スケーラビリティーおよびパフォーマンス


OpenShift Container Platform 4.8

実稼働環境における OpenShift Container Platform クラスターのスケーリングおよびパフォーマンスチューニング

Red Hat OpenShift Documentation Team

概要

本書では、クラスターをスケーリングし、OpenShift Container Platform 環境のパフォーマンスを最適化する方法について説明します。

第4章 Node Tuning Operator の使用

Node Tuning Operator について説明し、この Operator を使用し、Tuned デーモンのオーケストレーションを実行してノードレベルのチューニングを管理する方法について説明します。

4.1. Node Tuning Operator について

Node Tuning Operator は、TuneD デーモンのオーケストレーションによるノードレベルのチューニングの管理に役立ちます。ほとんどの高パフォーマンスアプリケーションでは、一定レベルのカーネルのチューニングが必要です。Node Tuning Operator は、ノードレベルの sysctl の統一された管理インターフェイスをユーザーに提供し、ユーザーが指定するカスタムチューニングを追加できるよう柔軟性を提供します。

Operator は、コンテナー化された OpenShift Container Platform の TuneD デーモンを Kubernetes デーモンセットとして管理します。これにより、カスタムチューニング仕様が、デーモンが認識する形式でクラスターで実行されるすべてのコンテナー化された TuneD デーモンに渡されます。デーモンは、ノードごとに 1 つずつ、クラスターのすべてのノードで実行されます。

コンテナー化された TuneD デーモンによって適用されるノードレベルの設定は、プロファイルの変更をトリガーするイベントで、または終了シグナルの受信および処理によってコンテナー化された TuneD デーモンが正常に終了する際にロールバックされます。

Node Tuning Operator は、バージョン 4.1 以降における標準的な OpenShift Container Platform インストールの一部となっています。

4.2. Node Tuning Operator 仕様サンプルへのアクセス

このプロセスを使用して Node Tuning Operator 仕様サンプルにアクセスします。

手順

  1. 以下を実行します。

    $ oc get Tuned/default -o yaml -n openshift-cluster-node-tuning-operator

デフォルトの CR は、OpenShift Container Platform プラットフォームの標準的なノードレベルのチューニングを提供することを目的としており、Operator 管理の状態を設定するためにのみ変更できます。デフォルト CR へのその他のカスタム変更は、Operator によって上書きされます。カスタムチューニングの場合は、独自のチューニングされた CR を作成します。新規に作成された CR は、ノード/Pod ラベルおよびプロファイルの優先順位に基づいて OpenShift Container Platform ノードに適用されるデフォルトの CR およびカスタムチューニングと組み合わされます。

警告

特定の状況で Pod ラベルのサポートは必要なチューニングを自動的に配信する便利な方法ですが、この方法は推奨されず、とくに大規模なクラスターにおいて注意が必要です。デフォルトの調整された CR は Pod ラベル一致のない状態で提供されます。カスタムプロファイルが Pod ラベル一致のある状態で作成される場合、この機能はその時点で有効になります。Pod ラベル機能は、Node Tuning Operator の今後のバージョンで非推奨になる場合があります。

4.3. クラスターに設定されるデフォルトのプロファイル

以下は、クラスターに設定されるデフォルトのプロファイルです。

apiVersion: tuned.openshift.io/v1
kind: Tuned
metadata:
  name: default
  namespace: openshift-cluster-node-tuning-operator
spec:
  profile:
  - name: "openshift"
    data: |
      [main]
      summary=Optimize systems running OpenShift (parent profile)
      include=${f:virt_check:virtual-guest:throughput-performance}

      [selinux]
      avc_cache_threshold=8192

      [net]
      nf_conntrack_hashsize=131072

      [sysctl]
      net.ipv4.ip_forward=1
      kernel.pid_max=>4194304
      net.netfilter.nf_conntrack_max=1048576
      net.ipv4.conf.all.arp_announce=2
      net.ipv4.neigh.default.gc_thresh1=8192
      net.ipv4.neigh.default.gc_thresh2=32768
      net.ipv4.neigh.default.gc_thresh3=65536
      net.ipv6.neigh.default.gc_thresh1=8192
      net.ipv6.neigh.default.gc_thresh2=32768
      net.ipv6.neigh.default.gc_thresh3=65536
      vm.max_map_count=262144

      [sysfs]
      /sys/module/nvme_core/parameters/io_timeout=4294967295
      /sys/module/nvme_core/parameters/max_retries=10

  - name: "openshift-control-plane"
    data: |
      [main]
      summary=Optimize systems running OpenShift control plane
      include=openshift

      [sysctl]
      # ktune sysctl settings, maximizing i/o throughput
      #
      # Minimal preemption granularity for CPU-bound tasks:
      # (default: 1 msec#  (1 + ilog(ncpus)), units: nanoseconds)
      kernel.sched_min_granularity_ns=10000000
      # The total time the scheduler will consider a migrated process
      # "cache hot" and thus less likely to be re-migrated
      # (system default is 500000, i.e. 0.5 ms)
      kernel.sched_migration_cost_ns=5000000
      # SCHED_OTHER wake-up granularity.
      #
      # Preemption granularity when tasks wake up.  Lower the value to
      # improve wake-up latency and throughput for latency critical tasks.
      kernel.sched_wakeup_granularity_ns=4000000

  - name: "openshift-node"
    data: |
      [main]
      summary=Optimize systems running OpenShift nodes
      include=openshift

      [sysctl]
      net.ipv4.tcp_fastopen=3
      fs.inotify.max_user_watches=65536
      fs.inotify.max_user_instances=8192

  recommend:
  - profile: "openshift-control-plane"
    priority: 30
    match:
    - label: "node-role.kubernetes.io/master"
    - label: "node-role.kubernetes.io/infra"

  - profile: "openshift-node"
    priority: 40

4.4. TuneD プロファイルが適用されていることの確認

クラスターノードに適用されている Tune D プロファイルを確認します。

$ oc get profile -n openshift-cluster-node-tuning-operator

出力例

NAME             TUNED                     APPLIED   DEGRADED   AGE
master-0         openshift-control-plane   True      False      6h33m
master-1         openshift-control-plane   True      False      6h33m
master-2         openshift-control-plane   True      False      6h33m
worker-a         openshift-node            True      False      6h28m
worker-b         openshift-node            True      False      6h28m

  • NAME: Profile オブジェクトの名前。ノードごとに Profile オブジェクトが 1 つあり、それぞれの名前が一致します。
  • TUNED: 適用する任意の TuneD プロファイルの名前。
  • APPLIED: TuneD デーモンが任意のプロファイルを適用する場合は True。(true/False/Unknown)。
  • DEGRADED: TuneD プロファイルのアプリケーション中にエラーが報告される場合は True (True/False/Unknown)
  • AGE: Profile オブジェクトの作成からの経過時間。

4.5. カスタムチューニング仕様

Operator のカスタムリソース (CR) には 2 つの重要なセクションがあります。1 つ目のセクションの profile: は TuneD プロファイルおよびそれらの名前の一覧です。2 つ目の recommend: は、プロファイル選択ロジックを定義します。

複数のカスタムチューニング仕様は、Operator の namespace に複数の CR として共存できます。新規 CR の存在または古い CR の削除は Operator によって検出されます。既存のカスタムチューニング仕様はすべてマージされ、コンテナー化された TuneD デーモンの適切なオブジェクトは更新されます。

管理状態

Operator 管理の状態は、デフォルトの Tuned CR を調整して設定されます。デフォルトで、Operator は Managed 状態であり、spec.managementState フィールドはデフォルトの Tuned CR に表示されません。Operator Management 状態の有効な値は以下のとおりです。

  • Managed: Operator は設定リソースが更新されるとそのオペランドを更新します。
  • Unmanaged: Operator は設定リソースへの変更を無視します。
  • Removed: Operator は Operator がプロビジョニングしたオペランドおよびリソースを削除します。

プロファイルデータ

profile: セクションは、TuneD プロファイルおよびそれらの名前を一覧表示します。

profile:
- name: tuned_profile_1
  data: |
    # TuneD profile specification
    [main]
    summary=Description of tuned_profile_1 profile

    [sysctl]
    net.ipv4.ip_forward=1
    # ... other sysctl's or other TuneD daemon plugins supported by the containerized TuneD

# ...

- name: tuned_profile_n
  data: |
    # TuneD profile specification
    [main]
    summary=Description of tuned_profile_n profile

    # tuned_profile_n profile settings

推奨プロファイル

profile: 選択ロジックは、CR の recommend: セクションによって定義されます。recommend: セクションは、選択基準に基づくプロファイルの推奨項目の一覧です。

recommend:
<recommend-item-1>
# ...
<recommend-item-n>

一覧の個別項目:

- machineConfigLabels: 1
    <mcLabels> 2
  match: 3
    <match> 4
  priority: <priority> 5
  profile: <tuned_profile_name> 6
  operand: 7
    debug: <bool> 8
1
オプション:
2
キー/値の MachineConfig ラベルのディクショナリー。キーは一意である必要があります。
3
省略する場合は、優先度の高いプロファイルが最初に一致するか、または machineConfigLabels が設定されていない限り、プロファイルの一致が想定されます。
4
オプションの一覧。
5
プロファイルの順序付けの優先度。数値が小さいほど優先度が高くなります (0 が最も高い優先度になります)。
6
一致に適用する TuneD プロファイル。例: tuned_profile_1
7
オプションのオペランド設定。
8
TuneD デーモンのデバッグオンまたはオフを有効にします。オプションは、オンの場合は true、オフの場合は false です。デフォルトは false です。

<match> は、以下のように再帰的に定義されるオプションの一覧です。

- label: <label_name> 1
  value: <label_value> 2
  type: <label_type> 3
    <match> 4
1
ノードまたは Pod のラベル名。
2
オプションのノードまたは Pod のラベルの値。省略されている場合も、<label_name> があるだけで一致条件を満たします。
3
オプションのオブジェクトタイプ (node または pod)。省略されている場合は、node が想定されます。
4
オプションの <match> 一覧。

<match> が省略されない場合、ネストされたすべての <match> セクションが true に評価される必要もあります。そうでない場合には false が想定され、それぞれの <match> セクションのあるプロファイルは適用されず、推奨されません。そのため、ネスト化 (子の <match> セクション) は論理 AND 演算子として機能します。これとは逆に、<match> 一覧のいずれかの項目が一致する場合、<match> の一覧全体が true に評価されます。そのため、一覧は論理 OR 演算子として機能します。

machineConfigLabels が定義されている場合、マシン設定プールベースのマッチングが指定の recommend: 一覧の項目に対してオンになります。<mcLabels> はマシン設定のラベルを指定します。マシン設定は、プロファイル <tuned_profile_name> についてカーネル起動パラメーターなどのホスト設定を適用するために自動的に作成されます。この場合、マシン設定セレクターが <mcLabels> に一致するすべてのマシン設定プールを検索し、プロファイル <tuned_profile_name> を確認されるマシン設定プールが割り当てられるすべてのノードに設定する必要があります。マスターロールとワーカーのロールの両方を持つノードをターゲットにするには、マスターロールを使用する必要があります。

一覧項目の match および machineConfigLabels は論理 OR 演算子によって接続されます。match 項目は、最初にショートサーキット方式で評価されます。そのため、true と評価される場合、machineConfigLabels 項目は考慮されません。

重要

マシン設定プールベースのマッチングを使用する場合、同じハードウェア設定を持つノードを同じマシン設定プールにグループ化することが推奨されます。この方法に従わない場合は、TuneD オペランドが同じマシン設定プールを共有する 2 つ以上のノードの競合するカーネルパラメーターを計算する可能性があります。

例: ノード/Pod ラベルベースのマッチング

- match:
  - label: tuned.openshift.io/elasticsearch
    match:
    - label: node-role.kubernetes.io/master
    - label: node-role.kubernetes.io/infra
    type: pod
  priority: 10
  profile: openshift-control-plane-es
- match:
  - label: node-role.kubernetes.io/master
  - label: node-role.kubernetes.io/infra
  priority: 20
  profile: openshift-control-plane
- priority: 30
  profile: openshift-node

上記のコンテナー化された TuneD デーモンの CR は、プロファイルの優先順位に基づいてその recommend.conf ファイルに変換されます。最も高い優先順位 (10) を持つプロファイルは openshift-control-plane-es であるため、これが最初に考慮されます。指定されたノードで実行されるコンテナー化された TuneD デーモンは、同じノードに tuned.openshift.io/elasticsearch ラベルが設定された Pod が実行されているかどうかを確認します。これがない場合、 <match> セクション全体が false として評価されます。このラベルを持つこのような Pod がある場合、 <match> セクションが true に評価されるようにするには、ノードラベルは node-role.kubernetes.io/master または node-role.kubernetes.io/infra である必要もあります。

優先順位が 10 のプロファイルのラベルが一致した場合、openshift-control-plane-es プロファイルが適用され、その他のプロファイルは考慮されません。ノード/Pod ラベルの組み合わせが一致しない場合、2 番目に高い優先順位プロファイル (openshift-control-plane) が考慮されます。このプロファイルは、コンテナー化された TuneD Pod が node-role.kubernetes.io/master または node-role.kubernetes.io/infra ラベルを持つノードで実行される場合に適用されます。

最後に、プロファイル openshift-node には最低の優先順位である 30 が設定されます。これには <match> セクションがないため、常に一致します。これは、より高い優先順位の他のプロファイルが指定されたノードで一致しない場合に openshift-node プロファイルを設定するために、最低の優先順位のノードが適用される汎用的な (catch-all) プロファイルとして機能します。

Decision workflow

例: マシン設定プールベースのマッチング

apiVersion: tuned.openshift.io/v1
kind: Tuned
metadata:
  name: openshift-node-custom
  namespace: openshift-cluster-node-tuning-operator
spec:
  profile:
  - data: |
      [main]
      summary=Custom OpenShift node profile with an additional kernel parameter
      include=openshift-node
      [bootloader]
      cmdline_openshift_node_custom=+skew_tick=1
    name: openshift-node-custom

  recommend:
  - machineConfigLabels:
      machineconfiguration.openshift.io/role: "worker-custom"
    priority: 20
    profile: openshift-node-custom

ノードの再起動を最小限にするには、ターゲットノードにマシン設定プールのノードセレクターが一致するラベルを使用してラベルを付け、上記の Tuned CR を作成してから、最後にカスタムのマシン設定プール自体を作成します。

4.6. カスタムチューニングの例

デフォルト CR からの TuneD プロファイルの使用

以下の CR は、ラベル tuned.openshift.io/ingress-node-label を任意の値に設定した状態で OpenShift Container Platform ノードのカスタムノードレベルのチューニングを適用します。

例: openshift-control-plane TuneD プロファイルを使用したカスタムチューニング

apiVersion: tuned.openshift.io/v1
kind: Tuned
metadata:
  name: ingress
  namespace: openshift-cluster-node-tuning-operator
spec:
  profile:
  - data: |
      [main]
      summary=A custom OpenShift ingress profile
      include=openshift-control-plane
      [sysctl]
      net.ipv4.ip_local_port_range="1024 65535"
      net.ipv4.tcp_tw_reuse=1
    name: openshift-ingress
  recommend:
  - match:
    - label: tuned.openshift.io/ingress-node-label
    priority: 10
    profile: openshift-ingress

重要

カスタムプロファイル作成者は、デフォルトの TuneD CR に含まれるデフォルトの調整されたデーモンプロファイルを組み込むことが強く推奨されます。上記の例では、デフォルトの openshift-control-plane プロファイルを使用してこれを実行します。

ビルトイン TuneD プロファイルの使用

NTO が管理するデーモンセットのロールアウトに成功すると、TuneD オペランドはすべて同じバージョンの TuneD デーモンを管理します。デーモンがサポートするビルトイン TuneD プロファイルを一覧表示するには、以下の方法で TuneD Pod をクエリーします。

$ oc exec $tuned_pod -n openshift-cluster-node-tuning-operator -- find /usr/lib/tuned/ -name tuned.conf -printf '%h\n' | sed 's|^.*/||'

このコマンドで取得したプロファイル名をカスタムのチューニング仕様で使用できます。

例: built-in hpc-compute TuneD プロファイルの使用

apiVersion: tuned.openshift.io/v1
kind: Tuned
metadata:
  name: openshift-node-hpc-compute
  namespace: openshift-cluster-node-tuning-operator
spec:
  profile:
  - data: |
      [main]
      summary=Custom OpenShift node profile for HPC compute workloads
      include=openshift-node,hpc-compute
    name: openshift-node-hpc-compute

  recommend:
  - match:
    - label: tuned.openshift.io/openshift-node-hpc-compute
    priority: 20
    profile: openshift-node-hpc-compute

ビルトインの hpc-compute プロファイルに加えて、上記の例には、デフォルトの Tuned CR に同梱される openshift-node TuneD デーモンプロファイルが含まれており、コンピュートノードに OpenShift 固有のチューニングを使用します。

4.7. サポートされている TuneD デーモンプラグイン

[main] セクションを除き、以下の TuneD プラグインは、Tuned CR の profile: セクションで定義されたカスタムプロファイルを使用する場合にサポートされます。

  • audio
  • cpu
  • disk
  • eeepc_she
  • modules
  • mounts
  • net
  • scheduler
  • scsi_host
  • selinux
  • sysctl
  • sysfs
  • usb
  • video
  • vm

これらのプラグインの一部によって提供される動的チューニング機能の中に、サポートされていない機能があります。以下の TuneD プラグインは現時点でサポートされていません。

  • bootloader
  • script
  • systemd

詳細は、利用可能な TuneD プラグイン および TuneD の使用 を参照してください。

第5章 クラスターローダーの使用

クラスターローダーとは、クラスターに対してさまざまなオブジェクトを多数デプロイするツールであり、ユーザー定義のクラスターオブジェクトを作成します。クラスターローダーをビルド、設定、実行して、さまざまなクラスターの状態にある OpenShift Container Platform デプロイメントのパフォーマンスメトリクスを測定します。

重要

クラスターローダーが非推奨になり、今後のリリースで削除されます。

5.1. クラスターローダーのインストール

手順

  1. コンテナーイメージをプルするには、以下を実行します。

    $ podman pull quay.io/openshift/origin-tests:4.8

5.2. クラスターローダーの実行

前提条件

  • リポジトリーは認証を要求するプロンプトを出します。レジストリーの認証情報を使用すると、一般的に利用できないイメージにアクセスできます。インストールからの既存の認証情報を使用します。

手順

  1. 組み込まれているテスト設定を使用してクラスターローダーを実行し、5 つのテンプレートビルドをデプロイして、デプロイメントが完了するまで待ちます。

    $ podman run -v ${LOCAL_KUBECONFIG}:/root/.kube/config:z -i \
    quay.io/openshift/origin-tests:4.8 /bin/bash -c 'export KUBECONFIG=/root/.kube/config && \
    openshift-tests run-test "[sig-scalability][Feature:Performance] Load cluster \
    should populate the cluster [Slow][Serial] [Suite:openshift]"'

    または、VIPERCONFIG の環境変数を設定して、ユーザー定義の設定でクラスターローダーを実行します。

    $ podman run -v ${LOCAL_KUBECONFIG}:/root/.kube/config:z \
    -v ${LOCAL_CONFIG_FILE_PATH}:/root/configs/:z \
    -i quay.io/openshift/origin-tests:4.8 \
    /bin/bash -c 'KUBECONFIG=/root/.kube/config VIPERCONFIG=/root/configs/test.yaml \
    openshift-tests run-test "[sig-scalability][Feature:Performance] Load cluster \
    should populate the cluster [Slow][Serial] [Suite:openshift]"'

    この例では、 ${LOCAL_KUBECONFIG} はローカルファイルシステムの kubeconfig のパスを参照します。さらに、${LOCAL_CONFIG_FILE_PATH} というディレクトリーがあり、これは test.yaml という設定ファイルが含まれるコンテナーにマウントされます。また、test.yaml が外部テンプレートファイルや podspec ファイルを参照する場合、これらもコンテナーにマウントされる必要があります。

5.3. クラスターローダーの設定

このツールは、複数のテンプレートや Pod を含む namespace (プロジェクト) を複数作成します。

5.3.1. クラスターローダー設定ファイルの例

クラスターローダーの設定ファイルは基本的な YAML ファイルです。

provider: local 1
ClusterLoader:
  cleanup: true
  projects:
    - num: 1
      basename: clusterloader-cakephp-mysql
      tuning: default
      ifexists: reuse
      templates:
        - num: 1
          file: cakephp-mysql.json

    - num: 1
      basename: clusterloader-dancer-mysql
      tuning: default
      ifexists: reuse
      templates:
        - num: 1
          file: dancer-mysql.json

    - num: 1
      basename: clusterloader-django-postgresql
      tuning: default
      ifexists: reuse
      templates:
        - num: 1
          file: django-postgresql.json

    - num: 1
      basename: clusterloader-nodejs-mongodb
      tuning: default
      ifexists: reuse
      templates:
        - num: 1
          file: quickstarts/nodejs-mongodb.json

    - num: 1
      basename: clusterloader-rails-postgresql
      tuning: default
      templates:
        - num: 1
          file: rails-postgresql.json

  tuningsets: 2
    - name: default
      pods:
        stepping: 3
          stepsize: 5
          pause: 0 s
        rate_limit: 4
          delay: 0 ms
1
エンドツーエンドテストのオプション設定。local に設定して、過剰に長いログメッセージを回避します。
2
このチューニングセットでは、速度制限やステップ設定、複数の Pod バッチ作成、セット間での一時停止などが可能になります。クラスターローダーは、以前のステップが完了したことをモニターリングしてから、続行します。
3
ステップ設定では、オブジェクトが N 個作成されてから、M 秒間一時停止します。
4
速度制限は、次のオブジェクトを作成するまで M ミリ秒間待機します。

この例では、外部テンプレートファイルや Pod 仕様ファイルへの参照もコンテナーにマウントされていることを前提とします。

重要

Microsoft Azure でクラスターローダーを実行している場合、AZURE_AUTH_LOCATION 変数を、インストーラーディレクトリーにある terraform.azure.auto.tfvars.json の出力が含まれるファイルに設定する必要があります。

5.3.2. 設定フィールド

表5.1 クラスターローダーの最上位のフィールド
フィールド説明

cleanup

true または false に設定します。設定ごとに 1 つの定義を設定します。true に設定すると、cleanup は、テストの最後にクラスターローダーが作成した namespace (プロジェクト) すべてを削除します。

projects

1 つまたは多数の定義が指定されたサブオブジェクト。projects の下に、作成する各 namespace が定義され、projects には必須のサブヘッダーが複数指定されます。

tuningsets

設定ごとに 1 つの定義が指定されたサブオブジェクト。tuningsets では、チューニングセットを定義して、プロジェクトやオブジェクト作成に対して設定可能なタイミングを追加することができます (Pod、テンプレートなど)。

sync

設定ごとに 1 つの定義が指定されたオプションのサブオブジェクト。オブジェクト作成時に同期できるかどうかについて追加します。

表5.2 projects の下にあるフィールド
フィールド説明

num

整数。作成するプロジェクト数の 1 つの定義。

basename

文字列。プロジェクトのベース名の定義。競合が発生しないように、同一の namespace の数が Basename に追加されます。

tuning

文字列。オブジェクトに適用するチューニングセットの 1 つの定義。 これは対象の namespace にデプロイします。

ifexists

reuse または delete のいずれかが含まれる文字列。ツールが実行時に作成するプロジェクトまたは namespace の名前と同じプロジェクトまたは namespace を見つける場合のツールの機能を定義します。

configmaps

キーと値のペア一覧。キーは設定マップの名前で、値はこの設定マップの作成元のファイルへのパスです。

secrets

キーと値のペア一覧。キーはシークレットの名前で、値はこのシークレットの作成元のファイルへのパスです。

pods

デプロイする Pod の 1 つまたは多数の定義を持つサブオブジェクト

templates

デプロイするテンプレートの 1 つまたは多数の定義を持つサブオブジェクト

表5.3 pods および templates のフィールド
フィールド説明

num

整数。デプロイする Pod またはテンプレート数。

image

文字列。プルが可能なリポジトリーに対する Docker イメージの URL

basename

文字列。作成するテンプレート (または Pod) のベース名の 1 つの定義。

file

文字列。ローカルファイルへのパス。 作成する Pod 仕様またはテンプレートのいずれかです。

parameters

キーと値のペア。parameters の下で、Pod またはテンプレートでオーバーライドする値の一覧を指定できます。

表5.4 tuningsets の下にあるフィールド
フィールド説明

name

文字列。チューニングセットの名前。 プロジェクトのチューニングを定義する時に指定した名前と一致します。

pods

Pod に適用される tuningsets を特定するサブオブジェクト

templates

テンプレートに適用される tuningsets を特定するサブオブジェクト

表5.5 tuningsets pods または tuningsets templates の下にあるフィールド
フィールド説明

stepping

サブオブジェクト。ステップ作成パターンでオブジェクトを作成する場合に使用するステップ設定。

rate_limit

サブオブジェクト。オブジェクト作成速度を制限するための速度制限チューニングセットの設定。

表5.6 tuningsets pods または tuningsets templates、stepping の下にあるフィールド
フィールド説明

stepsize

整数。オブジェクト作成を一時停止するまでに作成するオブジェクト数。

pause

整数。stepsize で定義したオブジェクト数を作成後に一時停止する秒数。

timeout

整数。オブジェクト作成に成功しなかった場合に失敗するまで待機する秒数。

delay

整数。次の作成要求まで待機する時間 (ミリ秒)。

表5.7 sync の下にあるフィールド
フィールド説明

server

enabled および port フィールドを持つサブオブジェクト。ブール値 enabled を指定すると、Pod を同期するために HTTP サーバーを起動するかどうか定義します。port の整数はリッスンする HTTP サーバーポートを定義します (デフォルトでは 9090)。

running

ブール値。selectors に一致するラベルが指定された Pod が Running の状態になるまで待機します。

succeeded

ブール値。selectors に一致するラベルが指定された Pod が Completed の状態になるまで待機します。

selectors

Running または Completed の状態の Pod に一致するセレクター一覧

timeout

文字列。Running または Completed の状態の Pod を待機してから同期をタイムアウトするまでの時間。0 以外の値は、単位 [ns|us|ms|s|m|h] を使用してください。

5.4. 既知の問題

  • クラスターローダーは設定なしで呼び出される場合に失敗します。(BZ#1761925)
  • IDENTIFIER パラメーターがユーザーテンプレートで定義されていない場合には、テンプレートの作成は error: unknown parameter name "IDENTIFIER" エラーを出して失敗します。テンプレートをデプロイする場合は、このエラーが発生しないように、以下のパラメーターをテンプレートに追加してください。

    {
      "name": "IDENTIFIER",
      "description": "Number to append to the name of resources",
      "value": "1"
    }

    Pod をデプロイする場合は、このパラメーターを追加する必要はありません。

第6章 CPU マネージャーの使用

CPU マネージャーは、CPU グループを管理して、ワークロードを特定の CPU に制限します。

CPU マネージャーは、以下のような属性が含まれるワークロードに有用です。

  • できるだけ長い CPU 時間が必要な場合
  • プロセッサーのキャッシュミスの影響を受ける場合
  • レイテンシーが低いネットワークアプリケーションの場合
  • 他のプロセスと連携し、単一のプロセッサーキャッシュを共有することに利点がある場合

6.1. CPU マネージャーの設定

手順

  1. オプション: ノードにラベルを指定します。

    # oc label node perf-node.example.com cpumanager=true
  2. CPU マネージャーを有効にする必要のあるノードの MachineConfigPool を編集します。この例では、すべてのワーカーで CPU マネージャーが有効にされています。

    # oc edit machineconfigpool worker
  3. ラベルをワーカーのマシン設定プールに追加します。

    metadata:
      creationTimestamp: 2020-xx-xxx
      generation: 3
      labels:
        custom-kubelet: cpumanager-enabled
  4. KubeletConfigcpumanager-kubeletconfig.yaml、カスタムリソース (CR) を作成します。直前の手順で作成したラベルを参照し、適切なノードを新規の kubelet 設定で更新します。machineConfigPoolSelector セクションを参照してください。

    apiVersion: machineconfiguration.openshift.io/v1
    kind: KubeletConfig
    metadata:
      name: cpumanager-enabled
    spec:
      machineConfigPoolSelector:
        matchLabels:
          custom-kubelet: cpumanager-enabled
      kubeletConfig:
         cpuManagerPolicy: static 1
         cpuManagerReconcilePeriod: 5s 2
    1
    ポリシーを指定します。
    • noneこのポリシーは、既存のデフォルト CPU アフィニティースキームを明示的に有効にし、スケジューラーが自動的に実行するもの以外のアフィニティーを提供しません。
    • staticこのポリシーにより、特定のリソース特性を持つ Pod の CPU アフィニティーを増やし、これらの Pod のノードにおける排他性を付与することができます。
    2
    オプション:CPU マネージャーの調整頻度を指定します。デフォルトは 5s です。
  5. 動的な kubelet 設定を作成します。

    # oc create -f cpumanager-kubeletconfig.yaml

    これにより、CPU マネージャー機能が kubelet 設定に追加され、必要な場合には Machine Config Operator (MCO) がノードを再起動します。CPU マネージャーを有効にするために再起動する必要はありません。

  6. マージされた kubelet 設定を確認します。

    # oc get machineconfig 99-worker-XXXXXX-XXXXX-XXXX-XXXXX-kubelet -o json | grep ownerReference -A7

    出力例

           "ownerReferences": [
                {
                    "apiVersion": "machineconfiguration.openshift.io/v1",
                    "kind": "KubeletConfig",
                    "name": "cpumanager-enabled",
                    "uid": "7ed5616d-6b72-11e9-aae1-021e1ce18878"
                }
            ]

  7. ワーカーで更新された kubelet.conf を確認します。

    # oc debug node/perf-node.example.com
    sh-4.2# cat /host/etc/kubernetes/kubelet.conf | grep cpuManager

    出力例

    cpuManagerPolicy: static        1
    cpuManagerReconcilePeriod: 5s   2

    1 2
    これらの設定は、KubeletConfig CR を作成する際に定義されたものです。
  8. コア 1 つまたは複数を要求する Pod を作成します。制限および要求の CPU の値は整数にする必要があります。これは、対象の Pod 専用のコア数です。

    # cat cpumanager-pod.yaml

    出力例

    apiVersion: v1
    kind: Pod
    metadata:
      generateName: cpumanager-
    spec:
      containers:
      - name: cpumanager
        image: gcr.io/google_containers/pause-amd64:3.0
        resources:
          requests:
            cpu: 1
            memory: "1G"
          limits:
            cpu: 1
            memory: "1G"
      nodeSelector:
        cpumanager: "true"

  9. Pod を作成します。

    # oc create -f cpumanager-pod.yaml
  10. Pod がラベル指定されたノードにスケジュールされていることを確認します。

    # oc describe pod cpumanager

    出力例

    Name:               cpumanager-6cqz7
    Namespace:          default
    Priority:           0
    PriorityClassName:  <none>
    Node:  perf-node.example.com/xxx.xx.xx.xxx
    ...
     Limits:
          cpu:     1
          memory:  1G
        Requests:
          cpu:        1
          memory:     1G
    ...
    QoS Class:       Guaranteed
    Node-Selectors:  cpumanager=true

  11. cgroups が正しく設定されていることを確認します。pause プロセスのプロセス ID (PID) を取得します。

    # ├─init.scope
    │ └─1 /usr/lib/systemd/systemd --switched-root --system --deserialize 17
    └─kubepods.slice
      ├─kubepods-pod69c01f8e_6b74_11e9_ac0f_0a2b62178a22.slice
      │ ├─crio-b5437308f1a574c542bdf08563b865c0345c8f8c0b0a655612c.scope
      │ └─32706 /pause

    QoS (quality of service) 層 Guaranteed の Pod は、kubepods.slice に配置されます。他の QoS 層の Pod は、kubepods の子である cgroups に配置されます。

    # cd /sys/fs/cgroup/cpuset/kubepods.slice/kubepods-pod69c01f8e_6b74_11e9_ac0f_0a2b62178a22.slice/crio-b5437308f1ad1a7db0574c542bdf08563b865c0345c86e9585f8c0b0a655612c.scope
    # for i in `ls cpuset.cpus tasks` ; do echo -n "$i "; cat $i ; done

    出力例

    cpuset.cpus 1
    tasks 32706

  12. 対象のタスクで許可される CPU 一覧を確認します。

    # grep ^Cpus_allowed_list /proc/32706/status

    出力例

     Cpus_allowed_list:    1

  13. システム上の別の Pod (この場合は burstable QoS 層にある Pod) が、Guaranteed Pod に割り当てられたコアで実行できないことを確認します。

    # cat /sys/fs/cgroup/cpuset/kubepods.slice/kubepods-besteffort.slice/kubepods-besteffort-podc494a073_6b77_11e9_98c0_06bba5c387ea.slice/crio-c56982f57b75a2420947f0afc6cafe7534c5734efc34157525fa9abbf99e3849.scope/cpuset.cpus
    0
    # oc describe node perf-node.example.com

    出力例

    ...
    Capacity:
     attachable-volumes-aws-ebs:  39
     cpu:                         2
     ephemeral-storage:           124768236Ki
     hugepages-1Gi:               0
     hugepages-2Mi:               0
     memory:                      8162900Ki
     pods:                        250
    Allocatable:
     attachable-volumes-aws-ebs:  39
     cpu:                         1500m
     ephemeral-storage:           124768236Ki
     hugepages-1Gi:               0
     hugepages-2Mi:               0
     memory:                      7548500Ki
     pods:                        250
    -------                               ----                           ------------  ----------  ---------------  -------------  ---
      default                                 cpumanager-6cqz7               1 (66%)       1 (66%)     1G (12%)         1G (12%)       29m
    
    Allocated resources:
      (Total limits may be over 100 percent, i.e., overcommitted.)
      Resource                    Requests          Limits
      --------                    --------          ------
      cpu                         1440m (96%)       1 (66%)

    この仮想マシンには、2 つの CPU コアがあります。system-reserved 設定は 500 ミリコアを予約し、Node Allocatable の量になるようにノードの全容量からコアの半分を引きます。ここで Allocatable CPU は 1500 ミリコアであることを確認できます。これは、それぞれがコアを 1 つ受け入れるので、CPU マネージャー Pod の 1 つを実行できることを意味します。1 つのコア全体は 1000 ミリコアに相当します。2 つ目の Pod をスケジュールしようとする場合、システムは Pod を受け入れますが、これがスケジュールされることはありません。

    NAME                    READY   STATUS    RESTARTS   AGE
    cpumanager-6cqz7        1/1     Running   0          33m
    cpumanager-7qc2t        0/1     Pending   0          11s

第7章 Topology Manager の使用

Topology Manager は、CPU マネージャー、デバイスマネージャー、およびその他の Hint Provider からヒントを収集し、同じ Non-Uniform Memory Access (NUMA) ノード上のすべての QoS (Quality of Service) クラスについて CPU、SR-IOV VF、その他デバイスリソースなどの Pod リソースを調整します。

Topology Manager は、収集したヒントのトポロジー情報を使用し、設定される Topology Manager ポリシーおよび要求される Pod リソースに基づいて、pod がノードから許可されるか、または拒否されるかどうかを判別します。

Topology Manager は、ハードウェアアクセラレーターを使用して低遅延 (latency-critical) の実行と高スループットの並列計算をサポートするワークロードの場合に役立ちます。

注記

Topology Manager を使用するには、static ポリシーで CPU マネージャーを使用する必要があります。CPU マネージャーの詳細は、CPU マネージャーの使用 を参照してください。

7.1. Topology Manager ポリシー

Topology Manager は、CPU マネージャーやデバイスマネージャーなどの Hint Provider からトポロジーのヒントを収集し、収集したヒントを使用して Pod リソースを調整することで、すべての QoS (Quality of Service) クラスの Pod リソースを調整します。

注記

CPU リソースを Pod 仕様の他の要求されたリソースと調整するには、CPU マネージャーを static CPU マネージャーポリシーで有効にする必要があります。

Topology Manager は、cpumanager-enabled カスタムリソース (CR) で割り当てる 4 つの割り当てポリシーをサポートします。

none ポリシー
これはデフォルトのポリシーで、トポロジーの配置は実行しません。
best-effort ポリシー
best-effort トポロジー管理ポリシーを持つ Pod のそれぞれのコンテナーの場合、kubelet は 各 Hint Provider を呼び出してそれらのリソースの可用性を検出します。この情報を使用して、Topology Manager は、そのコンテナーの推奨される NUMA ノードのアフィニティーを保存します。アフィニティーが優先されない場合、Topology Manager はこれを保管し、ノードに対して Pod を許可します。
restricted ポリシー
restricted トポロジー管理ポリシーを持つ Pod のそれぞれのコンテナーの場合、kubelet は 各 Hint Provider を呼び出してそれらのリソースの可用性を検出します。この情報を使用して、Topology Manager は、そのコンテナーの推奨される NUMA ノードのアフィニティーを保存します。アフィニティーが優先されない場合、Topology Manager はこの Pod をノードから拒否します。これにより、Pod が Pod の受付の失敗により Terminated 状態になります。
single-numa-node ポリシー
single-numa-node トポロジー管理ポリシーがある Pod のそれぞれのコンテナーの場合、kubelet は各 Hint Provider を呼び出してそれらのリソースの可用性を検出します。この情報を使用して、Topology Manager は単一の NUMA ノードのアフィニティーが可能かどうかを判別します。可能である場合、Pod はノードに許可されます。単一の NUMA ノードアフィニティーが使用できない場合には、Topology Manager は Pod をノードから拒否します。これにより、Pod は Pod の受付失敗と共に Terminated (終了) 状態になります。

7.2. Topology Manager のセットアップ

Topology Manager を使用するには、 cpumanager-enabled カスタムリソース (CR) で割り当てポリシーを設定する必要があります。CPU マネージャーをセットアップしている場合は、このファイルが存在している可能性があります。ファイルが存在しない場合は、作成できます。

前提条件

  • CPU マネージャーのポリシーを static に設定します。スケーラビリティーおよびパフォーマンスセクションの CPU マネージャーの使用を参照してください。

手順

Topololgy Manager をアクティブにするには、以下を実行します。

  1. cpumanager-enabled カスタムリソース (CR) で Topology Manager 割り当てポリシーを設定します。

    $ oc edit KubeletConfig cpumanager-enabled
    apiVersion: machineconfiguration.openshift.io/v1
    kind: KubeletConfig
    metadata:
      name: cpumanager-enabled
    spec:
      machineConfigPoolSelector:
        matchLabels:
          custom-kubelet: cpumanager-enabled
      kubeletConfig:
         cpuManagerPolicy: static 1
         cpuManagerReconcilePeriod: 5s
         topologyManagerPolicy: single-numa-node 2
    1
    このパラメーターは static である必要があります。
    2
    選択した Topology Manager 割り当てポリシーを指定します。このポリシーは single-numa-node になります。使用できる値は、defaultbest-effortrestrictedsingle-numa-node です。

関連情報

7.3. Pod の Topology Manager ポリシーとの対話

以下のサンプル Pod 仕様は、Pod の Topology Manger との対話について説明しています。

以下の Pod は、リソース要求や制限が指定されていないために BestEffort QoS クラスで実行されます。

spec:
  containers:
  - name: nginx
    image: nginx

以下の Pod は、要求が制限よりも小さいために Burstable QoS クラスで実行されます。

spec:
  containers:
  - name: nginx
    image: nginx
    resources:
      limits:
        memory: "200Mi"
      requests:
        memory: "100Mi"

選択したポリシーが none 以外の場合は、Topology Manager はこれらの Pod 仕様のいずれかも考慮しません。

以下の最後のサンプル Pod は、要求が制限と等しいために Guaranteed QoS クラスで実行されます。

spec:
  containers:
  - name: nginx
    image: nginx
    resources:
      limits:
        memory: "200Mi"
        cpu: "2"
        example.com/device: "1"
      requests:
        memory: "200Mi"
        cpu: "2"
        example.com/device: "1"

Topology Manager はこの Pod を考慮します。Topology Manager は、利用可能な CPU のトポロジーを返す CPU マネージャーの静的ポリシーを確認します。また Topology Manager はデバイスマネージャーを確認し、example.com/device の利用可能なデバイスのトポロジーを検出します。

Topology Manager はこの情報を使用して、このコンテナーに最適なトポロジーを保管します。この Pod の場合、CPU マネージャーおよびデバイスマネージャーは、リソース割り当ての段階でこの保存された情報を使用します。

第8章 Cluster Monitoring Operator のスケーリング

OpenShift Container Platform は、Cluster Monitoring Operator が収集し、Prometheus ベースのモニターリングスタックに保存するメトリクスを公開します。管理者は、システムリソース、コンテナー、およびコンポーネントのメトリックを 1 つのダッシュボードインターフェイスである Grafana で表示できます。

8.1. Prometheus データベースのストレージ要件

Red Hat では、異なるスケールサイズに応じて各種のテストが実行されました。

注記

以下の Prometheus ストレージ要件は規定されていません。ワークロードのアクティビティーおよびリソースの使用に応じて、クラスターで観察されるリソースの消費量が大きくなる可能性があります。

表8.1 クラスター内のノード/Pod の数に基づく Prometheus データベースのストレージ要件
ノード数Pod 数1 日あたりの Prometheus ストレージの増加量15 日ごとの Prometheus ストレージの増加量RAM 領域 (スケールサイズに基づく)ネットワーク (tsdb チャンクに基づく)

50

1800

6.3 GB

94 GB

6 GB

16 MB

100

3600

13 GB

195 GB

10 GB

26 MB

150

5400

19 GB

283 GB

12 GB

36 MB

200

7200

25 GB

375 GB

14 GB

46 MB

ストレージ要件が計算値を超過しないようにするために、オーバーヘッドとして予期されたサイズのおよそ 20% が追加されています。

上記の計算は、デフォルトの OpenShift Container Platform Cluster Monitoring Operator についての計算です。

注記

CPU の使用率による影響は大きくありません。比率については、およそ 50 ノードおよび 1800 Pod ごとに 1 コア (/40) になります。

OpenShift Container Platform についての推奨事項

  • 3 つ以上のインフラストラクチャー (infra) ノードを使用します。
  • NVMe (non-volatile memory express) ドライブを搭載した 3 つ以上の openshift-container-storage ノードを使用します。

8.2. クラスターモニターリングの設定

クラスターモニターリングスタック内の Prometheus コンポーネントのストレージ容量を増やすことができます。

手順

Prometheus のストレージ容量を拡張するには、以下を実行します。

  1. YAML 設定ファイル cluster-monitoring-config.yml を作成します。以下に例を示します。

    apiVersion: v1
    kind: ConfigMap
    data:
      config.yaml: |
        prometheusK8s:
          retention: {{PROMETHEUS_RETENTION_PERIOD}} 1
          nodeSelector:
            node-role.kubernetes.io/infra: ""
          volumeClaimTemplate:
            spec:
              storageClassName: {{STORAGE_CLASS}} 2
              resources:
                requests:
                  storage: {{PROMETHEUS_STORAGE_SIZE}} 3
        alertmanagerMain:
          nodeSelector:
            node-role.kubernetes.io/infra: ""
          volumeClaimTemplate:
            spec:
              storageClassName: {{STORAGE_CLASS}} 4
              resources:
                requests:
                  storage: {{ALERTMANAGER_STORAGE_SIZE}} 5
    metadata:
      name: cluster-monitoring-config
      namespace: openshift-monitoring
    1
    標準の値は PROMETHEUS_RETENTION_PERIOD=15d になります。時間は、接尾辞 s、m、h、d のいずれかを使用する単位で測定されます。
    2 4
    クラスターのストレージクラス。
    3
    標準の値は PROMETHEUS_STORAGE_SIZE=2000Gi です。ストレージの値には、接尾辞 E、P、T、G、M、K のいずれかを使用した単純な整数または固定小数点整数を使用できます。 また、2 のべき乗の値 (Ei、Pi、Ti、Gi、Mi、Ki) を使用することもできます。
    5
    標準の値は ALERTMANAGER_STORAGE_SIZE=20Gi です。ストレージの値には、接尾辞 E、P、T、G、M、K のいずれかを使用した単純な整数または固定小数点整数を使用できます。 また、2 のべき乗の値 (Ei、Pi、Ti、Gi、Mi、Ki) を使用することもできます。
  2. 保存期間、ストレージクラス、およびストレージサイズの値を追加します。
  3. ファイルを保存します。
  4. 以下を実行して変更を適用します。

    $ oc create -f cluster-monitoring-config.yaml

第9章 Node Feature Discovery Operator

Node Feature Discovery (NFD) Operator および、これを使用して Node Feature Discovery (ハードウェア機能やシステム設定を検出するための Kubernetes アドオン) をオーケストレーションしてノードレベルの情報を公開する方法を説明します。

9.1. Node Feature Discovery Operator について

Node Feature Discovery Operator (NFD) は、ハードウェア固有の情報でノードにラベルを付け、OpenShift Container Platform クラスターのハードウェア機能と設定の検出を管理します。NFD は、PCI カード、カーネル、オペレーティングシステムのバージョンなど、ノード固有の属性でホストにラベルを付けます。

NFD Operator は、Node Feature Discovery と検索して Operator Hub で確認できます。

9.2. Node Feature Discovery Operator のインストール

Node Feature Discovery (NFD) Operator は、NFD デーモンセットの実行に必要なすべてのリソースをオーケストレーションします。クラスター管理者は、OpenShift Container Platform CLI または Web コンソールを使用して NFD Operator をインストールできます。

9.2.1. CLI を使用した NFD Operator のインストール

クラスター管理者は、CLI を使用して NFD Operator をインストールできます。

前提条件

  • OpenShift Container Platform クラスター。
  • OpenShift CLI (oc) をインストールしている。
  • cluster-admin 権限を持つユーザーとしてログインしている。

手順

  1. NFD Operator の namespace を作成します。

    1. openshift-nfd namespace を定義する以下の Namespace カスタムリソース (CR) を作成し、YAML を nfd-namespace.yaml ファイルに保存します。

      apiVersion: v1
      kind: Namespace
      metadata:
        name: openshift-nfd
    2. 以下のコマンドを実行して namespace を作成します。

      $ oc create -f nfd-namespace.yaml
  2. 以下のオブジェクトを作成して、直前の手順で作成した namespace に NFD Operator をインストールします。

    1. 以下の OperatorGroup CR を作成し、YAML を nfd-operatorgroup.yaml ファイルに保存します。

      apiVersion: operators.coreos.com/v1
      kind: OperatorGroup
      metadata:
        generateName: openshift-nfd-
        name: openshift-nfd
        namespace: openshift-nfd
      spec:
        targetNamespaces:
        - openshift-nfd
    2. 以下のコマンドを実行して OperatorGroup CR を作成します。

      $ oc create -f nfd-operatorgroup.yaml
    3. 以下のコマンドを実行して、次の手順に必要な channel の値を取得します。

      $ oc get packagemanifest nfd -n openshift-marketplace -o jsonpath='{.status.defaultChannel}'

      出力例

      4.8

    4. 以下の Subscription CR を作成し、YAML を nfd-sub.yaml ファイルに保存します。

      Subscription の例

      apiVersion: operators.coreos.com/v1alpha1
      kind: Subscription
      metadata:
        name: nfd
        namespace: openshift-nfd
      spec:
        channel: "4.8"
        installPlanApproval: Automatic
        name: nfd
        source: redhat-operators
        sourceNamespace: openshift-marketplace

    5. 以下のコマンドを実行して Subscription オブジェクトを作成します。

      $ oc create -f nfd-sub.yaml
    6. openshift-nfd プロジェクトに切り替えます。

      $ oc project openshift-nfd

検証

  • Operator のデプロイメントが正常に行われたことを確認するには、以下を実行します。

    $ oc get pods

    出力例

    NAME                                      READY   STATUS    RESTARTS   AGE
    nfd-controller-manager-7f86ccfb58-vgr4x   2/2     Running   0          10m

    正常にデプロイされると、Running ステータスが表示されます。

9.2.2. Web コンソールでの NFD Operator のインストール

クラスター管理者は、Web コンソールを使用して NFD Operator をインストールできます。

注記

先のセクションで説明されているように Namespace を作成することが推奨されます。

手順

  1. OpenShift Container Platform Web コンソールで、OperatorsOperatorHub をクリックします。
  2. 利用可能な Operator の一覧から Node Feature Discovery を選択してから Install をクリックします。
  3. Install Operator ページで、クラスターで特定の namespace を選択し、直前のセクションで作成した namespace を選択してから Install をクリックします。

検証

以下のように、NFD Operator が正常にインストールされていることを確認します。

  1. OperatorsInstalled Operators ページに移動します。
  2. StatusInstallSucceededNode Feature Discoveryopenshift-nfd プロジェクトに一覧表示され ていることを確認します。

    注記

    インストール時に、 Operator は Failed ステータスを表示する可能性があります。インストールが後に InstallSucceeded メッセージを出して正常に実行される場合は、Failed メッセージを無視できます。

トラブルシューティング

Operator がインストール済みとして表示されない場合に、さらにトラブルシューティングを実行します。

  1. OperatorsInstalled Operators ページに移動し、Operator Subscriptions および Install Plans タブで Status にエラーがあるかどうかを検査します。
  2. WorkloadsPods ページに移動し、openshift-nfd プロジェクトで Pod のログを確認します。

9.3. Node Feature Discovery Operator の使用

Node Feature Discovery (NFD) Operator は、NodeFeatureDiscovery CR を監視して Node-Feature-Discovery デーモンセットの実行に必要な全リソースをオーケストレーションします。NodeFeatureDiscovery CR に基づいて、Operator は任意の namespace にオペランド (NFD) コンポーネントを作成します。CR を編集して、他にあるオプションの中から、別の namespaceimageimagePullPolicy、および nfd-worker-conf を選択することができます。

クラスター管理者は、OpenShift Container Platform CLI または Web コンソールを使用して NodeFeatureDiscovery を作成できます。

9.3.1. CLI を使用した NodeFeatureDiscovery インスタンスの作成

クラスター管理者は、CLI を使用して NodeFeatureDiscovery CR インスタンスを作成できます。

前提条件

  • OpenShift Container Platform クラスター。
  • OpenShift CLI (oc) をインストールしている。
  • cluster-admin 権限を持つユーザーとしてログインしている。
  • NFD Operator をインストールすること。

手順

  1. 以下の NodeFeatureDiscovery カスタムリソース (CR) を作成し、YAML を NodeFeatureDiscovery .yaml ファイルに保存します。

    apiVersion: nfd.openshift.io/v1
    kind: NodeFeatureDiscovery
    metadata:
      name: nfd-instance
      namespace: openshift-nfd
    spec:
      instance: "" # instance is empty by default
      operand:
        namespace: openshift-nfd
        image: quay.io/openshift/origin-node-feature-discovery:4.8
        imagePullPolicy: Always
      workerConfig:
        configData: |
          #core:
          #  labelWhiteList:
          #  noPublish: false
          #  sleepInterval: 60s
          #  sources: [all]
          #  klog:
          #    addDirHeader: false
          #    alsologtostderr: false
          #    logBacktraceAt:
          #    logtostderr: true
          #    skipHeaders: false
          #    stderrthreshold: 2
          #    v: 0
          #    vmodule:
          ##   NOTE: the following options are not dynamically run-time configurable
          ##         and require a nfd-worker restart to take effect after being changed
          #    logDir:
          #    logFile:
          #    logFileMaxSize: 1800
          #    skipLogHeaders: false
          #sources:
          #  cpu:
          #    cpuid:
          ##     NOTE: whitelist has priority over blacklist
          #      attributeBlacklist:
          #        - "BMI1"
          #        - "BMI2"
          #        - "CLMUL"
          #        - "CMOV"
          #        - "CX16"
          #        - "ERMS"
          #        - "F16C"
          #        - "HTT"
          #        - "LZCNT"
          #        - "MMX"
          #        - "MMXEXT"
          #        - "NX"
          #        - "POPCNT"
          #        - "RDRAND"
          #        - "RDSEED"
          #        - "RDTSCP"
          #        - "SGX"
          #        - "SSE"
          #        - "SSE2"
          #        - "SSE3"
          #        - "SSE4.1"
          #        - "SSE4.2"
          #        - "SSSE3"
          #      attributeWhitelist:
          #  kernel:
          #    kconfigFile: "/path/to/kconfig"
          #    configOpts:
          #      - "NO_HZ"
          #      - "X86"
          #      - "DMI"
          #  pci:
          #    deviceClassWhitelist:
          #      - "0200"
          #      - "03"
          #      - "12"
          #    deviceLabelFields:
          #      - "class"
          #      - "vendor"
          #      - "device"
          #      - "subsystem_vendor"
          #      - "subsystem_device"
          #  usb:
          #    deviceClassWhitelist:
          #      - "0e"
          #      - "ef"
          #      - "fe"
          #      - "ff"
          #    deviceLabelFields:
          #      - "class"
          #      - "vendor"
          #      - "device"
          #  custom:
          #    - name: "my.kernel.feature"
          #      matchOn:
          #        - loadedKMod: ["example_kmod1", "example_kmod2"]
          #    - name: "my.pci.feature"
          #      matchOn:
          #        - pciId:
          #            class: ["0200"]
          #            vendor: ["15b3"]
          #            device: ["1014", "1017"]
          #        - pciId :
          #            vendor: ["8086"]
          #            device: ["1000", "1100"]
          #    - name: "my.usb.feature"
          #      matchOn:
          #        - usbId:
          #          class: ["ff"]
          #          vendor: ["03e7"]
          #          device: ["2485"]
          #        - usbId:
          #          class: ["fe"]
          #          vendor: ["1a6e"]
          #          device: ["089a"]
          #    - name: "my.combined.feature"
          #      matchOn:
          #        - pciId:
          #            vendor: ["15b3"]
          #            device: ["1014", "1017"]
          #          loadedKMod : ["vendor_kmod1", "vendor_kmod2"]
      customConfig:
        configData: |
          #    - name: "more.kernel.features"
          #      matchOn:
          #      - loadedKMod: ["example_kmod3"]
          #    - name: "more.features.by.nodename"
          #      value: customValue
          #      matchOn:
          #      - nodename: ["special-.*-node-.*"]
  2. 以下のコマンドを実行し、NodeFeatureDiscovery CR インスタンスを作成します。

    $ oc create -f NodeFeatureDiscovery.yaml

検証

  • インスタンスが作成されたことを確認するには、以下を実行します。

    $ oc get pods

    出力例

    NAME                                      READY   STATUS    RESTARTS   AGE
    nfd-controller-manager-7f86ccfb58-vgr4x   2/2     Running   0          11m
    nfd-master-hcn64                          1/1     Running   0          60s
    nfd-master-lnnxx                          1/1     Running   0          60s
    nfd-master-mp6hr                          1/1     Running   0          60s
    nfd-worker-vgcz9                          1/1     Running   0          60s
    nfd-worker-xqbws                          1/1     Running   0          60s

    正常にデプロイされると、Running ステータスが表示されます。

9.3.2. Web コンソールを使用した NodeFeatureDiscovery CR の作成

手順

  1. OperatorsInstalled Operators ページに移動します。
  2. Node Feature Discovery を見つけ、Provided APIs でボックスを表示します。
  3. Create instance をクリックします。
  4. NodeFeatureDiscovery CR の値を編集します。
  5. Create をクリックします。

9.4. Node Feature Discovery Operator の設定

9.4.1. コア

core セクションには、共通の設定が含まれており、これは特定の機能ソースに固有のものではありません。

core.sleepInterval

core.sleepInterval は、次に機能検出または再検出するまでの間隔を指定するので、ノードの再ラベル付けの間隔も指定します。正の値以外は、無限のスリープ状態を意味するので、再検出や再ラベル付けは行われません。

この値は、指定されている場合は、非推奨の --sleep-interval コマンドラインフラグで上書きされます。

使用例

core:
  sleepInterval: 60s 1

デフォルト値は 60s です。

core.sources

core.sources は、有効な機能ソースの一覧を指定します。特殊な値 all はすべての機能ソースを有効にします。

この値は、指定されている場合は非推奨の --sources コマンドラインフラグにより上書きされます。

デフォルト: [all]

使用例

core:
  sources:
    - system
    - custom

core.labelWhiteList

core.labelWhiteList は、正規表現を指定してラベル名に基づいて機能ラベルをフィルターします。一致しないラベルは公開されません。

正規表現は、ラベルのベース名 ('/' の後に名前の一部) だけを照合します。ラベルの接頭辞または namespace は省略されます。

この値は、指定されている場合は、非推奨の --label-whitelist コマンドラインフラグで上書きされます。

デフォルト: null

使用例

core:
  labelWhiteList: '^cpu-cpuid'

core.noPublish

core.noPublishtrue に設定すると、nfd-master による全通信が無効になります。これは実質的にはドライランフラグです。nfd-worker は通常通り機能検出を実行しますが、ラベル付け要求は nfd-master に送信されます。

この値は、指定されている場合には、--no-publish コマンドラインフラグにより上書きされます。

例:

使用例

core:
  noPublish: true 1

デフォルト値は false です。

core.klog

以下のオプションは、実行時にほとんどを動的に調整できるロガー設定を指定します。

ロガーオプションはコマンドラインフラグを使用して指定することもできますが、対応する設定ファイルオプションよりもこちらが優先されます。

core.klog.addDirHeader

true に設定すると、core.klog.addDirHeader がファイルディレクトリーをログメッセージのヘッダーに追加します。

デフォルト: false

ランタイム設定可能: yes

core.klog.alsologtostderr

標準エラーおよびファイルにロギングします。

デフォルト: false

ランタイム設定可能: yes

core.klog.logBacktraceAt

file:N の行にロギングが到達すると、スタックストレースを出力します。

デフォルト: empty

ランタイム設定可能: yes

core.klog.logDir

空でない場合は、このディレクトリーにログファイルを書き込みます。

デフォルト: empty

ランタイム設定可能: no

core.klog.logFile

空でない場合は、このログファイルを使用します。

デフォルト: empty

ランタイム設定可能: no

core.klog.logFileMaxSize

core.klog.logFileMaxSize は、ログファイルの最大サイズを定義します。単位はメガバイトです。値が 0 の場合には、最大ファイルサイズは無制限になります。

デフォルト: 1800

ランタイム設定可能: no

core.klog.logtostderr

ファイルの代わりに標準エラーにログを記録します。

デフォルト: true

ランタイム設定可能: yes

core.klog.skipHeaders

core.klog.skipHeaderstrue に設定されている場合には、ログメッセージでヘッダー接頭辞を使用しません。

デフォルト: false

ランタイム設定可能: yes

core.klog.skipLogHeaders

core.klog.skipLogHeaderstrue に設定されている場合は、ログファイルを表示する時にヘッダーは使用されません。

デフォルト: false

ランタイム設定可能: no

core.klog.stderrthreshold

このしきい値以上のログは stderr になります。

デフォルト: 2

ランタイム設定可能: yes

core.klog.v

core.klog.v はログレベルの詳細度の数値です。

デフォルト: 0

ランタイム設定可能: yes

core.klog.vmodule

core.klog.vmodule は、ファイルでフィルターされたロギングの pattern=N 設定 (コンマ区切りの一覧) です。

デフォルト: empty

ランタイム設定可能: yes

9.4.2. ソース

sources セクションには、機能ソース固有の設定パラメーターが含まれます。

sources.cpu.cpuid.attributeBlacklist

このオプションに記述されている cpuid 機能は公開されません。

この値は、指定されている場合は source.cpu.cpuid.attributeWhitelist によって上書きされます。

デフォルト: [BMI1, BMI2, CLMUL, CMOV, CX16, ERMS, F16C, HTT, LZCNT, MMX, MMXEXT, NX, POPCNT, RDRAND, RDSEED, RDTSCP, SGX, SGXLC, SSE, SSE2, SSE3, SSE4.1, SSE4.2, SSSE3]

使用例

sources:
  cpu:
    cpuid:
      attributeBlacklist: [MMX, MMXEXT]

sources.cpu.cpuid.attributeWhitelist

このオプションに記述されている cpuid 機能のみを公開します。

sources.cpu.cpuid.attributeWhitelistsources.cpu.cpuid.attributeBlacklist よりも優先されます。

デフォルト: empty

使用例

sources:
  cpu:
    cpuid:
      attributeWhitelist: [AVX512BW, AVX512CD, AVX512DQ, AVX512F, AVX512VL]

sources.kernel.kconfigFile

sources.kernel.kconfigFile は、カーネル設定ファイルのパスです。空の場合には、NFD は一般的な標準場所で検索を実行します。

デフォルト: empty

使用例

sources:
  kernel:
    kconfigFile: "/path/to/kconfig"

sources.kernel.configOpts

sources.kernel.configOpts は、機能ラベルとして公開するカーネル設定オプションを表します。

デフォルト: [NO_HZ、NO_HZ_IDLE、NO_HZ_FULL、PREEMPT]

使用例

sources:
  kernel:
    configOpts: [NO_HZ, X86, DMI]

sources.pci.deviceClassWhitelist

sources.pci.deviceClassWhitelist は、ラベルを公開する PCI デバイスクラス ID の一覧です。メインクラスとしてのみ (例: 03) か、完全なクラスサブクラスの組み合わせ (例: 0300) として指定できます。前者は、すべてのサブクラスが許可されていることを意味します。ラベルの形式は、deviceLabelFields でさらに設定できます。

デフォルト: ["03", "0b40", "12"]

使用例

sources:
  pci:
    deviceClassWhitelist: ["0200", "03"]

sources.pci.deviceLabelFields

sources.pci.deviceLabelFields は、機能ラベルの名前を構築する時に使用する PCI ID フィールドのセットです。有効なフィールドは classvendordevicesubsystem_vendor および subsystem_device です。

デフォルト: [class, vendor]

使用例

sources:
  pci:
    deviceLabelFields: [class, vendor, device]

上記の設定例では、NFD は feature.node.kubernetes.io/pci-<class-id>_<vendor-id>_<device-id>.present=true などのラベルを公開します。

sources.usb.deviceClassWhitelist

sources.usb.deviceClassWhitelist は、機能ラベルを公開する USB デバイスクラス ID の一覧です。ラベルの形式は、deviceLabelFields でさらに設定できます。

デフォルト: ["0e", "ef", "fe", "ff"]

使用例

sources:
  usb:
    deviceClassWhitelist: ["ef", "ff"]

sources.usb.deviceLabelFields

sources.usb.deviceLabelFields は、機能ラベルの名前を作成する USB ID フィールドのセットです。有効なフィールドは classvendor、および device です。

デフォルト: [class, vendor, device]

使用例

sources:
  pci:
    deviceLabelFields: [class, vendor]

上記の設定例では、NFD は feature.node.kubernetes.io/usb-<class-id>_<vendor-id>.present=true などのラベルを公開します。

sources.custom

sources.custom は、ユーザー固有のラベルを作成するためにカスタム機能ソースで処理するルールの一覧です。

デフォルト: empty

使用例

source:
  custom:
  - name: "my.custom.feature"
    matchOn:
    - loadedKMod: ["e1000e"]
    - pciId:
        class: ["0200"]
        vendor: ["8086"]

第10章 Driver Toolkit

Driver Toolkit および、ドライバーコンテナーのベースイメージとして使用して Kubernetes で特別なソフトウェアおよびハードウェアデバイスを有効にする方法を説明します。

重要

Driver Toolkit はテクノロジープレビュー機能としてのみご利用いただけます。テクノロジープレビュー機能は Red Hat の実稼働環境でのサービスレベルアグリーメント (SLA) ではサポートされていないため、Red Hat では実稼働環境での使用を推奨していません。Red Hat は実稼働環境でこれらを使用することを推奨していません。テクノロジープレビュー機能は、最新の製品機能をいち早く提供することで、お客様による開発段階での機能テストの実施とフィードバックのご提供を可能にすることを目的としています。

Red Hat のテクノロジープレビュー機能のサポート範囲についての詳細は、https://access.redhat.com/ja/support/offerings/techpreview/ を参照してください。

10.1. Driver Toolkit について

背景情報

Driver Toolkit は、ドライバーコンテナーをビルドできるベースイメージとして使用する OpenShift Container Platform ペイロードのコンテナーイメージです。Driver Toolkit イメージには、カーネルモジュールのビルドまたはインストールの依存関係として一般的に必要なカーネルパッケージと、ドライバーコンテナーで必要なツールが含まれます。これらのパッケージのバージョンは、対応する OpenShift Container Platform リリースの Red Hat Enterprise Linux CoreOS (RHCOS) ノードで実行されているカーネルバージョンと同じです。

ドライバーコンテナーは、RHCOS などのコンテナーオペレーティングシステムで out-of-tree カーネルモジュールをビルドしてデプロイするのに使用するコンテナーイメージです。カーネルモジュールおよびドライバーは、レベルの高い権限で、オペレーティングシステムカーネル内で実行されるソフトウェアライブラリーです。また、カーネル機能の拡張や、新しいデバイスの制御に必要なハードウェア固有のコードを提供します。例として、Field Programmable Gate Arrays (FPGA) または GPU などのハードウェアデバイスや、クライアントマシンでカーネルモジュールを必要とする Lustre parallel ファイルシステムなどのソフトウェア定義のストレージ (SDS) ソリューションなどがあります。ドライバーコンテナーは、Kubernetes でこれらの技術を有効にするために使用されるソフトウェアスタックの最初の層です。

Driver Toolkit のカーネルパッケージの一覧には、以下とその依存関係が含まれます。

  • kernel-core
  • kernel-devel
  • kernel-headers
  • kernel-modules
  • kernel-modules-extra

また、Driver Toolkit には、対応するリアルタイムカーネルパッケージも含まれています。

  • kernel-rt-core
  • kernel-rt-devel
  • kernel-rt-modules
  • kernel-rt-modules-extra

Driver Toolkit には、カーネルモジュールのビルドおよびインストールに一般的に必要となるツールが複数あります。たとえば、以下が含まれます。

  • elfutils-libelf-devel
  • kmod
  • binutilskabi-dw
  • kernel-abi-whitelists
  • 上記の依存関係
目的

Driver Toolkit がリリースされる前は、エンタイトルメントのあるビルド を使用するか、または ホストの machine-os-content のカーネル RPM からインストールして、Pod またはビルド設定のカーネルパッケージを OpenShift Container Platform にインストールすることができていました。Driver Toolkit を使用すると、エンタイトルメントステップがなくなりプロセスが単純化され、Pod で machine-os-content にアクセスする特権操作を回避できます。Driver Toolkit は、プレリリース済みの OpenShift Container Platform バージョンにアクセスできるパートナーも使用でき、今後の OpenShift Container Platform リリース用にハードウェアデバイスのドライバーコンテナーを事前にビルドできます。

Driver Toolkit は、現在 OperatorHub のコミュニティー Operator として利用できる Special Resource Operator (SRO) によっても使用されます。SRO は、out-of-tree およびサードパーティーのカーネルドライバー、および基礎となるオペレーティングシステムのサポートソフトウェアをサポートします。ユーザーは、SRO の レシピ を作成してドライバーコンテナーを構築してデプロイしたり、デバイスプラグインやメトリックなどのソフトウェアをサポートしたりできます。レシピには、ビルド設定を追加して、Driver Toolkit をベースにドライバーコンテナーをビルドできます。または SRO で事前ビルドされたドライバーコンテナーをデプロイできます。

10.2. Driver Toolkit コンテナーイメージのプル

driver-toolkit イメージは、Red Hat Ecosystem Catalog および OpenShift Container Platform リリースペイロードのコンテナーイメージ セクションから入手できます。OpenShift Container Platform の最新のマイナーリリースに対応するイメージは、カタログのバージョン番号でタグ付けされます。特定のリリースのイメージ URL は、oc adm CLI コマンドを使用して確認できます。

10.2.1. registry.redhat.io からの Driver Toolkit コンテナーイメージのプル

podman または OpenShift Container Platform で driver-toolkit イメージを registry.redhat.io からプルする手順は、Red Hat Ecosystem Catalog を参照してください。最新のマイナーリリースの driver-toolkit イメージは、registry.redhat.io/openshift4/driver-toolkit-rhel8:v4.8 のマイナーリリースバージョンでタグ付けされます。

10.2.2. ペイロードでの Driver Toolkit イメージ URL の検索

前提条件

手順

  1. 特定のリリースに対応する driver-toolkit のイメージ URL は、oc adm コマンドを使用してリリースイメージから取得できます。

    $ oc adm release info 4.8.0 --image-for=driver-toolkit

    出力例

    quay.io/openshift-release-dev/ocp-v4.0-art-dev@sha256:0fd84aee79606178b6561ac71f8540f404d518ae5deff45f6d6ac8f02636c7f4

  2. このイメージは、OpenShift Container Platform のインストールに必要なプルシークレットなどの有効なプルシークレットを使用してプルできます。
$ podman pull --authfile=path/to/pullsecret.json quay.io/openshift-release-dev/ocp-v4.0-art-dev@sha256:<SHA>

10.3. Driver Toolkit の使用

たとえば、Driver Toolkit は simple-kmod と呼ばれる単純なカーネルモジュールを構築するベースイメージとして使用できます。

10.3.1. クラスターでの simple-kmod ドライバーコンテナーをビルドし、実行します。

前提条件

  • OpenShift Container Platform クラスター。
  • OpenShift CLI (oc) をインストールしている。
  • cluster-admin 権限を持つユーザーとしてログインしている。

手順

namespace を作成します。以下はその例です。

$ oc new-project simple-kmod-demo
  1. YAML は、simple-kmod ドライバーコンテナーイメージを保存する ImageStream と、コンテナーをビルドする BuildConfig を定義します。この YAML を 0000-buildconfig.yaml.template として保存します。

    apiVersion: image.openshift.io/v1
    kind: ImageStream
    metadata:
      labels:
        app: simple-kmod-driver-container
      name: simple-kmod-driver-container
      namespace: simple-kmod-demo
    spec: {}
    ---
    apiVersion: build.openshift.io/v1
    kind: BuildConfig
    metadata:
      labels:
        app: simple-kmod-driver-build
      name: simple-kmod-driver-build
      namespace: simple-kmod-demo
    spec:
      nodeSelector:
        node-role.kubernetes.io/worker: ""
      runPolicy: "Serial"
      triggers:
        - type: "ConfigChange"
        - type: "ImageChange"
      source:
        git:
          ref: "master"
          uri: "https://github.com/openshift-psap/kvc-simple-kmod.git"
        type: Git
        dockerfile: |
          FROM DRIVER_TOOLKIT_IMAGE
    
          WORKDIR /build/
    
          RUN yum -y install git make sudo gcc \
          && yum clean all \
          && rm -rf /var/cache/dnf
    
          # Expecting kmod software version as an input to the build
          ARG KMODVER
    
          # Grab the software from upstream
          RUN git clone https://github.com/openshift-psap/simple-kmod.git
          WORKDIR simple-kmod
    
          # Prep and build the module
          RUN make buildprep KVER=$(rpm -q --qf "%{VERSION}-%{RELEASE}.%{ARCH}"  kernel-core) KMODVER=${KMODVER} \
          && make all       KVER=$(rpm -q --qf "%{VERSION}-%{RELEASE}.%{ARCH}"  kernel-core) KMODVER=${KMODVER} \
          && make install   KVER=$(rpm -q --qf "%{VERSION}-%{RELEASE}.%{ARCH}"  kernel-core) KMODVER=${KMODVER}
    
          # Add the helper tools
          WORKDIR /root/kvc-simple-kmod
          ADD Makefile .
          ADD simple-kmod-lib.sh .
          ADD simple-kmod-wrapper.sh .
          ADD simple-kmod.conf .
          RUN mkdir -p /usr/lib/kvc/ \
          && mkdir -p /etc/kvc/ \
          && make install
    
          RUN systemctl enable kmods-via-containers@simple-kmod
      strategy:
        dockerStrategy:
          buildArgs:
            - name: KMODVER
              value: DEMO
      output:
        to:
          kind: ImageStreamTag
          name: simple-kmod-driver-container:demo
  2. 以下のコマンドで、DRIVER_TOOLKIT_IMAGE の代わりに、実行中の OpenShift Container Platform バージョンのドライバーツールキットイメージを置き換えます。

    $ OCP_VERSION=$(oc get clusterversion/version -ojsonpath={.status.desired.version})
    $ DRIVER_TOOLKIT_IMAGE=$(oc adm release info $OCP_VERSION --image-for=driver-toolkit)
    $ sed "s#DRIVER_TOOLKIT_IMAGE#${DRIVER_TOOLKIT_IMAGE}#" 0000-buildconfig.yaml.template > 0000-buildconfig.yaml
    注記

    ドライバーツールキットは、OpenShift Container Platform バージョン 4.8、バージョン 4.7.11 の時点でバージョン 4.7、バージョン 4.6.30 の時点で 4.6 に導入されました。

  3. 以下でイメージストリームおよびビルド設定を作成します。

    $ oc create -f 0000-buildconfig.yaml
  4. ビルダー Pod が正常に完了したら、ドライバーコンテナーイメージを DaemonSet としてデプロイします。

    1. ホスト上でカーネルモジュールを読み込むには、特権付きセキュリティーコンテキストでドライバーコンテナーを実行する必要があります。以下の YAML ファイルには、ドライバーコンテナーを実行するための RBAC ルールおよび DaemonSet が含まれます。この YAML を 1000-drivercontainer.yaml として保存し ます。

      apiVersion: v1
      kind: ServiceAccount
      metadata:
        name: simple-kmod-driver-container
      ---
      apiVersion: rbac.authorization.k8s.io/v1
      kind: Role
      metadata:
        name: simple-kmod-driver-container
      rules:
      - apiGroups:
        - security.openshift.io
        resources:
        - securitycontextconstraints
        verbs:
        - use
        resourceNames:
        - privileged
      ---
      apiVersion: rbac.authorization.k8s.io/v1
      kind: RoleBinding
      metadata:
        name: simple-kmod-driver-container
      roleRef:
        apiGroup: rbac.authorization.k8s.io
        kind: Role
        name: simple-kmod-driver-container
      subjects:
      - kind: ServiceAccount
        name: simple-kmod-driver-container
      userNames:
      - system:serviceaccount:simple-kmod-demo:simple-kmod-driver-container
      ---
      apiVersion: apps/v1
      kind: DaemonSet
      metadata:
        name: simple-kmod-driver-container
      spec:
        selector:
          matchLabels:
            app: simple-kmod-driver-container
        template:
          metadata:
            labels:
              app: simple-kmod-driver-container
          spec:
            serviceAccount: simple-kmod-driver-container
            serviceAccountName: simple-kmod-driver-container
            containers:
            - image: image-registry.openshift-image-registry.svc:5000/simple-kmod-demo/simple-kmod-driver-container:demo
              name: simple-kmod-driver-container
              imagePullPolicy: Always
              command: ["/sbin/init"]
              lifecycle:
                preStop:
                  exec:
                    command: ["/bin/sh", "-c", "systemctl stop kmods-via-containers@simple-kmod"]
              securityContext:
                privileged: true
            nodeSelector:
              node-role.kubernetes.io/worker: ""
    2. RBAC ルールおよびデーモンセットを作成します。

      $ oc create -f 1000-drivercontainer.yaml
  5. Pod がワーカーノードで実行された後に、simple_kmod カーネルモジュールが lsmod のホストマシンで正常に読み込まれることを確認します。

    1. Pod が実行されていることを確認します。

      $ oc get pod -n simple-kmod-demo

      出力例

      NAME                                 READY   STATUS      RESTARTS   AGE
      simple-kmod-driver-build-1-build     0/1     Completed   0          6m
      simple-kmod-driver-container-b22fd   1/1     Running     0          40s
      simple-kmod-driver-container-jz9vn   1/1     Running     0          40s
      simple-kmod-driver-container-p45cc   1/1     Running     0          40s

    2. ドライバーコンテナー Pod で lsmod コマンドを実行します。

      $ oc exec -it pod/simple-kmod-driver-container-p45cc -- lsmod | grep simple

      出力例

      simple_procfs_kmod     16384  0
      simple_kmod            16384  0

第11章 オブジェクトの最大値に合わせた環境計画

OpenShift Container Platform クラスターの計画時に以下のテスト済みのオブジェクトの最大値を考慮します。

これらのガイドラインは、最大規模のクラスターに基づいています。小規模なクラスターの場合、最大値はこれより低くなります。指定のしきい値に影響を与える要因には、etcd バージョンやストレージデータ形式などの多数の要因があります。

重要

これらのガイドラインは、Open Virtual Network (OVN) ではなく、ソフトウェア定義ネットワーク (SDN) を使用する OpenShift Container Platform に該当します。

ほとんど場合、これらの制限値を超えると、パフォーマンスが全体的に低下します。ただし、これによって必ずしもクラスターに障害が発生する訳ではありません。

11.1. メジャーリリースについての OpenShift Container Platform のテスト済みクラスターの最大値

OpenShift Container Platform 3.x のテスト済みクラウドプラットフォーム: Red Hat OpenStack (RHOSP)、Amazon Web Services および Microsoft AzureOpenShift Container Platform 4.x のテスト済み Cloud Platform : Amazon Web Services、Microsoft Azure および Google Cloud Platform

最大値のタイプ3.x テスト済みの最大値4.x テスト済みの最大値

ノード数

2,000

2,000

Pod 数 [1]

150,000

150,000

ノードあたりの Pod 数

250

500 [2]

コアあたりの Pod 数

デフォルト値はありません。

デフォルト値はありません。

namespace 数 [3]

10,000

10,000

ビルド数

10,000(デフォルト Pod RAM 512 Mi)- Pipeline ストラテジー

10,000(デフォルト Pod RAM 512 Mi)- Source-to-Image (S2I) ビルドストラテジー

namespace ごとの Pod 数 [4]

25,000

25,000

Ingress Controller ごとのルートとバックエンドの数

ルーターあたり 2,000

ルーターあたり 2,000

シークレットの数

80,000

80,000

config map の数

90,000

90,000

サービス数 [5]

10,000

10,000

namespace ごとのサービス数

5,000

5,000

サービスごとのバックエンド数

5,000

5,000

namespace ごとのデプロイメント数 [4]

2,000

2,000

ビルド設定の数

12,000

12,000

カスタムリソース定義 (CRD) の数

デフォルト値はありません。

512 [6]

  1. ここで表示される Pod 数はテスト用の Pod 数です。実際の Pod 数は、アプリケーションのメモリー、CPU、ストレージ要件により異なります。
  2. これは、ワーカーノードごとに 500 の Pod を持つ 100 ワーカーノードを含むクラスターでテストされています。デフォルトの maxPods は 250 です。500 maxPods に到達するには、クラスターはカスタム kubelet 設定を使用し、maxPods500 に設定された状態で作成される必要があります。500 ユーザー Pod が必要な場合は、ノード上に 10-15 のシステム Pod がすでに実行されているため、hostPrefix22 である必要があります。永続ボリューム要求 (PVC) が割り当てられている Pod の最大数は、PVC の割り当て元のストレージバックエンドによって異なります。このテストでは、OpenShift Container Storage (OCS v4) のみが本書で説明されているノードごとの Pod 数に対応することができました。
  3. 有効なプロジェクトが多数ある場合、キースペースが過剰に拡大し、スペースのクォータを超過すると、etcd はパフォーマンスの低下による影響を受ける可能性があります。etcd ストレージを解放するために、デフラグを含む etcd の定期的なメンテナンスを行うことを強くお勧めします。
  4. システムには、状態の変更に対する対応として特定の namespace にある全オブジェクトに対して反復する多数のコントロールループがあります。単一の namespace に特定タイプのオブジェクトの数が多くなると、ループのコストが上昇し、特定の状態変更を処理する速度が低下します。この制限については、アプリケーションの各種要件を満たすのに十分な CPU、メモリー、およびディスクがシステムにあることが前提となっています。
  5. 各サービスポートと各サービスのバックエンドには、iptables の対応するエントリーがあります。特定のサービスのバックエンド数は、エンドポイントのオブジェクトサイズに影響があり、その結果、システム全体に送信されるデータサイズにも影響を与えます。
  6. OpenShift Container Platform には、OpenShift Container Platform によってインストールされたもの、OpenShift Container Platform と統合された製品、およびユーザー作成の CRD を含め、合計 512 のカスタムリソース定義 (CRD) の制限があります。512 を超える CRD が作成されている場合は、oc コマンドリクエストのスロットリングが適用される可能性があります。
注記

Red Hat は、OpenShift Container Platform クラスターのサイズ設定に関する直接的なガイダンスを提供していません。これは、クラスターが OpenShift Container Platform のサポート範囲内にあるかどうかを判断するには、クラスターのスケールを制限するすべての多次元な要因を慎重に検討する必要があるためです。

11.2. クラスターの最大値がテスト済みの OpenShift Container Platform 環境および設定

AWS クラウドプラットフォーム:

ノードフレーバーvCPURAM(GiB)ディスクタイプディスクサイズ (GiB)/IOSカウントリージョン

マスター/etcd [1]

r5.4xlarge

16

128

gp3

220

3

us-west-2

インフラ [2]

m5.12xlarge

48

192

gp3

100

3

us-west-2

ワークロード [3]

m5.4xlarge

16

64

gp3

500 [4]

1

us-west-2

ワーカー

m5.2xlarge

8

32

gp3

100

3/25/250/500 [5]

us-west-2

  1. etcd は遅延の影響を受けやすいため、ベースラインパフォーマンスが 3000 IOPS で毎秒 125 MiB の gp3 ディスクがコントロールプレーン/etcd ノードに使用されます。gp3 ボリュームはバーストパフォーマンスを使用しません。
  2. インフラストラクチャーノードは、モニターリング、Ingress およびレジストリーコンポーネントをホストするために使用され、これにより、それらが大規模に実行する場合に必要とするリソースを十分に確保することができます。
  3. ワークロードノードは、パフォーマンスとスケーラビリティーのワークロードジェネレーターを実行するための専用ノードです。
  4. パフォーマンスおよびスケーラビリティーのテストの実行中に収集される大容量のデータを保存するのに十分な領域を確保できるように、大きなディスクサイズが使用されます。
  5. クラスターは反復的にスケーリングされ、パフォーマンスおよびスケーラビリティーテストは指定されたノード数で実行されます。

IBM Power Systems プラットフォーム:

ノードvCPURAM(GiB)ディスクタイプディスクサイズ (GiB)/IOSカウント

マスター/etcd [1]

16

32

io1

GiB あたり 120/10 IOPS

3

インフラ [2]

16

64

gp2

120

2

ワークロード [3]

16

256

gp2

120 [4]

1

ワーカー

16

64

gp2

120

3/25/250/500 [5]

  1. GB あたり 120 / 3 IOPS を持つ io1 ディスクは、etcd が I/O 集約型であり、かつレイテンシーの影響を受けやすいため、マスター/etcd ノードに使用されます。
  2. インフラストラクチャーノードは、モニターリング、Ingress およびレジストリーコンポーネントをホストするために使用され、これにより、それらが大規模に実行する場合に必要とするリソースを十分に確保することができます。
  3. ワークロードノードは、パフォーマンスとスケーラビリティーのワークロードジェネレーターを実行するための専用ノードです。
  4. パフォーマンスおよびスケーラビリティーのテストの実行中に収集される大容量のデータを保存するのに十分な領域を確保できるように、大きなディスクサイズが使用されます。
  5. クラスターは反復的にスケーリングされ、パフォーマンスおよびスケーラビリティーテストは指定されたノード数で実行されます。

11.2.1. IBM Z プラットフォーム

ノードvCPU [4]RAM(GiB)[5]ディスクタイプディスクサイズ (GiB)/IOSカウント

コントロールプレーン/etcd [1,2]

8

32

ds8k

300 / LCU 1

3

コンピュート [1,3]

8

32

ds8k

150 / LCU 2

4 ノード (ノードあたり 100/250/500 Pod にスケーリング)

  1. ノードは 2 つの論理制御ユニット (LCU) 間で分散され、コントロールプレーン/etcd ノードのディスク I/O 負荷を最適化します。etcd の I/O 需要が他のワークロードに干渉してはなりません。
  2. 100/250/500 Pod で同時に複数の反復を実行するテストには、4 つの計算ノードが使用されます。まず、Pod をインスタンス化できるかどうかを評価するために、アイドリング Pod が使用されました。次に、ネットワークと CPU を必要とするクライアント/サーバーのワークロードを使用して、ストレス下でのシステムの安定性を評価しました。クライアント Pod とサーバー Pod はペアで展開され、各ペアは 2 つのコンピューティングノードに分散されました。
  3. 個別のワークロードノードは使用されませんでした。ワークロードは、2 つの計算ノード間のマイクロサービスワークロードをシミュレートします。
  4. 使用されるプロセッサーの物理的な数は、6 つの Integrated Facilities for Linux (IFL) です。
  5. 使用される物理メモリーの合計は 512 GiB です。

11.3. テスト済みのクラスターの最大値に基づく環境計画

重要

ノード上で物理リソースを過剰にサブスクライブすると、Kubernetes スケジューラーが Pod の配置時に行うリソースの保証に影響が及びます。メモリースワップを防ぐために実行できる処置について確認してください。

一部のテスト済みの最大値については、単一の namespace/ユーザーが作成するオブジェクトでのみ変更されます。これらの制限はクラスター上で数多くのオブジェクトが実行されている場合には異なります。

本書に記載されている数は、Red Hat のテスト方法、セットアップ、設定、およびチューニングに基づいています。これらの数は、独自のセットアップおよび環境に応じて異なります。

環境の計画時に、ノードに配置できる Pod 数を判別します。

required pods per cluster / pods per node = total number of nodes needed

ノードあたりの現在の Pod の最大数は 250 です。ただし、ノードに適合する Pod 数はアプリケーション自体によって異なります。アプリケーション要件に合わせて環境計画を立てる方法で説明されているように、アプリケーションのメモリー、CPU およびストレージの要件を検討してください。

シナリオ例

クラスターごとに 2200 の Pod のあるクラスターのスコープを設定する場合、ノードごとに最大 500 の Pod があることを前提として、最低でも 5 つのノードが必要になります。

2200 / 500 = 4.4

ノード数を 20 に増やす場合は、Pod 配分がノードごとに 110 の Pod に変わります。

2200 / 20 = 110

ここで、

required pods per cluster / total number of nodes = expected pods per node

11.4. アプリケーション要件に合わせて環境計画を立てる方法

アプリケーション環境の例を考えてみましょう。

Pod タイプPod 数最大メモリーCPU コア数永続ストレージ

apache

100

500 MB

0.5

1 GB

node.js

200

1 GB

1

1 GB

postgresql

100

1 GB

2

10 GB

JBoss EAP

100

1 GB

1

1 GB

推定要件: CPU コア 550 個、メモリー 450GB およびストレージ 1.4TB

ノードのインスタンスサイズは、希望に応じて増減を調整できます。ノードのリソースはオーバーコミットされることが多く、デプロイメントシナリオでは、小さいノードで数を増やしたり、大きいノードで数を減らしたりして、同じリソース量を提供することもできます。このデプロイメントシナリオでは、小さいノードで数を増やしたり、大きいノードで数を減らしたりして、同じリソース量を提供することもできます。運用上の敏捷性やインスタンスあたりのコストなどの要因を考慮する必要があります。

ノードのタイプ数量CPURAM (GB)

ノード (オプション 1)

100

4

16

ノード (オプション 2)

50

8

32

ノード (オプション 3)

25

16

64

アプリケーションによってはオーバーコミットの環境に適しているものもあれば、そうでないものもあります。たとえば、Java アプリケーションや Huge Page を使用するアプリケーションの多くは、オーバーコミットに対応できません。対象のメモリーは、他のアプリケーションに使用できません。上記の例では、環境は一般的な比率として約 30 % オーバーコミットされています。

アプリケーション Pod は環境変数または DNS のいずれかを使用してサービスにアクセスできます。環境変数を使用する場合、それぞれのアクティブなサービスについて、変数が Pod がノードで実行される際に kubelet によって挿入されます。クラスター対応の DNS サーバーは、Kubernetes API で新規サービスの有無を監視し、それぞれに DNS レコードのセットを作成します。DNS がクラスター全体で有効にされている場合、すべての Pod は DNS 名でサービスを自動的に解決できるはずです。DNS を使用したサービス検出は、5000 サービスを超える使用できる場合があります。サービス検出に環境変数を使用する場合、引数の一覧は namespace で 5000 サービスを超える場合の許可される長さを超えると、Pod およびデプロイメントは失敗します。デプロイメントのサービス仕様ファイルのサービスリンクを無効にして、以下を解消します。

---
apiVersion: template.openshift.io/v1
kind: Template
metadata:
  name: deployment-config-template
  creationTimestamp:
  annotations:
    description: This template will create a deploymentConfig with 1 replica, 4 env vars and a service.
    tags: ''
objects:
- apiVersion: apps.openshift.io/v1
  kind: DeploymentConfig
  metadata:
    name: deploymentconfig${IDENTIFIER}
  spec:
    template:
      metadata:
        labels:
          name: replicationcontroller${IDENTIFIER}
      spec:
        enableServiceLinks: false
        containers:
        - name: pause${IDENTIFIER}
          image: "${IMAGE}"
          ports:
          - containerPort: 8080
            protocol: TCP
          env:
          - name: ENVVAR1_${IDENTIFIER}
            value: "${ENV_VALUE}"
          - name: ENVVAR2_${IDENTIFIER}
            value: "${ENV_VALUE}"
          - name: ENVVAR3_${IDENTIFIER}
            value: "${ENV_VALUE}"
          - name: ENVVAR4_${IDENTIFIER}
            value: "${ENV_VALUE}"
          resources: {}
          imagePullPolicy: IfNotPresent
          capabilities: {}
          securityContext:
            capabilities: {}
            privileged: false
        restartPolicy: Always
        serviceAccount: ''
    replicas: 1
    selector:
      name: replicationcontroller${IDENTIFIER}
    triggers:
    - type: ConfigChange
    strategy:
      type: Rolling
- apiVersion: v1
  kind: Service
  metadata:
    name: service${IDENTIFIER}
  spec:
    selector:
      name: replicationcontroller${IDENTIFIER}
    ports:
    - name: serviceport${IDENTIFIER}
      protocol: TCP
      port: 80
      targetPort: 8080
    clusterIP: ''
    type: ClusterIP
    sessionAffinity: None
  status:
    loadBalancer: {}
parameters:
- name: IDENTIFIER
  description: Number to append to the name of resources
  value: '1'
  required: true
- name: IMAGE
  description: Image to use for deploymentConfig
  value: gcr.io/google-containers/pause-amd64:3.0
  required: false
- name: ENV_VALUE
  description: Value to use for environment variables
  generate: expression
  from: "[A-Za-z0-9]{255}"
  required: false
labels:
  template: deployment-config-template

namespace で実行できるアプリケーション Pod の数は、環境変数がサービス検出に使用される場合にサービスの数およびサービス名の長さによって異なります。システムの ARG_MAX は、新規プロセスの引数の最大の長さを定義し、デフォルトで 2097152 KiB に設定されます。Kubelet は、以下を含む namespace で実行するようにスケジュールされる各 Pod に環境変数を挿入します。

  • <SERVICE_NAME>_SERVICE_HOST=<IP>
  • <SERVICE_NAME>_SERVICE_PORT=<PORT>
  • <SERVICE_NAME>_PORT=tcp://<IP>:<PORT>
  • <SERVICE_NAME>_PORT_<PORT>_TCP=tcp://<IP>:<PORT>
  • <SERVICE_NAME>_PORT_<PORT>_TCP_PROTO=tcp
  • <SERVICE_NAME>_PORT_<PORT>_TCP_PORT=<PORT>
  • <SERVICE_NAME>_PORT_<PORT>_TCP_ADDR=<ADDR>

引数の長さが許可される値を超え、サービス名の文字数がこれに影響する場合、namespace の Pod は起動に失敗し始めます。たとえば、5000 サービスを含む namespace では、サービス名の制限は 33 文字であり、これにより namespace で 5000 Pod を実行できます。

第12章 ストレージの最適化

ストレージを最適化すると、すべてのリソースでストレージの使用を最小限に抑えることができます。管理者は、ストレージを最適化することで、既存のストレージリソースが効率的に機能できるようにすることができます。

12.1. 利用可能な永続ストレージオプション

永続ストレージオプションについて理解し、OpenShift Container Platform 環境を最適化できるようにします。

表12.1 利用可能なストレージオプション
ストレージタイプ説明

ブロック

  • ブロックデバイスとしてオペレーティングシステムに公開されます。
  • ストレージを完全に制御し、ファイルシステムを通過してファイルの低いレベルで操作する必要のあるアプリケーションに適しています。
  • ストレージエリアネットワーク (SAN) とも呼ばれます。
  • 共有できません。 一度に 1 つのクライアントだけがこのタイプのエンドポイントをマウントできるという意味です。

AWS EBS および VMware vSphere は、OpenShift Container Platform で永続ボリューム (PV) の動的なプロビジョニングをサポートします。

ファイル

  • マウントされるファイルシステムのエクスポートとして、OS に公開されます。
  • ネットワークアタッチストレージ (NAS) とも呼ばれます。
  • 同時実行、レイテンシー、ファイルロックのメカニズムその他の各種機能は、プロトコルおよび実装、ベンダー、スケールによって大きく異なります。

RHEL NFS、NetApp NFS [1]、および Vendor NFS

オブジェクト

  • REST API エンドポイント経由でアクセスできます。
  • OpenShift Container Platform レジストリーで使用するために設定できます。
  • アプリケーションは、ドライバーをアプリケーションやコンテナーに組み込む必要があります。

AWS S3

  1. NetApp NFS は Trident を使用する場合に動的 PV のプロビジョニングをサポートします。
重要

現時点で、CNS は OpenShift Container Platform 4.8 ではサポートされていません。

12.3. データストレージ管理

以下の表は、OpenShift Container Platform コンポーネントがデータを書き込むメインディレクトリーの概要を示しています。

表12.3 OpenShift Container Platform データを保存するメインディレクトリー
ディレクトリー注記サイジング予想される拡張

/var/log

すべてのコンポーネントのログファイルです。

10 から 30 GB。

ログファイルはすぐに拡張する可能性があります。サイズは拡張するディスク別に管理するか、ログローテーションを使用して管理できます。

/var/lib/etcd

データベースを保存する際に etcd ストレージに使用されます。

20 GB 未満。

データベースは、最大 8 GB まで拡張できます。

環境と共に徐々に拡張します。メタデータのみを格納します。

メモリーに 8 GB が追加されるたびに 20-25 GB を追加します。

/var/lib/containers

これは CRI-O ランタイムのマウントポイントです。アクティブなコンテナーランタイム (Pod を含む) およびローカルイメージのストレージに使用されるストレージです。レジストリーストレージには使用されません。

16 GB メモリーの場合、1 ノードにつき 50 GB。このサイジングは、クラスターの最小要件の決定には使用しないでください。

メモリーに 8 GB が追加されるたびに 20-25 GB を追加します。

拡張は実行中のコンテナーの容量によって制限されます。

/var/lib/kubelet

Pod の一時ボリュームストレージです。これには、ランタイムにコンテナーにマウントされる外部のすべての内容が含まれます。環境変数、kube シークレット、および永続ボリュームでサポートされていないデータボリュームが含まれます。

変動あり。

ストレージを必要とする Pod が永続ボリュームを使用している場合は最小になります。一時ストレージを使用する場合はすぐに拡張する可能性があります。

第13章 ルーティングの最適化

OpenShift Container Platform HAProxy ルーターは、パフォーマンスを最適化するためにスケーリングします。

13.1. ベースライン Ingress コントローラー (ルーター) のパフォーマンス

OpenShift Container Platform Ingress コントローラーまたはルーターは、宛先が OpenShift Container Platform サービスのすべての外部トラフィックに対する Ingress ポイントです。

1 秒に処理される HTTP 要求について、単一の HAProxy ルーターを評価する場合に、パフォーマンスは多くの要因により左右されます。特に以下が含まれます。

  • HTTP keep-alive/close モード
  • ルートタイプ
  • TLS セッション再開のクライアントサポート
  • ターゲットルートごとの同時接続数
  • ターゲットルート数
  • バックエンドサーバーのページサイズ
  • 基礎となるインフラストラクチャー (ネットワーク/SDN ソリューション、CPU など)

特定の環境でのパフォーマンスは異なりますが、Red Hat ラボはサイズが 4 vCPU/16GB RAM のパブリッククラウドインスタンスでテストしています。1kB 静的ページを提供するバックエンドで終端する 100 ルートを処理する単一の HAProxy ルーターは、1 秒あたりに以下の数のトランザクションを処理できます。

HTTP keep-alive モードのシナリオの場合:

暗号化LoadBalancerServiceHostNetwork

なし

21515

29622

edge

16743

22913

passthrough

36786

53295

re-encrypt

21583

25198

HTTP close (keep-alive なし) のシナリオの場合:

暗号化LoadBalancerServiceHostNetwork

なし

5719

8273

edge

2729

4069

passthrough

4121

5344

re-encrypt

2320

2941

ROUTER_THREADS=4 が設定されたデフォルトの Ingress コントローラー設定が使用され、2 つの異なるエンドポイントの公開ストラテジー (LoadBalancerService/HostNetwork) がテストされています。TLS セッション再開は暗号化ルートについて使用されています。HTTP keep-alive の場合は、単一の HAProxy ルーターがページサイズが 8kB でも、1 Gbit の NIC を飽和させることができます。

最新のプロセッサーが搭載されたベアメタルで実行する場合は、上記のパブリッククラウドインスタンスのパフォーマンスの約 2 倍のパフォーマンスになることを予想できます。このオーバーヘッドは、パブリッククラウドにある仮想化レイヤーにより発生し、プライベートクラウドベースの仮想化にも多くの場合、該当します。以下の表は、ルーターの背後で使用するアプリケーション数についてのガイドです。

アプリケーション数アプリケーションタイプ

5-10

静的なファイル/Web サーバーまたはキャッシュプロキシー

100-1000

動的なコンテンツを生成するアプリケーション

通常、HAProxy は、使用されるて技術に応じて 5 から 1000 のアプリケーションのルーターをサポートします。Ingress コントローラーのパフォーマンスは、言語や静的コンテンツと動的コンテンツの違いを含め、その背後にあるアプリケーションの機能およびパフォーマンスによって制限される可能性があります。

Ingress またはルーターのシャード化は、アプリケーションに対してより多くのルートを提供するために使用され、ルーティング層の水平スケーリングに役立ちます。

Ingress のシャード化についての詳細は、ルートラベルを使用した Ingress コントローラーのシャード化の設定 および namespace ラベルを使用した Ingress コントローラーのシャード化の設定 を参照してください。

13.2. Ingress コントローラー (ルーター) のパフォーマンスの最適化

OpenShift Container Platform では、環境変数 (ROUTER_THREADSROUTER_DEFAULT_TUNNEL_TIMEOUTROUTER_DEFAULT_CLIENT_TIMEOUTROUTER_DEFAULT_SERVER_TIMEOUT、および RELOAD_INTERVAL) を設定して Ingress コントローラーのデプロイメントを変更することをサポートしていません。

Ingress コントローラーのデプロイメントは変更できますが、Ingress Operator が有効にされている場合、設定は上書きされます。

第14章 ネットワークの最適化

OpenShift SDN は OpenvSwitch、VXLAN (Virtual extensible LAN) トンネル、OpenFlow ルール、iptables を使用します。このネットワークは、ジャンボフレーム、ネットワークインターフェイスコントローラー (NIC) オフロード、マルチキュー、および ethtool 設定を使用して調整できます。

OVN-Kubernetes は、トンネルプロトコルとして VXLAN ではなく Geneve (Generic Network Virtualization Encapsulation) を使用します。

VXLAN は、4096 から 1600 万以上にネットワーク数が増え、物理ネットワーク全体で階層 2 の接続が追加されるなど、VLAN での利点が提供されます。これにより、異なるシステム上で実行されている場合でも、サービスの背後にある Pod すべてが相互に通信できるようになります。

VXLAN は、User Datagram Protocol (UDP) パケットにトンネル化されたトラフィックをすべてカプセル化しますが、CPU 使用率が上昇してしまいます。これらの外部および内部パケットは、移動中にデータが破損しないようにするために通常のチェックサムルールの対象になります。これらの外部および内部パケットはどちらも、移動中にデータが破損しないように通常のチェックサムルールの対象になります。CPU のパフォーマンスによっては、この追加の処理オーバーヘッドによってスループットが減り、従来の非オーバーレイネットワークと比較してレイテンシーが高くなります。

クラウド、仮想マシン、ベアメタルの CPU パフォーマンスでは、1 Gbps をはるかに超えるネットワークスループットを処理できます。10 または 40 Gbps などの高い帯域幅のリンクを使用する場合には、パフォーマンスが低減する場合があります。これは、VXLAN ベースの環境では既知の問題で、コンテナーや OpenShift Container Platform 固有の問題ではありません。VXLAN トンネルに依存するネットワークも、VXLAN 実装により同様のパフォーマンスになります。

1 Gbps 以上にするには、以下を実行してください。

  • Border Gateway Protocol (BGP) など、異なるルーティング技術を実装するネットワークプラグインを評価する。
  • VXLAN オフロード対応のネットワークアダプターを使用します。VXLAN オフロードは、システムの CPU から、パケットのチェックサム計算と関連の CPU オーバーヘッドを、ネットワークアダプター上の専用のハードウェアに移動します。これにより、CPU サイクルを Pod やアプリケーションで使用できるように開放し、ネットワークインフラストラクチャーの帯域幅すべてをユーザーは活用できるようになります。

VXLAN オフロードはレイテンシーを短縮しません。ただし、CPU の使用率はレイテンシーテストでも削減されます。

14.1. ネットワークでの MTU の最適化

重要な Maximum Transmission Unit (MTU) が 2 つあります。1 つはネットワークインターフェイスコントローラー (NIC) MTU で、もう 1 つはクラスターネットワーク MTU です。

NIC MTU は OpenShift Container Platform のインストール時にのみ設定されます。MTU は、お使いのネットワークの NIC でサポートされる最大の値以下でなければなりません。スループットを最適化する場合は、可能な限り大きい値を選択します。レイテンシーを最低限に抑えるために最適化するには、より小さい値を選択します。

SDN オーバーレイの MTU は、最低でも NIC MTU より 50 バイト少なくなければなりません。これは、SDN オーバーレイのヘッダーに相当します。そのため、通常のイーサネットネットワークでは、この値を 1450 に設定します。ジャンボフレームのイーサネットネットワークの場合は、これを 8950 に設定します。

OVN および Geneve については、MTU は最低でも NIC MTU より 100 バイト少なくなければなりません。

注記

50 バイトのオーバーレイヘッダーは OpenShift SDN に関連します。他の SDN ソリューションの場合はこの値を若干変動させる必要があります。

14.3. IPsec の影響

ノードホストの暗号化、復号化に CPU 機能が使用されるので、使用する IP セキュリティーシステムにかかわらず、ノードのスループットおよび CPU 使用率の両方でのパフォーマンスに影響があります。

IPSec は、NIC に到達する前に IP ペイロードレベルでトラフィックを暗号化して、NIC オフロードに使用されてしまう可能性のあるフィールドを保護します。つまり、IPSec が有効な場合には、NIC アクセラレーション機能を使用できない場合があり、スループットの減少、CPU 使用率の上昇につながります。

第15章 ベアメタルホストの管理

OpenShift Container Platform をベアメタルクラスターにインストールする場合、クラスターに存在するベアメタルホストの machine および machineset カスタムリソース (CR) を使用して、ベアメタルノードをプロビジョニングし、管理できます。

15.1. ベアメタルホストおよびノードについて

Red Hat Enterprise Linux CoreOS (RHCOS) ベアメタルホストをクラスター内のノードとしてプロビジョニングするには、まずベアメタルホストハードウェアに対応する MachineSet カスタムリソース (CR) オブジェクトを作成します。ベアメタルホストマシンセットは、お使いの設定に固有のインフラストラクチャーコンポーネントを記述します。特定の Kubernetes ラベルをこれらのマシンセットに適用してから、インフラストラクチャーコンポーネントを更新して、それらのマシンでのみ実行されるようにします。

Machine CR は、metal3.io/autoscale-to-hosts アノテーションを含む関連する MachineSet をスケールアップする際に自動的に作成されます。OpenShift Container Platform は Machine CR を使用して、MachineSet CR で指定されるホストに対応するベアメタルノードをプロビジョニングします。

15.2. ベアメタルホストのメンテナンス

OpenShift Container Platform Web コンソールからクラスター内のベアメタルホストの詳細を維持することができます。ComputeBare Metal Hosts に移動し、Actions ドロップダウンメニューからタスクを選択します。ここでは、BMC の詳細、ホストの起動 MAC アドレス、電源管理の有効化などの項目を管理できます。また、ホストのネットワークインターフェイスおよびドライブの詳細を確認することもできます。

ベアメタルホストをメンテナンスモードに移行できます。ホストをメンテナンスモードに移行すると、スケジューラーはすべての管理ワークロードを対応するベアメタルノードから移動します。新しいワークロードは、メンテナンスモードの間はスケジュールされません。

Web コンソールでベアメタルホストのプロビジョニングを解除することができます。ホストのプロビジョニング解除により以下のアクションが実行されます。

  1. ベアメタルホスト CR に cluster.k8s.io/delete-machine: true のアノテーションを付けます。
  2. 関連するマシンセットをスケールダウンします。
注記

デーモンセットおよび管理対象外の静的 Pod を別のノードに最初に移動することなく、ホストの電源をオフにすると、サービスの中断やデータの損失が生じる場合があります。

15.2.1. Web コンソールを使用したベアメタルホストのクラスターへの追加

Web コンソールのクラスターにベアメタルホストを追加できます。

前提条件

  • RHCOS クラスターのベアメタルへのインストール
  • cluster-admin 権限を持つユーザーとしてログインしている。

手順

  1. Web コンソールで、ComputeBare Metal Hosts に移動します。
  2. Add HostNew with Dialog を選択します。
  3. 新規ベアメタルホストの一意の名前を指定します。
  4. Boot MAC address を設定します。
  5. Baseboard Management Console (BMC) Address を設定します。
  6. オプション: ホストの電源管理を有効にします。これにより、OpenShift Container Platform はホストの電源状態を制御できます。
  7. ホストのベースボード管理コントローラー (BMC) のユーザー認証情報を入力します。
  8. 作成後にホストの電源をオンにすることを選択し、Create を選択します。
  9. 利用可能なベアメタルホストの数に一致するようにレプリカ数をスケールアップします。ComputeMachineSets に移動し、Actions ドロップダウンメニューから Edit Machine count を選択してクラスター内のマシンレプリカ数を増やします。
注記

oc scale コマンドおよび適切なベアメタルマシンセットを使用して、ベアメタルノードの数を管理することもできます。

15.2.2. Web コンソールの YAML を使用したベアメタルホストのクラスターへの追加

ベアメタルホストを記述する YAML ファイルを使用して、Web コンソールのクラスターにベアメタルホストを追加できます。

前提条件

  • クラスターで使用するために RHCOS コンピュートマシンをベアメタルインフラストラクチャーにインストールします。
  • cluster-admin 権限を持つユーザーとしてログインしている。
  • ベアメタルホストの Secret CR を作成します。

手順

  1. Web コンソールで、ComputeBare Metal Hosts に移動します。
  2. Add HostNew from YAML を選択します。
  3. 以下の YAML をコピーして貼り付け、ホストの詳細で関連フィールドを変更します。

    apiVersion: metal3.io/v1alpha1
    kind: BareMetalHost
    metadata:
      name: <bare_metal_host_name>
    spec:
      online: true
      bmc:
        address: <bmc_address>
        credentialsName: <secret_credentials_name>  1
        disableCertificateVerification: True
      bootMACAddress: <host_boot_mac_address>
      hardwareProfile: unknown
    1 1 1
    credentialsName は有効な Secret CR を参照する必要があります。baremetal-operator は、credentialsName で参照される有効な Secret なしに、ベアメタルホストを管理できません。シークレットの詳細および作成方法については、シークレットについて を参照してください。
  4. Create を選択して YAML を保存し、新規ベアメタルホストを作成します。
  5. 利用可能なベアメタルホストの数に一致するようにレプリカ数をスケールアップします。ComputeMachineSets に移動し、Actions ドロップダウンメニューから Edit Machine count を選択してクラスター内のマシン数を増やします。

    注記

    oc scale コマンドおよび適切なベアメタルマシンセットを使用して、ベアメタルノードの数を管理することもできます。

15.2.3. 利用可能なベアメタルホストの数へのマシンの自動スケーリング

利用可能な BareMetalHost オブジェクトの数に一致する Machine オブジェクトの数を自動的に作成するには、metal3.io/autoscale-to-hosts アノテーションを MachineSet オブジェクトに追加します。

前提条件

  • クラスターで使用する RHCOS ベアメタルコンピュートマシンをインストールし、対応する BareMetalHost オブジェクトを作成します。
  • OpenShift Container Platform CLI (oc) をインストールします。
  • cluster-admin 権限を持つユーザーとしてログインしている。

手順

  1. metal3.io/autoscale-to-hosts アノテーションを追加して、自動スケーリング用に設定するマシンセットにアノテーションを付けます。<machineset> を、マシンセット名に置き換えます。

    $ oc annotate machineset <machineset> -n openshift-machine-api 'metal3.io/autoscale-to-hosts=<any_value>'

    新しいスケーリングされたマシンが起動するまで待ちます。

注記

BareMetalHost オブジェクトを使用してクラスター内にマシンを作成し、その後ラベルまたはセレクターが BareMetalHost で変更される場合、BareMetalHost オブジェクトは Machine オブジェクトが作成された MachineSet に対して引き続きカウントされます。

15.2.4. プロビジョナーノードからのベアメタルホストの削除

特定の状況では、プロビジョナーノードからベアメタルホストを一時的に削除する場合があります。たとえば、OpenShift Container Platform 管理コンソールを使用して、または Machine Config Pool の更新の結果として、ベアメタルホストの再起動がトリガーされたプロビジョニング中に、OpenShift Container Platform は統合された Dell Remote Access Controller (iDrac) にログインし、ジョブキューの削除を発行します。

利用可能な BareMetalHost オブジェクトの数と一致する数の Machine オブジェクトを管理しないようにするには、baremetalhost.metal3.io/detached アノテーションを MachineSet オブジェクトに追加します。

注記

このアノテーションは、ProvisionedExternallyProvisioned、または Ready/Available 状態の BareMetalHost オブジェクトに対してのみ効果があります。

前提条件

  • クラスターで使用する RHCOS ベアメタルコンピュートマシンをインストールし、対応する BareMetalHost オブジェクトを作成します。
  • OpenShift Container Platform CLI (oc) をインストールします。
  • cluster-admin 権限を持つユーザーとしてログインしている。

手順

  1. プロビジョナーノードから削除するコンピューティングマシンセットに、baremetalhost.metal3.io/detached アノテーションを追加してアノテーションを付けます。

    $ oc annotate machineset <machineset> -n openshift-machine-api 'baremetalhost.metal3.io/detached'

    新しいマシンが起動するまで待ちます。

    注記

    BareMetalHost オブジェクトを使用してクラスター内にマシンを作成し、その後ラベルまたはセレクターが BareMetalHost で変更される場合、BareMetalHost オブジェクトは Machine オブジェクトが作成された MachineSet に対して引き続きカウントされます。

  2. プロビジョニングのユースケースでは、次のコマンドを使用して、再起動が完了した後にアノテーションを削除します。

    $ oc annotate machineset <machineset> -n openshift-machine-api 'baremetalhost.metal3.io/detached-'

第16章 Huge Page の機能およびそれらがアプリケーションによって消費される仕組み

16.1. Huge Page の機能

メモリーは Page と呼ばれるブロックで管理されます。多くのシステムでは、1 ページは 4Ki です。メモリー 1Mi は 256 ページに、メモリー 1Gi は 256,000 ページに相当します。CPU には、内蔵のメモリー管理ユニットがあり、ハードウェアでこのようなページリストを管理します。トランスレーションルックアサイドバッファー (TLB: Translation Lookaside Buffer) は、仮想から物理へのページマッピングの小規模なハードウェアキャッシュのことです。ハードウェアの指示で渡された仮想アドレスが TLB にあれば、マッピングをすばやく決定できます。そうでない場合には、TLB ミスが発生し、システムは速度が遅く、ソフトウェアベースのアドレス変換にフォールバックされ、パフォーマンスの問題が発生します。TLB のサイズは固定されているので、TLB ミスの発生率を減らすには Page サイズを大きくする必要があります。

Huge Page とは、4Ki より大きいメモリーページのことです。x86_64 アーキテクチャーでは、2Mi と 1Gi の 2 つが一般的な Huge Page サイズです。別のアーキテクチャーではサイズは異なります。Huge Page を使用するには、アプリケーションが認識できるようにコードを書き込む必要があります。Transparent Huge Pages (THP) は、アプリケーションによる認識なしに、Huge Page の管理を自動化しようとしますが、制約があります。特に、ページサイズは 2Mi に制限されます。THP では、THP のデフラグが原因で、メモリー使用率が高くなり、断片化が起こり、パフォーマンスの低下につながり、メモリーページがロックされてしまう可能性があります。このような理由から、アプリケーションは THP ではなく、事前割り当て済みの Huge Page を使用するように設計 (また推奨) される場合があります。

OpenShift Container Platform では、Pod のアプリケーションが事前に割り当てられた Huge Page を割り当て、消費することができます。

16.2. Huge Page がアプリケーションによって消費される仕組み

ノードは、Huge Page の容量をレポートできるように Huge Page を事前に割り当てる必要があります。ノードは、単一サイズの Huge Page のみを事前に割り当てることができます。

Huge Page は、リソース名の hugepages-<size> を使用してコンテナーレベルのリソース要件で消費可能です。この場合、サイズは特定のノードでサポートされる整数値を使用した最もコンパクトなバイナリー表記です。たとえば、ノードが 2048KiB ページサイズをサポートする場合、これはスケジュール可能なリソース hugepages-2Mi を公開します。CPU やメモリーとは異なり、Huge Page はオーバーコミットをサポートしません。

apiVersion: v1
kind: Pod
metadata:
  generateName: hugepages-volume-
spec:
  containers:
  - securityContext:
      privileged: true
    image: rhel7:latest
    command:
    - sleep
    - inf
    name: example
    volumeMounts:
    - mountPath: /dev/hugepages
      name: hugepage
    resources:
      limits:
        hugepages-2Mi: 100Mi 1
        memory: "1Gi"
        cpu: "1"
  volumes:
  - name: hugepage
    emptyDir:
      medium: HugePages
1
hugepages のメモリー量は、実際に割り当てる量に指定します。この値は、ページサイズで乗算した hugepages のメモリー量に指定しないでください。たとえば、Huge Page サイズが 2MB と仮定し、アプリケーションに Huge Page でバックアップする RAM 100 MB を使用する場合には、Huge Page は 50 に指定します。OpenShift Container Platform により、計算処理が実行されます。上記の例にあるように、100MB を直接指定できます。

指定されたサイズの Huge Page の割り当て

プラットフォームによっては、複数の Huge Page サイズをサポートするものもあります。特定のサイズの Huge Page を割り当てるには、Huge Page の起動コマンドパラメーターの前に、Huge Page サイズの選択パラメーター hugepagesz=<size> を指定してください。<size> の値は、バイトで指定する必要があります。その際、オプションでスケール接尾辞 [kKmMgG] を指定できます。デフォルトの Huge Page サイズは、default_hugepagesz=<size> の起動パラメーターで定義できます。

Huge page の要件

  • Huge Page 要求は制限と同じでなければなりません。制限が指定されているにもかかわらず、要求が指定されていない場合には、これがデフォルトになります。
  • Huge Page は、Pod のスコープで分割されます。コンテナーの分割は、今後のバージョンで予定されています。
  • Huge Page がサポートする EmptyDir ボリュームは、Pod 要求よりも多くの Huge Page メモリーを消費することはできません。
  • shmget()SHM_HUGETLB を使用して Huge Page を消費するアプリケーションは、proc/sys/vm/hugetlb_shm_group に一致する補助グループで実行する必要があります。

16.3. Downward API を使用した Huge Page リソースの使用

Downward API を使用して、コンテナーで使用する Huge Page リソースに関する情報を挿入できます。

リソースの割り当ては、環境変数、ボリュームプラグイン、またはその両方として挿入できます。コンテナーで開発および実行するアプリケーションは、指定されたボリューム内の環境変数またはファイルを読み取ることで、利用可能なリソースを判別できます。

手順

  1. 以下の例のような hugepages-volume-pod.yaml ファイルを作成します。

    apiVersion: v1
    kind: Pod
    metadata:
      generateName: hugepages-volume-
      labels:
        app: hugepages-example
    spec:
      containers:
      - securityContext:
          capabilities:
            add: [ "IPC_LOCK" ]
        image: rhel7:latest
        command:
        - sleep
        - inf
        name: example
        volumeMounts:
        - mountPath: /dev/hugepages
          name: hugepage
        - mountPath: /etc/podinfo
          name: podinfo
        resources:
          limits:
            hugepages-1Gi: 2Gi
            memory: "1Gi"
            cpu: "1"
          requests:
            hugepages-1Gi: 2Gi
        env:
        - name: REQUESTS_HUGEPAGES_1GI <.>
          valueFrom:
            resourceFieldRef:
              containerName: example
              resource: requests.hugepages-1Gi
      volumes:
      - name: hugepage
        emptyDir:
          medium: HugePages
      - name: podinfo
        downwardAPI:
          items:
            - path: "hugepages_1G_request" <.>
              resourceFieldRef:
                containerName: example
                resource: requests.hugepages-1Gi
                divisor: 1Gi

    <.> では、requests.hugepages-1Gi からリソースの使用を読み取り、REQUESTS_HUGEPAGES_1GI 環境変数としてその値を公開するように指定し、2 つ目の <.> は、requests.hugepages-1Gi からのリソースの使用を読み取り、/etc/podinfo/hugepages_1G_request ファイルとして値を公開するように指定します。

  2. hugepages-volume-pod.yaml ファイルから Pod を作成します。

    $ oc create -f hugepages-volume-pod.yaml

検証

  1. REQUESTS_HUGEPAGES_1GI 環境 変数の値を確認します。

    $ oc exec -it $(oc get pods -l app=hugepages-example -o jsonpath='{.items[0].metadata.name}') \
         -- env | grep REQUESTS_HUGEPAGES_1GI

    出力例

    REQUESTS_HUGEPAGES_1GI=2147483648

  2. /etc/podinfo/hugepages_1G_request ファイルの値を確認します。

    $ oc exec -it $(oc get pods -l app=hugepages-example -o jsonpath='{.items[0].metadata.name}') \
         -- cat /etc/podinfo/hugepages_1G_request

    出力例

    2

16.4. Huge Page の設定

ノードは、OpenShift Container Platform クラスターで使用される Huge Page を事前に割り当てる必要があります。Huge Page を予約する方法は、ブート時とランタイム時に実行する 2 つの方法があります。ブート時の予約は、メモリーが大幅に断片化されていないために成功する可能性が高くなります。Node Tuning Operator は、現時点で特定のノードでの Huge Page のブート時の割り当てをサポートします。

16.4.1. ブート時

手順

ノードの再起動を最小限にするには、以下の手順の順序に従う必要があります。

  1. ラベルを使用して同じ Huge Page 設定を必要とするすべてのノードにラベルを付けます。

    $ oc label node <node_using_hugepages> node-role.kubernetes.io/worker-hp=
  2. 以下の内容でファイルを作成し、これに hugepages-tuned-boottime.yaml という名前を付けます。

    apiVersion: tuned.openshift.io/v1
    kind: Tuned
    metadata:
      name: hugepages 1
      namespace: openshift-cluster-node-tuning-operator
    spec:
      profile: 2
      - data: |
          [main]
          summary=Boot time configuration for hugepages
          include=openshift-node
          [bootloader]
          cmdline_openshift_node_hugepages=hugepagesz=2M hugepages=50 3
        name: openshift-node-hugepages
    
      recommend:
      - machineConfigLabels: 4
          machineconfiguration.openshift.io/role: "worker-hp"
        priority: 30
        profile: openshift-node-hugepages
    1
    チューニングされたリソースの namehugepages に設定します。
    2
    Huge Page を割り当てる profile セクションを設定します。
    3
    一部のプラットフォームではさまざまなサイズの Huge Page をサポートするため、パラメーターの順序に注意してください。
    4
    マシン設定プールベースのマッチングを有効にします。
  3. チューニングされた hugepages オブジェクトの作成

    $ oc create -f hugepages-tuned-boottime.yaml
  4. 以下の内容でファイルを作成し、これに hugepages-mcp.yaml という名前を付けます。

    apiVersion: machineconfiguration.openshift.io/v1
    kind: MachineConfigPool
    metadata:
      name: worker-hp
      labels:
        worker-hp: ""
    spec:
      machineConfigSelector:
        matchExpressions:
          - {key: machineconfiguration.openshift.io/role, operator: In, values: [worker,worker-hp]}
      nodeSelector:
        matchLabels:
          node-role.kubernetes.io/worker-hp: ""
  5. マシン設定プールを作成します。

    $ oc create -f hugepages-mcp.yaml

断片化されていないメモリーが十分にある場合、worker-hp マシン設定プールのすべてのノードには 50 2Mi の Huge Page が割り当てられているはずです。

$ oc get node <node_using_hugepages> -o jsonpath="{.status.allocatable.hugepages-2Mi}"
100Mi
警告

この機能は、現在 Red Hat Enterprise Linux CoreOS (RHCOS) 8.x ワーカーノードでのみサポートされています。Red Hat Enterprise Linux (RHEL) 7.x ワーカーノードでは、TuneD [bootloader] プラグインは現時点でサポートされていません。

16.5. Transparent Huge Pages (THP) の無効化

Transparent Huge Page (THP) は、Huge Page を作成し、管理し、使用するためのほとんどの要素を自動化しようとします。THP は Huge Page を自動的に管理するため、すべてのタイプのワークロードに対して常に最適に処理される訳ではありません。THP は、多くのアプリケーションが独自の Huge Page を処理するため、パフォーマンス低下につながる可能性があります。したがって、THP を無効にすることを検討してください。以下の手順では、Node Tuning Operator (NTO) を使用して THP を無効にする方法を説明します。

手順

  1. 以下の内容でファイルを作成し、thp-disable-tuned.yaml という名前を付けます。

    apiVersion: tuned.openshift.io/v1
    kind: Tuned
    metadata:
      name: thp-workers-profile
      namespace: openshift-cluster-node-tuning-operator
    spec:
      profile:
      - data: |
          [main]
          summary=Custom tuned profile for OpenShift to turn off THP on worker nodes
          include=openshift-node
    
          [vm]
          transparent_hugepages=never
        name: openshift-thp-never-worker
    
      recommend:
      - match:
        - label: node-role.kubernetes.io/worker
        priority: 25
        profile: openshift-thp-never-worker
  2. Tuned オブジェクトを作成します。

    $ oc create -f thp-disable-tuned.yaml
  3. アクティブなプロファイルの一覧を確認します。

    $ oc get profile -n openshift-cluster-node-tuning-operator

検証

  • ノードのいずれかにログインし、通常の THP チェックを実行して、ノードがプロファイルを正常に適用したかどうかを確認します。

    $ cat /sys/kernel/mm/transparent_hugepage/enabled

    出力例

    always madvise [never]

第17章 低レイテンシーのノード向けの Performance Addon Operator

17.1. 低レイテンシー

Telco / 5G の領域でのエッジコンピューティングの台頭は、レイテンシーと輻輳を軽減し、アプリケーションのパフォーマンスを向上させる上で重要なロールを果たします。

簡単に言うと、レイテンシーは、データ (パケット) が送信側から受信側に移動し、受信側の処理後に送信側に戻るスピードを決定します。レイテンシーによる遅延を最小限に抑えた状態でネットワークアーキテクチャーを維持することが 5 G のネットワークパフォーマンス要件を満たすのに鍵となります。4G テクノロジーと比較し、平均レイテンシーが 50ms の 5G では、レイテンシーの数値を 1ms 以下にするようにターゲットが設定されます。このレイテンシーの減少により、ワイヤレスのスループットが 10 倍向上します。

Telco 領域にデプロイされるアプリケーションの多くは、ゼロパケットロスに耐えられる低レイテンシーを必要とします。パケットロスをゼロに調整すると、ネットワークのパフォーマンス低下させる固有の問題を軽減することができます。詳細は、Tuning for Zero Packet Loss in Red Hat OpenStack Platform (RHOSP) を参照してください。

エッジコンピューティングの取り組みは、レイテンシーの削減にも役立ちます。コンピュート能力が文字通りクラウドのエッジ上にあり、ユーザーの近く置かれること考えてください。これにより、ユーザーと離れた場所にあるデータセンター間の距離が大幅に削減されるため、アプリケーションの応答時間とパフォーマンスのレイテンシーが短縮されます。

管理者は、すべてのデプロイメントを可能な限り低い管理コストで実行できるように、多数のエッジサイトおよびローカルサービスを一元管理できるようにする必要があります。また、リアルタイムの低レイテンシーおよび高パフォーマンスを実現するために、クラスターの特定のノードをデプロイし、設定するための簡単な方法も必要になります。低レイテンシーノードは、Cloud-native Network Functions (CNF) や Data Plane Development Kit (DPDK) などのアプリケーションに役立ちます。

現時点で、OpenShift Container Platform はリアルタイムの実行および低レイテンシーを実現するために OpenShift Container Platform クラスターでソフトウェアを調整するメカニズムを提供します (約 20 マイクロ秒未満の応答時間)。これには、カーネルおよび OpenShift Container Platform の設定値のチューニング、カーネルのインストール、およびマシンの再設定が含まれます。ただし、この方法では 4 つの異なる Operator を設定し、手動で実行する場合に複雑であり、間違いが生じる可能性がある多くの設定を行う必要があります。

OpenShift Container Platform は、OpenShift アプリケーションの低レイテンシーパフォーマンスを実現するために自動チューニングを実装する Performance Addon Operator を提供します。クラスター管理者は、このパフォーマンスプロファイル設定を使用することにより、より信頼性の高い方法でこれらの変更をより容易に実行することができます。管理者は、カーネルを kernel-rt に更新するかどうかを指定し、Pod の infra コンテナーなどのクラスターおよびオペレーティングシステムのハウスキーピング向けに CPU を予約して、アプリケーションコンテナーがワークロードを実行するように CPU を分離することができます。

17.1.1. 低レイテンシーおよびリアルタイムのアプリケーションのハイパースレッディングについて

ハイパースレッディングは、物理 CPU プロセッサーコアが 2 つの論理コアとして機能することを可能にする Intel プロセッサーテクノロジーで、2 つの独立したスレッドを同時に実行します。ハイパースレッディングにより、並列処理が効果的な特定のワークロードタイプのシステムスループットを向上できます。デフォルトの OpenShift Container Platform 設定では、ハイパースレッディングがデフォルトで有効にされることが予想されます。

通信アプリケーションの場合、可能な限りレイテンシーを最小限に抑えられるようにアプリケーションインフラストラクチャーを設計することが重要です。ハイパースレッディングは、パフォーマンスを低下させる可能性があり、低レイテンシーを必要とするコンピュート集約型のワークロードのスループットにマイナスの影響を及ぼす可能性があります。ハイパースレッディングを無効にすると、予測可能なパフォーマンスが確保され、これらのワークロードの処理時間が短縮されます。

注記

ハイパースレッディングの実装および設定は、OpenShift Container Platform を実行しているハードウェアによって異なります。ハードウェアに固有のハイパースレッディング実装についての詳細は、関連するホストハードウェアのチューニング情報を参照してください。ハイパースレッディングを無効にすると、クラスターのコアごとにコストが増大する可能性があります。

17.2. Performance Addon Operator のインストール

Performance Addon Operator は、一連のノードで高度なノードのパフォーマンスチューニングを有効にする機能を提供します。クラスター管理者は、OpenShift Container Platform CLI または Web コンソールを使用して Performance Addon Operator をインストールできます。

17.2.1. CLI を使用した Operator のインストール

クラスター管理者は、CLI を使用して Operator をインストールできます。

前提条件

  • ベアメタルハードウェアにインストールされたクラスター。
  • OpenShift CLI (oc) がインストールされている。
  • cluster-admin 権限を持つユーザーとしてログインしている。

手順

  1. 以下のアクションを実行して、Performance Addon Operator の namespace を作成します。

    1. openshift-performance-addon-operator namespace を定義する以下の Namespace カスタムリソース (CR) を作成し、YAML を pao-namespace.yaml ファイルに保存します。

      apiVersion: v1
      kind: Namespace
      metadata:
        name: openshift-performance-addon-operator
        annotations:
          workload.openshift.io/allowed: management
    2. 以下のコマンドを実行して namespace を作成します。

      $ oc create -f pao-namespace.yaml
  2. 以下のオブジェクトを作成して、直前の手順で作成した namespace に Performance Addon Operator をインストールします。

    1. 以下の OperatorGroup CR を作成し、YAML を pao-operatorgroup.yaml ファイルに保存します。

      apiVersion: operators.coreos.com/v1
      kind: OperatorGroup
      metadata:
        name: openshift-performance-addon-operator
        namespace: openshift-performance-addon-operator
    2. 以下のコマンドを実行して OperatorGroup CR を作成します。

      $ oc create -f pao-operatorgroup.yaml
    3. 以下のコマンドを実行して、次の手順に必要な channel の値を取得します。

      $ oc get packagemanifest performance-addon-operator -n openshift-marketplace -o jsonpath='{.status.defaultChannel}'

      出力例

      4.8

    4. 以下の Subscription CR を作成し、YAML を pao-sub.yaml ファイルに保存します。

      Subscription の例

      apiVersion: operators.coreos.com/v1alpha1
      kind: Subscription
      metadata:
        name: openshift-performance-addon-operator-subscription
        namespace: openshift-performance-addon-operator
      spec:
        channel: "<channel>" 1
        name: performance-addon-operator
        source: redhat-operators 2
        sourceNamespace: openshift-marketplace

      1
      .status.defaultChannel パラメーターの直前の手順で取得した値を指定します。
      2
      redhat-operators 値を指定する必要があります。
    5. 以下のコマンドを実行して Subscription オブジェクトを作成します。

      $ oc create -f pao-sub.yaml
    6. openshift-performance-addon-operator プロジェクトに切り替えます。

      $ oc project openshift-performance-addon-operator

17.2.2. Web コンソールを使用した Performance Addon Operator のインストール

クラスター管理者は、Web コンソールを使用して Performance Addon Operator をインストールできます。

注記

先のセクションで説明されているように Namespace CR および OperatorGroup CR を作成する必要があります。

手順

  1. OpenShift Container Platform Web コンソールを使用して Performance Addon Operator をインストールします。

    1. OpenShift Container Platform Web コンソールで、OperatorsOperatorHub をクリックします。
    2. 利用可能な Operator の一覧から Performance Addon Operator を選択してから Install をクリックします。
    3. Install Operator ページで、All namespaces on the cluster を選択します。次に、Install をクリックします。
  2. オプション: performance-addon-operator が正常にインストールされていることを確認します。

    1. OperatorsInstalled Operators ページに切り替えます。
    2. Performance Addon Operatoropenshift-operators プロジェクトに SucceededStatus でリストされていることを確認します。

      注記

      インストール時に、 Operator は Failed ステータスを表示する可能性があります。インストールが成功し、Succeeded メッセージが表示された場合は、Failed メッセージを無視できます。

      Operator がインストール済みとして表示されない場合は、さらにトラブルシューティングを行うことができます。

      • OperatorsInstalled Operators ページに移動し、Operator Subscriptions および Install Plans タブで Status にエラーがあるかどうかを検査します。
      • WorkloadsPods ページに移動し、openshift-operators プロジェクトで Pod のログを確認します。

17.3. Performance Addon Operator のアップグレード

次のマイナーバージョンの Performance Addon Operator に手動でアップグレードし、Web コンソールを使用して更新のステータスをモニターできます。

17.3.1. Performance Addon Operator のアップグレードについて

  • OpenShift Container Platform Web コンソールを使用して Operator サブスクリプションのチャネルを変更することで、Performance Addon Operator の次のマイナーバージョンにアップグレードできます。
  • Performance Addon Operator のインストール時に z-stream の自動更新を有効にできます。
  • 更新は、OpenShift Container Platform のインストール時にデプロイされる Marketplace Operator 経由で提供されます。Marketplace Operator は外部 Operator をクラスターで利用可能にします。
  • 更新の完了までにかかる時間は、ネットワーク接続によって異なります。ほとんどの自動更新は 15 分以内に完了します。
17.3.1.1. Performance Addon Operator のクラスターへの影響
  • 低レイテンシーのチューニング Huge Page は影響を受けません。
  • Operator を更新しても、予期しない再起動は発生しません。
17.3.1.2. Performance Addon Operator の次のマイナーバージョンへのアップグレード

OpenShift Container Platform Web コンソールを使用して Operator サブスクリプションのチャネルを変更することで、Performance Addon Operator を次のマイナーバージョンに手動でアップグレードできます。

前提条件

  • cluster-admin ロールを持つユーザーとしてのクラスターへのアクセスがあること。

手順

  1. Web コンソールにアクセスし、OperatorsInstalled Operators に移動します。
  2. Performance Addon Operator をクリックし、Operator details ページを開きます。
  3. Subscription タブをクリックし、Subscription details ページを開きます。
  4. Update channel ペインで、バージョン番号の右側にある鉛筆アイコンをクリックし、Change Subscription update channel ウィンドウを開きます。
  5. 次のマイナーバージョンを選択します。たとえば、Performance Addon Operator 4.8 にアップグレードする場合は、4.8 を選択します。
  6. Save をクリックします。
  7. Operators → Installed Operators に移動してアップグレードのステータスを確認します。以下の oc コマンドを実行してステータスを確認することもできます。

    $ oc get csv -n openshift-performance-addon-operator
17.3.1.3. 以前に特定の namespace にインストールされている場合の Performance Addon Operator のアップグレード

Performance Addon Operator をクラスターの特定の namespace(例: openshift-performance-addon-operator) にインストールしている場合、OperatorGroup オブジェクトを変更して、アップグレード前に targetNamespaces エントリーを削除します。

前提条件

  • OpenShift Container Platform CLI (oc) をインストールします。
  • cluster-admin 権限を持つユーザーとして OpenShift クラスターにログインします。

手順

  1. Performance Addon Operator OperatorGroup CR を編集し、以下のコマンドを実行して targetNamespaces エントリーが含まれる spec 要素を削除します。

    $ oc patch operatorgroup -n openshift-performance-addon-operator openshift-performance-addon-operator --type json -p '[{ "op": "remove", "path": "/spec" }]'
  2. Operator Lifecycle Manager (OLM) が変更を処理するまで待機します。
  3. OperatorGroup CR の変更が正常に適用されていることを確認します。OperatorGroup CR の spec 要素が削除されていることを確認します。

    $ oc describe -n openshift-performance-addon-operator og openshift-performance-addon-operator
  4. Performance Addon Operator のアップグレードに進みます。

17.3.2. アップグレードステータスの監視

Performance Addon Operator アップグレードステータスをモニターする最適な方法として、ClusterServiceVersion (CSV) PHASE を監視できます。Web コンソールを使用するか、または oc get csv コマンドを実行して CSV の状態をモニターすることもできます。

注記

PHASE および状態の値は利用可能な情報に基づく近似値になります。

前提条件

  • cluster-admin ロールを持つユーザーとしてクラスターにアクセスできる。
  • OpenShift CLI (oc) がインストールされている。

手順

  1. 以下のコマンドを実行します。

    $ oc get csv
  2. 出力を確認し、PHASE フィールドをチェックします。以下に例を示します。

    VERSION    REPLACES                                         PHASE
    4.8.0      performance-addon-operator.v4.8.0                Installing
    4.7.0                                                       Replacing
  3. get csv を再度実行して出力を確認します。

    # oc get csv

    出力例

    NAME                                DISPLAY                      VERSION   REPLACES                            PHASE
    performance-addon-operator.v4.8.0   Performance Addon Operator   4.8.0     performance-addon-operator.v4.7.0   Succeeded

17.4. リアルタイムおよび低レイテンシーワークロードのプロビジョニング

多くの企業や組織は、非常に高性能なコンピューティングを必要としており、とくに金融業界や通信業界では、低い、予測可能なレイテンシーが必要になる場合があります。このような固有の要件を持つ業界では、OpenShift Container Platform は Performance Addon Operator を提供して、OpenShift Container Platform アプリケーションの低レイテンシーのパフォーマンスと一貫性のある応答時間を実現するための自動チューニングを実装します。

クラスター管理者は、このパフォーマンスプロファイル設定を使用することにより、より信頼性の高い方法でこれらの変更を加えることができます。管理者は、カーネルを kernel-rt (リアルタイム) に更新するかどうかを指定し、Pod の infra コンテナーなどのクラスターおよびオペレーティングシステムのハウスキーピング向けに CPU を予約して、アプリケーションコンテナーがワークロードを実行するように CPU を分離することができます。

警告

保証された CPU を必要とするアプリケーションと組み合わせて実行プローブを使用すると、レイテンシースパイクが発生する可能性があります。代わりに、適切に設定されたネットワークプローブのセットなど、他のプローブを使用することをお勧めします。

17.4.1. リアルタイムの既知の制限

注記

RT カーネルはワーカーノードでのみサポートされます。

リアルタイムモードを完全に使用するには、コンテナーを昇格した権限で実行する必要があります。権限の付与についての情報は、Set capabilities for a Container を参照してください。

OpenShift Container Platform は許可される機能を制限するため、SecurityContext を作成する必要がある場合もあります。

注記

この手順は、Red Hat Enterprise Linux CoreOS (RHCOS) システムを使用したベアメタルのインストールで完全にサポートされます。

パフォーマンスの期待値を設定する必要があるということは、リアルタイムカーネルがあらゆる問題の解決策ではないということを意味します。リアルタイムカーネルは、一貫性のある、低レイテンシーの、決定論に基づく予測可能な応答時間を提供します。リアルタイムカーネルに関連して、追加のカーネルオーバーヘッドがあります。これは、主に個別にスケジュールされたスレッドでハードウェア割り込みを処理することによって生じます。一部のワークロードのオーバーヘッドが増加すると、スループット全体が低下します。ワークロードによって異なりますが、パフォーマンスの低下の程度は 0% から 30% の範囲になります。ただし、このコストは決定論をベースとしています。

17.4.2. リアルタイム機能のあるワーカーのプロビジョニング

  1. Performance Addon Operator をクラスターにインストールします。
  2. オプション: ノードを OpenShift Container Platform クラスターに追加します。BIOS パラメーターの設定 について参照してください。
  3. ocコマンドを使用して、リアルタイム機能を必要とするワーカーノードにラベルworker-rtを追加します。
  4. リアルタイムノード用の新しいマシン設定プールを作成します。

    apiVersion: machineconfiguration.openshift.io/v1
    kind: MachineConfigPool
    metadata:
      name: worker-rt
      labels:
        machineconfiguration.openshift.io/role: worker-rt
    spec:
      machineConfigSelector:
        matchExpressions:
          - {
               key: machineconfiguration.openshift.io/role,
               operator: In,
               values: [worker, worker-rt],
            }
      paused: false
      nodeSelector:
        matchLabels:
          node-role.kubernetes.io/worker-rt: ""

    マシン設定プール worker-rt は、worker-rt というラベルを持つノードのグループに対して作成されることに注意してください。

  5. ノードロールラベルを使用して、ノードを適切なマシン設定プールに追加します。

    注記

    リアルタイムワークロードで設定するノードを決定する必要があります。クラスター内のすべてのノード、またはノードのサブセットを設定できます。Performance Addon Operator は、すべてのノードが専用のマシン設定プールの一部であることを想定します。すべてのノードを使用する場合は、Performance Addon Operator がワーカーノードのロールラベルを指すようにする必要があります。サブセットを使用する場合、ノードを新規のマシン設定プールにグループ化する必要があります。

  6. ハウスキーピングコアの適切なセットと realTimeKernel: enabled: true を設定して PerformanceProfile を作成します。
  7. PerformanceProfilemachineConfigPoolSelector を設定する必要があります:

      apiVersion: performance.openshift.io/v2
      kind: PerformanceProfile
      metadata:
       name: example-performanceprofile
      spec:
      ...
        realTimeKernel:
          enabled: true
        nodeSelector:
           node-role.kubernetes.io/worker-rt: ""
        machineConfigPoolSelector:
           machineconfiguration.openshift.io/role: worker-rt
  8. 一致するマシン設定プールがラベルを持つことを確認します。

    $ oc describe mcp/worker-rt

    出力例

    Name:         worker-rt
    Namespace:
    Labels:       machineconfiguration.openshift.io/role=worker-rt

  9. OpenShift Container Platform はノードの設定を開始しますが、これにより複数の再起動が伴う可能性があります。ノードが起動し、安定するのを待機します。特定のハードウェアの場合に、これには長い時間がかかる可能性がありますが、ノードごとに 20 分の時間がかかることが予想されます。
  10. すべてが予想通りに機能していることを確認します。

17.4.3. リアルタイムカーネルのインストールの確認

以下のコマンドを使用して、リアルタイムカーネルがインストールされていることを確認します。

$ oc get node -o wide

文字列 4.18.0-211.rt5.23.el8.x86_64 が含まれる、ロール worker-rt を持つワーカーに留意してください。

NAME                               	STATUS   ROLES           	AGE 	VERSION                  	INTERNAL-IP
EXTERNAL-IP   OS-IMAGE                                       	KERNEL-VERSION
CONTAINER-RUNTIME
rt-worker-0.example.com	            Ready	 worker,worker-rt   5d17h   v1.22.1
128.66.135.107   <none>    	        Red Hat Enterprise Linux CoreOS 46.82.202008252340-0 (Ootpa)
4.18.0-211.rt5.23.el8.x86_64   cri-o://1.21.0-90.rhaos4.8.git4a0ac05.el8-rc.1
[...]

17.4.4. リアルタイムで機能するワークロードの作成

リアルタイム機能を使用するワークロードを準備するには、以下の手順を使用します。

手順

  1. QoS クラスの Guaranteed を指定して Pod を作成します。
  2. オプション: DPDK の CPU 負荷分散を無効にします。
  3. 適切なノードセレクターを割り当てます。

アプリケーションを作成する場合には、アプリケーションのチューニングとデプロイメント に記載されている一般的な推奨事項に従ってください。

17.4.5. QoS クラスの Guaranteed を指定した Pod の作成

QoS クラスの Guaranteed が指定されている Pod を作成する際には、以下を考慮してください。

  • Pod のすべてのコンテナーにはメモリー制限およびメモリー要求があり、それらは同じである必要があります。
  • Pod のすべてのコンテナーには CPU の制限と CPU 要求が必要であり、それらは同じである必要があります。

以下の例は、1 つのコンテナーを持つ Pod の設定ファイルを示しています。コンテナーにはメモリー制限とメモリー要求があり、どちらも 200 MiB に相当します。コンテナーには CPU 制限と CPU 要求があり、どちらも 1 CPU に相当します。

apiVersion: v1
kind: Pod
metadata:
  name: qos-demo
  namespace: qos-example
spec:
  containers:
  - name: qos-demo-ctr
    image: <image-pull-spec>
    resources:
      limits:
        memory: "200Mi"
        cpu: "1"
      requests:
        memory: "200Mi"
        cpu: "1"
  1. Pod を作成します。

    $ oc  apply -f qos-pod.yaml --namespace=qos-example
  2. Pod についての詳細情報を表示します。

    $ oc get pod qos-demo --namespace=qos-example --output=yaml

    出力例

    spec:
      containers:
        ...
    status:
      qosClass: Guaranteed

    注記

    コンテナーが独自のメモリー制限を指定するものの、メモリー要求を指定しない場合、OpenShift Container Platform は制限に一致するメモリー要求を自動的に割り当てます。同様に、コンテナーが独自の CPU 制限を指定するものの、CPU 要求を指定しない場合、OpenShift Container Platform は制限に一致する CPU 要求を自動的に割り当てます。

17.4.6. オプション: DPDK 用の CPU 負荷分散の無効化

CPU 負荷分散を無効または有効にする機能は CRI-O レベルで実装されます。CRI-O のコードは、以下の要件を満たす場合にのみ CPU の負荷分散を無効または有効にします。

  • Pod は performance-<profile-name> ランタイムクラスを使用する必要があります。以下に示すように、パフォーマンスプロファイルのステータスを確認して、適切な名前を取得できます。

    apiVersion: performance.openshift.io/v2
    kind: PerformanceProfile
    ...
    status:
      ...
      runtimeClass: performance-manual
  • Pod には cpu-load-balancing.crio.io: true アノテーションが必要です。

Performance Addon Operator は、該当するノードで高パフォーマンスのランタイムハンドラー設定スニペットの作成や、クラスターで高パフォーマンスのランタイムクラスの作成を行います。これには、 CPU 負荷分散の設定機能を有効にすることを除くと、デフォルトのランタイムハンドラーと同じ内容が含まれます。

Pod の CPU 負荷分散を無効にするには、 Pod 仕様に以下のフィールドが含まれる必要があります。

apiVersion: v1
kind: Pod
metadata:
  ...
  annotations:
    ...
    cpu-load-balancing.crio.io: "disable"
    ...
  ...
spec:
  ...
  runtimeClassName: performance-<profile_name>
  ...
注記

CPU マネージャーの静的ポリシーが有効にされている場合に、CPU 全体を使用する Guaranteed QoS を持つ Pod について CPU 負荷分散を無効にします。これ以外の場合に CPU 負荷分散を無効にすると、クラスター内の他のコンテナーのパフォーマンスに影響する可能性があります。

17.4.7. 適切なノードセレクターの割り当て

Pod をノードに割り当てる方法として、以下に示すようにパフォーマンスプロファイルが使用するものと同じノードセレクターを使用することが推奨されます。

apiVersion: v1
kind: Pod
metadata:
  name: example
spec:
  # ...
  nodeSelector:
    node-role.kubernetes.io/worker-rt: ""

ノードセレクターの詳細は、Placing pods on specific nodes using node selectors を参照してください。

17.4.8. リアルタイム機能を備えたワーカーへのワークロードのスケジューリング

Performance Addon Operator によって低レイテンシーを確保するために設定されたマシン設定プールに割り当てられるノードに一致するラベルセレクターを使用します。詳細は、Assigning pods to nodes を参照してください。

17.4.9. Guaranteed Pod の分離された CPU のデバイス割り込み処理の管理

Performance Addon Operator は、Pod Infra コンテナーなど、予約された CPU をクラスターおよびオペレーティングシステムのハウスキーピングタスクに、分離された CPU をワークロード実行用のアプリケーションコンテナーに分割して、ホストの CPU を管理できます。これにより、低レイテンシーのワークロード用の CPU を isolated (分離された CPU) として設定できます。

デバイスの割り込みについては、Guaranteed Pod が実行されている CPU を除き、CPU のオーバーロードを防ぐためにすべての分離された CPU および予約された CPU 間で負荷が分散されます。Guaranteed Pod の CPU は、関連するアノテーションが Pod に設定されている場合にデバイス割り込みを処理できなくなります。

パフォーマンスプロファイルで、 globallyDisableIrqLoadBalancing は、デバイス割り込みが処理されるかどうかを管理するために使用されます。特定のワークロードでは、予約された CPU は、デバイスの割り込みを処理するのに常に十分な訳ではないため、デバイスの割り込みは分離された CPU でグローバルに無効にされません。デフォルトで、Performance Addon Operator は分離された CPU でデバイス割り込みを無効にしません。

ワークロードの低レイテンシーを確保するには、一部の (すべてではない) Pod で、それらが実行されている CPU がデバイス割り込みを処理しないようにする必要があります。Pod アノテーション irq-load-balancing.crio.io は、デバイス割り込みが処理されるかどうかを定義するために使用されます。CRI-O は (設定されている場合)、Pod が実行されている場合にのみデバイス割り込みを無効にします。

17.4.9.1. CPU CFS クォータの無効化

保証された個々の Pod の CPU スロットル調整を減らすには、アノテーション cpu-quota.crio.io: "disable" を付けて、Pod 仕様を作成します。このアノテーションは、Pod の実行時に CPU Completely Fair Scheduler (CFS) のクォータを無効にします。次の Pod 仕様には、このアノテーションが含まれています。

apiVersion: performance.openshift.io/v2
kind: Pod
metadata:
  annotations:
      cpu-quota.crio.io: "disable"
spec:
    runtimeClassName: performance-<profile_name>
...
注記

CPU マネージャーの静的ポリシーが有効になっている場合、および CPU 全体を使用する Guaranteed QoS を持つ Pod の場合にのみ、CPU CFS クォータを無効にします。これ以外の場合に CPU CFS クォータを無効にすると、クラスター内の他のコンテナーのパフォーマンスに影響を与える可能性があります。

17.4.9.2. Performance Addon Operator でのグローバルデバイス割り込み処理の無効化

Performance Addon Operator を分離された CPU セットのグローバルデバイス割り込みを無効にするように設定するには、パフォーマンスプロファイルの globallyDisableIrqLoadBalancing フィールドを true に設定します。true の場合、競合する Pod アノテーションは無視されます。false の場合、すべての CPU 間で IRQ 負荷が分散されます。

パフォーマンスプロファイルのスニペットは、この設定を示しています。

apiVersion: performance.openshift.io/v2
kind: PerformanceProfile
metadata:
  name: manual
spec:
  globallyDisableIrqLoadBalancing: true
...
17.4.9.3. 個別の Pod の割り込み処理の無効化

個別の Pod の割り込み処理を無効にするには、パフォーマンスプロファイルで globalDisableIrqLoadBalancingfalse に設定されていることを確認します。次に、Pod 仕様で、irq-load-balancing.crio.io Pod アノテーションを disable に設定します。次の Pod 仕様には、このアノテーションが含まれています。

apiVersion: performance.openshift.io/v2
kind: Pod
metadata:
  annotations:
      irq-load-balancing.crio.io: "disable"
spec:
    runtimeClassName: performance-<profile_name>
...

17.4.10. デバイス割り込み処理を使用するためのパフォーマンスプロファイルのアップグレード

Performance Addon Operator パフォーマンスプロファイルのカスタムリソース定義 (CRD) を v1 または v1alpha1 から v2 にアップグレードする場合、globallyDisableIrqLoadBalancingtrue に設定されます。

注記

globallyDisableIrqLoadBalancing は、IRQ ロードバランシングを分離 CPU セットに対して無効にするかどうかを切り替えます。このオプションを true に設定すると、分離 CPU セットの IRQ ロードバランシングが無効になります。オプションを false に設定すると、IRQ をすべての CPU 間でバランスさせることができます。

17.4.10.1. サポート対象の API バージョン

Performance Addon Operator は、パフォーマンスプロファイル apiVersion フィールドの v2v1、および v1alpha1 をサポートします。v1 および v1alpha1 API は同一です。v2 API には、デフォルト値の false が設定されたオプションのブール値フィールド globallyDisableIrqLoadBalancing が含まれます。

17.4.10.1.1. Performance Addon Operator の v1alpha1 から v1 へのアップグレード

Performance Addon Operator API バージョンを v1alpha1 から v1 にアップグレードする場合、v1alpha1 パフォーマンスプロファイルは None 変換ストラテジーを使用して即時にオンザフライで変換され、API バージョン v1 の Performance Addon Operator に送信されます。

17.4.10.1.2. Performance Addon Operator API の v1alpha1 または v1 から v2 へのアップグレード

古い Performance Addon Operator API バージョンからアップグレードする場合、既存の v1 および v1alpha1 パフォーマンスプロファイルは、globallyDisableIrqLoadBalancing フィールドに true の値を挿入する変換 Webhook を使用して変換されます。

17.4.11. IRQ 動的負荷分散用ノードの設定

IRQ 動的負荷分散を処理するクラスターノードを設定するには、以下を実行します。

  1. cluster-admin 権限を持つユーザーとして OpenShift Container Platform クラスターにログインします。
  2. パフォーマンスプロファイルの apiVersionperformance.openshift.io/v2 を使用するように設定します。
  3. globallyDisableIrqLoadBalancing フィールドを削除するか、またはこれを false に設定します。
  4. 適切な分離された CPU と予約された CPU を設定します。以下のスニペットは、2 つの CPU を確保するプロファイルを示しています。IRQ 負荷分散は、isolated CPU セットで実行されている Pod について有効にされます。

    apiVersion: performance.openshift.io/v2
    kind: PerformanceProfile
    metadata:
      name: dynamic-irq-profile
    spec:
      cpu:
        isolated: 2-5
        reserved: 0-1
    ...
    注記

    予約および分離された CPU を設定する場合に、Pod 内の infra コンテナーは予約された CPU を使用し、アプリケーションコンテナーは分離された CPU を使用します。

  5. 排他的な CPU を使用する Pod を作成し、irq-load-balancing.crio.io および cpu-quota.crio.io アノテーションを disable に設定します。以下に例を示します。

    apiVersion: v1
    kind: Pod
    metadata:
      name: dynamic-irq-pod
      annotations:
         irq-load-balancing.crio.io: "disable"
         cpu-quota.crio.io: "disable"
    spec:
      containers:
      - name: dynamic-irq-pod
        image: "quay.io/openshift-kni/cnf-tests:4.8"
        command: ["sleep", "10h"]
        resources:
          requests:
            cpu: 2
            memory: "200M"
          limits:
            cpu: 2
            memory: "200M"
      nodeSelector:
        node-role.kubernetes.io/worker-cnf: ""
      runtimeClassName: performance-dynamic-irq-profile
    ...
  6. performance-<profile_name> の形式で Pod runtimeClassName を入力します。ここで、<profile_name> は PerformanceProfile YAML の name です (例: performance-dynamic-irq-profile)。
  7. ノードセレクターを cnf-worker をターゲットに設定するように設定します。
  8. Pod が正常に実行されていることを確認します。ステータスが running であり、正しい cnf-worker ノードが設定されている必要があります。

    $ oc get pod -o wide

    予想される出力

    NAME              READY   STATUS    RESTARTS   AGE     IP             NODE          NOMINATED NODE   READINESS GATES
    dynamic-irq-pod   1/1     Running   0          5h33m   <ip-address>   <node-name>   <none>           <none>

  9. IRQ の動的負荷分散向けに設定された Pod が実行される CPU を取得します。

    $ oc exec -it dynamic-irq-pod -- /bin/bash -c "grep Cpus_allowed_list /proc/self/status | awk '{print $2}'"

    予想される出力

    Cpus_allowed_list:  2-3

  10. ノードの設定が正しく適用されていることを確認します。そのノードに対して SSH を実行し、設定を確認します。

    $ oc debug node/<node-name>

    予想される出力

    Starting pod/<node-name>-debug ...
    To use host binaries, run `chroot /host`
    
    Pod IP: <ip-address>
    If you don't see a command prompt, try pressing enter.
    
    sh-4.4#

  11. ノードのファイルシステムを使用できることを確認します。

    sh-4.4# chroot /host

    予想される出力

    sh-4.4#

  12. デフォルトのシステム CPU アフィニティーマスクに dynamic-irq-pod CPU(例: CPU 2 および 3) が含まれないようにします。

    $ cat /proc/irq/default_smp_affinity

    出力例

    33

  13. システム IRQ が dynamic-irq-pod CPU で実行されるように設定されていないことを確認します。

    find /proc/irq/ -name smp_affinity_list -exec sh -c 'i="$1"; mask=$(cat $i); file=$(echo $i); echo $file: $mask' _ {} \;

    出力例

    /proc/irq/0/smp_affinity_list: 0-5
    /proc/irq/1/smp_affinity_list: 5
    /proc/irq/2/smp_affinity_list: 0-5
    /proc/irq/3/smp_affinity_list: 0-5
    /proc/irq/4/smp_affinity_list: 0
    /proc/irq/5/smp_affinity_list: 0-5
    /proc/irq/6/smp_affinity_list: 0-5
    /proc/irq/7/smp_affinity_list: 0-5
    /proc/irq/8/smp_affinity_list: 4
    /proc/irq/9/smp_affinity_list: 4
    /proc/irq/10/smp_affinity_list: 0-5
    /proc/irq/11/smp_affinity_list: 0
    /proc/irq/12/smp_affinity_list: 1
    /proc/irq/13/smp_affinity_list: 0-5
    /proc/irq/14/smp_affinity_list: 1
    /proc/irq/15/smp_affinity_list: 0
    /proc/irq/24/smp_affinity_list: 1
    /proc/irq/25/smp_affinity_list: 1
    /proc/irq/26/smp_affinity_list: 1
    /proc/irq/27/smp_affinity_list: 5
    /proc/irq/28/smp_affinity_list: 1
    /proc/irq/29/smp_affinity_list: 0
    /proc/irq/30/smp_affinity_list: 0-5

一部の IRQ コントローラーは IRQ リバランスをサポートせず、常にすべてのオンライン CPU を IRQ マスクとして公開します。これらの IRQ コントローラーは CPU 0 で正常に実行されます。ホスト設定についての詳細は、ホストに対して SSH を実行し、<irq-num> をクエリーする CPU 番号に置き換えて以下を実行して参照してください。

$ cat /proc/irq/<irq-num>/effective_affinity

17.4.12. クラスターのハイパースレッディングの設定

OpenShift Container Platform クラスターのハイパースレッディングを設定するには、パフォーマンスプロファイルの CPU スレッドを、予約または分離された CPU プールに設定された同じコアに設定します。

注記

パフォーマンスプロファイルを設定してから、ホストのハイパースレッディング設定を変更する場合は、新規の設定に一致するように PerformanceProfile YAML の CPU の isolated および reserved フィールドを更新するようにしてください。

警告

以前に有効にされたホストのハイパースレッディング設定を無効にすると、PerformanceProfile YAML に一覧表示されている CPU コア ID が正しくなくなる可能性があります。この設定が間違っていると、一覧表示される CPU が見つからなくなるため、ノードが利用できなくなる可能性があります。

前提条件

  • cluster-admin ロールを持つユーザーとしてクラスターにアクセスできる。
  • OpenShift CLI (oc) のインストール。

手順

  1. 設定する必要のあるホストのどの CPU でどのスレッドが実行されているかを確認します。

    クラスターにログインして以下のコマンドを実行し、ホスト CPU で実行されているスレッドを表示できます。

    $ lscpu --all --extended

    出力例

    CPU NODE SOCKET CORE L1d:L1i:L2:L3 ONLINE MAXMHZ    MINMHZ
    0   0    0      0    0:0:0:0       yes    4800.0000 400.0000
    1   0    0      1    1:1:1:0       yes    4800.0000 400.0000
    2   0    0      2    2:2:2:0       yes    4800.0000 400.0000
    3   0    0      3    3:3:3:0       yes    4800.0000 400.0000
    4   0    0      0    0:0:0:0       yes    4800.0000 400.0000
    5   0    0      1    1:1:1:0       yes    4800.0000 400.0000
    6   0    0      2    2:2:2:0       yes    4800.0000 400.0000
    7   0    0      3    3:3:3:0       yes    4800.0000 400.0000

    この例では、4 つの物理 CPU コアで 8 つの論理 CPU コアが実行されています。CPU0 および CPU4 は物理コアの Core0 で実行されており、CPU1 および CPU5 は物理コア 1 で実行されています。

    または、特定の物理 CPU コア (以下の例では cpu0) に設定されているスレッドを表示するには、コマンドプロンプトを開いて以下のコマンドを実行します。

    $ cat /sys/devices/system/cpu/cpu0/topology/thread_siblings_list

    出力例

    0-4

  2. PerformanceProfile YAML で分離された CPU および予約された CPU を適用します。たとえば、論理コア CPU0 と CPU4 をisolated として設定し、論理コア CPU1 から CPU3 および CPU5 から CPU7 をreserved として設定できます。予約および分離された CPU を設定する場合に、Pod 内の infra コンテナーは予約された CPU を使用し、アプリケーションコンテナーは分離された CPU を使用します。

    ...
      cpu:
        isolated: 0,4
        reserved: 1-3,5-7
    ...
    注記

    予約済みの CPU プールと分離された CPU プールは重複してはならず、これらは共に、ワーカーノードの利用可能なすべてのコアに広がる必要があります。

重要

ハイパースレッディングは、ほとんどの Intel プロセッサーでデフォルトで有効にされます。ハイパースレッディングを有効にする場合、特定のコアによって処理されるスレッドはすべて、同じコアで分離されるか、処理される必要があります。

17.4.12.1. 低レイテンシーアプリケーションのハイパースレッディングの無効化

低レイテンシー処理用にクラスターを設定する場合、クラスターをデプロイする前にハイパースレッディングを無効にするかどうかを考慮してください。ハイパースレッディングを無効にするには、以下を実行します。

  1. ハードウェアとトポロジーに適したパフォーマンスプロファイルを作成します。
  2. nosmt を追加のカーネル引数として設定します。以下のパフォーマンスプロファイルの例は、この設定について示しています。

    apiVersion: performance.openshift.io/v2
    kind: PerformanceProfile
    metadata:
      name: example-performanceprofile
    spec:
      additionalKernelArgs:
        - nmi_watchdog=0
        - audit=0
        - mce=off
        - processor.max_cstate=1
        - idle=poll
        - intel_idle.max_cstate=0
        - nosmt
      cpu:
        isolated: 2-3
        reserved: 0-1
      hugepages:
        defaultHugepagesSize: 1G
        pages:
          - count: 2
            node: 0
            size: 1G
      nodeSelector:
        node-role.kubernetes.io/performance: ''
      realTimeKernel:
        enabled: true
    注記

    予約および分離された CPU を設定する場合に、Pod 内の infra コンテナーは予約された CPU を使用し、アプリケーションコンテナーは分離された CPU を使用します。

17.5. パフォーマンスプロファイルによる低レイテンシーを実現するためのノードのチューニング

パフォーマンスプロファイルを使用すると、特定のマシン設定プールに属するノードのレイテンシーの調整を制御できます。設定を指定すると、PerformanceProfile オブジェクトは実際のノードレベルのチューニングを実行する複数のオブジェクトにコンパイルされます。

  • ノードを操作する MachineConfig ファイル。
  • Topology Manager、CPU マネージャー、および OpenShift Container Platform ノードを設定する KubeletConfig ファイル。
  • Node Tuning Operator を設定する Tuned プロファイル。

パフォーマンスプロファイルを使用して、カーネルを kernel-rt に更新して Huge Page を割り当て、ハウスキーピングデータの実行やワークロードの実行用に CPU をパーティションに分割するかどうかを指定できます。

注記

PerformanceProfile オブジェクトを手動で作成するか、Performance Profile Creator (PPC) を使用してパフォーマンスプロファイルを生成することができます。PPC の詳細については、以下の関連情報を参照してください。

パフォーマンスプロファイルの例

apiVersion: performance.openshift.io/v2
kind: PerformanceProfile
metadata:
 name: performance
spec:
 cpu:
  isolated: "5-15" 1
  reserved: "0-4" 2
 hugepages:
  defaultHugepagesSize: "1G"
  pages:
  - size: "1G"
    count: 16
    node: 0
 realTimeKernel:
  enabled: true  3
 numa:  4
  topologyPolicy: "best-effort"
 nodeSelector:
  node-role.kubernetes.io/worker-cnf: "" 5

1
このフィールドでは、特定の CPU を分離し、ワークロード用に、アプリケーションコンテナーで使用します。
2
このフィールドでは、特定の CPU を予約し、ハウスキーピング用に infra コンテナーで使用します。
3
このフィールドでは、ノード上にリアルタイムカーネルをインストールします。有効な値は true または false です。true 値を設定すると、ノード上にリアルタイムカーネルがインストールされます。
4
Topology Manager ポリシーを設定するには、このフィールドを使用します。有効な値は none (デフォルト)、 best-effortrestricted、および single-numa-node です。詳細は、Topology Manager Policies を参照してください。
5
このフィールドを使用してノードセレクターを指定し、パフォーマンスプロファイルを特定のノードに適用します。

関連情報

  • Performance Profile Creator (PPC) を使用してパフォーマンスプロファイルを生成する方法の詳細は、Creating a performance profile を参照してください。

17.5.1. Huge Page の設定

ノードは、OpenShift Container Platform クラスターで使用される Huge Page を事前に割り当てる必要があります。Performance Addon Operator を使用し、特定のノードで Huge Page を割り当てます。

OpenShift Container Platform は、Huge Page を作成し、割り当てる方法を提供します。Performance Addon Operator は、パーマンスプロファイルを使用してこれを実行するための簡単な方法を提供します。

たとえば、パフォーマンスプロファイルの hugepages pages セクションで、sizecount、およびオプションで node の複数のブロックを指定できます。

hugepages:
   defaultHugepagesSize: "1G"
   pages:
   - size:  "1G"
     count:  4
     node:  0 1
1
node は、Huge Page が割り当てられる NUMA ノードです。node を省略すると、ページはすべての NUMA ノード間で均等に分散されます。
注記

更新が完了したことを示す関連するマシン設定プールのステータスを待機します。

これらは、Huge Page を割り当てるのに必要な唯一の設定手順です。

検証

  • 設定を確認するには、ノード上の /proc/meminfo ファイルを参照します。

    $ oc debug node/ip-10-0-141-105.ec2.internal
    # grep -i huge /proc/meminfo

    出力例

    AnonHugePages:    ###### ##
    ShmemHugePages:        0 kB
    HugePages_Total:       2
    HugePages_Free:        2
    HugePages_Rsvd:        0
    HugePages_Surp:        0
    Hugepagesize:       #### ##
    Hugetlb:            #### ##

  • 新規サイズを報告するには、oc describe を使用します。

    $ oc describe node worker-0.ocp4poc.example.com | grep -i huge

    出力例

                                       hugepages-1g=true
     hugepages-###:  ###
     hugepages-###:  ###

17.5.2. 複数の Huge Page サイズの割り当て

同じコンテナーで異なるサイズの Huge Page を要求できます。これにより、Huge Page サイズのニーズの異なる複数のコンテナーで設定されるより複雑な Pod を定義できます。

たとえば、サイズ 1G2M を定義でき、Performance Addon Operator は以下に示すようにノード上に両方のサイズを設定できます。

spec:
  hugepages:
    defaultHugepagesSize: 1G
    pages:
    - count: 1024
      node: 0
      size: 2M
    - count: 4
      node: 1
      size: 1G

17.5.3. infra およびアプリケーションコンテナーの CPU の制限

一般的なハウスキーピングおよびワークロードタスクは、レイテンシーの影響を受けやすいプロセスに影響を与える可能性のある方法で CPU を使用します。デフォルトでは、コンテナーランタイムはすべてのオンライン CPU を使用して、すべてのコンテナーを一緒に実行します。これが原因で、コンテキストスイッチおよびレイテンシーが急増する可能性があります。CPU をパーティション化することで、ノイズの多いプロセスとレイテンシーの影響を受けやすいプロセスを分離し、干渉を防ぐことができます。以下の表は、Performance Add-On Operator を使用してノードを調整した後、CPU でプロセスがどのように実行されるかを示しています。

表17.1 プロセスの CPU 割り当て
プロセスタイプDetails

Burstable および BestEffort Pod

低レイテンシーのワークロードが実行されている場合を除き、任意の CPU で実行されます。

インフラストラクチャー Pod

低レイテンシーのワークロードが実行されている場合を除き、任意の CPU で実行されます。

割り込み

予約済み CPU にリダイレクトします (OpenShift Container Platform 4.7 以降ではオプション)

カーネルプロセス

予約済み CPU へのピン

レイテンシーの影響を受けやすいワークロード Pod

分離されたプールからの排他的 CPU の特定のセットへのピン

OS プロセス/systemd サービス

予約済み CPU へのピン

すべての QoS プロセスタイプ (BurstableBestEffort、または Guaranteed) の Pod に割り当て可能なノード上のコアの容量は、分離されたプールの容量と同じです。予約済みプールの容量は、クラスターおよびオペレーティングシステムのハウスキーピング業務で使用するためにノードの合計コア容量から削除されます。

例 1

ノードは 100 コアの容量を備えています。クラスター管理者は、パフォーマンスプロファイルを使用して、50 コアを分離プールに割り当て、50 コアを予約プールに割り当てます。クラスター管理者は、25 コアを QoS Guaranteed Pod に割り当て、25 コアを BestEffort または Burstable Pod に割り当てます。これは、分離されたプールの容量と一致します。

例 2

ノードは 100 コアの容量を備えています。クラスター管理者は、パフォーマンスプロファイルを使用して、50 コアを分離プールに割り当て、50 コアを予約プールに割り当てます。クラスター管理者は、50 個のコアを QoS Guaranteed Pod に割り当て、1 個のコアを BestEffort または Burstable Pod に割り当てます。これは、分離されたプールの容量を 1 コア超えています。CPU 容量が不十分なため、Pod のスケジューリングが失敗します。

使用する正確なパーティショニングパターンは、ハードウェア、ワークロードの特性、予想されるシステム負荷などの多くの要因によって異なります。いくつかのサンプルユースケースは次のとおりです。

  • レイテンシーの影響を受けやすいワークロードがネットワークインターフェイスコントローラー (NIC) などの特定のハードウェアを使用する場合は、分離されたプール内の CPU が、このハードウェアにできるだけ近いことを確認してください。少なくとも、ワークロードを同じ Non-Uniform Memory Access (NUMA) ノードに配置する必要があります。
  • 予約済みプールは、すべての割り込みを処理するために使用されます。システムネットワークに依存する場合は、すべての着信パケット割り込みを処理するために、十分なサイズの予約プールを割り当てます。4.8 以降のバージョンでは、ワークロードはオプションで機密としてラベル付けできます。

予約済みパーティションと分離パーティションにどの特定の CPU を使用するかを決定するには、詳細な分析と測定が必要です。デバイスやメモリーの NUMA アフィニティーなどの要因が作用しています。選択は、ワークロードアーキテクチャーと特定のユースケースにも依存します。

重要

予約済みの CPU プールと分離された CPU プールは重複してはならず、これらは共に、ワーカーノードの利用可能なすべてのコアに広がる必要があります。

ハウスキーピングタスクとワークロードが相互に干渉しないようにするには、パフォーマンスプロファイルの spec セクションで CPU の 2 つのグループを指定します。

  • isolated - アプリケーションコンテナーワークロードの CPU を指定します。これらの CPU のレイテンシーが一番低くなります。このグループのプロセスには割り込みがないため、DPDK ゼロパケットロスの帯域幅がより高くなります。
  • reserved - クラスターおよびオペレーティングシステムのハウスキーピング業務用の CPU を指定します。reserved グループのスレッドは、ビジーであることが多いです。reserved グループでレイテンシーの影響を受けやすいアプリケーションを実行しないでください。レイテンシーの影響を受けやすいアプリケーションは、isolated グループで実行されます。

手順

  1. 環境のハードウェアとトポロジーに適したパフォーマンスプロファイルを作成します。
  2. infra およびアプリケーションコンテナー用に予約して分離する CPU で、 reserved および isolated パラメーターを追加します。

    apiVersion: performance.openshift.io/v2
    kind: PerformanceProfile
    metadata:
      name: infra-cpus
    spec:
      cpu:
        reserved: "0-4,9" 1
        isolated: "5-8" 2
      nodeSelector: 3
        node-role.kubernetes.io/worker: ""
    1
    クラスターおよびオペレーティングシステムのハウスキーピングタスクを実行する infra コンテナーの CPU を指定します。
    2
    アプリケーションコンテナーがワークロードを実行する CPU を指定します。
    3
    オプション: ノードセレクターを指定してパフォーマンスプロファイルを特定のノードに適用します。

17.6. Performance Addon Operator を使用した NIC キューの削減

Performance Addon Operator を使用すると、パフォーマンスプロファイルを設定して、各ネットワークデバイスの Network Interface Card (NIC) キュー数を調整できます。デバイスネットワークキューを使用すると、パケットを複数の異なる物理キューに分散でき、各キューはパケット処理用に個別のスレッドを取得します。

リアルタイムまたは低レイテンシーシステムでは、分離 CPU にピニングされる不要な割り込み要求の行 (IRQ) をすべて予約またはハウスキーピング CPU に移動する必要があります。

OpenShift Container Platform ネットワークなど、システムが必要なアプリケーションのデプロイメントにおいて、または Data Plane Development Kit (DPDK) ワークロードを使用する混在型のデプロイメントにおいて、適切なスループットを実現するには複数のキューが必要であり、NIC キュー数は調整するか、変更しないようにする必要があります。たとえば、レイテンシーを低くするには、DPDK ベースのワークロードの NIC キューの数を、予約またはハウスキーピング CPU の数だけに減らす必要があります。

デフォルトでは CPU ごとに過剰なキューが作成されるので、チューニングしてレイテンシーを低くすると CPU のハウスキーピング向けの中断テーブルに収まりません。キューの数を減らすことで、適切なチューニングが可能になります。キューの数が少ないと、IRQ テーブルに適合する割り込みの数が少なくなります。

17.6.1. パフォーマンスプロファイルによる NIC キューの調整

パフォーマンスプロファイルを使用すると、各ネットワークデバイスのキュー数を調整できます。

サポート対象のネットワークデバイスは以下のとおりです。

  • 非仮想ネットワークデバイス
  • 複数のキュー (チャネル) をサポートするネットワークデバイス

サポート対象外のネットワークデバイスは以下の通りです。

  • Pure Software ネットワークインターフェイス
  • ブロックデバイス
  • Intel DPDK Virtual Function

前提条件

  • cluster-admin ロールを持つユーザーとしてクラスターにアクセスできる。
  • OpenShift CLI (oc) がインストールされている。

手順

  1. cluster-admin 権限を持つユーザーとして、Performance Addon Operator を実行する OpenShift Container Platform クラスターにログインします。
  2. お使いのハードウェアとトポロジーに適したパフォーマンスプロファイルを作成して適用します。プロファイルの作成に関するガイダンスは、パフォーマンスプロファイルの作成のセクションを参照してください。
  3. この作成したパフォーマンスプロファイルを編集します。

    $ oc edit -f <your_profile_name>.yaml
  4. spec フィールドに net オブジェクトを設定します。オブジェクトリストには、以下の 2 つのフィールドを含めることができます。

    • userLevelNetworking は、ブール値フラグとして指定される必須フィールドです。userLevelNetworkingtrue の場合、サポートされているすべてのデバイスのキュー数は、予約された CPU 数に設定されます。デフォルトは false です。
    • devices は、キューを予約 CPU 数に設定するデバイスの一覧を指定する任意のフィールドです。デバイス一覧に何も指定しないと、設定がすべてのネットワークデバイスに適用されます。設定は以下のとおりです。

      • InterfaceName: このフィールドはインターフェイス名を指定し、正または負のシェルスタイルのワイルドカードをサポートします。

        • ワイルドカード構文の例: <string> .*
        • 負のルールには、感嘆符のプリフィックスが付きます。除外リスト以外のすべてのデバイスにネットキューの変更を適用するには、!<device> を使用します (例: !eno1)。
      • vendorID: 16 ビット (16 進数) として表されるネットワークデバイスベンダー ID。接頭辞は 0x です。
      • 9deviceID: 16 ビット (16 進数) として表されるネットワークデバイス ID (モデル)。接頭辞は 0x です。

        注記

        deviceID が指定されている場合は、vendorID も定義する必要があります。デバイスエントリー interfaceNamevendorID、または vendorIDdeviceID のペアで指定されているすべてのデバイス識別子に一致するデバイスは、ネットワークデバイスとしての資格があります。その後、このネットワークデバイスは net キュー数が予約 CPU 数に設定されます。

        2 つ以上のデバイスを指定すると、net キュー数は、それらのいずれかに一致する net デバイスに設定されます。

  5. このパフォーマンスプロファイルの例を使用して、キュー数をすべてのデバイスの予約 CPU 数に設定します。

    apiVersion: performance.openshift.io/v2
    kind: PerformanceProfile
    metadata:
      name: manual
    spec:
      cpu:
        isolated: 3-51,54-103
        reserved: 0-2,52-54
      net:
        userLevelNetworking: true
      nodeSelector:
        node-role.kubernetes.io/worker-cnf: ""
  6. このパフォーマンスプロファイルの例を使用して、定義されたデバイス識別子に一致するすべてのデバイスの予約 CPU 数にキュー数を設定します。

    apiVersion: performance.openshift.io/v2
    kind: PerformanceProfile
    metadata:
      name: manual
    spec:
      cpu:
        isolated: 3-51,54-103
        reserved: 0-2,52-54
      net:
        userLevelNetworking: true
        devices:
        - interfaceName: “eth0”
        - interfaceName: “eth1”
        - vendorID: “0x1af4”
        - deviceID: “0x1000”
      nodeSelector:
        node-role.kubernetes.io/worker-cnf: ""
  7. このパフォーマンスプロファイルの例を使用して、インターフェイス名 eth で始まるすべてのデバイスの予約 CPU 数にキュー数を設定します。

    apiVersion: performance.openshift.io/v2
    kind: PerformanceProfile
    metadata:
      name: manual
    spec:
      cpu:
        isolated: 3-51,54-103
        reserved: 0-2,52-54
      net:
        userLevelNetworking: true
        devices:
        - interfaceName: “eth*”
      nodeSelector:
        node-role.kubernetes.io/worker-cnf: ""
  8. このパフォーマンスプロファイルの例を使用して、eno1 以外の名前のインターフェイスを持つすべてのデバイスの予約 CPU 数にキュー数を設定します。

    apiVersion: performance.openshift.io/v2
    kind: PerformanceProfile
    metadata:
      name: manual
    spec:
      cpu:
        isolated: 3-51,54-103
        reserved: 0-2,52-54
      net:
        userLevelNetworking: true
        devices:
        - interfaceName: “!eno1”
      nodeSelector:
        node-role.kubernetes.io/worker-cnf: ""
  9. このパフォーマンスプロファイルの例を使用して、インターフェイス名 eth00x1af4vendorID、および 0x1000deviceID を持つすべてのデバイスの予約 CPU 数にキュー数を設定します。

    apiVersion: performance.openshift.io/v2
    kind: PerformanceProfile
    metadata:
      name: manual
    spec:
      cpu:
        isolated: 3-51,54-103
        reserved: 0-2,52-54
      net:
        userLevelNetworking: true
        devices:
        - interfaceName: “eth0”
        - vendorID: “0x1af4”
        - deviceID: “0x1000”
      nodeSelector:
        node-role.kubernetes.io/worker-cnf: ""
  10. 更新されたパフォーマンスプロファイルを適用します。

    $ oc apply -f <your_profile_name>.yaml

17.6.2. キューステータスの確認

このセクションでは、さまざまなパフォーマンスプロファイルについて、変更の適用を検証する方法を複数例示しています。

例 1

この例では、サポートされている すべて のデバイスの net キュー数は、予約された CPU 数 (2) に設定されます。

パフォーマンスプロファイルの関連セクションは次のとおりです。

apiVersion: performance.openshift.io/v2
metadata:
  name: performance
spec:
  kind: PerformanceProfile
  spec:
    cpu:
      reserved: 0-1  #total = 2
      isolated: 2-8
    net:
      userLevelNetworking: true
# ...
  • 以下のコマンドを使用して、デバイスに関連付けられたキューのステータスを表示します。

    注記

    パフォーマンスプロファイルが適用されたノードで、以下のコマンドを実行します。

    $ ethtool -l <device>
  • プロファイルの適用前にキューのステータスを確認します。

    $ ethtool -l ens4

    出力例

    Channel parameters for ens4:
    Pre-set maximums:
    RX:         0
    TX:         0
    Other:      0
    Combined:   4
    Current hardware settings:
    RX:         0
    TX:         0
    Other:      0
    Combined:   4

  • プロファイルの適用後にキューのステータスを確認します。

    $ ethtool -l ens4

    出力例

    Channel parameters for ens4:
    Pre-set maximums:
    RX:         0
    TX:         0
    Other:      0
    Combined:   4
    Current hardware settings:
    RX:         0
    TX:         0
    Other:      0
    Combined:   2 1

1
チャネルを組み合わせると、すべての サポート対象のデバイスの予約 CPU の合計数は 2 になります。これは、パフォーマンスプロファイルでの設定内容と一致します。

例 2

この例では、サポートされている すべて のネットワークデバイスの net キュー数は、予約された CPU 数 (2) に特定の vendorID を指定して、設定されます。

パフォーマンスプロファイルの関連セクションは次のとおりです。

apiVersion: performance.openshift.io/v2
metadata:
  name: performance
spec:
  kind: PerformanceProfile
  spec:
    cpu:
      reserved: 0-1  #total = 2
      isolated: 2-8
    net:
      userLevelNetworking: true
      devices:
      - vendorID = 0x1af4
# ...
  • 以下のコマンドを使用して、デバイスに関連付けられたキューのステータスを表示します。

    注記

    パフォーマンスプロファイルが適用されたノードで、以下のコマンドを実行します。

    $ ethtool -l <device>
  • プロファイルの適用後にキューのステータスを確認します。

    $ ethtool -l ens4

    出力例

    Channel parameters for ens4:
    Pre-set maximums:
    RX:         0
    TX:         0
    Other:      0
    Combined:   4
    Current hardware settings:
    RX:         0
    TX:         0
    Other:      0
    Combined:   2 1

1
vendorID=0x1af4 であるサポート対象の全デバイスの合計予約 CPU 数は 2 となります。たとえば、vendorID=0x1af4 のネットワークデバイス ens2 が別に存在する場合に、このデバイスも合計で 2 つの net キューを持ちます。これは、パフォーマンスプロファイルでの設定内容と一致します。

例 3

この例では、サポートされている すべて のネットワークデバイスが定義したデバイス ID のいずれかに一致する場合に、そのネットワークデバイスの net キュー数は、予約された CPU 数 (2) に設定されます。

udevadm info コマンドで、デバイスの詳細なレポートを確認できます。以下の例では、デバイスは以下のようになります。

# udevadm info -p /sys/class/net/ens4
...
E: ID_MODEL_ID=0x1000
E: ID_VENDOR_ID=0x1af4
E: INTERFACE=ens4
...
# udevadm info -p /sys/class/net/eth0
...
E: ID_MODEL_ID=0x1002
E: ID_VENDOR_ID=0x1001
E: INTERFACE=eth0
...
  • interfaceNameeth0 のデバイスの場合に net キューを 2 に、vendorID=0x1af4 を持つデバイスには、以下のパフォーマンスプロファイルを設定します。

    apiVersion: performance.openshift.io/v2
    metadata:
      name: performance
    spec:
      kind: PerformanceProfile
        spec:
          cpu:
            reserved: 0-1  #total = 2
            isolated: 2-8
          net:
            userLevelNetworking: true
            devices:
            - interfaceName = eth0
            - vendorID = 0x1af4
    ...
  • プロファイルの適用後にキューのステータスを確認します。

    $ ethtool -l ens4

    出力例

    Channel parameters for ens4:
    Pre-set maximums:
    RX:         0
    TX:         0
    Other:      0
    Combined:   4
    Current hardware settings:
    RX:         0
    TX:         0
    Other:      0
    Combined:   2 1

    1
    vendorID=0x1af4 であるサポート対象の全デバイスの合計予約 CPU 数は 2 に設定されます。たとえば、vendorID=0x1af4 のネットワークデバイス ens2 が別に存在する場合に、このデバイスも合計で 2 つの net キューを持ちます。同様に、interfaceNameeth0 のデバイスには、合計 net キューが 2 に設定されます。

17.6.3. NIC キューの調整に関するロギング

割り当てられたデバイスの詳細を示すログメッセージは、それぞれの Tuned デーモンログに記録されます。以下のメッセージは、/var/log/tuned/tuned.log ファイルに記録される場合があります。

  • 正常に割り当てられたデバイスの詳細を示す INFO メッセージが記録されます。

    INFO tuned.plugins.base: instance net_test (net): assigning devices ens1, ens2, ens3
  • 割り当てることのできるデバイスがない場合は、WARNING メッセージが記録されます。

    WARNING  tuned.plugins.base: instance net_test: no matching devices available

17.7. 低レイテンシー CNF チューニングステータスのデバッグ

PerformanceProfile カスタムリソース (CR) には、チューニングのステータスを報告し、レイテンシーのパフォーマンスの低下の問題をデバッグするためのステータスフィールドが含まれます。これらのフィールドは、Operator の調整機能の状態を記述する状態について報告します。

パフォーマンスプロファイルに割り当てられるマシン設定プールのステータスが degraded 状態になると典型的な問題が発生する可能性があり、これにより PerformanceProfile のステータスが低下します。この場合、マシン設定プールは失敗メッセージを発行します。

Performance Addon Operator には performanceProfile.spec.status.Conditions ステータスフィールドが含まれます。

Status:
  Conditions:
    Last Heartbeat Time:   2020-06-02T10:01:24Z
    Last Transition Time:  2020-06-02T10:01:24Z
    Status:                True
    Type:                  Available
    Last Heartbeat Time:   2020-06-02T10:01:24Z
    Last Transition Time:  2020-06-02T10:01:24Z
    Status:                True
    Type:                  Upgradeable
    Last Heartbeat Time:   2020-06-02T10:01:24Z
    Last Transition Time:  2020-06-02T10:01:24Z
    Status:                False
    Type:                  Progressing
    Last Heartbeat Time:   2020-06-02T10:01:24Z
    Last Transition Time:  2020-06-02T10:01:24Z
    Status:                False
    Type:                  Degraded

Status フィールドには、 パフォーマンスプロファイルのステータスを示す Type 値を指定する Conditions が含まれます。

Available
すべてのマシン設定および Tuned プロファイルが正常に作成され、クラスターコンポーネントで利用可能になり、それら (NTO、MCO、Kubelet) を処理します。
Upgradeable
Operator によって維持されるリソースは、アップグレードを実行する際に安全な状態にあるかどうかを示します。
Progressing
パフォーマンスプロファイルからのデプロイメントプロセスが開始されたことを示します。
Degraded

以下の場合にエラーを示します。

  • パーマンスプロファイルの検証に失敗しました。
  • すべての関連するコンポーネントの作成が完了しませんでした。

これらのタイプには、それぞれ以下のフィールドが含まれます。

Status
特定のタイプの状態 (true または false)。
Timestamp
トランザクションのタイムスタンプ。
Reason string
マシンの読み取り可能な理由。
Message string
状態とエラーの詳細を説明する人が判読できる理由 (ある場合)。

17.7.1. マシン設定プール

パフォーマンスプロファイルとその作成される製品は、関連付けられたマシン設定プール (MCP) に従ってノードに適用されます。MCP は、カーネル引数、kube 設定、Huge Page の割り当て、および rt-kernel のデプロイメントを含むパフォーマンスアドオンが作成するマシン設定の適用についての進捗に関する貴重な情報を保持します。パフォーマンスアドオンコントローラーは MCP の変更を監視し、それに応じてパフォーマンスプロファイルのステータスを更新します。

MCP がパフォーマンスプロファイルのステータスに返す状態は、MCP が Degraded の場合のみとなり、この場合、performaceProfile.status.condition.Degraded = true になります。

以下の例は、これに作成された関連付けられたマシン設定プール (worker-cnf) を持つパフォーマンスプロファイルのサンプルです。

  1. 関連付けられたマシン設定プールの状態は degraded (低下) になります。

    # oc get mcp

    出力例

    NAME         CONFIG                                                 UPDATED   UPDATING   DEGRADED   MACHINECOUNT   READYMACHINECOUNT   UPDATEDMACHINECOUNT   DEGRADEDMACHINECOUNT   AGE
    master       rendered-master-2ee57a93fa6c9181b546ca46e1571d2d       True      False      False      3              3                   3                     0                      2d21h
    worker       rendered-worker-d6b2bdc07d9f5a59a6b68950acf25e5f       True      False      False      2              2                   2                     0                      2d21h
    worker-cnf   rendered-worker-cnf-6c838641b8a08fff08dbd8b02fb63f7c   False     True       True       2              1                   1                     1                      2d20h

  2. MCP の describe セクションには理由が示されます。

    # oc describe mcp worker-cnf

    出力例

      Message:               Node node-worker-cnf is reporting: "prepping update:
      machineconfig.machineconfiguration.openshift.io \"rendered-worker-cnf-40b9996919c08e335f3ff230ce1d170\" not
      found"
        Reason:                1 nodes are reporting degraded status on sync

  3. degraded (低下) の状態は、degraded = true とマークされたパフォーマンスプロファイルの status フィールドにも表示されるはずです。

    # oc describe performanceprofiles performance

    出力例

    Message: Machine config pool worker-cnf Degraded Reason: 1 nodes are reporting degraded status on sync.
    Machine config pool worker-cnf Degraded Message: Node yquinn-q8s5v-w-b-z5lqn.c.openshift-gce-devel.internal is
    reporting: "prepping update: machineconfig.machineconfiguration.openshift.io
    \"rendered-worker-cnf-40b9996919c08e335f3ff230ce1d170\" not found".    Reason:  MCPDegraded
       Status:  True
       Type:    Degraded

17.8. Red Hat サポート向けの低レイテンシーのチューニングデバッグデータの収集

サポートケースを作成する際、ご使用のクラスターについてのデバッグ情報を Red Hat サポートに提供していただくと Red Hat のサポートに役立ちます。

must-gather ツールを使用すると、ノードのチューニング、NUMA トポロジー、および低レイテンシーの設定に関する問題のデバッグに必要な OpenShift Container Platform クラスターについての診断情報を収集できます。

迅速なサポートを得るには、OpenShift Container Platform と低レイテンシーチューニングの両方の診断情報を提供してください。

17.8.1. must-gather ツールについて

oc adm must-gather CLI コマンドは、以下のような問題のデバッグに必要となる可能性のあるクラスターからの情報を収集します。

  • リソース定義
  • 監査ログ
  • サービスログ

--image 引数を指定してコマンドを実行する際にイメージを指定できます。イメージを指定する際、ツールはその機能または製品に関連するデータを収集します。oc adm must-gather を実行すると、新しい Pod がクラスターに作成されます。データは Pod で収集され、must-gather.local で始まる新規ディレクトリーに保存されます。このディレクトリーは、現行の作業ディレクトリーに作成されます。

17.8.2. 低レイテンシーチューニングデータの収集について

oc adm must-gather CLI コマンドを使用してクラスターについての情報を収集できます。これには、以下を始めとする低レイテンシーチューニングに関連する機能およびオブジェクトが含まれます。

  • Performance Addon Operator namespace および子オブジェクト
  • MachineConfigPool および関連付けられた MachineConfig オブジェクト
  • Node Tuning Operator および関連付けられた Tuned オブジェクト
  • Linux カーネルコマンドラインオプション
  • CPU および NUMA トポロジー
  • 基本的な PCI デバイス情報と NUMA 局所性

must-gatherを使用して Performance Addon Operator のデバッグ情報を収集するには、Performance Addon Operator のmust-gatherイメージを指定する必要があります。

--image=registry.redhat.io/openshift4/performance-addon-operator-must-gather-rhel8:v4.8.

17.8.3. 特定の機能に関するデータ収集

oc adm must-gather CLI コマンドを --image または --image-stream 引数と共に使用して、特定に機能についてのデバッグ情報を収集できます。must-gather ツールは複数のイメージをサポートするため、単一のコマンドを実行して複数の機能についてのデータを収集できます。

注記

特定の機能データに加えてデフォルトの must-gather データを収集するには、--image-stream=openshift/must-gather 引数を追加します。

前提条件

  • cluster-admin ロールを持つユーザーとしてクラスターにアクセスできる。
  • OpenShift Container Platform CLI (oc) がインストールされている。

手順

  1. must-gather データを保存するディレクトリーに移動します。
  2. oc adm must-gather コマンドを 1 つまたは複数の --image または --image-stream 引数と共に実行します。たとえば、以下のコマンドは、デフォルトのクラスターデータと Performance Addon Operator に固有の情報の両方を収集します。

    $ oc adm must-gather \
     --image-stream=openshift/must-gather \ 1
    
     --image=registry.redhat.io/openshift4/performance-addon-operator-must-gather-rhel8:v4.8 2
    1
    デフォルトの OpenShift Container Platform must-gather イメージ。
    2
    低レイテンシーチューニングの診断用の must-gather イメージ。
  3. 作業ディレクトリーに作成された must-gather ディレクトリーから圧縮ファイルを作成します。たとえば、Linux オペレーティングシステムを使用するコンピューターで以下のコマンドを実行します。

     $ tar cvaf must-gather.tar.gz must-gather.local.5421342344627712289/ 1
    1
    must-gather-local.5421342344627712289/ を実際のディレクトリー名に置き換えます。
  4. 圧縮ファイルを Red Hat カスタマーポータル で作成したサポートケースに添付します。

関連情報

第18章 プラットフォーム検証のためのレイテンシーテストの実行

Cloud-native Network Functions (CNF) テストイメージを使用して、CNF ワークロードの実行に必要なすべてのコンポーネントがインストールされている CNF 対応の OpenShift Container Platform クラスターでレイテンシーテストを実行できます。レイテンシーテストを実行して、ワークロードのノードチューニングを検証します。

cnf-tests コンテナーイメージは、registry.redhat.io/openshift4/cnf-tests-rhel8:v4.8 で入手できます。

重要

cnf-tests イメージには、現時点で Red Hat がサポートしていないいくつかのテストも含まれています。Red Hat がサポートしているのはレイテンシーテストのみです。

18.1. レイテンシーテストを実行するための前提条件

レイテンシーテストを実行するには、クラスターが次の要件を満たしている必要があります。

  1. Performance Addon Operator を使用してパフォーマンスプロファイルを設定しました。
  2. 必要なすべての CNF 設定をクラスターに適用しました。
  3. クラスターに既存の MachineConfigPool CR が適用されている。デフォルトのワーカープールは worker-cnf です。

関連情報

18.2. レイテンシーテストの検出モードについて

検出モードでは、設定を変更せずにクラスターの機能を検証できます。既存の環境設定はテストに使用されます。テストは、必要な設定アイテムを見つけ、それらのアイテムを使用してテストを実行できます。特定のテストの実行に必要なリソースが見つからない場合、テストは省略され、ユーザーに適切なメッセージが表示されます。テストが完了すると、事前に設定された設定項目のクリーンアップは行われず、テスト環境は別のテストの実行にすぐに使用できます。

重要

レイテンシーテストを実行するときは、必ず -e DISCOVERY_MODE=true および -ginkgo.focus を適切なレイテンシーテストに設定してテストを実行してください。遅延テストを検出モードで実行しない場合、既存のライブクラスターパフォーマンスプロファイル設定は、テストの実行によって変更されます。

テスト中に使用されるノードの制限

-e NODES_SELECTOR=node-role.kubernetes.io/worker-cnf などの NODES_SELECTOR 環境変数を指定することで、テストが実行されるノードを制限できます。テストによって作成されるリソースは、ラベルが一致するノードに限定されます。

注記

デフォルトのワーカープールをオーバーライドする場合は、適切なラベルを指定するコマンドに -e ROLE_WORKER_CNF=<custom_worker_pool> 変数を渡します。

18.3. レイテンシーの測定

cnf-tests イメージは、oslat ツールを使用してシステムのレイテンシーを測定します。

oslat
CPU 集約型 DPDK アプリケーションと同様に動作し、CPU の高いデータ処理をシミュレーションするビジーループにすべての中断と中断を測定します。

テストでは、次の環境変数が導入されます。

表18.1 レイテンシーテスト環境変数
環境変数説明

LATENCY_TEST_DELAY

テストの実行を開始するまでの時間を秒単位で指定します。この変数を使用すると、CPU マネージャーの調整ループでデフォルトの CPU プールを更新できるようになります。デフォルト値は 0 です。

LATENCY_TEST_CPUS

レイテンシーテストを実行する Pod が使用する CPU の数を指定します。変数を設定しない場合、デフォルト設定にはすべての分離された CPU が含まれます。

LATENCY_TEST_RUNTIME

レイテンシーテストを実行する必要がある時間を秒単位で指定します。デフォルト値は 300 秒です。

OSLAT_MAXIMUM_LATENCY

oslatテスト結果の最大許容レイテンシーをマイクロ秒単位で指定します。OSLAT_MAXIMUM_LATENCY の値を設定しない場合、ツールは予想される最大レイテンシーと実際の最大レイテンシーの比較をスキップします。

LATENCY_TEST_RUN

テストを実行するかどうかを示すブールパラメーター。LATENCY_TEST_RUN はデフォルトで false に設定されています。レイテンシーテストを実行するには、この値を true に設定します。

18.4. レイテンシーテストの実行

クラスターレイテンシーテストを実行して、クラウドネイティブネットワーク機能 (CNF) ワークロードのノードチューニングを検証します。

重要

遅延テストは 常に DISCOVERY_MODE=true を設定して実行してください。そうしないと、テストスイートは実行中のクラスター設定に変更を加えます。

注記

非 root または非特権ユーザーとして podman コマンドを実行すると、パスのマウントが permission denied エラーで失敗する場合があります。podman コマンドを機能させるには、作成したボリュームに :Z を追加します。たとえば、-v $(pwd)/:/kubeconfig:Z です。これにより、podman は適切な SELinux の再ラベル付けを行うことができます。

手順

  1. kubeconfig ファイルを含むディレクトリーでシェルプロンプトを開きます。

    現在のディレクトリーにある kubeconfig ファイルとそれに関連する $KUBECONFIG 環境変数を含むテストイメージを提供し、ボリュームを介してマウントします。これにより、実行中のコンテナーがコンテナー内から kubeconfig ファイルを使用できるようになります。

  2. 次のコマンドを入力して、レイテンシーテストを実行します。

    $ podman run -v $(pwd)/:/kubeconfig:Z -e KUBECONFIG=/kubeconfig/kubeconfig \
    -e LATENCY_TEST_RUN=true -e DISCOVERY_MODE=true registry.redhat.io/openshift4/cnf-tests-rhel8:v4.8 \
    /usr/bin/test-run.sh -ginkgo.focus="\[performance\]\ Latency\ Test"
  3. オプション: -ginkgo.dryRun を追加して、ドライランモードでレイテンシーテストを実行します。これは、テストの実行内容を確認するのに役立ちます。
  4. オプション: -ginkgo.v を追加して、詳細度を上げてテストを実行します。
  5. オプション: 特定のパフォーマンスプロファイルに対してレイテンシーテストを実行するには、次のコマンドを実行し、適切な値を置き換えます。

    $ podman run -v $(pwd)/:/kubeconfig:Z -e KUBECONFIG=/kubeconfig/kubeconfig \
    -e LATENCY_TEST_RUN=true -e LATENCY_TEST_RUNTIME=600 -e OSLAT_MAXIMUM_LATENCY=20 \
    -e PERF_TEST_PROFILE=<performance_profile> registry.redhat.io/openshift4/cnf-tests-rhel8:v4.8 \
    /usr/bin/test-run.sh -ginkgo.focus="[performance]\ Latency\ Test"

    ここでは、以下のようになります。

    <performance_profile>
    レイテンシーテストを実行するパフォーマンスプロファイルの名前です。
    重要

    有効なレイテンシーテストの結果を得るには、テストを少なくとも 12 時間実行します。

18.4.1. oslat の実行

oslat テストは、CPU を集中的に使用する DPDK アプリケーションをシミュレートし、すべての中断と中断を測定して、クラスターが CPU の負荷の高いデータ処理をどのように処理するかをテストします。

重要

遅延テストは 常に DISCOVERY_MODE=true を設定して実行してください。そうしないと、テストスイートは実行中のクラスター設定に変更を加えます。

注記

非 root または非特権ユーザーとして podman コマンドを実行すると、パスのマウントが permission denied エラーで失敗する場合があります。podman コマンドを機能させるには、作成したボリュームに :Z を追加します。たとえば、-v $(pwd)/:/kubeconfig:Z です。これにより、podman は適切な SELinux の再ラベル付けを行うことができます。

前提条件

  • カスタマーポータルの認証情報を使用して、registry.redhat.io にログインしました。
  • Performance アドオンオペレーターを使用して、クラスターパフォーマンスプロファイルを適用しました。

手順

  • oslat テストを実行するには、変数値を適切に置き換えて、次のコマンドを実行します。

    $ podman run -v $(pwd)/:/kubeconfig:Z -e KUBECONFIG=/kubeconfig/kubeconfig \
    -e LATENCY_TEST_RUN=true -e DISCOVERY_MODE=true -e ROLE_WORKER_CNF=worker-cnf \
    -e LATENCY_TEST_CPUS=7 -e LATENCY_TEST_RUNTIME=600 -e OSLAT_MAXIMUM_LATENCY=20 \
    registry.redhat.io/openshift4/cnf-tests-rhel8:v4.8 \
    /usr/bin/test-run.sh -ginkgo.v -ginkgo.focus="oslat"

    LATENCY_TEST_CPUS は、oslat コマンドでテストする CPU のリストを指定します。

    このコマンドは、oslat ツールを 10 分 (600 秒) 実行します。観測された最大レイテンシーが OSLAT_MAXIMUM_LATENCY (20 μs) よりも低い場合、テストは正常に実行します。

    結果がレイテンシーのしきい値を超えると、テストは失敗します。

    重要

    有効な結果を得るには、テストを少なくとも 12 時間実行する必要があります。

    障害出力の例

    running /usr/bin//validationsuite -ginkgo.v -ginkgo.focus=oslat
    I0829 12:36:55.386776       8 request.go:668] Waited for 1.000303471s due to client-side throttling, not priority and fairness, request: GET:https://api.cnfdc8.t5g.lab.eng.bos.redhat.com:6443/apis/authentication.k8s.io/v1?timeout=32s
    Running Suite: CNF Features e2e validation
    ==========================================
    
    Discovery mode enabled, skipping setup
    running /usr/bin//cnftests -ginkgo.v -ginkgo.focus=oslat
    I0829 12:37:01.219077      20 request.go:668] Waited for 1.050010755s due to client-side throttling, not priority and fairness, request: GET:https://api.cnfdc8.t5g.lab.eng.bos.redhat.com:6443/apis/snapshot.storage.k8s.io/v1beta1?timeout=32s
    Running Suite: CNF Features e2e integration tests
    =================================================
    Random Seed: 1630240617
    Will run 1 of 142 specs
    
    SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS
    ------------------------------
    [performance] Latency Test with the oslat image
      should succeed
      /go/src/github.com/openshift-kni/cnf-features-deploy/vendor/github.com/openshift-kni/performance-addon-operators/functests/4_latency/latency.go:134
    STEP: Waiting two minutes to download the latencyTest image
    STEP: Waiting another two minutes to give enough time for the cluster to move the pod to Succeeded phase
    Aug 29 12:37:59.324: [INFO]: found mcd machine-config-daemon-wf4w8 for node cnfdc8.clus2.t5g.lab.eng.bos.redhat.com
    
    • Failure [49.246 seconds]
    [performance] Latency Test
    /go/src/github.com/openshift-kni/cnf-features-deploy/vendor/github.com/openshift-kni/performance-addon-operators/functests/4_latency/latency.go:59
      with the oslat image
      /go/src/github.com/openshift-kni/cnf-features-deploy/vendor/github.com/openshift-kni/performance-addon-operators/functests/4_latency/latency.go:112
        should succeed [It]
        /go/src/github.com/openshift-kni/cnf-features-deploy/vendor/github.com/openshift-kni/performance-addon-operators/functests/4_latency/latency.go:134
    
        The current latency 27 is bigger than the expected one 20 1
        Expected
            <bool>: false
        to be true
     /go/src/github.com/openshift-kni/cnf-features-deploy/vendor/github.com/openshift-kni/performance-addon-operators/functests/4_latency/latency.go:168
    
    Log file created at: 2021/08/29 13:25:21
    Running on machine: oslat-57c2g
    Binary: Built with gc go1.16.6 for linux/amd64
    Log line format: [IWEF]mmdd hh:mm:ss.uuuuuu threadid file:line] msg
    I0829 13:25:21.569182       1 node.go:37] Environment information: /proc/cmdline: BOOT_IMAGE=(hd0,gpt3)/ostree/rhcos-612d89f4519a53ad0b1a132f4add78372661bfb3994f5fe115654971aa58a543/vmlinuz-4.18.0-305.10.2.rt7.83.el8_4.x86_64 ip=dhcp random.trust_cpu=on console=tty0 console=ttyS0,115200n8 ostree=/ostree/boot.0/rhcos/612d89f4519a53ad0b1a132f4add78372661bfb3994f5fe115654971aa58a543/0 ignition.platform.id=openstack root=UUID=5a4ddf16-9372-44d9-ac4e-3ee329e16ab3 rw rootflags=prjquota skew_tick=1 nohz=on rcu_nocbs=1-3 tuned.non_isolcpus=000000ff,ffffffff,ffffffff,fffffff1 intel_pstate=disable nosoftlockup tsc=nowatchdog intel_iommu=on iommu=pt isolcpus=managed_irq,1-3 systemd.cpu_affinity=0,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103 default_hugepagesz=1G hugepagesz=2M hugepages=128 nmi_watchdog=0 audit=0 mce=off processor.max_cstate=1 idle=poll intel_idle.max_cstate=0
    I0829 13:25:21.569345       1 node.go:44] Environment information: kernel version 4.18.0-305.10.2.rt7.83.el8_4.x86_64
    I0829 13:25:21.569367       1 main.go:53] Running the oslat command with arguments \
    [--duration 600 --rtprio 1 --cpu-list 4,6,52,54,56,58 --cpu-main-thread 2]
    I0829 13:35:22.632263       1 main.go:59] Succeeded to run the oslat command: oslat V 2.00
    Total runtime:    600 seconds
    Thread priority:  SCHED_FIFO:1
    CPU list:     4,6,52,54,56,58
    CPU for main thread:  2
    Workload:     no
    Workload mem:     0 (KiB)
    Preheat cores:    6
    
    Pre-heat for 1 seconds...
    Test starts...
    Test completed.
    
            Core:  4 6 52 54 56 58
        CPU Freq:  2096 2096 2096 2096 2096 2096 (Mhz)
        001 (us):  19390720316 19141129810 20265099129 20280959461 19391991159 19119877333
        002 (us):  5304 5249 5777 5947 6829 4971
        003 (us):  28 14 434 47 208 21
        004 (us):  1388 853 123568 152817 5576 0
        005 (us):  207850 223544 103827 91812 227236 231563
        006 (us):  60770 122038 277581 323120 122633 122357
        007 (us):  280023 223992 63016 25896 214194 218395
        008 (us):  40604 25152 24368 4264 24440 25115
        009 (us):  6858 3065 5815 810 3286 2116
        010 (us):  1947 936 1452 151 474 361
      ...
         Minimum:  1 1 1 1 1 1 (us)
         Average:  1.000 1.000 1.000 1.000 1.000 1.000 (us)
         Maximum:  37 38 49 28 28 19 (us)
         Max-Min:  36 37 48 27 27 18 (us)
        Duration:  599.667 599.667 599.667 599.667 599.667 599.667 (sec)

    1
    この例では、測定されたレイテンシーが最大許容値を超えています。

18.5. レイテンシーテストの失敗レポートの生成

次の手順を使用して、JUnit レイテンシーテストの出力とテストの失敗レポートを生成します。

前提条件

  • OpenShift CLI (oc) がインストールされている。
  • cluster-admin 権限を持つユーザーとしてログインしている。

手順

  • レポートがダンプされる場所へのパスを --report パラメーターを渡すことで、クラスターの状態とトラブルシューティング用のリソースに関する情報を含むテスト失敗レポートを作成します。

    $ podman run -v $(pwd)/:/kubeconfig:Z -v $(pwd)/reportdest:<report_folder_path> \
    -e KUBECONFIG=/kubeconfig/kubeconfig  -e DISCOVERY_MODE=true \
    registry.redhat.io/openshift4/cnf-tests-rhel8:v4.8 \
    /usr/bin/test-run.sh --report <report_folder_path> \
    -ginkgo.focus="\[performance\]\ Latency\ Test"

    ここでは、以下のようになります。

    <report_folder_path>
    レポートが生成されるフォルダーへのパスです。

18.6. JUnit レイテンシーテストレポートの生成

次の手順を使用して、JUnit レイテンシーテストの出力とテストの失敗レポートを生成します。

前提条件

  • OpenShift CLI (oc) がインストールされている。
  • cluster-admin 権限を持つユーザーとしてログインしている。

手順

  • レポートがダンプされる場所へのパスとともに --junit パラメーターを渡すことにより、JUnit 準拠の XML レポートを作成します。

    $ podman run -v $(pwd)/:/kubeconfig:Z -v $(pwd)/junitdest:<junit_folder_path> \
    -e KUBECONFIG=/kubeconfig/kubeconfig  -e DISCOVERY_MODE=true \
    registry.redhat.io/openshift4/cnf-tests-rhel8:v4.8 \
    /usr/bin/test-run.sh --junit <junit_folder_path> \
    -ginkgo.focus="\[performance\]\ Latency\ Test"

    ここでは、以下のようになります。

    <junit_folder_path>
    junit レポートが生成されるフォルダーへのパスです。

18.7. 切断されたクラスターでのレイテンシーテストの実行

CNF テストイメージは、外部レジストリーに到達できない切断されたクラスターでテストを実行できます。これには、次の 2 つの手順が必要です。

  1. cnf-tests イメージをカスタム切断レジストリーにミラーリングします。
  2. カスタムの切断されたレジストリーからイメージを使用するようにテストに指示します。
クラスターからアクセスできるカスタムレジストリーへのイメージのミラーリング

mirror 実行ファイルがイメージに同梱されており、テストイメージをローカルレジストリーにミラーリングするために oc が必要とする入力を提供します。

  1. クラスターおよび registry.redhat.io にアクセスできる中間マシンから次のコマンドを実行します。

    $ podman run -v $(pwd)/:/kubeconfig:Z -e KUBECONFIG=/kubeconfig/kubeconfig \
    registry.redhat.io/openshift4/cnf-tests-rhel8:v4.8 \
    /usr/bin/mirror -registry <disconnected_registry> | oc image mirror -f -

    ここでは、以下のようになります。

    <disconnected_registry>
    my.local.registry:5000/ など、設定した切断されたミラーレジストリーです。
  2. cnf-tests イメージを切断されたレジストリーにミラーリングした場合は、テストの実行時にイメージの取得に使用された元のレジストリーをオーバーライドする必要があります。次に例を示します。

    $ podman run -v $(pwd)/:/kubeconfig:Z -e KUBECONFIG=/kubeconfig/kubeconfig \
    -e DISCOVERY_MODE=true -e IMAGE_REGISTRY="<disconnected_registry>" \
    -e CNF_TESTS_IMAGE="cnf-tests-rhel8:v4.8" \
    /usr/bin/test-run.sh -ginkgo.focus="\[performance\]\ Latency\ Test"
カスタムレジストリーからのイメージを使用するためのテストの設定

CNF_TESTS_IMAGE 変数と IMAGE_REGISTRY 変数を使用して、カスタムテストイメージとイメージレジストリーを使用してレイテンシーテストを実行できます。

  • カスタムテストイメージとイメージレジストリーを使用するようにレイテンシーテストを設定するには、次のコマンドを実行します。

    $ podman run -v $(pwd)/:/kubeconfig:Z -e KUBECONFIG=/kubeconfig/kubeconfig \
    -e IMAGE_REGISTRY="<custom_image_registry>" \
    -e CNF_TESTS_IMAGE="<custom_cnf-tests_image>" \
    registry.redhat.io/openshift4/cnf-tests-rhel8:v4.8 /usr/bin/test-run.sh

    ここでは、以下のようになります。

    <custom_image_registry>
    custom.registry:5000/ などのカスタムイメージレジストリーです。
    <custom_cnf-tests_image>
    custom-cnf-tests-image:latest などのカスタム cnf-tests イメージです。
クラスター内部レジストリーへのイメージのミラーリング

OpenShift Container Platform は、クラスター上の標準ワークロードとして実行される組み込まれたコンテナーイメージレジストリーを提供します。

手順

  1. レジストリーをルートを使用して公開し、レジストリーへの外部アクセスを取得します。

    $ oc patch configs.imageregistry.operator.openshift.io/cluster --patch '{"spec":{"defaultRoute":true}}' --type=merge
  2. 次のコマンドを実行して、レジストリーエンドポイントを取得します。

    $ REGISTRY=$(oc get route default-route -n openshift-image-registry --template='{{ .spec.host }}')
  3. イメージを公開する namespace を作成します。

    $ oc create ns cnftests
  4. イメージストリームを、テストに使用されるすべての namespace で利用可能にします。これは、テスト namespace が cnf-tests イメージストリームからイメージを取得できるようにするために必要です。以下のコマンドを実行します。

    $ oc policy add-role-to-user system:image-puller system:serviceaccount:cnf-features-testing:default --namespace=cnftests
    $ oc policy add-role-to-user system:image-puller system:serviceaccount:performance-addon-operators-testing:default --namespace=cnftests
  5. 次のコマンドを実行して、docker シークレット名と認証トークンを取得します。

    $ SECRET=$(oc -n cnftests get secret | grep builder-docker | awk {'print $1'}
    $ TOKEN=$(oc -n cnftests get secret $SECRET -o jsonpath="{.data['\.dockercfg']}" | base64 --decode | jq '.["image-registry.openshift-image-registry.svc:5000"].auth')
  6. dockerauth.json ファイルを作成します。次に例を示します。

    $ echo "{\"auths\": { \"$REGISTRY\": { \"auth\": $TOKEN } }}" > dockerauth.json
  7. イメージミラーリングを実行します。

    $ podman run -v $(pwd)/:/kubeconfig:Z -e KUBECONFIG=/kubeconfig/kubeconfig \
    registry.redhat.io/openshift4/cnf-tests-rhel8:4.8 \
    /usr/bin/mirror -registry $REGISTRY/cnftests |  oc image mirror --insecure=true \
    -a=$(pwd)/dockerauth.json -f -
  8. テストを実行します。

    $ podman run -v $(pwd)/:/kubeconfig:Z -e KUBECONFIG=/kubeconfig/kubeconfig \
    -e DISCOVERY_MODE=true -e IMAGE_REGISTRY=image-registry.openshift-image-registry.svc:5000/cnftests \
    cnf-tests-local:latest /usr/bin/test-run.sh -ginkgo.focus="\[performance\]\ Latency\ Test"
異なるテストイメージセットのミラーリング

オプションで、レイテンシーテスト用にミラーリングされるデフォルトのアップストリームイメージを変更できます。

手順

  1. mirror コマンドは、デフォルトでアップストリームイメージをミラーリングしようとします。これは、以下の形式のファイルをイメージに渡すことで上書きできます。

    [
        {
            "registry": "public.registry.io:5000",
            "image": "imageforcnftests:4.8"
        }
    ]
  2. ファイルを mirror コマンドに渡します。たとえば、images.json としてローカルに保存します。以下のコマンドでは、ローカルパスはコンテナー内の /kubeconfig にマウントされ、これを mirror コマンドに渡すことができます。

    $ podman run -v $(pwd)/:/kubeconfig:Z -e KUBECONFIG=/kubeconfig/kubeconfig \
    registry.redhat.io/openshift4/cnf-tests-rhel8:v4.8 /usr/bin/mirror \
    --registry "my.local.registry:5000/" --images "/kubeconfig/images.json" \
    |  oc image mirror -f -

18.8. cnf-tests コンテナーでのエラーのトラブルシューティング

レイテンシーテストを実行するには、cnf-tests コンテナー内からクラスターにアクセスできる必要があります。

前提条件

  • OpenShift CLI (oc) がインストールされている。
  • cluster-admin 権限を持つユーザーとしてログインしている。

手順

  • 次のコマンドを実行して、cnf-tests コンテナー内からクラスターにアクセスできることを確認します。

    $ podman run -v $(pwd)/:/kubeconfig:Z -e KUBECONFIG=/kubeconfig/kubeconfig \
    registry.redhat.io/openshift4/cnf-tests-rhel8:v4.8 \
    oc get nodes

    このコマンドが機能しない場合は、DNS 間のスパン、MTU サイズ、またはファイアウォールアクセスに関連するエラーが発生している可能性があります。

第19章 パフォーマンスプロファイルの作成

Performance Profile Creator (PPC) ツールおよび、PPC を使用してパフォーマンスプロファイルを作成する方法を説明します。

19.1. Performance Profile Creator の概要

Performance Profile Creator (PPC) は、Performance Addon Operator に含まれるコマンドラインツールでパフォーマンスプロファイルの作成に使用します。このツールは、クラスターからの must-gather データと、ユーザー指定のプロファイル引数を複数使用します。PPC は、ハードウェアとトポロジーに適したパフォーマンスプロファイルを作成します。

このツールは、以下のいずれかの方法で実行します。

  • podman の呼び出し
  • ラッパースクリプトの呼び出し

19.1.1. must-gather コマンドを使用したクラスターに関するデータの収集

Performance Profile Creator (PPC) ツールには must-gather データが必要です。クラスター管理者は、must-gather コマンドを実行し、クラスターについての情報を取得します。

前提条件

  • cluster-admin ロールを持つユーザーとしてクラスターにアクセスできる。
  • Performance Addon Operator にアクセスできる。
  • OpenShift CLI (oc) がインストールされている。

手順

  1. must-gather データを保存するディレクトリーに移動します。
  2. クラスターで must-gather を実行します。

    $ oc adm must-gather --image=<PAO_image> --dest-dir=<dir>
    注記

    must-gather コマンドは、performance-addon-operator-must-gather イメージを使用して実行する必要があります。この出力はオプションで圧縮できます。Performance Profile Creator ラッパースクリプトを実行している場合は、出力を圧縮する必要があります。

    $ oc adm must-gather --image=registry.redhat.io/openshift4/performance-addon-operator-must-gather-rhel8:v4.8 --dest-dir=must-gather

  3. must-gather ディレクトリーから圧縮ファイルを作成します。

    $ tar cvaf must-gather.tar.gz must-gather/

19.1.2. podman を使用した Performance Profile Creator の実行

クラスター管理者は、podman および Performance Profile Creator を実行してパフォーマンスプロファイルを作成できます。

前提条件

  • cluster-admin ロールを持つユーザーとしてクラスターにアクセスできる。
  • ベアメタルハードウェアにインストールされたクラスター。
  • podman および OpenShift CLI (oc) がインストールされているノード。

手順

  1. マシン設定プールを確認します。

    $ oc get mcp

    出力例

    NAME         CONFIG                                                 UPDATED   UPDATING   DEGRADED   MACHINECOUNT   READYMACHINECOUNT   UPDATEDMACHINECOUNT   DEGRADEDMACHINECOUNT   AGE
    master       rendered-master-acd1358917e9f98cbdb599aea622d78b       True      False      False      3              3                   3                     0                      22h
    worker-cnf   rendered-worker-cnf-1d871ac76e1951d32b2fe92369879826   False     True       False      2              1                   1                     0                      22h

  2. Podman を使用して、registry.redhat.io への認証を行います。

    $ podman login registry.redhat.io
    Username: myrhusername
    Password: ************
  3. 必要に応じて、PPC ツールのヘルプを表示します。

    $ podman run --entrypoint performance-profile-creator registry.redhat.io/openshift4/performance-addon-rhel8-operator:v4.8 -h

    出力例

    A tool that automates creation of Performance Profiles
    
    Usage:
      performance-profile-creator [flags]
    
    Flags:
          --disable-ht                        Disable Hyperthreading
      -h, --help                              help for performance-profile-creator
          --info string                       Show cluster information; requires --must-gather-dir-path, ignore the other arguments. [Valid values: log, json] (default "log")
          --mcp-name string                   MCP name corresponding to the target machines (required)
          --must-gather-dir-path string       Must gather directory path (default "must-gather")
          --power-consumption-mode string     The power consumption mode.  [Valid values: default, low-latency, ultra-low-latency] (default "default")
          --profile-name string               Name of the performance profile to be created (default "performance")
          --reserved-cpu-count int            Number of reserved CPUs (required)
          --rt-kernel                         Enable Real Time Kernel (required)
          --split-reserved-cpus-across-numa   Split the Reserved CPUs across NUMA nodes
          --topology-manager-policy string    Kubelet Topology Manager Policy of the performance profile to be created. [Valid values: single-numa-node, best-effort, restricted] (default "restricted")
          --user-level-networking             Run with User level Networking(DPDK) enabled

  4. Performance Profile Creator ツールを検出モードで実行します。

    注記

    検出モードは、must-gather からの出力を使用してクラスターを検査します。生成された出力には、以下のような情報が含まれます。

    • 割り当てられた CPU ID でパーティションされた NUMA セル
    • ハイパースレッディングが有効にされているかどうか

    この情報を使用して、Performance Profile Creator ツールにわたす一部の引数に適切な値を設定できます。

    $ podman run --entrypoint performance-profile-creator -v /must-gather:/must-gather:z registry.redhat.io/openshift4/performance-addon-rhel8-operator:v4.8 --info log --must-gather-dir-path /must-gather
    注記

    このコマンドは、Performance Profile Creator を、podman への新規エントリーポイントとして使用します。これは、ホストの must-gather データをコンテナーイメージにマッピングし、ユーザーが提示した必須のプロファイル引数を呼び出し、my-performance-profile.yaml ファイルを生成します。

    -v オプションでは、以下のいずれかへのパスを指定できます。

    • must-gather 出力ディレクトリー
    • must-gather の展開済みの tarball を含む既存のディレクトリー

    info オプションでは、出力形式を指定する値が必要です。使用できる値は log と JSON です。JSON 形式はデバッグ用に確保されています。

  5. podman を実行します。

    $ podman run --entrypoint performance-profile-creator -v /must-gather:/must-gather:z registry.redhat.io/openshift4/performance-addon-rhel8-operator:v4.8 --mcp-name=worker-cnf --reserved-cpu-count=20 --rt-kernel=true --split-reserved-cpus-across-numa=false --topology-manager-policy=single-numa-node --must-gather-dir-path /must-gather  --power-consumption-mode=ultra-low-latency > my-performance-profile.yaml
    注記

    Performance Profile Creator の引数については Performance Profile Creator 引数の表に示しています。必要な引数は、以下の通りです。

    • reserved-cpu-count
    • mcp-name
    • rt-kernel

    この例の mcp-name 引数は、コマンド oc get mcp の出力に基づいて worker-cnf に設定されます。Single Node OpenShift (SNO) には --mcp-name=master を使用します。

  6. 作成した YAML ファイルを確認します。

    $ cat my-performance-profile.yaml

    出力例

    apiVersion: performance.openshift.io/v2
    kind: PerformanceProfile
    metadata:
      name: performance
    spec:
      additionalKernelArgs:
      - nmi_watchdog=0
      - audit=0
      - mce=off
      - processor.max_cstate=1
      - intel_idle.max_cstate=0
      - idle=poll
      cpu:
        isolated: 1,3,5,7,9,11,13,15,17,19-39,41,43,45,47,49,51,53,55,57,59-79
        reserved: 0,2,4,6,8,10,12,14,16,18,40,42,44,46,48,50,52,54,56,58
      nodeSelector:
        node-role.kubernetes.io/worker-cnf: ""
      numa:
        topologyPolicy: single-numa-node
      realTimeKernel:
        enabled: true

  7. 生成されたプロファイルを適用します。

    注記

    プロファイルを適用する前に、Performance Addon Operator をインストールしてください。

    $ oc apply -f my-performance-profile.yaml
19.1.2.1. podman を実行してパフォーマンスプロファイルを作成する方法

以下の例では、podman を実行して、NUMA ノード間で分割される、予約済み CPU 20 個を指定してパフォーマンスプロファイルを作成する方法を説明します。

ノードのハードウェア設定:

  • CPU 80 個
  • ハイパースレッディングを有効にする
  • NUMA ノード 2 つ
  • NUMA ノード 0 に偶数個の CPU、NUMA ノード 1 に奇数個の CPU を稼働させる

podman を実行してパフォーマンスプロファイルを作成します。

$ podman run --entrypoint performance-profile-creator -v /must-gather:/must-gather:z registry.redhat.io/openshift4/performance-addon-rhel8-operator:v4.8 --mcp-name=worker-cnf --reserved-cpu-count=20 --rt-kernel=true --split-reserved-cpus-across-numa=true --must-gather-dir-path /must-gather > my-performance-profile.yaml

作成されたプロファイルは以下の YAML に記述されます。

  apiVersion: performance.openshift.io/v2
  kind: PerformanceProfile
  metadata:
    name: performance
  spec:
    cpu:
      isolated: 10-39,50-79
      reserved: 0-9,40-49
    nodeSelector:
      node-role.kubernetes.io/worker-cnf: ""
    numa:
      topologyPolicy: restricted
    realTimeKernel:
      enabled: true
注記

この場合、CPU 10 個が NUMA ノード 0 に、残りの 10 個は NUMA ノード 1 に予約されます。

19.1.3. Performance Profile Creator ラッパースクリプトの実行

パフォーマンスプロファイルラッパースクリプトをし用すると、Performance Profile Creator (PPC) ツールの実行を簡素化できます。podman の実行に関連する煩雑性がなくなり、パフォーマンスプロファイルの作成が可能になります。

前提条件

  • Performance Addon Operator にアクセスできる。
  • must-gather tarball にアクセスできる。

手順

  1. ローカルマシンにファイル (例: run-perf-profile-creator.sh) を作成します。

    $ vi run-perf-profile-creator.sh
  2. ファイルに以下のコードを貼り付けます。

    #!/bin/bash
    
    readonly CONTAINER_RUNTIME=${CONTAINER_RUNTIME:-podman}
    readonly CURRENT_SCRIPT=$(basename "$0")
    readonly CMD="${CONTAINER_RUNTIME} run --entrypoint performance-profile-creator"
    readonly IMG_EXISTS_CMD="${CONTAINER_RUNTIME} image exists"
    readonly IMG_PULL_CMD="${CONTAINER_RUNTIME} image pull"
    readonly MUST_GATHER_VOL="/must-gather"
    
    PAO_IMG="registry.redhat.io/openshift4/performance-addon-rhel8-operator:v4.8"
    MG_TARBALL=""
    DATA_DIR=""
    
    usage() {
      print "Wrapper usage:"
      print "  ${CURRENT_SCRIPT} [-h] [-p image][-t path] -- [performance-profile-creator flags]"
      print ""
      print "Options:"
      print "   -h                 help for ${CURRENT_SCRIPT}"
      print "   -p                 Performance Addon Operator image"
      print "   -t                 path to a must-gather tarball"
    
      ${IMG_EXISTS_CMD} "${PAO_IMG}" && ${CMD} "${PAO_IMG}" -h
    }
    
    function cleanup {
      [ -d "${DATA_DIR}" ] && rm -rf "${DATA_DIR}"
    }
    trap cleanup EXIT
    
    exit_error() {
      print "error: $*"
      usage
      exit 1
    }
    
    print() {
      echo  "$*" >&2
    }
    
    check_requirements() {
      ${IMG_EXISTS_CMD} "${PAO_IMG}" || ${IMG_PULL_CMD} "${PAO_IMG}" || \
          exit_error "Performance Addon Operator image not found"
    
      [ -n "${MG_TARBALL}" ] || exit_error "Must-gather tarball file path is mandatory"
      [ -f "${MG_TARBALL}" ] || exit_error "Must-gather tarball file not found"
    
      DATA_DIR=$(mktemp -d -t "${CURRENT_SCRIPT}XXXX") || exit_error "Cannot create the data directory"
      tar -zxf "${MG_TARBALL}" --directory "${DATA_DIR}" || exit_error "Cannot decompress the must-gather tarball"
      chmod a+rx "${DATA_DIR}"
    
      return 0
    }
    
    main() {
      while getopts ':hp:t:' OPT; do
        case "${OPT}" in
          h)
            usage
            exit 0
            ;;
          p)
            PAO_IMG="${OPTARG}"
            ;;
          t)
            MG_TARBALL="${OPTARG}"
            ;;
          ?)
            exit_error "invalid argument: ${OPTARG}"
            ;;
        esac
      done
      shift $((OPTIND - 1))
    
      check_requirements || exit 1
    
      ${CMD} -v "${DATA_DIR}:${MUST_GATHER_VOL}:z" "${PAO_IMG}" "$@" --must-gather-dir-path "${MUST_GATHER_VOL}"
      echo "" 1>&2
    }
    
    main "$@"
  3. このスクリプトの実行権限を全員に追加します。

    $ chmod a+x run-perf-profile-creator.sh
  4. オプション: run-perf-profile-creator.sh コマンドの使用方法を表示します。

    $ ./run-perf-profile-creator.sh -h

    予想される出力

    Wrapper usage:
      run-perf-profile-creator.sh [-h] [-p image][-t path] -- [performance-profile-creator flags]
    
    Options:
       -h                 help for run-perf-profile-creator.sh
       -p                 Performance Addon Operator image 1
       -t                 path to a must-gather tarball 2
    
    A tool that automates creation of Performance Profiles
    
       Usage:
         performance-profile-creator [flags]
    
       Flags:
             --disable-ht                        Disable Hyperthreading
         -h, --help                              help for performance-profile-creator
             --info string                       Show cluster information; requires --must-gather-dir-path, ignore the other arguments. [Valid values: log, json] (default "log")
             --mcp-name string                   MCP name corresponding to the target machines (required)
             --must-gather-dir-path string       Must gather directory path (default "must-gather")
             --power-consumption-mode string     The power consumption mode.  [Valid values: default, low-latency, ultra-low-latency] (default "default")
             --profile-name string               Name of the performance profile to be created (default "performance")
             --reserved-cpu-count int            Number of reserved CPUs (required)
             --rt-kernel                         Enable Real Time Kernel (required)
             --split-reserved-cpus-across-numa   Split the Reserved CPUs across NUMA nodes
             --topology-manager-policy string    Kubelet Topology Manager Policy of the performance profile to be created. [Valid values: single-numa-node, best-effort, restricted] (default "restricted")
             --user-level-networking             Run with User level Networking(DPDK) enabled

    注記

    引数には、以下の 2 つのタイプがあります。

    • ラッパー引数名は、-h-p、および -t です。
    • PPC 引数
    1
    オプション: Performance Addon Operator イメージを指定します。設定されていない場合、デフォルトのアップストリームイメージ registry.redhat.io/openshift4/performance-addon-rhel8-operator:v4.8 が使用されます。
    2
    -t は、必須のラッパースクリプトの引数で、must-gather tarball へのパスを指定します。
  5. Performance Profile Creator ツールを検出モードで実行します。

    注記

    検出モードは、must-gather からの出力を使用してクラスターを検査します。生成された出力には、以下のような情報が含まれます。

    • 割り当てられた CPU ID を使用した NUMA セルのパーティション設定
    • ハイパースレッディングが有効にされているかどうか

    この情報を使用して、Performance Profile Creator ツールにわたす一部の引数に適切な値を設定できます。

    $ ./run-perf-profile-creator.sh -t /must-gather/must-gather.tar.gz -- --info=log
    注記

    info オプションでは、出力形式を指定する値が必要です。使用できる値は log と JSON です。JSON 形式はデバッグ用に確保されています。

  6. マシン設定プールを確認します。

    $ oc get mcp

    出力例

    NAME         CONFIG                                                 UPDATED   UPDATING   DEGRADED   MACHINECOUNT   READYMACHINECOUNT   UPDATEDMACHINECOUNT   DEGRADEDMACHINECOUNT   AGE
    master       rendered-master-acd1358917e9f98cbdb599aea622d78b       True      False      False      3              3                   3                     0                      22h
    worker-cnf   rendered-worker-cnf-1d871ac76e1951d32b2fe92369879826   False     True       False      2              1                   1                     0                      22h

  7. パフォーマンスプロファイルを作成します。

    $ ./run-perf-profile-creator.sh -t /must-gather/must-gather.tar.gz -- --mcp-name=worker-cnf --reserved-cpu-count=2 --rt-kernel=true > my-performance-profile.yaml
    注記

    Performance Profile Creator の引数については Performance Profile Creator 引数の表に示しています。必要な引数は、以下の通りです。

    • reserved-cpu-count
    • mcp-name
    • rt-kernel

    この例の mcp-name 引数は、コマンド oc get mcp の出力に基づいて worker-cnf に設定されます。Single Node OpenShift (SNO) には --mcp-name=master を使用します。

  8. 作成した YAML ファイルを確認します。

    $ cat my-performance-profile.yaml

    出力例

    apiVersion: performance.openshift.io/v2
    kind: PerformanceProfile
    metadata:
      name: performance
    spec:
      cpu:
        isolated: 1-39,41-79
        reserved: 0,40
      nodeSelector:
        node-role.kubernetes.io/worker-cnf: ""
      numa:
        topologyPolicy: restricted
      realTimeKernel:
        enabled: false

  9. 生成されたプロファイルを適用します。

    注記

    プロファイルを適用する前に、Performance Addon Operator をインストールしてください。

    $ oc apply -f my-performance-profile.yaml

19.1.4. Performance Profile Creator の引数

表19.1 Performance Profile Creator の引数
引数説明

disable-ht

ハイパースレッディングを無効にします。

使用できる値は true または false です。

デフォルト: false

警告

この引数が true に設定されている場合は、BIOS でハイパースレッディングを無効にしないでください。ハイパースレッディングの無効化は、カーネルコマンドライン引数で実行できます。

info

この引数では、クラスター情報を取得します。使用できるのは検出モードのみです。検出モードでは、must-gather-dir-path 引数も必要です。他の引数が設定されている場合は無視されます。

以下の値を使用できます。

  • log
  • JSON

    注記

    これらのオプションでは、デバッグ用に予約される JSON 形式で出力形式を定義します。

デフォルト: log

mcp-name

ターゲットマシンに対応する worker-cnf などの MCP 名。このパラメーターは必須です。

must-gather-dir-path

must gather のディレクトリーパス。このパラメーターは必須です。

ラッパースクリプトでツールを実行する場合には、must-gather はスクリプト自体で指定されるので、ユーザーは指定しないでください。

power-consumption-mode

電力消費モード。

以下の値を使用できます。

  • default
  • low-latency
  • ultra-low-latency

デフォルト: default

profile-name

作成するパフォーマンスプロファイルの名前。デフォルト: performance

reserved-cpu-count

予約された CPU の数。このパラメーターは必須です。

注記

これは自然数でなければなりません。0 の値は使用できません。

rt-kernel

リアルタイムカーネルを有効にします。このパラメーターは必須です。

使用できる値は true または false です。

split-reserved-cpus-across-numa

NUMA ノード全体で予約された CPU を分割します。

使用できる値は true または false です。

デフォルト: false

topology-manager-policy

作成するパフォーマンスプロファイルの kubelet Topology Manager ポリシー。

以下の値を使用できます。

  • single-numa-node
  • best-effort
  • restricted

デフォルト: restricted

user-level-networking

ユーザーレベルのネットワーク (DPDK) を有効にして実行します。

使用できる値は true または false です。

デフォルト: false

19.2. 関連情報

Legal Notice

Copyright © 2024 Red Hat, Inc.

OpenShift documentation is licensed under the Apache License 2.0 (https://www.apache.org/licenses/LICENSE-2.0).

Modified versions must remove all Red Hat trademarks.

Portions adapted from https://github.com/kubernetes-incubator/service-catalog/ with modifications by Red Hat.

Red Hat, Red Hat Enterprise Linux, the Red Hat logo, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other countries.

Linux® is the registered trademark of Linus Torvalds in the United States and other countries.

Java® is a registered trademark of Oracle and/or its affiliates.

XFS® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States and/or other countries.

MySQL® is a registered trademark of MySQL AB in the United States, the European Union and other countries.

Node.js® is an official trademark of Joyent. Red Hat Software Collections is not formally related to or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack® Word Mark and OpenStack logo are either registered trademarks/service marks or trademarks/service marks of the OpenStack Foundation, in the United States and other countries and are used with the OpenStack Foundation’s permission. We are not affiliated with, endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Red Hat logoGithubRedditYoutubeTwitter

詳細情報

試用、購入および販売

コミュニティー

Red Hat ドキュメントについて

Red Hat をお使いのお客様が、信頼できるコンテンツが含まれている製品やサービスを活用することで、イノベーションを行い、目標を達成できるようにします。

多様性を受け入れるオープンソースの強化

Red Hat では、コード、ドキュメント、Web プロパティーにおける配慮に欠ける用語の置き換えに取り組んでいます。このような変更は、段階的に実施される予定です。詳細情報: Red Hat ブログ.

会社概要

Red Hat は、企業がコアとなるデータセンターからネットワークエッジに至るまで、各種プラットフォームや環境全体で作業を簡素化できるように、強化されたソリューションを提供しています。

© 2024 Red Hat, Inc.