이 콘텐츠는 선택한 언어로 제공되지 않습니다.
Chapter 7. User-provisioned infrastructure
7.1. Adding RHEL compute machines to an OpenShift Container Platform cluster
In OpenShift Container Platform, you can add Red Hat Enterprise Linux (RHEL) compute, or worker, machines to a user-provisioned infrastructure cluster. You can use RHEL as the operating system on only compute machines.
7.1.1. About adding RHEL compute nodes to a cluster
In OpenShift Container Platform 4.3, you have the option of using Red Hat Enterprise Linux (RHEL) machines as compute machines, which are also known as worker machines, in your cluster if you use a user-provisioned infrastructure installation. You must use Red Hat Enterprise Linux CoreOS (RHCOS) machines for the control plane, or master, machines in your cluster.
As with all installations that use user-provisioned infrastructure, if you choose to use RHEL compute machines in your cluster, you take responsibility for all operating system life cycle management and maintenance, including performing system updates, applying patches, and completing all other required tasks.
Because removing OpenShift Container Platform from a machine in the cluster requires destroying the operating system, you must use dedicated hardware for any RHEL machines that you add to the cluster.
Swap memory is disabled on all RHEL machines that you add to your OpenShift Container Platform cluster. You cannot enable swap memory on these machines.
You must add any RHEL compute machines to the cluster after you initialize the control plane.
7.1.2. System requirements for RHEL compute nodes
The Red Hat Enterprise Linux (RHEL) compute machine hosts, which are also known as worker machine hosts, in your OpenShift Container Platform environment must meet the following minimum hardware specifications and system-level requirements.
- You must have an active OpenShift Container Platform subscription on your Red Hat account. If you do not, contact your sales representative for more information.
- Production environments must provide compute machines to support your expected workloads. As a cluster administrator, you must calculate the expected workload and add about 10 percent for overhead. For production environments, allocate enough resources so that a node host failure does not affect your maximum capacity.
Each system must meet the following hardware requirements:
- Physical or virtual system, or an instance running on a public or private IaaS.
Base OS: RHEL 7.6 with "Minimal" installation option.
ImportantOnly RHEL 7.6 is supported in OpenShift Container Platform 4.3. You must not upgrade your compute machines to RHEL 8.
- If you deployed OpenShift Container Platform in FIPS mode, you must enable FIPS on the RHEL machine before you boot it. See Enabling FIPS Mode in the RHEL 7 documentation.
- NetworkManager 1.0 or later.
- 1 vCPU.
- Minimum 8 GB RAM.
-
Minimum 15 GB hard disk space for the file system containing
/var/
. -
Minimum 1 GB hard disk space for the file system containing
/usr/local/bin/
. - Minimum 1 GB hard disk space for the file system containing the system’s temporary directory. The system’s temporary directory is determined according to the rules defined in the tempfile module in Python’s standard library.
-
Each system must meet any additional requirements for your system provider. For example, if you installed your cluster on VMware vSphere, your disks must be configured according to its storage guidelines and the
disk.enableUUID=true
attribute must be set.
7.1.2.1. Certificate signing requests management
Because your cluster has limited access to automatic machine management when you use infrastructure that you provision, you must provide a mechanism for approving cluster certificate signing requests (CSRs) after installation. The kube-controller-manager
only approves the kubelet client CSRs. The machine-approver
cannot guarantee the validity of a serving certificate that is requested by using kubelet credentials because it cannot confirm that the correct machine issued the request. You must determine and implement a method of verifying the validity of the kubelet serving certificate requests and approving them.
7.1.3. Preparing the machine to run the playbook
Before you can add compute machines that use Red Hat Enterprise Linux as the operating system to an OpenShift Container Platform 4.3 cluster, you must prepare a machine to run the playbook from. This machine is not part of the cluster but must be able to access it.
Prerequisites
-
Install the OpenShift CLI (
oc
) on the machine that you run the playbook on. -
Log in as a user with
cluster-admin
permission.
Procedure
-
Ensure that the
kubeconfig
file for the cluster and the installation program that you used to install the cluster are on the machine. One way to accomplish this is to use the same machine that you used to install the cluster. - Configure the machine to access all of the RHEL hosts that you plan to use as compute machines. You can use any method that your company allows, including a bastion with an SSH proxy or a VPN.
Configure a user on the machine that you run the playbook on that has SSH access to all of the RHEL hosts.
ImportantIf you use SSH key-based authentication, you must manage the key with an SSH agent.
If you have not already done so, register the machine with RHSM and attach a pool with an
OpenShift
subscription to it:Register the machine with RHSM:
# subscription-manager register --username=<user_name> --password=<password>
Pull the latest subscription data from RHSM:
# subscription-manager refresh
List the available subscriptions:
# subscription-manager list --available --matches '*OpenShift*'
In the output for the previous command, find the pool ID for an OpenShift Container Platform subscription and attach it:
# subscription-manager attach --pool=<pool_id>
Enable the repositories required by OpenShift Container Platform 4.3:
# subscription-manager repos \ --enable="rhel-7-server-rpms" \ --enable="rhel-7-server-extras-rpms" \ --enable="rhel-7-server-ansible-2.8-rpms" \ --enable="rhel-7-server-ose-4.3-rpms"
Install the required packages, including
openshift-ansible
:# yum install openshift-ansible openshift-clients jq
The
openshift-ansible
package provides installation program utilities and pulls in other packages that you require to add a RHEL compute node to your cluster, such as Ansible, playbooks, and related configuration files. Theopenshift-clients
provides theoc
CLI, and thejq
package improves the display of JSON output on your command line.
7.1.4. Preparing a RHEL compute node
Before you add a Red Hat Enterprise Linux (RHEL) machine to your OpenShift Container Platform cluster, you must register each host with Red Hat Subscription Manager (RHSM), attach an active OpenShift Container Platform subscription, and enable the required repositories.
On each host, register with RHSM:
# subscription-manager register --username=<user_name> --password=<password>
Pull the latest subscription data from RHSM:
# subscription-manager refresh
List the available subscriptions:
# subscription-manager list --available --matches '*OpenShift*'
In the output for the previous command, find the pool ID for an OpenShift Container Platform subscription and attach it:
# subscription-manager attach --pool=<pool_id>
Disable all yum repositories:
Disable all the enabled RHSM repositories:
# subscription-manager repos --disable="*"
List the remaining yum repositories and note their names under
repo id
, if any:# yum repolist
Use
yum-config-manager
to disable the remaining yum repositories:# yum-config-manager --disable <repo_id>
Alternatively, disable all repositories:
yum-config-manager --disable \*
Note that this might take a few minutes if you have a large number of available repositories
Enable only the repositories required by OpenShift Container Platform 4.3:
# subscription-manager repos \ --enable="rhel-7-server-rpms" \ --enable="rhel-7-server-extras-rpms" \ --enable="rhel-7-server-ose-4.3-rpms"
Stop and disable firewalld on the host:
# systemctl disable --now firewalld.service
NoteYou must not enable firewalld later. If you do, you cannot access OpenShift Container Platform logs on the worker.
7.1.5. Adding a RHEL compute machine to your cluster
You can add compute machines that use Red Hat Enterprise Linux as the operating system to an OpenShift Container Platform 4.3 cluster.
Prerequisites
- You installed the required packages and performed the necessary configuration on the machine that you run the playbook on.
- You prepared the RHEL hosts for installation.
Procedure
Perform the following steps on the machine that you prepared to run the playbook:
Create an Ansible inventory file that is named
/<path>/inventory/hosts
that defines your compute machine hosts and required variables:[all:vars] ansible_user=root 1 #ansible_become=True 2 openshift_kubeconfig_path="~/.kube/config" 3 [new_workers] 4 mycluster-rhel7-0.example.com mycluster-rhel7-1.example.com
- 1
- Specify the user name that runs the Ansible tasks on the remote compute machines.
- 2
- If you do not specify
root
for theansible_user
, you must setansible_become
toTrue
and assign the user sudo permissions. - 3
- Specify the path and file name of the
kubeconfig
file for your cluster. - 4
- List each RHEL machine to add to your cluster. You must provide the fully-qualified domain name for each host. This name is the host name that the cluster uses to access the machine, so set the correct public or private name to access the machine.
Run the playbook:
$ cd /usr/share/ansible/openshift-ansible $ ansible-playbook -i /<path>/inventory/hosts playbooks/scaleup.yml 1
- 1
- For
<path>
, specify the path to the Ansible inventory file that you created.
7.1.6. Approving the CSRs for your machines
When you add machines to a cluster, two pending certificate signing requests (CSRs) are generated for each machine that you added. You must confirm that these CSRs are approved or, if necessary, approve them yourself.
Prerequisites
- You added machines to your cluster.
Procedure
Confirm that the cluster recognizes the machines:
$ oc get nodes NAME STATUS ROLES AGE VERSION master-0 Ready master 63m v1.16.2 master-1 Ready master 63m v1.16.2 master-2 Ready master 64m v1.16.2 worker-0 NotReady worker 76s v1.16.2 worker-1 NotReady worker 70s v1.16.2
The output lists all of the machines that you created.
Review the pending CSRs and ensure that you see a client and server request with the
Pending
orApproved
status for each machine that you added to the cluster:$ oc get csr NAME AGE REQUESTOR CONDITION csr-8b2br 15m system:serviceaccount:openshift-machine-config-operator:node-bootstrapper Pending 1 csr-8vnps 15m system:serviceaccount:openshift-machine-config-operator:node-bootstrapper Pending csr-bfd72 5m26s system:node:ip-10-0-50-126.us-east-2.compute.internal Pending 2 csr-c57lv 5m26s system:node:ip-10-0-95-157.us-east-2.compute.internal Pending ...
In this example, two machines are joining the cluster. You might see more approved CSRs in the list.
If the CSRs were not approved, after all of the pending CSRs for the machines you added are in
Pending
status, approve the CSRs for your cluster machines:NoteBecause the CSRs rotate automatically, approve your CSRs within an hour of adding the machines to the cluster. If you do not approve them within an hour, the certificates will rotate, and more than two certificates will be present for each node. You must approve all of these certificates. After you approve the initial CSRs, the subsequent node client CSRs are automatically approved by the cluster
kube-controller-manager
. You must implement a method of automatically approving the kubelet serving certificate requests.To approve them individually, run the following command for each valid CSR:
$ oc adm certificate approve <csr_name> 1
- 1
<csr_name>
is the name of a CSR from the list of current CSRs.
To approve all pending CSRs, run the following command:
$ oc get csr -o go-template='{{range .items}}{{if not .status}}{{.metadata.name}}{{"\n"}}{{end}}{{end}}' | xargs oc adm certificate approve
Additional information
- For more information on CSRs, see Certificate Signing Requests.
7.1.7. Required parameters for the Ansible hosts file
You must define the following parameters in the Ansible hosts file before you add Red Hat Enterprise Linux (RHEL) compute machines to your cluster.
Paramter | Description | Values |
---|---|---|
| The SSH user that allows SSH-based authentication without requiring a password. If you use SSH key-based authentication, then you must manage the key with an SSH agent. |
A user name on the system. The default value is |
|
If the values of |
|
|
Specifies a path and file name to a local directory that contains the | The path and name of the configuration file. |
7.1.7.1. Removing RHCOS compute machines from a cluster
After you add the Red Hat Enterprise Linux (RHEL) compute machines to your cluster, you can remove the Red Hat Enterprise Linux CoreOS (RHCOS) compute machines.
Prerequisites
- You have added RHEL compute machines to your cluster.
Procedure
View the list of machines and record the node names of the RHCOS compute machines:
$ oc get nodes -o wide
For each RHCOS compute machine, delete the node:
Mark the node as unschedulable by running the
oc adm cordon
command:$ oc adm cordon <node_name> 1
- 1
- Specify the node name of one of the RHCOS compute machines.
Drain all the pods from the node:
$ oc adm drain <node_name> --force --delete-local-data --ignore-daemonsets 1
- 1
- Specify the node name of the RHCOS compute machine that you isolated.
Delete the node:
$ oc delete nodes <node_name> 1
- 1
- Specify the node name of the RHCOS compute machine that you drained.
Review the list of compute machines to ensure that only the RHEL nodes remain:
$ oc get nodes -o wide
- Remove the RHCOS machines from the load balancer for your cluster’s compute machines. You can delete the Virtual Machines or reimage the physical hardware for the RHCOS compute machines.
7.2. Adding more RHEL compute machines to an OpenShift Container Platform cluster
If your OpenShift Container Platform cluster already includes Red Hat Enterprise Linux (RHEL) compute machines, which are also known as worker machines, you can add more RHEL compute machines to it.
7.2.1. About adding RHEL compute nodes to a cluster
In OpenShift Container Platform 4.3, you have the option of using Red Hat Enterprise Linux (RHEL) machines as compute machines, which are also known as worker machines, in your cluster if you use a user-provisioned infrastructure installation. You must use Red Hat Enterprise Linux CoreOS (RHCOS) machines for the control plane, or master, machines in your cluster.
As with all installations that use user-provisioned infrastructure, if you choose to use RHEL compute machines in your cluster, you take responsibility for all operating system life cycle management and maintenance, including performing system updates, applying patches, and completing all other required tasks.
Because removing OpenShift Container Platform from a machine in the cluster requires destroying the operating system, you must use dedicated hardware for any RHEL machines that you add to the cluster.
Swap memory is disabled on all RHEL machines that you add to your OpenShift Container Platform cluster. You cannot enable swap memory on these machines.
You must add any RHEL compute machines to the cluster after you initialize the control plane.
7.2.2. System requirements for RHEL compute nodes
The Red Hat Enterprise Linux (RHEL) compute machine hosts, which are also known as worker machine hosts, in your OpenShift Container Platform environment must meet the following minimum hardware specifications and system-level requirements.
- You must have an active OpenShift Container Platform subscription on your Red Hat account. If you do not, contact your sales representative for more information.
- Production environments must provide compute machines to support your expected workloads. As a cluster administrator, you must calculate the expected workload and add about 10 percent for overhead. For production environments, allocate enough resources so that a node host failure does not affect your maximum capacity.
Each system must meet the following hardware requirements:
- Physical or virtual system, or an instance running on a public or private IaaS.
Base OS: RHEL 7.6 with "Minimal" installation option.
ImportantOnly RHEL 7.6 is supported in OpenShift Container Platform 4.3. You must not upgrade your compute machines to RHEL 8.
- If you deployed OpenShift Container Platform in FIPS mode, you must enable FIPS on the RHEL machine before you boot it. See Enabling FIPS Mode in the RHEL 7 documentation.
- NetworkManager 1.0 or later.
- 1 vCPU.
- Minimum 8 GB RAM.
-
Minimum 15 GB hard disk space for the file system containing
/var/
. -
Minimum 1 GB hard disk space for the file system containing
/usr/local/bin/
. - Minimum 1 GB hard disk space for the file system containing the system’s temporary directory. The system’s temporary directory is determined according to the rules defined in the tempfile module in Python’s standard library.
-
Each system must meet any additional requirements for your system provider. For example, if you installed your cluster on VMware vSphere, your disks must be configured according to its storage guidelines and the
disk.enableUUID=true
attribute must be set.
7.2.2.1. Certificate signing requests management
Because your cluster has limited access to automatic machine management when you use infrastructure that you provision, you must provide a mechanism for approving cluster certificate signing requests (CSRs) after installation. The kube-controller-manager
only approves the kubelet client CSRs. The machine-approver
cannot guarantee the validity of a serving certificate that is requested by using kubelet credentials because it cannot confirm that the correct machine issued the request. You must determine and implement a method of verifying the validity of the kubelet serving certificate requests and approving them.
7.2.3. Preparing a RHEL compute node
Before you add a Red Hat Enterprise Linux (RHEL) machine to your OpenShift Container Platform cluster, you must register each host with Red Hat Subscription Manager (RHSM), attach an active OpenShift Container Platform subscription, and enable the required repositories.
On each host, register with RHSM:
# subscription-manager register --username=<user_name> --password=<password>
Pull the latest subscription data from RHSM:
# subscription-manager refresh
List the available subscriptions:
# subscription-manager list --available --matches '*OpenShift*'
In the output for the previous command, find the pool ID for an OpenShift Container Platform subscription and attach it:
# subscription-manager attach --pool=<pool_id>
Disable all yum repositories:
Disable all the enabled RHSM repositories:
# subscription-manager repos --disable="*"
List the remaining yum repositories and note their names under
repo id
, if any:# yum repolist
Use
yum-config-manager
to disable the remaining yum repositories:# yum-config-manager --disable <repo_id>
Alternatively, disable all repositories:
yum-config-manager --disable \*
Note that this might take a few minutes if you have a large number of available repositories
Enable only the repositories required by OpenShift Container Platform 4.3:
# subscription-manager repos \ --enable="rhel-7-server-rpms" \ --enable="rhel-7-server-extras-rpms" \ --enable="rhel-7-server-ose-4.3-rpms"
Stop and disable firewalld on the host:
# systemctl disable --now firewalld.service
NoteYou must not enable firewalld later. If you do, you cannot access OpenShift Container Platform logs on the worker.
7.2.4. Adding more RHEL compute machines to your cluster
You can add more compute machines that use Red Hat Enterprise Linux as the operating system to an OpenShift Container Platform 4.3 cluster.
Prerequisites
- Your OpenShift Container Platform cluster already contains RHEL compute nodes.
-
The
hosts
file that you used to add the first RHEL compute machines to your cluster is on the machine that you use the run the playbook. - The machine that you run the playbook on must be able to access all of the RHEL hosts. You can use any method that your company allows, including a bastion with an SSH proxy or a VPN.
-
The
kubeconfig
file for the cluster and the installation program that you used to install the cluster are on the machine that you use the run the playbook. - You must prepare the RHEL hosts for installation.
- Configure a user on the machine that you run the playbook on that has SSH access to all of the RHEL hosts.
- If you use SSH key-based authentication, you must manage the key with an SSH agent.
-
Install the OpenShift CLI (
oc
) on the machine that you run the playbook on.
Procedure
-
Open the Ansible inventory file at
/<path>/inventory/hosts
that defines your compute machine hosts and required variables. -
Rename the
[new_workers]
section of the file to[workers]
. Add a
[new_workers]
section to the file and define the fully-qualified domain names for each new host. The file resembles the following example:[all:vars] ansible_user=root #ansible_become=True openshift_kubeconfig_path="~/.kube/config" [workers] mycluster-rhel7-0.example.com mycluster-rhel7-1.example.com [new_workers] mycluster-rhel7-2.example.com mycluster-rhel7-3.example.com
In this example, the
mycluster-rhel7-0.example.com
andmycluster-rhel7-1.example.com
machines are in the cluster and you add themycluster-rhel7-2.example.com
andmycluster-rhel7-3.example.com
machines.Run the scaleup playbook:
$ cd /usr/share/ansible/openshift-ansible $ ansible-playbook -i /<path>/inventory/hosts playbooks/scaleup.yml 1
- 1
- For
<path>
, specify the path to the Ansible inventory file that you created.
7.2.5. Approving the CSRs for your machines
When you add machines to a cluster, two pending certificate signing requests (CSRs) are generated for each machine that you added. You must confirm that these CSRs are approved or, if necessary, approve them yourself.
Prerequisites
- You added machines to your cluster.
Procedure
Confirm that the cluster recognizes the machines:
$ oc get nodes NAME STATUS ROLES AGE VERSION master-0 Ready master 63m v1.16.2 master-1 Ready master 63m v1.16.2 master-2 Ready master 64m v1.16.2 worker-0 NotReady worker 76s v1.16.2 worker-1 NotReady worker 70s v1.16.2
The output lists all of the machines that you created.
Review the pending CSRs and ensure that you see a client and server request with the
Pending
orApproved
status for each machine that you added to the cluster:$ oc get csr NAME AGE REQUESTOR CONDITION csr-8b2br 15m system:serviceaccount:openshift-machine-config-operator:node-bootstrapper Pending 1 csr-8vnps 15m system:serviceaccount:openshift-machine-config-operator:node-bootstrapper Pending csr-bfd72 5m26s system:node:ip-10-0-50-126.us-east-2.compute.internal Pending 2 csr-c57lv 5m26s system:node:ip-10-0-95-157.us-east-2.compute.internal Pending ...
In this example, two machines are joining the cluster. You might see more approved CSRs in the list.
If the CSRs were not approved, after all of the pending CSRs for the machines you added are in
Pending
status, approve the CSRs for your cluster machines:NoteBecause the CSRs rotate automatically, approve your CSRs within an hour of adding the machines to the cluster. If you do not approve them within an hour, the certificates will rotate, and more than two certificates will be present for each node. You must approve all of these certificates. After you approve the initial CSRs, the subsequent node client CSRs are automatically approved by the cluster
kube-controller-manager
. You must implement a method of automatically approving the kubelet serving certificate requests.To approve them individually, run the following command for each valid CSR:
$ oc adm certificate approve <csr_name> 1
- 1
<csr_name>
is the name of a CSR from the list of current CSRs.
To approve all pending CSRs, run the following command:
$ oc get csr -o go-template='{{range .items}}{{if not .status}}{{.metadata.name}}{{"\n"}}{{end}}{{end}}' | xargs oc adm certificate approve
Additional information
- For more information on CSRs, see Certificate Signing Requests.
7.2.6. Required parameters for the Ansible hosts file
You must define the following parameters in the Ansible hosts file before you add Red Hat Enterprise Linux (RHEL) compute machines to your cluster.
Paramter | Description | Values |
---|---|---|
| The SSH user that allows SSH-based authentication without requiring a password. If you use SSH key-based authentication, then you must manage the key with an SSH agent. |
A user name on the system. The default value is |
|
If the values of |
|
|
Specifies a path and file name to a local directory that contains the | The path and name of the configuration file. |
7.3. Adding compute machines to vSphere
You can add more compute machines to your OpenShift Container Platform cluster on VMware vSphere.
7.3.1. Prerequisites
When adding additional compute machines to your OpenShift Container Platform cluster, use the RHCOS boot media that matches the same minor version that was used to install the OpenShift Container Platform cluster. For example, if you installed OpenShift Container Platform 4.4, you must add additional compute machines using RHCOS 4.4 boot media.
Adding additional compute machines to your cluster using newer RHCOS boot media is not supported. After adding the compute machines, they will automatically update to the current version of the OpenShift Container Platform cluster.
7.3.2. Creating more Red Hat Enterprise Linux CoreOS (RHCOS) machines in vSphere
You can create more compute machines for your cluster that uses user-provisioned infrastructure on VMware vSphere.
Prerequisites
- Obtain the Base64-encoded Ignition file for your compute machines.
- You have access to the vSphere template that you created for your cluster.
Procedure
After the template deploys, deploy a VM for a machine in the cluster.
-
Right-click the template’s name and click Clone
Clone to Virtual Machine. -
On the Select a name and folder tab, specify a name for the VM. You might include the machine type in the name, such as
compute-1
. - On the Select a name and folder tab, select the name of the folder that you created for the cluster.
- On the Select a compute resource tab, select the name of a host in your datacenter.
- Optional: On the Select storage tab, customize the storage options.
- On the Select clone options, select Customize this virtual machine’s hardware.
On the Customize hardware tab, click VM Options
Advanced. - From the Latency Sensitivity list, select High.
Click Edit Configuration, and on the Configuration Parameters window, click Add Configuration Params. Define the following parameter names and values:
-
guestinfo.ignition.config.data
: Paste the contents of the Base64-encoded compute Ignition config file for this machine type. -
guestinfo.ignition.config.data.encoding
: Specifybase64
. -
disk.EnableUUID
: SpecifyTRUE
.
-
- In the Virtual Hardware panel of the Customize hardware tab, modify the specified values as required. Ensure that the amount of RAM, CPU, and disk storage meets the minimum requirements for the machine type. Also, make sure to select the correct network under Add network adapter if there are multiple networks available.
- Complete the configuration and power on the VM.
-
Right-click the template’s name and click Clone
- Continue to create more compute machines for your cluster.
7.3.3. Approving the CSRs for your machines
When you add machines to a cluster, two pending certificate signing requests (CSRs) are generated for each machine that you added. You must confirm that these CSRs are approved or, if necessary, approve them yourself.
Prerequisites
- You added machines to your cluster.
Procedure
Confirm that the cluster recognizes the machines:
$ oc get nodes NAME STATUS ROLES AGE VERSION master-0 Ready master 63m v1.16.2 master-1 Ready master 63m v1.16.2 master-2 Ready master 64m v1.16.2 worker-0 NotReady worker 76s v1.16.2 worker-1 NotReady worker 70s v1.16.2
The output lists all of the machines that you created.
Review the pending CSRs and ensure that you see a client and server request with the
Pending
orApproved
status for each machine that you added to the cluster:$ oc get csr NAME AGE REQUESTOR CONDITION csr-8b2br 15m system:serviceaccount:openshift-machine-config-operator:node-bootstrapper Pending 1 csr-8vnps 15m system:serviceaccount:openshift-machine-config-operator:node-bootstrapper Pending csr-bfd72 5m26s system:node:ip-10-0-50-126.us-east-2.compute.internal Pending 2 csr-c57lv 5m26s system:node:ip-10-0-95-157.us-east-2.compute.internal Pending ...
In this example, two machines are joining the cluster. You might see more approved CSRs in the list.
If the CSRs were not approved, after all of the pending CSRs for the machines you added are in
Pending
status, approve the CSRs for your cluster machines:NoteBecause the CSRs rotate automatically, approve your CSRs within an hour of adding the machines to the cluster. If you do not approve them within an hour, the certificates will rotate, and more than two certificates will be present for each node. You must approve all of these certificates. After you approve the initial CSRs, the subsequent node client CSRs are automatically approved by the cluster
kube-controller-manager
. You must implement a method of automatically approving the kubelet serving certificate requests.To approve them individually, run the following command for each valid CSR:
$ oc adm certificate approve <csr_name> 1
- 1
<csr_name>
is the name of a CSR from the list of current CSRs.
To approve all pending CSRs, run the following command:
$ oc get csr -o go-template='{{range .items}}{{if not .status}}{{.metadata.name}}{{"\n"}}{{end}}{{end}}' | xargs oc adm certificate approve
Additional information
- For more information on CSRs, see Certificate Signing Requests.
7.4. Adding compute machines to bare metal
You can add more compute machines to your OpenShift Container Platform cluster on bare metal.
7.4.1. Prerequisites
- You installed a cluster on bare metal.
- You have installation media and Red Hat Enterprise Linux CoreOS (RHCOS) images that you used to create your cluster. If you do not have these files, you must obtain them by following the instructions in the installation procedure.
When adding additional compute machines to your OpenShift Container Platform cluster, use the RHCOS boot media that matches the same minor version that was used to install the OpenShift Container Platform cluster. For example, if you installed OpenShift Container Platform 4.4, you must add additional compute machines using RHCOS 4.4 boot media.
Adding additional compute machines to your cluster using newer RHCOS boot media is not supported. After adding the compute machines, they will automatically update to the current version of the OpenShift Container Platform cluster.
7.4.2. Creating Red Hat Enterprise Linux CoreOS (RHCOS) machines
Before you add more compute machines to a cluster that you installed on bare metal infrastructure, you must create RHCOS machines for it to use. Follow either the steps to use an ISO image or network PXE booting to create the machines.
7.4.2.1. Creating more Red Hat Enterprise Linux CoreOS (RHCOS) machines using an ISO image
You can create more compute machines for your bare metal cluster by using an ISO image to create the machines.
Prerequisites
- Obtain the URL of the Ignition config file for the compute machines for your cluster. You uploaded this file to your HTTP server during installation.
- Obtain the URL of the BIOS or UEFI RHCOS image file that you uploaded to your HTTP server during cluster installation.
Procedure
Use the ISO file to install RHCOS on more compute machines. Use the same method that you used when you created machines before you installed the cluster:
- Burn the ISO image to a disk and boot it directly.
- Use ISO redirection with a LOM interface.
-
After the instance boots, press the
TAB
orE
key to edit the kernel command line. Add the parameters to the kernel command line:
coreos.inst=yes coreos.inst.install_dev=sda 1 coreos.inst.image_url=<bare_metal_image_URL> 2 coreos.inst.ignition_url=http://example.com/worker.ign 3
-
Press
Enter
to complete the installation. After RHCOS installs, the system reboots. After the system reboots, it applies the Ignition config file that you specified. - Continue to create more compute machines for your cluster.
7.4.2.2. Creating more Red Hat Enterprise Linux CoreOS (RHCOS) machines by PXE or iPXE booting
You can create more compute machines for your bare metal cluster by using PXE or iPXE booting.
Prerequisites
- Obtain the URL of the Ignition config file for the compute machines for your cluster. You uploaded this file to your HTTP server during installation.
-
Obtain the URLs of the RHCOS ISO image, compressed metal BIOS,
kernel
, andinitramfs
files that you uploaded to your HTTP server during cluster installation. - You have access to the PXE booting infrastructure that you used to create the machines for your OpenShift Container Platform cluster during installation. The machines must boot from their local disks after RHCOS is installed on them.
-
If you use UEFI, you have access to the
grub.conf
file that you modified during OpenShift Container Platform installation.
Procedure
Confirm that your PXE or iPXE installation for the RHCOS images is correct.
For PXE:
DEFAULT pxeboot TIMEOUT 20 PROMPT 0 LABEL pxeboot KERNEL http://<HTTP_server>/rhcos-<version>-installer-kernel-<architecture> 1 APPEND ip=dhcp rd.neednet=1 initrd=http://<HTTP_server>/rhcos-<version>-installer-initramfs.<architecture>.img console=tty0 console=ttyS0 coreos.inst=yes coreos.inst.install_dev=sda coreos.inst.image_url=http://<HTTP_server>/rhcos-<version>-metal.<architecture>.raw.gz coreos.inst.ignition_url=http://<HTTP_server>/worker.ign 2 3
- 1
- Specify the location of the
kernel
file that you uploaded to your HTTP server. - 2
- If you use multiple NICs, specify a single interface in the
ip
option. For example, to use DHCP on a NIC that is namedeno1
, setip=eno1:dhcp
. - 3
- Specify locations of the RHCOS files that you uploaded to your HTTP server. The
initrd
parameter value is the location of theinitramfs
file, thecoreos.inst.image_url
parameter value is the location of the compressed metal RAW image, and thecoreos.inst.ignition_url
parameter value is the location of the worker Ignition config file.
For iPXE:
kernel http://<HTTP_server>/rhcos-<version>-installer-kernel-<architecture> ip=dhcp rd.neednet=1 initrd=http://<HTTP_server>/rhcos-<version>-installer-initramfs.<architecture>.img console=tty0 console=ttyS0 coreos.inst=yes coreos.inst.install_dev=sda coreos.inst.image_url=http://<HTTP_server>/rhcos-<version>-metal.<arhcitectutre>.raw.gz coreos.inst.ignition_url=http://<HTTP_server>/worker.ign 1 2 initrd http://<HTTP_server>/rhcos-<version>-installer-initramfs.<architecture>.img 3 boot
- 1
- Specify locations of the RHCOS files that you uploaded to your HTTP server. The
kernel
parameter value is the location of thekernel
file, theinitrd
parameter value is the location of theinitramfs
file, thecoreos.inst.image_url
parameter value is the location of the compressed metal RAW image, and thecoreos.inst.ignition_url
parameter value is the location of the worker Ignition config file. - 2
- If you use multiple NICs, specify a single interface in the
ip
option. For example, to use DHCP on a NIC that is namedeno1
, setip=eno1:dhcp
. - 3
- Specify the location of the
initramfs
file that you uploaded to your HTTP server.
- Use the PXE or iPXE infrastructure to create the required compute machines for your cluster.
7.4.3. Approving the CSRs for your machines
When you add machines to a cluster, two pending certificate signing requests (CSRs) are generated for each machine that you added. You must confirm that these CSRs are approved or, if necessary, approve them yourself.
Prerequisites
- You added machines to your cluster.
Procedure
Confirm that the cluster recognizes the machines:
$ oc get nodes NAME STATUS ROLES AGE VERSION master-0 Ready master 63m v1.16.2 master-1 Ready master 63m v1.16.2 master-2 Ready master 64m v1.16.2 worker-0 NotReady worker 76s v1.16.2 worker-1 NotReady worker 70s v1.16.2
The output lists all of the machines that you created.
Review the pending CSRs and ensure that you see a client and server request with the
Pending
orApproved
status for each machine that you added to the cluster:$ oc get csr NAME AGE REQUESTOR CONDITION csr-8b2br 15m system:serviceaccount:openshift-machine-config-operator:node-bootstrapper Pending 1 csr-8vnps 15m system:serviceaccount:openshift-machine-config-operator:node-bootstrapper Pending csr-bfd72 5m26s system:node:ip-10-0-50-126.us-east-2.compute.internal Pending 2 csr-c57lv 5m26s system:node:ip-10-0-95-157.us-east-2.compute.internal Pending ...
In this example, two machines are joining the cluster. You might see more approved CSRs in the list.
If the CSRs were not approved, after all of the pending CSRs for the machines you added are in
Pending
status, approve the CSRs for your cluster machines:NoteBecause the CSRs rotate automatically, approve your CSRs within an hour of adding the machines to the cluster. If you do not approve them within an hour, the certificates will rotate, and more than two certificates will be present for each node. You must approve all of these certificates. After you approve the initial CSRs, the subsequent node client CSRs are automatically approved by the cluster
kube-controller-manager
. You must implement a method of automatically approving the kubelet serving certificate requests.To approve them individually, run the following command for each valid CSR:
$ oc adm certificate approve <csr_name> 1
- 1
<csr_name>
is the name of a CSR from the list of current CSRs.
To approve all pending CSRs, run the following command:
$ oc get csr -o go-template='{{range .items}}{{if not .status}}{{.metadata.name}}{{"\n"}}{{end}}{{end}}' | xargs oc adm certificate approve
Additional information
- For more information on CSRs, see Certificate Signing Requests.