Chapter 4. Installing on Alibaba


4.1. Preparing to install on Alibaba Cloud

Important

Alibaba Cloud on OpenShift Container Platform is a Technology Preview feature only. Technology Preview features are not supported with Red Hat production service level agreements (SLAs) and might not be functionally complete. Red Hat does not recommend using them in production. These features provide early access to upcoming product features, enabling customers to test functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features, see Technology Preview Features Support Scope.

4.1.1. Prerequisites

4.1.2. Requirements for installing OpenShift Container Platform on Alibaba Cloud

Before installing OpenShift Container Platform on Alibaba Cloud, you must configure and register your domain, create a Resource Access Management (RAM) user for the installation, and review the supported Alibaba Cloud data center regions and zones for the installation.

4.1.3. Registering and Configuring Alibaba Cloud Domain

To install OpenShift Container Platform, the Alibaba Cloud account you use must have a dedicated public hosted zone in your account. This zone must be authoritative for the domain. This service provides cluster DNS resolution and name lookup for external connections to the cluster.

Procedure

  1. Identify your domain, or subdomain, and registrar. You can transfer an existing domain and registrar or obtain a new one through Alibaba Cloud or another source.

    Note

    If you purchase a new domain through Alibaba Cloud, it takes time for the relevant DNS changes to propagate. For more information about purchasing domains through Alibaba Cloud, see Alibaba Cloud domains.

  2. If you are using an existing domain and registrar, migrate its DNS to Alibaba Cloud. See Domain name transfer in the Alibaba Cloud documentation.
  3. Configure DNS for your domain. This includes:

  4. If you are using a subdomain, follow the procedures of your company to add its delegation records to the parent domain.

4.1.4. Supported Alibaba regions

You can deploy an OpenShift Container Platform cluster to the regions listed in the Alibaba Regions and zones documentation.

4.1.5. Next steps

4.2. Creating the required Alibaba Cloud resources

Before you install OpenShift Container Platform, you must use the Alibaba Cloud console to create a Resource Access Management (RAM) user that has sufficient permissions to install OpenShift Container Platform into your Alibaba Cloud. This user must also have permissions to create new RAM users. You can also configure and use the ccoctl tool to create new credentials for the OpenShift Container Platform components with the permissions that they require.

Important

Alibaba Cloud on OpenShift Container Platform is a Technology Preview feature only. Technology Preview features are not supported with Red Hat production service level agreements (SLAs) and might not be functionally complete. Red Hat does not recommend using them in production. These features provide early access to upcoming product features, enabling customers to test functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features, see Technology Preview Features Support Scope.

4.2.1. Creating the required RAM user

You must have a Alibaba Cloud Resource Access Management (RAM) user for the installation that has sufficient privileges. You can use the Alibaba Cloud Resource Access Management console to create a new user or modify an existing user. Later, you create credentials in OpenShift Container Platform based on this user’s permissions.

When you configure the RAM user, be sure to consider the following requirements:

  • The user must have an Alibaba Cloud AccessKey ID and AccessKey secret pair.

    • For a new user, you can select Open API Access for the Access Mode when creating the user. This mode generates the required AccessKey pair.
    • For an existing user, you can add an AccessKey pair or you can obtain the AccessKey pair for that user.

      Note

      When created, the AccessKey secret is displayed only once. You must immediately save the AccessKey pair because the AccessKey pair is required for API calls.

  • Add the AccessKey ID and secret to the ~/.alibabacloud/credentials file on your local computer. Alibaba Cloud automatically creates this file when you log in to the console. The Cloud Credential Operator (CCO) utility, ccoutil, uses these credentials when processing Credential Request objects.

    For example:

    [default]                          # Default client
    type = access_key                  # Certification type: access_key
    access_key_id = LTAI5t8cefXKmt                # Key 1
    access_key_secret = wYx56mszAN4Uunfh            # Secret
    1
    Add your AccessKeyID and AccessKeySecret here.
  • The RAM user must have the AdministratorAccess policy to ensure that the account has sufficient permission to create the OpenShift Container Platform cluster. This policy grants permissions to manage all Alibaba Cloud resources.

    When you attach the AdministratorAccess policy to a RAM user, you grant that user full access to all Alibaba Cloud services and resources. If you do not want to create a user with full access, create a custom policy with the following actions that you can add to your RAM user for installation. These actions are sufficient to install OpenShift Container Platform.

    Tip

    You can copy and paste the following JSON code into the Alibaba Cloud console to create a custom poicy. For information on creating custom policies, see Create a custom policy in the Alibaba Cloud documentation.

    Example 4.1. Example custom policy JSON file

    {
      "Version": "1",
      "Statement": [
        {
          "Action": [
            "tag:ListTagResources",
            "tag:UntagResources"
          ],
          "Resource": "*",
          "Effect": "Allow"
        },
        {
          "Action": [
            "vpc:DescribeVpcs",
            "vpc:DeleteVpc",
            "vpc:DescribeVSwitches",
            "vpc:DeleteVSwitch",
            "vpc:DescribeEipAddresses",
            "vpc:DescribeNatGateways",
            "vpc:ReleaseEipAddress",
            "vpc:DeleteNatGateway",
            "vpc:DescribeSnatTableEntries",
            "vpc:CreateSnatEntry",
            "vpc:AssociateEipAddress",
            "vpc:ListTagResources",
            "vpc:TagResources",
            "vpc:DescribeVSwitchAttributes",
            "vpc:CreateVSwitch",
            "vpc:CreateNatGateway",
            "vpc:DescribeRouteTableList",
            "vpc:CreateVpc",
            "vpc:AllocateEipAddress",
            "vpc:ListEnhanhcedNatGatewayAvailableZones"
          ],
          "Resource": "*",
          "Effect": "Allow"
        },
        {
          "Action": [
            "ecs:ModifyInstanceAttribute",
            "ecs:DescribeSecurityGroups",
            "ecs:DeleteSecurityGroup",
            "ecs:DescribeSecurityGroupReferences",
            "ecs:DescribeSecurityGroupAttribute",
            "ecs:RevokeSecurityGroup",
            "ecs:DescribeInstances",
            "ecs:DeleteInstances",
            "ecs:DescribeNetworkInterfaces",
            "ecs:DescribeInstanceRamRole",
            "ecs:DescribeUserData",
            "ecs:DescribeDisks",
            "ecs:ListTagResources",
            "ecs:AuthorizeSecurityGroup",
            "ecs:RunInstances",
            "ecs:TagResources",
            "ecs:ModifySecurityGroupPolicy",
            "ecs:CreateSecurityGroup",
            "ecs:DescribeAvailableResource",
            "ecs:DescribeRegions",
            "ecs:AttachInstanceRamRole"
          ],
          "Resource": "*",
          "Effect": "Allow"
        },
        {
          "Action": [
            "pvtz:DescribeRegions",
            "pvtz:DescribeZones",
            "pvtz:DeleteZone",
            "pvtz:DeleteZoneRecord",
            "pvtz:BindZoneVpc",
            "pvtz:DescribeZoneRecords",
            "pvtz:AddZoneRecord",
            "pvtz:SetZoneRecordStatus",
            "pvtz:DescribeZoneInfo",
            "pvtz:DescribeSyncEcsHostTask",
            "pvtz:AddZone"
          ],
          "Resource": "*",
          "Effect": "Allow"
        },
        {
          "Action": [
            "slb:DescribeLoadBalancers",
            "slb:SetLoadBalancerDeleteProtection",
            "slb:DeleteLoadBalancer",
            "slb:SetLoadBalancerModificationProtection",
            "slb:DescribeLoadBalancerAttribute",
            "slb:AddBackendServers",
            "slb:DescribeLoadBalancerTCPListenerAttribute",
            "slb:SetLoadBalancerTCPListenerAttribute",
            "slb:StartLoadBalancerListener",
            "slb:CreateLoadBalancerTCPListener",
            "slb:ListTagResources",
            "slb:TagResources",
            "slb:CreateLoadBalancer"
          ],
          "Resource": "*",
          "Effect": "Allow"
        },
        {
          "Action": [
            "ram:ListResourceGroups",
            "ram:DeleteResourceGroup",
            "ram:ListPolicyAttachments",
            "ram:DetachPolicy",
            "ram:GetResourceGroup",
            "ram:CreateResourceGroup",
            "ram:DeleteRole",
            "ram:GetPolicy",
            "ram:DeletePolicy",
            "ram:ListPoliciesForRole",
            "ram:CreateRole",
            "ram:AttachPolicyToRole",
            "ram:GetRole",
            "ram:CreatePolicy",
            "ram:CreateUser",
            "ram:DetachPolicyFromRole",
            "ram:CreatePolicyVersion",
            "ram:DetachPolicyFromUser",
            "ram:ListPoliciesForUser",
            "ram:AttachPolicyToUser",
            "ram:CreateUser",
            "ram:GetUser",
            "ram:DeleteUser",
            "ram:CreateAccessKey",
            "ram:ListAccessKeys",
            "ram:DeleteAccessKey",
            "ram:ListUsers",
            "ram:ListPolicyVersions"
          ],
          "Resource": "*",
          "Effect": "Allow"
        },
        {
          "Action": [
            "oss:DeleteBucket",
            "oss:DeleteBucketTagging",
            "oss:GetBucketTagging",
            "oss:GetBucketCors",
            "oss:GetBucketPolicy",
            "oss:GetBucketLifecycle",
            "oss:GetBucketReferer",
            "oss:GetBucketTransferAcceleration",
            "oss:GetBucketLog",
            "oss:GetBucketWebSite",
            "oss:GetBucketInfo",
            "oss:PutBucketTagging",
            "oss:PutBucket",
            "oss:OpenOssService",
            "oss:ListBuckets",
            "oss:GetService",
            "oss:PutBucketACL",
            "oss:GetBucketLogging",
            "oss:ListObjects",
            "oss:GetObject",
            "oss:PutObject",
            "oss:DeleteObject"
          ],
          "Resource": "*",
          "Effect": "Allow"
        },
        {
          "Action": [
            "alidns:DescribeDomainRecords",
            "alidns:DeleteDomainRecord",
            "alidns:DescribeDomains",
            "alidns:DescribeDomainRecordInfo",
            "alidns:AddDomainRecord",
            "alidns:SetDomainRecordStatus"
          ],
          "Resource": "*",
          "Effect": "Allow"
        },
        {
          "Action": "bssapi:CreateInstance",
          "Resource": "*",
          "Effect": "Allow"
        },
        {
          "Action": "ram:PassRole",
          "Resource": "*",
          "Effect": "Allow",
          "Condition": {
            "StringEquals": {
              "acs:Service": "ecs.aliyuncs.com"
            }
          }
        }
      ]
    }

For more information about creating a RAM user and granting permissions, see Create a RAM user and Grant permissions to a RAM user in the Alibaba Cloud documentation.

4.2.2. Configuring the Cloud Credential Operator utility

To assign RAM users and policies that provide long-lived RAM AccessKeys (AKs) for each in-cluster component, extract and prepare the Cloud Credential Operator (CCO) utility (ccoctl) binary.

Note

The ccoctl utility is a Linux binary that must run in a Linux environment.

Prerequisites

  • You have access to an OpenShift Container Platform account with cluster administrator access.
  • You have installed the OpenShift CLI (oc).

Procedure

  1. Obtain the OpenShift Container Platform release image:

    $ RELEASE_IMAGE=$(./openshift-install version | awk '/release image/ {print $3}')
  2. Get the CCO container image from the OpenShift Container Platform release image:

    $ CCO_IMAGE=$(oc adm release info --image-for='cloud-credential-operator' $RELEASE_IMAGE)
    Note

    Ensure that the architecture of the $RELEASE_IMAGE matches the architecture of the environment in which you will use the ccoctl tool.

  3. Extract the ccoctl binary from the CCO container image within the OpenShift Container Platform release image:

    $ oc image extract $CCO_IMAGE --file="/usr/bin/ccoctl" -a ~/.pull-secret
  4. Change the permissions to make ccoctl executable:

    $ chmod 775 ccoctl

Verification

  • To verify that ccoctl is ready to use, display the help file:

    $ ccoctl --help

    Output of ccoctl --help

    OpenShift credentials provisioning tool
    
    Usage:
      ccoctl [command]
    
    Available Commands:
      alibabacloud Manage credentials objects for alibaba cloud
      aws          Manage credentials objects for AWS cloud
      gcp          Manage credentials objects for Google cloud
      help         Help about any command
      ibmcloud     Manage credentials objects for IBM Cloud
    
    Flags:
      -h, --help   help for ccoctl
    
    Use "ccoctl [command] --help" for more information about a command.

4.2.3. Next steps

4.3. Installing a cluster quickly on Alibaba Cloud

In OpenShift Container Platform version 4.10, you can install a cluster on Alibaba Cloud that uses the default configuration options.

Important

Alibaba Cloud on OpenShift Container Platform is a Technology Preview feature only. Technology Preview features are not supported with Red Hat production service level agreements (SLAs) and might not be functionally complete. Red Hat does not recommend using them in production. These features provide early access to upcoming product features, enabling customers to test functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features, see Technology Preview Features Support Scope.

4.3.1. Prerequisites

4.3.2. Internet access for OpenShift Container Platform

In OpenShift Container Platform 4.10, you require access to the internet to install your cluster.

You must have internet access to:

  • Access OpenShift Cluster Manager to download the installation program and perform subscription management. If the cluster has internet access and you do not disable Telemetry, that service automatically entitles your cluster.
  • Access Quay.io to obtain the packages that are required to install your cluster.
  • Obtain the packages that are required to perform cluster updates.
Important

If your cluster cannot have direct internet access, you can perform a restricted network installation on some types of infrastructure that you provision. During that process, you download the required content and use it to populate a mirror registry with the installation packages. With some installation types, the environment that you install your cluster in will not require internet access. Before you update the cluster, you update the content of the mirror registry.

4.3.3. Generating a key pair for cluster node SSH access

During an OpenShift Container Platform installation, you can provide an SSH public key to the installation program. The key is passed to the Red Hat Enterprise Linux CoreOS (RHCOS) nodes through their Ignition config files and is used to authenticate SSH access to the nodes. The key is added to the ~/.ssh/authorized_keys list for the core user on each node, which enables password-less authentication.

After the key is passed to the nodes, you can use the key pair to SSH in to the RHCOS nodes as the user core. To access the nodes through SSH, the private key identity must be managed by SSH for your local user.

If you want to SSH in to your cluster nodes to perform installation debugging or disaster recovery, you must provide the SSH public key during the installation process. The ./openshift-install gather command also requires the SSH public key to be in place on the cluster nodes.

Important

Do not skip this procedure in production environments, where disaster recovery and debugging is required.

Note

You must use a local key, not one that you configured with platform-specific approaches such as AWS key pairs.

Procedure

  1. If you do not have an existing SSH key pair on your local machine to use for authentication onto your cluster nodes, create one. For example, on a computer that uses a Linux operating system, run the following command:

    $ ssh-keygen -t ed25519 -N '' -f <path>/<file_name> 1
    1
    Specify the path and file name, such as ~/.ssh/id_ed25519, of the new SSH key. If you have an existing key pair, ensure your public key is in the your ~/.ssh directory.
    Note

    If you plan to install an OpenShift Container Platform cluster that uses FIPS validated or Modules In Process cryptographic libraries on the x86_64 architecture, do not create a key that uses the ed25519 algorithm. Instead, create a key that uses the rsa or ecdsa algorithm.

  2. View the public SSH key:

    $ cat <path>/<file_name>.pub

    For example, run the following to view the ~/.ssh/id_ed25519.pub public key:

    $ cat ~/.ssh/id_ed25519.pub
  3. Add the SSH private key identity to the SSH agent for your local user, if it has not already been added. SSH agent management of the key is required for password-less SSH authentication onto your cluster nodes, or if you want to use the ./openshift-install gather command.

    Note

    On some distributions, default SSH private key identities such as ~/.ssh/id_rsa and ~/.ssh/id_dsa are managed automatically.

    1. If the ssh-agent process is not already running for your local user, start it as a background task:

      $ eval "$(ssh-agent -s)"

      Example output

      Agent pid 31874

      Note

      If your cluster is in FIPS mode, only use FIPS-compliant algorithms to generate the SSH key. The key must be either RSA or ECDSA.

  4. Add your SSH private key to the ssh-agent:

    $ ssh-add <path>/<file_name> 1
    1
    Specify the path and file name for your SSH private key, such as ~/.ssh/id_ed25519

    Example output

    Identity added: /home/<you>/<path>/<file_name> (<computer_name>)

Next steps

  • When you install OpenShift Container Platform, provide the SSH public key to the installation program.

4.3.4. Obtaining the installation program

Before you install OpenShift Container Platform, download the installation file on a local computer.

Prerequisites

  • You have a computer that runs Linux or macOS, with 500 MB of local disk space

Procedure

  1. Access the Infrastructure Provider page on the OpenShift Cluster Manager site. If you have a Red Hat account, log in with your credentials. If you do not, create an account.
  2. Select your infrastructure provider.
  3. Navigate to the page for your installation type, download the installation program that corresponds with your host operating system and architecture, and place the file in the directory where you will store the installation configuration files.

    Important

    The installation program creates several files on the computer that you use to install your cluster. You must keep the installation program and the files that the installation program creates after you finish installing the cluster. Both files are required to delete the cluster.

    Important

    Deleting the files created by the installation program does not remove your cluster, even if the cluster failed during installation. To remove your cluster, complete the OpenShift Container Platform uninstallation procedures for your specific cloud provider.

  4. Extract the installation program. For example, on a computer that uses a Linux operating system, run the following command:

    $ tar -xvf openshift-install-linux.tar.gz
  5. Download your installation pull secret from the Red Hat OpenShift Cluster Manager. This pull secret allows you to authenticate with the services that are provided by the included authorities, including Quay.io, which serves the container images for OpenShift Container Platform components.

4.3.5. Creating the installation configuration file

You can customize the OpenShift Container Platform cluster you install on Alibaba Cloud.

Prerequisites

  • Obtain the OpenShift Container Platform installation program and the pull secret for your cluster.
  • Obtain service principal permissions at the subscription level.

Procedure

  1. Create the install-config.yaml file.

    1. Change to the directory that contains the installation program and run the following command:

      $ ./openshift-install create install-config --dir <installation_directory> 1
      1
      For <installation_directory>, specify the directory name to store the files that the installation program creates.
      Important

      Specify an empty directory. Some installation assets, like bootstrap X.509 certificates have short expiration intervals, so you must not reuse an installation directory. If you want to reuse individual files from another cluster installation, you can copy them into your directory. However, the file names for the installation assets might change between releases. Use caution when copying installation files from an earlier OpenShift Container Platform version.

    2. At the prompts, provide the configuration details for your cloud:

      1. Optional: Select an SSH key to use to access your cluster machines.

        Note

        For production OpenShift Container Platform clusters on which you want to perform installation debugging or disaster recovery, specify an SSH key that your ssh-agent process uses.

      2. Select alibabacloud as the platform to target.
      3. Select the region to deploy the cluster to.
      4. Select the base domain to deploy the cluster to. The base domain corresponds to the public DNS zone that you created for your cluster.
      5. Provide a descriptive name for your cluster.
      6. Paste the pull secret from the Red Hat OpenShift Cluster Manager.
  2. Installing the cluster into Alibaba Cloud requires that the Cloud Credential Operator (CCO) operate in manual mode. Modify the install-config.yaml file to set the credentialsMode parameter to Manual:

    Example install-config.yaml configuration file with credentialsMode set to Manual

    apiVersion: v1
    baseDomain: cluster1.example.com
    credentialsMode: Manual 1
    compute:
    - architecture: amd64
      hyperthreading: Enabled
     ...

    1
    Add this line to set the credentialsMode to Manual.
  3. Back up the install-config.yaml file so that you can use it to install multiple clusters.

    Important

    The install-config.yaml file is consumed during the installation process. If you want to reuse the file, you must back it up now.

4.3.6. Generating the required installation manifests

You must generate the Kubernetes manifest and Ignition config files that the cluster needs to configure the machines.

Procedure

  1. Generate the manifests by running the following command from the directory that contains the installation program:

    $ openshift-install create manifests --dir <installation_directory>

    where:

    <installation_directory>
    Specifies the directory in which the installation program creates files.

4.3.7. Creating credentials for OpenShift Container Platform components with the ccoctl tool

You can use the OpenShift Container Platform Cloud Credential Operator (CCO) utility to automate the creation of Alibaba Cloud RAM users and policies for each in-cluster component.

Note

By default, ccoctl creates objects in the directory in which the commands are run. To create the objects in a different directory, use the --output-dir flag. This procedure uses <path_to_ccoctl_output_dir> to refer to this directory.

Prerequisites

You must have:

  • Extracted and prepared the ccoctl binary.
  • Created a RAM user with sufficient permission to create the OpenShift Container Platform cluster.
  • Added the AccessKeyID (access_key_id) and AccessKeySecret (access_key_secret) of that RAM user into the ~/.alibabacloud/credentials file on your local computer.

Procedure

  1. Set the $RELEASE_IMAGE variable by running the following command:

    $ RELEASE_IMAGE=$(./openshift-install version | awk '/release image/ {print $3}')
  2. Extract the list of CredentialsRequest objects from the OpenShift Container Platform release image by running the following command:

    $ oc adm release extract \
    --credentials-requests \
    --cloud=alibabacloud \
    --to=<path_to_directory_with_list_of_credentials_requests>/credrequests \ 1
    $RELEASE_IMAGE
    1
    credrequests is the directory where the list of CredentialsRequest objects is stored. This command creates the directory if it does not exist.
    Note

    This command can take a few moments to run.

  3. If your cluster uses cluster capabilities to disable one or more optional components, delete the CredentialsRequest custom resources for any disabled components.

    Example credrequests directory contents for OpenShift Container Platform 4.12 on Alibaba Cloud

    0000_30_machine-api-operator_00_credentials-request.yaml 1
    0000_50_cluster-image-registry-operator_01-registry-credentials-request-alibaba.yaml 2
    0000_50_cluster-ingress-operator_00-ingress-credentials-request.yaml 3
    0000_50_cluster-storage-operator_03_credentials_request_alibaba.yaml 4

    1
    The Machine API Operator CR is required.
    2
    The Image Registry Operator CR is required.
    3
    The Ingress Operator CR is required.
    4
    The Storage Operator CR is an optional component and might be disabled in your cluster.
  4. Use the ccoctl tool to process all CredentialsRequest objects in the credrequests directory:

    1. Run the following command to use the tool:

      $ ccoctl alibabacloud create-ram-users \
      --name <name> \
      --region=<alibaba_region> \
      --credentials-requests-dir=<path_to_directory_with_list_of_credentials_requests>/credrequests \
      --output-dir=<path_to_ccoctl_output_dir>

      where:

      • <name> is the name used to tag any cloud resources that are created for tracking.
      • <alibaba_region> is the Alibaba Cloud region in which cloud resources will be created.
      • <path_to_directory_with_list_of_credentials_requests>/credrequests is the directory containing the files for the component CredentialsRequest objects.
      • <path_to_ccoctl_output_dir> is the directory where the generated component credentials secrets will be placed.
      Note

      If your cluster uses Technology Preview features that are enabled by the TechPreviewNoUpgrade feature set, you must include the --enable-tech-preview parameter.

      Example output

      2022/02/11 16:18:26 Created RAM User: user1-alicloud-openshift-machine-api-alibabacloud-credentials
      2022/02/11 16:18:27 Ready for creating new ram policy user1-alicloud-openshift-machine-api-alibabacloud-credentials-policy-policy
      2022/02/11 16:18:27 RAM policy user1-alicloud-openshift-machine-api-alibabacloud-credentials-policy-policy has created
      2022/02/11 16:18:28 Policy user1-alicloud-openshift-machine-api-alibabacloud-credentials-policy-policy has attached on user user1-alicloud-openshift-machine-api-alibabacloud-credentials
      2022/02/11 16:18:29 Created access keys for RAM User: user1-alicloud-openshift-machine-api-alibabacloud-credentials
      2022/02/11 16:18:29 Saved credentials configuration to: user1-alicloud/manifests/openshift-machine-api-alibabacloud-credentials-credentials.yaml
      ...

      Note

      A RAM user can have up to two AccessKeys at the same time. If you run ccoctl alibabacloud create-ram-users more than twice, the previous generated manifests secret becomes stale and you must reapply the newly generated secrets.

    2. Verify that the OpenShift Container Platform secrets are created:

      $ ls <path_to_ccoctl_output_dir>/manifests

      Example output:

      openshift-cluster-csi-drivers-alibaba-disk-credentials-credentials.yaml
      openshift-image-registry-installer-cloud-credentials-credentials.yaml
      openshift-ingress-operator-cloud-credentials-credentials.yaml
      openshift-machine-api-alibabacloud-credentials-credentials.yaml

      You can verify that the RAM users and policies are created by querying Alibaba Cloud. For more information, refer to Alibaba Cloud documentation on listing RAM users and policies.

  5. Copy the generated credential files to the target manifests directory:

    $ cp ./<path_to_ccoctl_output_dir>/manifests/*credentials.yaml ./<path_to_installation>dir>/manifests/

    where:

    <path_to_ccoctl_output_dir>
    Specifies the directory created by the ccoctl alibabacloud create-ram-users command.
    <path_to_installation_dir>
    Specifies the directory in which the installation program creates files.

4.3.8. Deploying the cluster

You can install OpenShift Container Platform on a compatible cloud platform.

Important

You can run the create cluster command of the installation program only once, during initial installation.

Prerequisites

  • Configure an account with the cloud platform that hosts your cluster.
  • Obtain the OpenShift Container Platform installation program and the pull secret for your cluster.

Procedure

  1. Change to the directory that contains the installation program and initialize the cluster deployment:

    $ ./openshift-install create cluster --dir <installation_directory> \ 1
        --log-level=info 2
    1
    For <installation_directory>, specify the location of your customized ./install-config.yaml file.
    2
    To view different installation details, specify warn, debug, or error instead of info.
    Note

    If the cloud provider account that you configured on your host does not have sufficient permissions to deploy the cluster, the installation process stops, and the missing permissions are displayed.

    When the cluster deployment completes, directions for accessing your cluster, including a link to its web console and credentials for the kubeadmin user, display in your terminal.

    Example output

    ...
    INFO Install complete!
    INFO To access the cluster as the system:admin user when using 'oc', run 'export KUBECONFIG=/home/myuser/install_dir/auth/kubeconfig'
    INFO Access the OpenShift web-console here: https://console-openshift-console.apps.mycluster.example.com
    INFO Login to the console with user: "kubeadmin", and password: "4vYBz-Ee6gm-ymBZj-Wt5AL"
    INFO Time elapsed: 36m22s

    Note

    The cluster access and credential information also outputs to <installation_directory>/.openshift_install.log when an installation succeeds.

    Important
    • The Ignition config files that the installation program generates contain certificates that expire after 24 hours, which are then renewed at that time. If the cluster is shut down before renewing the certificates and the cluster is later restarted after the 24 hours have elapsed, the cluster automatically recovers the expired certificates. The exception is that you must manually approve the pending node-bootstrapper certificate signing requests (CSRs) to recover kubelet certificates. See the documentation for Recovering from expired control plane certificates for more information.
    • It is recommended that you use Ignition config files within 12 hours after they are generated because the 24-hour certificate rotates from 16 to 22 hours after the cluster is installed. By using the Ignition config files within 12 hours, you can avoid installation failure if the certificate update runs during installation.
    Important

    You must not delete the installation program or the files that the installation program creates. Both are required to delete the cluster.

4.3.9. Installing the OpenShift CLI by downloading the binary

You can install the OpenShift CLI (oc) to interact with OpenShift Container Platform from a command-line interface. You can install oc on Linux, Windows, or macOS.

Important

If you installed an earlier version of oc, you cannot use it to complete all of the commands in OpenShift Container Platform 4.10. Download and install the new version of oc.

Installing the OpenShift CLI on Linux

You can install the OpenShift CLI (oc) binary on Linux by using the following procedure.

Procedure

  1. Navigate to the OpenShift Container Platform downloads page on the Red Hat Customer Portal.
  2. Select the appropriate version in the Version drop-down menu.
  3. Click Download Now next to the OpenShift v4.10 Linux Client entry and save the file.
  4. Unpack the archive:

    $ tar xvf <file>
  5. Place the oc binary in a directory that is on your PATH.

    To check your PATH, execute the following command:

    $ echo $PATH

After you install the OpenShift CLI, it is available using the oc command:

$ oc <command>
Installing the OpenShift CLI on Windows

You can install the OpenShift CLI (oc) binary on Windows by using the following procedure.

Procedure

  1. Navigate to the OpenShift Container Platform downloads page on the Red Hat Customer Portal.
  2. Select the appropriate version in the Version drop-down menu.
  3. Click Download Now next to the OpenShift v4.10 Windows Client entry and save the file.
  4. Unzip the archive with a ZIP program.
  5. Move the oc binary to a directory that is on your PATH.

    To check your PATH, open the command prompt and execute the following command:

    C:\> path

After you install the OpenShift CLI, it is available using the oc command:

C:\> oc <command>
Installing the OpenShift CLI on macOS

You can install the OpenShift CLI (oc) binary on macOS by using the following procedure.

Procedure

  1. Navigate to the OpenShift Container Platform downloads page on the Red Hat Customer Portal.
  2. Select the appropriate version in the Version drop-down menu.
  3. Click Download Now next to the OpenShift v4.10 MacOSX Client entry and save the file.
  4. Unpack and unzip the archive.
  5. Move the oc binary to a directory on your PATH.

    To check your PATH, open a terminal and execute the following command:

    $ echo $PATH

After you install the OpenShift CLI, it is available using the oc command:

$ oc <command>

4.3.10. Logging in to the cluster by using the CLI

You can log in to your cluster as a default system user by exporting the cluster kubeconfig file. The kubeconfig file contains information about the cluster that is used by the CLI to connect a client to the correct cluster and API server. The file is specific to a cluster and is created during OpenShift Container Platform installation.

Prerequisites

  • You deployed an OpenShift Container Platform cluster.
  • You installed the oc CLI.

Procedure

  1. Export the kubeadmin credentials:

    $ export KUBECONFIG=<installation_directory>/auth/kubeconfig 1
    1
    For <installation_directory>, specify the path to the directory that you stored the installation files in.
  2. Verify you can run oc commands successfully using the exported configuration:

    $ oc whoami

    Example output

    system:admin

4.3.11. Logging in to the cluster by using the web console

The kubeadmin user exists by default after an OpenShift Container Platform installation. You can log in to your cluster as the kubeadmin user by using the OpenShift Container Platform web console.

Prerequisites

  • You have access to the installation host.
  • You completed a cluster installation and all cluster Operators are available.

Procedure

  1. Obtain the password for the kubeadmin user from the kubeadmin-password file on the installation host:

    $ cat <installation_directory>/auth/kubeadmin-password
    Note

    Alternatively, you can obtain the kubeadmin password from the <installation_directory>/.openshift_install.log log file on the installation host.

  2. List the OpenShift Container Platform web console route:

    $ oc get routes -n openshift-console | grep 'console-openshift'
    Note

    Alternatively, you can obtain the OpenShift Container Platform route from the <installation_directory>/.openshift_install.log log file on the installation host.

    Example output

    console     console-openshift-console.apps.<cluster_name>.<base_domain>            console     https   reencrypt/Redirect   None

  3. Navigate to the route detailed in the output of the preceding command in a web browser and log in as the kubeadmin user.

4.3.12. Telemetry access for OpenShift Container Platform

In OpenShift Container Platform 4.10, the Telemetry service, which runs by default to provide metrics about cluster health and the success of updates, requires internet access. If your cluster is connected to the internet, Telemetry runs automatically, and your cluster is registered to OpenShift Cluster Manager.

After you confirm that your OpenShift Cluster Manager inventory is correct, either maintained automatically by Telemetry or manually by using OpenShift Cluster Manager, use subscription watch to track your OpenShift Container Platform subscriptions at the account or multi-cluster level.

Additional resources

4.3.13. Next steps

4.4. Installing a cluster on Alibaba Cloud with customizations

In OpenShift Container Platform version 4.10, you can install a customized cluster on infrastructure that the installation program provisions on Alibaba Cloud. To customize the installation, you modify parameters in the install-config.yaml file before you install the cluster.

Note

The scope of the OpenShift Container Platform installation configurations is intentionally narrow. It is designed for simplicity and ensured success. You can complete many more OpenShift Container Platform configuration tasks after an installation completes.

Important

Alibaba Cloud on OpenShift Container Platform is a Technology Preview feature only. Technology Preview features are not supported with Red Hat production service level agreements (SLAs) and might not be functionally complete. Red Hat does not recommend using them in production. These features provide early access to upcoming product features, enabling customers to test functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features, see Technology Preview Features Support Scope.

4.4.1. Prerequisites

4.4.2. Internet access for OpenShift Container Platform

In OpenShift Container Platform 4.10, you require access to the internet to install your cluster.

You must have internet access to:

  • Access OpenShift Cluster Manager to download the installation program and perform subscription management. If the cluster has internet access and you do not disable Telemetry, that service automatically entitles your cluster.
  • Access Quay.io to obtain the packages that are required to install your cluster.
  • Obtain the packages that are required to perform cluster updates.
Important

If your cluster cannot have direct internet access, you can perform a restricted network installation on some types of infrastructure that you provision. During that process, you download the required content and use it to populate a mirror registry with the installation packages. With some installation types, the environment that you install your cluster in will not require internet access. Before you update the cluster, you update the content of the mirror registry.

4.4.3. Generating a key pair for cluster node SSH access

During an OpenShift Container Platform installation, you can provide an SSH public key to the installation program. The key is passed to the Red Hat Enterprise Linux CoreOS (RHCOS) nodes through their Ignition config files and is used to authenticate SSH access to the nodes. The key is added to the ~/.ssh/authorized_keys list for the core user on each node, which enables password-less authentication.

After the key is passed to the nodes, you can use the key pair to SSH in to the RHCOS nodes as the user core. To access the nodes through SSH, the private key identity must be managed by SSH for your local user.

If you want to SSH in to your cluster nodes to perform installation debugging or disaster recovery, you must provide the SSH public key during the installation process. The ./openshift-install gather command also requires the SSH public key to be in place on the cluster nodes.

Important

Do not skip this procedure in production environments, where disaster recovery and debugging is required.

Note

You must use a local key, not one that you configured with platform-specific approaches such as AWS key pairs.

Procedure

  1. If you do not have an existing SSH key pair on your local machine to use for authentication onto your cluster nodes, create one. For example, on a computer that uses a Linux operating system, run the following command:

    $ ssh-keygen -t ed25519 -N '' -f <path>/<file_name> 1
    1
    Specify the path and file name, such as ~/.ssh/id_ed25519, of the new SSH key. If you have an existing key pair, ensure your public key is in the your ~/.ssh directory.
    Note

    If you plan to install an OpenShift Container Platform cluster that uses FIPS validated or Modules In Process cryptographic libraries on the x86_64 architecture, do not create a key that uses the ed25519 algorithm. Instead, create a key that uses the rsa or ecdsa algorithm.

  2. View the public SSH key:

    $ cat <path>/<file_name>.pub

    For example, run the following to view the ~/.ssh/id_ed25519.pub public key:

    $ cat ~/.ssh/id_ed25519.pub
  3. Add the SSH private key identity to the SSH agent for your local user, if it has not already been added. SSH agent management of the key is required for password-less SSH authentication onto your cluster nodes, or if you want to use the ./openshift-install gather command.

    Note

    On some distributions, default SSH private key identities such as ~/.ssh/id_rsa and ~/.ssh/id_dsa are managed automatically.

    1. If the ssh-agent process is not already running for your local user, start it as a background task:

      $ eval "$(ssh-agent -s)"

      Example output

      Agent pid 31874

      Note

      If your cluster is in FIPS mode, only use FIPS-compliant algorithms to generate the SSH key. The key must be either RSA or ECDSA.

  4. Add your SSH private key to the ssh-agent:

    $ ssh-add <path>/<file_name> 1
    1
    Specify the path and file name for your SSH private key, such as ~/.ssh/id_ed25519

    Example output

    Identity added: /home/<you>/<path>/<file_name> (<computer_name>)

Next steps

  • When you install OpenShift Container Platform, provide the SSH public key to the installation program.

4.4.4. Obtaining the installation program

Before you install OpenShift Container Platform, download the installation file on a local computer.

Prerequisites

  • You have a computer that runs Linux or macOS, with 500 MB of local disk space

Procedure

  1. Access the Infrastructure Provider page on the OpenShift Cluster Manager site. If you have a Red Hat account, log in with your credentials. If you do not, create an account.
  2. Select your infrastructure provider.
  3. Navigate to the page for your installation type, download the installation program that corresponds with your host operating system and architecture, and place the file in the directory where you will store the installation configuration files.

    Important

    The installation program creates several files on the computer that you use to install your cluster. You must keep the installation program and the files that the installation program creates after you finish installing the cluster. Both files are required to delete the cluster.

    Important

    Deleting the files created by the installation program does not remove your cluster, even if the cluster failed during installation. To remove your cluster, complete the OpenShift Container Platform uninstallation procedures for your specific cloud provider.

  4. Extract the installation program. For example, on a computer that uses a Linux operating system, run the following command:

    $ tar -xvf openshift-install-linux.tar.gz
  5. Download your installation pull secret from the Red Hat OpenShift Cluster Manager. This pull secret allows you to authenticate with the services that are provided by the included authorities, including Quay.io, which serves the container images for OpenShift Container Platform components.

4.4.4.1. Creating the installation configuration file

You can customize the OpenShift Container Platform cluster you install on Alibaba Cloud.

Prerequisites

  • Obtain the OpenShift Container Platform installation program and the pull secret for your cluster.
  • Obtain service principal permissions at the subscription level.

Procedure

  1. Create the install-config.yaml file.

    1. Change to the directory that contains the installation program and run the following command:

      $ ./openshift-install create install-config --dir <installation_directory> 1
      1
      For <installation_directory>, specify the directory name to store the files that the installation program creates.
      Important

      Specify an empty directory. Some installation assets, like bootstrap X.509 certificates have short expiration intervals, so you must not reuse an installation directory. If you want to reuse individual files from another cluster installation, you can copy them into your directory. However, the file names for the installation assets might change between releases. Use caution when copying installation files from an earlier OpenShift Container Platform version.

    2. At the prompts, provide the configuration details for your cloud:

      1. Optional: Select an SSH key to use to access your cluster machines.

        Note

        For production OpenShift Container Platform clusters on which you want to perform installation debugging or disaster recovery, specify an SSH key that your ssh-agent process uses.

      2. Select alibabacloud as the platform to target.
      3. Select the region to deploy the cluster to.
      4. Select the base domain to deploy the cluster to. The base domain corresponds to the public DNS zone that you created for your cluster.
      5. Provide a descriptive name for your cluster.
      6. Paste the pull secret from the Red Hat OpenShift Cluster Manager.
  2. Installing the cluster into Alibaba Cloud requires that the Cloud Credential Operator (CCO) operate in manual mode. Modify the install-config.yaml file to set the credentialsMode parameter to Manual:

    Example install-config.yaml configuration file with credentialsMode set to Manual

    apiVersion: v1
    baseDomain: cluster1.example.com
    credentialsMode: Manual 1
    compute:
    - architecture: amd64
      hyperthreading: Enabled
     ...

    1
    Add this line to set the credentialsMode to Manual.
  3. Modify the install-config.yaml file. You can find more information about the available parameters in the "Installation configuration parameters" section.
  4. Back up the install-config.yaml file so that you can use it to install multiple clusters.

    Important

    The install-config.yaml file is consumed during the installation process. If you want to reuse the file, you must back it up now.

4.4.4.2. Generating the required installation manifests

You must generate the Kubernetes manifest and Ignition config files that the cluster needs to configure the machines.

Procedure

  1. Generate the manifests by running the following command from the directory that contains the installation program:

    $ openshift-install create manifests --dir <installation_directory>

    where:

    <installation_directory>
    Specifies the directory in which the installation program creates files.

4.4.4.3. Creating credentials for OpenShift Container Platform components with the ccoctl tool

You can use the OpenShift Container Platform Cloud Credential Operator (CCO) utility to automate the creation of Alibaba Cloud RAM users and policies for each in-cluster component.

Note

By default, ccoctl creates objects in the directory in which the commands are run. To create the objects in a different directory, use the --output-dir flag. This procedure uses <path_to_ccoctl_output_dir> to refer to this directory.

Prerequisites

You must have:

  • Extracted and prepared the ccoctl binary.
  • Created a RAM user with sufficient permission to create the OpenShift Container Platform cluster.
  • Added the AccessKeyID (access_key_id) and AccessKeySecret (access_key_secret) of that RAM user into the ~/.alibabacloud/credentials file on your local computer.

Procedure

  1. Set the $RELEASE_IMAGE variable by running the following command:

    $ RELEASE_IMAGE=$(./openshift-install version | awk '/release image/ {print $3}')
  2. Extract the list of CredentialsRequest objects from the OpenShift Container Platform release image by running the following command:

    $ oc adm release extract \
    --credentials-requests \
    --cloud=alibabacloud \
    --to=<path_to_directory_with_list_of_credentials_requests>/credrequests \ 1
    $RELEASE_IMAGE
    1
    credrequests is the directory where the list of CredentialsRequest objects is stored. This command creates the directory if it does not exist.
    Note

    This command can take a few moments to run.

  3. If your cluster uses cluster capabilities to disable one or more optional components, delete the CredentialsRequest custom resources for any disabled components.

    Example credrequests directory contents for OpenShift Container Platform 4.12 on Alibaba Cloud

    0000_30_machine-api-operator_00_credentials-request.yaml 1
    0000_50_cluster-image-registry-operator_01-registry-credentials-request-alibaba.yaml 2
    0000_50_cluster-ingress-operator_00-ingress-credentials-request.yaml 3
    0000_50_cluster-storage-operator_03_credentials_request_alibaba.yaml 4

    1
    The Machine API Operator CR is required.
    2
    The Image Registry Operator CR is required.
    3
    The Ingress Operator CR is required.
    4
    The Storage Operator CR is an optional component and might be disabled in your cluster.
  4. Use the ccoctl tool to process all CredentialsRequest objects in the credrequests directory:

    1. Run the following command to use the tool:

      $ ccoctl alibabacloud create-ram-users \
      --name <name> \
      --region=<alibaba_region> \
      --credentials-requests-dir=<path_to_directory_with_list_of_credentials_requests>/credrequests \
      --output-dir=<path_to_ccoctl_output_dir>

      where:

      • <name> is the name used to tag any cloud resources that are created for tracking.
      • <alibaba_region> is the Alibaba Cloud region in which cloud resources will be created.
      • <path_to_directory_with_list_of_credentials_requests>/credrequests is the directory containing the files for the component CredentialsRequest objects.
      • <path_to_ccoctl_output_dir> is the directory where the generated component credentials secrets will be placed.
      Note

      If your cluster uses Technology Preview features that are enabled by the TechPreviewNoUpgrade feature set, you must include the --enable-tech-preview parameter.

      Example output

      2022/02/11 16:18:26 Created RAM User: user1-alicloud-openshift-machine-api-alibabacloud-credentials
      2022/02/11 16:18:27 Ready for creating new ram policy user1-alicloud-openshift-machine-api-alibabacloud-credentials-policy-policy
      2022/02/11 16:18:27 RAM policy user1-alicloud-openshift-machine-api-alibabacloud-credentials-policy-policy has created
      2022/02/11 16:18:28 Policy user1-alicloud-openshift-machine-api-alibabacloud-credentials-policy-policy has attached on user user1-alicloud-openshift-machine-api-alibabacloud-credentials
      2022/02/11 16:18:29 Created access keys for RAM User: user1-alicloud-openshift-machine-api-alibabacloud-credentials
      2022/02/11 16:18:29 Saved credentials configuration to: user1-alicloud/manifests/openshift-machine-api-alibabacloud-credentials-credentials.yaml
      ...

      Note

      A RAM user can have up to two AccessKeys at the same time. If you run ccoctl alibabacloud create-ram-users more than twice, the previous generated manifests secret becomes stale and you must reapply the newly generated secrets.

    2. Verify that the OpenShift Container Platform secrets are created:

      $ ls <path_to_ccoctl_output_dir>/manifests

      Example output:

      openshift-cluster-csi-drivers-alibaba-disk-credentials-credentials.yaml
      openshift-image-registry-installer-cloud-credentials-credentials.yaml
      openshift-ingress-operator-cloud-credentials-credentials.yaml
      openshift-machine-api-alibabacloud-credentials-credentials.yaml

      You can verify that the RAM users and policies are created by querying Alibaba Cloud. For more information, refer to Alibaba Cloud documentation on listing RAM users and policies.

  5. Copy the generated credential files to the target manifests directory:

    $ cp ./<path_to_ccoctl_output_dir>/manifests/*credentials.yaml ./<path_to_installation>dir>/manifests/

    where:

    <path_to_ccoctl_output_dir>
    Specifies the directory created by the ccoctl alibabacloud create-ram-users command.
    <path_to_installation_dir>
    Specifies the directory in which the installation program creates files.

4.4.4.4. Installation configuration parameters

Before you deploy an OpenShift Container Platform cluster, you provide parameter values to describe your account on the cloud platform that hosts your cluster and optionally customize your cluster’s platform. When you create the install-config.yaml installation configuration file, you provide values for the required parameters through the command line. If you customize your cluster, you can modify the install-config.yaml file to provide more details about the platform.

Note

After installation, you cannot modify these parameters in the install-config.yaml file.

4.4.4.4.1. Required configuration parameters

Required installation configuration parameters are described in the following table:

Table 4.1. Required parameters
ParameterDescriptionValues

apiVersion

The API version for the install-config.yaml content. The current version is v1. The installer may also support older API versions.

String

baseDomain

The base domain of your cloud provider. The base domain is used to create routes to your OpenShift Container Platform cluster components. The full DNS name for your cluster is a combination of the baseDomain and metadata.name parameter values that uses the <metadata.name>.<baseDomain> format.

A fully-qualified domain or subdomain name, such as example.com.

metadata

Kubernetes resource ObjectMeta, from which only the name parameter is consumed.

Object

metadata.name

The name of the cluster. DNS records for the cluster are all subdomains of {{.metadata.name}}.{{.baseDomain}}.

String of lowercase letters, hyphens (-), and periods (.), such as dev.

platform

The configuration for the specific platform upon which to perform the installation: alibabacloud, aws, baremetal, azure, gcp, ibmcloud, openstack, ovirt, vsphere, or {}. For additional information about platform.<platform> parameters, consult the table for your specific platform that follows.

Object

pullSecret

Get a pull secret from the Red Hat OpenShift Cluster Manager to authenticate downloading container images for OpenShift Container Platform components from services such as Quay.io.

{
   "auths":{
      "cloud.openshift.com":{
         "auth":"b3Blb=",
         "email":"you@example.com"
      },
      "quay.io":{
         "auth":"b3Blb=",
         "email":"you@example.com"
      }
   }
}
4.4.4.4.2. Network configuration parameters

You can customize your installation configuration based on the requirements of your existing network infrastructure. For example, you can expand the IP address block for the cluster network or provide different IP address blocks than the defaults.

Only IPv4 addresses are supported.

Table 4.2. Network parameters
ParameterDescriptionValues

networking

The configuration for the cluster network.

Object

Note

You cannot modify parameters specified by the networking object after installation.

networking.networkType

The cluster network provider Container Network Interface (CNI) plugin to install.

Either OpenShiftSDN or OVNKubernetes. OpenShiftSDN is a CNI provider for all-Linux networks. OVNKubernetes is a CNI provider for Linux networks and hybrid networks that contain both Linux and Windows servers. The default value is OpenShiftSDN.

networking.clusterNetwork

The IP address blocks for pods.

The default value is 10.128.0.0/14 with a host prefix of /23.

If you specify multiple IP address blocks, the blocks must not overlap.

An array of objects. For example:

networking:
  clusterNetwork:
  - cidr: 10.128.0.0/14
    hostPrefix: 23

networking.clusterNetwork.cidr

Required if you use networking.clusterNetwork. An IP address block.

An IPv4 network.

An IP address block in Classless Inter-Domain Routing (CIDR) notation. The prefix length for an IPv4 block is between 0 and 32.

networking.clusterNetwork.hostPrefix

The subnet prefix length to assign to each individual node. For example, if hostPrefix is set to 23 then each node is assigned a /23 subnet out of the given cidr. A hostPrefix value of 23 provides 510 (2^(32 - 23) - 2) pod IP addresses.

A subnet prefix.

The default value is 23.

networking.serviceNetwork

The IP address block for services. The default value is 172.30.0.0/16.

The OpenShift SDN and OVN-Kubernetes network providers support only a single IP address block for the service network.

An array with an IP address block in CIDR format. For example:

networking:
  serviceNetwork:
   - 172.30.0.0/16

networking.machineNetwork

The IP address blocks for machines.

If you specify multiple IP address blocks, the blocks must not overlap.

An array of objects. For example:

networking:
  machineNetwork:
  - cidr: 10.0.0.0/16

networking.machineNetwork.cidr

Required if you use networking.machineNetwork. An IP address block. The default value is 10.0.0.0/16 for all platforms other than libvirt. For libvirt, the default value is 192.168.126.0/24.

An IP network block in CIDR notation.

For example, 10.0.0.0/16.

Note

Set the networking.machineNetwork to match the CIDR that the preferred NIC resides in.

4.4.4.4.3. Optional configuration parameters

Optional installation configuration parameters are described in the following table:

Table 4.3. Optional parameters
ParameterDescriptionValues

additionalTrustBundle

A PEM-encoded X.509 certificate bundle that is added to the nodes' trusted certificate store. This trust bundle may also be used when a proxy has been configured.

String

cgroupsV2

Enables Linux control groups version 2 (cgroups v2) on specific nodes in your cluster. The OpenShift Container Platform process for enabling cgroups v2 disables all cgroup version 1 controllers and hierarchies. The OpenShift Container Platform cgroups version 2 feature is in Developer Preview and is not supported by Red Hat at this time.

true

compute

The configuration for the machines that comprise the compute nodes.

Array of MachinePool objects.

compute.architecture

Determines the instruction set architecture of the machines in the pool. Currently, clusters with varied architectures are not supported. All pools must specify the same architecture. Valid values are amd64 (the default).

String

compute.hyperthreading

Whether to enable or disable simultaneous multithreading, or hyperthreading, on compute machines. By default, simultaneous multithreading is enabled to increase the performance of your machines' cores.

Important

If you disable simultaneous multithreading, ensure that your capacity planning accounts for the dramatically decreased machine performance.

Enabled or Disabled

compute.name

Required if you use compute. The name of the machine pool.

worker

compute.platform

Required if you use compute. Use this parameter to specify the cloud provider to host the worker machines. This parameter value must match the controlPlane.platform parameter value.

alibabacloud, aws, azure, gcp, ibmcloud, openstack, ovirt, vsphere, or {}

compute.replicas

The number of compute machines, which are also known as worker machines, to provision.

A positive integer greater than or equal to 2. The default value is 3.

controlPlane

The configuration for the machines that comprise the control plane.

Array of MachinePool objects.

controlPlane.architecture

Determines the instruction set architecture of the machines in the pool. Currently, clusters with varied architectures are not supported. All pools must specify the same architecture. Valid values are amd64 (the default).

String

controlPlane.hyperthreading

Whether to enable or disable simultaneous multithreading, or hyperthreading, on control plane machines. By default, simultaneous multithreading is enabled to increase the performance of your machines' cores.

Important

If you disable simultaneous multithreading, ensure that your capacity planning accounts for the dramatically decreased machine performance.

Enabled or Disabled

controlPlane.name

Required if you use controlPlane. The name of the machine pool.

master

controlPlane.platform

Required if you use controlPlane. Use this parameter to specify the cloud provider that hosts the control plane machines. This parameter value must match the compute.platform parameter value.

alibabacloud, aws, azure, gcp, ibmcloud, openstack, ovirt, vsphere, or {}

controlPlane.replicas

The number of control plane machines to provision.

The only supported value is 3, which is the default value.

credentialsMode

The Cloud Credential Operator (CCO) mode. If no mode is specified, the CCO dynamically tries to determine the capabilities of the provided credentials, with a preference for mint mode on the platforms where multiple modes are supported.

Note

Not all CCO modes are supported for all cloud providers. For more information on CCO modes, see the Cloud Credential Operator entry in the Cluster Operators reference content.

Note

If your AWS account has service control policies (SCP) enabled, you must configure the credentialsMode parameter to Mint, Passthrough or Manual.

Mint, Passthrough, Manual or an empty string ("").

fips

Enable or disable FIPS mode. The default is false (disabled). If FIPS mode is enabled, the Red Hat Enterprise Linux CoreOS (RHCOS) machines that OpenShift Container Platform runs on bypass the default Kubernetes cryptography suite and use the cryptography modules that are provided with RHCOS instead.

Important

To enable FIPS mode for your cluster, you must run the installation program from a Red Hat Enterprise Linux (RHEL) computer configured to operate in FIPS mode. For more information about configuring FIPS mode on RHEL, see Installing the system in FIPS mode. The use of FIPS validated or Modules In Process cryptographic libraries is only supported on OpenShift Container Platform deployments on the x86_64 architecture.

Note

If you are using Azure File storage, you cannot enable FIPS mode.

false or true

imageContentSources

Sources and repositories for the release-image content.

Array of objects. Includes a source and, optionally, mirrors, as described in the following rows of this table.

imageContentSources.source

Required if you use imageContentSources. Specify the repository that users refer to, for example, in image pull specifications.

String

imageContentSources.mirrors

Specify one or more repositories that may also contain the same images.

Array of strings

publish

How to publish or expose the user-facing endpoints of your cluster, such as the Kubernetes API, OpenShift routes.

Internal or External. The default value is External.

Setting this field to Internal is not supported on non-cloud platforms and IBM Cloud VPC.

Important

If the value of the field is set to Internal, the cluster will become non-functional. For more information, refer to BZ#1953035.

sshKey

The SSH key or keys to authenticate access your cluster machines.

Note

For production OpenShift Container Platform clusters on which you want to perform installation debugging or disaster recovery, specify an SSH key that your ssh-agent process uses.

One or more keys. For example:

sshKey:
  <key1>
  <key2>
  <key3>
4.4.4.4.4. Additional Alibaba Cloud configuration parameters

Additional Alibaba Cloud configuration parameters are described in the following table. The alibabacloud parameters are the configuration used when installing on Alibaba Cloud. The defaultMachinePlatform parameters are the default configuration used when installing on Alibaba Cloud for machine pools that do not define their own platform configuration.

These parameters apply to both compute machines and control plane machines where specified.

Note

If defined, the parameters compute.platform.alibabacloud and controlPlane.platform.alibabacloud will overwrite platform.alibabacloud.defaultMachinePlatform settings for compute machines and control plane machines respectively.

Table 4.4. Optional Alibaba Cloud parameters
ParameterDescriptionValues

compute.platform.alibabacloud.imageID

The imageID used to create the ECS instance. ImageID must belong to the same region as the cluster.

String.

compute.platform.alibabacloud.instanceType

InstanceType defines the ECS instance type. Example: ecs.g6.large

String.

compute.platform.alibabacloud.systemDiskCategory

Defines the category of the system disk. Examples: cloud_efficiency,cloud_essd

String.

compute.platform.alibabacloud.systemDisksize

Defines the size of the system disk in gibibytes (GiB).

Integer.

compute.platform.alibabacloud.zones

The list of availability zones that can be used. Examples: cn-hangzhou-h, cn-hangzhou-j

String list.

controlPlane.platform.alibabacloud.imageID

The imageID used to create the ECS instance. ImageID must belong to the same region as the cluster.

String.

controlPlane.platform.alibabacloud.instanceType

InstanceType defines the ECS instance type. Example: ecs.g6.xlarge

String.

controlPlane.platform.alibabacloud.systemDiskCategory

Defines the category of the system disk. Examples: cloud_efficiency,cloud_essd

String.

controlPlane.platform.alibabacloud.systemDisksize

Defines the size of the system disk in gibibytes (GiB).

Integer.

controlPlane.platform.alibabacloud.zones

The list of availability zones that can be used. Examples: cn-hangzhou-h, cn-hangzhou-j

String list.

platform.alibabacloud.region

Required.The Alibaba Cloud region where the cluster will be created.

String.

platform.alibabacloud.resourceGroupID

The ID of an already existing resource group where the cluster will be installed. If empty, the installer will create a new resource group for the cluster.

String.

platform.alibabacloud.tags

Additional keys and values to apply to all Alibaba Cloud resources created for the cluster.

Object.

platform.alibabacloud.vpcID

The ID of an already existing VPC where the cluster should be installed. If empty, the installer will create a new VPC for the cluster.

String.

platform.alibabacloud.vswitchIDs

The ID list of already existing VSwitches where cluster resources will be created. The existing VSwitches can only be used when also using existing VPC. If empty, the installer will create new VSwitches for the cluster.

String list.

platform.alibabacloud.defaultMachinePlatform.imageID

For both compute machines and control plane machines, the image ID that should be used to create ECS instance. If set, the image ID should belong to the same region as the cluster.

String.

platform.alibabacloud.defaultMachinePlatform.instanceType

For both compute machines and control plane machines, the ECS instance type used to create the ECS instance. Example: ecs.g6.xlarge

String.

platform.alibabacloud.defaultMachinePlatform.systemDiskCategory

For both compute machines and control plane machines, the category of the system disk. Examples: cloud_efficiency, cloud_essd.

String, for example "", cloud_efficiency, cloud_essd.

platform.alibabacloud.defaultMachinePlatform.systemDiskSize

For both compute machines and control plane machines, the size of the system disk in gibibytes (GiB). The minimum is 120.

Integer.

platform.alibabacloud.defaultMachinePlatform.zones

For both compute machines and control plane machines, the list of availability zones that can be used. Examples: cn-hangzhou-h, cn-hangzhou-j

String list.

platform.alibabacloud.privateZoneID

The ID of an existing private zone into which to add DNS records for the cluster’s internal API. An existing private zone can only be used when also using existing VPC. The private zone must be associated with the VPC containing the subnets. Leave the private zone unset to have the installer create the private zone on your behalf.

String.

4.4.4.5. Sample customized install-config.yaml file for Alibaba Cloud

You can customize the installation configuration file (install-config.yaml) to specify more details about your cluster’s platform or modify the values of the required parameters.

apiVersion: v1
baseDomain: alicloud-dev.devcluster.openshift.com
credentialsMode: Manual
compute:
- architecture: amd64
  hyperthreading: Enabled
  name: worker
  platform: {}
  replicas: 3
controlPlane:
  architecture: amd64
  hyperthreading: Enabled
  name: master
  platform: {}
  replicas: 3
metadata:
  creationTimestamp: null
  name: test-cluster 1
 networking:
  clusterNetwork:
  - cidr: 10.128.0.0/14
    hostPrefix: 23
  machineNetwork:
  - cidr: 10.0.0.0/16
  networkType: OpenShiftSDN 2
  serviceNetwork:
  - 172.30.0.0/16
platform:
  alibabacloud:
    defaultMachinePlatform: 3
      instanceType: ecs.g6.xlarge
      systemDiskCategory: cloud_efficiency
      systemDiskSize: 200
    region: ap-southeast-1 4
    resourceGroupID: rg-acfnw6j3hyai 5
    vpcID: vpc-0xifdjerdibmaqvtjob2b
    vswitchIDs: 6
    - vsw-0xi8ycgwc8wv5rhviwdq5
    - vsw-0xiy6v3z2tedv009b4pz2
publish: External
pullSecret: '{"auths": {"cloud.openshift.com": {"auth": ... }' 7
sshKey: |
  ssh-rsa AAAA... 8
1
Required. The installation program prompts you for a cluster name.
2
The cluster network plugin to install. The supported values are OVNKubernetes and OpenShiftSDN. The default value is OVNKubernetes.
3
Optional. Specify parameters for machine pools that do not define their own platform configuration.
4
Required. The installation program prompts you for the region to deploy the cluster to.
5
Optional. Specify an existing resource group where the cluster should be installed.
7
Required. The installation program prompts you for the pull secret.
8
Optional. The installation program prompts you for the SSH key value that you use to access the machines in your cluster.
6
Optional. These are example vswitchID values.

4.4.4.6. Configuring the cluster-wide proxy during installation

Production environments can deny direct access to the internet and instead have an HTTP or HTTPS proxy available. You can configure a new OpenShift Container Platform cluster to use a proxy by configuring the proxy settings in the install-config.yaml file.

Prerequisites

  • You have an existing install-config.yaml file.
  • You reviewed the sites that your cluster requires access to and determined whether any of them need to bypass the proxy. By default, all cluster egress traffic is proxied, including calls to hosting cloud provider APIs. You added sites to the Proxy object’s spec.noProxy field to bypass the proxy if necessary.

    Note

    The Proxy object status.noProxy field is populated with the values of the networking.machineNetwork[].cidr, networking.clusterNetwork[].cidr, and networking.serviceNetwork[] fields from your installation configuration.

    For installations on Amazon Web Services (AWS), Google Cloud Platform (GCP), Microsoft Azure, and Red Hat OpenStack Platform (RHOSP), the Proxy object status.noProxy field is also populated with the instance metadata endpoint (169.254.169.254).

Procedure

  1. Edit your install-config.yaml file and add the proxy settings. For example:

    apiVersion: v1
    baseDomain: my.domain.com
    proxy:
      httpProxy: http://<username>:<pswd>@<ip>:<port> 1
      httpsProxy: https://<username>:<pswd>@<ip>:<port> 2
      noProxy: example.com 3
    additionalTrustBundle: | 4
        -----BEGIN CERTIFICATE-----
        <MY_TRUSTED_CA_CERT>
        -----END CERTIFICATE-----
    ...
    1
    A proxy URL to use for creating HTTP connections outside the cluster. The URL scheme must be http.
    2
    A proxy URL to use for creating HTTPS connections outside the cluster.
    3
    A comma-separated list of destination domain names, IP addresses, or other network CIDRs to exclude from proxying. Preface a domain with . to match subdomains only. For example, .y.com matches x.y.com, but not y.com. Use * to bypass the proxy for all destinations.
    4
    If provided, the installation program generates a config map that is named user-ca-bundle in the openshift-config namespace that contains one or more additional CA certificates that are required for proxying HTTPS connections. The Cluster Network Operator then creates a trusted-ca-bundle config map that merges these contents with the Red Hat Enterprise Linux CoreOS (RHCOS) trust bundle, and this config map is referenced in the trustedCA field of the Proxy object. The additionalTrustBundle field is required unless the proxy’s identity certificate is signed by an authority from the RHCOS trust bundle.
    Note

    The installation program does not support the proxy readinessEndpoints field.

    Note

    If the installer times out, restart and then complete the deployment by using the wait-for command of the installer. For example:

    $ ./openshift-install wait-for install-complete --log-level debug
  2. Save the file and reference it when installing OpenShift Container Platform.

The installation program creates a cluster-wide proxy that is named cluster that uses the proxy settings in the provided install-config.yaml file. If no proxy settings are provided, a cluster Proxy object is still created, but it will have a nil spec.

Note

Only the Proxy object named cluster is supported, and no additional proxies can be created.

4.4.5. Deploying the cluster

You can install OpenShift Container Platform on a compatible cloud platform.

Important

You can run the create cluster command of the installation program only once, during initial installation.

Prerequisites

  • Configure an account with the cloud platform that hosts your cluster.
  • Obtain the OpenShift Container Platform installation program and the pull secret for your cluster.

Procedure

  1. Change to the directory that contains the installation program and initialize the cluster deployment:

    $ ./openshift-install create cluster --dir <installation_directory> \ 1
        --log-level=info 2
    1
    For <installation_directory>, specify the location of your customized ./install-config.yaml file.
    2
    To view different installation details, specify warn, debug, or error instead of info.
    Note

    If the cloud provider account that you configured on your host does not have sufficient permissions to deploy the cluster, the installation process stops, and the missing permissions are displayed.

    When the cluster deployment completes, directions for accessing your cluster, including a link to its web console and credentials for the kubeadmin user, display in your terminal.

    Example output

    ...
    INFO Install complete!
    INFO To access the cluster as the system:admin user when using 'oc', run 'export KUBECONFIG=/home/myuser/install_dir/auth/kubeconfig'
    INFO Access the OpenShift web-console here: https://console-openshift-console.apps.mycluster.example.com
    INFO Login to the console with user: "kubeadmin", and password: "4vYBz-Ee6gm-ymBZj-Wt5AL"
    INFO Time elapsed: 36m22s

    Note

    The cluster access and credential information also outputs to <installation_directory>/.openshift_install.log when an installation succeeds.

    Important
    • The Ignition config files that the installation program generates contain certificates that expire after 24 hours, which are then renewed at that time. If the cluster is shut down before renewing the certificates and the cluster is later restarted after the 24 hours have elapsed, the cluster automatically recovers the expired certificates. The exception is that you must manually approve the pending node-bootstrapper certificate signing requests (CSRs) to recover kubelet certificates. See the documentation for Recovering from expired control plane certificates for more information.
    • It is recommended that you use Ignition config files within 12 hours after they are generated because the 24-hour certificate rotates from 16 to 22 hours after the cluster is installed. By using the Ignition config files within 12 hours, you can avoid installation failure if the certificate update runs during installation.
    Important

    You must not delete the installation program or the files that the installation program creates. Both are required to delete the cluster.

4.4.6. Installing the OpenShift CLI by downloading the binary

You can install the OpenShift CLI (oc) to interact with OpenShift Container Platform from a command-line interface. You can install oc on Linux, Windows, or macOS.

Important

If you installed an earlier version of oc, you cannot use it to complete all of the commands in OpenShift Container Platform 4.10. Download and install the new version of oc.

Installing the OpenShift CLI on Linux

You can install the OpenShift CLI (oc) binary on Linux by using the following procedure.

Procedure

  1. Navigate to the OpenShift Container Platform downloads page on the Red Hat Customer Portal.
  2. Select the appropriate version in the Version drop-down menu.
  3. Click Download Now next to the OpenShift v4.10 Linux Client entry and save the file.
  4. Unpack the archive:

    $ tar xvf <file>
  5. Place the oc binary in a directory that is on your PATH.

    To check your PATH, execute the following command:

    $ echo $PATH

After you install the OpenShift CLI, it is available using the oc command:

$ oc <command>
Installing the OpenShift CLI on Windows

You can install the OpenShift CLI (oc) binary on Windows by using the following procedure.

Procedure

  1. Navigate to the OpenShift Container Platform downloads page on the Red Hat Customer Portal.
  2. Select the appropriate version in the Version drop-down menu.
  3. Click Download Now next to the OpenShift v4.10 Windows Client entry and save the file.
  4. Unzip the archive with a ZIP program.
  5. Move the oc binary to a directory that is on your PATH.

    To check your PATH, open the command prompt and execute the following command:

    C:\> path

After you install the OpenShift CLI, it is available using the oc command:

C:\> oc <command>
Installing the OpenShift CLI on macOS

You can install the OpenShift CLI (oc) binary on macOS by using the following procedure.

Procedure

  1. Navigate to the OpenShift Container Platform downloads page on the Red Hat Customer Portal.
  2. Select the appropriate version in the Version drop-down menu.
  3. Click Download Now next to the OpenShift v4.10 MacOSX Client entry and save the file.
  4. Unpack and unzip the archive.
  5. Move the oc binary to a directory on your PATH.

    To check your PATH, open a terminal and execute the following command:

    $ echo $PATH

After you install the OpenShift CLI, it is available using the oc command:

$ oc <command>

4.4.7. Logging in to the cluster by using the CLI

You can log in to your cluster as a default system user by exporting the cluster kubeconfig file. The kubeconfig file contains information about the cluster that is used by the CLI to connect a client to the correct cluster and API server. The file is specific to a cluster and is created during OpenShift Container Platform installation.

Prerequisites

  • You deployed an OpenShift Container Platform cluster.
  • You installed the oc CLI.

Procedure

  1. Export the kubeadmin credentials:

    $ export KUBECONFIG=<installation_directory>/auth/kubeconfig 1
    1
    For <installation_directory>, specify the path to the directory that you stored the installation files in.
  2. Verify you can run oc commands successfully using the exported configuration:

    $ oc whoami

    Example output

    system:admin

4.4.8. Logging in to the cluster by using the web console

The kubeadmin user exists by default after an OpenShift Container Platform installation. You can log in to your cluster as the kubeadmin user by using the OpenShift Container Platform web console.

Prerequisites

  • You have access to the installation host.
  • You completed a cluster installation and all cluster Operators are available.

Procedure

  1. Obtain the password for the kubeadmin user from the kubeadmin-password file on the installation host:

    $ cat <installation_directory>/auth/kubeadmin-password
    Note

    Alternatively, you can obtain the kubeadmin password from the <installation_directory>/.openshift_install.log log file on the installation host.

  2. List the OpenShift Container Platform web console route:

    $ oc get routes -n openshift-console | grep 'console-openshift'
    Note

    Alternatively, you can obtain the OpenShift Container Platform route from the <installation_directory>/.openshift_install.log log file on the installation host.

    Example output

    console     console-openshift-console.apps.<cluster_name>.<base_domain>            console     https   reencrypt/Redirect   None

  3. Navigate to the route detailed in the output of the preceding command in a web browser and log in as the kubeadmin user.

4.4.9. Telemetry access for OpenShift Container Platform

In OpenShift Container Platform 4.10, the Telemetry service, which runs by default to provide metrics about cluster health and the success of updates, requires internet access. If your cluster is connected to the internet, Telemetry runs automatically, and your cluster is registered to OpenShift Cluster Manager.

After you confirm that your OpenShift Cluster Manager inventory is correct, either maintained automatically by Telemetry or manually by using OpenShift Cluster Manager, use subscription watch to track your OpenShift Container Platform subscriptions at the account or multi-cluster level.

Additional resources

4.4.10. Next steps

4.5. Installing a cluster on Alibaba Cloud with network customizations

In OpenShift Container Platform 4.10, you can install a cluster on Alibaba Cloud with customized network configuration options. By customizing your network configuration, your cluster can coexist with existing IP address allocations in your environment and integrate with existing MTU and VXLAN configurations.

You must set most of the network configuration parameters during installation, and you can modify only kubeProxy configuration parameters in a running cluster.

Important

Alibaba Cloud on OpenShift Container Platform is a Technology Preview feature only. Technology Preview features are not supported with Red Hat production service level agreements (SLAs) and might not be functionally complete. Red Hat does not recommend using them in production. These features provide early access to upcoming product features, enabling customers to test functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features, see Technology Preview Features Support Scope.

4.5.1. Prerequisites

4.5.2. Internet access for OpenShift Container Platform

In OpenShift Container Platform 4.10, you require access to the internet to install your cluster.

You must have internet access to:

  • Access OpenShift Cluster Manager to download the installation program and perform subscription management. If the cluster has internet access and you do not disable Telemetry, that service automatically entitles your cluster.
  • Access Quay.io to obtain the packages that are required to install your cluster.
  • Obtain the packages that are required to perform cluster updates.
Important

If your cluster cannot have direct internet access, you can perform a restricted network installation on some types of infrastructure that you provision. During that process, you download the required content and use it to populate a mirror registry with the installation packages. With some installation types, the environment that you install your cluster in will not require internet access. Before you update the cluster, you update the content of the mirror registry.

4.5.3. Generating a key pair for cluster node SSH access

During an OpenShift Container Platform installation, you can provide an SSH public key to the installation program. The key is passed to the Red Hat Enterprise Linux CoreOS (RHCOS) nodes through their Ignition config files and is used to authenticate SSH access to the nodes. The key is added to the ~/.ssh/authorized_keys list for the core user on each node, which enables password-less authentication.

After the key is passed to the nodes, you can use the key pair to SSH in to the RHCOS nodes as the user core. To access the nodes through SSH, the private key identity must be managed by SSH for your local user.

If you want to SSH in to your cluster nodes to perform installation debugging or disaster recovery, you must provide the SSH public key during the installation process. The ./openshift-install gather command also requires the SSH public key to be in place on the cluster nodes.

Important

Do not skip this procedure in production environments, where disaster recovery and debugging is required.

Note

You must use a local key, not one that you configured with platform-specific approaches such as AWS key pairs.

Procedure

  1. If you do not have an existing SSH key pair on your local machine to use for authentication onto your cluster nodes, create one. For example, on a computer that uses a Linux operating system, run the following command:

    $ ssh-keygen -t ed25519 -N '' -f <path>/<file_name> 1
    1
    Specify the path and file name, such as ~/.ssh/id_ed25519, of the new SSH key. If you have an existing key pair, ensure your public key is in the your ~/.ssh directory.
    Note

    If you plan to install an OpenShift Container Platform cluster that uses FIPS validated or Modules In Process cryptographic libraries on the x86_64 architecture, do not create a key that uses the ed25519 algorithm. Instead, create a key that uses the rsa or ecdsa algorithm.

  2. View the public SSH key:

    $ cat <path>/<file_name>.pub

    For example, run the following to view the ~/.ssh/id_ed25519.pub public key:

    $ cat ~/.ssh/id_ed25519.pub
  3. Add the SSH private key identity to the SSH agent for your local user, if it has not already been added. SSH agent management of the key is required for password-less SSH authentication onto your cluster nodes, or if you want to use the ./openshift-install gather command.

    Note

    On some distributions, default SSH private key identities such as ~/.ssh/id_rsa and ~/.ssh/id_dsa are managed automatically.

    1. If the ssh-agent process is not already running for your local user, start it as a background task:

      $ eval "$(ssh-agent -s)"

      Example output

      Agent pid 31874

      Note

      If your cluster is in FIPS mode, only use FIPS-compliant algorithms to generate the SSH key. The key must be either RSA or ECDSA.

  4. Add your SSH private key to the ssh-agent:

    $ ssh-add <path>/<file_name> 1
    1
    Specify the path and file name for your SSH private key, such as ~/.ssh/id_ed25519

    Example output

    Identity added: /home/<you>/<path>/<file_name> (<computer_name>)

Next steps

  • When you install OpenShift Container Platform, provide the SSH public key to the installation program.

4.5.4. Obtaining the installation program

Before you install OpenShift Container Platform, download the installation file on a local computer.

Prerequisites

  • You have a computer that runs Linux or macOS, with 500 MB of local disk space

Procedure

  1. Access the Infrastructure Provider page on the OpenShift Cluster Manager site. If you have a Red Hat account, log in with your credentials. If you do not, create an account.
  2. Select your infrastructure provider.
  3. Navigate to the page for your installation type, download the installation program that corresponds with your host operating system and architecture, and place the file in the directory where you will store the installation configuration files.

    Important

    The installation program creates several files on the computer that you use to install your cluster. You must keep the installation program and the files that the installation program creates after you finish installing the cluster. Both files are required to delete the cluster.

    Important

    Deleting the files created by the installation program does not remove your cluster, even if the cluster failed during installation. To remove your cluster, complete the OpenShift Container Platform uninstallation procedures for your specific cloud provider.

  4. Extract the installation program. For example, on a computer that uses a Linux operating system, run the following command:

    $ tar -xvf openshift-install-linux.tar.gz
  5. Download your installation pull secret from the Red Hat OpenShift Cluster Manager. This pull secret allows you to authenticate with the services that are provided by the included authorities, including Quay.io, which serves the container images for OpenShift Container Platform components.

4.5.5. Network configuration phases

There are two phases prior to OpenShift Container Platform installation where you can customize the network configuration.

Phase 1

You can customize the following network-related fields in the install-config.yaml file before you create the manifest files:

  • networking.networkType
  • networking.clusterNetwork
  • networking.serviceNetwork
  • networking.machineNetwork

    For more information on these fields, refer to Installation configuration parameters.

    Note

    Set the networking.machineNetwork to match the CIDR that the preferred NIC resides in.

    Important

    The CIDR range 172.17.0.0/16 is reserved by libVirt. You cannot use this range or any range that overlaps with this range for any networks in your cluster.

Phase 2
After creating the manifest files by running openshift-install create manifests, you can define a customized Cluster Network Operator manifest with only the fields you want to modify. You can use the manifest to specify advanced network configuration.

You cannot override the values specified in phase 1 in the install-config.yaml file during phase 2. However, you can further customize the cluster network provider during phase 2.

4.5.5.1. Creating the installation configuration file

You can customize the OpenShift Container Platform cluster you install on

Prerequisites

  • Obtain the OpenShift Container Platform installation program and the pull secret for your cluster.
  • Obtain service principal permissions at the subscription level.

Procedure

  1. Create the install-config.yaml file.

    1. Change to the directory that contains the installation program and run the following command:

      $ ./openshift-install create install-config --dir <installation_directory> 1
      1
      For <installation_directory>, specify the directory name to store the files that the installation program creates.
      Important

      Specify an empty directory. Some installation assets, like bootstrap X.509 certificates have short expiration intervals, so you must not reuse an installation directory. If you want to reuse individual files from another cluster installation, you can copy them into your directory. However, the file names for the installation assets might change between releases. Use caution when copying installation files from an earlier OpenShift Container Platform version.

    2. At the prompts, provide the configuration details for your cloud:

      1. Optional: Select an SSH key to use to access your cluster machines.

        Note

        For production OpenShift Container Platform clusters on which you want to perform installation debugging or disaster recovery, specify an SSH key that your ssh-agent process uses.

      2. Enter a descriptive name for your cluster.
      3. Paste the pull secret from the Red Hat OpenShift Cluster Manager.
  2. Modify the install-config.yaml file. You can find more information about the available parameters in the "Installation configuration parameters" section.
  3. Back up the install-config.yaml file so that you can use it to install multiple clusters.

    Important

    The install-config.yaml file is consumed during the installation process. If you want to reuse the file, you must back it up now.

4.5.5.2. Generating the required installation manifests

You must generate the Kubernetes manifest and Ignition config files that the cluster needs to configure the machines.

Procedure

  1. Generate the manifests by running the following command from the directory that contains the installation program:

    $ openshift-install create manifests --dir <installation_directory>

    where:

    <installation_directory>
    Specifies the directory in which the installation program creates files.
Note

By default, ccoctl creates objects in the directory in which the commands are run. To create the objects in a different directory, use the --output-dir flag. This procedure uses <path_to_ccoctl_output_dir> to refer to this directory.

Prerequisites

You must have:

  • Extracted and prepared the ccoctl binary.

Procedure

  1. Extract the list of CredentialsRequest objects from the OpenShift Container Platform release image by running the following command:

    <1> `credrequests` is the directory where the list of `CredentialsRequest` objects is stored. This command creates the directory if it does not exist.
    Note

    This command can take a few moments to run.

4.5.5.3. Installation configuration parameters

Before you deploy an OpenShift Container Platform cluster, you provide parameter values to describe your account on the cloud platform that hosts your cluster and optionally customize your cluster’s platform. When you create the install-config.yaml installation configuration file, you provide values for the required parameters through the command line. If you customize your cluster, you can modify the install-config.yaml file to provide more details about the platform.

Note

After installation, you cannot modify these parameters in the install-config.yaml file.

4.5.5.3.1. Required configuration parameters

Required installation configuration parameters are described in the following table:

Table 4.5. Required parameters
ParameterDescriptionValues

apiVersion

The API version for the install-config.yaml content. The current version is v1. The installer may also support older API versions.

String

baseDomain

The base domain of your cloud provider. The base domain is used to create routes to your OpenShift Container Platform cluster components. The full DNS name for your cluster is a combination of the baseDomain and metadata.name parameter values that uses the <metadata.name>.<baseDomain> format.

A fully-qualified domain or subdomain name, such as example.com.

metadata

Kubernetes resource ObjectMeta, from which only the name parameter is consumed.

Object

metadata.name

The name of the cluster. DNS records for the cluster are all subdomains of {{.metadata.name}}.{{.baseDomain}}.

String of lowercase letters, hyphens (-), and periods (.), such as dev.

platform

The configuration for the specific platform upon which to perform the installation: alibabacloud, aws, baremetal, azure, gcp, ibmcloud, openstack, ovirt, vsphere, or {}. For additional information about platform.<platform> parameters, consult the table for your specific platform that follows.

Object

pullSecret

Get a pull secret from the Red Hat OpenShift Cluster Manager to authenticate downloading container images for OpenShift Container Platform components from services such as Quay.io.

{
   "auths":{
      "cloud.openshift.com":{
         "auth":"b3Blb=",
         "email":"you@example.com"
      },
      "quay.io":{
         "auth":"b3Blb=",
         "email":"you@example.com"
      }
   }
}
4.5.5.3.2. Network configuration parameters

You can customize your installation configuration based on the requirements of your existing network infrastructure. For example, you can expand the IP address block for the cluster network or provide different IP address blocks than the defaults.

Only IPv4 addresses are supported.

Table 4.6. Network parameters
ParameterDescriptionValues

networking

The configuration for the cluster network.

Object

Note

You cannot modify parameters specified by the networking object after installation.

networking.networkType

The cluster network provider Container Network Interface (CNI) plugin to install.

Either OpenShiftSDN or OVNKubernetes. OpenShiftSDN is a CNI provider for all-Linux networks. OVNKubernetes is a CNI provider for Linux networks and hybrid networks that contain both Linux and Windows servers. The default value is OpenShiftSDN.

networking.clusterNetwork

The IP address blocks for pods.

The default value is 10.128.0.0/14 with a host prefix of /23.

If you specify multiple IP address blocks, the blocks must not overlap.

An array of objects. For example:

networking:
  clusterNetwork:
  - cidr: 10.128.0.0/14
    hostPrefix: 23

networking.clusterNetwork.cidr

Required if you use networking.clusterNetwork. An IP address block.

An IPv4 network.

An IP address block in Classless Inter-Domain Routing (CIDR) notation. The prefix length for an IPv4 block is between 0 and 32.

networking.clusterNetwork.hostPrefix

The subnet prefix length to assign to each individual node. For example, if hostPrefix is set to 23 then each node is assigned a /23 subnet out of the given cidr. A hostPrefix value of 23 provides 510 (2^(32 - 23) - 2) pod IP addresses.

A subnet prefix.

The default value is 23.

networking.serviceNetwork

The IP address block for services. The default value is 172.30.0.0/16.

The OpenShift SDN and OVN-Kubernetes network providers support only a single IP address block for the service network.

An array with an IP address block in CIDR format. For example:

networking:
  serviceNetwork:
   - 172.30.0.0/16

networking.machineNetwork

The IP address blocks for machines.

If you specify multiple IP address blocks, the blocks must not overlap.

An array of objects. For example:

networking:
  machineNetwork:
  - cidr: 10.0.0.0/16

networking.machineNetwork.cidr

Required if you use networking.machineNetwork. An IP address block. The default value is 10.0.0.0/16 for all platforms other than libvirt. For libvirt, the default value is 192.168.126.0/24.

An IP network block in CIDR notation.

For example, 10.0.0.0/16.

Note

Set the networking.machineNetwork to match the CIDR that the preferred NIC resides in.

4.5.5.3.3. Optional configuration parameters

Optional installation configuration parameters are described in the following table:

Table 4.7. Optional parameters
ParameterDescriptionValues

additionalTrustBundle

A PEM-encoded X.509 certificate bundle that is added to the nodes' trusted certificate store. This trust bundle may also be used when a proxy has been configured.

String

cgroupsV2

Enables Linux control groups version 2 (cgroups v2) on specific nodes in your cluster. The OpenShift Container Platform process for enabling cgroups v2 disables all cgroup version 1 controllers and hierarchies. The OpenShift Container Platform cgroups version 2 feature is in Developer Preview and is not supported by Red Hat at this time.

true

compute

The configuration for the machines that comprise the compute nodes.

Array of MachinePool objects.

compute.architecture

Determines the instruction set architecture of the machines in the pool. Currently, clusters with varied architectures are not supported. All pools must specify the same architecture. Valid values are amd64 (the default).

String

compute.hyperthreading

Whether to enable or disable simultaneous multithreading, or hyperthreading, on compute machines. By default, simultaneous multithreading is enabled to increase the performance of your machines' cores.

Important

If you disable simultaneous multithreading, ensure that your capacity planning accounts for the dramatically decreased machine performance.

Enabled or Disabled

compute.name

Required if you use compute. The name of the machine pool.

worker

compute.platform

Required if you use compute. Use this parameter to specify the cloud provider to host the worker machines. This parameter value must match the controlPlane.platform parameter value.

alibabacloud, aws, azure, gcp, ibmcloud, openstack, ovirt, vsphere, or {}

compute.replicas

The number of compute machines, which are also known as worker machines, to provision.

A positive integer greater than or equal to 2. The default value is 3.

controlPlane

The configuration for the machines that comprise the control plane.

Array of MachinePool objects.

controlPlane.architecture

Determines the instruction set architecture of the machines in the pool. Currently, clusters with varied architectures are not supported. All pools must specify the same architecture. Valid values are amd64 (the default).

String

controlPlane.hyperthreading

Whether to enable or disable simultaneous multithreading, or hyperthreading, on control plane machines. By default, simultaneous multithreading is enabled to increase the performance of your machines' cores.

Important

If you disable simultaneous multithreading, ensure that your capacity planning accounts for the dramatically decreased machine performance.

Enabled or Disabled

controlPlane.name

Required if you use controlPlane. The name of the machine pool.

master

controlPlane.platform

Required if you use controlPlane. Use this parameter to specify the cloud provider that hosts the control plane machines. This parameter value must match the compute.platform parameter value.

alibabacloud, aws, azure, gcp, ibmcloud, openstack, ovirt, vsphere, or {}

controlPlane.replicas

The number of control plane machines to provision.

The only supported value is 3, which is the default value.

credentialsMode

The Cloud Credential Operator (CCO) mode. If no mode is specified, the CCO dynamically tries to determine the capabilities of the provided credentials, with a preference for mint mode on the platforms where multiple modes are supported.

Note

Not all CCO modes are supported for all cloud providers. For more information on CCO modes, see the Cloud Credential Operator entry in the Cluster Operators reference content.

Note

If your AWS account has service control policies (SCP) enabled, you must configure the credentialsMode parameter to Mint, Passthrough or Manual.

Mint, Passthrough, Manual or an empty string ("").

fips

Enable or disable FIPS mode. The default is false (disabled). If FIPS mode is enabled, the Red Hat Enterprise Linux CoreOS (RHCOS) machines that OpenShift Container Platform runs on bypass the default Kubernetes cryptography suite and use the cryptography modules that are provided with RHCOS instead.

Important

To enable FIPS mode for your cluster, you must run the installation program from a Red Hat Enterprise Linux (RHEL) computer configured to operate in FIPS mode. For more information about configuring FIPS mode on RHEL, see Installing the system in FIPS mode. The use of FIPS validated or Modules In Process cryptographic libraries is only supported on OpenShift Container Platform deployments on the x86_64 architecture.

Note

If you are using Azure File storage, you cannot enable FIPS mode.

false or true

imageContentSources

Sources and repositories for the release-image content.

Array of objects. Includes a source and, optionally, mirrors, as described in the following rows of this table.

imageContentSources.source

Required if you use imageContentSources. Specify the repository that users refer to, for example, in image pull specifications.

String

imageContentSources.mirrors

Specify one or more repositories that may also contain the same images.

Array of strings

publish

How to publish or expose the user-facing endpoints of your cluster, such as the Kubernetes API, OpenShift routes.

Internal or External. The default value is External.

Setting this field to Internal is not supported on non-cloud platforms and IBM Cloud VPC.

Important

If the value of the field is set to Internal, the cluster will become non-functional. For more information, refer to BZ#1953035.

sshKey

The SSH key or keys to authenticate access your cluster machines.

Note

For production OpenShift Container Platform clusters on which you want to perform installation debugging or disaster recovery, specify an SSH key that your ssh-agent process uses.

One or more keys. For example:

sshKey:
  <key1>
  <key2>
  <key3>

4.5.5.4. Sample customized install-config.yaml file for Alibaba Cloud

You can customize the installation configuration file (install-config.yaml) to specify more details about your cluster’s platform or modify the values of the required parameters.

apiVersion: v1
baseDomain: alicloud-dev.devcluster.openshift.com
credentialsMode: Manual
compute:
- architecture: amd64
  hyperthreading: Enabled
  name: worker
  platform: {}
  replicas: 3
controlPlane:
  architecture: amd64
  hyperthreading: Enabled
  name: master
  platform: {}
  replicas: 3
metadata:
  creationTimestamp: null
  name: test-cluster 1
 networking:
  clusterNetwork:
  - cidr: 10.128.0.0/14
    hostPrefix: 23
  machineNetwork:
  - cidr: 10.0.0.0/16
  networkType: OpenShiftSDN 2
  serviceNetwork:
  - 172.30.0.0/16
platform:
  alibabacloud:
    defaultMachinePlatform: 3
      instanceType: ecs.g6.xlarge
      systemDiskCategory: cloud_efficiency
      systemDiskSize: 200
    region: ap-southeast-1 4
    resourceGroupID: rg-acfnw6j3hyai 5
    vpcID: vpc-0xifdjerdibmaqvtjob2b
    vswitchIDs: 6
    - vsw-0xi8ycgwc8wv5rhviwdq5
    - vsw-0xiy6v3z2tedv009b4pz2
publish: External
pullSecret: '{"auths": {"cloud.openshift.com": {"auth": ... }' 7
sshKey: |
  ssh-rsa AAAA... 8
1
Required. The installation program prompts you for a cluster name.
2
The cluster network plugin to install. The supported values are OVNKubernetes and OpenShiftSDN. The default value is OVNKubernetes.
3
Optional. Specify parameters for machine pools that do not define their own platform configuration.
4
Required. The installation program prompts you for the region to deploy the cluster to.
5
Optional. Specify an existing resource group where the cluster should be installed.
7
Required. The installation program prompts you for the pull secret.
8
Optional. The installation program prompts you for the SSH key value that you use to access the machines in your cluster.
6
Optional. These are example vswitchID values.

4.5.5.5. Configuring the cluster-wide proxy during installation

Production environments can deny direct access to the internet and instead have an HTTP or HTTPS proxy available. You can configure a new OpenShift Container Platform cluster to use a proxy by configuring the proxy settings in the install-config.yaml file.

Prerequisites

  • You have an existing install-config.yaml file.
  • You reviewed the sites that your cluster requires access to and determined whether any of them need to bypass the proxy. By default, all cluster egress traffic is proxied, including calls to hosting cloud provider APIs. You added sites to the Proxy object’s spec.noProxy field to bypass the proxy if necessary.

    Note

    The Proxy object status.noProxy field is populated with the values of the networking.machineNetwork[].cidr, networking.clusterNetwork[].cidr, and networking.serviceNetwork[] fields from your installation configuration.

    For installations on Amazon Web Services (AWS), Google Cloud Platform (GCP), Microsoft Azure, and Red Hat OpenStack Platform (RHOSP), the Proxy object status.noProxy field is also populated with the instance metadata endpoint (169.254.169.254).

Procedure

  1. Edit your install-config.yaml file and add the proxy settings. For example:

    apiVersion: v1
    baseDomain: my.domain.com
    proxy:
      httpProxy: http://<username>:<pswd>@<ip>:<port> 1
      httpsProxy: https://<username>:<pswd>@<ip>:<port> 2
      noProxy: example.com 3
    additionalTrustBundle: | 4
        -----BEGIN CERTIFICATE-----
        <MY_TRUSTED_CA_CERT>
        -----END CERTIFICATE-----
    ...
    1
    A proxy URL to use for creating HTTP connections outside the cluster. The URL scheme must be http.
    2
    A proxy URL to use for creating HTTPS connections outside the cluster.
    3
    A comma-separated list of destination domain names, IP addresses, or other network CIDRs to exclude from proxying. Preface a domain with . to match subdomains only. For example, .y.com matches x.y.com, but not y.com. Use * to bypass the proxy for all destinations.
    4
    If provided, the installation program generates a config map that is named user-ca-bundle in the openshift-config namespace that contains one or more additional CA certificates that are required for proxying HTTPS connections. The Cluster Network Operator then creates a trusted-ca-bundle config map that merges these contents with the Red Hat Enterprise Linux CoreOS (RHCOS) trust bundle, and this config map is referenced in the trustedCA field of the Proxy object. The additionalTrustBundle field is required unless the proxy’s identity certificate is signed by an authority from the RHCOS trust bundle.
    Note

    The installation program does not support the proxy readinessEndpoints field.

    Note

    If the installer times out, restart and then complete the deployment by using the wait-for command of the installer. For example:

    $ ./openshift-install wait-for install-complete --log-level debug
  2. Save the file and reference it when installing OpenShift Container Platform.

The installation program creates a cluster-wide proxy that is named cluster that uses the proxy settings in the provided install-config.yaml file. If no proxy settings are provided, a cluster Proxy object is still created, but it will have a nil spec.

Note

Only the Proxy object named cluster is supported, and no additional proxies can be created.

4.5.6. Cluster Network Operator configuration

The configuration for the cluster network is specified as part of the Cluster Network Operator (CNO) configuration and stored in a custom resource (CR) object that is named cluster. The CR specifies the fields for the Network API in the operator.openshift.io API group.

The CNO configuration inherits the following fields during cluster installation from the Network API in the Network.config.openshift.io API group and these fields cannot be changed:

clusterNetwork
IP address pools from which pod IP addresses are allocated.
serviceNetwork
IP address pool for services.
defaultNetwork.type
Cluster network provider, such as OpenShift SDN or OVN-Kubernetes.

You can specify the cluster network provider configuration for your cluster by setting the fields for the defaultNetwork object in the CNO object named cluster.

4.5.6.1. Cluster Network Operator configuration object

The fields for the Cluster Network Operator (CNO) are described in the following table:

Table 4.8. Cluster Network Operator configuration object
FieldTypeDescription

metadata.name

string

The name of the CNO object. This name is always cluster.

spec.clusterNetwork

array

A list specifying the blocks of IP addresses from which pod IP addresses are allocated and the subnet prefix length assigned to each individual node in the cluster. For example:

spec:
  clusterNetwork:
  - cidr: 10.128.0.0/19
    hostPrefix: 23
  - cidr: 10.128.32.0/19
    hostPrefix: 23

You can customize this field only in the install-config.yaml file before you create the manifests. The value is read-only in the manifest file.

spec.serviceNetwork

array

A block of IP addresses for services. The OpenShift SDN and OVN-Kubernetes Container Network Interface (CNI) network providers support only a single IP address block for the service network. For example:

spec:
  serviceNetwork:
  - 172.30.0.0/14

You can customize this field only in the install-config.yaml file before you create the manifests. The value is read-only in the manifest file.

spec.defaultNetwork

object

Configures the Container Network Interface (CNI) cluster network provider for the cluster network.

spec.kubeProxyConfig

object

The fields for this object specify the kube-proxy configuration. If you are using the OVN-Kubernetes cluster network provider, the kube-proxy configuration has no effect.

defaultNetwork object configuration

The values for the defaultNetwork object are defined in the following table:

Table 4.9. defaultNetwork object
FieldTypeDescription

type

string

Either OpenShiftSDN or OVNKubernetes. The cluster network provider is selected during installation. This value cannot be changed after cluster installation.

Note

OpenShift Container Platform uses the OpenShift SDN Container Network Interface (CNI) cluster network provider by default.

openshiftSDNConfig

object

This object is only valid for the OpenShift SDN cluster network provider.

ovnKubernetesConfig

object

This object is only valid for the OVN-Kubernetes cluster network provider.

Configuration for the OpenShift SDN CNI cluster network provider

The following table describes the configuration fields for the OpenShift SDN Container Network Interface (CNI) cluster network provider.

Table 4.10. openshiftSDNConfig object
FieldTypeDescription

mode

string

Configures the network isolation mode for OpenShift SDN. The default value is NetworkPolicy.

The values Multitenant and Subnet are available for backwards compatibility with OpenShift Container Platform 3.x but are not recommended. This value cannot be changed after cluster installation.

mtu

integer

The maximum transmission unit (MTU) for the VXLAN overlay network. This is detected automatically based on the MTU of the primary network interface. You do not normally need to override the detected MTU.

If the auto-detected value is not what you expect it to be, confirm that the MTU on the primary network interface on your nodes is correct. You cannot use this option to change the MTU value of the primary network interface on the nodes.

If your cluster requires different MTU values for different nodes, you must set this value to 50 less than the lowest MTU value in your cluster. For example, if some nodes in your cluster have an MTU of 9001, and some have an MTU of 1500, you must set this value to 1450.

This value cannot be changed after cluster installation.

vxlanPort

integer

The port to use for all VXLAN packets. The default value is 4789. This value cannot be changed after cluster installation.

If you are running in a virtualized environment with existing nodes that are part of another VXLAN network, then you might be required to change this. For example, when running an OpenShift SDN overlay on top of VMware NSX-T, you must select an alternate port for the VXLAN, because both SDNs use the same default VXLAN port number.

On Amazon Web Services (AWS), you can select an alternate port for the VXLAN between port 9000 and port 9999.

Example OpenShift SDN configuration

defaultNetwork:
  type: OpenShiftSDN
  openshiftSDNConfig:
    mode: NetworkPolicy
    mtu: 1450
    vxlanPort: 4789

Configuration for the OVN-Kubernetes CNI cluster network provider

The following table describes the configuration fields for the OVN-Kubernetes CNI cluster network provider.

Table 4.11. ovnKubernetesConfig object
FieldTypeDescription

mtu

integer

The maximum transmission unit (MTU) for the Geneve (Generic Network Virtualization Encapsulation) overlay network. This is detected automatically based on the MTU of the primary network interface. You do not normally need to override the detected MTU.

If the auto-detected value is not what you expect it to be, confirm that the MTU on the primary network interface on your nodes is correct. You cannot use this option to change the MTU value of the primary network interface on the nodes.

If your cluster requires different MTU values for different nodes, you must set this value to 100 less than the lowest MTU value in your cluster. For example, if some nodes in your cluster have an MTU of 9001, and some have an MTU of 1500, you must set this value to 1400.

genevePort

integer

The port to use for all Geneve packets. The default value is 6081. This value cannot be changed after cluster installation.

ipsecConfig

object

Specify an empty object to enable IPsec encryption. This value cannot be changed after cluster installation.

policyAuditConfig

object

Specify a configuration object for customizing network policy audit logging. If unset, the defaults audit log settings are used.

gatewayConfig

object

Optional: Specify a configuration object for customizing how egress traffic is sent to the node gateway.

Note
While migrating egress traffic, you can expect some disruption to workloads and service traffic until the Cluster Network Operator (CNO) successfully rolls out the changes.
Table 4.12. policyAuditConfig object
FieldTypeDescription

rateLimit

integer

The maximum number of messages to generate every second per node. The default value is 20 messages per second.

maxFileSize

integer

The maximum size for the audit log in bytes. The default value is 50000000 or 50 MB.

destination

string

One of the following additional audit log targets:

libc
The libc syslog() function of the journald process on the host.
udp:<host>:<port>
A syslog server. Replace <host>:<port> with the host and port of the syslog server.
unix:<file>
A Unix Domain Socket file specified by <file>.
null
Do not send the audit logs to any additional target.

syslogFacility

string

The syslog facility, such as kern, as defined by RFC5424. The default value is local0.

Table 4.13. gatewayConfig object
FieldTypeDescription

routingViaHost

boolean

Set this field to true to send egress traffic from pods to the host networking stack. For highly-specialized installations and applications that rely on manually configured routes in the kernel routing table, you might want to route egress traffic to the host networking stack. By default, egress traffic is processed in OVN to exit the cluster and is not affected by specialized routes in the kernel routing table. The default value is false.

This field has an interaction with the Open vSwitch hardware offloading feature. If you set this field to true, you do not receive the performance benefits of the offloading because egress traffic is processed by the host networking stack.

Example OVN-Kubernetes configuration with IPSec enabled

defaultNetwork:
  type: OVNKubernetes
  ovnKubernetesConfig:
    mtu: 1400
    genevePort: 6081
    ipsecConfig: {}

kubeProxyConfig object configuration

The values for the kubeProxyConfig object are defined in the following table:

Table 4.14. kubeProxyConfig object
FieldTypeDescription

iptablesSyncPeriod

string

The refresh period for iptables rules. The default value is 30s. Valid suffixes include s, m, and h and are described in the Go time package documentation.

Note

Because of performance improvements introduced in OpenShift Container Platform 4.3 and greater, adjusting the iptablesSyncPeriod parameter is no longer necessary.

proxyArguments.iptables-min-sync-period

array

The minimum duration before refreshing iptables rules. This field ensures that the refresh does not happen too frequently. Valid suffixes include s, m, and h and are described in the Go time package. The default value is:

kubeProxyConfig:
  proxyArguments:
    iptables-min-sync-period:
    - 0s

4.5.7. Specifying advanced network configuration

You can use advanced network configuration for your cluster network provider to integrate your cluster into your existing network environment. You can specify advanced network configuration only before you install the cluster.

Important

Customizing your network configuration by modifying the OpenShift Container Platform manifest files created by the installation program is not supported. Applying a manifest file that you create, as in the following procedure, is supported.

Prerequisites

  • You have created the install-config.yaml file and completed any modifications to it.

Procedure

  1. Change to the directory that contains the installation program and create the manifests:

    $ ./openshift-install create manifests --dir <installation_directory> 1
    1
    <installation_directory> specifies the name of the directory that contains the install-config.yaml file for your cluster.
  2. Create a stub manifest file for the advanced network configuration that is named cluster-network-03-config.yml in the <installation_directory>/manifests/ directory:

    apiVersion: operator.openshift.io/v1
    kind: Network
    metadata:
      name: cluster
    spec:
  3. Specify the advanced network configuration for your cluster in the cluster-network-03-config.yml file, such as in the following examples:

    Specify a different VXLAN port for the OpenShift SDN network provider

    apiVersion: operator.openshift.io/v1
    kind: Network
    metadata:
      name: cluster
    spec:
      defaultNetwork:
        openshiftSDNConfig:
          vxlanPort: 4800

    Enable IPsec for the OVN-Kubernetes network provider

    apiVersion: operator.openshift.io/v1
    kind: Network
    metadata:
      name: cluster
    spec:
      defaultNetwork:
        ovnKubernetesConfig:
          ipsecConfig: {}

  4. Optional: Back up the manifests/cluster-network-03-config.yml file. The installation program consumes the manifests/ directory when you create the Ignition config files.

4.5.8. Configuring hybrid networking with OVN-Kubernetes

You can configure your cluster to use hybrid networking with OVN-Kubernetes. This allows a hybrid cluster that supports different node networking configurations. For example, this is necessary to run both Linux and Windows nodes in a cluster.

Important

You must configure hybrid networking with OVN-Kubernetes during the installation of your cluster. You cannot switch to hybrid networking after the installation process.

Prerequisites

  • You defined OVNKubernetes for the networking.networkType parameter in the install-config.yaml file. See the installation documentation for configuring OpenShift Container Platform network customizations on your chosen cloud provider for more information.

Procedure

  1. Change to the directory that contains the installation program and create the manifests:

    $ ./openshift-install create manifests --dir <installation_directory>

    where:

    <installation_directory>
    Specifies the name of the directory that contains the install-config.yaml file for your cluster.
  2. Create a stub manifest file for the advanced network configuration that is named cluster-network-03-config.yml in the <installation_directory>/manifests/ directory:

    $ cat <<EOF > <installation_directory>/manifests/cluster-network-03-config.yml
    apiVersion: operator.openshift.io/v1
    kind: Network
    metadata:
      name: cluster
    spec:
    EOF

    where:

    <installation_directory>
    Specifies the directory name that contains the manifests/ directory for your cluster.
  3. Open the cluster-network-03-config.yml file in an editor and configure OVN-Kubernetes with hybrid networking, such as in the following example:

    Specify a hybrid networking configuration

    apiVersion: operator.openshift.io/v1
    kind: Network
    metadata:
      name: cluster
    spec:
      defaultNetwork:
        ovnKubernetesConfig:
          hybridOverlayConfig:
            hybridClusterNetwork: 1
            - cidr: 10.132.0.0/14
              hostPrefix: 23
            hybridOverlayVXLANPort: 9898 2

    1
    Specify the CIDR configuration used for nodes on the additional overlay network. The hybridClusterNetwork CIDR cannot overlap with the clusterNetwork CIDR.
    2
    Specify a custom VXLAN port for the additional overlay network. This is required for running Windows nodes in a cluster installed on vSphere, and must not be configured for any other cloud provider. The custom port can be any open port excluding the default 4789 port. For more information on this requirement, see the Microsoft documentation on Pod-to-pod connectivity between hosts is broken.
    Note

    Windows Server Long-Term Servicing Channel (LTSC): Windows Server 2019 is not supported on clusters with a custom hybridOverlayVXLANPort value because this Windows server version does not support selecting a custom VXLAN port.

  4. Save the cluster-network-03-config.yml file and quit the text editor.
  5. Optional: Back up the manifests/cluster-network-03-config.yml file. The installation program deletes the manifests/ directory when creating the cluster.

4.5.9. Deploying the cluster

You can install OpenShift Container Platform on a compatible cloud platform.

Important

You can run the create cluster command of the installation program only once, during initial installation.

Prerequisites

  • Configure an account with the cloud platform that hosts your cluster.
  • Obtain the OpenShift Container Platform installation program and the pull secret for your cluster.

Procedure

  1. Change to the directory that contains the installation program and initialize the cluster deployment:

    $ ./openshift-install create cluster --dir <installation_directory> \ 1
        --log-level=info 2
    1
    For <installation_directory>, specify the location of your customized ./install-config.yaml file.
    2
    To view different installation details, specify warn, debug, or error instead of info.
    Note

    If the cloud provider account that you configured on your host does not have sufficient permissions to deploy the cluster, the installation process stops, and the missing permissions are displayed.

    When the cluster deployment completes, directions for accessing your cluster, including a link to its web console and credentials for the kubeadmin user, display in your terminal.

    Example output

    ...
    INFO Install complete!
    INFO To access the cluster as the system:admin user when using 'oc', run 'export KUBECONFIG=/home/myuser/install_dir/auth/kubeconfig'
    INFO Access the OpenShift web-console here: https://console-openshift-console.apps.mycluster.example.com
    INFO Login to the console with user: "kubeadmin", and password: "4vYBz-Ee6gm-ymBZj-Wt5AL"
    INFO Time elapsed: 36m22s

    Note

    The cluster access and credential information also outputs to <installation_directory>/.openshift_install.log when an installation succeeds.

    Important
    • The Ignition config files that the installation program generates contain certificates that expire after 24 hours, which are then renewed at that time. If the cluster is shut down before renewing the certificates and the cluster is later restarted after the 24 hours have elapsed, the cluster automatically recovers the expired certificates. The exception is that you must manually approve the pending node-bootstrapper certificate signing requests (CSRs) to recover kubelet certificates. See the documentation for Recovering from expired control plane certificates for more information.
    • It is recommended that you use Ignition config files within 12 hours after they are generated because the 24-hour certificate rotates from 16 to 22 hours after the cluster is installed. By using the Ignition config files within 12 hours, you can avoid installation failure if the certificate update runs during installation.
    Important

    You must not delete the installation program or the files that the installation program creates. Both are required to delete the cluster.

4.5.10. Installing the OpenShift CLI by downloading the binary

You can install the OpenShift CLI (oc) to interact with OpenShift Container Platform from a command-line interface. You can install oc on Linux, Windows, or macOS.

Important

If you installed an earlier version of oc, you cannot use it to complete all of the commands in OpenShift Container Platform 4.10. Download and install the new version of oc.

Installing the OpenShift CLI on Linux

You can install the OpenShift CLI (oc) binary on Linux by using the following procedure.

Procedure

  1. Navigate to the OpenShift Container Platform downloads page on the Red Hat Customer Portal.
  2. Select the appropriate version in the Version drop-down menu.
  3. Click Download Now next to the OpenShift v4.10 Linux Client entry and save the file.
  4. Unpack the archive:

    $ tar xvf <file>
  5. Place the oc binary in a directory that is on your PATH.

    To check your PATH, execute the following command:

    $ echo $PATH

After you install the OpenShift CLI, it is available using the oc command:

$ oc <command>
Installing the OpenShift CLI on Windows

You can install the OpenShift CLI (oc) binary on Windows by using the following procedure.

Procedure

  1. Navigate to the OpenShift Container Platform downloads page on the Red Hat Customer Portal.
  2. Select the appropriate version in the Version drop-down menu.
  3. Click Download Now next to the OpenShift v4.10 Windows Client entry and save the file.
  4. Unzip the archive with a ZIP program.
  5. Move the oc binary to a directory that is on your PATH.

    To check your PATH, open the command prompt and execute the following command:

    C:\> path

After you install the OpenShift CLI, it is available using the oc command:

C:\> oc <command>
Installing the OpenShift CLI on macOS

You can install the OpenShift CLI (oc) binary on macOS by using the following procedure.

Procedure

  1. Navigate to the OpenShift Container Platform downloads page on the Red Hat Customer Portal.
  2. Select the appropriate version in the Version drop-down menu.
  3. Click Download Now next to the OpenShift v4.10 MacOSX Client entry and save the file.
  4. Unpack and unzip the archive.
  5. Move the oc binary to a directory on your PATH.

    To check your PATH, open a terminal and execute the following command:

    $ echo $PATH

After you install the OpenShift CLI, it is available using the oc command:

$ oc <command>

4.5.11. Logging in to the cluster by using the CLI

You can log in to your cluster as a default system user by exporting the cluster kubeconfig file. The kubeconfig file contains information about the cluster that is used by the CLI to connect a client to the correct cluster and API server. The file is specific to a cluster and is created during OpenShift Container Platform installation.

Prerequisites

  • You deployed an OpenShift Container Platform cluster.
  • You installed the oc CLI.

Procedure

  1. Export the kubeadmin credentials:

    $ export KUBECONFIG=<installation_directory>/auth/kubeconfig 1
    1
    For <installation_directory>, specify the path to the directory that you stored the installation files in.
  2. Verify you can run oc commands successfully using the exported configuration:

    $ oc whoami

    Example output

    system:admin

4.5.12. Logging in to the cluster by using the web console

The kubeadmin user exists by default after an OpenShift Container Platform installation. You can log in to your cluster as the kubeadmin user by using the OpenShift Container Platform web console.

Prerequisites

  • You have access to the installation host.
  • You completed a cluster installation and all cluster Operators are available.

Procedure

  1. Obtain the password for the kubeadmin user from the kubeadmin-password file on the installation host:

    $ cat <installation_directory>/auth/kubeadmin-password
    Note

    Alternatively, you can obtain the kubeadmin password from the <installation_directory>/.openshift_install.log log file on the installation host.

  2. List the OpenShift Container Platform web console route:

    $ oc get routes -n openshift-console | grep 'console-openshift'
    Note

    Alternatively, you can obtain the OpenShift Container Platform route from the <installation_directory>/.openshift_install.log log file on the installation host.

    Example output

    console     console-openshift-console.apps.<cluster_name>.<base_domain>            console     https   reencrypt/Redirect   None

  3. Navigate to the route detailed in the output of the preceding command in a web browser and log in as the kubeadmin user.

4.5.13. Telemetry access for OpenShift Container Platform

In OpenShift Container Platform 4.10, the Telemetry service, which runs by default to provide metrics about cluster health and the success of updates, requires internet access. If your cluster is connected to the internet, Telemetry runs automatically, and your cluster is registered to OpenShift Cluster Manager.

After you confirm that your OpenShift Cluster Manager inventory is correct, either maintained automatically by Telemetry or manually by using OpenShift Cluster Manager, use subscription watch to track your OpenShift Container Platform subscriptions at the account or multi-cluster level.

Additional resources

4.5.14. Next steps

4.6. Installing a cluster on Alibaba Cloud into an existing VPC

In OpenShift Container Platform version 4.10, you can install a cluster into an existing Alibaba Virtual Private Cloud (VPC) on Alibaba Cloud Services. The installation program provisions the required infrastructure, which can then be customized. To customize the VPC installation, modify the parameters in the 'install-config.yaml' file before you install the cluster.

Note

The scope of the OpenShift Container Platform installation configurations is intentionally narrow. It is designed for simplicity and ensured success. You can complete many more OpenShift Container Platform configuration tasks after an installation completes.

Important

Alibaba Cloud on OpenShift Container Platform is a Technology Preview feature only. Technology Preview features are not supported with Red Hat production service level agreements (SLAs) and might not be functionally complete. Red Hat does not recommend using them in production. These features provide early access to upcoming product features, enabling customers to test functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features, see Technology Preview Features Support Scope.

4.6.1. Prerequisites

4.6.2. Using a custom VPC

In OpenShift Container Platform 4.10, you can deploy a cluster into existing subnets in an existing Virtual Private Cloud (VPC) in the Alibaba Cloud Platform. By deploying OpenShift Container Platform into an existing Alibaba VPC, you can avoid limit constraints in new accounts and more easily adhere to your organization’s operational constraints. If you cannot obtain the infrastructure creation permissions that are required to create the VPC yourself, use this installation option. You must configure networking using vSwitches.

4.6.2.1. Requirements for using your VPC

The union of the VPC CIDR block and the machine network CIDR must be non-empty. The vSwitches must be within the machine network.

The installation program does not create the following components:

  • VPC
  • vSwitches
  • Route table
  • NAT gateway
Note

The installation program requires that you use the cloud-provided DNS server. Using a custom DNS server is not supported and causes the installation to fail.

4.6.2.2. VPC validation

To ensure that the vSwitches you provide are suitable, the installation program confirms the following data:

  • All the vSwitches that you specify must exist.
  • You have provided one or more vSwitches for control plane machines and compute machines.
  • The vSwitches' CIDRs belong to the machine CIDR that you specified.

4.6.2.3. Division of permissions

Some individuals can create different resources in your cloud than others. For example, you might be able to create application-specific items, like instances, buckets, and load balancers, but not networking-related components, such as VPCs or vSwitches.

4.6.2.4. Isolation between clusters

If you deploy OpenShift Container Platform into an existing network, the isolation of cluster services is reduced in the following ways:

  • You can install multiple OpenShift Container Platform clusters in the same VPC.
  • ICMP ingress is allowed to the entire network.
  • TCP 22 ingress (SSH) is allowed to the entire network.
  • Control plane TCP 6443 ingress (Kubernetes API) is allowed to the entire network.
  • Control plane TCP 22623 ingress (MCS) is allowed to the entire network.

4.6.3. Internet access for OpenShift Container Platform

In OpenShift Container Platform 4.10, you require access to the internet to install your cluster.

You must have internet access to:

  • Access OpenShift Cluster Manager to download the installation program and perform subscription management. If the cluster has internet access and you do not disable Telemetry, that service automatically entitles your cluster.
  • Access Quay.io to obtain the packages that are required to install your cluster.
  • Obtain the packages that are required to perform cluster updates.
Important

If your cluster cannot have direct internet access, you can perform a restricted network installation on some types of infrastructure that you provision. During that process, you download the required content and use it to populate a mirror registry with the installation packages. With some installation types, the environment that you install your cluster in will not require internet access. Before you update the cluster, you update the content of the mirror registry.

4.6.4. Generating a key pair for cluster node SSH access

During an OpenShift Container Platform installation, you can provide an SSH public key to the installation program. The key is passed to the Red Hat Enterprise Linux CoreOS (RHCOS) nodes through their Ignition config files and is used to authenticate SSH access to the nodes. The key is added to the ~/.ssh/authorized_keys list for the core user on each node, which enables password-less authentication.

After the key is passed to the nodes, you can use the key pair to SSH in to the RHCOS nodes as the user core. To access the nodes through SSH, the private key identity must be managed by SSH for your local user.

If you want to SSH in to your cluster nodes to perform installation debugging or disaster recovery, you must provide the SSH public key during the installation process. The ./openshift-install gather command also requires the SSH public key to be in place on the cluster nodes.

Important

Do not skip this procedure in production environments, where disaster recovery and debugging is required.

Note

You must use a local key, not one that you configured with platform-specific approaches such as AWS key pairs.

Procedure

  1. If you do not have an existing SSH key pair on your local machine to use for authentication onto your cluster nodes, create one. For example, on a computer that uses a Linux operating system, run the following command:

    $ ssh-keygen -t ed25519 -N '' -f <path>/<file_name> 1
    1
    Specify the path and file name, such as ~/.ssh/id_ed25519, of the new SSH key. If you have an existing key pair, ensure your public key is in the your ~/.ssh directory.
    Note

    If you plan to install an OpenShift Container Platform cluster that uses FIPS validated or Modules In Process cryptographic libraries on the x86_64 architecture, do not create a key that uses the ed25519 algorithm. Instead, create a key that uses the rsa or ecdsa algorithm.

  2. View the public SSH key:

    $ cat <path>/<file_name>.pub

    For example, run the following to view the ~/.ssh/id_ed25519.pub public key:

    $ cat ~/.ssh/id_ed25519.pub
  3. Add the SSH private key identity to the SSH agent for your local user, if it has not already been added. SSH agent management of the key is required for password-less SSH authentication onto your cluster nodes, or if you want to use the ./openshift-install gather command.

    Note

    On some distributions, default SSH private key identities such as ~/.ssh/id_rsa and ~/.ssh/id_dsa are managed automatically.

    1. If the ssh-agent process is not already running for your local user, start it as a background task:

      $ eval "$(ssh-agent -s)"

      Example output

      Agent pid 31874

      Note

      If your cluster is in FIPS mode, only use FIPS-compliant algorithms to generate the SSH key. The key must be either RSA or ECDSA.

  4. Add your SSH private key to the ssh-agent:

    $ ssh-add <path>/<file_name> 1
    1
    Specify the path and file name for your SSH private key, such as ~/.ssh/id_ed25519

    Example output

    Identity added: /home/<you>/<path>/<file_name> (<computer_name>)

Next steps

  • When you install OpenShift Container Platform, provide the SSH public key to the installation program.

4.6.5. Obtaining the installation program

Before you install OpenShift Container Platform, download the installation file on a local computer.

Prerequisites

  • You have a computer that runs Linux or macOS, with 500 MB of local disk space

Procedure

  1. Access the Infrastructure Provider page on the OpenShift Cluster Manager site. If you have a Red Hat account, log in with your credentials. If you do not, create an account.
  2. Select your infrastructure provider.
  3. Navigate to the page for your installation type, download the installation program that corresponds with your host operating system and architecture, and place the file in the directory where you will store the installation configuration files.

    Important

    The installation program creates several files on the computer that you use to install your cluster. You must keep the installation program and the files that the installation program creates after you finish installing the cluster. Both files are required to delete the cluster.

    Important

    Deleting the files created by the installation program does not remove your cluster, even if the cluster failed during installation. To remove your cluster, complete the OpenShift Container Platform uninstallation procedures for your specific cloud provider.

  4. Extract the installation program. For example, on a computer that uses a Linux operating system, run the following command:

    $ tar -xvf openshift-install-linux.tar.gz
  5. Download your installation pull secret from the Red Hat OpenShift Cluster Manager. This pull secret allows you to authenticate with the services that are provided by the included authorities, including Quay.io, which serves the container images for OpenShift Container Platform components.

4.6.5.1. Creating the installation configuration file

You can customize the OpenShift Container Platform cluster you install on Alibaba Cloud.

Prerequisites

  • Obtain the OpenShift Container Platform installation program and the pull secret for your cluster.
  • Obtain service principal permissions at the subscription level.

Procedure

  1. Create the install-config.yaml file.

    1. Change to the directory that contains the installation program and run the following command:

      $ ./openshift-install create install-config --dir <installation_directory> 1
      1
      For <installation_directory>, specify the directory name to store the files that the installation program creates.
      Important

      Specify an empty directory. Some installation assets, like bootstrap X.509 certificates have short expiration intervals, so you must not reuse an installation directory. If you want to reuse individual files from another cluster installation, you can copy them into your directory. However, the file names for the installation assets might change between releases. Use caution when copying installation files from an earlier OpenShift Container Platform version.

    2. At the prompts, provide the configuration details for your cloud:

      1. Optional: Select an SSH key to use to access your cluster machines.

        Note

        For production OpenShift Container Platform clusters on which you want to perform installation debugging or disaster recovery, specify an SSH key that your ssh-agent process uses.

      2. Select alibabacloud as the platform to target.
      3. Select the region to deploy the cluster to.
      4. Select the base domain to deploy the cluster to. The base domain corresponds to the public DNS zone that you created for your cluster.
      5. Provide a descriptive name for your cluster.
      6. Paste the pull secret from the Red Hat OpenShift Cluster Manager.
  2. Installing the cluster into Alibaba Cloud requires that the Cloud Credential Operator (CCO) operate in manual mode. Modify the install-config.yaml file to set the credentialsMode parameter to Manual:

    Example install-config.yaml configuration file with credentialsMode set to Manual

    apiVersion: v1
    baseDomain: cluster1.example.com
    credentialsMode: Manual 1
    compute:
    - architecture: amd64
      hyperthreading: Enabled
     ...

    1
    Add this line to set the credentialsMode to Manual.
  3. Modify the install-config.yaml file. You can find more information about the available parameters in the "Installation configuration parameters" section.
  4. Back up the install-config.yaml file so that you can use it to install multiple clusters.

    Important

    The install-config.yaml file is consumed during the installation process. If you want to reuse the file, you must back it up now.

4.6.5.2. Installation configuration parameters

Before you deploy an OpenShift Container Platform cluster, you provide parameter values to describe your account on the cloud platform that hosts your cluster and optionally customize your cluster’s platform. When you create the install-config.yaml installation configuration file, you provide values for the required parameters through the command line. If you customize your cluster, you can modify the install-config.yaml file to provide more details about the platform.

Note

After installation, you cannot modify these parameters in the install-config.yaml file.

4.6.5.2.1. Required configuration parameters

Required installation configuration parameters are described in the following table:

Table 4.15. Required parameters
ParameterDescriptionValues

apiVersion

The API version for the install-config.yaml content. The current version is v1. The installer may also support older API versions.

String

baseDomain

The base domain of your cloud provider. The base domain is used to create routes to your OpenShift Container Platform cluster components. The full DNS name for your cluster is a combination of the baseDomain and metadata.name parameter values that uses the <metadata.name>.<baseDomain> format.

A fully-qualified domain or subdomain name, such as example.com.

metadata

Kubernetes resource ObjectMeta, from which only the name parameter is consumed.

Object

metadata.name

The name of the cluster. DNS records for the cluster are all subdomains of {{.metadata.name}}.{{.baseDomain}}.

String of lowercase letters, hyphens (-), and periods (.), such as dev.

platform

The configuration for the specific platform upon which to perform the installation: alibabacloud, aws, baremetal, azure, gcp, ibmcloud, openstack, ovirt, vsphere, or {}. For additional information about platform.<platform> parameters, consult the table for your specific platform that follows.

Object

pullSecret

Get a pull secret from the Red Hat OpenShift Cluster Manager to authenticate downloading container images for OpenShift Container Platform components from services such as Quay.io.

{
   "auths":{
      "cloud.openshift.com":{
         "auth":"b3Blb=",
         "email":"you@example.com"
      },
      "quay.io":{
         "auth":"b3Blb=",
         "email":"you@example.com"
      }
   }
}
4.6.5.2.2. Network configuration parameters

You can customize your installation configuration based on the requirements of your existing network infrastructure. For example, you can expand the IP address block for the cluster network or provide different IP address blocks than the defaults.

Only IPv4 addresses are supported.

Table 4.16. Network parameters
ParameterDescriptionValues

networking

The configuration for the cluster network.

Object

Note

You cannot modify parameters specified by the networking object after installation.

networking.networkType

The cluster network provider Container Network Interface (CNI) plugin to install.

Either OpenShiftSDN or OVNKubernetes. OpenShiftSDN is a CNI provider for all-Linux networks. OVNKubernetes is a CNI provider for Linux networks and hybrid networks that contain both Linux and Windows servers. The default value is OpenShiftSDN.

networking.clusterNetwork

The IP address blocks for pods.

The default value is 10.128.0.0/14 with a host prefix of /23.

If you specify multiple IP address blocks, the blocks must not overlap.

An array of objects. For example:

networking:
  clusterNetwork:
  - cidr: 10.128.0.0/14
    hostPrefix: 23

networking.clusterNetwork.cidr

Required if you use networking.clusterNetwork. An IP address block.

An IPv4 network.

An IP address block in Classless Inter-Domain Routing (CIDR) notation. The prefix length for an IPv4 block is between 0 and 32.

networking.clusterNetwork.hostPrefix

The subnet prefix length to assign to each individual node. For example, if hostPrefix is set to 23 then each node is assigned a /23 subnet out of the given cidr. A hostPrefix value of 23 provides 510 (2^(32 - 23) - 2) pod IP addresses.

A subnet prefix.

The default value is 23.

networking.serviceNetwork

The IP address block for services. The default value is 172.30.0.0/16.

The OpenShift SDN and OVN-Kubernetes network providers support only a single IP address block for the service network.

An array with an IP address block in CIDR format. For example:

networking:
  serviceNetwork:
   - 172.30.0.0/16

networking.machineNetwork

The IP address blocks for machines.

If you specify multiple IP address blocks, the blocks must not overlap.

An array of objects. For example:

networking:
  machineNetwork:
  - cidr: 10.0.0.0/16

networking.machineNetwork.cidr

Required if you use networking.machineNetwork. An IP address block. The default value is 10.0.0.0/16 for all platforms other than libvirt. For libvirt, the default value is 192.168.126.0/24.

An IP network block in CIDR notation.

For example, 10.0.0.0/16.

Note

Set the networking.machineNetwork to match the CIDR that the preferred NIC resides in.

4.6.5.2.3. Optional configuration parameters

Optional installation configuration parameters are described in the following table:

Table 4.17. Optional parameters
ParameterDescriptionValues

additionalTrustBundle

A PEM-encoded X.509 certificate bundle that is added to the nodes' trusted certificate store. This trust bundle may also be used when a proxy has been configured.

String

cgroupsV2

Enables Linux control groups version 2 (cgroups v2) on specific nodes in your cluster. The OpenShift Container Platform process for enabling cgroups v2 disables all cgroup version 1 controllers and hierarchies. The OpenShift Container Platform cgroups version 2 feature is in Developer Preview and is not supported by Red Hat at this time.

true

compute

The configuration for the machines that comprise the compute nodes.

Array of MachinePool objects.

compute.architecture

Determines the instruction set architecture of the machines in the pool. Currently, clusters with varied architectures are not supported. All pools must specify the same architecture. Valid values are amd64 (the default).

String

compute.hyperthreading

Whether to enable or disable simultaneous multithreading, or hyperthreading, on compute machines. By default, simultaneous multithreading is enabled to increase the performance of your machines' cores.

Important

If you disable simultaneous multithreading, ensure that your capacity planning accounts for the dramatically decreased machine performance.

Enabled or Disabled

compute.name

Required if you use compute. The name of the machine pool.

worker

compute.platform

Required if you use compute. Use this parameter to specify the cloud provider to host the worker machines. This parameter value must match the controlPlane.platform parameter value.

alibabacloud, aws, azure, gcp, ibmcloud, openstack, ovirt, vsphere, or {}

compute.replicas

The number of compute machines, which are also known as worker machines, to provision.

A positive integer greater than or equal to 2. The default value is 3.

controlPlane

The configuration for the machines that comprise the control plane.

Array of MachinePool objects.

controlPlane.architecture

Determines the instruction set architecture of the machines in the pool. Currently, clusters with varied architectures are not supported. All pools must specify the same architecture. Valid values are amd64 (the default).

String

controlPlane.hyperthreading

Whether to enable or disable simultaneous multithreading, or hyperthreading, on control plane machines. By default, simultaneous multithreading is enabled to increase the performance of your machines' cores.

Important

If you disable simultaneous multithreading, ensure that your capacity planning accounts for the dramatically decreased machine performance.

Enabled or Disabled

controlPlane.name

Required if you use controlPlane. The name of the machine pool.

master

controlPlane.platform

Required if you use controlPlane. Use this parameter to specify the cloud provider that hosts the control plane machines. This parameter value must match the compute.platform parameter value.

alibabacloud, aws, azure, gcp, ibmcloud, openstack, ovirt, vsphere, or {}

controlPlane.replicas

The number of control plane machines to provision.

The only supported value is 3, which is the default value.

credentialsMode

The Cloud Credential Operator (CCO) mode. If no mode is specified, the CCO dynamically tries to determine the capabilities of the provided credentials, with a preference for mint mode on the platforms where multiple modes are supported.

Note

Not all CCO modes are supported for all cloud providers. For more information on CCO modes, see the Cloud Credential Operator entry in the Cluster Operators reference content.

Note

If your AWS account has service control policies (SCP) enabled, you must configure the credentialsMode parameter to Mint, Passthrough or Manual.

Mint, Passthrough, Manual or an empty string ("").

fips

Enable or disable FIPS mode. The default is false (disabled). If FIPS mode is enabled, the Red Hat Enterprise Linux CoreOS (RHCOS) machines that OpenShift Container Platform runs on bypass the default Kubernetes cryptography suite and use the cryptography modules that are provided with RHCOS instead.

Important

To enable FIPS mode for your cluster, you must run the installation program from a Red Hat Enterprise Linux (RHEL) computer configured to operate in FIPS mode. For more information about configuring FIPS mode on RHEL, see Installing the system in FIPS mode. The use of FIPS validated or Modules In Process cryptographic libraries is only supported on OpenShift Container Platform deployments on the x86_64 architecture.

Note

If you are using Azure File storage, you cannot enable FIPS mode.

false or true

imageContentSources

Sources and repositories for the release-image content.

Array of objects. Includes a source and, optionally, mirrors, as described in the following rows of this table.

imageContentSources.source

Required if you use imageContentSources. Specify the repository that users refer to, for example, in image pull specifications.

String

imageContentSources.mirrors

Specify one or more repositories that may also contain the same images.

Array of strings

publish

How to publish or expose the user-facing endpoints of your cluster, such as the Kubernetes API, OpenShift routes.

Internal or External. The default value is External.

Setting this field to Internal is not supported on non-cloud platforms and IBM Cloud VPC.

Important

If the value of the field is set to Internal, the cluster will become non-functional. For more information, refer to BZ#1953035.

sshKey

The SSH key or keys to authenticate access your cluster machines.

Note

For production OpenShift Container Platform clusters on which you want to perform installation debugging or disaster recovery, specify an SSH key that your ssh-agent process uses.

One or more keys. For example:

sshKey:
  <key1>
  <key2>
  <key3>
4.6.5.2.4. Additional Alibaba Cloud configuration parameters

Additional Alibaba Cloud configuration parameters are described in the following table. The alibabacloud parameters are the configuration used when installing on Alibaba Cloud. The defaultMachinePlatform parameters are the default configuration used when installing on Alibaba Cloud for machine pools that do not define their own platform configuration.

These parameters apply to both compute machines and control plane machines where specified.

Note

If defined, the parameters compute.platform.alibabacloud and controlPlane.platform.alibabacloud will overwrite platform.alibabacloud.defaultMachinePlatform settings for compute machines and control plane machines respectively.

Table 4.18. Optional Alibaba Cloud parameters
ParameterDescriptionValues

compute.platform.alibabacloud.imageID

The imageID used to create the ECS instance. ImageID must belong to the same region as the cluster.

String.

compute.platform.alibabacloud.instanceType

InstanceType defines the ECS instance type. Example: ecs.g6.large

String.

compute.platform.alibabacloud.systemDiskCategory

Defines the category of the system disk. Examples: cloud_efficiency,cloud_essd

String.

compute.platform.alibabacloud.systemDisksize

Defines the size of the system disk in gibibytes (GiB).

Integer.

compute.platform.alibabacloud.zones

The list of availability zones that can be used. Examples: cn-hangzhou-h, cn-hangzhou-j

String list.

controlPlane.platform.alibabacloud.imageID

The imageID used to create the ECS instance. ImageID must belong to the same region as the cluster.

String.

controlPlane.platform.alibabacloud.instanceType

InstanceType defines the ECS instance type. Example: ecs.g6.xlarge

String.

controlPlane.platform.alibabacloud.systemDiskCategory

Defines the category of the system disk. Examples: cloud_efficiency,cloud_essd

String.

controlPlane.platform.alibabacloud.systemDisksize

Defines the size of the system disk in gibibytes (GiB).

Integer.

controlPlane.platform.alibabacloud.zones

The list of availability zones that can be used. Examples: cn-hangzhou-h, cn-hangzhou-j

String list.

platform.alibabacloud.region

Required.The Alibaba Cloud region where the cluster will be created.

String.

platform.alibabacloud.resourceGroupID

The ID of an already existing resource group where the cluster will be installed. If empty, the installer will create a new resource group for the cluster.

String.

platform.alibabacloud.tags

Additional keys and values to apply to all Alibaba Cloud resources created for the cluster.

Object.

platform.alibabacloud.vpcID

The ID of an already existing VPC where the cluster should be installed. If empty, the installer will create a new VPC for the cluster.

String.

platform.alibabacloud.vswitchIDs

The ID list of already existing VSwitches where cluster resources will be created. The existing VSwitches can only be used when also using existing VPC. If empty, the installer will create new VSwitches for the cluster.

String list.

platform.alibabacloud.defaultMachinePlatform.imageID

For both compute machines and control plane machines, the image ID that should be used to create ECS instance. If set, the image ID should belong to the same region as the cluster.

String.

platform.alibabacloud.defaultMachinePlatform.instanceType

For both compute machines and control plane machines, the ECS instance type used to create the ECS instance. Example: ecs.g6.xlarge

String.

platform.alibabacloud.defaultMachinePlatform.systemDiskCategory

For both compute machines and control plane machines, the category of the system disk. Examples: cloud_efficiency, cloud_essd.

String, for example "", cloud_efficiency, cloud_essd.

platform.alibabacloud.defaultMachinePlatform.systemDiskSize

For both compute machines and control plane machines, the size of the system disk in gibibytes (GiB). The minimum is 120.

Integer.

platform.alibabacloud.defaultMachinePlatform.zones

For both compute machines and control plane machines, the list of availability zones that can be used. Examples: cn-hangzhou-h, cn-hangzhou-j

String list.

platform.alibabacloud.privateZoneID

The ID of an existing private zone into which to add DNS records for the cluster’s internal API. An existing private zone can only be used when also using existing VPC. The private zone must be associated with the VPC containing the subnets. Leave the private zone unset to have the installer create the private zone on your behalf.

String.

4.6.5.3. Sample customized install-config.yaml file for Alibaba Cloud

You can customize the installation configuration file (install-config.yaml) to specify more details about your cluster’s platform or modify the values of the required parameters.

apiVersion: v1
baseDomain: alicloud-dev.devcluster.openshift.com
credentialsMode: Manual
compute:
- architecture: amd64
  hyperthreading: Enabled
  name: worker
  platform: {}
  replicas: 3
controlPlane:
  architecture: amd64
  hyperthreading: Enabled
  name: master
  platform: {}
  replicas: 3
metadata:
  creationTimestamp: null
  name: test-cluster 1
 networking:
  clusterNetwork:
  - cidr: 10.128.0.0/14
    hostPrefix: 23
  machineNetwork:
  - cidr: 10.0.0.0/16
  networkType: OpenShiftSDN 2
  serviceNetwork:
  - 172.30.0.0/16
platform:
  alibabacloud:
    defaultMachinePlatform: 3
      instanceType: ecs.g6.xlarge
      systemDiskCategory: cloud_efficiency
      systemDiskSize: 200
    region: ap-southeast-1 4
    resourceGroupID: rg-acfnw6j3hyai 5
    vpcID: vpc-0xifdjerdibmaqvtjob2b
    vswitchIDs: 6
    - vsw-0xi8ycgwc8wv5rhviwdq5
    - vsw-0xiy6v3z2tedv009b4pz2
publish: External
pullSecret: '{"auths": {"cloud.openshift.com": {"auth": ... }' 7
sshKey: |
  ssh-rsa AAAA... 8
1
Required. The installation program prompts you for a cluster name.
2
The cluster network plugin to install. The supported values are OVNKubernetes and OpenShiftSDN. The default value is OVNKubernetes.
3
Optional. Specify parameters for machine pools that do not define their own platform configuration.
4
Required. The installation program prompts you for the region to deploy the cluster to.
5
Optional. Specify an existing resource group where the cluster should be installed.
7
Required. The installation program prompts you for the pull secret.
8
Optional. The installation program prompts you for the SSH key value that you use to access the machines in your cluster.
6
Optional. These are example vswitchID values.

4.6.5.4. Generating the required installation manifests

You must generate the Kubernetes manifest and Ignition config files that the cluster needs to configure the machines.

Procedure

  1. Generate the manifests by running the following command from the directory that contains the installation program:

    $ openshift-install create manifests --dir <installation_directory>

    where:

    <installation_directory>
    Specifies the directory in which the installation program creates files.

4.6.5.5. Configuring the Cloud Credential Operator utility

To create and manage cloud credentials from outside of the cluster when the Cloud Credential Operator (CCO) is operating in manual mode, extract and prepare the CCO utility (ccoctl) binary.

Note

The ccoctl utility is a Linux binary that must run in a Linux environment.

Prerequisites

  • You have access to an OpenShift Container Platform account with cluster administrator access.
  • You have installed the OpenShift CLI (oc).

Procedure

  1. Obtain the OpenShift Container Platform release image:

    $ RELEASE_IMAGE=$(./openshift-install version | awk '/release image/ {print $3}')
  2. Get the CCO container image from the OpenShift Container Platform release image:

    $ CCO_IMAGE=$(oc adm release info --image-for='cloud-credential-operator' $RELEASE_IMAGE)
    Note

    Ensure that the architecture of the $RELEASE_IMAGE matches the architecture of the environment in which you will use the ccoctl tool.

  3. Extract the ccoctl binary from the CCO container image within the OpenShift Container Platform release image:

    $ oc image extract $CCO_IMAGE --file="/usr/bin/ccoctl" -a ~/.pull-secret
  4. Change the permissions to make ccoctl executable:

    $ chmod 775 ccoctl

Verification

  • To verify that ccoctl is ready to use, display the help file:

    $ ccoctl --help

    Output of ccoctl --help

    OpenShift credentials provisioning tool
    
    Usage:
      ccoctl [command]
    
    Available Commands:
      alibabacloud Manage credentials objects for alibaba cloud
      aws          Manage credentials objects for AWS cloud
      gcp          Manage credentials objects for Google cloud
      help         Help about any command
      ibmcloud     Manage credentials objects for IBM Cloud
    
    Flags:
      -h, --help   help for ccoctl
    
    Use "ccoctl [command] --help" for more information about a command.

4.6.5.6. Creating credentials for OpenShift Container Platform components with the ccoctl tool

You can use the OpenShift Container Platform Cloud Credential Operator (CCO) utility to automate the creation of Alibaba Cloud RAM users and policies for each in-cluster component.

Note

By default, ccoctl creates objects in the directory in which the commands are run. To create the objects in a different directory, use the --output-dir flag. This procedure uses <path_to_ccoctl_output_dir> to refer to this directory.

Prerequisites

You must have:

  • Extracted and prepared the ccoctl binary.
  • Created a RAM user with sufficient permission to create the OpenShift Container Platform cluster.
  • Added the AccessKeyID (access_key_id) and AccessKeySecret (access_key_secret) of that RAM user into the ~/.alibabacloud/credentials file on your local computer.

Procedure

  1. Set the $RELEASE_IMAGE variable by running the following command:

    $ RELEASE_IMAGE=$(./openshift-install version | awk '/release image/ {print $3}')
  2. Extract the list of CredentialsRequest objects from the OpenShift Container Platform release image by running the following command:

    $ oc adm release extract \
    --credentials-requests \
    --cloud=alibabacloud \
    --to=<path_to_directory_with_list_of_credentials_requests>/credrequests \ 1
    $RELEASE_IMAGE
    1
    credrequests is the directory where the list of CredentialsRequest objects is stored. This command creates the directory if it does not exist.
    Note

    This command can take a few moments to run.

  3. If your cluster uses cluster capabilities to disable one or more optional components, delete the CredentialsRequest custom resources for any disabled components.

    Example credrequests directory contents for OpenShift Container Platform 4.12 on Alibaba Cloud

    0000_30_machine-api-operator_00_credentials-request.yaml 1
    0000_50_cluster-image-registry-operator_01-registry-credentials-request-alibaba.yaml 2
    0000_50_cluster-ingress-operator_00-ingress-credentials-request.yaml 3
    0000_50_cluster-storage-operator_03_credentials_request_alibaba.yaml 4

    1
    The Machine API Operator CR is required.
    2
    The Image Registry Operator CR is required.
    3
    The Ingress Operator CR is required.
    4
    The Storage Operator CR is an optional component and might be disabled in your cluster.
  4. Use the ccoctl tool to process all CredentialsRequest objects in the credrequests directory:

    1. Run the following command to use the tool:

      $ ccoctl alibabacloud create-ram-users \
      --name <name> \
      --region=<alibaba_region> \
      --credentials-requests-dir=<path_to_directory_with_list_of_credentials_requests>/credrequests \
      --output-dir=<path_to_ccoctl_output_dir>

      where:

      • <name> is the name used to tag any cloud resources that are created for tracking.
      • <alibaba_region> is the Alibaba Cloud region in which cloud resources will be created.
      • <path_to_directory_with_list_of_credentials_requests>/credrequests is the directory containing the files for the component CredentialsRequest objects.
      • <path_to_ccoctl_output_dir> is the directory where the generated component credentials secrets will be placed.
      Note

      If your cluster uses Technology Preview features that are enabled by the TechPreviewNoUpgrade feature set, you must include the --enable-tech-preview parameter.

      Example output

      2022/02/11 16:18:26 Created RAM User: user1-alicloud-openshift-machine-api-alibabacloud-credentials
      2022/02/11 16:18:27 Ready for creating new ram policy user1-alicloud-openshift-machine-api-alibabacloud-credentials-policy-policy
      2022/02/11 16:18:27 RAM policy user1-alicloud-openshift-machine-api-alibabacloud-credentials-policy-policy has created
      2022/02/11 16:18:28 Policy user1-alicloud-openshift-machine-api-alibabacloud-credentials-policy-policy has attached on user user1-alicloud-openshift-machine-api-alibabacloud-credentials
      2022/02/11 16:18:29 Created access keys for RAM User: user1-alicloud-openshift-machine-api-alibabacloud-credentials
      2022/02/11 16:18:29 Saved credentials configuration to: user1-alicloud/manifests/openshift-machine-api-alibabacloud-credentials-credentials.yaml
      ...

      Note

      A RAM user can have up to two AccessKeys at the same time. If you run ccoctl alibabacloud create-ram-users more than twice, the previous generated manifests secret becomes stale and you must reapply the newly generated secrets.

    2. Verify that the OpenShift Container Platform secrets are created:

      $ ls <path_to_ccoctl_output_dir>/manifests

      Example output:

      openshift-cluster-csi-drivers-alibaba-disk-credentials-credentials.yaml
      openshift-image-registry-installer-cloud-credentials-credentials.yaml
      openshift-ingress-operator-cloud-credentials-credentials.yaml
      openshift-machine-api-alibabacloud-credentials-credentials.yaml

      You can verify that the RAM users and policies are created by querying Alibaba Cloud. For more information, refer to Alibaba Cloud documentation on listing RAM users and policies.

  5. Copy the generated credential files to the target manifests directory:

    $ cp ./<path_to_ccoctl_output_dir>/manifests/*credentials.yaml ./<path_to_installation>dir>/manifests/

    where:

    <path_to_ccoctl_output_dir>
    Specifies the directory created by the ccoctl alibabacloud create-ram-users command.
    <path_to_installation_dir>
    Specifies the directory in which the installation program creates files.

4.6.6. Deploying the cluster

You can install OpenShift Container Platform on a compatible cloud platform.

Important

You can run the create cluster command of the installation program only once, during initial installation.

Prerequisites

  • Configure an account with the cloud platform that hosts your cluster.
  • Obtain the OpenShift Container Platform installation program and the pull secret for your cluster.

Procedure

  1. Change to the directory that contains the installation program and initialize the cluster deployment:

    $ ./openshift-install create cluster --dir <installation_directory> \ 1
        --log-level=info 2
    1
    For <installation_directory>, specify the location of your customized ./install-config.yaml file.
    2
    To view different installation details, specify warn, debug, or error instead of info.
    Note

    If the cloud provider account that you configured on your host does not have sufficient permissions to deploy the cluster, the installation process stops, and the missing permissions are displayed.

    When the cluster deployment completes, directions for accessing your cluster, including a link to its web console and credentials for the kubeadmin user, display in your terminal.

    Example output

    ...
    INFO Install complete!
    INFO To access the cluster as the system:admin user when using 'oc', run 'export KUBECONFIG=/home/myuser/install_dir/auth/kubeconfig'
    INFO Access the OpenShift web-console here: https://console-openshift-console.apps.mycluster.example.com
    INFO Login to the console with user: "kubeadmin", and password: "4vYBz-Ee6gm-ymBZj-Wt5AL"
    INFO Time elapsed: 36m22s

    Note

    The cluster access and credential information also outputs to <installation_directory>/.openshift_install.log when an installation succeeds.

    Important
    • The Ignition config files that the installation program generates contain certificates that expire after 24 hours, which are then renewed at that time. If the cluster is shut down before renewing the certificates and the cluster is later restarted after the 24 hours have elapsed, the cluster automatically recovers the expired certificates. The exception is that you must manually approve the pending node-bootstrapper certificate signing requests (CSRs) to recover kubelet certificates. See the documentation for Recovering from expired control plane certificates for more information.
    • It is recommended that you use Ignition config files within 12 hours after they are generated because the 24-hour certificate rotates from 16 to 22 hours after the cluster is installed. By using the Ignition config files within 12 hours, you can avoid installation failure if the certificate update runs during installation.
    Important

    You must not delete the installation program or the files that the installation program creates. Both are required to delete the cluster.

4.6.7. Installing the OpenShift CLI by downloading the binary

You can install the OpenShift CLI (oc) to interact with OpenShift Container Platform from a command-line interface. You can install oc on Linux, Windows, or macOS.

Important

If you installed an earlier version of oc, you cannot use it to complete all of the commands in OpenShift Container Platform 4.10. Download and install the new version of oc.

Installing the OpenShift CLI on Linux

You can install the OpenShift CLI (oc) binary on Linux by using the following procedure.

Procedure

  1. Navigate to the OpenShift Container Platform downloads page on the Red Hat Customer Portal.
  2. Select the appropriate version in the Version drop-down menu.
  3. Click Download Now next to the OpenShift v4.10 Linux Client entry and save the file.
  4. Unpack the archive:

    $ tar xvf <file>
  5. Place the oc binary in a directory that is on your PATH.

    To check your PATH, execute the following command:

    $ echo $PATH

After you install the OpenShift CLI, it is available using the oc command:

$ oc <command>
Installing the OpenShift CLI on Windows

You can install the OpenShift CLI (oc) binary on Windows by using the following procedure.

Procedure

  1. Navigate to the OpenShift Container Platform downloads page on the Red Hat Customer Portal.
  2. Select the appropriate version in the Version drop-down menu.
  3. Click Download Now next to the OpenShift v4.10 Windows Client entry and save the file.
  4. Unzip the archive with a ZIP program.
  5. Move the oc binary to a directory that is on your PATH.

    To check your PATH, open the command prompt and execute the following command:

    C:\> path

After you install the OpenShift CLI, it is available using the oc command:

C:\> oc <command>
Installing the OpenShift CLI on macOS

You can install the OpenShift CLI (oc) binary on macOS by using the following procedure.

Procedure

  1. Navigate to the OpenShift Container Platform downloads page on the Red Hat Customer Portal.
  2. Select the appropriate version in the Version drop-down menu.
  3. Click Download Now next to the OpenShift v4.10 MacOSX Client entry and save the file.
  4. Unpack and unzip the archive.
  5. Move the oc binary to a directory on your PATH.

    To check your PATH, open a terminal and execute the following command:

    $ echo $PATH

After you install the OpenShift CLI, it is available using the oc command:

$ oc <command>

4.6.8. Logging in to the cluster by using the CLI

You can log in to your cluster as a default system user by exporting the cluster kubeconfig file. The kubeconfig file contains information about the cluster that is used by the CLI to connect a client to the correct cluster and API server. The file is specific to a cluster and is created during OpenShift Container Platform installation.

Prerequisites

  • You deployed an OpenShift Container Platform cluster.
  • You installed the oc CLI.

Procedure

  1. Export the kubeadmin credentials:

    $ export KUBECONFIG=<installation_directory>/auth/kubeconfig 1
    1
    For <installation_directory>, specify the path to the directory that you stored the installation files in.
  2. Verify you can run oc commands successfully using the exported configuration:

    $ oc whoami

    Example output

    system:admin

4.6.9. Logging in to the cluster by using the web console

The kubeadmin user exists by default after an OpenShift Container Platform installation. You can log in to your cluster as the kubeadmin user by using the OpenShift Container Platform web console.

Prerequisites

  • You have access to the installation host.
  • You completed a cluster installation and all cluster Operators are available.

Procedure

  1. Obtain the password for the kubeadmin user from the kubeadmin-password file on the installation host:

    $ cat <installation_directory>/auth/kubeadmin-password
    Note

    Alternatively, you can obtain the kubeadmin password from the <installation_directory>/.openshift_install.log log file on the installation host.

  2. List the OpenShift Container Platform web console route:

    $ oc get routes -n openshift-console | grep 'console-openshift'
    Note

    Alternatively, you can obtain the OpenShift Container Platform route from the <installation_directory>/.openshift_install.log log file on the installation host.

    Example output

    console     console-openshift-console.apps.<cluster_name>.<base_domain>            console     https   reencrypt/Redirect   None

  3. Navigate to the route detailed in the output of the preceding command in a web browser and log in as the kubeadmin user.

4.6.10. Telemetry access for OpenShift Container Platform

In OpenShift Container Platform 4.10, the Telemetry service, which runs by default to provide metrics about cluster health and the success of updates, requires internet access. If your cluster is connected to the internet, Telemetry runs automatically, and your cluster is registered to OpenShift Cluster Manager.

After you confirm that your OpenShift Cluster Manager inventory is correct, either maintained automatically by Telemetry or manually by using OpenShift Cluster Manager, use subscription watch to track your OpenShift Container Platform subscriptions at the account or multi-cluster level.

Additional resources

4.6.11. Next steps

4.7. Uninstalling a cluster on Alibaba Cloud

You can remove a cluster that you deployed to Alibaba Cloud.

4.7.1. Removing a cluster that uses installer-provisioned infrastructure

You can remove a cluster that uses installer-provisioned infrastructure from your cloud.

Note

After uninstallation, check your cloud provider for any resources not removed properly, especially with User Provisioned Infrastructure (UPI) clusters. There might be resources that the installer did not create or that the installer is unable to access.

Prerequisites

  • Have a copy of the installation program that you used to deploy the cluster.
  • Have the files that the installation program generated when you created your cluster.

Procedure

  1. From the directory that contains the installation program on the computer that you used to install the cluster, run the following command:

    $ ./openshift-install destroy cluster \
    --dir <installation_directory> --log-level info 1 2
    1
    For <installation_directory>, specify the path to the directory that you stored the installation files in.
    2
    To view different details, specify warn, debug, or error instead of info.
    Note

    You must specify the directory that contains the cluster definition files for your cluster. The installation program requires the metadata.json file in this directory to delete the cluster.

  1. Optional: Delete the <installation_directory> directory and the OpenShift Container Platform installation program.
Red Hat logoGithubRedditYoutubeTwitter

Learn

Try, buy, & sell

Communities

About Red Hat Documentation

We help Red Hat users innovate and achieve their goals with our products and services with content they can trust.

Making open source more inclusive

Red Hat is committed to replacing problematic language in our code, documentation, and web properties. For more details, see the Red Hat Blog.

About Red Hat

We deliver hardened solutions that make it easier for enterprises to work across platforms and environments, from the core datacenter to the network edge.

© 2024 Red Hat, Inc.