623 check inter 1s
          server bootstrap 192.168.80.89:22623 check inter 1s
    
    listen ingress-router-80
        bind *:80
        mode tcp
        balance source
          server worker-00 192.168.83.100:80 check inter 1s
          server worker-01 192.168.83.101:80 check inter 1s
    
    listen ingress-router-443
        bind *:443
        mode tcp
        balance source
          server worker-00 192.168.83.100:443 check inter 1s
          server worker-01 192.168.83.101:443 check inter 1s
    
    listen ironic-api-6385
        bind *:6385
        mode tcp
        balance source
          server master-00 192.168.83.89:6385 check inter 1s
          server master-01 192.168.84.90:6385 check inter 1s
          server master-02 192.168.85.99:6385 check inter 1s
          server bootstrap 192.168.80.89:6385 check inter 1s
    
    listen inspector-api-5050
        bind *:5050
        mode tcp
        balance source
          server master-00 192.168.83.89:5050 check inter 1s
          server master-01 192.168.84.90:5050 check inter 1s
          server master-02 192.168.85.99:5050 check inter 1s
          server bootstrap 192.168.80.89:5050 check inter 1s
    # ...
    Copy to Clipboard Toggle word wrap

  2. curl CLI コマンドを使用して、ユーザー管理ロードバランサーとそのリソースが動作していることを確認します。

    1. 次のコマンドを実行して応答を観察し、クラスターマシン設定 API が Kubernetes API サーバーリソースにアクセスできることを確認します。

      $ curl https://<loadbalancer_ip_address>:6443/version --insecure
      Copy to Clipboard Toggle word wrap

      設定が正しい場合は、応答として JSON オブジェクトを受信します。

      {
        "major": "1",
        "minor": "11+",
        "gitVersion": "v1.11.0+ad103ed",
        "gitCommit": "ad103ed",
        "gitTreeState": "clean",
        "buildDate": "2019-01-09T06:44:10Z",
        "goVersion": "go1.10.3",
        "compiler": "gc",
        "platform": "linux/amd64"
      }
      Copy to Clipboard Toggle word wrap
    2. 次のコマンドを実行して出力を確認し、クラスターマシン設定 API がマシン設定サーバーリソースからアクセスできることを確認します。

      $ curl -v https://<loadbalancer_ip_address>:22623/healthz --insecure
      Copy to Clipboard Toggle word wrap

      設定が正しい場合、コマンドの出力には次の応答が表示されます。

      HTTP/1.1 200 OK
      Content-Length: 0
      Copy to Clipboard Toggle word wrap
    3. 次のコマンドを実行して出力を確認し、コントローラーがポート 80 の Ingress Controller リソースにアクセスできることを確認します。

      $ curl -I -L -H "Host: console-openshift-console.apps.<cluster_name>.<base_domain>" http://<load_balancer_front_end_IP_address>
      Copy to Clipboard Toggle word wrap

      設定が正しい場合、コマンドの出力には次の応答が表示されます。

      HTTP/1.1 302 Found
      content-length: 0
      location: https://console-openshift-console.apps.ocp4.private.opequon.net/
      cache-control: no-cache
      Copy to Clipboard Toggle word wrap
    4. 次のコマンドを実行して出力を確認し、コントローラーがポート 443 の Ingress Controller リソースにアクセスできることを確認します。

      $ curl -I -L --insecure --resolve console-openshift-console.apps.<cluster_name>.<base_domain>:443:<Load Balancer Front End IP Address> https://console-openshift-console.apps.<cluster_name>.<base_domain>
      Copy to Clipboard Toggle word wrap

      設定が正しい場合、コマンドの出力には次の応答が表示されます。

      HTTP/1.1 200 OK
      referrer-policy: strict-origin-when-cross-origin
      set-cookie: csrf-token=UlYWOyQ62LWjw2h003xtYSKlh1a0Py2hhctw0WmV2YEdhJjFyQwWcGBsja261dGLgaYO0nxzVErhiXt6QepA7g==; Path=/; Secure; SameSite=Lax
      x-content-type-options: nosniff
      x-dns-prefetch-control: off
      x-frame-options: DENY
      x-xss-protection: 1; mode=block
      date: Wed, 04 Oct 2023 16:29:38 GMT
      content-type: text/html; charset=utf-8
      set-cookie: 1e2670d92730b515ce3a1bb65da45062=1bf5e9573c9a2760c964ed1659cc1673; path=/; HttpOnly; Secure; SameSite=None
      cache-control: private
      Copy to Clipboard Toggle word wrap
  3. ユーザー管理ロードバランサーのフロントエンド IP アドレスをターゲットにするようにクラスターの DNS レコードを設定します。ロードバランサー経由で、クラスター API およびアプリケーションの DNS サーバーのレコードを更新する必要があります。

    変更された DNS レコードの例

    <load_balancer_ip_address>  A  api.<cluster_name>.<base_domain>
    A record pointing to Load Balancer Front End
    Copy to Clipboard Toggle word wrap

    <load_balancer_ip_address>   A apps.<cluster_name>.<base_domain>
    A record pointing to Load Balancer Front End
    Copy to Clipboard Toggle word wrap
    重要

    DNS の伝播では、各 DNS レコードが使用可能になるまでに時間がかかる場合があります。各レコードを検証する前に、各 DNS レコードが伝播されることを確認してください。

  4. OpenShift Container Platform クラスターでユーザー管理ロードバランサーを使用するには、クラスターの install-config.yaml ファイルで次の設定を指定する必要があります。

    # ...
    platform:
        loadBalancer:
          type: UserManaged 
    1
    
        apiVIPs:
        - <api_ip> 
    2
    
        ingressVIPs:
        - <ingress_ip> 
    3
    
    # ...
    Copy to Clipboard Toggle word wrap
    1
    クラスターのユーザー管理ロードバランサーを指定するには、type パラメーターに UserManaged を設定します。パラメーターのデフォルトは OpenShiftManagedDefault で、これはデフォルトの内部ロードバランサーを示します。openshift-kni-infra namespace で定義されたサービスの場合、ユーザー管理ロードバランサーは coredns サービスをクラスター内の Pod にデプロイできますが、keepalived および haproxy サービスは無視します。
    2
    ユーザー管理ロードバランサーを指定する場合に必須のパラメーターです。Kubernetes API がユーザー管理ロードバランサーと通信できるように、ユーザー管理ロードバランサーのパブリック IP アドレスを指定します。
    3
    ユーザー管理ロードバランサーを指定する場合に必須のパラメーターです。ユーザー管理ロードバランサーのパブリック IP アドレスを指定して、ユーザー管理ロードバランサーがクラスターの Ingress トラフィックを管理できるようにします。

検証

  1. curl CLI コマンドを使用して、ユーザー管理ロードバランサーと DNS レコード設定が動作していることを確認します。

    1. 次のコマンドを実行して出力を確認し、クラスター API にアクセスできることを確認します。

      $ curl https://api.<cluster_name>.<base_domain>:6443/version --insecure
      Copy to Clipboard Toggle word wrap

      設定が正しい場合は、応答として JSON オブジェクトを受信します。

      {
        "major": "1",
        "minor": "11+",
        "gitVersion": "v1.11.0+ad103ed",
        "gitCommit": "ad103ed",
        "gitTreeState": "clean",
        "buildDate": "2019-01-09T06:44:10Z",
        "goVersion": "go1.10.3",
        "compiler": "gc",
        "platform": "linux/amd64"
        }
      Copy to Clipboard Toggle word wrap
    2. 次のコマンドを実行して出力を確認し、クラスターマシン設定にアクセスできることを確認します。

      $ curl -v https://api.<cluster_name>.<base_domain>:22623/healthz --insecure
      Copy to Clipboard Toggle word wrap

      設定が正しい場合、コマンドの出力には次の応答が表示されます。

      HTTP/1.1 200 OK
      Content-Length: 0
      Copy to Clipboard Toggle word wrap
    3. 以下のコマンドを実行して出力を確認し、ポートで各クラスターアプリケーションにアクセスできることを確認します。

      $ curl http://console-openshift-console.apps.<cluster_name>.<base_domain> -I -L --insecure
      Copy to Clipboard Toggle word wrap

      設定が正しい場合、コマンドの出力には次の応答が表示されます。

      HTTP/1.1 302 Found
      content-length: 0
      location: https://console-openshift-console.apps.<cluster-name>.<base domain>/
      cache-control: no-cacheHTTP/1.1 200 OK
      referrer-policy: strict-origin-when-cross-origin
      set-cookie: csrf-token=39HoZgztDnzjJkq/JuLJMeoKNXlfiVv2YgZc09c3TBOBU4NI6kDXaJH1LdicNhN1UsQWzon4Dor9GWGfopaTEQ==; Path=/; Secure
      x-content-type-options: nosniff
      x-dns-prefetch-control: off
      x-frame-options: DENY
      x-xss-protection: 1; mode=block
      date: Tue, 17 Nov 2020 08:42:10 GMT
      content-type: text/html; charset=utf-8
      set-cookie: 1e2670d92730b515ce3a1bb65da45062=9b714eb87e93cf34853e87a92d6894be; path=/; HttpOnly; Secure; SameSite=None
      cache-control: private
      Copy to Clipboard Toggle word wrap
    4. 次のコマンドを実行して出力を確認し、ポート 443 で各クラスターアプリケーションにアクセスできることを確認します。

      $ curl https://console-openshift-console.apps.<cluster_name>.<base_domain> -I -L --insecure
      Copy to Clipboard Toggle word wrap

      設定が正しい場合、コマンドの出力には次の応答が表示されます。

      HTTP/1.1 200 OK
      referrer-policy: strict-origin-when-cross-origin
      set-cookie: csrf-token=UlYWOyQ62LWjw2h003xtYSKlh1a0Py2hhctw0WmV2YEdhJjFyQwWcGBsja261dGLgaYO0nxzVErhiXt6QepA7g==; Path=/; Secure; SameSite=Lax
      x-content-type-options: nosniff
      x-dns-prefetch-control: off
      x-frame-options: DENY
      x-xss-protection: 1; mode=block
      date: Wed, 04 Oct 2023 16:29:38 GMT
      content-type: text/html; charset=utf-8
      set-cookie: 1e2670d92730b515ce3a1bb65da45062=1bf5e9573c9a2760c964ed1659cc1673; path=/; HttpOnly; Secure; SameSite=None
      cache-control: private
      Copy to Clipboard Toggle word wrap

4.7. Bare Metal Operator を使用した設定

ベアメタルホストに OpenShift Container Platform をデプロイする場合、プロビジョニングの前後にホストに変更を加える必要がある場合があります。これには、ホストのハードウェア、ファームウェア、ファームウェアの詳細の検証が含まれます。また、ディスクのフォーマットや、変更可能なファームウェア設定の変更も含まれます。

Bare Metal Operator (BMO) を使用して、クラスター内のベアメタルホストをプロビジョニング、管理、検査できます。BMO は次の操作を完了できます。

  • 特定のイメージを使用したクラスターへのベアメタルホストのプロビジョニング
  • ホストをオンまたはオフにします。
  • ホストのハードウェアの詳細を検査し、ベアメタルホストへ報告する
  • ホストのファームウェアを特定のバージョンにアップグレードまたはダウングレードする
  • ファームウェアを検査し、BIOS を設定します。
  • ホストをプロビジョニングする前または後に、ホストのディスクの内容をクリーンアップします。

BMO はこれらのタスクを完了するために次のリソースを使用します。

  • BareMetalHost
  • HostFirmwareSettings
  • FirmwareSchema
  • HostFirmwareComponents
  • HostUpdatePolicy

BMO は、各ベアメタルホストを BareMetalHost カスタムリソース定義のインスタンスにマッピングすることにより、クラスター内の物理ホストのインベントリーを維持します。各 BareMetalHost リソースには、ハードウェア、ソフトウェア、およびファームウェアの詳細が含まれています。BMO は、クラスター内のベアメタルホストを継続的に検査して、各 BareMetalHost リソースが対応するホストのコンポーネントを正確に詳述していることを確認します。

BMO は、HostFirmwareSettings リソース、FirmwareSchema リソース、および HostFirmwareComponents リソースを使用して、ファームウェア仕様の詳細を指定し、ベアメタルホストのファームウェアをアップグレードまたはダウングレードします。

BMO は、Ironic API サービスを使用してクラスター内のベアメタルホストと接続します。Ironic サービスは、ホスト上のベースボード管理コントローラー (BMC) を使用して、マシンと接続します。

BMO の HostUpdatePolicy を使用すると、ホストのプロビジョニング後に、ベアメタルホストのファームウェア設定、BMC 設定、または BIOS 設定へのライブ更新を有効または無効にできます。デフォルトでは、BMO はライブ更新を無効にします。

4.7.1. Bare Metal Operator のアーキテクチャー

Bare Metal Operator (BMO) は、次のリソースを使用して、クラスター内のベアメタルホストをプロビジョニング、管理、検査します。次の図は、これらのリソースのアーキテクチャーを示しています。

BareMetalHost

BareMetalHost リソースは、物理ホストとそのプロパティーを定義します。ベアメタルホストをクラスターにプロビジョニングするときは、そのホストの BareMetalHost リソースを定義する必要があります。ホストの継続的な管理のために、BareMetalHost リソースの情報を確認したり、この情報を更新したりできます。

BareMetalHost リソースには、次のようなプロビジョニング情報が含まれます。

  • オペレーティングシステムのブートイメージやカスタム RAM ディスクなどのデプロイメント仕様
  • プロビジョニング状態
  • ベースボード管理コントローラー (BMC) アドレス
  • 目的の電源状態

BareMetalHost リソースには、次のようなハードウェア情報が含まれます。

  • CPU 数
  • NIC の MAC アドレス
  • ホストのストレージデバイスのサイズ
  • 現在の電源状態

HostFirmwareSettings

HostFirmwareSettings リソースを使用して、ホストのファームウェア設定を取得および管理できます。ホストが Available 状態に移行すると、Ironic サービスはホストのファームウェア設定を読み取り、HostFirmwareSettings リソースを作成します。BareMetalHost リソースと HostFirmwareSettings リソースの間には 1 対 1 のマッピングがあります。

HostFirmwareSettings リソースを使用して、ホストのファームウェア仕様を調べたり、ホストのファームウェア仕様を更新したりできます。

注記

HostFirmwareSettings リソースの spec フィールドを編集するときは、ベンダーファームウェアに固有のスキーマに従う必要があります。このスキーマは、読み取り専用の FirmwareSchema リソースで定義されます。

FirmwareSchema

ファームウェア設定は、ハードウェアベンダーやホストモデルによって異なります。FirmwareSchema リソースは、各ホストモデル上の各ファームウェア設定のタイプおよび制限が含まれる読み取り専用リソースです。データは、Ironic サービスを使用して BMC から直接取得されます。FirmwareSchema リソースを使用すると、HostFirmwareSettings リソースの spec フィールドに指定できる有効な値を特定できます。

スキーマが同じであれば、FirmwareSchema リソースは多くの BareMetalHost リソースに適用できます。

HostFirmwareComponents

Metal3 は、BIOS およびベースボード管理コントローラー (BMC) ファームウェアのバージョンを記述する HostFirmwareComponents リソースを提供します。HostFirmwareComponents リソースの spec フィールドを編集することで、ホストのファームウェアを特定のバージョンにアップグレードまたはダウングレードできます。これは、特定のファームウェアバージョンに対してテストされた検証済みパターンを使用してデプロイする場合に便利です。

HostUpdatePolicy

HostUpdatePolicy リソースを使用すると、ベアメタルホストのファームウェア設定、BMC 設定、または BIOS 設定のライブ更新を有効または無効にできます。デフォルトでは、各ベアメタルホストの HostUpdatePolicy リソースにより、ホストへの更新がプロビジョニング中だけに制限されます。ホストをプロビジョニングした後、ファームウェア設定、BMC 設定、または BIOS 設定を更新する場合は、ホストの HostUpdatePolicy リソースを変更する必要があります。

4.7.2. BareMetalHost リソースについて

Metal3 で、物理ホストとそのプロパティーを定義する BareMetalHost リソースの概念が導入されました。BareMetalHost リソースには、2 つのセクションが含まれます。

  1. BareMetalHost spec
  2. BareMetalHost status
4.7.2.1. BareMetalHost spec

BareMetalHost リソースの spec セクションは、ホストの必要な状態を定義します。

Expand
表4.1 BareMetalHost spec
パラメーター説明

automatedCleaningMode

プロビジョニングおよびプロビジョニング解除時の自動クリーニングを有効または無効にするインターフェイス。disabled に設定すると、自動クリーニングはスキップされます。metadata に設定すると、自動消去が有効になります。デフォルト設定は metadata です。

bmc:
  address:
  credentialsName:
  disableCertificateVerification:
Copy to Clipboard Toggle word wrap

bmc 設定には、ホスト上のベースボード管理コントローラー (BMC) の接続情報が含まれます。フィールドの詳細は以下のとおりです。

  • address: ホストの BMC コントローラーとの通信用の URL。
  • credentialsName: BMC のユーザー名およびパスワードが含まれるシークレットへの参照。
  • disableCertificateVerification: true に設定されている場合に証明書の検証を省略するブール値。

bootMACAddress

ホストのプロビジョニングに使用する NIC の MAC アドレス。

bootMode

ホストのブートモード。デフォルトは UEFI ですが、BIOS ブートの legacy または UEFISecureBoot に設定することもできます。

consumerRef

ホストを使用している別のリソースへの参照。別のリソースが現在ホストを使用していない場合は、空になることがあります。たとえば、machine-api がホストを使用している場合に、Machine リソースがホストを使用する場合があります。

description

ホストの特定に役立つ、人間が提供した文字列。

externallyProvisioned

ホストのプロビジョニングとプロビジョニング解除が外部で管理されるかどうかを示すブール値。設定される場合:

  • 電源ステータスは、オンラインフィールドを使用して引き続き管理できます。
  • ハードウェアインベントリーは監視されますが、プロビジョニング操作やプロビジョニング解除操作はホストで実行されません。

firmware

ベアメタルホストの BIOS 設定に関する情報が含まれます。現在、firmware は、iRMC、iDRAC、iLO4、および iLO5 BMC でのみサポートされます。サブフィールドは以下のとおりです。

  • simultaneousMultithreadingEnabled: 単一の物理プロセッサーコアが複数の論理プロセッサーとして表示されるのを許可します。有効な設定は true または false です。
  • sriovEnabled: SR-IOV のサポートにより、ハイパーバイザーが PCI-express デバイスの仮想インスタンスを作成できるようになり、パフォーマンスが向上する可能性があります。有効な設定は true または false です。
  • virtualizationEnabled: プラットフォームハードウェアの仮想化をサポートします。有効な設定は true または false です。
image:
  url:
  checksum:
  checksumType:
  format:
Copy to Clipboard Toggle word wrap

image 設定には、ホストにデプロイされるイメージの詳細が保持されます。Ironic にはイメージフィールドが必要です。ただし、externallyProvisioned 設定が true に設定されていて、外部管理に電源制御が不要な場合、フィールドは空のままでもかまいません。この設定では次のフィールドがサポートされています。

  • url: ホストにデプロイするイメージの URL。
  • checksum: 実際のチェックサム、または image.url のイメージのチェックサムが含まれるファイルへの URL。
  • checksumType: チェックサムアルゴリズムを指定できます。現時点で image.checksumTypemd5sha256、および sha512 のみをサポートしています。デフォルトのチェックサムタイプは md5 です。
  • format: これはイメージのディスク形式です。rawqcow2vdivmdklive-iso のいずれか、未設定のままにすることができます。これを raw に設定すると、そのイメージの Ironic エージェントでの raw イメージのストリーミングが有効になります。これを live-iso に設定すると、iso イメージをディスクにデプロイせずにライブブートが可能になり、checksum フィールドは無視されます。

networkData

ネットワーク設定データおよびその namespace が含まれるシークレットへの参照。したがって、ホストが起動してネットワークをセットアップする前にホストに接続することができます。

online

ホストの電源を入れる (true) かオフにする (false) かを示すブール値。この値を変更すると、物理ホストの電源状態に変更が加えられます。

raid:
  hardwareRAIDVolumes:
  softwareRAIDVolumes:
Copy to Clipboard Toggle word wrap

(オプション) ベアメタルホストの RAID 設定に関する情報が含まれます。指定しない場合は、現在の設定を保持します。

注記

OpenShift Container Platform 4.19 は、BMC のインストールドライブ上で以下のハードウェア RAID をサポートします。

  • RAID レベル 0、1、5、6、および 10 をサポートする Fujitsu iRMC
  • ファームウェアバージョン 6.10.30.20 以降および RAID レベル 0、1、および 5 に対応した Redfish API を使用する Dell iDRAC

OpenShift Container Platform 4.19 は、インストールドライブ上のソフトウェア RAID をサポートしていません。

次の構成設定を参照してください。

  • hardwareRAIDVolumes: ハードウェア RAID の論理ドライブの一覧が含まれ、ハードウェア RAID で必要なボリューム設定を定義します。rootDeviceHints を指定しない場合、最初のボリュームがルートボリュームになります。サブフィールドは以下のとおりです。

    • level: 論理ドライブの RAID レベル。012561+05+06+0 のレベルがサポートされます。
    • name: 文字列としてのボリュームの名前。サーバー内で一意である必要があります。指定されていない場合、ボリューム名は自動生成されます。
    • numberOfPhysicalDisks: 論理ドライブに使用する物理ドライブの数 (整数)。デフォルトは、特定の RAID レベルに必要なディスクドライブの最小数です。
    • physicalDisks: 物理ディスクドライブの名前の一覧です (文字列)。これはオプションのフィールドです。指定した場合、controller フィールドも指定する必要があります。
    • controller: (オプション) ハードウェア RAID ボリュームで使用する RAID コントローラーの名前 (文字列)。
    • rotational: true に設定すると、回転ディスクを用いるドライブのみが選択されます。false に設定すると、ソリッドステートドライブと NVMe ドライブのみが選択されます。設定されていない場合は、任意のドライブの種類を選択します (デフォルト動作)。
    • sizeGibibytes: 作成する論理ドライブのサイズ (GiB 単位の整数)。指定がない場合や 0 に設定すると、論理ドライブ用に物理ドライブの最大容量が使用されます。
  • softwareRAIDVolumes: OpenShift Container Platform 4.19 は、インストールドライブ上のソフトウェア RAID をサポートしていません。この設定には、ソフトウェア RAID の論理ディスクのリストが含まれています。rootDeviceHints を指定しない場合、最初のボリュームがルートボリュームになります。HardwareRAIDVolumes を設定すると、この項目は無効になります。ソフトウェア RAID は常に削除されます。作成されるソフトウェア RAID デバイスの数は、1 または 2 である必要があります。ソフトウェア RAID デバイスが 1 つしかない場合は、RAID-1 にする必要があります。2 つの RAID デバイスがある場合は、1 番目のデバイスを RAID-1 にする必要があります。また、2 番目のデバイスの RAID レベルは 01、または 1+0 に設定できます。最初の RAID デバイスはデプロイメントデバイスになりますが、ソフトウェア RAID ボリュームにすることはできません。RAID-1 を強制すると、デバイス障害が発生した場合にノードが起動しなくなるリスクが軽減されます。softwareRAIDVolume フィールドは、ソフトウェア RAID のボリュームの必要な設定を定義します。サブフィールドは以下のとおりです。

    • level: 論理ドライブの RAID レベル。011+0 のレベルがサポートされます。
    • physicalDisks: デバイスのヒントの一覧。アイテム数は、2 以上である必要があります。
    • sizeGibibytes: 作成される論理ディスクドライブのサイズ (GiB 単位の整数)。指定がない場合や 0 に設定すると、論理ドライブ用に物理ドライブの最大容量が使用されます。

hardwareRAIDVolume を空のスライスとして設定すると、ハードウェア RAID 設定を消去できます。以下に例を示します。

spec:
   raid:
     hardwareRAIDVolume: []
Copy to Clipboard Toggle word wrap

ドライバーが RAID に対応していないことを示すエラーメッセージが表示された場合は、raidhardwareRAIDVolumes または softwareRAIDVolumes を nil に設定します。ホストに RAID コントローラーがあることを確認する必要がある場合があります。

rootDeviceHints:
  deviceName:
  hctl:
  model:
  vendor:
  serialNumber:
  minSizeGigabytes:
  wwn:
  wwnWithExtension:
  wwnVendorExtension:
  rotational:
Copy to Clipboard Toggle word wrap

rootDeviceHints パラメーターを使用すると、特定のデバイスへの RHCOS イメージのプロビジョニングが可能になります。これは、検出順にデバイスを検査し、検出された値をヒントの値と比較します。ヒントの値と一致する最初に検出されたデバイスが使用されます。設定では複数のヒントを組み合わせることができますが、デバイスが選択されるには、デバイスがすべてのヒントと一致する必要があります。フィールドの詳細は以下のとおりです。

  • deviceName: /dev/vda などの Linux デバイス名が含まれる文字列。ヒントは、実際の値と完全に一致する必要があります。
  • hctl: 0:0:0:0 などの SCSI バスアドレスが含まれる文字列。ヒントは、実際の値と完全に一致する必要があります。
  • model: ベンダー固有のデバイス識別子が含まれる文字列。ヒントは、実際の値のサブ文字列になります。
  • vendor: デバイスのベンダーまたは製造元の名前が含まれる文字列。ヒントは、実際の値のサブ文字列になります。
  • serialNumber: デバイスのシリアル番号が含まれる文字列。ヒントは、実際の値と完全に一致する必要があります。
  • minSizeGigabytes: デバイスの最小サイズを表す整数 (ギガバイト単位)。
  • wwn: 一意のストレージ ID が含まれる文字列。ヒントは、実際の値と完全に一致する必要があります。
  • wwnWithExtension: ベンダー拡張が追加された一意のストレージ ID が含まれる文字列。ヒントは、実際の値と完全に一致する必要があります。
  • wwnVendorExtension: 一意のベンダーストレージ ID が含まれる文字列。ヒントは、実際の値と完全に一致する必要があります。
  • rotational: デバイスが回転ディスクを用いる (true) か、そうでないか (false) を示すブール値。
4.7.2.2. BareMetalHost status

BareMetalHost status は、ホストの現在の状態を表し、テスト済みの認証情報、現在のハードウェアの詳細などの情報が含まれます。

Expand
表4.2 BareMetalHost status
パラメーター説明

goodCredentials

シークレットおよびその namespace の参照で、システムが動作中と検証できるベースボード管理コントローラー (BMC) 認証情報のセットが保持されています。

errorMessage

プロビジョニングバックエンドが報告する最後のエラーの詳細 (ある場合)。

errorType

ホストがエラー状態になった原因となった問題のクラスを示します。エラータイプは以下のとおりです。

  • provisioned registration error: コントローラーがプロビジョニング済みのホストを再登録できない場合に発生します。
  • registration error: コントローラーがホストのベースボード管理コントローラーに接続できない場合に発生します。
  • inspection error: ホストからハードウェア詳細の取得を試みて失敗した場合に発生します。
  • preparation error: クリーニングに失敗した場合に発生します。
  • provisioning error: コントローラーがホストのプロビジョニングまたはプロビジョニング解除に失敗した場合に発生します。
  • power management error: コントローラーがホストの電源状態を変更できない場合に発生します。
  • detach error: コントローラーがホストをプロビジョナーからデタッチできない場合に発生します。
hardware:
  cpu
    arch:
    model:
    clockMegahertz:
    flags:
    count:
Copy to Clipboard Toggle word wrap

hardware.cpu フィールドは、システム内の CPU の詳細を示します。フィールドには以下が含まれます。

  • arch: CPU のアーキテクチャー。
  • model: CPU モデル (文字列)。
  • clockMegahertz: CPU の速度 (MHz 単位)。
  • flags: CPU フラグのリスト。たとえば、'mmx','sse','sse2','vmx' などです。
  • count: システムで利用可能な CPU の数。
hardware:
  firmware:
Copy to Clipboard Toggle word wrap

BIOS ファームウェア情報が含まれます。たとえば、ハードウェアベンダーおよびバージョンなどです。

hardware:
  nics:
  - ip:
    name:
    mac:
    speedGbps:
    vlans:
    vlanId:
    pxe:
Copy to Clipboard Toggle word wrap

hardware.nics フィールドには、ホストのネットワークインターフェイスの一覧が含まれます。フィールドには以下が含まれます。

  • ip: NIC の IP アドレス (検出エージェントの実行時に IP アドレスが割り当てられている場合)。
  • name: ネットワークデバイスを識別する文字列。例:nic-1
  • mac: NIC の MAC アドレス。
  • speedGbps: デバイスの速度 (Gbps 単位)。
  • vlans: この NIC で利用可能な VLAN をすべて保持するリスト。
  • vlanId: タグ付けされていない VLAN ID。
  • pxe: NIC が PXE を使用して起動できるかどうか。
hardware:
  ramMebibytes:
Copy to Clipboard Toggle word wrap

ホストのメモリー容量 (MiB 単位)。

hardware:
  storage:
  - name:
    rotational:
    sizeBytes:
    serialNumber:
Copy to Clipboard Toggle word wrap

hardware.storage フィールドには、ホストで利用可能なストレージデバイスの一覧が含まれます。フィールドには以下が含まれます。

  • name: ストレージデバイスを識別する文字列。たとえば、disk 1 (boot) などです。
  • rotational: ディスクが回転ディスクを用いるかどうかを示します。true または false のいずれかを返します。
  • sizeBytes: ストレージデバイスのサイズ。
  • serialNumber: デバイスのシリアル番号。
hardware:
  systemVendor:
    manufacturer:
    productName:
    serialNumber:
Copy to Clipboard Toggle word wrap

ホストの manufacturerproductName、および serialNumber に関する情報が含まれます。

lastUpdated

ホストのステータスの最終更新時のタイムスタンプ。

operationalStatus

サーバーのステータス。ステータスは以下のいずれかになります。

  • OK: ホストの詳細がすべて認識され、正しく設定され、機能し、管理可能であることを示します。
  • discovered: ホストの詳細の一部が正常に動作していないか、欠落しているかのいずれかを意味します。たとえば、BMC アドレスは認識されているが、ログイン認証情報が認識されていない。
  • error: システムで回復不能なエラーが検出されたことを示します。詳細は、status セクションの errorMessage フィールドを参照してください。
  • delayed: 複数ホストの同時プロビジョニングを制限するために、プロビジョニングが遅延していることを示します。
  • detached: ホストが unmanaged として識別されていることを示します。

poweredOn

ホストの電源が入っているかどうかを示すブール値。

provisioning:
  state:
  id:
  image:
  raid:
  firmware:
  rootDeviceHints:
Copy to Clipboard Toggle word wrap

provisioning フィールドには、ホストへのイメージのデプロイに関連する値が含まれます。サブフィールドには以下が含まれます。

  • state: 進行中のプロビジョニング操作の現在の状態。状態には、以下が含まれます。

    • <empty string>: 現在、プロビジョニングは行われていません。
    • unmanaged: ホストを登録するのに十分な情報が利用できません。
    • registering: エージェントはホストの BMC の詳細を確認しています。
    • match profile: エージェントは、ホストで検出されたハードウェア詳細と既知のプロファイルを比較しています。
    • available: ホストはプロビジョニングに使用できます。この状態は、以前は ready として知られていました。
    • preparing: 既存の設定は削除され、新しい設定がホストに設定されます。
    • provisioning: プロビジョナーはイメージをホストのストレージに書き込んでいます。
    • provisioned: プロビジョナーはイメージをホストのストレージに書き込みました。
    • externally provisioned: Metal3 は、ホスト上のイメージを管理しません。
    • deprovisioning: プロビジョナーは、ホストのストレージからイメージを消去しています。
    • inspecting: エージェントはホストのハードウェア情報を収集しています。
    • deleting: エージェントはクラスターから削除しています。
  • id: 基礎となるプロビジョニングツールのサービスの一意識別子。
  • image: 直近ホストにプロビジョニングされたイメージ。
  • raid: 最近設定したハードウェアまたはソフトウェア RAID ボリュームの一覧。
  • firmware: ベアメタルサーバーの BIOS 設定。
  • rootDeviceHints: 直近のプロビジョニング操作に使用されたルートデバイス選択の手順。

triedCredentials

プロビジョニングバックエンドに送信された BMC 認証情報の最後のセットを保持するシークレットおよびその namespace への参照。

4.7.3. BareMetalHost リソースの取得

BareMetalHost リソースには、物理ホストのプロパティーが含まれます。物理ホストのプロパティーをチェックするには、その BareMetalHost リソースを取得する必要があります。

手順

  1. BareMetalHost リソースの一覧を取得します。

    $ oc get bmh -n openshift-machine-api -o yaml
    Copy to Clipboard Toggle word wrap
    注記

    oc get コマンドで、bmh の長い形式として、baremetalhost を使用できます。

  2. ホストのリストを取得します。

    $ oc get bmh -n openshift-machine-api
    Copy to Clipboard Toggle word wrap
  3. 特定のホストの BareMetalHost リソースを取得します。

    $ oc get bmh <host_name> -n openshift-machine-api -o yaml
    Copy to Clipboard Toggle word wrap

    ここで、<host_name> はホストの名前です。

    出力例

    apiVersion: metal3.io/v1alpha1
    kind: BareMetalHost
    metadata:
      creationTimestamp: "2022-06-16T10:48:33Z"
      finalizers:
      - baremetalhost.metal3.io
      generation: 2
      name: openshift-worker-0
      namespace: openshift-machine-api
      resourceVersion: "30099"
      uid: 1513ae9b-e092-409d-be1b-ad08edeb1271
    spec:
      automatedCleaningMode: metadata
      bmc:
        address: redfish://10.46.61.19:443/redfish/v1/Systems/1
        credentialsName: openshift-worker-0-bmc-secret
        disableCertificateVerification: true
      bootMACAddress: 48:df:37:c7:f7:b0
      bootMode: UEFI
      consumerRef:
        apiVersion: machine.openshift.io/v1beta1
        kind: Machine
        name: ocp-edge-958fk-worker-0-nrfcg
        namespace: openshift-machine-api
      customDeploy:
        method: install_coreos
      online: true
      rootDeviceHints:
        deviceName: /dev/disk/by-id/scsi-<serial_number>
      userData:
        name: worker-user-data-managed
        namespace: openshift-machine-api
    status:
      errorCount: 0
      errorMessage: ""
      goodCredentials:
        credentials:
          name: openshift-worker-0-bmc-secret
          namespace: openshift-machine-api
        credentialsVersion: "16120"
      hardware:
        cpu:
          arch: x86_64
          clockMegahertz: 2300
          count: 64
          flags:
          - 3dnowprefetch
          - abm
          - acpi
          - adx
          - aes
          model: Intel(R) Xeon(R) Gold 5218 CPU @ 2.30GHz
        firmware:
          bios:
            date: 10/26/2020
            vendor: HPE
            version: U30
        hostname: openshift-worker-0
        nics:
        - mac: 48:df:37:c7:f7:b3
          model: 0x8086 0x1572
          name: ens1f3
        ramMebibytes: 262144
        storage:
        - hctl: "0:0:0:0"
          model: VK000960GWTTB
          name: /dev/disk/by-id/scsi-<serial_number>
          sizeBytes: 960197124096
          type: SSD
          vendor: ATA
        systemVendor:
          manufacturer: HPE
          productName: ProLiant DL380 Gen10 (868703-B21)
          serialNumber: CZ200606M3
      lastUpdated: "2022-06-16T11:41:42Z"
      operationalStatus: OK
      poweredOn: true
      provisioning:
        ID: 217baa14-cfcf-4196-b764-744e184a3413
        bootMode: UEFI
        customDeploy:
          method: install_coreos
        image:
          url: ""
        raid:
          hardwareRAIDVolumes: null
          softwareRAIDVolumes: []
        rootDeviceHints:
          deviceName: /dev/disk/by-id/scsi-<serial_number>
        state: provisioned
      triedCredentials:
        credentials:
          name: openshift-worker-0-bmc-secret
          namespace: openshift-machine-api
        credentialsVersion: "16120"
    Copy to Clipboard Toggle word wrap

4.7.4. BareMetalHost リソースの編集

OpenShift Container Platform クラスターをベアメタルにデプロイした後、ノードの BareMetalHost リソースを編集する必要がある場合があります。たとえば、次のような例が考えられます。

  • Assisted Installer を使用してクラスターをデプロイし、ベースボード管理コントローラー (BMC) のホスト名または IP アドレスを追加または編集する必要がある。
  • ノードをプロビジョニング解除せずに、あるクラスターから別のクラスターに移動する必要がある。

前提条件

  • ノードが ProvisionedExternallyProvisioned、または Available 状態であることを確認する。

手順

  1. ノードのリストを取得します。

    $ oc get bmh -n openshift-machine-api
    Copy to Clipboard Toggle word wrap
  2. ノードの BareMetalHost リソースを編集する前に、次のコマンドを実行してノードを Ironic からデタッチします。

    $ oc annotate baremetalhost <node_name> -n openshift-machine-api 'baremetalhost.metal3.io/detached=true' 
    1
    Copy to Clipboard Toggle word wrap
    1
    <node_name> はノード名に置き換えてください。
  3. 次のコマンドを実行して、BareMetalHost リソースを編集します。

    $ oc edit bmh <node_name> -n openshift-machine-api
    Copy to Clipboard Toggle word wrap
  4. 次のコマンドを実行して、ノードを Ironic に再アタッチします。

    $ oc annotate baremetalhost <node_name> -n openshift-machine-api 'baremetalhost.metal3.io/detached'-
    Copy to Clipboard Toggle word wrap

4.7.5. BareMetalHost リソースを削除する際の遅延のトラブルシューティング

Bare Metal Operator (BMO) が BareMetalHost リソースを削除すると、Ironic はクリーニングと呼ばれるプロセスでベアメタルホストのプロビジョニングを解除します。クリーニングが失敗すると、Ironic はクリーニングプロセスを 3 回再試行します。これが遅延の原因となります。クリーニングプロセスが成功せず、ベアメタルホストのプロビジョニングステータスが deleting 状態のまま無期限に残る原因となります。このような場合は、次の手順に従ってクリーニングプロセスを無効にしてください。

警告

BareMetalHost リソースからファイナライザーを削除しないでください。

手順

  1. クリーニングプロセスが失敗して再開された場合は、完了するまで待機します。これには約 5 分かかる場合があります。
  2. プロビジョニングステータスが deleting 状態のままの場合は、BareMetalHost リソースを変更し、automatedCleaningMode フィールドを disabled に設定して、クリーニングプロセスを無効にします。

詳細は、「BareMetalHost リソースの編集」を参照してください。

4.7.6. ブータブルでない ISO をベアメタルノードにアタッチする

DataImage リソースを使用すると、ブータブルでない汎用の ISO 仮想メディアイメージを、プロビジョニングされたノードにアタッチできます。リソースを適用すると、起動後にオペレーティングシステムから ISO イメージにアクセスできるようになります。これは、オペレーティングシステムをプロビジョニングした後、ノードが初めて起動する前にノードを設定する場合に便利です。

前提条件

  • この機能をサポートするために、ノードが Redfish またはそれから派生したドライバーを使用している。
  • ノードが Provisioned または ExternallyProvisioned 状態である。
  • name が、BareMetalHost リソースで定義されているノードの名前と同じである。
  • ISO イメージへの有効な url がある。

手順

  1. DataImage リソースを作成します。

    apiVersion: metal3.io/v1alpha1
    kind: DataImage
    metadata:
      name: <node_name> 
    1
    
    spec:
      url: "http://dataimage.example.com/non-bootable.iso" 
    2
    Copy to Clipboard Toggle word wrap
    1
    BareMetalHost リソースで定義されているノードの名前を指定します。
    2
    ISO イメージへの URL とパスを指定します。
  2. 次のコマンドを実行して、DataImage リソースをファイルに保存します。

    $ vim <node_name>-dataimage.yaml
    Copy to Clipboard Toggle word wrap
  3. 次のコマンドを実行して、DataImage リソースを適用します。

    $ oc apply -f <node_name>-dataimage.yaml -n <node_namespace> 
    1
    Copy to Clipboard Toggle word wrap
    1
    namespace が BareMetalHost リソースの namespace と一致するように <node_namespace> を置き換えます。たとえば、openshift-machine-api です。
  4. ノードを再起動します。

    注記

    ノードを再起動するには、reboot.metal3.io アノテーションを割り当てるか、BareMetalHost リソースで online ステータスをリセットします。ベアメタルノードを強制的に再起動すると、ノードの状態がしばらくの間 NotReady に変わります。具体的には、5 分以上変わります。

  5. 次のコマンドを実行して、DataImage リソースを表示します。

    $ oc get dataimage <node_name> -n openshift-machine-api -o yaml
    Copy to Clipboard Toggle word wrap

    出力例

    apiVersion: v1
    items:
    - apiVersion: metal3.io/v1alpha1
      kind: DataImage
      metadata:
        annotations:
          kubectl.kubernetes.io/last-applied-configuration: |
            {"apiVersion":"metal3.io/v1alpha1","kind":"DataImage","metadata":{"annotations":{},"name":"bmh-node-1","namespace":"openshift-machine-api"},"spec":{"url":"http://dataimage.example.com/non-bootable.iso"}}
        creationTimestamp: "2024-06-10T12:00:00Z"
        finalizers:
        - dataimage.metal3.io
        generation: 1
        name: bmh-node-1
        namespace: openshift-machine-api
        ownerReferences:
        - apiVersion: metal3.io/v1alpha1
          blockOwnerDeletion: true
          controller: true
          kind: BareMetalHost
          name: bmh-node-1
          uid: 046cdf8e-0e97-485a-8866-e62d20e0f0b3
        resourceVersion: "21695581"
        uid: c5718f50-44b6-4a22-a6b7-71197e4b7b69
      spec:
        url: http://dataimage.example.com/non-bootable.iso
      status:
        attachedImage:
          url: http://dataimage.example.com/non-bootable.iso
        error:
          count: 0
          message: ""
        lastReconciled: "2024-06-10T12:05:00Z"
    Copy to Clipboard Toggle word wrap

4.7.7. 共有 NIC の NC-SI と DisablePowerOff の設定

Network Controller Sideband Interface (NC-SI) により、ベースボード管理コントローラー (BMC) は、Redfish、IPMI、ベンダー固有のインターフェイスなどのプロトコルを使用して、管理トラフィック用のシステムネットワークインターフェイスカード (NIC) をホストと共有できるようになります。DisablePowerOff 機能は、ハードな電源オフを防ぎ、ソフトリブートを行うことで BMC との接続を維持します。

前提条件

  • NC-SI 対応のハードウェアと NIC。
  • IP アドレスとネットワーク接続が設定された BMC。
  • BMC への管理アクセス。
  • cluster-admin 特権で OpenShift クラスターにアクセスする。

手順

  1. 共有 NIC に対して NC-SI を有効にするように BMC を設定します。
  2. 次のいずれかのコマンドを実行し、Redfish または IPMI を使用して BMC の接続を確認します。

    $ curl -k https://<bmc_ip>/redfish/v1/Systems/1
    Copy to Clipboard Toggle word wrap
    $ ipmitool -I lanplus -H <bmc_ip> -U <user> -P <pass> power status
    Copy to Clipboard Toggle word wrap
  3. openshift-machine-api namespace の BareMetalHost リソースを編集して、DisablePowerOff 機能を有効にします。

    apiVersion: metal3.io/v1alpha1
    kind: BareMetalHost
    metadata:
      name: example-host
      namespace: openshift-machine-api
    spec:
      online: true
      bmc:
        address: <protocol>://<bmc_ip>/<bmc_address_format>
        credentialsName: bmc-secret
      disablePowerOff: true
    Copy to Clipboard Toggle word wrap

    サポートされているプロトコルと BMC アドレス形式の詳細は、「BMC アドレス指定」セクションを参照してください。

  4. 次のコマンドを実行して変更を適用します。

    $ oc apply -f <filename>.yaml
    Copy to Clipboard Toggle word wrap

検証

  • 次のコマンドを実行して、BareMetalHost のステータスを確認します。

    $ oc get baremetalhost example-host -n openshift-machine-api -o yaml
    Copy to Clipboard Toggle word wrap

    spec セクションに disablePowerOff: true があることを確認します。

  • ノード Pod を再起動してリブートをテストし、BMC 接続がアクティブなままであることを確認します。
  • BareMetalHost.spec.online=false の設定を試みます。電源オフが無効であることを示すエラーが表示されて失敗するはずです。

4.7.8. HostFirmwareSettings リソースについて

HostFirmwareSettings リソースを使用して、ホストの BIOS 設定を取得および管理できます。ホストが Available 状態に移行すると、Ironic はホストの BIOS 設定を読み取り、HostFirmwareSettings リソースを作成します。リソースには、ベースボード管理コントローラー (BMC) から返される完全な BIOS 設定が含まれます。BareMetalHost リソースの firmware フィールドは、ベンダーに依存しない 3 つのフィールドを返しますが、HostFirmwareSettings リソースは、通常ホストごとにベンダー固有のフィールドの多数の BIOS 設定で構成されます。

HostFirmwareSettings リソースには、以下の 2 つのセクションが含まれます。

  1. HostFirmwareSettings spec
  2. HostFirmwareSettings status
注記

ファームウェア設定の読み取りと変更は、ベンダーに依存しない Redfish プロトコル、Fujitsu iRMC、または HP iLO ベースのドライバーでのみサポートされます。

4.7.8.1. HostFirmwareSettings spec

HostFirmwareSettings リソースの spec セクションは、ホストの BIOS の必要な状態を定義し、デフォルトでは空です。Ironic は spec.settings セクションの設定を使用して、ホストが Preparing 状態の場合、ベースボード管理コントローラー (BMC) を更新します。FirmwareSchema リソースを使用して、無効な名前と値のペアをホストに送信しないようにします。詳細は、「FirmwareSchema リソースについて」を参照してください。

spec:
  settings:
    ProcTurboMode: Disabled
1
Copy to Clipboard Toggle word wrap

1
前述の例では、spec.settings セクションには、ProcTurboMode BIOS 設定を Disabled に設定する名前/値のペアが含まれます。
注記

status セクションに一覧表示される整数パラメーターは文字列として表示されます。たとえば、"1" と表示されます。spec.settings セクションで整数を設定する場合、値は引用符なしの整数として設定する必要があります。たとえば、1 と設定します。

4.7.8.2. HostFirmwareSettings status

status は、ホストの BIOS の現在の状態を表します。

Expand
表4.3 HostFirmwareSettings
パラメーター説明
status:
  conditions:
  - lastTransitionTime:
    message:
    observedGeneration:
    reason:
    status:
    type:
Copy to Clipboard Toggle word wrap

conditions フィールドには、状態変更の一覧が含まれます。サブフィールドには以下が含まれます。

  • lastTransitionTime: 状態が最後に変更した時刻。
  • message: 状態変更の説明。
  • observedGeneration: status の現在の生成。metadata.generation とこのフィールドが同じでない場合には、status.conditions が古い可能性があります。
  • reason: 状態変更の理由。
  • status: 状態の変更のステータス。ステータスは TrueFalse、または Unknown です。
  • type: 状態変更のタイプ。タイプは Valid および ChangeDetected です。
status:
  schema:
    name:
    namespace:
    lastUpdated:
Copy to Clipboard Toggle word wrap

ファームウェア設定の FirmwareSchema。フィールドには以下が含まれます。

  • name: スキーマを参照する名前または一意の識別子。
  • namespace: スキーマが保存される namespace。
  • lastUpdated: リソースが最後に更新された時刻。
status:
  settings:
Copy to Clipboard Toggle word wrap

settings フィールドには、ホストの現在の BIOS 設定の名前と値のペアのリストが含まれます。

4.7.9. HostFirmwareSettings リソースの取得

HostFirmwareSettings リソースには、物理ホストのベンダー固有の BIOS プロパティーが含まれます。物理ホストの BIOS プロパティーをチェックするには、その HostFirmwareSettings リソースを取得する必要があります。

手順

  1. 次のコマンドを実行して、HostFirmwareSettings リソースの詳細なリストを取得します。

    $ oc get hfs -n openshift-machine-api -o yaml
    Copy to Clipboard Toggle word wrap
    注記

    oc get コマンドで、hfs の長い形式として hostfirmwaresettings を使用できます。

  2. 次のコマンドを実行して、HostFirmwareSettings リソースのリストを取得します。

    $ oc get hfs -n openshift-machine-api
    Copy to Clipboard Toggle word wrap
  3. 次のコマンドを実行して、特定のホストの HostFirmwareSettings リソースを取得します。

    $ oc get hfs <host_name> -n openshift-machine-api -o yaml
    Copy to Clipboard Toggle word wrap

    ここで、<host_name> はホストの名前です。

4.7.10. プロビジョニング済みホストの HostFirmwareSettings リソースの編集

プロビジョニング済みホストの HostFirmwareSettings 仕様を変更するには、次の操作を実行します。

  • ホストの HostFirmwareSettings リソースを編集します。
  • マシンセットからホストを削除します。
  • マシンセットをスケールダウンします。
  • マシンセットをスケールアップして変更を反映させます。
重要

ホストが provisioned 状態にある場合にのみ、ホストを編集できます (読み取り専用の値を除く)。externally provisioned 状態のホストは編集できません。

手順

  1. 次のコマンドを実行して、HostFirmwareSettings リソースのリストを取得します。

    $ oc get hfs -n openshift-machine-api
    Copy to Clipboard Toggle word wrap
  2. 次のコマンドを実行して、ホストの HostFirmwareSettings リソースを編集します。

    $ oc edit hfs <hostname> -n openshift-machine-api
    Copy to Clipboard Toggle word wrap

    <hostname> はプロビジョニングされたホストの名前です。HostFirmwareSettings リソースは、ターミナルのデフォルトエディターで開きます。

  3. 次のコマンドを実行して、spec.settings セクションに名前と値のペアを追加します。

    spec:
      settings:
        name: value 
    1
    Copy to Clipboard Toggle word wrap

    1
    FirmwareSchema リソースを使用して、ホストで利用可能な設定を特定します。読み取り専用の値は設定できません。
  4. 変更を保存し、エディターを終了します。
  5. 次のコマンドを実行して、ホストのマシン名を取得します。

     $ oc get bmh <hostname> -n openshift-machine name
    Copy to Clipboard Toggle word wrap

    <hostname> はホストの名前です。ターミナルの CONSUMER フィールドの下にマシン名が表示されます。

  6. 次のコマンドを実行して、マシンにアノテーションを付けてマシンセットから削除します。

    $ oc annotate machine <machine_name> machine.openshift.io/delete-machine=true -n openshift-machine-api
    Copy to Clipboard Toggle word wrap

    ここで、<machine_name> は削除するマシンの名前です。

  7. 次のコマンドを実行して、ノードのリストを取得し、ワーカーノードの数をカウントします。

    $ oc get nodes
    Copy to Clipboard Toggle word wrap
  8. 次のコマンドを実行してマシンセットを取得します。

    $ oc get machinesets -n openshift-machine-api
    Copy to Clipboard Toggle word wrap
  9. 次のコマンドを実行して、マシンセットをスケールします。

    $ oc scale machineset <machineset_name> -n openshift-machine-api --replicas=<n-1>
    Copy to Clipboard Toggle word wrap

    <machineset_name> はマシンセットの名前です。<n-1> は減少させたワーカーノードの数です。

  10. ホストが Available 状態になったら、次のコマンドを実行してマシンセットをスケールアップし、HostFirmwareSettings リソースの変更を反映します。

    $ oc scale machineset <machineset_name> -n openshift-machine-api --replicas=<n>
    Copy to Clipboard Toggle word wrap

    <machineset_name> はマシンセットの名前です。<n> はワーカーノードの数です。

4.7.11. HostFirmwareSettings リソースへのライブ更新の実行

ワークロードの実行を開始した後、HostFirmareSettings リソースに対してライブ更新を実行できます。ライブ更新では、ホストのプロビジョニング解除と再プロビジョニングはトリガーされません。

重要

ホストのライブ更新はテクノロジープレビュー機能です。テクノロジープレビュー機能は、Red Hat 製品のサービスレベルアグリーメント (SLA) の対象外であり、機能的に完全ではないことがあります。Red Hat は、実稼働環境でこれらを使用することを推奨していません。テクノロジープレビュー機能は、最新の製品機能をいち早く提供して、開発段階で機能のテストを行い、フィードバックを提供していただくことを目的としています。

Red Hat のテクノロジープレビュー機能のサポート範囲に関する詳細は、テクノロジープレビュー機能のサポート範囲 を参照してください。

前提条件

  • HostUpdatePolicy リソースの firmwareSettings パラメーターが onReboot に設定されている。

手順

  1. 次のコマンドを実行して、HostFirmwareSettings リソースを更新します。

    $ oc patch hostfirmwaresettings <hostname> --type merge -p \
    1
    
        '{"spec": {"settings": {"<name>": "<value>"}}}' 
    2
    Copy to Clipboard Toggle word wrap
    1
    <hostname> はホスト名に置き換えます。
    2
    <name> は設定の名前に置き換えます。<value> は設定の値に置き換えます。複数の名前と値のペアを設定できます。
    注記

    ハードウェアがサポートする設定と、更新できる設定および値を確認するには、FirmwareSchema リソースを取得します。読み取り専用の値を更新することはできません。また、FirmwareSchema リソースを更新することもできません。oc edit <hostname> hostfirmwaresettings -n openshift-machine-api コマンドを使用して HostFirmwareSettings リソースを更新することもできます。

  2. 次のコマンドを実行して、ノードをスケジューリング対象から外してドレインします。

    $ oc drain <node_name> --force 
    1
    Copy to Clipboard Toggle word wrap
    1
    <node_name> はノード名に置き換えてください。
  3. 次のコマンドを実行して、ホストの電源を 5 分間オフにします。

    $ oc patch bmh <hostname> --type merge -p '{"spec": {"online": false}}'
    Copy to Clipboard Toggle word wrap

    このステップにより、デーモンセットまたはコントローラーが、ホスト上で実行されている可能性のあるインフラストラクチャー Pod をオフラインとしてマークし、残りのホストが受信リクエストを処理するようになります。

  4. 5 分後、次のコマンドを実行してホストの電源をオンにします。

    $ oc patch bmh <hostname> --type merge -p '{"spec": {"online": true}}'
    Copy to Clipboard Toggle word wrap

    サービス操作が開始し、Bare Metal Operator (BMO) が BareMetalHostoperationalStatus パラメーターを servicing に設定します。BMO は、リソースを更新した後、operationalStatus パラメーターを OK に更新します。エラーが発生した場合、BMO は operationalStatus パラメーターを error に更新し、操作を再試行します。

  5. Ironic が更新を完了し、ホストが起動したら、次のコマンドを実行してノードをスケジューリング対象に戻します。

    $ oc uncordon <node_name>
    Copy to Clipboard Toggle word wrap

4.7.12. HostFirmware Settings リソースが有効であることの確認

ユーザーが spec.settings セクションを編集して HostFirmwareSetting (HFS) リソースに変更を加えると、Bare Metal Operator (BMO) は読み取り専用リソースである FimwareSchema リソースに対して変更を検証します。この設定が無効な場合、BMO は status.Condition 設定の Type の値を False に設定し、イベントを生成して HFS リソースに保存します。以下の手順を使用して、リソースが有効であることを確認します。

手順

  1. HostFirmwareSetting リソースの一覧を取得します。

    $ oc get hfs -n openshift-machine-api
    Copy to Clipboard Toggle word wrap
  2. 特定のホストの HostFirmwareSettings リソースが有効であることを確認します。

    $ oc describe hfs <host_name> -n openshift-machine-api
    Copy to Clipboard Toggle word wrap

    ここで、<host_name> はホストの名前です。

    出力例

    Events:
      Type    Reason            Age    From                                    Message
      ----    ------            ----   ----                                    -------
      Normal  ValidationFailed  2m49s  metal3-hostfirmwaresettings-controller  Invalid BIOS setting: Setting ProcTurboMode is invalid, unknown enumeration value - Foo
    Copy to Clipboard Toggle word wrap

    重要

    応答が ValidationFailed を返す場合、リソース設定にエラーがあり、FirmwareSchema リソースに準拠するよう値を更新する必要があります。

4.7.13. FirmwareSchema リソースについて

BIOS 設定は、ハードウェアベンダーやホストモデルによって異なります。FirmwareSchema リソースは、各ホストモデル上の各 BIOS 設定のタイプおよび制限が含まれる読み取り専用リソースです。データは BMC から Ironic に直接取得されます。FirmwareSchema を使用すると、HostFirmwareSettings リソースの spec フィールドに指定できる有効な値を特定できます。FirmwareSchema リソースには、その設定および制限から派生する一意の識別子があります。同じホストモデルは同じ FirmwareSchema 識別子を使用します。HostFirmwareSettings の複数のインスタンスが同じ FirmwareSchema を使用する可能性が高いです。

Expand
表4.4 FirmwareSchema 仕様
パラメーター説明
<BIOS_setting_name>
  attribute_type:
  allowable_values:
  lower_bound:
  upper_bound:
  min_length:
  max_length:
  read_only:
  unique:
Copy to Clipboard Toggle word wrap

spec は、BIOS 設定名と設定の制限で構成される単純なマップです。フィールドには以下が含まれます。

  • attribute_type: 設定のタイプ。サポートされるタイプは以下のとおりです。

    • Enumeration
    • Integer
    • String
    • Boolean
  • allowable_values: attribute_typeEnumeration の場合の、許可される値のリスト。
  • lower_bound: attribute_typeInteger の場合に許可される最小値。
  • upper_bound: attribute_typeInteger の場合に許可される最大値。
  • min_length: attribute_typeString の場合に、値が取ることのできる最も短い文字列の長さ。
  • max_length: attribute_typeString の場合に、値が取ることのできる最も長い文字列の長さ。
  • read_only: 設定は読み取り専用で、変更することはできません。
  • unique: 設定はこのホストに固有のものです。

4.7.14. FirmwareSchema リソースの取得

各ベンダーの各ホストモデルの BIOS 設定は、それぞれ異なります。HostFirmwareSettings リソースの spec セクションを編集する際に、設定する名前/値のペアはそのホストのファームウェアスキーマに準拠している必要があります。有効な名前と値のペアを設定するには、ホストの FirmwareSchema を取得して確認します。

手順

  1. 次のコマンドを実行して、FirmwareSchema リソースインスタンスのリストを取得します。

    $ oc get firmwareschema -n openshift-machine-api
    Copy to Clipboard Toggle word wrap
  2. 次のコマンドを実行して、特定の FirmwareSchema インスタンスを取得します。

    $ oc get firmwareschema <instance_name> -n openshift-machine-api -o yaml
    Copy to Clipboard Toggle word wrap

    ここで、<instance_name> は、HostFirmwareSettings リソース (表 3 を参照) に記載されているスキーマインスタンスの名前です。

4.7.15. HostFirmwareComponents リソースについて

Metal3 は、BIOS およびベースボード管理コントローラー (BMC) ファームウェアのバージョンを記述する HostFirmwareComponents リソースを提供します。HostFirmwareComponents リソースには 2 つのセクションが含まれています。

  1. HostFirmwareComponents spec
  2. HostFirmwareComponents status
4.7.15.1. HostFirmwareComponents spec

HostFirmwareComponents リソースの spec セクションでは、ホストの BIOS および BMC バージョンの目的の状態を定義します。

Expand
表4.5 HostFirmwareComponents spec
パラメーター説明
updates:
  component:
  url:
Copy to Clipboard Toggle word wrap

updates 設定には、更新するコンポーネントを含めます。フィールドの詳細は以下のとおりです。

  • component: コンポーネントの名前。有効な設定は bios または bmc です。
  • url: コンポーネントのファームウェア仕様とバージョンへの URL。
4.7.15.2. HostFirmwareComponents status

HostFirmwareComponents リソースの status セクションは、ホストの BIOS および BMC バージョンの現在のステータスを返します。

Expand
表4.6 HostFirmwareComponents status
パラメーター説明
components:
  component:
  initialVersion:
  currentVersion:
  lastVersionFlashed:
  updatedAt:
Copy to Clipboard Toggle word wrap

components セクションには、コンポーネントのステータスが含まれています。フィールドの詳細は以下のとおりです。

  • component: ファームウェアコンポーネントの名前。bios または bmc を返します。
  • initialVersion: コンポーネントの初期ファームウェアバージョン。Ironic は、BareMetalHost リソースを作成するときにこの情報を取得します。ユーザーが変更することはできません。
  • currentVersion: コンポーネントの現在のファームウェアバージョン。この値は、Ironic がベアメタルホストのファームウェアを更新するまで、initialVersion の値と同じです。
  • lastVersionFlashed: ベアメタルホストでフラッシュされたコンポーネントの最後のファームウェアバージョン。Ironic がファームウェアを更新するまで、このフィールドは null を返します。
  • updatedAt: Ironic がベアメタルホストのファームウェアを更新したときのタイムスタンプ。
updates:
  component:
  url:
Copy to Clipboard Toggle word wrap

updates 設定には、更新されたコンポーネントが含まれています。フィールドの詳細は以下のとおりです。

  • component: コンポーネントの名前。
  • url: コンポーネントのファームウェア仕様とバージョンへの URL。

4.7.16. HostFirmwareComponents リソースの取得

HostFirmwareComponents リソースには、物理ホストの BIOS およびベースボード管理コントローラー (BMC) の特定のファームウェアバージョンが含まれています。ファームウェアのバージョンとステータスを確認するには、物理ホストの HostFirmwareComponents リソースを取得する必要があります。

手順

  1. 次のコマンドを実行して、HostFirmwareComponents リソースの詳細なリストを取得します。

    $ oc get hostfirmwarecomponents -n openshift-machine-api -o yaml
    Copy to Clipboard Toggle word wrap
  2. 次のコマンドを実行して、HostFirmwareComponents リソースのリストを取得します。

    $ oc get hostfirmwarecomponents -n openshift-machine-api
    Copy to Clipboard Toggle word wrap
  3. 次のコマンドを実行して、特定のホストの HostFirmwareComponents リソースを取得します。

    $ oc get hostfirmwarecomponents <host_name> -n openshift-machine-api -o yaml
    Copy to Clipboard Toggle word wrap

    ここで、<host_name> はホストの名前です。

    出力例

    ---
    apiVersion: metal3.io/v1alpha1
    kind: HostFirmwareComponents
    metadata:
      creationTimestamp: 2024-04-25T20:32:06Z"
      generation: 1
      name: ostest-master-2
      namespace: openshift-machine-api
      ownerReferences:
      - apiVersion: metal3.io/v1alpha1
        blockOwnerDeletion: true
        controller: true
        kind: BareMetalHost
        name: ostest-master-2
        uid: 16022566-7850-4dc8-9e7d-f216211d4195
      resourceVersion: "2437"
      uid: 2038d63f-afc0-4413-8ffe-2f8e098d1f6c
    spec:
      updates: []
    status:
      components:
      - component: bios
        currentVersion: 1.0.0
        initialVersion: 1.0.0
      - component: bmc
        currentVersion: "1.00"
        initialVersion: "1.00"
      conditions:
      - lastTransitionTime: "2024-04-25T20:32:06Z"
        message: ""
        observedGeneration: 1
        reason: OK
        status: "True"
        type: Valid
      - lastTransitionTime: "2024-04-25T20:32:06Z"
        message: ""
        observedGeneration: 1
        reason: OK
        status: "False"
        type: ChangeDetected
      lastUpdated: "2024-04-25T20:32:06Z"
      updates: []
    Copy to Clipboard Toggle word wrap

4.7.17. プロビジョニング済みホストの HostFirmwareComponents リソースの編集

プロビジョニング済みホストの HostFirmwareComponents リソースを編集できます。

手順

  1. 次のコマンドを実行して、HostFirmwareComponents リソースの詳細なリストを取得します。

    $ oc get hostfirmwarecomponents -n openshift-machine-api -o yaml
    Copy to Clipboard Toggle word wrap
  2. 次のコマンドを実行して、HostFirmwareComponents リソースを編集します。

    $ oc edit <hostname> hostfirmwarecomponents -n openshift-machine-api 
    1
    Copy to Clipboard Toggle word wrap
    1
    <hostname> はホストの名前です。HostFirmwareComponents リソースが、ターミナルのデフォルトのエディターで開きます。
  3. 適切な編集を行います。

    出力例

    ---
    apiVersion: metal3.io/v1alpha1
    kind: HostFirmwareComponents
    metadata:
      creationTimestamp: 2024-04-25T20:32:06Z"
      generation: 1
      name: ostest-master-2
      namespace: openshift-machine-api
      ownerReferences:
      - apiVersion: metal3.io/v1alpha1
        blockOwnerDeletion: true
        controller: true
        kind: BareMetalHost
        name: ostest-master-2
        uid: 16022566-7850-4dc8-9e7d-f216211d4195
      resourceVersion: "2437"
      uid: 2038d63f-afc0-4413-8ffe-2f8e098d1f6c
    spec:
      updates:
        - name: bios 
    1
    
          url: https://myurl.with.firmware.for.bios 
    2
    
        - name: bmc 
    3
    
          url: https://myurl.with.firmware.for.bmc 
    4
    
    status:
      components:
      - component: bios
        currentVersion: 1.0.0
        initialVersion: 1.0.0
      - component: bmc
        currentVersion: "1.00"
        initialVersion: "1.00"
      conditions:
      - lastTransitionTime: "2024-04-25T20:32:06Z"
        message: ""
        observedGeneration: 1
        reason: OK
        status: "True"
        type: Valid
      - lastTransitionTime: "2024-04-25T20:32:06Z"
        message: ""
        observedGeneration: 1
        reason: OK
        status: "False"
        type: ChangeDetected
      lastUpdated: "2024-04-25T20:32:06Z"
    Copy to Clipboard Toggle word wrap

    1
    BIOS のバージョンを設定するには、name 属性を bios に設定します。
    2
    BIOS のバージョンを設定するには、url 属性を BIOS のファームウェアバージョンの URL に設定します。
    3
    BMC のバージョンを設定するには、name 属性を bmc に設定します。
    4
    BMC のバージョンを設定するには、url 属性を BMC のファームウェアバージョンの URL に設定します。
  4. 変更を保存し、エディターを終了します。
  5. 次のコマンドを実行して、ホストのマシン名を取得します。

    $ oc get bmh <host_name> -n openshift-machine name 
    1
    Copy to Clipboard Toggle word wrap
    1
    ここで、<host_name> はホストの名前です。ターミナルの CONSUMER フィールドの下にマシン名が表示されます。
  6. 次のコマンドを実行して、マシンにアノテーションを付けてマシンセットから削除します。

    $ oc annotate machine <machine_name> machine.openshift.io/delete-machine=true -n openshift-machine-api 
    1
    Copy to Clipboard Toggle word wrap
    1
    ここで、<machine_name> は削除するマシンの名前です。
  7. 次のコマンドを実行して、ノードのリストを取得し、ワーカーノードの数をカウントします。

    $ oc get nodes
    Copy to Clipboard Toggle word wrap
  8. 次のコマンドを実行してマシンセットを取得します。

    $ oc get machinesets -n openshift-machine-api
    Copy to Clipboard Toggle word wrap
  9. 次のコマンドを実行して、マシンセットをスケールダウンします。

    $ oc scale machineset <machineset_name> -n openshift-machine-api --replicas=<n-1> 
    1
    Copy to Clipboard Toggle word wrap
    1
    <machineset_name> はマシンセットの名前です。<n-1> は減少させたワーカーノードの数です。
  10. ホストが Available 状態になったら、次のコマンドを実行してマシンセットをスケールアップし、HostFirmwareComponents リソースの変更を反映します。

    $ oc scale machineset <machineset_name> -n openshift-machine-api --replicas=<n> 
    1
    Copy to Clipboard Toggle word wrap
    1
    <machineset_name> はマシンセットの名前です。<n> はワーカーノードの数です。

4.7.18. HostFirmwareComponents リソースへのライブ更新の実行

すでにプロビジョニングされているホスト上の HostFirmwareComponents リソースに対してライブ更新を実行できます。ライブ更新では、ホストのプロビジョニング解除と再プロビジョニングはトリガーされません。

重要

ホストのライブ更新はテクノロジープレビュー機能です。テクノロジープレビュー機能は、Red Hat 製品のサービスレベルアグリーメント (SLA) の対象外であり、機能的に完全ではないことがあります。Red Hat は、実稼働環境でこれらを使用することを推奨していません。テクノロジープレビュー機能は、最新の製品機能をいち早く提供して、開発段階で機能のテストを行い、フィードバックを提供していただくことを目的としています。

Red Hat のテクノロジープレビュー機能のサポート範囲に関する詳細は、テクノロジープレビュー機能のサポート範囲 を参照してください。

重要

実稼働ホストではライブ更新を実行しないでください。BIOS のライブ更新はテスト目的で実行できます。特に以前の世代のハードウェアでは、テスト目的で OpenShift Container Platform 4.19 上の BMC にライブ更新を実行することは推奨しません。

前提条件

  • HostUpdatePolicy リソースの firmwareUpdates パラメーターが onReboot に設定されている。

手順

  1. 次のコマンドを実行して、HostFirmwareComponents リソースを更新します。

    $ oc patch hostfirmwarecomponents <hostname> --type merge -p \
    1
    
        '{"spec": {"updates": [{"component": "<type>", \
    2
    
                            "url": "<url>"}]}}' 
    3
    Copy to Clipboard Toggle word wrap
    1
    <hostname> はホスト名に置き換えます。
    2
    <type> はコンポーネントのタイプに置き換えます。bios または bmc を指定します。
    3
    <url> はコンポーネントの URL に置き換えます。
    注記

    oc edit <hostname> hostfirmwarecomponents -n openshift-machine-api コマンドを使用してリソースを更新することもできます。

  2. 次のコマンドを実行して、ノードをスケジューリング対象から外してドレインします。

    $ oc drain <node_name> --force 
    1
    Copy to Clipboard Toggle word wrap
    1
    <node_name> はノード名に置き換えてください。
  3. 次のコマンドを実行して、ホストの電源を 5 分間オフにします。

    $ oc patch bmh <hostname> --type merge -p '{"spec": {"online": false}}'
    Copy to Clipboard Toggle word wrap

    このステップにより、デーモンセットまたはコントローラーが、ノード上で実行されている可能性のあるインフラストラクチャー Pod をオフラインとしてマークし、残りのノードが受信リクエストを処理するようになります。

  4. 5 分後、次のコマンドを実行してホストの電源をオンにします。

    $ oc patch bmh <hostname> --type merge -p '{"spec": {"online": true}}'
    Copy to Clipboard Toggle word wrap

    サービス操作が開始し、Bare Metal Operator (BMO) が BareMetalHostoperationalStatus パラメーターを servicing に設定します。BMO は、リソースを更新した後、operationalStatus パラメーターを OK に更新します。エラーが発生した場合、BMO は operationalStatus パラメーターを error に更新し、操作を再試行します。

  5. 次のコマンドを実行してノードをスケジューリング対象に戻します。

    $ oc uncordon <node_name>
    Copy to Clipboard Toggle word wrap

4.7.19. HostUpdatePolicy リソースについて

HostUpdatePolicy リソースを使用すると、各ベアメタルホストのファームウェア設定、BMC 設定、またはファームウェア設定へのライブ更新の適用を有効または無効にできます。デフォルトでは、すでにプロビジョニングされたベアメタルホストへのライブ更新は、Operator によって無効にされます。

HostUpdatePolicy 仕様

HostUpdatePolicy リソースの spec セクションには、次の 2 つの設定があります。

firmwareSettings
この設定は、HostFirmwareSettings リソースに対応するものです。
firmwareUpdates
この設定は、HostFirmwareComponents リソースに対応するものです。

値を onPreparing に設定すると、ホストを更新できるのがプロビジョニング中だけになります。これがデフォルト設定です。値を onReboot に設定すると、リソースを適用してベアメタルホストを再起動することで、プロビジョニング済みホストを更新できます。その後、HostFirmwareSettings または HostFirmwareComponents リソースを編集する手順に従います。

HostUpdatePolicy リソースの例

apiVersion: metal3.io/v1alpha1
kind: HostUpdatePolicy
metadata:
  name: <hostname> 
1

  namespace: openshift-machine-api
spec:
  firmwareSettings: <setting> 
2

  firmwareUpdates: <setting>
Copy to Clipboard Toggle word wrap

1
ベアメタルホストの名前。
2
更新ポリシーの設定。ライブ更新を無効にするには、onPreparing を指定します。ライブ更新を有効にするには、onReboot を指定します。

4.7.20. HostUpdatePolicy リソースの設定

デフォルトでは、HostUpdatePolicy はライブ更新を無効にします。ライブ更新を有効にするには、次の手順に従います。

重要

HostUpdatePolicy リソースの設定はテクノロジープレビュー機能です。テクノロジープレビュー機能は、Red Hat 製品のサービスレベルアグリーメント (SLA) の対象外であり、機能的に完全ではないことがあります。Red Hat は、実稼働環境でこれらを使用することを推奨していません。テクノロジープレビュー機能は、最新の製品機能をいち早く提供して、開発段階で機能のテストを行い、フィードバックを提供していただくことを目的としています。

Red Hat のテクノロジープレビュー機能のサポート範囲に関する詳細は、テクノロジープレビュー機能のサポート範囲 を参照してください。

手順

  1. 次のコマンドを実行して、HostUpdatePolicy リソースを作成します。

    $ vim hup.yaml
    Copy to Clipboard Toggle word wrap

    任意のテキストエディターを使用できます。

    HostUpdatePolicy リソースの例

    apiVersion: metal3.io/v1alpha1
    kind: HostUpdatePolicy
    metadata:
      name: <hostname> 
    1
    
      namespace: openshift-machine-api
    spec:
      firmwareSettings: onReboot
      firmwareUpdates: onReboot
    Copy to Clipboard Toggle word wrap

    1
    <hostname> はホスト名に置き換えます。
  2. hup.yaml ファイルへの変更を保存します。
  3. 以下のコマンドを実行してポリシーを適用します。

    $ oc apply -f hup.yaml
    Copy to Clipboard Toggle word wrap

第5章 クラスターの拡張

ベアメタルクラスターをデプロイした後、次の手順に従ってワーカーノードの数を増やすことができます。それぞれの候補となるワーカーノードが前提条件を満たしていることを確認します。

注記

RedFish Virtual Media を使用してクラスターを拡張するには、最低限のファームウェア要件を満たす必要があります。RedFish Virtual Media を使用したクラスターの拡張時の詳細は、前提条件 セクションの 仮想メディアを使用したインストールのファームウェア要件 を参照してください。

5.1. ベアメタルノードの準備

クラスターを拡張するには、ノードに関連する IP アドレスを提供する必要があります。これは、静的設定または DHCP (動的ホスト設定プロトコル) サーバーを使用して行うことができます。DHCP サーバーを使用してクラスターを拡張する場合、各ノードには DHCP 予約が必要です。

IP アドレスの予約し、それらを静的 IP アドレスにする

一部の管理者は、各ノードの IP アドレスが DHCP サーバーがない状態で一定になるように静的 IP アドレスの使用を選択します。NMState で静的 IP アドレスを設定するには、「OpenShift インストールの環境のセットアップ」セクションの「オプション: install-config.yaml でのホストネットワークインターフェイスの設定」で追加の詳細を参照してください。

ベアメタルノードを準備するには、プロビジョナーノードから以下の手順を実行する必要があります。

手順

  1. oc バイナリーを取得します。

    $ curl -s https://mirror.openshift.com/pub/openshift-v4/clients/ocp/$VERSION/openshift-client-linux-$VERSION.tar.gz | tar zxvf - oc
    Copy to Clipboard Toggle word wrap
    $ sudo cp oc /usr/local/bin
    Copy to Clipboard Toggle word wrap
  2. ベースボード管理コントローラー (BMC) を使用してベアメタルノードの電源を切り、オフになっていることを確認します。
  3. ベアメタルノードのベースボード管理コントローラーのユーザー名およびパスワードを取得します。次に、ユーザー名とパスワードから base64 文字列を作成します。

    $ echo -ne "root" | base64
    Copy to Clipboard Toggle word wrap
    $ echo -ne "password" | base64
    Copy to Clipboard Toggle word wrap
  4. ベアメタルノードの設定ファイルを作成します。静的設定または DHCP サーバーのどちらを使用しているかに応じて、次の例の bmh.yaml ファイルのいずれかを使用し、環境に合わせて YAML の値を置き換えます。

    $ vim bmh.yaml
    Copy to Clipboard Toggle word wrap
    • 静的設定 bmh.yaml :

      ---
      apiVersion: v1 
      1
      
      kind: Secret
      metadata:
       name: openshift-worker-<num>-network-config-secret 
      2
      
       namespace: openshift-machine-api
      type: Opaque
      stringData:
       nmstate: | 
      3
      
        interfaces: 
      4
      
        - name: <nic1_name> 
      5
      
          type: ethernet
          state: up
          ipv4:
            address:
            - ip: <ip_address> 
      6
      
              prefix-length: 24
            enabled: true
        dns-resolver:
          config:
            server:
            - <dns_ip_address> 
      7
      
        routes:
          config:
          - destination: 0.0.0.0/0
            next-hop-address: <next_hop_ip_address> 
      8
      
            next-hop-interface: <next_hop_nic1_name> 
      9
      
      ---
      apiVersion: v1
      kind: Secret
      metadata:
        name: openshift-worker-<num>-bmc-secret 
      10
      
        namespace: openshift-machine-api
      type: Opaque
      data:
        username: <base64_of_uid> 
      11
      
        password: <base64_of_pwd> 
      12
      
      ---
      apiVersion: metal3.io/v1alpha1
      kind: BareMetalHost
      metadata:
        name: openshift-worker-<num> 
      13
      
        namespace: openshift-machine-api
      spec:
        online: True
        bootMACAddress: <nic1_mac_address> 
      14
      
        bmc:
          address: <protocol>://<bmc_url> 
      15
      
          credentialsName: openshift-worker-<num>-bmc-secret 
      16
      
          disableCertificateVerification: True 
      17
      
          username: <bmc_username> 
      18
      
          password: <bmc_password> 
      19
      
        rootDeviceHints:
          deviceName: <root_device_hint> 
      20
      
        preprovisioningNetworkDataName: openshift-worker-<num>-network-config-secret 
      21
      Copy to Clipboard Toggle word wrap
      1
      新しく作成されたノードのネットワークインターフェイスを設定するには、ネットワーク設定を含むシークレットの名前を指定します。nmstate 構文に従って、ノードのネットワーク設定を定義します。NMState 構文の設定に関する詳細は、「オプション: install-config.yaml ファイルでのホストネットワークインターフェイスの設定」を参照してください。
      2 10 13 16
      namecredentialsName、および preprovisioningNetworkDataName フィールドの <num> は、ベアメタルノードのワーカー番号に置き換えます。
      3
      NMState YAML 構文を追加して、ホストインターフェイスを設定します。
      4
      オプション: nmstate を使用してネットワークインターフェイスを設定しており、インターフェイスを無効にする場合は、次のように IP アドレスを enabled: false に設定して state: up を設定します。
      ---
         interfaces:
         - name: <nic_name>
           type: ethernet
           state: up
           ipv4:
             enabled: false
           ipv6:
             enabled: false
      Copy to Clipboard Toggle word wrap
      5 6 7 8 9
      <nic1_name><ip_address><dns_ip_address><next_hop_ip_address>、および <next_hop_nic1_name> を適切な値に置き換えます。
      11 12
      <base64_of_uid><base64_of_pwd> は、ユーザー名とパスワードの base64 文字列に置き換えます。
      14
      <nic1_mac_address> を、ベアメタルノードの最初の NIC の MAC アドレスに置き換えます。追加の BMC 設定オプションは、「BMC アドレス指定」のセクションを参照してください。
      15
      <protocol> は、IPMI、RedFish などの BMC プロトコルに置き換えます。<bmc_url> を、ベアメタルノードのベースボード管理コントローラーの URL に置き換えます。
      17
      証明書の検証をスキップするには、disableCertificateVerification を true に設定します。
      18 19
      <bmc_username><bmc_password> を BMC ユーザー名とパスワードの文字列に置き換えます。
      20
      オプション: root デバイスヒントを指定する場合は、<root_device_hint> をデバイスパスに置き換えます。
      21
      オプション: 新しく作成されたノードのネットワークインターフェイスを設定した場合は、BareMetalHost CR の preprovisioningNetworkDataName にネットワーク設定のシークレット名を指定します。
    • DHCP 設定 bmh.yaml :

      ---
      apiVersion: v1
      kind: Secret
      metadata:
        name: openshift-worker-<num>-bmc-secret 
      1
      
        namespace: openshift-machine-api
      type: Opaque
      data:
        username: <base64_of_uid> 
      2
      
        password: <base64_of_pwd> 
      3
      
      ---
      apiVersion: metal3.io/v1alpha1
      kind: BareMetalHost
      metadata:
        name: openshift-worker-<num> 
      4
      
        namespace: openshift-machine-api
      spec:
        online: True
        bootMACAddress: <nic1_mac_address> 
      5
      
        bmc:
          address: <protocol>://<bmc_url> 
      6
      
          credentialsName: openshift-worker-<num>-bmc-secret 
      7
      
          disableCertificateVerification: True 
      8
      
          username: <bmc_username> 
      9
      
          password: <bmc_password> 
      10
      
        rootDeviceHints:
          deviceName: <root_device_hint> 
      11
      
        preprovisioningNetworkDataName: openshift-worker-<num>-network-config-secret 
      12
      Copy to Clipboard Toggle word wrap
      1 4 7
      namecredentialsName、および preprovisioningNetworkDataName フィールドの <num> は、ベアメタルノードのワーカー番号に置き換えます。
      2 3
      <base64_of_uid><base64_of_pwd> は、ユーザー名とパスワードの base64 文字列に置き換えます。
      5
      <nic1_mac_address> を、ベアメタルノードの最初の NIC の MAC アドレスに置き換えます。追加の BMC 設定オプションは、「BMC アドレス指定」のセクションを参照してください。
      6
      <protocol> は、IPMI、RedFish などの BMC プロトコルに置き換えます。<bmc_url> を、ベアメタルノードのベースボード管理コントローラーの URL に置き換えます。
      8
      証明書の検証をスキップするには、disableCertificateVerification を true に設定します。
      9 10
      <bmc_username><bmc_password> を BMC ユーザー名とパスワードの文字列に置き換えます。
      11
      オプション: root デバイスヒントを指定する場合は、<root_device_hint> をデバイスパスに置き換えます。
      12
      オプション: 新しく作成されたノードのネットワークインターフェイスを設定した場合は、BareMetalHost CR の preprovisioningNetworkDataName にネットワーク設定のシークレット名を指定します。
    注記

    既存のベアメタルノードの MAC アドレスが、プロビジョニングしようとしているベアメタルホストの MAC アドレスと一致する場合、Ironic インストールは失敗します。ホストの登録、検査、クリーニング、または他の Ironic 手順が失敗する場合、ベアメタル Operator はインストールを継続的に再試行します。詳細は、「ホストの重複した MAC アドレスの診断」を参照してください。

  5. ベアメタルノードを作成します。

    $ oc -n openshift-machine-api create -f bmh.yaml
    Copy to Clipboard Toggle word wrap

    出力例

    secret/openshift-worker-<num>-network-config-secret created
    secret/openshift-worker-<num>-bmc-secret created
    baremetalhost.metal3.io/openshift-worker-<num> created
    Copy to Clipboard Toggle word wrap

    <num> はワーカー番号です。

  6. ベアメタルノードの電源をオンにし、これを検査します。

    $ oc -n openshift-machine-api get bmh openshift-worker-<num>
    Copy to Clipboard Toggle word wrap

    <num> はワーカーノード番号です。

    出力例

    NAME                    STATE       CONSUMER   ONLINE   ERROR
    openshift-worker-<num>  available              true
    Copy to Clipboard Toggle word wrap

    注記

    ワーカーノードがクラスターに参加できるようにするには、machineset オブジェクトを BareMetalHost オブジェクトの数にスケーリングします。ノードは手動または自動でスケーリングできます。ノードを自動的にスケーリングするには、machinesetmetal3.io/autoscale-to-hosts アノテーションを使用します。

5.2. ベアメタルコントロールプレーンノードの交換

OpenShift Container Platform コントロールプレーンノードを置き換えるには、次の手順に従います。

重要

既存のコントロールプレーンホストから BareMetalHost オブジェクト定義を再利用する場合は、externallyProvisioned フィールドを true に設定したままにしないでください。

既存のコントロールプレーン BareMetalHost オブジェクトは、OpenShift Container Platform インストールプログラムによってプロビジョニングされた場合、externallyProvisioned フラグが true に設定されている可能性があります。

前提条件

  • cluster-admin ロールを持つユーザーとしてクラスターにアクセスできる。
  • etcd のバックアップを取得している。

    重要

    問題が発生した場合にクラスターを復元できるように、この手順を実行する前に etcd のバックアップを作成してください。etcd バックアップの作成に関する詳細は、関連情報 セクションを参照してください。

手順

  1. Bare Metal Operator が使用可能であることを確認します。

    $ oc get clusteroperator baremetal
    Copy to Clipboard Toggle word wrap

    出力例

    NAME        VERSION   AVAILABLE   PROGRESSING   DEGRADED   SINCE   MESSAGE
    baremetal   4.19     True          False      False   3d15h
    Copy to Clipboard Toggle word wrap

  2. 古い BareMetalHost オブジェクトおよび Machine オブジェクトを削除します。

    $ oc delete bmh -n openshift-machine-api <host_name>
    $ oc delete machine -n openshift-machine-api <machine_name>
    Copy to Clipboard Toggle word wrap

    <host_name> をホストの名前に、<machine_name> をマシンの名前に置き換えます。マシン名は CONSUMER フィールドの下に表示されます。

    BareMetalHost オブジェクトと Machine オブジェクトを削除すると、マシンコントローラーは Node オブジェクトを自動的に削除します。

  3. 新しい BareMetalHost オブジェクトとシークレットを作成して BMC 認証情報を保存します。

    $ cat <<EOF | oc apply -f -
    apiVersion: v1
    kind: Secret
    metadata:
      name: control-plane-<num>-bmc-secret 
    1
    
      namespace: openshift-machine-api
    data:
      username: <base64_of_uid> 
    2
    
      password: <base64_of_pwd> 
    3
    
    type: Opaque
    ---
    apiVersion: metal3.io/v1alpha1
    kind: BareMetalHost
    metadata:
      name: control-plane-<num> 
    4
    
      namespace: openshift-machine-api
    spec:
      automatedCleaningMode: disabled
      bmc:
        address: <protocol>://<bmc_ip> 
    5
    
        credentialsName: control-plane-<num>-bmc-secret 
    6
    
      bootMACAddress: <NIC1_mac_address> 
    7
    
      bootMode: UEFI
      externallyProvisioned: false
      online: true
    EOF
    Copy to Clipboard Toggle word wrap
    1 4 6
    name および credentialsName フィールドの <num> は、ベアメタルノードのコントロールプレーン番号に置き換えます。
    2
    <base64_of_uid> を、ユーザー名の base64 文字列に置き換えます。
    3
    <base64_of_pwd> は、パスワードの base64 文字列に置き換えます。
    5
    <protocol>redfishredfish-virtualmediaidrac-virtualmedia などの BMC プロトコルに置き換えます。<bmc_ip> は、ベアメタルノードのベースボード管理コントローラーの IP アドレスに置き換えます。その他の BMC 設定オプションは、関連情報 セクションの「BMC アドレス指定」を参照してください。
    7
    <NIC1_mac_address> は、ベアメタルノードの最初の NIC の MAC アドレスに置き換えます。

    検査が完了すると、BareMetalHost オブジェクトが作成され、プロビジョニングできるようになります。

  4. 利用可能な BareMetalHost オブジェクトを表示します。

    $ oc get bmh -n openshift-machine-api
    Copy to Clipboard Toggle word wrap

    出力例

    NAME                          STATE                    CONSUMER                   ONLINE   ERROR   AGE
    control-plane-1.example.com   available                control-plane-1            true             1h10m
    control-plane-2.example.com   externally provisioned   control-plane-2            true             4h53m
    control-plane-3.example.com   externally provisioned   control-plane-3            true             4h53m
    compute-1.example.com         provisioned              compute-1-ktmmx            true             4h53m
    compute-1.example.com         provisioned              compute-2-l2zmb            true             4h53m
    Copy to Clipboard Toggle word wrap

    コントロールプレーンノード用の MachineSet オブジェクトがないため、代わりに Machine オブジェクトを作成する必要があります。別のコントロールプレーン Machine オブジェクトから providerSpec をコピーできます。

  5. Machine オブジェクトを作成します。

    $ cat <<EOF | oc apply -f -
    apiVersion: machine.openshift.io/v1beta1
    kind: Machine
    metadata:
      annotations:
        metal3.io/BareMetalHost: openshift-machine-api/control-plane-<num>
      labels:
        machine.openshift.io/cluster-api-cluster: control-plane-<num>
        machine.openshift.io/cluster-api-machine-role: master
        machine.openshift.io/cluster-api-machine-type: master
      name: control-plane-<num>
      namespace: openshift-machine-api
    spec:
      metadata: {}
      providerSpec:
        value:
          apiVersion: baremetal.cluster.k8s.io/v1alpha1
          customDeploy:
            method: install_coreos
          hostSelector: {}
          image:
            checksum: ""
            url: ""
          kind: BareMetalMachineProviderSpec
          metadata:
            creationTimestamp: null
          userData:
            name: master-user-data-managed
    EOF
    Copy to Clipboard Toggle word wrap

    <num> は、annotationslabelsname フィールドのベアメタルノードのコントロールプレーン番号に置き換えます。

  6. BareMetalHost オブジェクトを表示するには、次のコマンドを実行します。

    $ oc get bmh -A
    Copy to Clipboard Toggle word wrap

    出力例

    NAME                          STATE                    CONSUMER                   ONLINE   ERROR   AGE
    control-plane-1.example.com   provisioned              control-plane-1            true             2h53m
    control-plane-2.example.com   externally provisioned   control-plane-2            true             5h53m
    control-plane-3.example.com   externally provisioned   control-plane-3            true             5h53m
    compute-1.example.com         provisioned              compute-1-ktmmx            true             5h53m
    compute-2.example.com         provisioned              compute-2-l2zmb            true             5h53m
    Copy to Clipboard Toggle word wrap

  7. RHCOS のインストール後、BareMetalHost がクラスターに追加されていることを確認します。

    $ oc get nodes
    Copy to Clipboard Toggle word wrap

    出力例

    NAME                           STATUS      ROLES     AGE   VERSION
    control-plane-1.example.com    available   master    4m2s  v1.32.3
    control-plane-2.example.com    available   master    141m  v1.32.3
    control-plane-3.example.com    available   master    141m  v1.32.3
    compute-1.example.com          available   worker    87m   v1.32.3
    compute-2.example.com          available   worker    87m   v1.32.3
    Copy to Clipboard Toggle word wrap

    注記

    新しいコントロールプレーンノードの交換後、新しいノードで実行されている etcd Pod は crashloopback ステータスになります。詳細は、関連情報 セクションの「正常でない etcd メンバーの置き換え」を参照してください。

5.3. ベアメタルネットワークに仮想メディアを使用してデプロイメントする準備

provisioning ネットワークが有効で、baremetal ネットワークで Virtual Media を使用してクラスターを拡張する場合は、以下の手順を使用します。

前提条件

  • baremetal ネットワークおよび provisioning ネットワークを使用する既存のクラスターがあります。

手順

  1. provisioning カスタムリソース (CR) を編集して、baremetal ネットワーク上の仮想メディアを使用したデプロイを有効にします。

    oc edit provisioning
    Copy to Clipboard Toggle word wrap
      apiVersion: metal3.io/v1alpha1
      kind: Provisioning
      metadata:
        creationTimestamp: "2021-08-05T18:51:50Z"
        finalizers:
        - provisioning.metal3.io
        generation: 8
        name: provisioning-configuration
        resourceVersion: "551591"
        uid: f76e956f-24c6-4361-aa5b-feaf72c5b526
      spec:
        provisioningDHCPRange: 172.22.0.10,172.22.0.254
        provisioningIP: 172.22.0.3
        provisioningInterface: enp1s0
        provisioningNetwork: Managed
        provisioningNetworkCIDR: 172.22.0.0/24
        virtualMediaViaExternalNetwork: true 
    1
    
      status:
        generations:
        - group: apps
          hash: ""
          lastGeneration: 7
          name: metal3
          namespace: openshift-machine-api
          resource: deployments
        - group: apps
          hash: ""
          lastGeneration: 1
          name: metal3-image-cache
          namespace: openshift-machine-api
          resource: daemonsets
        observedGeneration: 8
        readyReplicas: 0
    Copy to Clipboard Toggle word wrap
    1
    virtualMediaViaExternalNetwork: trueprovisioning CR に追加します。
  2. イメージ URL が存在する場合は、machineset を編集して API VIP アドレスを使用します。この手順は、バージョン 4.9 以前でインストールされたクラスターにのみ適用されます。

    oc edit machineset
    Copy to Clipboard Toggle word wrap
      apiVersion: machine.openshift.io/v1beta1
      kind: MachineSet
      metadata:
        creationTimestamp: "2021-08-05T18:51:52Z"
        generation: 11
        labels:
          machine.openshift.io/cluster-api-cluster: ostest-hwmdt
          machine.openshift.io/cluster-api-machine-role: worker
          machine.openshift.io/cluster-api-machine-type: worker
        name: ostest-hwmdt-worker-0
        namespace: openshift-machine-api
        resourceVersion: "551513"
        uid: fad1c6e0-b9da-4d4a-8d73-286f78788931
      spec:
        replicas: 2
        selector:
          matchLabels:
            machine.openshift.io/cluster-api-cluster: ostest-hwmdt
            machine.openshift.io/cluster-api-machineset: ostest-hwmdt-worker-0
        template:
          metadata:
            labels:
              machine.openshift.io/cluster-api-cluster: ostest-hwmdt
              machine.openshift.io/cluster-api-machine-role: worker
              machine.openshift.io/cluster-api-machine-type: worker
              machine.openshift.io/cluster-api-machineset: ostest-hwmdt-worker-0
          spec:
            metadata: {}
            providerSpec:
              value:
                apiVersion: baremetal.cluster.k8s.io/v1alpha1
                hostSelector: {}
                image:
                  checksum: http:/172.22.0.3:6181/images/rhcos-<version>.<architecture>.qcow2.<md5sum> 
    1
    
                  url: http://172.22.0.3:6181/images/rhcos-<version>.<architecture>.qcow2 
    2
    
                kind: BareMetalMachineProviderSpec
                metadata:
                  creationTimestamp: null
                userData:
                  name: worker-user-data
      status:
        availableReplicas: 2
        fullyLabeledReplicas: 2
        observedGeneration: 11
        readyReplicas: 2
        replicas: 2
    Copy to Clipboard Toggle word wrap
    1
    API VIP アドレスを使用するように checksum URL を編集します。
    2
    url URL を編集して API VIP アドレスを使用します。

5.4. クラスター内の新しいホストをプロビジョニングする際の重複する MAC アドレスの診断

クラスター内の既存のベアメタルノードの MAC アドレスが、クラスターに追加しようとしているベアメタルホストの MAC アドレスと一致する場合、ベアメタル Operator はホストを既存のノードに関連付けます。ホストの登録、検査、クリーニング、または他の Ironic 手順が失敗する場合、ベアメタル Operator はインストールを継続的に再試行します。障害が発生したベアメタルホストの登録エラーが表示されます。

openshift-machine-api namespace で実行されているベアメタルホストを調べることで、重複する MAC アドレスを診断できます。

前提条件

  • ベアメタルに OpenShift Container Platform クラスターをインストールする。
  • OpenShift Container Platform CLI (oc) をインストールする。
  • cluster-admin 権限を持つユーザーとしてログインしている。

手順

プロビジョニングに失敗したベアメタルホストが既存のノードと同じ MAC アドレスを持つかどうかを判断するには、以下を実行します。

  1. openshift-machine-api namespace で実行されているベアメタルホストを取得します。

    $ oc get bmh -n openshift-machine-api
    Copy to Clipboard Toggle word wrap

    出力例

    NAME                 STATUS   PROVISIONING STATUS      CONSUMER
    openshift-master-0   OK       externally provisioned   openshift-zpwpq-master-0
    openshift-master-1   OK       externally provisioned   openshift-zpwpq-master-1
    openshift-master-2   OK       externally provisioned   openshift-zpwpq-master-2
    openshift-worker-0   OK       provisioned              openshift-zpwpq-worker-0-lv84n
    openshift-worker-1   OK       provisioned              openshift-zpwpq-worker-0-zd8lm
    openshift-worker-2   error    registering
    Copy to Clipboard Toggle word wrap

  2. 障害が発生したホストのステータスに関する詳細情報を表示するには、<bare_metal_host_name> をホストの名前に置き換えて、以下のコマンドを実行します。

    $ oc get -n openshift-machine-api bmh <bare_metal_host_name> -o yaml
    Copy to Clipboard Toggle word wrap

    出力例

    ...
    status:
      errorCount: 12
      errorMessage: MAC address b4:96:91:1d:7c:20 conflicts with existing node openshift-worker-1
      errorType: registration error
    ...
    Copy to Clipboard Toggle word wrap

5.5. ベアメタルノードのプロビジョニング

ベアメタルノードをプロビジョニングするには、プロビジョナーノードから以下の手順を実行する必要があります。

手順

  1. ベアメタルノードをプロビジョニングする前に、STATEavailable であることを確認してください。

    $  oc -n openshift-machine-api get bmh openshift-worker-<num>
    Copy to Clipboard Toggle word wrap

    <num> はワーカーノード番号です。

    NAME              STATE     ONLINE ERROR  AGE
    openshift-worker  available true          34h
    Copy to Clipboard Toggle word wrap
  2. ワーカーノードの数を取得します。

    $ oc get nodes
    Copy to Clipboard Toggle word wrap
    NAME                                                STATUS   ROLES           AGE     VERSION
    openshift-master-1.openshift.example.com            Ready    master          30h     v1.32.3
    openshift-master-2.openshift.example.com            Ready    master          30h     v1.32.3
    openshift-master-3.openshift.example.com            Ready    master          30h     v1.32.3
    openshift-worker-0.openshift.example.com            Ready    worker          30h     v1.32.3
    openshift-worker-1.openshift.example.com            Ready    worker          30h     v1.32.3
    Copy to Clipboard Toggle word wrap
  3. コンピュートマシンセットを取得します。

    $ oc get machinesets -n openshift-machine-api
    Copy to Clipboard Toggle word wrap
    NAME                                DESIRED   CURRENT   READY   AVAILABLE   AGE
    ...
    openshift-worker-0.example.com      1         1         1       1           55m
    openshift-worker-1.example.com      1         1         1       1           55m
    Copy to Clipboard Toggle word wrap
  4. ワーカーノードの数を 1 つ増やします。

    $ oc scale --replicas=<num> machineset <machineset> -n openshift-machine-api
    Copy to Clipboard Toggle word wrap

    <num> は、新しいワーカーノード数に置き換えます。<machineset> は、前のステップで設定したコンピュートマシンの名前に置き換えます。

  5. ベアメタルノードのステータスを確認します。

    $ oc -n openshift-machine-api get bmh openshift-worker-<num>
    Copy to Clipboard Toggle word wrap

    <num> はワーカーノード番号です。STATE が ready から provisioning に変わります。

    NAME                    STATE             CONSUMER                          ONLINE   ERROR
    openshift-worker-<num>  provisioning      openshift-worker-<num>-65tjz      true
    Copy to Clipboard Toggle word wrap

    provisioning ステータスは、OpenShift Container Platform クラスターがノードをプロビジョニングするまでそのままになります。この場合、30 分以上の時間がかかる場合があります。ノードがプロビジョニングされると、状態は provisioned に変わります。

    NAME                    STATE             CONSUMER                          ONLINE   ERROR
    openshift-worker-<num>  provisioned       openshift-worker-<num>-65tjz      true
    Copy to Clipboard Toggle word wrap
  6. プロビジョニングが完了したら、ベアメタルノードが準備状態であることを確認します。

    $ oc get nodes
    Copy to Clipboard Toggle word wrap
    NAME                                          STATUS   ROLES   AGE     VERSION
    openshift-master-1.openshift.example.com      Ready    master  30h     v1.32.3
    openshift-master-2.openshift.example.com      Ready    master  30h     v1.32.3
    openshift-master-3.openshift.example.com      Ready    master  30h     v1.32.3
    openshift-worker-0.openshift.example.com      Ready    worker  30h     v1.32.3
    openshift-worker-1.openshift.example.com      Ready    worker  30h     v1.32.3
    openshift-worker-<num>.openshift.example.com  Ready    worker  3m27s   v1.32.3
    Copy to Clipboard Toggle word wrap

    kubelet を確認することもできます。

    $ ssh openshift-worker-<num>
    Copy to Clipboard Toggle word wrap
    [kni@openshift-worker-<num>]$ journalctl -fu kubelet
    Copy to Clipboard Toggle word wrap

第6章 Bare Metal as a Service の使用

OpenShift Container Platform の Bare Metal as a Service (BMaaS) 機能を使用すると、Metal 3 API と Bare Metal Operator (BMO) を使用して、ベアメタルホストをプロビジョニングおよび管理できます。OpenShift Container Platform クラスターの外部にあるこれらのホストは、コンテナー化や仮想化に適さない可能性のあるワークロードを実行する可能性があります。たとえば、ハードウェアへの直接アクセスを必要とするアプリケーション、高性能コンピューティングタスクを実行するアプリケーション、レガシーアプリケーションなどのワークロードです。BMaaS には以下の機能が含まれます。

  • 初期設定を含むベアメタルホストのプロビジョニング。
  • BMO を使用した電源管理、ファームウェアの更新、廃止などのライフサイクル管理。

これらのホストはスタンドアロンシステムとして、OpenShift Container Platform クラスターから独立して動作し、ベアメタルリソースをコンテナー化および仮想化されたアプリケーションと統合することで、さまざまなワークロードをサポートします。BMaaS は他のオペレーティングシステムも実行できますが、テストされたのは Red Hat Enterprise Linux (RHEL) と CentOS Stream 9 のみです。

重要

BMaaS はテクノロジープレビュー機能のみです。テクノロジープレビュー機能は、Red Hat 製品のサービスレベルアグリーメント (SLA) の対象外であり、機能的に完全ではないことがあります。Red Hat は、実稼働環境でこれらを使用することを推奨していません。テクノロジープレビュー機能は、最新の製品機能をいち早く提供して、開発段階で機能のテストを行い、フィードバックを提供していただくことを目的としています。

Red Hat のテクノロジープレビュー機能のサポート範囲に関する詳細は、テクノロジープレビュー機能のサポート範囲 を参照してください。

6.1. BMaaS を使用するための前提条件

Bare Metal as a Service (BMaaS) テクノロジープレビューを使用するには、次の前提条件を満たしてください。

BareMetalHost の設定
すべてのベアメタルホストは、Redfish プロトコルと仮想メディア (redfish-virtualmedia) ドライバーで設定されたベースボード管理コントローラー (BMC) を使用する必要があります。各ベアメタルホストには、IP アドレスリースを受信するように設定された MAC アドレスを持つブートインターフェイスが必要です。
ネットワーク要件
OpenShift Container Platform および Metal 3 インフラストラクチャーとは別の DHCP サーバーが、ベアメタルホストと同じレイヤー 2 ネットワーク上で動作している必要があります。DHCP サーバーは、ベアメタルホスト上のブートインターフェイスの MAC アドレスと一致するように設定する必要があります。これにより、Metal 3 コンポーネントとの通信に IP アドレスが割り当てられます。
クラスター特権
BMaaS 設定タスクを実行するには、OpenShift Container Platform クラスター上に cluster-admin 特権が必要です。
イメージ付き Web サーバー

BMaaS は、ハードウェアにデプロイメントするためのイメージを提供しません。使用するイメージとチェックサムを使用して Web サーバーを設定する必要があります。BareMetalHost 仕様の image フィールドは、デプロイメント中にこれらのイメージを参照します。ベアメタルホストが Web サーバー URL にアクセスできることを確認します。以下は、含める可能性のあるイメージとチェックサムの例です。

これらの前提条件により、BMaaS はベアメタルホストを効果的にプロビジョニングおよび管理できるようになります。

6.2. Bare Metal Operator を使用して、すべての namespace にわたるリソースを管理する

Bare Metal Operator (BMO) が OpenShift Container Platform クラスター内のすべての namespace にわたって BareMetalHost リソースを管理するには、すべての namespace を監視するように Operator を設定する必要があります。この設定は、OpenShift Container Platform 以外のワークロードが同じ namespace 内の他のコンポーネントと混在することを避けるために重要です。

前提条件

手順

  • 次のコマンドを実行して、プロビジョニング設定にパッチを適用し、すべての namespace の監視を有効にします。

    $ oc patch provisioning/provisioning-configuration \
      --type merge -p '{"spec": {"watchAllNamespaces": true}}'
    Copy to Clipboard Toggle word wrap

    BMO はこの変更を自動的に適用します。

6.3. 専用の namespace の設定

Bare Metal as a Service (BMaaS) ワークロードと OpenShift Container Platform インフラストラクチャー間の偶発的な干渉を防ぐには、専用の namespace をセットアップします。すべての BMaaS プロジェクトに対してこの手順を繰り返します。

前提条件

手順

  1. アイデンティティープロバイダーで BMaaS bmadmin ユーザーを設定し、OpenShift にシークレットを作成します。

    1. アイデンティティープロバイダーに bmadmin ユーザーを作成します。たとえば、htpasswd アイデンティティープロバイダーを使用する場合は、次のコマンドを実行します。

      $ htpasswd -c -B -b ./users_htpasswd <username> <password>
      Copy to Clipboard Toggle word wrap
      <username>
      アイデンティティープロバイダーのユーザー名。<username> は、希望のユーザー名に置き換えます。この例では bmadmin を使用します。
      <password>
      ユーザーのパスワード。<password> は、安全なパスワードに置き換えます。
    2. 次のコマンドを実行して、アイデンティティープロバイダー設定を保存するためのシークレットを openshift-config namespace に作成します。

      $ oc create secret generic <identity_provider_arguments> -n openshift-config
      Copy to Clipboard Toggle word wrap

      たとえば、htpasswd アイデンティティープロバイダーを使用する場合は、次のコマンドを実行します。

      $ oc create secret generic htpass-secret --from-file=htpasswd=users_htpasswd -n openshift-config
      Copy to Clipboard Toggle word wrap
      <identity_provider_arguments>
      アイデンティティープロバイダーシークレットに固有の引数。<identity_provider_arguments> は、ID プロバイダーの適切な引数に置き換えます。
  2. アイデンティティープロバイダーを使用するように OAuth を設定します。

    1. 次のコマンドを実行して OAuth リソースを編集します。

      $ oc edit oauth cluster
      Copy to Clipboard Toggle word wrap

      エディターが開き、Oauth リソースが表示されます。

    2. アイデンティティープロバイダーの設定を spec.identityProviders リストに追加します。

      Expand
      表6.1 アイデンティティープロバイダーの設定例

      htpasswd

      # ...
      - name: my_bmaas_provider
        mappingMethod: claim
        type: htpasswd
        htpasswd:
          fileData:
            name: <secret>
      # ...
      Copy to Clipboard Toggle word wrap

      LDAP

      # ...
      - name: my_bmaas_provider
        mappingMethod: claim
        type: ldap
        ldap:
          attributes:
            id:
            - dn
            email:
            - mail
            name:
            - cn
            preferredUsername:
            - uid
      # ...
      Copy to Clipboard Toggle word wrap

      GitHub

      # ...
      - name: my_bmaas_provider
        mappingMethod: claim
        type: GitHub
          github:
            ca:
              name: ca-config-map
            clientID: {...}
            clientSecret:
              name: github-secret
            hostname: ...
            organizations:
            - myorganization1
            - myorganization2
            teams:
            - myorganization1/team-a
            - myorganization2/team-b
      # ...
      Copy to Clipboard Toggle word wrap

      アイデンティティープロバイダーの詳細は、認証と認可 を参照してください。

    3. エディターを保存し、終了します。
  3. 次のコマンドを実行して、BMaaS bmadmin ユーザーを作成します。

    $ oc create user <username>
    Copy to Clipboard Toggle word wrap
    <username>
    ユーザー名。<username> は、ユーザー名に置き換えます。次の例では、ユーザー名として bmadmin を使用します。
  4. 次のコマンドを実行して、BMaaS ホスト専用の bmaas namespace を作成します。

    $ oc new-project <namespace>
    Copy to Clipboard Toggle word wrap
    <namespace>
    <namespace> は、使用する namespace 名に置き換えます。この例では bmaas を使用します。
  5. 次のコマンドを実行して、bmaas namespace の BMaaS bmadmin ユーザーに edit ロールを割り当てます。

    $ oc adm policy add-role-to-user edit <username> -n bmaas
    Copy to Clipboard Toggle word wrap
  6. 次のコマンドを実行して、baremetal-operator リポジトリーをクローンし、ロールベースアクセス制御 (RBAC) のロール定義を取得します。

    $ git clone -b release-4.19 https://github.com/openshift/baremetal-operator.git
    Copy to Clipboard Toggle word wrap
  7. 追加するロールごとに、次のコマンドを実行して、リポジトリーから適切な RBAC ロール YAML ファイルを適用します。

    $ oc apply -f baremetal-operator/config/base/rbac/<role_filename>.yaml
    Copy to Clipboard Toggle word wrap
  8. 次のコマンドを実行して、bmaas namespace 内の BMaaS bmadmin ユーザーにカスタム RBAC ロールを割り当てます。

    $ oc adm policy add-role-to-user <role_name> bmadmin -n bmaas
    Copy to Clipboard Toggle word wrap
  9. 次のコマンドを実行して、bmadmin ユーザーとしてログインします。

    $ oc login <api_server_url>:6443
    Copy to Clipboard Toggle word wrap
    <api_server_url>
    Kubernetes API への URL。

6.4. BMC シークレットの作成

ベアメタルホストをデプロイするには、ベースボード管理コントローラー (BMC) にアクセスするためのシークレットを作成する必要があります。

手順

  1. 次のコマンドを実行して BMC シークレットファイルを作成します。

    $ vim bmaas-<name>-bmc-secret.yaml
    Copy to Clipboard Toggle word wrap

    <name> は、ベアメタルホストの名前に置き換えます。

  2. シークレットを編集します。

    apiVersion: v1
    kind: Secret
    metadata:
      name: bmaas-<name>-bmc-secret
      namespace: bmaas
    type: Opaque
    data:
      username: <base64_of_uid>
      password: <base64_of_pwd>
    Copy to Clipboard Toggle word wrap
    <base64_of_uid>
    <base64_of_uid> は、Base64 でエンコードされた文字列の BMC ユーザー名に置き換えます。
    <base64_of_pwd>
    <base64_of_pwd> は、Base64 でエンコードされた文字列の BMC パスワードに置き換えます。
  3. 次のコマンドを実行して BMC シークレットを適用します。

    $ oc apply -f bmaas-<name>-bmc-secret.yaml
    Copy to Clipboard Toggle word wrap

6.5. ベアメタルホストリソースの作成

ベアメタルホストをデプロイするには、BareMetalHost リソースを作成する必要があります。

手順

  1. 次のコマンドを実行して、BareMetalHost カスタムリソース (CR) ファイルを作成します。

    $ vim bmaas-<name>-bmh.yaml
    Copy to Clipboard Toggle word wrap
    <name>
    <name> は、ベアメタルホストの名前に置き換えます。
  2. CR を編集します。

    apiVersion: metal3.io/v1alpha1
    kind: BareMetalHost
    metadata:
      name: bmaas-<name>
      namespace:  bmaas
    spec:
      online: true
      bootMACAddress: <mac_addr>
      bmc:
        address: redfish-virtualmedia+<address>/redfish/v1/Systems/System.Embedded.1
        credentialsName: bmaas-<num>-bmc-secret
    Copy to Clipboard Toggle word wrap
    <mac_addr>
    <mac_addr> は、ベアメタルホスト上の最初の NIC の MAC アドレスに置き換えます。
    <address>
    <address> は、ホストの IP アドレスまたは FQDN に置き換えます。
  3. 以下のコマンドを実行して CR を適用します。

    $ oc apply -f bmaas-<name>-bmh.yaml
    Copy to Clipboard Toggle word wrap

検証

  • 次のコマンドを実行して、BareMetalHost の状態を確認します。

    $ oc get baremetalhost -n bmaas
    Copy to Clipboard Toggle word wrap

    状態は、registeringinspecting、そして最終的に available へと進みます。

6.6. BMaaS ホストのユーザーの設定

ベアメタルホストユーザーを設定し、Kubernetes シークレットに追加します。次に、シークレットを作成して適用し、ホストをカスタマイズします。

手順

  1. 次の内容を含む <hostname>-user-data.yaml という名前のファイルを作成します。

    users:
      - name: <name>
        sudo: [<sudo_config>]
        ssh_authorized_keys:
          - <key_type>
          <key>
        shell: <shell_path>
        groups: [<groups>]
        lock_passwd: true|false
    Copy to Clipboard Toggle word wrap
    <hostname>
    ベアメタルホストの名前。
    <name>
    ユーザー名。
    <sudo_config>
    ユーザーの sudo 設定。
    <key_type>
    SSH キーの種類。
    <key>
    <name> ユーザーとしてこのホストにアクセスするときに使用する公開 SSH キー。
    <shell_path>
    ホストにアクセスするときに使用するシェル。
    <groups>
    ユーザーが所属するグループ。
    lock_passwd

    ユーザーパスワードがロックされているかどうか。true の場合、ユーザーはパスワードを使用してログインすることはできませんが、SSH は引き続き使用できます。

    ユーザーの例

    users:
      - name: sysadmin
        sudo: ["ALL=(ALL) NOPASSWD:ALL"]
        ssh_authorized_keys:
          - ssh-rsa AAAAB3NzaC1yc2E... sysadmin@workstation.example.com
        shell: /bin/bash
        groups: [adm, sudo]
        lock_passwd: true
    Copy to Clipboard Toggle word wrap

  2. 次のコマンドを実行して、<hostname>-user-data.yaml ファイルからシークレットを作成します。

    $ oc create secret generic <hostname>-user-data \
      --from-file=userData=<hostname>-user-data.yaml -n bmaas
    Copy to Clipboard Toggle word wrap
    <hostname>
    ベアメタルホストの名前。
  3. 次のコマンドを実行して、BareMetalHost<hostname>-user-data.yaml ファイルを使用するように設定します。

    $ oc patch baremetalhost <hostname> -n bmaas \
         --type merge -p '{"spec":{"userData":{"name":"<hostname>-user-data"}}}'
    Copy to Clipboard Toggle word wrap
    <hostname>
    ベアメタルホストの名前。

6.7. BareMetalHost リソースの networkData パラメーターの設定

BareMetalHost カスタムリソース (CR) の networkData フィールドを使用すると、作成時にベアメタルホストのネットワーク設定を制御できます。ほとんどのオペレーティングシステムでは、これは Kubernetes シークレットにカプセル化された設定ファイルを使用して実現されます。次に、cloud-init サービスはそれを使用してサービスをカスタマイズします。

手順

  1. 次の内容を含む network-data.yaml という名前のファイルを作成します。

    links:
      - id: <interface_id>
        type: phy
        ethernet_mac_address: <mac_address>
    networks:
      - id: <interface_id>
        link: <interface_id>
        type: ipv4_dhcp
    services:
      - type: dns
        address: <dns_server>
    Copy to Clipboard Toggle word wrap
    <interface_id>
    ネットワークインターフェイスの ID (例: enp2s0)。
    <mac_address>
    ネットワークインターフェイスの MAC アドレス。
    <dns_server>
    DNS サーバーの IP アドレス。
  2. 次のコマンドを実行して、networkData ファイルからシークレットを作成します。

    $ oc create secret generic <hostname>-network-data \
      --from-file=networkData=network-data.yaml -n bmaas
    Copy to Clipboard Toggle word wrap
    <hostname>
    ベアメタルホストのホスト名。
  3. 次のコマンドを実行して、BareMetalHostnetworkData ファイルを使用するように設定します。

    $ oc patch baremetalhost <hostname> -n bmaas \
      --type merge -p '{"spec":{"networkData":{"name":"<hostname>-network-data"}}}'
    Copy to Clipboard Toggle word wrap

6.8. ベアメタルホストへのイメージのデプロイ

イメージをホストにデプロイするには、BareMetalHost リソースの spec セクションにある image フィールドを更新します。image フィールドを更新すると、プロビジョニングがすぐに開始されます。

手順

  • 次のコマンドを実行して、BareMetalHost CR の image フィールドを更新します。

    $ oc patch baremetalhost <hostname> \
      --type merge -p '{"spec": {"image": {"url": "<image_url>", "checksum": "<checksum_url>", "checksumType": "auto"}}}'
    Copy to Clipboard Toggle word wrap
    <hostname>
    BareMetalHost リソースの名前。
    <image_url>
    デプロイするイメージの URL。
    <checksum_url>
    イメージのチェックサムファイルの URL。

Legal Notice

Copyright © 2025 Red Hat

OpenShift documentation is licensed under the Apache License 2.0 (https://www.apache.org/licenses/LICENSE-2.0).

Modified versions must remove all Red Hat trademarks.

Portions adapted from https://github.com/kubernetes-incubator/service-catalog/ with modifications by Red Hat.

Red Hat, Red Hat Enterprise Linux, the Red Hat logo, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other countries.

Linux® is the registered trademark of Linus Torvalds in the United States and other countries.

Java® is a registered trademark of Oracle and/or its affiliates.

XFS® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States and/or other countries.

MySQL® is a registered trademark of MySQL AB in the United States, the European Union and other countries.

Node.js® is an official trademark of Joyent. Red Hat Software Collections is not formally related to or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack® Word Mark and OpenStack logo are either registered trademarks/service marks or trademarks/service marks of the OpenStack Foundation, in the United States and other countries and are used with the OpenStack Foundation’s permission. We are not affiliated with, endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

トップに戻る
Red Hat logoGithubredditYoutubeTwitter

詳細情報

試用、購入および販売

コミュニティー

Red Hat ドキュメントについて

Red Hat をお使いのお客様が、信頼できるコンテンツが含まれている製品やサービスを活用することで、イノベーションを行い、目標を達成できるようにします。 最新の更新を見る.

多様性を受け入れるオープンソースの強化

Red Hat では、コード、ドキュメント、Web プロパティーにおける配慮に欠ける用語の置き換えに取り組んでいます。このような変更は、段階的に実施される予定です。詳細情報: Red Hat ブログ.

会社概要

Red Hat は、企業がコアとなるデータセンターからネットワークエッジに至るまで、各種プラットフォームや環境全体で作業を簡素化できるように、強化されたソリューションを提供しています。

Theme

© 2025 Red Hat