Search

Post-installation configuration

download PDF
OpenShift Container Platform 4.11

Day 2 operations for OpenShift Container Platform

Red Hat OpenShift Documentation Team

Abstract

This document provides instructions and guidance on post installation activities for OpenShift Container Platform.

Chapter 1. Postinstallation configuration overview

After installing OpenShift Container Platform, a cluster administrator can configure and customize the following components:

  • Machine
  • Bare metal
  • Cluster
  • Node
  • Network
  • Storage
  • Users
  • Alerts and notifications

1.1. Configuration tasks to perform after installation

Cluster administrators can perform the following postinstallation configuration tasks:

  • Configure operating system features: Machine Config Operator (MCO) manages MachineConfig objects. By using MCO, you can perform the following tasks on an OpenShift Container Platform cluster:

    • Configure nodes by using MachineConfig objects
    • Configure MCO-related custom resources
  • Configure bare metal nodes: The Bare Metal Operator (BMO) implements a Kubernetes API for managing bare metal hosts. It maintains an inventory of available bare metal hosts as instances of the BareMetalHost Custom Resource Definition (CRD). The Bare Metal Operator can:

    • Inspect the host’s hardware details and report them on the corresponding BareMetalHost. This includes information about CPUs, RAM, disks, NICs, and more.
    • Inspect the host’s firmware and configure BIOS settings.
    • Provision hosts with a desired image.
    • Clean a host’s disk contents before or after provisioning.
  • Configure cluster features: As a cluster administrator, you can modify the configuration resources of the major features of an OpenShift Container Platform cluster. These features include:

    • Image registry
    • Networking configuration
    • Image build behavior
    • Identity provider
    • The etcd configuration
    • Machine set creation to handle the workloads
    • Cloud provider credential management
  • Configure cluster components to be private: By default, the installation program provisions OpenShift Container Platform by using a publicly accessible DNS and endpoints. If you want your cluster to be accessible only from within an internal network, configure the following components to be private:

    • DNS
    • Ingress Controller
    • API server
  • Perform node operations: By default, OpenShift Container Platform uses Red Hat Enterprise Linux CoreOS (RHCOS) compute machines. As a cluster administrator, you can perform the following operations with the machines in your OpenShift Container Platform cluster:

    • Add and remove compute machines
    • Add and remove taints and tolerations to the nodes
    • Configure the maximum number of pods per node
    • Enable Device Manager
  • Configure network: After installing OpenShift Container Platform, you can configure the following:

    • Ingress cluster traffic
    • Node port service range
    • Network policy
    • Enabling the cluster-wide proxy
  • Configure storage: By default, containers operate using ephemeral storage or transient local storage. The ephemeral storage has a lifetime limitation. TO store the data for a long time, you must configure persistent storage. You can configure storage by using one of the following methods:

    • Dynamic provisioning: You can dynamically provision storage on demand by defining and creating storage classes that control different levels of storage, including storage access.
    • Static provisioning: You can use Kubernetes persistent volumes to make existing storage available to a cluster. Static provisioning can support various device configurations and mount options.
  • Configure users: OAuth access tokens allow users to authenticate themselves to the API. As a cluster administrator, you can configure OAuth to perform the following tasks:
  • Specify an identity provider
  • Use role-based access control to define and supply permissions to users
  • Install an Operator from OperatorHub
  • Manage alerts and notifications: By default, firing alerts are displayed on the Alerting UI of the web console. You can also configure OpenShift Container Platform to send alert notifications to external systems.

Chapter 2. Configuring a private cluster

After you install an OpenShift Container Platform version 4.11 cluster, you can set some of its core components to be private.

2.1. About private clusters

By default, OpenShift Container Platform is provisioned using publicly-accessible DNS and endpoints. You can set the DNS, Ingress Controller, and API server to private after you deploy your private cluster.

Important

If the cluster has any public subnets, load balancer services created by administrators might be publicly accessible. To ensure cluster security, verify that these services are explicitly annotated as private.

DNS

If you install OpenShift Container Platform on installer-provisioned infrastructure, the installation program creates records in a pre-existing public zone and, where possible, creates a private zone for the cluster’s own DNS resolution. In both the public zone and the private zone, the installation program or cluster creates DNS entries for *.apps, for the Ingress object, and api, for the API server.

The *.apps records in the public and private zone are identical, so when you delete the public zone, the private zone seamlessly provides all DNS resolution for the cluster.

Ingress Controller

Because the default Ingress object is created as public, the load balancer is internet-facing and in the public subnets.

The Ingress Operator generates a default certificate for an Ingress Controller to serve as a placeholder until you configure a custom default certificate. Do not use Operator-generated default certificates in production clusters. The Ingress Operator does not rotate its own signing certificate or the default certificates that it generates. Operator-generated default certificates are intended as placeholders for custom default certificates that you configure.

API server

By default, the installation program creates appropriate network load balancers for the API server to use for both internal and external traffic.

On Amazon Web Services (AWS), separate public and private load balancers are created. The load balancers are identical except that an additional port is available on the internal one for use within the cluster. Although the installation program automatically creates or destroys the load balancer based on API server requirements, the cluster does not manage or maintain them. As long as you preserve the cluster’s access to the API server, you can manually modify or move the load balancers. For the public load balancer, port 6443 is open and the health check is configured for HTTPS against the /readyz path.

On Google Cloud Platform, a single load balancer is created to manage both internal and external API traffic, so you do not need to modify the load balancer.

On Microsoft Azure, both public and private load balancers are created. However, because of limitations in current implementation, you just retain both load balancers in a private cluster.

2.2. Setting DNS to private

After you deploy a cluster, you can modify its DNS to use only a private zone.

Procedure

  1. Review the DNS custom resource for your cluster:

    $ oc get dnses.config.openshift.io/cluster -o yaml

    Example output

    apiVersion: config.openshift.io/v1
    kind: DNS
    metadata:
      creationTimestamp: "2019-10-25T18:27:09Z"
      generation: 2
      name: cluster
      resourceVersion: "37966"
      selfLink: /apis/config.openshift.io/v1/dnses/cluster
      uid: 0e714746-f755-11f9-9cb1-02ff55d8f976
    spec:
      baseDomain: <base_domain>
      privateZone:
        tags:
          Name: <infrastructure_id>-int
          kubernetes.io/cluster/<infrastructure_id>: owned
      publicZone:
        id: Z2XXXXXXXXXXA4
    status: {}

    Note that the spec section contains both a private and a public zone.

  2. Patch the DNS custom resource to remove the public zone:

    $ oc patch dnses.config.openshift.io/cluster --type=merge --patch='{"spec": {"publicZone": null}}'
    dns.config.openshift.io/cluster patched

    Because the Ingress Controller consults the DNS definition when it creates Ingress objects, when you create or modify Ingress objects, only private records are created.

    Important

    DNS records for the existing Ingress objects are not modified when you remove the public zone.

  3. Optional: Review the DNS custom resource for your cluster and confirm that the public zone was removed:

    $ oc get dnses.config.openshift.io/cluster -o yaml

    Example output

    apiVersion: config.openshift.io/v1
    kind: DNS
    metadata:
      creationTimestamp: "2019-10-25T18:27:09Z"
      generation: 2
      name: cluster
      resourceVersion: "37966"
      selfLink: /apis/config.openshift.io/v1/dnses/cluster
      uid: 0e714746-f755-11f9-9cb1-02ff55d8f976
    spec:
      baseDomain: <base_domain>
      privateZone:
        tags:
          Name: <infrastructure_id>-int
          kubernetes.io/cluster/<infrastructure_id>-wfpg4: owned
    status: {}

2.3. Setting the Ingress Controller to private

After you deploy a cluster, you can modify its Ingress Controller to use only a private zone.

Procedure

  1. Modify the default Ingress Controller to use only an internal endpoint:

    $ oc replace --force --wait --filename - <<EOF
    apiVersion: operator.openshift.io/v1
    kind: IngressController
    metadata:
      namespace: openshift-ingress-operator
      name: default
    spec:
      endpointPublishingStrategy:
        type: LoadBalancerService
        loadBalancer:
          scope: Internal
    EOF

    Example output

    ingresscontroller.operator.openshift.io "default" deleted
    ingresscontroller.operator.openshift.io/default replaced

    The public DNS entry is removed, and the private zone entry is updated.

2.4. Restricting the API server to private

After you deploy a cluster to Amazon Web Services (AWS) or Microsoft Azure, you can reconfigure the API server to use only the private zone.

Prerequisites

  • Install the OpenShift CLI (oc).
  • Have access to the web console as a user with admin privileges.

Procedure

  1. In the web portal or console for AWS or Azure, take the following actions:

    1. Locate and delete appropriate load balancer component.

      • For AWS, delete the external load balancer. The API DNS entry in the private zone already points to the internal load balancer, which uses an identical configuration, so you do not need to modify the internal load balancer.
      • For Azure, delete the api-internal rule for the load balancer.
    2. Delete the api.$clustername.$yourdomain DNS entry in the public zone.
  2. Remove the external load balancers:

    Important

    You can run the following steps only for an installer-provisioned infrastructure (IPI) cluster. For a user-provisioned infrastructure (UPI) cluster, you must manually remove or disable the external load balancers.

    1. From your terminal, list the cluster machines:

      $ oc get machine -n openshift-machine-api

      Example output

      NAME                            STATE     TYPE        REGION      ZONE         AGE
      lk4pj-master-0                  running   m4.xlarge   us-east-1   us-east-1a   17m
      lk4pj-master-1                  running   m4.xlarge   us-east-1   us-east-1b   17m
      lk4pj-master-2                  running   m4.xlarge   us-east-1   us-east-1a   17m
      lk4pj-worker-us-east-1a-5fzfj   running   m4.xlarge   us-east-1   us-east-1a   15m
      lk4pj-worker-us-east-1a-vbghs   running   m4.xlarge   us-east-1   us-east-1a   15m
      lk4pj-worker-us-east-1b-zgpzg   running   m4.xlarge   us-east-1   us-east-1b   15m

      You modify the control plane machines, which contain master in the name, in the following step.

    2. Remove the external load balancer from each control plane machine.

      1. Edit a control plane Machine object to remove the reference to the external load balancer:

        $ oc edit machines -n openshift-machine-api <master_name> 1
        1
        Specify the name of the control plane, or master, Machine object to modify.
      2. Remove the lines that describe the external load balancer, which are marked in the following example, and save and exit the object specification:

        ...
        spec:
          providerSpec:
            value:
            ...
              loadBalancers:
              - name: lk4pj-ext 1
                type: network 2
              - name: lk4pj-int
                type: network
        1 2
        Delete this line.
      3. Repeat this process for each of the machines that contains master in the name.

2.4.1. Configuring the Ingress Controller endpoint publishing scope to Internal

When a cluster administrator installs a new cluster without specifying that the cluster is private, the default Ingress Controller is created with a scope set to External. Cluster administrators can change an External scoped Ingress Controller to Internal.

Prerequisites

  • You installed the oc CLI.

Procedure

  • To change an External scoped Ingress Controller to Internal, enter the following command:

    $ oc -n openshift-ingress-operator patch ingresscontrollers/default --type=merge --patch='{"spec":{"endpointPublishingStrategy":{"type":"LoadBalancerService","loadBalancer":{"scope":"Internal"}}}}'
  • To check the status of the Ingress Controller, enter the following command:

    $ oc -n openshift-ingress-operator get ingresscontrollers/default -o yaml
    • The Progressing status condition indicates whether you must take further action. For example, the status condition can indicate that you need to delete the service by entering the following command:

      $ oc -n openshift-ingress delete services/router-default

      If you delete the service, the Ingress Operator recreates it as Internal.

Chapter 3. Bare metal configuration

When deploying OpenShift Container Platform on bare metal hosts, there are times when you need to make changes to the host either before or after provisioning. This can include inspecting the host’s hardware, firmware, and firmware details. It can also include formatting disks or changing modifiable firmware settings.

3.1. About the Bare Metal Operator

Use the Bare Metal Operator (BMO) to provision, manage, and inspect bare-metal hosts in your cluster.

The BMO uses three resources to complete these tasks:

  • BareMetalHost
  • HostFirmwareSettings
  • FirmwareSchema

The BMO maintains an inventory of the physical hosts in the cluster by mapping each bare-metal host to an instance of the BareMetalHost custom resource definition. Each BareMetalHost resource features hardware, software, and firmware details. The BMO continually inspects the bare-metal hosts in the cluster to ensure each BareMetalHost resource accurately details the components of the corresponding host.

The BMO also uses the HostFirmwareSettings resource and the FirmwareSchema resource to detail firmware specifications for the bare-metal host.

The BMO interfaces with bare-metal hosts in the cluster by using the Ironic API service. The Ironic service uses the Baseboard Management Controller (BMC) on the host to interface with the machine.

Some common tasks you can complete by using the BMO include the following:

  • Provision bare-metal hosts to the cluster with a specific image
  • Format a host’s disk contents before provisioning or after deprovisioning
  • Turn on or off a host
  • Change firmware settings
  • View the host’s hardware details

3.1.1. Bare Metal Operator architecture

The Bare Metal Operator (BMO) uses three resources to provision, manage, and inspect bare-metal hosts in your cluster. The following diagram illustrates the architecture of these resources:

BMO architecture overview

BareMetalHost

The BareMetalHost resource defines a physical host and its properties. When you provision a bare-metal host to the cluster, you must define a BareMetalHost resource for that host. For ongoing management of the host, you can inspect the information in the BareMetalHost or update this information.

The BareMetalHost resource features provisioning information such as the following:

  • Deployment specifications such as the operating system boot image or the custom RAM disk
  • Provisioning state
  • Baseboard Management Controller (BMC) address
  • Desired power state

The BareMetalHost resource features hardware information such as the following:

  • Number of CPUs
  • MAC address of a NIC
  • Size of the host’s storage device
  • Current power state

HostFirmwareSettings

You can use the HostFirmwareSettings resource to retrieve and manage the firmware settings for a host. When a host moves to the Available state, the Ironic service reads the host’s firmware settings and creates the HostFirmwareSettings resource. There is a one-to-one mapping between the BareMetalHost resource and the HostFirmwareSettings resource.

You can use the HostFirmwareSettings resource to inspect the firmware specifications for a host or to update a host’s firmware specifications.

Note

You must adhere to the schema specific to the vendor firmware when you edit the spec field of the HostFirmwareSettings resource. This schema is defined in the read-only FirmwareSchema resource.

FirmwareSchema

Firmware settings vary among hardware vendors and host models. A FirmwareSchema resource is a read-only resource that contains the types and limits for each firmware setting on each host model. The data comes directly from the BMC by using the Ironic service. The FirmwareSchema resource enables you to identify valid values you can specify in the spec field of the HostFirmwareSettings resource.

A FirmwareSchema resource can apply to many BareMetalHost resources if the schema is the same.

3.2. About the BareMetalHost resource

Metal3 introduces the concept of the BareMetalHost resource, which defines a physical host and its properties. The BareMetalHost resource contains two sections:

  1. The BareMetalHost spec
  2. The BareMetalHost status

3.2.1. The BareMetalHost spec

The spec section of the BareMetalHost resource defines the desired state of the host.

Table 3.1. BareMetalHost spec
ParametersDescription

automatedCleaningMode

An interface to enable or disable automated cleaning during provisioning and de-provisioning. When set to disabled, it skips automated cleaning. When set to metadata, automated cleaning is enabled. The default setting is metadata.

bmc:
  address:
  credentialsName:
  disableCertificateVerification:

The bmc configuration setting contains the connection information for the baseboard management controller (BMC) on the host. The fields are:

  • address: The URL for communicating with the host’s BMC controller.
  • credentialsName: A reference to a secret containing the username and password for the BMC.
  • disableCertificateVerification: A boolean to skip certificate validation when set to true.

bootMACAddress

The MAC address of the NIC used for provisioning the host.

bootMode

The boot mode of the host. It defaults to UEFI, but it can also be set to legacy for BIOS boot, or UEFISecureBoot.

consumerRef

A reference to another resource that is using the host. It could be empty if another resource is not currently using the host. For example, a Machine resource might use the host when the machine-api is using the host.

description

A human-provided string to help identify the host.

externallyProvisioned

A boolean indicating whether the host provisioning and deprovisioning are managed externally. When set:

  • Power status can still be managed using the online field.
  • Hardware inventory will be monitored, but no provisioning or deprovisioning operations are performed on the host.

firmware

Contains information about the BIOS configuration of bare metal hosts. Currently, firmware is only supported by iRMC, iDRAC, iLO4 and iLO5 BMCs. The sub fields are:

  • simultaneousMultithreadingEnabled: Allows a single physical processor core to appear as several logical processors. Valid settings are true or false.
  • sriovEnabled: SR-IOV support enables a hypervisor to create virtual instances of a PCI-express device, potentially increasing performance. Valid settings are true or false.
  • virtualizationEnabled: Supports the virtualization of platform hardware. Valid settings are true or false.
image:
  url:
  checksum:
  checksumType:
  format:

The image configuration setting holds the details for the image to be deployed on the host. Ironic requires the image fields. However, when the externallyProvisioned configuration setting is set to true and the external management doesn’t require power control, the fields can be empty. The fields are:

  • url: The URL of an image to deploy to the host.
  • checksum: The actual checksum or a URL to a file containing the checksum for the image at image.url.
  • checksumType: You can specify checksum algorithms. Currently image.checksumType only supports md5, sha256, and sha512. The default checksum type is md5.
  • format: This is the disk format of the image. It can be one of raw, qcow2, vdi, vmdk, live-iso or be left unset. Setting it to raw enables raw image streaming in the Ironic agent for that image. Setting it to live-iso enables iso images to live boot without deploying to disk, and it ignores the checksum fields.

networkData

A reference to the secret containing the network configuration data and its namespace, so that it can be attached to the host before the host boots to set up the network.

online

A boolean indicating whether the host should be powered on (true) or off (false). Changing this value will trigger a change in the power state of the physical host.

raid:
  hardwareRAIDVolumes:
  softwareRAIDVolumes:

(Optional) Contains the information about the RAID configuration for bare metal hosts. If not specified, it retains the current configuration.

Note

OpenShift Container Platform 4.11 supports hardware RAID for BMCs using the iRMC protocol only. OpenShift Container Platform 4.11 does not support software RAID.

See the following configuration settings:

  • hardwareRAIDVolumes: Contains the list of logical drives for hardware RAID, and defines the desired volume configuration in the hardware RAID. If you don’t specify rootDeviceHints, the first volume is the root volume. The sub-fields are:

    • level: The RAID level for the logical drive. The following levels are supported: 0,1,2,5,6,1+0,5+0,6+0.
    • name: The name of the volume as a string. It should be unique within the server. If not specified, the volume name will be auto-generated.
    • numberOfPhysicalDisks: The number of physical drives as an integer to use for the logical drove. Defaults to the minimum number of disk drives required for the particular RAID level.
    • physicalDisks: The list of names of physical disk drives as a string. This is an optional field. If specified, the controller field must be specified too.
    • controller: (Optional) The name of the RAID controller as a string to use in the hardware RAID volume.
    • rotational: If set to true, it will only select rotational disk drives. If set to false, it will only select solid-state and NVMe drives. If not set, it selects any drive types, which is the default behavior.
    • sizeGibibytes: The size of the logical drive as an integer to create in GiB. If unspecified or set to 0, it will use the maximum capacity of physical drive for the logical drive.
  • softwareRAIDVolumes: OpenShift Container Platform 4.11 does not support software RAID. The following information is for reference only. This configuration contains the list of logical disks for software RAID. If you don’t specify rootDeviceHints, the first volume is the root volume. If you set HardwareRAIDVolumes, this item will be invalid. Software RAIDs will always be deleted. The number of created software RAID devices must be 1 or 2. If there is only one software RAID device, it must be RAID-1. If there are two RAID devices, the first device must be RAID-1, while the RAID level for the second device can be 0, 1, or 1+0. The first RAID device will be the deployment device. Therefore, enforcing RAID-1 reduces the risk of a non-booting node in case of a device failure. The softwareRAIDVolume field defines the desired configuration of the volume in the software RAID. The sub-fields are:

    • level: The RAID level for the logical drive. The following levels are supported: 0,1,1+0.
    • physicalDisks: A list of device hints. The number of items should be greater than or equal to 2.
    • sizeGibibytes: The size of the logical disk drive as an integer to be created in GiB. If unspecified or set to 0, it will use the maximum capacity of physical drive for logical drive.

You can set the hardwareRAIDVolume as an empty slice to clear the hardware RAID configuration. For example:

spec:
   raid:
     hardwareRAIDVolume: []

If you receive an error message indicating that the driver does not support RAID, set the raid, hardwareRAIDVolumes or softwareRAIDVolumes to nil. You might need to ensure the host has a RAID controller.

rootDeviceHints:
  deviceName:
  hctl:
  model:
  vendor:
  serialNumber:
  minSizeGigabytes:
  wwn:
  wwnWithExtension:
  wwnVendorExtension:
  rotational:

The rootDeviceHints parameter enables provisioning of the RHCOS image to a particular device. It examines the devices in the order it discovers them, and compares the discovered values with the hint values. It uses the first discovered device that matches the hint value. The configuration can combine multiple hints, but a device must match all hints to get selected. The fields are:

  • deviceName: A string containing a Linux device name like /dev/vda. The hint must match the actual value exactly.
  • hctl: A string containing a SCSI bus address like 0:0:0:0. The hint must match the actual value exactly.
  • model: A string containing a vendor-specific device identifier. The hint can be a substring of the actual value.
  • vendor: A string containing the name of the vendor or manufacturer of the device. The hint can be a sub-string of the actual value.
  • serialNumber: A string containing the device serial number. The hint must match the actual value exactly.
  • minSizeGigabytes: An integer representing the minimum size of the device in gigabytes.
  • wwn: A string containing the unique storage identifier. The hint must match the actual value exactly.
  • wwnWithExtension: A string containing the unique storage identifier with the vendor extension appended. The hint must match the actual value exactly.
  • wwnVendorExtension: A string containing the unique vendor storage identifier. The hint must match the actual value exactly.
  • rotational: A boolean indicating whether the device should be a rotating disk (true) or not (false).

3.2.2. The BareMetalHost status

The BareMetalHost status represents the host’s current state, and includes tested credentials, current hardware details, and other information.

Table 3.2. BareMetalHost status
ParametersDescription

goodCredentials

A reference to the secret and its namespace holding the last set of baseboard management controller (BMC) credentials the system was able to validate as working.

errorMessage

Details of the last error reported by the provisioning backend, if any.

errorType

Indicates the class of problem that has caused the host to enter an error state. The error types are:

  • provisioned registration error: Occurs when the controller is unable to re-register an already provisioned host.
  • registration error: Occurs when the controller is unable to connect to the host’s baseboard management controller.
  • inspection error: Occurs when an attempt to obtain hardware details from the host fails.
  • preparation error: Occurs when cleaning fails.
  • provisioning error: Occurs when the controller fails to provision or deprovision the host.
  • power management error: Occurs when the controller is unable to modify the power state of the host.
  • detach error: Occurs when the controller is unable to detatch the host from the provisioner.
hardware:
  cpu
    arch:
    model:
    clockMegahertz:
    flags:
    count:

The hardware.cpu field details of the CPU(s) in the system. The fields include:

  • arch: The architecture of the CPU.
  • model: The CPU model as a string.
  • clockMegahertz: The speed in MHz of the CPU.
  • flags: The list of CPU flags. For example, 'mmx','sse','sse2','vmx' etc.
  • count: The number of CPUs available in the system.
hardware:
  firmware:

Contains BIOS firmware information. For example, the hardware vendor and version.

hardware:
  nics:
  - ip:
    name:
    mac:
    speedGbps:
    vlans:
    vlanId:
    pxe:

The hardware.nics field contains a list of network interfaces for the host. The fields include:

  • ip: The IP address of the NIC, if one was assigned when the discovery agent ran.
  • name: A string identifying the network device. For example, nic-1.
  • mac: The MAC address of the NIC.
  • speedGbps: The speed of the device in Gbps.
  • vlans: A list holding all the VLANs available for this NIC.
  • vlanId: The untagged VLAN ID.
  • pxe: Whether the NIC is able to boot using PXE.
hardware:
  ramMebibytes:

The host’s amount of memory in Mebibytes (MiB).

hardware:
  storage:
  - name:
    rotational:
    sizeBytes:
    serialNumber:

The hardware.storage field contains a list of storage devices available to the host. The fields include:

  • name: A string identifying the storage device. For example, disk 1 (boot).
  • rotational: Indicates whether the disk is rotational, and returns either true or false.
  • sizeBytes: The size of the storage device.
  • serialNumber: The device’s serial number.
hardware:
  systemVendor:
    manufacturer:
    productName:
    serialNumber:

Contains information about the host’s manufacturer, the productName, and the serialNumber.

lastUpdated

The timestamp of the last time the status of the host was updated.

operationalStatus

The status of the server. The status is one of the following:

  • OK: Indicates all the details for the host are known, correctly configured, working, and manageable.
  • discovered: Implies some of the host’s details are either not working correctly or missing. For example, the BMC address is known but the login credentials are not.
  • error: Indicates the system found some sort of irrecoverable error. Refer to the errorMessage field in the status section for more details.
  • delayed: Indicates that provisioning is delayed to limit simultaneous provisioning of multiple hosts.
  • detached: Indicates the host is marked unmanaged.

poweredOn

Boolean indicating whether the host is powered on.

provisioning:
  state:
  id:
  image:
  raid:
  firmware:
  rootDeviceHints:

The provisioning field contains values related to deploying an image to the host. The sub-fields include:

  • state: The current state of any ongoing provisioning operation. The states include:

    • <empty string>: There is no provisioning happening at the moment.
    • unmanaged: There is insufficient information available to register the host.
    • registering: The agent is checking the host’s BMC details.
    • match profile: The agent is comparing the discovered hardware details on the host against known profiles.
    • available: The host is available for provisioning. This state was previously known as ready.
    • preparing: The existing configuration will be removed, and the new configuration will be set on the host.
    • provisioning: The provisioner is writing an image to the host’s storage.
    • provisioned: The provisioner wrote an image to the host’s storage.
    • externally provisioned: Metal3 does not manage the image on the host.
    • deprovisioning: The provisioner is wiping the image from the host’s storage.
    • inspecting: The agent is collecting hardware details for the host.
    • deleting: The agent is deleting the from the cluster.
  • id: The unique identifier for the service in the underlying provisioning tool.
  • image: The image most recently provisioned to the host.
  • raid: The list of hardware or software RAID volumes recently set.
  • firmware: The BIOS configuration for the bare metal server.
  • rootDeviceHints: The root device selection instructions used for the most recent provisioning operation.

triedCredentials

A reference to the secret and its namespace holding the last set of BMC credentials that were sent to the provisioning backend.

3.3. Getting the BareMetalHost resource

The BareMetalHost resource contains the properties of a physical host. You must get the BareMetalHost resource for a physical host to review its properties.

Procedure

  1. Get the list of BareMetalHost resources:

    $ oc get bmh -n openshift-machine-api -o yaml
    Note

    You can use baremetalhost as the long form of bmh with oc get command.

  2. Get the list of hosts:

    $ oc get bmh -n openshift-machine-api
  3. Get the BareMetalHost resource for a specific host:

    $ oc get bmh <host_name> -n openshift-machine-api -o yaml

    Where <host_name> is the name of the host.

    Example output

    apiVersion: metal3.io/v1alpha1
    kind: BareMetalHost
    metadata:
      creationTimestamp: "2022-06-16T10:48:33Z"
      finalizers:
      - baremetalhost.metal3.io
      generation: 2
      name: openshift-worker-0
      namespace: openshift-machine-api
      resourceVersion: "30099"
      uid: 1513ae9b-e092-409d-be1b-ad08edeb1271
    spec:
      automatedCleaningMode: metadata
      bmc:
        address: redfish://10.46.61.19:443/redfish/v1/Systems/1
        credentialsName: openshift-worker-0-bmc-secret
        disableCertificateVerification: true
      bootMACAddress: 48:df:37:c7:f7:b0
      bootMode: UEFI
      consumerRef:
        apiVersion: machine.openshift.io/v1beta1
        kind: Machine
        name: ocp-edge-958fk-worker-0-nrfcg
        namespace: openshift-machine-api
      customDeploy:
        method: install_coreos
      hardwareProfile: unknown
      online: true
      rootDeviceHints:
        deviceName: /dev/sda
      userData:
        name: worker-user-data-managed
        namespace: openshift-machine-api
    status:
      errorCount: 0
      errorMessage: ""
      goodCredentials:
        credentials:
          name: openshift-worker-0-bmc-secret
          namespace: openshift-machine-api
        credentialsVersion: "16120"
      hardware:
        cpu:
          arch: x86_64
          clockMegahertz: 2300
          count: 64
          flags:
          - 3dnowprefetch
          - abm
          - acpi
          - adx
          - aes
          model: Intel(R) Xeon(R) Gold 5218 CPU @ 2.30GHz
        firmware:
          bios:
            date: 10/26/2020
            vendor: HPE
            version: U30
        hostname: openshift-worker-0
        nics:
        - mac: 48:df:37:c7:f7:b3
          model: 0x8086 0x1572
          name: ens1f3
        ramMebibytes: 262144
        storage:
        - hctl: "0:0:0:0"
          model: VK000960GWTTB
          name: /dev/sda
          sizeBytes: 960197124096
          type: SSD
          vendor: ATA
        systemVendor:
          manufacturer: HPE
          productName: ProLiant DL380 Gen10 (868703-B21)
          serialNumber: CZ200606M3
      hardwareProfile: unknown
      lastUpdated: "2022-06-16T11:41:42Z"
      operationalStatus: OK
      poweredOn: true
      provisioning:
        ID: 217baa14-cfcf-4196-b764-744e184a3413
        bootMode: UEFI
        customDeploy:
          method: install_coreos
        image:
          url: ""
        raid:
          hardwareRAIDVolumes: null
          softwareRAIDVolumes: []
        rootDeviceHints:
          deviceName: /dev/sda
        state: provisioned
      triedCredentials:
        credentials:
          name: openshift-worker-0-bmc-secret
          namespace: openshift-machine-api
        credentialsVersion: "16120"

3.4. About the HostFirmwareSettings resource

You can use the HostFirmwareSettings resource to retrieve and manage the BIOS settings for a host. When a host moves to the Available state, Ironic reads the host’s BIOS settings and creates the HostFirmwareSettings resource. The resource contains the complete BIOS configuration returned from the baseboard management controller (BMC). Whereas, the firmware field in the BareMetalHost resource returns three vendor-independent fields, the HostFirmwareSettings resource typically comprises many BIOS settings of vendor-specific fields per host.

The HostFirmwareSettings resource contains two sections:

  1. The HostFirmwareSettings spec.
  2. The HostFirmwareSettings status.

3.4.1. The HostFirmwareSettings spec

The spec section of the HostFirmwareSettings resource defines the desired state of the host’s BIOS, and it is empty by default. Ironic uses the settings in the spec.settings section to update the baseboard management controller (BMC) when the host is in the Preparing state. Use the FirmwareSchema resource to ensure that you do not send invalid name/value pairs to hosts. See "About the FirmwareSchema resource" for additional details.

Example

spec:
  settings:
    ProcTurboMode: Disabled1

1
In the foregoing example, the spec.settings section contains a name/value pair that will set the ProcTurboMode BIOS setting to Disabled.
Note

Integer parameters listed in the status section appear as strings. For example, "1". When setting integers in the spec.settings section, the values should be set as integers without quotes. For example, 1.

3.4.2. The HostFirmwareSettings status

The status represents the current state of the host’s BIOS.

Table 3.3. HostFirmwareSettings
ParametersDescription
status:
  conditions:
  - lastTransitionTime:
    message:
    observedGeneration:
    reason:
    status:
    type:

The conditions field contains a list of state changes. The sub-fields include:

  • lastTransitionTime: The last time the state changed.
  • message: A description of the state change.
  • observedGeneration: The current generation of the status. If metadata.generation and this field are not the same, the status.conditions might be out of date.
  • reason: The reason for the state change.
  • status: The status of the state change. The status can be True, False or Unknown.
  • type: The type of state change. The types are Valid and ChangeDetected.
status:
  schema:
    name:
    namespace:
    lastUpdated:

The FirmwareSchema for the firmware settings. The fields include:

  • name: The name or unique identifier referencing the schema.
  • namespace: The namespace where the schema is stored.
  • lastUpdated: The last time the resource was updated.
status:
  settings:

The settings field contains a list of name/value pairs of a host’s current BIOS settings.

3.5. Getting the HostFirmwareSettings resource

The HostFirmwareSettings resource contains the vendor-specific BIOS properties of a physical host. You must get the HostFirmwareSettings resource for a physical host to review its BIOS properties.

Procedure

  1. Get the detailed list of HostFirmwareSettings resources:

    $ oc get hfs -n openshift-machine-api -o yaml
    Note

    You can use hostfirmwaresettings as the long form of hfs with the oc get command.

  2. Get the list of HostFirmwareSettings resources:

    $ oc get hfs -n openshift-machine-api
  3. Get the HostFirmwareSettings resource for a particular host

    $ oc get hfs <host_name> -n openshift-machine-api -o yaml

    Where <host_name> is the name of the host.

3.6. Editing the HostFirmwareSettings resource

You can edit the HostFirmwareSettings of provisioned hosts.

Important

You can only edit hosts when they are in the provisioned state, excluding read-only values. You cannot edit hosts in the externally provisioned state.

Procedure

  1. Get the list of HostFirmwareSettings resources:

    $ oc get hfs -n openshift-machine-api
  2. Edit a host’s HostFirmwareSettings resource:

    $ oc edit hfs <host_name> -n openshift-machine-api

    Where <host_name> is the name of a provisioned host. The HostFirmwareSettings resource will open in the default editor for your terminal.

  3. Add name/value pairs to the spec.settings section:

    Example

    spec:
      settings:
        name: value 1

    1
    Use the FirmwareSchema resource to identify the available settings for the host. You cannot set values that are read-only.
  4. Save the changes and exit the editor.
  5. Get the host’s machine name:

     $ oc get bmh <host_name> -n openshift-machine name

    Where <host_name> is the name of the host. The machine name appears under the CONSUMER field.

  6. Annotate the machine to delete it from the machineset:

    $ oc annotate machine <machine_name> machine.openshift.io/cluster-api-delete-machine=yes -n openshift-machine-api

    Where <machine_name> is the name of the machine to delete.

  7. Get a list of nodes and count the number of worker nodes:

    $ oc get nodes
  8. Get the machineset:

    $ oc get machinesets -n openshift-machine-api
  9. Scale the machineset:

    $ oc scale machineset <machineset_name> -n openshift-machine-api --replicas=<n-1>

    Where <machineset_name> is the name of the machineset and <n-1> is the decremented number of worker nodes.

  10. When the host enters the Available state, scale up the machineset to make the HostFirmwareSettings resource changes take effect:

    $ oc scale machineset <machineset_name> -n openshift-machine-api --replicas=<n>

    Where <machineset_name> is the name of the machineset and <n> is the number of worker nodes.

3.7. Verifying the HostFirmware Settings resource is valid

When the user edits the spec.settings section to make a change to the HostFirmwareSetting(HFS) resource, the Bare Metal Operator (BMO) validates the change against the FimwareSchema resource, which is a read-only resource. If the setting is invalid, the BMO will set the Type value of the status.Condition setting to False and also generate an event and store it in the HFS resource. Use the following procedure to verify that the resource is valid.

Procedure

  1. Get a list of HostFirmwareSetting resources:

    $ oc get hfs -n openshift-machine-api
  2. Verify that the HostFirmwareSettings resource for a particular host is valid:

    $ oc describe hfs <host_name> -n openshift-machine-api

    Where <host_name> is the name of the host.

    Example output

    Events:
      Type    Reason            Age    From                                    Message
      ----    ------            ----   ----                                    -------
      Normal  ValidationFailed  2m49s  metal3-hostfirmwaresettings-controller  Invalid BIOS setting: Setting ProcTurboMode is invalid, unknown enumeration value - Foo

    Important

    If the response returns ValidationFailed, there is an error in the resource configuration and you must update the values to conform to the FirmwareSchema resource.

3.8. About the FirmwareSchema resource

BIOS settings vary among hardware vendors and host models. A FirmwareSchema resource is a read-only resource that contains the types and limits for each BIOS setting on each host model. The data comes directly from the BMC through Ironic. The FirmwareSchema enables you to identify valid values you can specify in the spec field of the HostFirmwareSettings resource. The FirmwareSchema resource has a unique identifier derived from its settings and limits. Identical host models use the same FirmwareSchema identifier. It is likely that multiple instances of HostFirmwareSettings use the same FirmwareSchema.

Table 3.4. FirmwareSchema specification
ParametersDescription
<BIOS_setting_name>
  attribute_type:
  allowable_values:
  lower_bound:
  upper_bound:
  min_length:
  max_length:
  read_only:
  unique:

The spec is a simple map consisting of the BIOS setting name and the limits of the setting. The fields include:

  • attribute_type: The type of setting. The supported types are:

    • Enumeration
    • Integer
    • String
    • Boolean
  • allowable_values: A list of allowable values when the attribute_type is Enumeration.
  • lower_bound: The lowest allowed value when attribute_type is Integer.
  • upper_bound: The highest allowed value when attribute_type is Integer.
  • min_length: The shortest string length that the value can have when attribute_type is String.
  • max_length: The longest string length that the value can have when attribute_type is String.
  • read_only: The setting is read only and cannot be modified.
  • unique: The setting is specific to this host.

3.9. Getting the FirmwareSchema resource

Each host model from each vendor has different BIOS settings. When editing the HostFirmwareSettings resource’s spec section, the name/value pairs you set must conform to that host’s firmware schema. To ensure you are setting valid name/value pairs, get the FirmwareSchema for the host and review it.

Procedure

  1. To get a list of FirmwareSchema resource instances, execute the following:

    $ oc get firmwareschema -n openshift-machine-api
  2. To get a particular FirmwareSchema instance, execute:

    $ oc get firmwareschema <instance_name> -n openshift-machine-api -o yaml

    Where <instance_name> is the name of the schema instance stated in the HostFirmwareSettings resource (see Table 3).

Chapter 4. Configuring multi-architecture compute machines on an OpenShift Container Platform cluster

An OpenShift Container Platform cluster with multi-architecture compute machines is a cluster that supports compute machines with different architectures. You can deploy a cluster with multi-architecture compute machines by creating an Azure installer-provisioned cluster using the multi-architecture installer binary. For Azure installation, see Installing a cluster on Azure with customizations.

Warning

The multi-architecture compute machines Technology Preview feature has limited usability with installing, upgrading, and running payloads.

The following procedures explain how to generate an ARM64 boot image and create an Azure compute machine set with the ARM64 boot image. This adds ARM64 compute nodes to your cluster and deploys the desired amount of ARM64 virtual machines (VM). This section also shows how to upgrade your existing cluster to a cluster that supports multi-architecture compute machines. Clusters with multi-architecture compute machines are only available on Azure installer-provisioned infrastructures with x86_64 control plane machines.

Important

OpenShift Container Platform clusters with multi-architecture compute machines on Azure installer-provisioned infrastructure installations is a Technology Preview feature only. Technology Preview features are not supported with Red Hat production service level agreements (SLAs) and might not be functionally complete. Red Hat does not recommend using them in production. These features provide early access to upcoming product features, enabling customers to test functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features, see Technology Preview Features Support Scope.

4.1. Creating an ARM64 boot image using the Azure image gallery

To configure your cluster with multi-architecture compute machines, you must create an ARM64 boot image and add it to your Azure compute machine set. The following procedure describes how to manually generate an ARM64 boot image.

Prerequisites

  • You installed the Azure CLI (az).
  • You created a single-architecture Azure installer-provisioned cluster with the multi-architecture installer binary.

Procedure

  1. Log in to your Azure account:

    $ az login
  2. Create a storage account and upload the ARM64 virtual hard disk (VHD) to your storage account. The OpenShift Container Platform installation program creates a resource group, however, the boot image can also be uploaded to a custom named resource group:

    $ az storage account create -n ${STORAGE_ACCOUNT_NAME} -g ${RESOURCE_GROUP} -l westus --sku Standard_LRS 1
    1
    The westus object is an example region.
  3. Create a storage container using the storage account you generated:

    $ az storage container create -n ${CONTAINER_NAME} --account-name ${STORAGE_ACCOUNT_NAME}
  4. You must use the OpenShift Container Platform installation program JSON file to extract the URL and aarch64 VHD name:

    1. Extract the URL field and set it to RHCOS_VHD_ORIGIN_URL as the file name by running the following command:

      $ RHCOS_VHD_ORIGIN_URL=$(oc -n openshift-machine-config-operator get configmap/coreos-bootimages -o jsonpath='{.data.stream}' | jq -r '.architectures.aarch64."rhel-coreos-extensions"."azure-disk".url')
    2. Extract the aarch64 VHD name and set it to BLOB_NAME as the file name by running the following command:

      $ BLOB_NAME=rhcos-$(oc -n openshift-machine-config-operator get configmap/coreos-bootimages -o jsonpath='{.data.stream}' | jq -r '.architectures.aarch64."rhel-coreos-extensions"."azure-disk".release')-azure.aarch64.vhd
  5. Generate a shared access signature (SAS) token. Use this token to upload the RHCOS VHD to your storage container with the following commands:

    $ end=`date -u -d "30 minutes" '+%Y-%m-%dT%H:%MZ'`
    $ sas=`az storage container generate-sas -n ${CONTAINER_NAME} --account-name ${STORAGE_ACCOUNT_NAME} --https-only --permissions dlrw --expiry $end -o tsv`
  6. Copy the RHCOS VHD into the storage container:

    $ az storage blob copy start --account-name ${STORAGE_ACCOUNT_NAME} --sas-token "$sas" \
     --source-uri "${RHCOS_VHD_ORIGIN_URL}" \
     --destination-blob "${BLOB_NAME}" --destination-container ${CONTAINER_NAME}

    You can check the status of the copying process with the following command:

    $ az storage blob show -c ${CONTAINER_NAME} -n ${BLOB_NAME} --account-name ${STORAGE_ACCOUNT_NAME} | jq .properties.copy

    Example output

    {
     "completionTime": null,
     "destinationSnapshot": null,
     "id": "1fd97630-03ca-489a-8c4e-cfe839c9627d",
     "incrementalCopy": null,
     "progress": "17179869696/17179869696",
     "source": "https://rhcos.blob.core.windows.net/imagebucket/rhcos-411.86.202207130959-0-azure.aarch64.vhd",
     "status": "success", 1
     "statusDescription": null
    }

    1
    If the status parameter displays the success object, the copying process is complete.
  7. Create an image gallery using the following command:

    $ az sig create --resource-group ${RESOURCE_GROUP} --gallery-name ${GALLERY_NAME}

    Use the image gallery to create an image definition. In the following example command, rhcos-arm64 is the name of the image definition.

    $ az sig image-definition create --resource-group ${RESOURCE_GROUP} --gallery-name ${GALLERY_NAME} --gallery-image-definition rhcos-arm64 --publisher RedHat --offer arm --sku arm64 --os-type linux --architecture Arm64 --hyper-v-generation V2
  8. To get the URL of the VHD and set it to RHCOS_VHD_URL as the file name, run the following command:

    $ RHCOS_VHD_URL=$(az storage blob url --account-name ${STORAGE_ACCOUNT_NAME} -c ${CONTAINER_NAME} -n "${BLOB_NAME}" -o tsv)
  9. Use the RHCOS_VHD_URL file, your storage account, resource group, and image gallery to create an image version. In the following example, 1.0.0 is the image version.

    $ az sig image-version create --resource-group ${RESOURCE_GROUP} --gallery-name ${GALLERY_NAME} --gallery-image-definition rhcos-arm64 --gallery-image-version 1.0.0 --os-vhd-storage-account ${STORAGE_ACCOUNT_NAME} --os-vhd-uri ${RHCOS_VHD_URL}
  10. Your ARM64 boot image is now generated. You can access the ID of your image with the following command:

    $ az sig image-version show -r $GALLERY_NAME -g $RESOURCE_GROUP -i rhcos-arm64 -e 1.0.0

    The following example image ID is used in the recourseID parameter of the machine set:

    Example resourceID

    /resourceGroups/${RESOURCE_GROUP}/providers/Microsoft.Compute/galleries/${GALLERY_NAME}/images/rhcos-arm64/versions/1.0.0

4.2. Adding a multi-architecture compute machine set to your cluster using the ARM64 boot image

To add ARM64 compute nodes to your cluster, you must create an Azure compute machine set that uses the ARM64 boot image. To create your own custom compute machine set on Azure, see "Creating a compute machine set on Azure".

Prerequisites

  • You installed the OpenShift CLI (oc).

Procedure

  • Create a machine set and modify the resourceID and vmSize parameters with the following command. This machine set will control the ARM64 worker nodes in your cluster:

    $ oc create -f arm64-machine-set-0.yaml

    Sample YAML machine set with ARM64 boot image

    apiVersion: machine.openshift.io/v1beta1
    kind: MachineSet
    metadata:
      labels:
        machine.openshift.io/cluster-api-cluster: <infrastructure_id>
        machine.openshift.io/cluster-api-machine-role: worker
        machine.openshift.io/cluster-api-machine-type: worker
      name: <infrastructure_id>-arm64-machine-set-0
      namespace: openshift-machine-api
    spec:
      replicas: 2
      selector:
        matchLabels:
          machine.openshift.io/cluster-api-cluster: <infrastructure_id>
          machine.openshift.io/cluster-api-machineset: <infrastructure_id>-arm64-machine-set-0
      template:
        metadata:
          labels:
            machine.openshift.io/cluster-api-cluster: <infrastructure_id>
            machine.openshift.io/cluster-api-machine-role: worker
            machine.openshift.io/cluster-api-machine-type: worker
            machine.openshift.io/cluster-api-machineset: <infrastructure_id>-arm64-machine-set-0
        spec:
          lifecycleHooks: {}
          metadata: {}
          providerSpec:
            value:
              acceleratedNetworking: true
              apiVersion: machine.openshift.io/v1beta1
              credentialsSecret:
                name: azure-cloud-credentials
                namespace: openshift-machine-api
              image:
                offer: ""
                publisher: ""
                resourceID: /resourceGroups/${RESOURCE_GROUP}/providers/Microsoft.Compute/galleries/${GALLERY_NAME}/images/rhcos-arm64/versions/1.0.0 1
                sku: ""
                version: ""
              kind: AzureMachineProviderSpec
              location: <region>
              managedIdentity: <infrastructure_id>-identity
              networkResourceGroup: <infrastructure_id>-rg
              osDisk:
                diskSettings: {}
                diskSizeGB: 128
                managedDisk:
                  storageAccountType: Premium_LRS
                osType: Linux
              publicIP: false
              publicLoadBalancer: <infrastructure_id>
              resourceGroup: <infrastructure_id>-rg
              subnet: <infrastructure_id>-worker-subnet
              userDataSecret:
                name: worker-user-data
              vmSize: Standard_D4ps_v5 2
              vnet: <infrastructure_id>-vnet
              zone: "<zone>"

    1
    Set the resourceID parameter to the arm64 boot image.
    2
    Set the vmSize parameter to the instance type used in your installation. Some example instance types are Standard_D4ps_v5 or D8ps.

Verification

  1. Verify that the new ARM64 machines are running by entering the following command:

    $ oc get machineset -n openshift-machine-api

    Example output

    NAME                                                DESIRED  CURRENT  READY  AVAILABLE  AGE
    <infrastructure_id>-arm64-machine-set-0                   2        2      2          2  10m

  2. You can check that the nodes are ready and scheduable with the following command:

    $ oc get nodes

4.3. Upgrading a cluster with multi-architecture compute machines

You must perform an explicit upgrade command to upgrade your existing cluster to a cluster that supports multi-architecture compute machines.

Prerequisites

  • You installed the OpenShift CLI (oc).

Procedure

  • To manually upgrade your cluster, use the following command:

    $ oc adm upgrade --allow-explicit-upgrade --to-image <image-pullspec> 1
    1
    You can access the image-pullspec object from the mixed-arch mirrors page in the release.txt file.

Chapter 5. Postinstallation machine configuration tasks

There are times when you need to make changes to the operating systems running on OpenShift Container Platform nodes. This can include changing settings for network time service, adding kernel arguments, or configuring journaling in a specific way.

Aside from a few specialized features, most changes to operating systems on OpenShift Container Platform nodes can be done by creating what are referred to as MachineConfig objects that are managed by the Machine Config Operator.

Tasks in this section describe how to use features of the Machine Config Operator to configure operating system features on OpenShift Container Platform nodes.

5.1. Understanding the Machine Config Operator

5.1.1. Machine Config Operator

Purpose

The Machine Config Operator manages and applies configuration and updates of the base operating system and container runtime, including everything between the kernel and kubelet.

There are four components:

  • machine-config-server: Provides Ignition configuration to new machines joining the cluster.
  • machine-config-controller: Coordinates the upgrade of machines to the desired configurations defined by a MachineConfig object. Options are provided to control the upgrade for sets of machines individually.
  • machine-config-daemon: Applies new machine configuration during update. Validates and verifies the state of the machine to the requested machine configuration.
  • machine-config: Provides a complete source of machine configuration at installation, first start up, and updates for a machine.
Important

Currently, there is no supported way to block or restrict the machine config server endpoint. The machine config server must be exposed to the network so that newly-provisioned machines, which have no existing configuration or state, are able to fetch their configuration. In this model, the root of trust is the certificate signing requests (CSR) endpoint, which is where the kubelet sends its certificate signing request for approval to join the cluster. Because of this, machine configs should not be used to distribute sensitive information, such as secrets and certificates.

To ensure that the machine config server endpoints, ports 22623 and 22624, are secured in bare metal scenarios, customers must configure proper network policies.

Project

openshift-machine-config-operator

5.1.2. Machine config overview

The Machine Config Operator (MCO) manages updates to systemd, CRI-O and Kubelet, the kernel, Network Manager and other system features. It also offers a MachineConfig CRD that can write configuration files onto the host (see machine-config-operator). Understanding what MCO does and how it interacts with other components is critical to making advanced, system-level changes to an OpenShift Container Platform cluster. Here are some things you should know about MCO, machine configs, and how they are used:

  • Machine configs are processed alphabetically, in lexicographically increasing order, of their name. The render controller uses the first machine config in the list as the base and appends the rest to the base machine config.
  • A machine config can make a specific change to a file or service on the operating system of each system representing a pool of OpenShift Container Platform nodes.
  • MCO applies changes to operating systems in pools of machines. All OpenShift Container Platform clusters start with worker and control plane node pools. By adding more role labels, you can configure custom pools of nodes. For example, you can set up a custom pool of worker nodes that includes particular hardware features needed by an application. However, examples in this section focus on changes to the default pool types.

    Important

    A node can have multiple labels applied that indicate its type, such as master or worker, however it can be a member of only a single machine config pool.

  • After a machine config change, the MCO updates the affected nodes alphabetically by zone, based on the topology.kubernetes.io/zone label. If a zone has more than one node, the oldest nodes are updated first. For nodes that do not use zones, such as in bare metal deployments, the nodes are upgraded by age, with the oldest nodes updated first. The MCO updates the number of nodes as specified by the maxUnavailable field on the machine configuration pool at a time.
  • Some machine configuration must be in place before OpenShift Container Platform is installed to disk. In most cases, this can be accomplished by creating a machine config that is injected directly into the OpenShift Container Platform installer process, instead of running as a postinstallation machine config. In other cases, you might need to do bare metal installation where you pass kernel arguments at OpenShift Container Platform installer startup, to do such things as setting per-node individual IP addresses or advanced disk partitioning.
  • MCO manages items that are set in machine configs. Manual changes you do to your systems will not be overwritten by MCO, unless MCO is explicitly told to manage a conflicting file. In other words, MCO only makes specific updates you request, it does not claim control over the whole node.
  • Manual changes to nodes are strongly discouraged. If you need to decommission a node and start a new one, those direct changes would be lost.
  • MCO is only supported for writing to files in /etc and /var directories, although there are symbolic links to some directories that can be writeable by being symbolically linked to one of those areas. The /opt and /usr/local directories are examples.
  • Ignition is the configuration format used in MachineConfigs. See the Ignition Configuration Specification v3.2.0 for details.
  • Although Ignition config settings can be delivered directly at OpenShift Container Platform installation time, and are formatted in the same way that MCO delivers Ignition configs, MCO has no way of seeing what those original Ignition configs are. Therefore, you should wrap Ignition config settings into a machine config before deploying them.
  • When a file managed by MCO changes outside of MCO, the Machine Config Daemon (MCD) sets the node as degraded. It will not overwrite the offending file, however, and should continue to operate in a degraded state.
  • A key reason for using a machine config is that it will be applied when you spin up new nodes for a pool in your OpenShift Container Platform cluster. The machine-api-operator provisions a new machine and MCO configures it.

MCO uses Ignition as the configuration format. OpenShift Container Platform 4.6 moved from Ignition config specification version 2 to version 3.

5.1.2.1. What can you change with machine configs?

The kinds of components that MCO can change include:

  • config: Create Ignition config objects (see the Ignition configuration specification) to do things like modify files, systemd services, and other features on OpenShift Container Platform machines, including:

    • Configuration files: Create or overwrite files in the /var or /etc directory.
    • systemd units: Create and set the status of a systemd service or add to an existing systemd service by dropping in additional settings.
    • users and groups: Change SSH keys in the passwd section postinstallation.

      Important
      • Changing SSH keys by using a machine config is supported only for the core user.
      • Adding new users by using a machine config is not supported.
  • kernelArguments: Add arguments to the kernel command line when OpenShift Container Platform nodes boot.
  • kernelType: Optionally identify a non-standard kernel to use instead of the standard kernel. Use realtime to use the RT kernel (for RAN). This is only supported on select platforms.
  • fips: Enable FIPS mode. FIPS should be set at installation-time setting and not a postinstallation procedure.
Important

To enable FIPS mode for your cluster, you must run the installation program from a Red Hat Enterprise Linux (RHEL) computer configured to operate in FIPS mode. For more information about configuring FIPS mode on RHEL, see Installing the system in FIPS mode. The use of FIPS validated or Modules In Process cryptographic libraries is only supported on OpenShift Container Platform deployments on the x86_64 architecture.

  • extensions: Extend RHCOS features by adding selected pre-packaged software. For this feature, available extensions include usbguard and kernel modules.
  • Custom resources (for ContainerRuntime and Kubelet): Outside of machine configs, MCO manages two special custom resources for modifying CRI-O container runtime settings (ContainerRuntime CR) and the Kubelet service (Kubelet CR).

The MCO is not the only Operator that can change operating system components on OpenShift Container Platform nodes. Other Operators can modify operating system-level features as well. One example is the Node Tuning Operator, which allows you to do node-level tuning through Tuned daemon profiles.

Tasks for the MCO configuration that can be done postinstallation are included in the following procedures. See descriptions of RHCOS bare metal installation for system configuration tasks that must be done during or before OpenShift Container Platform installation.

There might be situations where the configuration on a node does not fully match what the currently-applied machine config specifies. This state is called configuration drift. The Machine Config Daemon (MCD) regularly checks the nodes for configuration drift. If the MCD detects configuration drift, the MCO marks the node degraded until an administrator corrects the node configuration. A degraded node is online and operational, but, it cannot be updated. For more information on configuration drift, see Understanding configuration drift detection.

5.1.2.2. Project

See the openshift-machine-config-operator GitHub site for details.

5.1.3. Understanding configuration drift detection

There might be situations when the on-disk state of a node differs from what is configured in the machine config. This is known as configuration drift. For example, a cluster admin might manually modify a file, a systemd unit file, or a file permission that was configured through a machine config. This causes configuration drift. Configuration drift can cause problems between nodes in a Machine Config Pool or when the machine configs are updated.

The Machine Config Operator (MCO) uses the Machine Config Daemon (MCD) to check nodes for configuration drift on a regular basis. If detected, the MCO sets the node and the machine config pool (MCP) to Degraded and reports the error. A degraded node is online and operational, but, it cannot be updated.

The MCD performs configuration drift detection upon each of the following conditions:

  • When a node boots.
  • After any of the files (Ignition files and systemd drop-in units) specified in the machine config are modified outside of the machine config.
  • Before a new machine config is applied.

    Note

    If you apply a new machine config to the nodes, the MCD temporarily shuts down configuration drift detection. This shutdown is needed because the new machine config necessarily differs from the machine config on the nodes. After the new machine config is applied, the MCD restarts detecting configuration drift using the new machine config.

When performing configuration drift detection, the MCD validates that the file contents and permissions fully match what the currently-applied machine config specifies. Typically, the MCD detects configuration drift in less than a second after the detection is triggered.

If the MCD detects configuration drift, the MCD performs the following tasks:

  • Emits an error to the console logs
  • Emits a Kubernetes event
  • Stops further detection on the node
  • Sets the node and MCP to degraded

You can check if you have a degraded node by listing the MCPs:

$ oc get mcp worker

If you have a degraded MCP, the DEGRADEDMACHINECOUNT field is non-zero, similar to the following output:

Example output

NAME     CONFIG                                             UPDATED   UPDATING   DEGRADED   MACHINECOUNT   READYMACHINECOUNT   UPDATEDMACHINECOUNT   DEGRADEDMACHINECOUNT   AGE
worker   rendered-worker-404caf3180818d8ac1f50c32f14b57c3   False     True       True       2              1                   1                     1                      5h51m

You can determine if the problem is caused by configuration drift by examining the machine config pool:

$ oc describe mcp worker

Example output

 ...
    Last Transition Time:  2021-12-20T18:54:00Z
    Message:               Node ci-ln-j4h8nkb-72292-pxqxz-worker-a-fjks4 is reporting: "content mismatch for file \"/etc/mco-test-file\"" 1
    Reason:                1 nodes are reporting degraded status on sync
    Status:                True
    Type:                  NodeDegraded 2
 ...

1
This message shows that a node’s /etc/mco-test-file file, which was added by the machine config, has changed outside of the machine config.
2
The state of the node is NodeDegraded.

Or, if you know which node is degraded, examine that node:

$ oc describe node/ci-ln-j4h8nkb-72292-pxqxz-worker-a-fjks4

Example output

 ...

Annotations:        cloud.network.openshift.io/egress-ipconfig: [{"interface":"nic0","ifaddr":{"ipv4":"10.0.128.0/17"},"capacity":{"ip":10}}]
                    csi.volume.kubernetes.io/nodeid:
                      {"pd.csi.storage.gke.io":"projects/openshift-gce-devel-ci/zones/us-central1-a/instances/ci-ln-j4h8nkb-72292-pxqxz-worker-a-fjks4"}
                    machine.openshift.io/machine: openshift-machine-api/ci-ln-j4h8nkb-72292-pxqxz-worker-a-fjks4
                    machineconfiguration.openshift.io/controlPlaneTopology: HighlyAvailable
                    machineconfiguration.openshift.io/currentConfig: rendered-worker-67bd55d0b02b0f659aef33680693a9f9
                    machineconfiguration.openshift.io/desiredConfig: rendered-worker-67bd55d0b02b0f659aef33680693a9f9
                    machineconfiguration.openshift.io/reason: content mismatch for file "/etc/mco-test-file" 1
                    machineconfiguration.openshift.io/state: Degraded 2
 ...

1
The error message indicating that configuration drift was detected between the node and the listed machine config. Here the error message indicates that the contents of the /etc/mco-test-file, which was added by the machine config, has changed outside of the machine config.
2
The state of the node is Degraded.

You can correct configuration drift and return the node to the Ready state by performing one of the following remediations:

  • Ensure that the contents and file permissions of the files on the node match what is configured in the machine config. You can manually rewrite the file contents or change the file permissions.
  • Generate a force file on the degraded node. The force file causes the MCD to bypass the usual configuration drift detection and reapplies the current machine config.

    Note

    Generating a force file on a node causes that node to reboot.

5.1.4. Checking machine config pool status

To see the status of the Machine Config Operator (MCO), its sub-components, and the resources it manages, use the following oc commands:

Procedure

  1. To see the number of MCO-managed nodes available on your cluster for each machine config pool (MCP), run the following command:

    $ oc get machineconfigpool

    Example output

    NAME      CONFIG                    UPDATED  UPDATING   DEGRADED  MACHINECOUNT  READYMACHINECOUNT  UPDATEDMACHINECOUNT DEGRADEDMACHINECOUNT  AGE
    master    rendered-master-06c9c4…   True     False      False     3             3                  3                   0                     4h42m
    worker    rendered-worker-f4b64…    False    True       False     3             2                  2                   0                     4h42m

    where:

    UPDATED
    The True status indicates that the MCO has applied the current machine config to the nodes in that MCP. The current machine config is specified in the STATUS field in the oc get mcp output. The False status indicates a node in the MCP is updating.
    UPDATING
    The True status indicates that the MCO is applying the desired machine config, as specified in the MachineConfigPool custom resource, to at least one of the nodes in that MCP. The desired machine config is the new, edited machine config. Nodes that are updating might not be available for scheduling. The False status indicates that all nodes in the MCP are updated.
    DEGRADED
    A True status indicates the MCO is blocked from applying the current or desired machine config to at least one of the nodes in that MCP, or the configuration is failing. Nodes that are degraded might not be available for scheduling. A False status indicates that all nodes in the MCP are ready.
    MACHINECOUNT
    Indicates the total number of machines in that MCP.
    READYMACHINECOUNT
    Indicates the total number of machines in that MCP that are ready for scheduling.
    UPDATEDMACHINECOUNT
    Indicates the total number of machines in that MCP that have the current machine config.
    DEGRADEDMACHINECOUNT
    Indicates the total number of machines in that MCP that are marked as degraded or unreconcilable.

    In the previous output, there are three control plane (master) nodes and three worker nodes. The control plane MCP and the associated nodes are updated to the current machine config. The nodes in the worker MCP are being updated to the desired machine config. Two of the nodes in the worker MCP are updated and one is still updating, as indicated by the UPDATEDMACHINECOUNT being 2. There are no issues, as indicated by the DEGRADEDMACHINECOUNT being 0 and DEGRADED being False.

    While the nodes in the MCP are updating, the machine config listed under CONFIG is the current machine config, which the MCP is being updated from. When the update is complete, the listed machine config is the desired machine config, which the MCP was updated to.

    Note

    If a node is being cordoned, that node is not included in the READYMACHINECOUNT, but is included in the MACHINECOUNT. Also, the MCP status is set to UPDATING. Because the node has the current machine config, it is counted in the UPDATEDMACHINECOUNT total:

    Example output

    NAME      CONFIG                    UPDATED  UPDATING   DEGRADED  MACHINECOUNT  READYMACHINECOUNT  UPDATEDMACHINECOUNT DEGRADEDMACHINECOUNT  AGE
    master    rendered-master-06c9c4…   True     False      False     3             3                  3                   0                     4h42m
    worker    rendered-worker-c1b41a…   False    True       False     3             2                  3                   0                     4h42m

  2. To check the status of the nodes in an MCP by examining the MachineConfigPool custom resource, run the following command: :

    $ oc describe mcp worker

    Example output

    ...
      Degraded Machine Count:     0
      Machine Count:              3
      Observed Generation:        2
      Ready Machine Count:        3
      Unavailable Machine Count:  0
      Updated Machine Count:      3
    Events:                       <none>

    Note

    If a node is being cordoned, the node is not included in the Ready Machine Count. It is included in the Unavailable Machine Count:

    Example output

    ...
      Degraded Machine Count:     0
      Machine Count:              3
      Observed Generation:        2
      Ready Machine Count:        2
      Unavailable Machine Count:  1
      Updated Machine Count:      3

  3. To see each existing MachineConfig object, run the following command:

    $ oc get machineconfigs

    Example output

    NAME                             GENERATEDBYCONTROLLER          IGNITIONVERSION  AGE
    00-master                        2c9371fbb673b97a6fe8b1c52...   3.2.0            5h18m
    00-worker                        2c9371fbb673b97a6fe8b1c52...   3.2.0            5h18m
    01-master-container-runtime      2c9371fbb673b97a6fe8b1c52...   3.2.0            5h18m
    01-master-kubelet                2c9371fbb673b97a6fe8b1c52…     3.2.0            5h18m
    ...
    rendered-master-dde...           2c9371fbb673b97a6fe8b1c52...   3.2.0            5h18m
    rendered-worker-fde...           2c9371fbb673b97a6fe8b1c52...   3.2.0            5h18m

    Note that the MachineConfig objects listed as rendered are not meant to be changed or deleted.

  4. To view the contents of a particular machine config (in this case, 01-master-kubelet), run the following command:

    $ oc describe machineconfigs 01-master-kubelet

    The output from the command shows that this MachineConfig object contains both configuration files (cloud.conf and kubelet.conf) and a systemd service (Kubernetes Kubelet):

    Example output

    Name:         01-master-kubelet
    ...
    Spec:
      Config:
        Ignition:
          Version:  3.2.0
        Storage:
          Files:
            Contents:
              Source:   data:,
            Mode:       420
            Overwrite:  true
            Path:       /etc/kubernetes/cloud.conf
            Contents:
              Source:   data:,kind%3A%20KubeletConfiguration%0AapiVersion%3A%20kubelet.config.k8s.io%2Fv1beta1%0Aauthentication%3A%0A%20%20x509%3A%0A%20%20%20%20clientCAFile%3A%20%2Fetc%2Fkubernetes%2Fkubelet-ca.crt%0A%20%20anonymous...
            Mode:       420
            Overwrite:  true
            Path:       /etc/kubernetes/kubelet.conf
        Systemd:
          Units:
            Contents:  [Unit]
    Description=Kubernetes Kubelet
    Wants=rpc-statd.service network-online.target crio.service
    After=network-online.target crio.service
    
    ExecStart=/usr/bin/hyperkube \
        kubelet \
          --config=/etc/kubernetes/kubelet.conf \ ...

If something goes wrong with a machine config that you apply, you can always back out that change. For example, if you had run oc create -f ./myconfig.yaml to apply a machine config, you could remove that machine config by running the following command:

$ oc delete -f ./myconfig.yaml

If that was the only problem, the nodes in the affected pool should return to a non-degraded state. This actually causes the rendered configuration to roll back to its previously rendered state.

If you add your own machine configs to your cluster, you can use the commands shown in the previous example to check their status and the related status of the pool to which they are applied.

5.2. Using MachineConfig objects to configure nodes

You can use the tasks in this section to create MachineConfig objects that modify files, systemd unit files, and other operating system features running on OpenShift Container Platform nodes. For more ideas on working with machine configs, see content related to updating SSH authorized keys, verifying image signatures, enabling SCTP, and configuring iSCSI initiatornames for OpenShift Container Platform.

OpenShift Container Platform supports Ignition specification version 3.2. All new machine configs you create going forward should be based on Ignition specification version 3.2. If you are upgrading your OpenShift Container Platform cluster, any existing Ignition specification version 2.x machine configs will be translated automatically to specification version 3.2.

There might be situations where the configuration on a node does not fully match what the currently-applied machine config specifies. This state is called configuration drift. The Machine Config Daemon (MCD) regularly checks the nodes for configuration drift. If the MCD detects configuration drift, the MCO marks the node degraded until an administrator corrects the node configuration. A degraded node is online and operational, but, it cannot be updated. For more information on configuration drift, see Understanding configuration drift detection.

Tip

Use the following "Configuring chrony time service" procedure as a model for how to go about adding other configuration files to OpenShift Container Platform nodes.

5.2.1. Configuring chrony time service

You can set the time server and related settings used by the chrony time service (chronyd) by modifying the contents of the chrony.conf file and passing those contents to your nodes as a machine config.

Procedure

  1. Create a Butane config including the contents of the chrony.conf file. For example, to configure chrony on worker nodes, create a 99-worker-chrony.bu file.

    Note

    See "Creating machine configs with Butane" for information about Butane.

    variant: openshift
    version: 4.11.0
    metadata:
      name: 99-worker-chrony 1
      labels:
        machineconfiguration.openshift.io/role: worker 2
    storage:
      files:
      - path: /etc/chrony.conf
        mode: 0644 3
        overwrite: true
        contents:
          inline: |
            pool 0.rhel.pool.ntp.org iburst 4
            driftfile /var/lib/chrony/drift
            makestep 1.0 3
            rtcsync
            logdir /var/log/chrony
    1 2
    On control plane nodes, substitute master for worker in both of these locations.
    3
    Specify an octal value mode for the mode field in the machine config file. After creating the file and applying the changes, the mode is converted to a decimal value. You can check the YAML file with the command oc get mc <mc-name> -o yaml.
    4
    Specify any valid, reachable time source, such as the one provided by your DHCP server. Alternately, you can specify any of the following NTP servers: 1.rhel.pool.ntp.org, 2.rhel.pool.ntp.org, or 3.rhel.pool.ntp.org.
  2. Use Butane to generate a MachineConfig object file, 99-worker-chrony.yaml, containing the configuration to be delivered to the nodes:

    $ butane 99-worker-chrony.bu -o 99-worker-chrony.yaml
  3. Apply the configurations in one of two ways:

    • If the cluster is not running yet, after you generate manifest files, add the MachineConfig object file to the <installation_directory>/openshift directory, and then continue to create the cluster.
    • If the cluster is already running, apply the file:

      $ oc apply -f ./99-worker-chrony.yaml

5.2.2. Disabling the chrony time service

You can disable the chrony time service (chronyd) for nodes with a specific role by using a MachineConfig custom resource (CR).

Prerequisites

  • Install the OpenShift CLI (oc).
  • Log in as a user with cluster-admin privileges.

Procedure

  1. Create the MachineConfig CR that disables chronyd for the specified node role.

    1. Save the following YAML in the disable-chronyd.yaml file:

      apiVersion: machineconfiguration.openshift.io/v1
      kind: MachineConfig
      metadata:
        labels:
          machineconfiguration.openshift.io/role: <node_role> 1
        name: disable-chronyd
      spec:
        config:
          ignition:
            version: 3.2.0
          systemd:
            units:
              - contents: |
                  [Unit]
                  Description=NTP client/server
                  Documentation=man:chronyd(8) man:chrony.conf(5)
                  After=ntpdate.service sntp.service ntpd.service
                  Conflicts=ntpd.service systemd-timesyncd.service
                  ConditionCapability=CAP_SYS_TIME
                  [Service]
                  Type=forking
                  PIDFile=/run/chrony/chronyd.pid
                  EnvironmentFile=-/etc/sysconfig/chronyd
                  ExecStart=/usr/sbin/chronyd $OPTIONS
                  ExecStartPost=/usr/libexec/chrony-helper update-daemon
                  PrivateTmp=yes
                  ProtectHome=yes
                  ProtectSystem=full
                  [Install]
                  WantedBy=multi-user.target
                enabled: false
                name: "chronyd.service"
      1
      Node role where you want to disable chronyd, for example, master.
    2. Create the MachineConfig CR by running the following command:

      $ oc create -f disable-chronyd.yaml

5.2.3. Adding kernel arguments to nodes

In some special cases, you might want to add kernel arguments to a set of nodes in your cluster. This should only be done with caution and clear understanding of the implications of the arguments you set.

Warning

Improper use of kernel arguments can result in your systems becoming unbootable.

Examples of kernel arguments you could set include:

  • nosmt: Disables symmetric multithreading (SMT) in the kernel. Multithreading allows multiple logical threads for each CPU. You could consider nosmt in multi-tenant environments to reduce risks from potential cross-thread attacks. By disabling SMT, you essentially choose security over performance.
  • systemd.unified_cgroup_hierarchy: Enables Linux control group version 2 (cgroup v2). cgroup v2 is the next version of the kernel control group and offers multiple improvements.

    Important

    The OpenShift Container Platform cgroups version 2 feature is in Developer Preview and is not supported by Red Hat at this time.

  • enforcing=0: Configures Security Enhanced Linux (SELinux) to run in permissive mode. In permissive mode, the system acts as if SELinux is enforcing the loaded security policy, including labeling objects and emitting access denial entries in the logs, but it does not actually deny any operations. While not supported for production systems, permissive mode can be helpful for debugging.

    Warning

    Disabling SELinux on RHCOS in production is not supported. Once SELinux has been disabled on a node, it must be re-provisioned before re-inclusion in a production cluster.

See Kernel.org kernel parameters for a list and descriptions of kernel arguments.

In the following procedure, you create a MachineConfig object that identifies:

  • A set of machines to which you want to add the kernel argument. In this case, machines with a worker role.
  • Kernel arguments that are appended to the end of the existing kernel arguments.
  • A label that indicates where in the list of machine configs the change is applied.

Prerequisites

  • Have administrative privilege to a working OpenShift Container Platform cluster.

Procedure

  1. List existing MachineConfig objects for your OpenShift Container Platform cluster to determine how to label your machine config:

    $ oc get MachineConfig

    Example output

    NAME                                               GENERATEDBYCONTROLLER                      IGNITIONVERSION   AGE
    00-master                                          52dd3ba6a9a527fc3ab42afac8d12b693534c8c9   3.2.0             33m
    00-worker                                          52dd3ba6a9a527fc3ab42afac8d12b693534c8c9   3.2.0             33m
    01-master-container-runtime                        52dd3ba6a9a527fc3ab42afac8d12b693534c8c9   3.2.0             33m
    01-master-kubelet                                  52dd3ba6a9a527fc3ab42afac8d12b693534c8c9   3.2.0             33m
    01-worker-container-runtime                        52dd3ba6a9a527fc3ab42afac8d12b693534c8c9   3.2.0             33m
    01-worker-kubelet                                  52dd3ba6a9a527fc3ab42afac8d12b693534c8c9   3.2.0             33m
    99-master-generated-registries                     52dd3ba6a9a527fc3ab42afac8d12b693534c8c9   3.2.0             33m
    99-master-ssh                                                                                 3.2.0             40m
    99-worker-generated-registries                     52dd3ba6a9a527fc3ab42afac8d12b693534c8c9   3.2.0             33m
    99-worker-ssh                                                                                 3.2.0             40m
    rendered-master-23e785de7587df95a4b517e0647e5ab7   52dd3ba6a9a527fc3ab42afac8d12b693534c8c9   3.2.0             33m
    rendered-worker-5d596d9293ca3ea80c896a1191735bb1   52dd3ba6a9a527fc3ab42afac8d12b693534c8c9   3.2.0             33m

  2. Create a MachineConfig object file that identifies the kernel argument (for example, 05-worker-kernelarg-selinuxpermissive.yaml)

    apiVersion: machineconfiguration.openshift.io/v1
    kind: MachineConfig
    metadata:
      labels:
        machineconfiguration.openshift.io/role: worker1
      name: 05-worker-kernelarg-selinuxpermissive2
    spec:
      kernelArguments:
        - enforcing=03
    1
    Applies the new kernel argument only to worker nodes.
    2
    Named to identify where it fits among the machine configs (05) and what it does (adds a kernel argument to configure SELinux permissive mode).
    3
    Identifies the exact kernel argument as enforcing=0.
  3. Create the new machine config:

    $ oc create -f 05-worker-kernelarg-selinuxpermissive.yaml
  4. Check the machine configs to see that the new one was added:

    $ oc get MachineConfig

    Example output

    NAME                                               GENERATEDBYCONTROLLER                      IGNITIONVERSION   AGE
    00-master                                          52dd3ba6a9a527fc3ab42afac8d12b693534c8c9   3.2.0             33m
    00-worker                                          52dd3ba6a9a527fc3ab42afac8d12b693534c8c9   3.2.0             33m
    01-master-container-runtime                        52dd3ba6a9a527fc3ab42afac8d12b693534c8c9   3.2.0             33m
    01-master-kubelet                                  52dd3ba6a9a527fc3ab42afac8d12b693534c8c9   3.2.0             33m
    01-worker-container-runtime                        52dd3ba6a9a527fc3ab42afac8d12b693534c8c9   3.2.0             33m
    01-worker-kubelet                                  52dd3ba6a9a527fc3ab42afac8d12b693534c8c9   3.2.0             33m
    05-worker-kernelarg-selinuxpermissive                                                         3.2.0             105s
    99-master-generated-registries                     52dd3ba6a9a527fc3ab42afac8d12b693534c8c9   3.2.0             33m
    99-master-ssh                                                                                 3.2.0             40m
    99-worker-generated-registries                     52dd3ba6a9a527fc3ab42afac8d12b693534c8c9   3.2.0             33m
    99-worker-ssh                                                                                 3.2.0             40m
    rendered-master-23e785de7587df95a4b517e0647e5ab7   52dd3ba6a9a527fc3ab42afac8d12b693534c8c9   3.2.0             33m
    rendered-worker-5d596d9293ca3ea80c896a1191735bb1   52dd3ba6a9a527fc3ab42afac8d12b693534c8c9   3.2.0             33m

  5. Check the nodes:

    $ oc get nodes

    Example output

    NAME                           STATUS                     ROLES    AGE   VERSION
    ip-10-0-136-161.ec2.internal   Ready                      worker   28m   v1.24.0
    ip-10-0-136-243.ec2.internal   Ready                      master   34m   v1.24.0
    ip-10-0-141-105.ec2.internal   Ready,SchedulingDisabled   worker   28m   v1.24.0
    ip-10-0-142-249.ec2.internal   Ready                      master   34m   v1.24.0
    ip-10-0-153-11.ec2.internal    Ready                      worker   28m   v1.24.0
    ip-10-0-153-150.ec2.internal   Ready                      master   34m   v1.24.0

    You can see that scheduling on each worker node is disabled as the change is being applied.

  6. Check that the kernel argument worked by going to one of the worker nodes and listing the kernel command line arguments (in /proc/cmdline on the host):

    $ oc debug node/ip-10-0-141-105.ec2.internal

    Example output

    Starting pod/ip-10-0-141-105ec2internal-debug ...
    To use host binaries, run `chroot /host`
    
    sh-4.2# cat /host/proc/cmdline
    BOOT_IMAGE=/ostree/rhcos-... console=tty0 console=ttyS0,115200n8
    rootflags=defaults,prjquota rw root=UUID=fd0... ostree=/ostree/boot.0/rhcos/16...
    coreos.oem.id=qemu coreos.oem.id=ec2 ignition.platform.id=ec2 enforcing=0
    
    sh-4.2# exit

    You should see the enforcing=0 argument added to the other kernel arguments.

5.2.4. Enabling multipathing with kernel arguments on RHCOS

Red Hat Enterprise Linux CoreOS (RHCOS) supports multipathing on the primary disk, allowing stronger resilience to hardware failure to achieve higher host availability. Postinstallation support is available by activating multipathing via the machine config.

Important

Enabling multipathing during installation is supported and recommended for nodes provisioned in OpenShift Container Platform 4.8 or higher. In setups where any I/O to non-optimized paths results in I/O system errors, you must enable multipathing at installation time. For more information about enabling multipathing during installation time, see "Enabling multipathing with kernel arguments on RHCOS" in the Installing on bare metal documentation.

Important

On IBM Z and LinuxONE, you can enable multipathing only if you configured your cluster for it during installation. For more information, see "Installing RHCOS and starting the OpenShift Container Platform bootstrap process" in Installing a cluster with z/VM on IBM Z and LinuxONE.

Prerequisites

  • You have a running OpenShift Container Platform cluster that uses version 4.7 or later.
  • You are logged in to the cluster as a user with administrative privileges.
  • You have confirmed that the disk is enabled for multipathing. Multipathing is only supported on hosts that are connected to a SAN via an HBA adapter.

Procedure

  1. To enable multipathing postinstallation on control plane nodes:

    • Create a machine config file, such as 99-master-kargs-mpath.yaml, that instructs the cluster to add the master label and that identifies the multipath kernel argument, for example:

      apiVersion: machineconfiguration.openshift.io/v1
      kind: MachineConfig
      metadata:
        labels:
          machineconfiguration.openshift.io/role: "master"
        name: 99-master-kargs-mpath
      spec:
        kernelArguments:
          - 'rd.multipath=default'
          - 'root=/dev/disk/by-label/dm-mpath-root'
  2. To enable multipathing postinstallation on worker nodes:

    • Create a machine config file, such as 99-worker-kargs-mpath.yaml, that instructs the cluster to add the worker label and that identifies the multipath kernel argument, for example:

      apiVersion: machineconfiguration.openshift.io/v1
      kind: MachineConfig
      metadata:
        labels:
          machineconfiguration.openshift.io/role: "worker"
        name: 99-worker-kargs-mpath
      spec:
        kernelArguments:
          - 'rd.multipath=default'
          - 'root=/dev/disk/by-label/dm-mpath-root'
  3. Create the new machine config by using either the master or worker YAML file you previously created:

    $ oc create -f ./99-worker-kargs-mpath.yaml
  4. Check the machine configs to see that the new one was added:

    $ oc get MachineConfig

    Example output

    NAME                                               GENERATEDBYCONTROLLER                      IGNITIONVERSION   AGE
    00-master                                          52dd3ba6a9a527fc3ab42afac8d12b693534c8c9   3.2.0             33m
    00-worker                                          52dd3ba6a9a527fc3ab42afac8d12b693534c8c9   3.2.0             33m
    01-master-container-runtime                        52dd3ba6a9a527fc3ab42afac8d12b693534c8c9   3.2.0             33m
    01-master-kubelet                                  52dd3ba6a9a527fc3ab42afac8d12b693534c8c9   3.2.0             33m
    01-worker-container-runtime                        52dd3ba6a9a527fc3ab42afac8d12b693534c8c9   3.2.0             33m
    01-worker-kubelet                                  52dd3ba6a9a527fc3ab42afac8d12b693534c8c9   3.2.0             33m
    99-master-generated-registries                     52dd3ba6a9a527fc3ab42afac8d12b693534c8c9   3.2.0             33m
    99-master-ssh                                                                                 3.2.0             40m
    99-worker-generated-registries                     52dd3ba6a9a527fc3ab42afac8d12b693534c8c9   3.2.0             33m
    99-worker-kargs-mpath                              52dd3ba6a9a527fc3ab42afac8d12b693534c8c9   3.2.0             105s
    99-worker-ssh                                                                                 3.2.0             40m
    rendered-master-23e785de7587df95a4b517e0647e5ab7   52dd3ba6a9a527fc3ab42afac8d12b693534c8c9   3.2.0             33m
    rendered-worker-5d596d9293ca3ea80c896a1191735bb1   52dd3ba6a9a527fc3ab42afac8d12b693534c8c9   3.2.0             33m

  5. Check the nodes:

    $ oc get nodes

    Example output

    NAME                           STATUS                     ROLES    AGE   VERSION
    ip-10-0-136-161.ec2.internal   Ready                      worker   28m   v1.24.0
    ip-10-0-136-243.ec2.internal   Ready                      master   34m   v1.24.0
    ip-10-0-141-105.ec2.internal   Ready,SchedulingDisabled   worker   28m   v1.24.0
    ip-10-0-142-249.ec2.internal   Ready                      master   34m   v1.24.0
    ip-10-0-153-11.ec2.internal    Ready                      worker   28m   v1.24.0
    ip-10-0-153-150.ec2.internal   Ready                      master   34m   v1.24.0

    You can see that scheduling on each worker node is disabled as the change is being applied.

  6. Check that the kernel argument worked by going to one of the worker nodes and listing the kernel command line arguments (in /proc/cmdline on the host):

    $ oc debug node/ip-10-0-141-105.ec2.internal

    Example output

    Starting pod/ip-10-0-141-105ec2internal-debug ...
    To use host binaries, run `chroot /host`
    
    sh-4.2# cat /host/proc/cmdline
    ...
    rd.multipath=default root=/dev/disk/by-label/dm-mpath-root
    ...
    
    sh-4.2# exit

    You should see the added kernel arguments.

Additional resources

5.3. Enabling Linux control groups version 2 (cgroups v2)

You can enable Linux control groups version 2 (cgroups v2) on specific nodes in your cluster by using a machine config. The OpenShift Container Platform process for enabling cgroups v2 disables all cgroups version 1 controllers and hierarchies.

Important

The OpenShift Container Platform cgroups version 2 feature is in Developer Preview and is not supported by Red Hat at this time.

Prerequisites

  • You have a running OpenShift Container Platform cluster that uses version 4.10 or later.
  • You are logged in to the cluster as a user with administrative privileges.
  • You have the node-role.kubernetes.io value for the node(s) you want to configure.

    $ oc describe node <node-name>

    Example output

    Name:               ci-ln-v05w5m2-72292-5s9ht-worker-a-r6fpg
    Roles:              worker
    Labels:             beta.kubernetes.io/arch=amd64
                        beta.kubernetes.io/instance-type=n1-standard-4
                        beta.kubernetes.io/os=linux
                        failure-domain.beta.kubernetes.io/region=us-central1
                        failure-domain.beta.kubernetes.io/zone=us-central1-a
                        kubernetes.io/arch=amd64
                        kubernetes.io/hostname=ci-ln-v05w5m2-72292-5s9ht-worker-a-r6fpg
                        kubernetes.io/os=linux
                        node-role.kubernetes.io/worker= 1
    #...

    1
    This value is the node role you need.

Procedure

  1. Enable cgroups v2 on nodes:

    • Create a machine config file YAML, such as worker-cgroups-v2.yaml:

      apiVersion: machineconfiguration.openshift.io/v1
      kind: MachineConfig
      metadata:
        labels:
          machineconfiguration.openshift.io/role: "worker" 1
        name: worker-enable-cgroups-v2
      spec:
        kernelArguments:
          - systemd.unified_cgroup_hierarchy=1 2
          - cgroup_no_v1="all" 3
      1
      Specifies the node-role.kubernetes.io value for the nodes you want to configure, such as master, worker, or infra.
      2
      Enables cgroups v2 in systemd.
      3
      Disables cgroups v1.
    • Create the new machine config:

      $ oc create -f worker-enable-cgroups-v2.yaml
  2. Check the machine configs to see that the new one was added:

    $ oc get MachineConfig

    Example output

    NAME                                               GENERATEDBYCONTROLLER                      IGNITIONVERSION   AGE
    00-master                                          52dd3ba6a9a527fc3ab42afac8d12b693534c8c9   3.2.0             33m
    00-worker                                          52dd3ba6a9a527fc3ab42afac8d12b693534c8c9   3.2.0             33m
    01-master-container-runtime                        52dd3ba6a9a527fc3ab42afac8d12b693534c8c9   3.2.0             33m
    01-master-kubelet                                  52dd3ba6a9a527fc3ab42afac8d12b693534c8c9   3.2.0             33m
    01-worker-container-runtime                        52dd3ba6a9a527fc3ab42afac8d12b693534c8c9   3.2.0             33m
    01-worker-kubelet                                  52dd3ba6a9a527fc3ab42afac8d12b693534c8c9   3.2.0             33m
    99-master-generated-registries                     52dd3ba6a9a527fc3ab42afac8d12b693534c8c9   3.2.0             33m
    99-master-ssh                                                                                 3.2.0             40m
    99-worker-generated-registries                     52dd3ba6a9a527fc3ab42afac8d12b693534c8c9   3.2.0             33m
    99-worker-ssh                                                                                 3.2.0             40m
    rendered-master-23e785de7587df95a4b517e0647e5ab7   52dd3ba6a9a527fc3ab42afac8d12b693534c8c9   3.2.0             33m
    rendered-worker-5d596d9293ca3ea80c896a1191735bb1   52dd3ba6a9a527fc3ab42afac8d12b693534c8c9   3.2.0             33m
    worker-enable-cgroups-v2                                                                      3.2.0             10s

  3. Check the nodes to see that scheduling on each affected node is disabled. This indicates that the change is being applied:

    $ oc get nodes

    Example output

    NAME                                       STATUS                     ROLES    AGE   VERSION
    ci-ln-fm1qnwt-72292-99kt6-master-0         Ready                      master   58m   v1.24.0
    ci-ln-fm1qnwt-72292-99kt6-master-1         Ready                      master   58m   v1.24.0
    ci-ln-fm1qnwt-72292-99kt6-master-2         Ready                      master   58m   v1.24.0
    ci-ln-fm1qnwt-72292-99kt6-worker-a-h5gt4   Ready,SchedulingDisabled   worker   48m   v1.24.0
    ci-ln-fm1qnwt-72292-99kt6-worker-b-7vtmd   Ready                      worker   48m   v1.24.0
    ci-ln-fm1qnwt-72292-99kt6-worker-c-rhzkv   Ready                      worker   48m   v1.24.0

  4. After a node returns to the Ready state, you can verify that cgroups v2 is enabled by checking that the sys/fs/cgroup/cgroup.controllers file is present on the node. This file is created by cgroups v2.

    • Start a debug session for that node:

      $ oc debug node/<node_name>
    • Locate the sys/fs/cgroup/cgroup.controllers file. If this file is present, cgroups v2 is enabled on that node.

      Example output

      cgroup.controllers	cgroup.stat		cpuset.cpus.effective  io.stat		pids
      cgroup.max.depth	cgroup.subtree_control	cpuset.mems.effective  kubepods.slice	system.slice
      cgroup.max.descendants	cgroup.threads		init.scope	       memory.pressure	user.slice
      cgroup.procs		cpu.pressure		io.pressure	       memory.stat

Additional resources

  • For information about enabling cgroups v2 during installation, see the Optional parameters table in the Installation configuration parameters section of your installation process.

5.3.1. Adding a real-time kernel to nodes

Some OpenShift Container Platform workloads require a high degree of determinism.While Linux is not a real-time operating system, the Linux real-time kernel includes a preemptive scheduler that provides the operating system with real-time characteristics.

If your OpenShift Container Platform workloads require these real-time characteristics, you can switch your machines to the Linux real-time kernel. For OpenShift Container Platform, 4.11 you can make this switch using a MachineConfig object. Although making the change is as simple as changing a machine config kernelType setting to realtime, there are a few other considerations before making the change:

  • Currently, real-time kernel is supported only on worker nodes, and only for radio access network (RAN) use.
  • The following procedure is fully supported with bare metal installations that use systems that are certified for Red Hat Enterprise Linux for Real Time 8.
  • Real-time support in OpenShift Container Platform is limited to specific subscriptions.
  • The following procedure is also supported for use with Google Cloud Platform.

Prerequisites

  • Have a running OpenShift Container Platform cluster (version 4.4 or later).
  • Log in to the cluster as a user with administrative privileges.

Procedure

  1. Create a machine config for the real-time kernel: Create a YAML file (for example, 99-worker-realtime.yaml) that contains a MachineConfig object for the realtime kernel type. This example tells the cluster to use a real-time kernel for all worker nodes:

    $ cat << EOF > 99-worker-realtime.yaml
    apiVersion: machineconfiguration.openshift.io/v1
    kind: MachineConfig
    metadata:
      labels:
        machineconfiguration.openshift.io/role: "worker"
      name: 99-worker-realtime
    spec:
      kernelType: realtime
    EOF
  2. Add the machine config to the cluster. Type the following to add the machine config to the cluster:

    $ oc create -f 99-worker-realtime.yaml
  3. Check the real-time kernel: Once each impacted node reboots, log in to the cluster and run the following commands to make sure that the real-time kernel has replaced the regular kernel for the set of nodes you configured:

    $ oc get nodes

    Example output

    NAME                                        STATUS  ROLES    AGE   VERSION
    ip-10-0-143-147.us-east-2.compute.internal  Ready   worker   103m  v1.24.0
    ip-10-0-146-92.us-east-2.compute.internal   Ready   worker   101m  v1.24.0
    ip-10-0-169-2.us-east-2.compute.internal    Ready   worker   102m  v1.24.0

    $ oc debug node/ip-10-0-143-147.us-east-2.compute.internal

    Example output

    Starting pod/ip-10-0-143-147us-east-2computeinternal-debug ...
    To use host binaries, run `chroot /host`
    
    sh-4.4# uname -a
    Linux <worker_node> 4.18.0-147.3.1.rt24.96.el8_1.x86_64 #1 SMP PREEMPT RT
            Wed Nov 27 18:29:55 UTC 2019 x86_64 x86_64 x86_64 GNU/Linux

    The kernel name contains rt and text “PREEMPT RT” indicates that this is a real-time kernel.

  4. To go back to the regular kernel, delete the MachineConfig object:

    $ oc delete -f 99-worker-realtime.yaml

5.3.2. Configuring journald settings

If you need to configure settings for the journald service on OpenShift Container Platform nodes, you can do that by modifying the appropriate configuration file and passing the file to the appropriate pool of nodes as a machine config.

This procedure describes how to modify journald rate limiting settings in the /etc/systemd/journald.conf file and apply them to worker nodes. See the journald.conf man page for information on how to use that file.

Prerequisites

  • Have a running OpenShift Container Platform cluster.
  • Log in to the cluster as a user with administrative privileges.

Procedure

  1. Create a Butane config file, 40-worker-custom-journald.bu, that includes an /etc/systemd/journald.conf file with the required settings.

    Note

    See "Creating machine configs with Butane" for information about Butane.

    variant: openshift
    version: 4.11.0
    metadata:
      name: 40-worker-custom-journald
      labels:
        machineconfiguration.openshift.io/role: worker
    storage:
      files:
      - path: /etc/systemd/journald.conf
        mode: 0644
        overwrite: true
        contents:
          inline: |
            # Disable rate limiting
            RateLimitInterval=1s
            RateLimitBurst=10000
            Storage=volatile
            Compress=no
            MaxRetentionSec=30s
  2. Use Butane to generate a MachineConfig object file, 40-worker-custom-journald.yaml, containing the configuration to be delivered to the worker nodes:

    $ butane 40-worker-custom-journald.bu -o 40-worker-custom-journald.yaml
  3. Apply the machine config to the pool:

    $ oc apply -f 40-worker-custom-journald.yaml
  4. Check that the new machine config is applied and that the nodes are not in a degraded state. It might take a few minutes. The worker pool will show the updates in progress, as each node successfully has the new machine config applied:

    $ oc get machineconfigpool
    NAME   CONFIG             UPDATED UPDATING DEGRADED MACHINECOUNT READYMACHINECOUNT UPDATEDMACHINECOUNT DEGRADEDMACHINECOUNT AGE
    master rendered-master-35 True    False    False    3            3                 3                   0                    34m
    worker rendered-worker-d8 False   True     False    3            1                 1                   0                    34m
  5. To check that the change was applied, you can log in to a worker node:

    $ oc get node | grep worker
    ip-10-0-0-1.us-east-2.compute.internal   Ready    worker   39m   v0.0.0-master+$Format:%h$
    $ oc debug node/ip-10-0-0-1.us-east-2.compute.internal
    Starting pod/ip-10-0-141-142us-east-2computeinternal-debug ...
    ...
    sh-4.2# chroot /host
    sh-4.4# cat /etc/systemd/journald.conf
    # Disable rate limiting
    RateLimitInterval=1s
    RateLimitBurst=10000
    Storage=volatile
    Compress=no
    MaxRetentionSec=30s
    sh-4.4# exit

5.3.3. Adding extensions to RHCOS

RHCOS is a minimal container-oriented RHEL operating system, designed to provide a common set of capabilities to OpenShift Container Platform clusters across all platforms. While adding software packages to RHCOS systems is generally discouraged, the MCO provides an extensions feature you can use to add a minimal set of features to RHCOS nodes.

Currently, the following extensions are available:

  • usbguard: Adding the usbguard extension protects RHCOS systems from attacks from intrusive USB devices. See USBGuard for details.
  • kerberos: Adding the kerberos extension provides a mechanism that allows both users and machines to identify themselves to the network to receive defined, limited access to the areas and services that an administrator has configured. See Using Kerberos for details, including how to set up a Kerberos client and mount a Kerberized NFS share.

The following procedure describes how to use a machine config to add one or more extensions to your RHCOS nodes.

Prerequisites

  • Have a running OpenShift Container Platform cluster (version 4.6 or later).
  • Log in to the cluster as a user with administrative privileges.

Procedure

  1. Create a machine config for extensions: Create a YAML file (for example, 80-extensions.yaml) that contains a MachineConfig extensions object. This example tells the cluster to add the usbguard extension.

    $ cat << EOF > 80-extensions.yaml
    apiVersion: machineconfiguration.openshift.io/v1
    kind: MachineConfig
    metadata:
      labels:
        machineconfiguration.openshift.io/role: worker
      name: 80-worker-extensions
    spec:
      config:
        ignition:
          version: 3.2.0
      extensions:
        - usbguard
    EOF
  2. Add the machine config to the cluster. Type the following to add the machine config to the cluster:

    $ oc create -f 80-extensions.yaml

    This sets all worker nodes to have rpm packages for usbguard installed.

  3. Check that the extensions were applied:

    $ oc get machineconfig 80-worker-extensions

    Example output

    NAME                 GENERATEDBYCONTROLLER IGNITIONVERSION AGE
    80-worker-extensions                       3.2.0           57s

  4. Check that the new machine config is now applied and that the nodes are not in a degraded state. It may take a few minutes. The worker pool will show the updates in progress, as each machine successfully has the new machine config applied:

    $ oc get machineconfigpool

    Example output

    NAME   CONFIG             UPDATED UPDATING DEGRADED MACHINECOUNT READYMACHINECOUNT UPDATEDMACHINECOUNT DEGRADEDMACHINECOUNT AGE
    master rendered-master-35 True    False    False    3            3                 3                   0                    34m
    worker rendered-worker-d8 False   True     False    3            1                 1                   0                    34m

  5. Check the extensions. To check that the extension was applied, run:

    $ oc get node | grep worker

    Example output

    NAME                                        STATUS  ROLES    AGE   VERSION
    ip-10-0-169-2.us-east-2.compute.internal    Ready   worker   102m  v1.24.0

    $ oc debug node/ip-10-0-169-2.us-east-2.compute.internal

    Example output

    ...
    To use host binaries, run `chroot /host`
    sh-4.4# chroot /host
    sh-4.4# rpm -q usbguard
    usbguard-0.7.4-4.el8.x86_64.rpm

5.3.4. Loading custom firmware blobs in the machine config manifest

Because the default location for firmware blobs in /usr/lib is read-only, you can locate a custom firmware blob by updating the search path. This enables you to load local firmware blobs in the machine config manifest when the blobs are not managed by RHCOS.

Procedure

  1. Create a Butane config file, 98-worker-firmware-blob.bu, that updates the search path so that it is root-owned and writable to local storage. The following example places the custom blob file from your local workstation onto nodes under /var/lib/firmware.

    Note

    See "Creating machine configs with Butane" for information about Butane.

    Butane config file for custom firmware blob

    variant: openshift
    version: 4.11.0
    metadata:
      labels:
        machineconfiguration.openshift.io/role: worker
      name: 98-worker-firmware-blob
    storage:
      files:
      - path: /var/lib/firmware/<package_name> 1
        contents:
          local: <package_name> 2
        mode: 0644 3
    openshift:
      kernel_arguments:
        - 'firmware_class.path=/var/lib/firmware' 4

    1
    Sets the path on the node where the firmware package is copied to.
    2
    Specifies a file with contents that are read from a local file directory on the system running Butane. The path of the local file is relative to a files-dir directory, which must be specified by using the --files-dir option with Butane in the following step.
    3
    Sets the permissions for the file on the RHCOS node. It is recommended to set 0644 permissions.
    4
    The firmware_class.path parameter customizes the kernel search path of where to look for the custom firmware blob that was copied from your local workstation onto the root file system of the node. This example uses /var/lib/firmware as the customized path.
  2. Run Butane to generate a MachineConfig object file that uses a copy of the firmware blob on your local workstation named 98-worker-firmware-blob.yaml. The firmware blob contains the configuration to be delivered to the nodes. The following example uses the --files-dir option to specify the directory on your workstation where the local file or files are located:

    $ butane 98-worker-firmware-blob.bu -o 98-worker-firmware-blob.yaml --files-dir <directory_including_package_name>
  3. Apply the configurations to the nodes in one of two ways:

    • If the cluster is not running yet, after you generate manifest files, add the MachineConfig object file to the <installation_directory>/openshift directory, and then continue to create the cluster.
    • If the cluster is already running, apply the file:

      $ oc apply -f 98-worker-firmware-blob.yaml

      A MachineConfig object YAML file is created for you to finish configuring your machines.

  4. Save the Butane config in case you need to update the MachineConfig object in the future.

5.4. Configuring MCO-related custom resources

Besides managing MachineConfig objects, the MCO manages two custom resources (CRs): KubeletConfig and ContainerRuntimeConfig. Those CRs let you change node-level settings impacting how the Kubelet and CRI-O container runtime services behave.

5.4.1. Creating a KubeletConfig CRD to edit kubelet parameters

The kubelet configuration is currently serialized as an Ignition configuration, so it can be directly edited. However, there is also a new kubelet-config-controller added to the Machine Config Controller (MCC). This lets you use a KubeletConfig custom resource (CR) to edit the kubelet parameters.

Note

As the fields in the kubeletConfig object are passed directly to the kubelet from upstream Kubernetes, the kubelet validates those values directly. Invalid values in the kubeletConfig object might cause cluster nodes to become unavailable. For valid values, see the Kubernetes documentation.

Consider the following guidance:

  • Create one KubeletConfig CR for each machine config pool with all the config changes you want for that pool. If you are applying the same content to all of the pools, you need only one KubeletConfig CR for all of the pools.
  • Edit an existing KubeletConfig CR to modify existing settings or add new settings, instead of creating a CR for each change. It is recommended that you create a CR only to modify a different machine config pool, or for changes that are intended to be temporary, so that you can revert the changes.
  • As needed, create multiple KubeletConfig CRs with a limit of 10 per cluster. For the first KubeletConfig CR, the Machine Config Operator (MCO) creates a machine config appended with kubelet. With each subsequent CR, the controller creates another kubelet machine config with a numeric suffix. For example, if you have a kubelet machine config with a -2 suffix, the next kubelet machine config is appended with -3.

If you want to delete the machine configs, delete them in reverse order to avoid exceeding the limit. For example, you delete the kubelet-3 machine config before deleting the kubelet-2 machine config.

Note

If you have a machine config with a kubelet-9 suffix, and you create another KubeletConfig CR, a new machine config is not created, even if there are fewer than 10 kubelet machine configs.

Example KubeletConfig CR

$ oc get kubeletconfig

NAME                AGE
set-max-pods        15m

Example showing a KubeletConfig machine config

$ oc get mc | grep kubelet

...
99-worker-generated-kubelet-1                  b5c5119de007945b6fe6fb215db3b8e2ceb12511   3.2.0             26m
...

The following procedure is an example to show how to configure the maximum number of pods per node on the worker nodes.

Prerequisites

  1. Obtain the label associated with the static MachineConfigPool CR for the type of node you want to configure. Perform one of the following steps:

    1. View the machine config pool:

      $ oc describe machineconfigpool <name>

      For example:

      $ oc describe machineconfigpool worker

      Example output

      apiVersion: machineconfiguration.openshift.io/v1
      kind: MachineConfigPool
      metadata:
        creationTimestamp: 2019-02-08T14:52:39Z
        generation: 1
        labels:
          custom-kubelet: set-max-pods 1

      1
      If a label has been added it appears under labels.
    2. If the label is not present, add a key/value pair:

      $ oc label machineconfigpool worker custom-kubelet=set-max-pods

Procedure

  1. View the available machine configuration objects that you can select:

    $ oc get machineconfig

    By default, the two kubelet-related configs are 01-master-kubelet and 01-worker-kubelet.

  2. Check the current value for the maximum pods per node:

    $ oc describe node <node_name>

    For example:

    $ oc describe node ci-ln-5grqprb-f76d1-ncnqq-worker-a-mdv94

    Look for value: pods: <value> in the Allocatable stanza:

    Example output

    Allocatable:
     attachable-volumes-aws-ebs:  25
     cpu:                         3500m
     hugepages-1Gi:               0
     hugepages-2Mi:               0
     memory:                      15341844Ki
     pods:                        250

  3. Set the maximum pods per node on the worker nodes by creating a custom resource file that contains the kubelet configuration:

    Important

    Kubelet configurations that target a specific machine config pool also affect any dependent pools. For example, creating a kubelet configuration for the pool containing worker nodes will also apply to any subset pools, including the pool containing infrastructure nodes. To avoid this, you must create a new machine config pool with a selection expression that only includes worker nodes, and have your kubelet configuration target this new pool.

    apiVersion: machineconfiguration.openshift.io/v1
    kind: KubeletConfig
    metadata:
      name: set-max-pods
    spec:
      machineConfigPoolSelector:
        matchLabels:
          custom-kubelet: set-max-pods 1
      kubeletConfig:
        maxPods: 500 2
    1
    Enter the label from the machine config pool.
    2
    Add the kubelet configuration. In this example, use maxPods to set the maximum pods per node.
    Note

    The rate at which the kubelet talks to the API server depends on queries per second (QPS) and burst values. The default values, 50 for kubeAPIQPS and 100 for kubeAPIBurst, are sufficient if there are limited pods running on each node. It is recommended to update the kubelet QPS and burst rates if there are enough CPU and memory resources on the node.

    apiVersion: machineconfiguration.openshift.io/v1
    kind: KubeletConfig
    metadata:
      name: set-max-pods
    spec:
      machineConfigPoolSelector:
        matchLabels:
          custom-kubelet: set-max-pods
      kubeletConfig:
        maxPods: <pod_count>
        kubeAPIBurst: <burst_rate>
        kubeAPIQPS: <QPS>
    1. Update the machine config pool for workers with the label:

      $ oc label machineconfigpool worker custom-kubelet=set-max-pods
    2. Create the KubeletConfig object:

      $ oc create -f change-maxPods-cr.yaml
    3. Verify that the KubeletConfig object is created:

      $ oc get kubeletconfig

      Example output

      NAME                AGE
      set-max-pods        15m

      Depending on the number of worker nodes in the cluster, wait for the worker nodes to be rebooted one by one. For a cluster with 3 worker nodes, this could take about 10 to 15 minutes.

  4. Verify that the changes are applied to the node:

    1. Check on a worker node that the maxPods value changed:

      $ oc describe node <node_name>
    2. Locate the Allocatable stanza:

       ...
      Allocatable:
        attachable-volumes-gce-pd:  127
        cpu:                        3500m
        ephemeral-storage:          123201474766
        hugepages-1Gi:              0
        hugepages-2Mi:              0
        memory:                     14225400Ki
        pods:                       500 1
       ...
      1
      In this example, the pods parameter should report the value you set in the KubeletConfig object.
  5. Verify the change in the KubeletConfig object:

    $ oc get kubeletconfigs set-max-pods -o yaml

    This should show a status of True and type:Success, as shown in the following example:

    spec:
      kubeletConfig:
        maxPods: 500
      machineConfigPoolSelector:
        matchLabels:
          custom-kubelet: set-max-pods
    status:
      conditions:
      - lastTransitionTime: "2021-06-30T17:04:07Z"
        message: Success
        status: "True"
        type: Success

5.4.2. Creating a ContainerRuntimeConfig CR to edit CRI-O parameters

You can change some of the settings associated with the OpenShift Container Platform CRI-O runtime for the nodes associated with a specific machine config pool (MCP). Using a ContainerRuntimeConfig custom resource (CR), you set the configuration values and add a label to match the MCP. The MCO then rebuilds the crio.conf and storage.conf configuration files on the associated nodes with the updated values.

Note

To revert the changes implemented by using a ContainerRuntimeConfig CR, you must delete the CR. Removing the label from the machine config pool does not revert the changes.

You can modify the following settings by using a ContainerRuntimeConfig CR:

  • PIDs limit: Setting the PIDs limit in the ContainerRuntimeConfig is expected to be deprecated. If PIDs limits are required, it is recommended to use the podPidsLimit field in the KubeletConfig CR instead. The default value of the podPidsLimit field is 4096.

    Note

    The CRI-O flag is applied on the cgroup of the container, while the Kubelet flag is set on the cgroup of the pod. Please adjust the PIDs limit accordingly.

  • Log level: The logLevel parameter sets the CRI-O log_level parameter, which is the level of verbosity for log messages. The default is info (log_level = info). Other options include fatal, panic, error, warn, debug, and trace.
  • Overlay size: The overlaySize parameter sets the CRI-O Overlay storage driver size parameter, which is the maximum size of a container image.
  • Maximum log size: Setting the maximum log size in the ContainerRuntimeConfig is expected to be deprecated. If a maximum log size is required, it is recommended to use the containerLogMaxSize field in the KubeletConfig CR instead.
  • Container runtime: The defaultRuntime parameter sets the container runtime to either runc or crun. The default is runc.
Important

Support for the crun container runtime is a Technology Preview feature only. Technology Preview features are not supported with Red Hat production service level agreements (SLAs) and might not be functionally complete. Red Hat does not recommend using them in production. These features provide early access to upcoming product features, enabling customers to test functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features, see Technology Preview Features Support Scope.

You should have one ContainerRuntimeConfig CR for each machine config pool with all the config changes you want for that pool. If you are applying the same content to all the pools, you only need one ContainerRuntimeConfig CR for all the pools.

You should edit an existing ContainerRuntimeConfig CR to modify existing settings or add new settings instead of creating a new CR for each change. It is recommended to create a new ContainerRuntimeConfig CR only to modify a different machine config pool, or for changes that are intended to be temporary so that you can revert the changes.

You can create multiple ContainerRuntimeConfig CRs, as needed, with a limit of 10 per cluster. For the first ContainerRuntimeConfig CR, the MCO creates a machine config appended with containerruntime. With each subsequent CR, the controller creates a new containerruntime machine config with a numeric suffix. For example, if you have a containerruntime machine config with a -2 suffix, the next containerruntime machine config is appended with -3.

If you want to delete the machine configs, you should delete them in reverse order to avoid exceeding the limit. For example, you should delete the containerruntime-3 machine config before deleting the containerruntime-2 machine config.

Note

If you have a machine config with a containerruntime-9 suffix, and you create another ContainerRuntimeConfig CR, a new machine config is not created, even if there are fewer than 10 containerruntime machine configs.

Example showing multiple ContainerRuntimeConfig CRs

$ oc get ctrcfg

Example output

NAME         AGE
ctr-pid      24m
ctr-overlay  15m
ctr-level    5m45s

Example showing multiple containerruntime machine configs

$ oc get mc | grep container

Example output

...
01-master-container-runtime                        b5c5119de007945b6fe6fb215db3b8e2ceb12511   3.2.0             57m
...
01-worker-container-runtime                        b5c5119de007945b6fe6fb215db3b8e2ceb12511   3.2.0             57m
...
99-worker-generated-containerruntime               b5c5119de007945b6fe6fb215db3b8e2ceb12511   3.2.0             26m
99-worker-generated-containerruntime-1             b5c5119de007945b6fe6fb215db3b8e2ceb12511   3.2.0             17m
99-worker-generated-containerruntime-2             b5c5119de007945b6fe6fb215db3b8e2ceb12511   3.2.0             7m26s
...

The following example raises the pids_limit to 2048, sets the log_level to debug, sets the overlay size to 8 GB, and sets the log_size_max to unlimited:

Example ContainerRuntimeConfig CR

apiVersion: machineconfiguration.openshift.io/v1
kind: ContainerRuntimeConfig
metadata:
 name: overlay-size
spec:
 machineConfigPoolSelector:
   matchLabels:
     pools.operator.machineconfiguration.openshift.io/worker: '' 1
 containerRuntimeConfig:
   pidsLimit: 2048 2
   logLevel: debug 3
   overlaySize: 8G 4
   logSizeMax: "-1" 5

1
Specifies the machine config pool label.
2
Optional: Specifies the maximum number of processes allowed in a container.
3
Optional: Specifies the level of verbosity for log messages.
4
Optional: Specifies the maximum size of a container image.
5
Optional: Specifies the maximum size allowed for the container log file. If set to a positive number, it must be at least 8192.

Procedure

To change CRI-O settings using the ContainerRuntimeConfig CR:

  1. Create a YAML file for the ContainerRuntimeConfig CR:

    apiVersion: machineconfiguration.openshift.io/v1
    kind: ContainerRuntimeConfig
    metadata:
     name: overlay-size
    spec:
     machineConfigPoolSelector:
       matchLabels:
         pools.operator.machineconfiguration.openshift.io/worker: '' 1
     containerRuntimeConfig: 2
       pidsLimit: 2048
       logLevel: debug
       overlaySize: 8G
       logSizeMax: "-1"
    1
    Specify a label for the machine config pool that you want you want to modify.
    2
    Set the parameters as needed.
  2. Create the ContainerRuntimeConfig CR:

    $ oc create -f <file_name>.yaml
  3. Verify that the CR is created:

    $ oc get ContainerRuntimeConfig

    Example output

    NAME           AGE
    overlay-size   3m19s

  4. Check that a new containerruntime machine config is created:

    $ oc get machineconfigs | grep containerrun

    Example output

    99-worker-generated-containerruntime   2c9371fbb673b97a6fe8b1c52691999ed3a1bfc2  3.2.0  31s

  5. Monitor the machine config pool until all are shown as ready:

    $ oc get mcp worker

    Example output

    NAME    CONFIG               UPDATED  UPDATING  DEGRADED  MACHINECOUNT  READYMACHINECOUNT  UPDATEDMACHINECOUNT  DEGRADEDMACHINECOUNT  AGE
    worker  rendered-worker-169  False    True      False     3             1                  1                    0                     9h

  6. Verify that the settings were applied in CRI-O:

    1. Open an oc debug session to a node in the machine config pool and run chroot /host.

      $ oc debug node/<node_name>
      sh-4.4# chroot /host
    2. Verify the changes in the crio.conf file:

      sh-4.4# crio config | egrep 'log_level|pids_limit|log_size_max'

      Example output

      pids_limit = 2048
      log_size_max = -1
      log_level = "debug"

    3. Verify the changes in the `storage.conf`file:

      sh-4.4# head -n 7 /etc/containers/storage.conf

      Example output

      [storage]
        driver = "overlay"
        runroot = "/var/run/containers/storage"
        graphroot = "/var/lib/containers/storage"
        [storage.options]
          additionalimagestores = []
          size = "8G"

5.4.3. Setting the default maximum container root partition size for Overlay with CRI-O

The root partition of each container shows all of the available disk space of the underlying host. Follow this guidance to set a maximum partition size for the root disk of all containers.

To configure the maximum Overlay size, as well as other CRI-O options like the log level and PID limit, you can create the following ContainerRuntimeConfig custom resource definition (CRD):

apiVersion: machineconfiguration.openshift.io/v1
kind: ContainerRuntimeConfig
metadata:
 name: overlay-size
spec:
 machineConfigPoolSelector:
   matchLabels:
     custom-crio: overlay-size
 containerRuntimeConfig:
   pidsLimit: 2048
   logLevel: debug
   overlaySize: 8G

Procedure

  1. Create the configuration object:

    $ oc apply -f overlaysize.yml
  2. To apply the new CRI-O configuration to your worker nodes, edit the worker machine config pool:

    $ oc edit machineconfigpool worker
  3. Add the custom-crio label based on the matchLabels name you set in the ContainerRuntimeConfig CRD:

    apiVersion: machineconfiguration.openshift.io/v1
    kind: MachineConfigPool
    metadata:
      creationTimestamp: "2020-07-09T15:46:34Z"
      generation: 3
      labels:
        custom-crio: overlay-size
        machineconfiguration.openshift.io/mco-built-in: ""
  4. Save the changes, then view the machine configs:

    $ oc get machineconfigs

    New 99-worker-generated-containerruntime and rendered-worker-xyz objects are created:

    Example output

    99-worker-generated-containerruntime  4173030d89fbf4a7a0976d1665491a4d9a6e54f1   3.2.0             7m42s
    rendered-worker-xyz                   4173030d89fbf4a7a0976d1665491a4d9a6e54f1   3.2.0             7m36s

  5. After those objects are created, monitor the machine config pool for the changes to be applied:

    $ oc get mcp worker

    The worker nodes show UPDATING as True, as well as the number of machines, the number updated, and other details:

    Example output

    NAME   CONFIG              UPDATED   UPDATING   DEGRADED  MACHINECOUNT  READYMACHINECOUNT  UPDATEDMACHINECOUNT   DEGRADEDMACHINECOUNT   AGE
    worker rendered-worker-xyz False True False     3             2                   2                    0                      20h

    When complete, the worker nodes transition back to UPDATING as False, and the UPDATEDMACHINECOUNT number matches the MACHINECOUNT:

    Example output

    NAME   CONFIG              UPDATED   UPDATING   DEGRADED  MACHINECOUNT  READYMACHINECOUNT  UPDATEDMACHINECOUNT   DEGRADEDMACHINECOUNT   AGE
    worker   rendered-worker-xyz   True      False      False      3         3            3             0           20h

    Looking at a worker machine, you see that the new 8 GB max size configuration is applied to all of the workers:

    Example output

    head -n 7 /etc/containers/storage.conf
    [storage]
      driver = "overlay"
      runroot = "/var/run/containers/storage"
      graphroot = "/var/lib/containers/storage"
      [storage.options]
        additionalimagestores = []
        size = "8G"

    Looking inside a container, you see that the root partition is now 8 GB:

    Example output

    ~ $ df -h
    Filesystem                Size      Used Available Use% Mounted on
    overlay                   8.0G      8.0K      8.0G   0% /

Chapter 6. Postinstallation cluster tasks

After installing OpenShift Container Platform, you can further expand and customize your cluster to your requirements.

6.1. Available cluster customizations

You complete most of the cluster configuration and customization after you deploy your OpenShift Container Platform cluster. A number of configuration resources are available.

Note

If you install your cluster on IBM Z, not all features and functions are available.

You modify the configuration resources to configure the major features of the cluster, such as the image registry, networking configuration, image build behavior, and the identity provider.

For current documentation of the settings that you control by using these resources, use the oc explain command, for example oc explain builds --api-version=config.openshift.io/v1

6.1.1. Cluster configuration resources

All cluster configuration resources are globally scoped (not namespaced) and named cluster.

Resource nameDescription

apiserver.config.openshift.io

Provides API server configuration such as certificates and certificate authorities.

authentication.config.openshift.io

Controls the identity provider and authentication configuration for the cluster.

build.config.openshift.io

Controls default and enforced configuration for all builds on the cluster.

console.config.openshift.io

Configures the behavior of the web console interface, including the logout behavior.

featuregate.config.openshift.io

Enables FeatureGates so that you can use Tech Preview features.

image.config.openshift.io

Configures how specific image registries should be treated (allowed, disallowed, insecure, CA details).

ingress.config.openshift.io

Configuration details related to routing such as the default domain for routes.

oauth.config.openshift.io

Configures identity providers and other behavior related to internal OAuth server flows.

project.config.openshift.io

Configures how projects are created including the project template.

proxy.config.openshift.io

Defines proxies to be used by components needing external network access. Note: not all components currently consume this value.

scheduler.config.openshift.io

Configures scheduler behavior such as profiles and default node selectors.

6.1.2. Operator configuration resources

These configuration resources are cluster-scoped instances, named cluster, which control the behavior of a specific component as owned by a particular Operator.

Resource nameDescription

consoles.operator.openshift.io

Controls console appearance such as branding customizations

config.imageregistry.operator.openshift.io

Configures OpenShift image registry settings such as public routing, log levels, proxy settings, resource constraints, replica counts, and storage type.

config.samples.operator.openshift.io

Configures the Samples Operator to control which example image streams and templates are installed on the cluster.

6.1.3. Additional configuration resources

These configuration resources represent a single instance of a particular component. In some cases, you can request multiple instances by creating multiple instances of the resource. In other cases, the Operator can use only a specific resource instance name in a specific namespace. Reference the component-specific documentation for details on how and when you can create additional resource instances.

Resource nameInstance nameNamespaceDescription

alertmanager.monitoring.coreos.com

main

openshift-monitoring

Controls the Alertmanager deployment parameters.

ingresscontroller.operator.openshift.io

default

openshift-ingress-operator

Configures Ingress Operator behavior such as domain, number of replicas, certificates, and controller placement.

6.1.4. Informational Resources

You use these resources to retrieve information about the cluster. Some configurations might require you to edit these resources directly.

Resource nameInstance nameDescription

clusterversion.config.openshift.io

version

In OpenShift Container Platform 4.11, you must not customize the ClusterVersion resource for production clusters. Instead, follow the process to update a cluster.

dns.config.openshift.io

cluster

You cannot modify the DNS settings for your cluster. You can view the DNS Operator status.

infrastructure.config.openshift.io

cluster

Configuration details allowing the cluster to interact with its cloud provider.

network.config.openshift.io

cluster

You cannot modify your cluster networking after installation. To customize your network, follow the process to customize networking during installation.

6.2. Updating the global cluster pull secret

You can update the global pull secret for your cluster by either replacing the current pull secret or appending a new pull secret.

The procedure is required when users use a separate registry to store images than the registry used during installation.

Prerequisites

  • You have access to the cluster as a user with the cluster-admin role.

Procedure

  1. Optional: To append a new pull secret to the existing pull secret, complete the following steps:

    1. Enter the following command to download the pull secret:

      $ oc get secret/pull-secret -n openshift-config --template='{{index .data ".dockerconfigjson" | base64decode}}' ><pull_secret_location> 1
      1
      Provide the path to the pull secret file.
    2. Enter the following command to add the new pull secret:

      $ oc registry login --registry="<registry>" \ 1
      --auth-basic="<username>:<password>" \ 2
      --to=<pull_secret_location> 3
      1
      Provide the new registry. You can include multiple repositories within the same registry, for example: --registry="<registry/my-namespace/my-repository>".
      2
      Provide the credentials of the new registry.
      3
      Provide the path to the pull secret file.

      Alternatively, you can perform a manual update to the pull secret file.

  2. Enter the following command to update the global pull secret for your cluster:

    $ oc set data secret/pull-secret -n openshift-config --from-file=.dockerconfigjson=<pull_secret_location> 1
    1
    Provide the path to the new pull secret file.

    This update is rolled out to all nodes, which can take some time depending on the size of your cluster.

    Note

    As of OpenShift Container Platform 4.7.4, changes to the global pull secret no longer trigger a node drain or reboot.

6.3. Adjust worker nodes

If you incorrectly sized the worker nodes during deployment, adjust them by creating one or more new machine sets, scale them up, then scale the original machine set down before removing them.

6.3.1. Understanding the difference between machine sets and the machine config pool

MachineSet objects describe OpenShift Container Platform nodes with respect to the cloud or machine provider.

The MachineConfigPool object allows MachineConfigController components to define and provide the status of machines in the context of upgrades.

The MachineConfigPool object allows users to configure how upgrades are rolled out to the OpenShift Container Platform nodes in the machine config pool.

The NodeSelector object can be replaced with a reference to the MachineSet object.

6.3.2. Scaling a machine set manually

To add or remove an instance of a machine in a machine set, you can manually scale the machine set.

This guidance is relevant to fully automated, installer-provisioned infrastructure installations. Customized, user-provisioned infrastructure installations do not have machine sets.

Prerequisites

  • Install an OpenShift Container Platform cluster and the oc command line.
  • Log in to oc as a user with cluster-admin permission.

Procedure

  1. View the machine sets that are in the cluster:

    $ oc get machinesets -n openshift-machine-api

    The machine sets are listed in the form of <clusterid>-worker-<aws-region-az>.

  2. View the machines that are in the cluster:

    $ oc get machine -n openshift-machine-api
  3. Set the annotation on the machine that you want to delete:

    $ oc annotate machine/<machine_name> -n openshift-machine-api machine.openshift.io/cluster-api-delete-machine="true"
  4. Scale the machine set by running one of the following commands:

    $ oc scale --replicas=2 machineset <machineset> -n openshift-machine-api

    Or:

    $ oc edit machineset <machineset> -n openshift-machine-api
    Tip

    You can alternatively apply the following YAML to scale the machine set:

    apiVersion: machine.openshift.io/v1beta1
    kind: MachineSet
    metadata:
      name: <machineset>
      namespace: openshift-machine-api
    spec:
      replicas: 2

    You can scale the machine set up or down. It takes several minutes for the new machines to be available.

    Important

    By default, the machine controller tries to drain the node that is backed by the machine until it succeeds. In some situations, such as with a misconfigured pod disruption budget, the drain operation might not be able to succeed. If the drain operation fails, the machine controller cannot proceed removing the machine.

    You can skip draining the node by annotating machine.openshift.io/exclude-node-draining in a specific machine.

Verification

  • Verify the deletion of the intended machine:

    $ oc get machines

6.3.3. The machine set deletion policy

Random, Newest, and Oldest are the three supported deletion options. The default is Random, meaning that random machines are chosen and deleted when scaling machine sets down. The deletion policy can be set according to the use case by modifying the particular machine set:

spec:
  deletePolicy: <delete_policy>
  replicas: <desired_replica_count>

Specific machines can also be prioritized for deletion by adding the annotation machine.openshift.io/cluster-api-delete-machine=true to the machine of interest, regardless of the deletion policy.

Important

By default, the OpenShift Container Platform router pods are deployed on workers. Because the router is required to access some cluster resources, including the web console, do not scale the worker machine set to 0 unless you first relocate the router pods.

Note

Custom machine sets can be used for use cases requiring that services run on specific nodes and that those services are ignored by the controller when the worker machine sets are scaling down. This prevents service disruption.

6.3.4. Creating default cluster-wide node selectors

You can use default cluster-wide node selectors on pods together with labels on nodes to constrain all pods created in a cluster to specific nodes.

With cluster-wide node selectors, when you create a pod in that cluster, OpenShift Container Platform adds the default node selectors to the pod and schedules the pod on nodes with matching labels.

You configure cluster-wide node selectors by editing the Scheduler Operator custom resource (CR). You add labels to a node, a machine set, or a machine config. Adding the label to the machine set ensures that if the node or machine goes down, new nodes have the label. Labels added to a node or machine config do not persist if the node or machine goes down.

Note

You can add additional key/value pairs to a pod. But you cannot add a different value for a default key.

Procedure

To add a default cluster-wide node selector:

  1. Edit the Scheduler Operator CR to add the default cluster-wide node selectors:

    $ oc edit scheduler cluster

    Example Scheduler Operator CR with a node selector

    apiVersion: config.openshift.io/v1
    kind: Scheduler
    metadata:
      name: cluster
    ...
    spec:
      defaultNodeSelector: type=user-node,region=east 1
      mastersSchedulable: false

    1
    Add a node selector with the appropriate <key>:<value> pairs.

    After making this change, wait for the pods in the openshift-kube-apiserver project to redeploy. This can take several minutes. The default cluster-wide node selector does not take effect until the pods redeploy.

  2. Add labels to a node by using a machine set or editing the node directly:

    • Use a machine set to add labels to nodes managed by the machine set when a node is created:

      1. Run the following command to add labels to a MachineSet object:

        $ oc patch MachineSet <name> --type='json' -p='[{"op":"add","path":"/spec/template/spec/metadata/labels", "value":{"<key>"="<value>","<key>"="<value>"}}]'  -n openshift-machine-api 1
        1
        Add a <key>/<value> pair for each label.

        For example:

        $ oc patch MachineSet ci-ln-l8nry52-f76d1-hl7m7-worker-c --type='json' -p='[{"op":"add","path":"/spec/template/spec/metadata/labels", "value":{"type":"user-node","region":"east"}}]'  -n openshift-machine-api
        Tip

        You can alternatively apply the following YAML to add labels to a machine set:

        apiVersion: machine.openshift.io/v1beta1
        kind: MachineSet
        metadata:
          name: <machineset>
          namespace: openshift-machine-api
        spec:
          template:
            spec:
              metadata:
                labels:
                  region: "east"
                  type: "user-node"
      2. Verify that the labels are added to the MachineSet object by using the oc edit command:

        For example:

        $ oc edit MachineSet abc612-msrtw-worker-us-east-1c -n openshift-machine-api

        Example MachineSet object

        apiVersion: machine.openshift.io/v1beta1
        kind: MachineSet
          ...
        spec:
          ...
          template:
            metadata:
          ...
            spec:
              metadata:
                labels:
                  region: east
                  type: user-node
          ...

      3. Redeploy the nodes associated with that machine set by scaling down to 0 and scaling up the nodes:

        For example:

        $ oc scale --replicas=0 MachineSet ci-ln-l8nry52-f76d1-hl7m7-worker-c -n openshift-machine-api
        $ oc scale --replicas=1 MachineSet ci-ln-l8nry52-f76d1-hl7m7-worker-c -n openshift-machine-api
      4. When the nodes are ready and available, verify that the label is added to the nodes by using the oc get command:

        $ oc get nodes -l <key>=<value>

        For example:

        $ oc get nodes -l type=user-node

        Example output

        NAME                                       STATUS   ROLES    AGE   VERSION
        ci-ln-l8nry52-f76d1-hl7m7-worker-c-vmqzp   Ready    worker   61s   v1.24.0

    • Add labels directly to a node:

      1. Edit the Node object for the node:

        $ oc label nodes <name> <key>=<value>

        For example, to label a node:

        $ oc label nodes ci-ln-l8nry52-f76d1-hl7m7-worker-b-tgq49 type=user-node region=east
        Tip

        You can alternatively apply the following YAML to add labels to a node:

        kind: Node
        apiVersion: v1
        metadata:
          name: <node_name>
          labels:
            type: "user-node"
            region: "east"
      2. Verify that the labels are added to the node using the oc get command:

        $ oc get nodes -l <key>=<value>,<key>=<value>

        For example:

        $ oc get nodes -l type=user-node,region=east

        Example output

        NAME                                       STATUS   ROLES    AGE   VERSION
        ci-ln-l8nry52-f76d1-hl7m7-worker-b-tgq49   Ready    worker   17m   v1.24.0

6.4. Improving cluster stability in high latency environments using worker latency profiles

If the cluster administrator has performed latency tests for platform verification, they can discover the need to adjust the operation of the cluster to ensure stability in cases of high latency. The cluster administrator need change only one parameter, recorded in a file, which controls four parameters affecting how supervisory processes read status and interpret the health of the cluster. Changing only the one parameter provides cluster tuning in an easy, supportable manner.

The Kubelet process provides the starting point for monitoring cluster health. The Kubelet sets status values for all nodes in the OpenShift Container Platform cluster. The Kubernetes Controller Manager (kube controller) reads the status values every 10 seconds, by default. If the kube controller cannot read a node status value, it loses contact with that node after a configured period. The default behavior is:

  1. The node controller on the control plane updates the node health to Unhealthy and marks the node Ready condition`Unknown`.
  2. In response, the scheduler stops scheduling pods to that node.
  3. The Node Lifecycle Controller adds a node.kubernetes.io/unreachable taint with a NoExecute effect to the node and schedules any pods on the node for eviction after five minutes, by default.

This behavior can cause problems if your network is prone to latency issues, especially if you have nodes at the network edge. In some cases, the Kubernetes Controller Manager might not receive an update from a healthy node due to network latency. The Kubelet evicts pods from the node even though the node is healthy.

To avoid this problem, you can use worker latency profiles to adjust the frequency that the Kubelet and the Kubernetes Controller Manager wait for status updates before taking action. These adjustments help to ensure that your cluster runs properly if network latency between the control plane and the worker nodes is not optimal.

These worker latency profiles contain three sets of parameters that are pre-defined with carefully tuned values to control the reaction of the cluster to increased latency. No need to experimentally find the best values manually.

You can configure worker latency profiles when installing a cluster or at any time you notice increased latency in your cluster network.

6.4.1. Understanding worker latency profiles

Worker latency profiles are four different categories of carefully-tuned parameters. The four parameters which implement these values are node-status-update-frequency, node-monitor-grace-period, default-not-ready-toleration-seconds and default-unreachable-toleration-seconds. These parameters can use values which allow you control the reaction of the cluster to latency issues without needing to determine the best values using manual methods.

Important

Setting these parameters manually is not supported. Incorrect parameter settings adversely affect cluster stability.

All worker latency profiles configure the following parameters:

node-status-update-frequency
Specifies how often the kubelet posts node status to the API server.
node-monitor-grace-period
Specifies the amount of time in seconds that the Kubernetes Controller Manager waits for an update from a kubelet before marking the node unhealthy and adding the node.kubernetes.io/not-ready or node.kubernetes.io/unreachable taint to the node.
default-not-ready-toleration-seconds
Specifies the amount of time in seconds after marking a node unhealthy that the Kube API Server Operator waits before evicting pods from that node.
default-unreachable-toleration-seconds
Specifies the amount of time in seconds after marking a node unreachable that the Kube API Server Operator waits before evicting pods from that node.

The following Operators monitor the changes to the worker latency profiles and respond accordingly:

  • The Machine Config Operator (MCO) updates the node-status-update-frequency parameter on the worker nodes.
  • The Kubernetes Controller Manager updates the node-monitor-grace-period parameter on the control plane nodes.
  • The Kubernetes API Server Operator updates the default-not-ready-toleration-seconds and default-unreachable-toleration-seconds parameters on the control plane nodes.

While the default configuration works in most cases, OpenShift Container Platform offers two other worker latency profiles for situations where the network is experiencing higher latency than usual. The three worker latency profiles are described in the following sections:

Default worker latency profile

With the Default profile, each Kubelet updates it’s status every 10 seconds (node-status-update-frequency). The Kube Controller Manager checks the statuses of Kubelet every 5 seconds (node-monitor-grace-period).

The Kubernetes Controller Manager waits 40 seconds for a status update from Kubelet before considering the Kubelet unhealthy. If no status is made available to the Kubernetes Controller Manager, it then marks the node with the node.kubernetes.io/not-ready or node.kubernetes.io/unreachable taint and evicts the pods on that node.

If a pod on that node has the NoExecute taint, the pod is run according to tolerationSeconds. If the pod has no taint, it will be evicted in 300 seconds (default-not-ready-toleration-seconds and default-unreachable-toleration-seconds settings of the Kube API Server).

ProfileComponentParameterValue

Default

kubelet

node-status-update-frequency

10s

Kubelet Controller Manager

node-monitor-grace-period

40s

Kubernetes API Server Operator

default-not-ready-toleration-seconds

300s

Kubernetes API Server Operator

default-unreachable-toleration-seconds

300s

Medium worker latency profile

Use the MediumUpdateAverageReaction profile if the network latency is slightly higher than usual.

The MediumUpdateAverageReaction profile reduces the frequency of kubelet updates to 20 seconds and changes the period that the Kubernetes Controller Manager waits for those updates to 2 minutes. The pod eviction period for a pod on that node is reduced to 60 seconds. If the pod has the tolerationSeconds parameter, the eviction waits for the period specified by that parameter.

The Kubernetes Controller Manager waits for 2 minutes to consider a node unhealthy. In another minute, the eviction process starts.

ProfileComponentParameterValue

MediumUpdateAverageReaction

kubelet

node-status-update-frequency

20s

Kubelet Controller Manager

node-monitor-grace-period

2m

Kubernetes API Server Operator

default-not-ready-toleration-seconds

60s

Kubernetes API Server Operator

default-unreachable-toleration-seconds

60s

Low worker latency profile

Use the LowUpdateSlowReaction profile if the network latency is extremely high.

The LowUpdateSlowReaction profile reduces the frequency of kubelet updates to 1 minute and changes the period that the Kubernetes Controller Manager waits for those updates to 5 minutes. The pod eviction period for a pod on that node is reduced to 60 seconds. If the pod has the tolerationSeconds parameter, the eviction waits for the period specified by that parameter.

The Kubernetes Controller Manager waits for 5 minutes to consider a node unhealthy. In another minute, the eviction process starts.

ProfileComponentParameterValue

LowUpdateSlowReaction

kubelet

node-status-update-frequency

1m

Kubelet Controller Manager

node-monitor-grace-period

5m

Kubernetes API Server Operator

default-not-ready-toleration-seconds

60s

Kubernetes API Server Operator

default-unreachable-toleration-seconds

60s

6.4.2. Using and changing worker latency profiles

To change a worker latency profile to deal with network latency, edit the node.config object to add the name of the profile. You can change the profile at any time as latency increases or decreases.

You must move one worker latency profile at a time. For example, you cannot move directly from the Default profile to the LowUpdateSlowReaction worker latency profile. You must move from the Default worker latency profile to the MediumUpdateAverageReaction profile first, then to LowUpdateSlowReaction. Similarly, when returning to the Default profile, you must move from the low profile to the medium profile first, then to Default.

Note

You can also configure worker latency profiles upon installing an OpenShift Container Platform cluster.

Procedure

To move from the default worker latency profile:

  1. Move to the medium worker latency profile:

    1. Edit the node.config object:

      $ oc edit nodes.config/cluster
    2. Add spec.workerLatencyProfile: MediumUpdateAverageReaction:

      Example node.config object

      apiVersion: config.openshift.io/v1
      kind: Node
      metadata:
        annotations:
          include.release.openshift.io/ibm-cloud-managed: "true"
          include.release.openshift.io/self-managed-high-availability: "true"
          include.release.openshift.io/single-node-developer: "true"
          release.openshift.io/create-only: "true"
        creationTimestamp: "2022-07-08T16:02:51Z"
        generation: 1
        name: cluster
        ownerReferences:
        - apiVersion: config.openshift.io/v1
          kind: ClusterVersion
          name: version
          uid: 36282574-bf9f-409e-a6cd-3032939293eb
        resourceVersion: "1865"
        uid: 0c0f7a4c-4307-4187-b591-6155695ac85b
      spec:
        workerLatencyProfile: MediumUpdateAverageReaction 1
      
      # ...

      1
      Specifies the medium worker latency policy.

      Scheduling on each worker node is disabled as the change is being applied.

  2. Optional: Move to the low worker latency profile:

    1. Edit the node.config object:

      $ oc edit nodes.config/cluster
    2. Change the spec.workerLatencyProfile value to LowUpdateSlowReaction:

      Example node.config object

      apiVersion: config.openshift.io/v1
      kind: Node
      metadata:
        annotations:
          include.release.openshift.io/ibm-cloud-managed: "true"
          include.release.openshift.io/self-managed-high-availability: "true"
          include.release.openshift.io/single-node-developer: "true"
          release.openshift.io/create-only: "true"
        creationTimestamp: "2022-07-08T16:02:51Z"
        generation: 1
        name: cluster
        ownerReferences:
        - apiVersion: config.openshift.io/v1
          kind: ClusterVersion
          name: version
          uid: 36282574-bf9f-409e-a6cd-3032939293eb
        resourceVersion: "1865"
        uid: 0c0f7a4c-4307-4187-b591-6155695ac85b
      spec:
        workerLatencyProfile: LowUpdateSlowReaction 1
      
      # ...

      1
      Specifies use of the low worker latency policy.

Scheduling on each worker node is disabled as the change is being applied.

Verification

  • When all nodes return to the Ready condition, you can use the following command to look in the Kubernetes Controller Manager to ensure it was applied:

    $ oc get KubeControllerManager -o yaml | grep -i workerlatency -A 5 -B 5

    Example output

    # ...
        - lastTransitionTime: "2022-07-11T19:47:10Z"
          reason: ProfileUpdated
          status: "False"
          type: WorkerLatencyProfileProgressing
        - lastTransitionTime: "2022-07-11T19:47:10Z" 1
          message: all static pod revision(s) have updated latency profile
          reason: ProfileUpdated
          status: "True"
          type: WorkerLatencyProfileComplete
        - lastTransitionTime: "2022-07-11T19:20:11Z"
          reason: AsExpected
          status: "False"
          type: WorkerLatencyProfileDegraded
        - lastTransitionTime: "2022-07-11T19:20:36Z"
          status: "False"
    # ...

    1
    Specifies that the profile is applied and active.

To change the medium profile to default or change the default to medium, edit the node.config object and set the spec.workerLatencyProfile parameter to the appropriate value.

6.5. Creating infrastructure machine sets for production environments

You can create a machine set to create machines that host only infrastructure components, such as the default router, the integrated container image registry, and components for cluster metrics and monitoring. These infrastructure machines are not counted toward the total number of subscriptions that are required to run the environment.

In a production deployment, it is recommended that you deploy at least three machine sets to hold infrastructure components. Both OpenShift Logging and Red Hat OpenShift Service Mesh deploy Elasticsearch, which requires three instances to be installed on different nodes. Each of these nodes can be deployed to different availability zones for high availability. A configuration like this requires three different machine sets, one for each availability zone. In global Azure regions that do not have multiple availability zones, you can use availability sets to ensure high availability.

For information on infrastructure nodes and which components can run on infrastructure nodes, see Creating infrastructure machine sets.

To create an infrastructure node, you can use a machine set, post_installation_configuration/cluster-tasks.adoc#creating-an-infra-node_post-install-cluster-tasks[assign a label to the nodes], or use a machine config pool.

For sample machine sets that you can use with these procedures, see Creating machine sets for different clouds.

Applying a specific node selector to all infrastructure components causes OpenShift Container Platform to schedule those workloads on nodes with that label.

6.5.1. Creating a machine set

In addition to the compute machine sets created by the installation program, you can create your own to dynamically manage the machine compute resources for specific workloads of your choice.

Prerequisites

  • Deploy an OpenShift Container Platform cluster.
  • Install the OpenShift CLI (oc).
  • Log in to oc as a user with cluster-admin permission.

Procedure

  1. Create a new YAML file that contains the machine set custom resource (CR) sample and is named <file_name>.yaml.

    Ensure that you set the <clusterID> and <role> parameter values.

  2. Optional: If you are not sure which value to set for a specific field, you can check an existing compute machine set from your cluster.

    1. To list the compute machine sets in your cluster, run the following command:

      $ oc get machinesets -n openshift-machine-api

      Example output

      NAME                                DESIRED   CURRENT   READY   AVAILABLE   AGE
      agl030519-vplxk-worker-us-east-1a   1         1         1       1           55m
      agl030519-vplxk-worker-us-east-1b   1         1         1       1           55m
      agl030519-vplxk-worker-us-east-1c   1         1         1       1           55m
      agl030519-vplxk-worker-us-east-1d   0         0                             55m
      agl030519-vplxk-worker-us-east-1e   0         0                             55m
      agl030519-vplxk-worker-us-east-1f   0         0                             55m

    2. To view values of a specific compute machine set custom resource (CR), run the following command:

      $ oc get machineset <machineset_name> \
        -n openshift-machine-api -o yaml

      Example output

      apiVersion: machine.openshift.io/v1beta1
      kind: MachineSet
      metadata:
        labels:
          machine.openshift.io/cluster-api-cluster: <infrastructure_id> 1
        name: <infrastructure_id>-<role> 2
        namespace: openshift-machine-api
      spec:
        replicas: 1
        selector:
          matchLabels:
            machine.openshift.io/cluster-api-cluster: <infrastructure_id>
            machine.openshift.io/cluster-api-machineset: <infrastructure_id>-<role>
        template:
          metadata:
            labels:
              machine.openshift.io/cluster-api-cluster: <infrastructure_id>
              machine.openshift.io/cluster-api-machine-role: <role>
              machine.openshift.io/cluster-api-machine-type: <role>
              machine.openshift.io/cluster-api-machineset: <infrastructure_id>-<role>
          spec:
            providerSpec: 3
              ...

      1
      The cluster infrastructure ID.
      2
      A default node label.
      Note

      For clusters that have user-provisioned infrastructure, a compute machine set can only create worker and infra type machines.

      3
      The values in the <providerSpec> section of the compute machine set CR are platform-specific. For more information about <providerSpec> parameters in the CR, see the sample compute machine set CR configuration for your provider.
  3. Create a MachineSet CR by running the following command:

    $ oc create -f <file_name>.yaml

Verification

  • View the list of compute machine sets by running the following command:

    $ oc get machineset -n openshift-machine-api

    Example output

    NAME                                DESIRED   CURRENT   READY   AVAILABLE   AGE
    agl030519-vplxk-infra-us-east-1a    1         1         1       1           11m
    agl030519-vplxk-worker-us-east-1a   1         1         1       1           55m
    agl030519-vplxk-worker-us-east-1b   1         1         1       1           55m
    agl030519-vplxk-worker-us-east-1c   1         1         1       1           55m
    agl030519-vplxk-worker-us-east-1d   0         0                             55m
    agl030519-vplxk-worker-us-east-1e   0         0                             55m
    agl030519-vplxk-worker-us-east-1f   0         0                             55m

    When the new machine set is available, the DESIRED and CURRENT values match. If the machine set is not available, wait a few minutes and run the command again.

6.5.2. Creating an infrastructure node

Important

See Creating infrastructure machine sets for installer-provisioned infrastructure environments or for any cluster where the control plane nodes are managed by the machine API.

Requirements of the cluster dictate that infrastructure, also called infra nodes, be provisioned. The installer only provides provisions for control plane and worker nodes. Worker nodes can be designated as infrastructure nodes or application, also called app, nodes through labeling.

Procedure

  1. Add a label to the worker node that you want to act as application node:

    $ oc label node <node-name> node-role.kubernetes.io/app=""
  2. Add a label to the worker nodes that you want to act as infrastructure nodes:

    $ oc label node <node-name> node-role.kubernetes.io/infra=""
  3. Check to see if applicable nodes now have the infra role and app roles:

    $ oc get nodes
  4. Create a default cluster-wide node selector. The default node selector is applied to pods created in all namespaces. This creates an intersection with any existing node selectors on a pod, which additionally constrains the pod’s selector.

    Important

    If the default node selector key conflicts with the key of a pod’s label, then the default node selector is not applied.

    However, do not set a default node selector that might cause a pod to become unschedulable. For example, setting the default node selector to a specific node role, such as node-role.kubernetes.io/infra="", when a pod’s label is set to a different node role, such as node-role.kubernetes.io/master="", can cause the pod to become unschedulable. For this reason, use caution when setting the default node selector to specific node roles.

    You can alternatively use a project node selector to avoid cluster-wide node selector key conflicts.

    1. Edit the Scheduler object:

      $ oc edit scheduler cluster
    2. Add the defaultNodeSelector field with the appropriate node selector:

      apiVersion: config.openshift.io/v1
      kind: Scheduler
      metadata:
        name: cluster
      spec:
        defaultNodeSelector: topology.kubernetes.io/region=us-east-1 1
      # ...
      1
      This example node selector deploys pods on nodes in the us-east-1 region by default.
    3. Save the file to apply the changes.

You can now move infrastructure resources to the newly labeled infra nodes.

Additional resources

  • For information on how to configure project node selectors to avoid cluster-wide node selector key conflicts, see Project node selectors.

6.5.3. Creating a machine config pool for infrastructure machines

If you need infrastructure machines to have dedicated configurations, you must create an infra pool.

Procedure

  1. Add a label to the node you want to assign as the infra node with a specific label:

    $ oc label node <node_name> <label>
    $ oc label node ci-ln-n8mqwr2-f76d1-xscn2-worker-c-6fmtx node-role.kubernetes.io/infra=
  2. Create a machine config pool that contains both the worker role and your custom role as machine config selector:

    $ cat infra.mcp.yaml

    Example output

    apiVersion: machineconfiguration.openshift.io/v1
    kind: MachineConfigPool
    metadata:
      name: infra
    spec:
      machineConfigSelector:
        matchExpressions:
          - {key: machineconfiguration.openshift.io/role, operator: In, values: [worker,infra]} 1
      nodeSelector:
        matchLabels:
          node-role.kubernetes.io/infra: "" 2

    1
    Add the worker role and your custom role.
    2
    Add the label you added to the node as a nodeSelector.
    Note

    Custom machine config pools inherit machine configs from the worker pool. Custom pools use any machine config targeted for the worker pool, but add the ability to also deploy changes that are targeted at only the custom pool. Because a custom pool inherits resources from the worker pool, any change to the worker pool also affects the custom pool.

  3. After you have the YAML file, you can create the machine config pool:

    $ oc create -f infra.mcp.yaml
  4. Check the machine configs to ensure that the infrastructure configuration rendered successfully:

    $ oc get machineconfig

    Example output

    NAME                                                        GENERATEDBYCONTROLLER                      IGNITIONVERSION   CREATED
    00-master                                                   365c1cfd14de5b0e3b85e0fc815b0060f36ab955   3.2.0             31d
    00-worker                                                   365c1cfd14de5b0e3b85e0fc815b0060f36ab955   3.2.0             31d
    01-master-container-runtime                                 365c1cfd14de5b0e3b85e0fc815b0060f36ab955   3.2.0             31d
    01-master-kubelet                                           365c1cfd14de5b0e3b85e0fc815b0060f36ab955   3.2.0             31d
    01-worker-container-runtime                                 365c1cfd14de5b0e3b85e0fc815b0060f36ab955   3.2.0             31d
    01-worker-kubelet                                           365c1cfd14de5b0e3b85e0fc815b0060f36ab955   3.2.0             31d
    99-master-1ae2a1e0-a115-11e9-8f14-005056899d54-registries   365c1cfd14de5b0e3b85e0fc815b0060f36ab955   3.2.0             31d
    99-master-ssh                                                                                          3.2.0             31d
    99-worker-1ae64748-a115-11e9-8f14-005056899d54-registries   365c1cfd14de5b0e3b85e0fc815b0060f36ab955   3.2.0             31d
    99-worker-ssh                                                                                          3.2.0             31d
    rendered-infra-4e48906dca84ee702959c71a53ee80e7             365c1cfd14de5b0e3b85e0fc815b0060f36ab955   3.2.0             23m
    rendered-master-072d4b2da7f88162636902b074e9e28e            5b6fb8349a29735e48446d435962dec4547d3090   3.2.0             31d
    rendered-master-3e88ec72aed3886dec061df60d16d1af            02c07496ba0417b3e12b78fb32baf6293d314f79   3.2.0             31d
    rendered-master-419bee7de96134963a15fdf9dd473b25            365c1cfd14de5b0e3b85e0fc815b0060f36ab955   3.2.0             17d
    rendered-master-53f5c91c7661708adce18739cc0f40fb            365c1cfd14de5b0e3b85e0fc815b0060f36ab955   3.2.0             13d
    rendered-master-a6a357ec18e5bce7f5ac426fc7c5ffcd            365c1cfd14de5b0e3b85e0fc815b0060f36ab955   3.2.0             7d3h
    rendered-master-dc7f874ec77fc4b969674204332da037            5b6fb8349a29735e48446d435962dec4547d3090   3.2.0             31d
    rendered-worker-1a75960c52ad18ff5dfa6674eb7e533d            5b6fb8349a29735e48446d435962dec4547d3090   3.2.0             31d
    rendered-worker-2640531be11ba43c61d72e82dc634ce6            5b6fb8349a29735e48446d435962dec4547d3090   3.2.0             31d
    rendered-worker-4e48906dca84ee702959c71a53ee80e7            365c1cfd14de5b0e3b85e0fc815b0060f36ab955   3.2.0             7d3h
    rendered-worker-4f110718fe88e5f349987854a1147755            365c1cfd14de5b0e3b85e0fc815b0060f36ab955   3.2.0             17d
    rendered-worker-afc758e194d6188677eb837842d3b379            02c07496ba0417b3e12b78fb32baf6293d314f79   3.2.0             31d
    rendered-worker-daa08cc1e8f5fcdeba24de60cd955cc3            365c1cfd14de5b0e3b85e0fc815b0060f36ab955   3.2.0             13d

    You should see a new machine config, with the rendered-infra-* prefix.

  5. Optional: To deploy changes to a custom pool, create a machine config that uses the custom pool name as the label, such as infra. Note that this is not required and only shown for instructional purposes. In this manner, you can apply any custom configurations specific to only your infra nodes.

    Note

    After you create the new machine config pool, the MCO generates a new rendered config for that pool, and associated nodes of that pool reboot to apply the new configuration.

    1. Create a machine config:

      $ cat infra.mc.yaml

      Example output

      apiVersion: machineconfiguration.openshift.io/v1
      kind: MachineConfig
      metadata:
        name: 51-infra
        labels:
          machineconfiguration.openshift.io/role: infra 1
      spec:
        config:
          ignition:
            version: 3.2.0
          storage:
            files:
            - path: /etc/infratest
              mode: 0644
              contents:
                source: data:,infra

      1
      Add the label you added to the node as a nodeSelector.
    2. Apply the machine config to the infra-labeled nodes:

      $ oc create -f infra.mc.yaml
  6. Confirm that your new machine config pool is available:

    $ oc get mcp

    Example output

    NAME     CONFIG                                             UPDATED   UPDATING   DEGRADED   MACHINECOUNT   READYMACHINECOUNT   UPDATEDMACHINECOUNT   DEGRADEDMACHINECOUNT   AGE
    infra    rendered-infra-60e35c2e99f42d976e084fa94da4d0fc    True      False      False      1              1                   1                     0                      4m20s
    master   rendered-master-9360fdb895d4c131c7c4bebbae099c90   True      False      False      3              3                   3                     0                      91m
    worker   rendered-worker-60e35c2e99f42d976e084fa94da4d0fc   True      False      False      2              2                   2                     0                      91m

    In this example, a worker node was changed to an infra node.

Additional resources

6.6. Assigning machine set resources to infrastructure nodes

After creating an infrastructure machine set, the worker and infra roles are applied to new infra nodes. Nodes with the infra role are not counted toward the total number of subscriptions that are required to run the environment, even when the worker role is also applied.

However, when an infra node is assigned the worker role, there is a chance that user workloads can get assigned inadvertently to the infra node. To avoid this, you can apply a taint to the infra node and tolerations for the pods that you want to control.

6.6.1. Binding infrastructure node workloads using taints and tolerations

If you have an infra node that has the infra and worker roles assigned, you must configure the node so that user workloads are not assigned to it.

Important

It is recommended that you preserve the dual infra,worker label that is created for infra nodes and use taints and tolerations to manage nodes that user workloads are scheduled on. If you remove the worker label from the node, you must create a custom pool to manage it. A node with a label other than master or worker is not recognized by the MCO without a custom pool. Maintaining the worker label allows the node to be managed by the default worker machine config pool, if no custom pools that select the custom label exists. The infra label communicates to the cluster that it does not count toward the total number of subscriptions.

Prerequisites

  • Configure additional MachineSet objects in your OpenShift Container Platform cluster.

Procedure

  1. Add a taint to the infra node to prevent scheduling user workloads on it:

    1. Determine if the node has the taint:

      $ oc describe nodes <node_name>

      Sample output

      oc describe node ci-ln-iyhx092-f76d1-nvdfm-worker-b-wln2l
      Name:               ci-ln-iyhx092-f76d1-nvdfm-worker-b-wln2l
      Roles:              worker
       ...
      Taints:             node-role.kubernetes.io/infra:NoSchedule
       ...

      This example shows that the node has a taint. You can proceed with adding a toleration to your pod in the next step.

    2. If you have not configured a taint to prevent scheduling user workloads on it:

      $ oc adm taint nodes <node_name> <key>=<value>:<effect>

      For example:

      $ oc adm taint nodes node1 node-role.kubernetes.io/infra=reserved:NoExecute
      Tip

      You can alternatively apply the following YAML to add the taint:

      kind: Node
      apiVersion: v1
      metadata:
        name: <node_name>
        labels:
          ...
      spec:
        taints:
          - key: node-role.kubernetes.io/infra
            effect: NoExecute
            value: reserved
        ...

      This example places a taint on node1 that has key node-role.kubernetes.io/infra and taint effect NoSchedule. Nodes with the NoSchedule effect schedule only pods that tolerate the taint, but allow existing pods to remain scheduled on the node.

      Note

      If a descheduler is used, pods violating node taints could be evicted from the cluster.

  2. Add tolerations for the pod configurations you want to schedule on the infra node, like router, registry, and monitoring workloads. Add the following code to the Pod object specification:

    tolerations:
      - effect: NoExecute 1
        key: node-role.kubernetes.io/infra 2
        operator: Exists 3
        value: reserved 4
    1
    Specify the effect that you added to the node.
    2
    Specify the key that you added to the node.
    3
    Specify the Exists Operator to require a taint with the key node-role.kubernetes.io/infra to be present on the node.
    4
    Specify the value of the key-value pair taint that you added to the node.

    This toleration matches the taint created by the oc adm taint command. A pod with this toleration can be scheduled onto the infra node.

    Note

    Moving pods for an Operator installed via OLM to an infra node is not always possible. The capability to move Operator pods depends on the configuration of each Operator.

  3. Schedule the pod to the infra node using a scheduler. See the documentation for Controlling pod placement onto nodes for details.

Additional resources

6.7. Moving resources to infrastructure machine sets

Some of the infrastructure resources are deployed in your cluster by default. You can move them to the infrastructure machine sets that you created.

6.7.1. Moving the router

You can deploy the router pod to a different machine set. By default, the pod is deployed to a worker node.

Prerequisites

  • Configure additional machine sets in your OpenShift Container Platform cluster.

Procedure

  1. View the IngressController custom resource for the router Operator:

    $ oc get ingresscontroller default -n openshift-ingress-operator -o yaml

    The command output resembles the following text:

    apiVersion: operator.openshift.io/v1
    kind: IngressController
    metadata:
      creationTimestamp: 2019-04-18T12:35:39Z
      finalizers:
      - ingresscontroller.operator.openshift.io/finalizer-ingresscontroller
      generation: 1
      name: default
      namespace: openshift-ingress-operator
      resourceVersion: "11341"
      selfLink: /apis/operator.openshift.io/v1/namespaces/openshift-ingress-operator/ingresscontrollers/default
      uid: 79509e05-61d6-11e9-bc55-02ce4781844a
    spec: {}
    status:
      availableReplicas: 2
      conditions:
      - lastTransitionTime: 2019-04-18T12:36:15Z
        status: "True"
        type: Available
      domain: apps.<cluster>.example.com
      endpointPublishingStrategy:
        type: LoadBalancerService
      selector: ingresscontroller.operator.openshift.io/deployment-ingresscontroller=default
  2. Edit the ingresscontroller resource and change the nodeSelector to use the infra label:

    $ oc edit ingresscontroller default -n openshift-ingress-operator
      spec:
        nodePlacement:
          nodeSelector: 1
            matchLabels:
              node-role.kubernetes.io/infra: ""
          tolerations:
          - effect: NoSchedule
            key: node-role.kubernetes.io/infra
            value: reserved
          - effect: NoExecute
            key: node-role.kubernetes.io/infra
            value: reserved
    1
    Add a nodeSelector parameter with the appropriate value to the component you want to move. You can use a nodeSelector in the format shown or use <key>: <value> pairs, based on the value specified for the node. If you added a taint to the infrastructure node, also add a matching toleration.
  3. Confirm that the router pod is running on the infra node.

    1. View the list of router pods and note the node name of the running pod:

      $ oc get pod -n openshift-ingress -o wide

      Example output

      NAME                              READY     STATUS        RESTARTS   AGE       IP           NODE                           NOMINATED NODE   READINESS GATES
      router-default-86798b4b5d-bdlvd   1/1      Running       0          28s       10.130.2.4   ip-10-0-217-226.ec2.internal   <none>           <none>
      router-default-955d875f4-255g8    0/1      Terminating   0          19h       10.129.2.4   ip-10-0-148-172.ec2.internal   <none>           <none>

      In this example, the running pod is on the ip-10-0-217-226.ec2.internal node.

    2. View the node status of the running pod:

      $ oc get node <node_name> 1
      1
      Specify the <node_name> that you obtained from the pod list.

      Example output

      NAME                          STATUS  ROLES         AGE   VERSION
      ip-10-0-217-226.ec2.internal  Ready   infra,worker  17h   v1.24.0

      Because the role list includes infra, the pod is running on the correct node.

6.7.2. Moving the default registry

You configure the registry Operator to deploy its pods to different nodes.

Prerequisites

  • Configure additional machine sets in your OpenShift Container Platform cluster.

Procedure

  1. View the config/instance object:

    $ oc get configs.imageregistry.operator.openshift.io/cluster -o yaml

    Example output

    apiVersion: imageregistry.operator.openshift.io/v1
    kind: Config
    metadata:
      creationTimestamp: 2019-02-05T13:52:05Z
      finalizers:
      - imageregistry.operator.openshift.io/finalizer
      generation: 1
      name: cluster
      resourceVersion: "56174"
      selfLink: /apis/imageregistry.operator.openshift.io/v1/configs/cluster
      uid: 36fd3724-294d-11e9-a524-12ffeee2931b
    spec:
      httpSecret: d9a012ccd117b1e6616ceccb2c3bb66a5fed1b5e481623
      logging: 2
      managementState: Managed
      proxy: {}
      replicas: 1
      requests:
        read: {}
        write: {}
      storage:
        s3:
          bucket: image-registry-us-east-1-c92e88cad85b48ec8b312344dff03c82-392c
          region: us-east-1
    status:
    ...

  2. Edit the config/instance object:

    $ oc edit configs.imageregistry.operator.openshift.io/cluster
    spec:
      affinity:
        podAntiAffinity:
          preferredDuringSchedulingIgnoredDuringExecution:
          - podAffinityTerm:
              namespaces:
              - openshift-image-registry
              topologyKey: kubernetes.io/hostname
            weight: 100
      logLevel: Normal
      managementState: Managed
      nodeSelector: 1
        node-role.kubernetes.io/infra: ""
      tolerations:
      - effect: NoSchedule
        key: node-role.kubernetes.io/infra
        value: reserved
      - effect: NoExecute
        key: node-role.kubernetes.io/infra
        value: reserved
    1
    Add a nodeSelector parameter with the appropriate value to the component you want to move. You can use a nodeSelector in the format shown or use <key>: <value> pairs, based on the value specified for the node. If you added a taint to the infrasructure node, also add a matching toleration.
  3. Verify the registry pod has been moved to the infrastructure node.

    1. Run the following command to identify the node where the registry pod is located:

      $ oc get pods -o wide -n openshift-image-registry
    2. Confirm the node has the label you specified:

      $ oc describe node <node_name>

      Review the command output and confirm that node-role.kubernetes.io/infra is in the LABELS list.

6.7.3. Moving the monitoring solution

The monitoring stack includes multiple components, including Prometheus, Thanos Querier, and Alertmanager. The Cluster Monitoring Operator manages this stack. To redeploy the monitoring stack to infrastructure nodes, you can create and apply a custom config map.

Procedure

  1. Edit the cluster-monitoring-config config map and change the nodeSelector to use the infra label:

    $ oc edit configmap cluster-monitoring-config -n openshift-monitoring
    apiVersion: v1
    kind: ConfigMap
    metadata:
      name: cluster-monitoring-config
      namespace: openshift-monitoring
    data:
      config.yaml: |+
        alertmanagerMain:
          nodeSelector: 1
            node-role.kubernetes.io/infra: ""
          tolerations:
          - key: node-role.kubernetes.io/infra
            value: reserved
            effect: NoSchedule
          - key: node-role.kubernetes.io/infra
            value: reserved
            effect: NoExecute
        prometheusK8s:
          nodeSelector:
            node-role.kubernetes.io/infra: ""
          tolerations:
          - key: node-role.kubernetes.io/infra
            value: reserved
            effect: NoSchedule
          - key: node-role.kubernetes.io/infra
            value: reserved
            effect: NoExecute
        prometheusOperator:
          nodeSelector:
            node-role.kubernetes.io/infra: ""
          tolerations:
          - key: node-role.kubernetes.io/infra
            value: reserved
            effect: NoSchedule
          - key: node-role.kubernetes.io/infra
            value: reserved
            effect: NoExecute
        k8sPrometheusAdapter:
          nodeSelector:
            node-role.kubernetes.io/infra: ""
          tolerations:
          - key: node-role.kubernetes.io/infra
            value: reserved
            effect: NoSchedule
          - key: node-role.kubernetes.io/infra
            value: reserved
            effect: NoExecute
        kubeStateMetrics:
          nodeSelector:
            node-role.kubernetes.io/infra: ""
          tolerations:
          - key: node-role.kubernetes.io/infra
            value: reserved
            effect: NoSchedule
          - key: node-role.kubernetes.io/infra
            value: reserved
            effect: NoExecute
        telemeterClient:
          nodeSelector:
            node-role.kubernetes.io/infra: ""
          tolerations:
          - key: node-role.kubernetes.io/infra
            value: reserved
            effect: NoSchedule
          - key: node-role.kubernetes.io/infra
            value: reserved
            effect: NoExecute
        openshiftStateMetrics:
          nodeSelector:
            node-role.kubernetes.io/infra: ""
          tolerations:
          - key: node-role.kubernetes.io/infra
            value: reserved
            effect: NoSchedule
          - key: node-role.kubernetes.io/infra
            value: reserved
            effect: NoExecute
        thanosQuerier:
          nodeSelector:
            node-role.kubernetes.io/infra: ""
          tolerations:
          - key: node-role.kubernetes.io/infra
            value: reserved
            effect: NoSchedule
          - key: node-role.kubernetes.io/infra
            value: reserved
            effect: NoExecute
    1
    Add a nodeSelector parameter with the appropriate value to the component you want to move. You can use a nodeSelector in the format shown or use <key>: <value> pairs, based on the value specified for the node. If you added a taint to the infrasructure node, also add a matching toleration.
  2. Watch the monitoring pods move to the new machines:

    $ watch 'oc get pod -n openshift-monitoring -o wide'
  3. If a component has not moved to the infra node, delete the pod with this component:

    $ oc delete pod -n openshift-monitoring <pod>

    The component from the deleted pod is re-created on the infra node.

6.7.4. Moving logging resources

You can configure the Red Hat OpenShift Logging Operator to deploy the pods for logging components, such as Elasticsearch and Kibana, to different nodes. You cannot move the Red Hat OpenShift Logging Operator pod from its installed location.

For example, you can move the Elasticsearch pods to a separate node because of high CPU, memory, and disk requirements.

Prerequisites

  • You have installed the Red Hat OpenShift Logging Operator and the OpenShift Elasticsearch Operator.

Procedure

  1. Edit the ClusterLogging custom resource (CR) in the openshift-logging project:

    $ oc edit ClusterLogging instance

    Example ClusterLogging CR

    apiVersion: logging.openshift.io/v1
    kind: ClusterLogging
    # ...
    spec:
      logStore:
        elasticsearch:
          nodeCount: 3
          nodeSelector: 1
            node-role.kubernetes.io/infra: ''
          tolerations:
          - effect: NoSchedule
            key: node-role.kubernetes.io/infra
            value: reserved
          - effect: NoExecute
            key: node-role.kubernetes.io/infra
            value: reserved
          redundancyPolicy: SingleRedundancy
          resources:
            limits:
              cpu: 500m
              memory: 16Gi
            requests:
              cpu: 500m
              memory: 16Gi
          storage: {}
        type: elasticsearch
      managementState: Managed
      visualization:
        kibana:
          nodeSelector: 2
            node-role.kubernetes.io/infra: ''
          tolerations:
          - effect: NoSchedule
            key: node-role.kubernetes.io/infra
            value: reserved
          - effect: NoExecute
            key: node-role.kubernetes.io/infra
            value: reserved
          proxy:
            resources: null
          replicas: 1
          resources: null
        type: kibana
    # ...

    1 2
    Add a nodeSelector parameter with the appropriate value to the component you want to move. You can use a nodeSelector in the format shown or use <key>: <value> pairs, based on the value specified for the node. If you added a taint to the infrasructure node, also add a matching toleration.

Verification

To verify that a component has moved, you can use the oc get pod -o wide command.

For example:

  • You want to move the Kibana pod from the ip-10-0-147-79.us-east-2.compute.internal node:

    $ oc get pod kibana-5b8bdf44f9-ccpq9 -o wide

    Example output

    NAME                      READY   STATUS    RESTARTS   AGE   IP            NODE                                        NOMINATED NODE   READINESS GATES
    kibana-5b8bdf44f9-ccpq9   2/2     Running   0          27s   10.129.2.18   ip-10-0-147-79.us-east-2.compute.internal   <none>           <none>

  • You want to move the Kibana pod to the ip-10-0-139-48.us-east-2.compute.internal node, a dedicated infrastructure node:

    $ oc get nodes

    Example output

    NAME                                         STATUS   ROLES          AGE   VERSION
    ip-10-0-133-216.us-east-2.compute.internal   Ready    master         60m   v1.24.0
    ip-10-0-139-146.us-east-2.compute.internal   Ready    master         60m   v1.24.0
    ip-10-0-139-192.us-east-2.compute.internal   Ready    worker         51m   v1.24.0
    ip-10-0-139-241.us-east-2.compute.internal   Ready    worker         51m   v1.24.0
    ip-10-0-147-79.us-east-2.compute.internal    Ready    worker         51m   v1.24.0
    ip-10-0-152-241.us-east-2.compute.internal   Ready    master         60m   v1.24.0
    ip-10-0-139-48.us-east-2.compute.internal    Ready    infra          51m   v1.24.0

    Note that the node has a node-role.kubernetes.io/infra: '' label:

    $ oc get node ip-10-0-139-48.us-east-2.compute.internal -o yaml

    Example output

    kind: Node
    apiVersion: v1
    metadata:
      name: ip-10-0-139-48.us-east-2.compute.internal
      selfLink: /api/v1/nodes/ip-10-0-139-48.us-east-2.compute.internal
      uid: 62038aa9-661f-41d7-ba93-b5f1b6ef8751
      resourceVersion: '39083'
      creationTimestamp: '2020-04-13T19:07:55Z'
      labels:
        node-role.kubernetes.io/infra: ''
    ...

  • To move the Kibana pod, edit the ClusterLogging CR to add a node selector:

    apiVersion: logging.openshift.io/v1
    kind: ClusterLogging
    # ...
    spec:
    # ...
      visualization:
        kibana:
          nodeSelector: 1
            node-role.kubernetes.io/infra: ''
          proxy:
            resources: null
          replicas: 1
          resources: null
        type: kibana
    1
    Add a node selector to match the label in the node specification.
  • After you save the CR, the current Kibana pod is terminated and new pod is deployed:

    $ oc get pods

    Example output

    NAME                                            READY   STATUS        RESTARTS   AGE
    cluster-logging-operator-84d98649c4-zb9g7       1/1     Running       0          29m
    elasticsearch-cdm-hwv01pf7-1-56588f554f-kpmlg   2/2     Running       0          28m
    elasticsearch-cdm-hwv01pf7-2-84c877d75d-75wqj   2/2     Running       0          28m
    elasticsearch-cdm-hwv01pf7-3-f5d95b87b-4nx78    2/2     Running       0          28m
    collector-42dzz                                 1/1     Running       0          28m
    collector-d74rq                                 1/1     Running       0          28m
    collector-m5vr9                                 1/1     Running       0          28m
    collector-nkxl7                                 1/1     Running       0          28m
    collector-pdvqb                                 1/1     Running       0          28m
    collector-tflh6                                 1/1     Running       0          28m
    kibana-5b8bdf44f9-ccpq9                         2/2     Terminating   0          4m11s
    kibana-7d85dcffc8-bfpfp                         2/2     Running       0          33s

  • The new pod is on the ip-10-0-139-48.us-east-2.compute.internal node:

    $ oc get pod kibana-7d85dcffc8-bfpfp -o wide

    Example output

    NAME                      READY   STATUS        RESTARTS   AGE   IP            NODE                                        NOMINATED NODE   READINESS GATES
    kibana-7d85dcffc8-bfpfp   2/2     Running       0          43s   10.131.0.22   ip-10-0-139-48.us-east-2.compute.internal   <none>           <none>

  • After a few moments, the original Kibana pod is removed.

    $ oc get pods

    Example output

    NAME                                            READY   STATUS    RESTARTS   AGE
    cluster-logging-operator-84d98649c4-zb9g7       1/1     Running   0          30m
    elasticsearch-cdm-hwv01pf7-1-56588f554f-kpmlg   2/2     Running   0          29m
    elasticsearch-cdm-hwv01pf7-2-84c877d75d-75wqj   2/2     Running   0          29m
    elasticsearch-cdm-hwv01pf7-3-f5d95b87b-4nx78    2/2     Running   0          29m
    collector-42dzz                                 1/1     Running   0          29m
    collector-d74rq                                 1/1     Running   0          29m
    collector-m5vr9                                 1/1     Running   0          29m
    collector-nkxl7                                 1/1     Running   0          29m
    collector-pdvqb                                 1/1     Running   0          29m
    collector-tflh6                                 1/1     Running   0          29m
    kibana-7d85dcffc8-bfpfp                         2/2     Running   0          62s

6.8. About the cluster autoscaler

The cluster autoscaler adjusts the size of an OpenShift Container Platform cluster to meet its current deployment needs. It uses declarative, Kubernetes-style arguments to provide infrastructure management that does not rely on objects of a specific cloud provider. The cluster autoscaler has a cluster scope, and is not associated with a particular namespace.

The cluster autoscaler increases the size of the cluster when there are pods that fail to schedule on any of the current worker nodes due to insufficient resources or when another node is necessary to meet deployment needs. The cluster autoscaler does not increase the cluster resources beyond the limits that you specify.

The cluster autoscaler computes the total memory, CPU, and GPU on all nodes the cluster, even though it does not manage the control plane nodes. These values are not single-machine oriented. They are an aggregation of all the resources in the entire cluster. For example, if you set the maximum memory resource limit, the cluster autoscaler includes all the nodes in the cluster when calculating the current memory usage. That calculation is then used to determine if the cluster autoscaler has the capacity to add more worker resources.

Important

Ensure that the maxNodesTotal value in the ClusterAutoscaler resource definition that you create is large enough to account for the total possible number of machines in your cluster. This value must encompass the number of control plane machines and the possible number of compute machines that you might scale to.

Every 10 seconds, the cluster autoscaler checks which nodes are unnecessary in the cluster and removes them. The cluster autoscaler considers a node for removal if the following conditions apply:

  • The node utilization is less than the node utilization level threshold for the cluster. The node utilization level is the sum of the requested resources divided by the allocated resources for the node. If you do not specify a value in the ClusterAutoscaler custom resource, the cluster autoscaler uses a default value of 0.5, which corresponds to 50% utilization.
  • The cluster autoscaler can move all pods running on the node to the other nodes. The Kubernetes scheduler is responsible for scheduling pods on the nodes.
  • The cluster autoscaler does not have scale down disabled annotation.

If the following types of pods are present on a node, the cluster autoscaler will not remove the node:

  • Pods with restrictive pod disruption budgets (PDBs).
  • Kube-system pods that do not run on the node by default.
  • Kube-system pods that do not have a PDB or have a PDB that is too restrictive.
  • Pods that are not backed by a controller object such as a deployment, replica set, or stateful set.
  • Pods with local storage.
  • Pods that cannot be moved elsewhere because of a lack of resources, incompatible node selectors or affinity, matching anti-affinity, and so on.
  • Unless they also have a "cluster-autoscaler.kubernetes.io/safe-to-evict": "true" annotation, pods that have a "cluster-autoscaler.kubernetes.io/safe-to-evict": "false" annotation.

For example, you set the maximum CPU limit to 64 cores and configure the cluster autoscaler to only create machines that have 8 cores each. If your cluster starts with 30 cores, the cluster autoscaler can add up to 4 more nodes with 32 cores, for a total of 62.

If you configure the cluster autoscaler, additional usage restrictions apply:

  • Do not modify the nodes that are in autoscaled node groups directly. All nodes within the same node group have the same capacity and labels and run the same system pods.
  • Specify requests for your pods.
  • If you have to prevent pods from being deleted too quickly, configure appropriate PDBs.
  • Confirm that your cloud provider quota is large enough to support the maximum node pools that you configure.
  • Do not run additional node group autoscalers, especially the ones offered by your cloud provider.

The horizontal pod autoscaler (HPA) and the cluster autoscaler modify cluster resources in different ways. The HPA changes the deployment’s or replica set’s number of replicas based on the current CPU load. If the load increases, the HPA creates new replicas, regardless of the amount of resources available to the cluster. If there are not enough resources, the cluster autoscaler adds resources so that the HPA-created pods can run. If the load decreases, the HPA stops some replicas. If this action causes some nodes to be underutilized or completely empty, the cluster autoscaler deletes the unnecessary nodes.

The cluster autoscaler takes pod priorities into account. The Pod Priority and Preemption feature enables scheduling pods based on priorities if the cluster does not have enough resources, but the cluster autoscaler ensures that the cluster has resources to run all pods. To honor the intention of both features, the cluster autoscaler includes a priority cutoff function. You can use this cutoff to schedule "best-effort" pods, which do not cause the cluster autoscaler to increase resources but instead run only when spare resources are available.

Pods with priority lower than the cutoff value do not cause the cluster to scale up or prevent the cluster from scaling down. No new nodes are added to run the pods, and nodes running these pods might be deleted to free resources.

Cluster autoscaling is supported for the platforms that have machine API available on it.

6.8.1. Cluster autoscaler resource definition

This ClusterAutoscaler resource definition shows the parameters and sample values for the cluster autoscaler.

apiVersion: "autoscaling.openshift.io/v1"
kind: "ClusterAutoscaler"
metadata:
  name: "default"
spec:
  podPriorityThreshold: -10 1
  resourceLimits:
    maxNodesTotal: 24 2
    cores:
      min: 8 3
      max: 128 4
    memory:
      min: 4 5
      max: 256 6
    gpus:
      - type: nvidia.com/gpu 7
        min: 0 8
        max: 16 9
      - type: amd.com/gpu
        min: 0
        max: 4
  scaleDown: 10
    enabled: true 11
    delayAfterAdd: 10m 12
    delayAfterDelete: 5m 13
    delayAfterFailure: 30s 14
    unneededTime: 5m 15
    utilizationThreshold: "0.4" 16
1
Specify the priority that a pod must exceed to cause the cluster autoscaler to deploy additional nodes. Enter a 32-bit integer value. The podPriorityThreshold value is compared to the value of the PriorityClass that you assign to each pod.
2
Specify the maximum number of nodes to deploy. This value is the total number of machines that are deployed in your cluster, not just the ones that the autoscaler controls. Ensure that this value is large enough to account for all of your control plane and compute machines and the total number of replicas that you specify in your MachineAutoscaler resources.
3
Specify the minimum number of cores to deploy in the cluster.
4
Specify the maximum number of cores to deploy in the cluster.
5
Specify the minimum amount of memory, in GiB, in the cluster.
6
Specify the maximum amount of memory, in GiB, in the cluster.
7
Optional: Specify the type of GPU node to deploy. Only nvidia.com/gpu and amd.com/gpu are valid types.
8
Specify the minimum number of GPUs to deploy in the cluster.
9
Specify the maximum number of GPUs to deploy in the cluster.
10
In this section, you can specify the period to wait for each action by using any valid ParseDuration interval, including ns, us, ms, s, m, and h.
11
Specify whether the cluster autoscaler can remove unnecessary nodes.
12
Optional: Specify the period to wait before deleting a node after a node has recently been added. If you do not specify a value, the default value of 10m is used.
13
Optional: Specify the period to wait before deleting a node after a node has recently been deleted. If you do not specify a value, the default value of 0s is used.
14
Optional: Specify the period to wait before deleting a node after a scale down failure occurred. If you do not specify a value, the default value of 3m is used.
15
Optional: Specify the period before an unnecessary node is eligible for deletion. If you do not specify a value, the default value of 10m is used.
16
Optional: Specify the node utilization level below which an unnecessary node is eligible for deletion. The node utilization level is the sum of the requested resources divided by the allocated resources for the node, and must be a value greater than "0" but less than "1". If you do not specify a value, the cluster autoscaler uses a default value of "0.5", which corresponds to 50% utilization. This value must be expressed as a string.
Note

When performing a scaling operation, the cluster autoscaler remains within the ranges set in the ClusterAutoscaler resource definition, such as the minimum and maximum number of cores to deploy or the amount of memory in the cluster. However, the cluster autoscaler does not correct the current values in your cluster to be within those ranges.

The minimum and maximum CPUs, memory, and GPU values are determined by calculating those resources on all nodes in the cluster, even if the cluster autoscaler does not manage the nodes. For example, the control plane nodes are considered in the total memory in the cluster, even though the cluster autoscaler does not manage the control plane nodes.

6.8.2. Deploying a cluster autoscaler

To deploy a cluster autoscaler, you create an instance of the ClusterAutoscaler resource.

Procedure

  1. Create a YAML file for a ClusterAutoscaler resource that contains the custom resource definition.
  2. Create the custom resource in the cluster by running the following command:

    $ oc create -f <filename>.yaml 1
    1
    <filename> is the name of the custom resource file.

6.9. About the machine autoscaler

The machine autoscaler adjusts the number of Machines in the machine sets that you deploy in an OpenShift Container Platform cluster. You can scale both the default worker machine set and any other machine sets that you create. The machine autoscaler makes more Machines when the cluster runs out of resources to support more deployments. Any changes to the values in MachineAutoscaler resources, such as the minimum or maximum number of instances, are immediately applied to the machine set they target.

Important

You must deploy a machine autoscaler for the cluster autoscaler to scale your machines. The cluster autoscaler uses the annotations on machine sets that the machine autoscaler sets to determine the resources that it can scale. If you define a cluster autoscaler without also defining machine autoscalers, the cluster autoscaler will never scale your cluster.

6.9.1. Machine autoscaler resource definition

This MachineAutoscaler resource definition shows the parameters and sample values for the machine autoscaler.

apiVersion: "autoscaling.openshift.io/v1beta1"
kind: "MachineAutoscaler"
metadata:
  name: "worker-us-east-1a" 1
  namespace: "openshift-machine-api"
spec:
  minReplicas: 1 2
  maxReplicas: 12 3
  scaleTargetRef: 4
    apiVersion: machine.openshift.io/v1beta1
    kind: MachineSet 5
    name: worker-us-east-1a 6
1
Specify the machine autoscaler name. To make it easier to identify which machine set this machine autoscaler scales, specify or include the name of the machine set to scale. The machine set name takes the following form: <clusterid>-<machineset>-<region>.
2
Specify the minimum number machines of the specified type that must remain in the specified zone after the cluster autoscaler initiates cluster scaling. If running in AWS, GCP, Azure, RHOSP, or vSphere, this value can be set to 0. For other providers, do not set this value to 0.

You can save on costs by setting this value to 0 for use cases such as running expensive or limited-usage hardware that is used for specialized workloads, or by scaling a machine set with extra large machines. The cluster autoscaler scales the machine set down to zero if the machines are not in use.

Important

Do not set the spec.minReplicas value to 0 for the three compute machine sets that are created during the OpenShift Container Platform installation process for an installer provisioned infrastructure.

3
Specify the maximum number machines of the specified type that the cluster autoscaler can deploy in the specified zone after it initiates cluster scaling. Ensure that the maxNodesTotal value in the ClusterAutoscaler resource definition is large enough to allow the machine autoscaler to deploy this number of machines.
4
In this section, provide values that describe the existing machine set to scale.
5
The kind parameter value is always MachineSet.
6
The name value must match the name of an existing machine set, as shown in the metadata.name parameter value.

6.9.2. Deploying a machine autoscaler

To deploy a machine autoscaler, you create an instance of the MachineAutoscaler resource.

Procedure

  1. Create a YAML file for a MachineAutoscaler resource that contains the custom resource definition.
  2. Create the custom resource in the cluster by running the following command:

    $ oc create -f <filename>.yaml 1
    1
    <filename> is the name of the custom resource file.

6.10. Enabling Technology Preview features using FeatureGates

You can turn on a subset of the current Technology Preview features on for all nodes in the cluster by editing the FeatureGate custom resource (CR).

6.10.1. Understanding feature gates

You can use the FeatureGate custom resource (CR) to enable specific feature sets in your cluster. A feature set is a collection of OpenShift Container Platform features that are not enabled by default.

You can activate the following feature set by using the FeatureGate CR:

  • TechPreviewNoUpgrade. This feature set is a subset of the current Technology Preview features. This feature set allows you to enable these tech preview features on test clusters, where you can fully test them, while leaving the features disabled on production clusters. Enabling this feature set cannot be undone and prevents minor version updates. This feature set is not recommended on production clusters.

    Warning

    Enabling the TechPreviewNoUpgrade feature set on your cluster cannot be undone and prevents minor version updates. You should not enable this feature set on production clusters.

    The following Technology Preview features are enabled by this feature set:

    • Microsoft Azure File CSI Driver Operator. Enables the provisioning of persistent volumes (PVs) by using the Container Storage Interface (CSI) driver for Microsoft Azure File Storage.
    • CSI automatic migration. Enables automatic migration for supported in-tree volume plugins to their equivalent Container Storage Interface (CSI) drivers. Supported for:

      • Amazon Web Services (AWS) Elastic Block Storage (EBS)
      • Google Compute Engine Persistent Disk
      • Azure File
      • VMware vSphere
    • Cluster Cloud Controller Manager Operator. Enables the Cluster Cloud Controller Manager Operator rather than the in-tree cloud controller. Available as a Technology Preview for:

      • Alibaba Cloud
      • Amazon Web Services (AWS)
      • Google Cloud Platform (GCP)
      • IBM Cloud
      • Microsoft Azure
      • Red Hat OpenStack Platform (RHOSP)
      • VMware vSphere
    • Shared resource CSI driver
    • CSI volume support for the OpenShift Container Platform build system
    • Swap memory on nodes
    • Cluster API. Enables the integrated upstream Cluster API in OpenShift Container Platform with the ClusterAPIEnabled feature gate. Available as a Technology Preview for:

      • Amazon Web Services (AWS)
      • Google Cloud Platform (GCP)
    • Managing alerting rules for core platform monitoring

6.10.2. Enabling feature sets using the web console

You can use the OpenShift Container Platform web console to enable feature sets for all of the nodes in a cluster by editing the FeatureGate custom resource (CR).

Procedure

To enable feature sets:

  1. In the OpenShift Container Platform web console, switch to the AdministrationCustom Resource Definitions page.
  2. On the Custom Resource Definitions page, click FeatureGate.
  3. On the Custom Resource Definition Details page, click the Instances tab.
  4. Click the cluster feature gate, then click the YAML tab.
  5. Edit the cluster instance to add specific feature sets:

    Warning

    Enabling the TechPreviewNoUpgrade feature set on your cluster cannot be undone and prevents minor version updates. You should not enable this feature set on production clusters.

    Sample Feature Gate custom resource

    apiVersion: config.openshift.io/v1
    kind: FeatureGate
    metadata:
      name: cluster 1
    # ...
    spec:
      featureSet: TechPreviewNoUpgrade 2

    1
    The name of the FeatureGate CR must be cluster.
    2
    Add the feature set that you want to enable:
    • TechPreviewNoUpgrade enables specific Technology Preview features.

    After you save the changes, new machine configs are created, the machine config pools are updated, and scheduling on each node is disabled while the change is being applied.

Verification

You can verify that the feature gates are enabled by looking at the kubelet.conf file on a node after the nodes return to the ready state.

  1. From the Administrator perspective in the web console, navigate to ComputeNodes.
  2. Select a node.
  3. In the Node details page, click Terminal.
  4. In the terminal window, change your root directory to /host:

    sh-4.2# chroot /host
  5. View the kubelet.conf file:

    sh-4.2# cat /etc/kubernetes/kubelet.conf

    Sample output

    # ...
    featureGates:
      InsightsOperatorPullingSCA: true,
      LegacyNodeRoleBehavior: false
    # ...

    The features that are listed as true are enabled on your cluster.

    Note

    The features listed vary depending upon the OpenShift Container Platform version.

6.10.3. Enabling feature sets using the CLI

You can use the OpenShift CLI (oc) to enable feature sets for all of the nodes in a cluster by editing the FeatureGate custom resource (CR).

Prerequisites

  • You have installed the OpenShift CLI (oc).

Procedure

To enable feature sets:

  1. Edit the FeatureGate CR named cluster:

    $ oc edit featuregate cluster
    Warning

    Enabling the TechPreviewNoUpgrade feature set on your cluster cannot be undone and prevents minor version updates. You should not enable this feature set on production clusters.

    Sample FeatureGate custom resource

    apiVersion: config.openshift.io/v1
    kind: FeatureGate
    metadata:
      name: cluster 1
    # ...
    spec:
      featureSet: TechPreviewNoUpgrade 2

    1
    The name of the FeatureGate CR must be cluster.
    2
    Add the feature set that you want to enable:
    • TechPreviewNoUpgrade enables specific Technology Preview features.

    After you save the changes, new machine configs are created, the machine config pools are updated, and scheduling on each node is disabled while the change is being applied.

Verification

You can verify that the feature gates are enabled by looking at the kubelet.conf file on a node after the nodes return to the ready state.

  1. From the Administrator perspective in the web console, navigate to ComputeNodes.
  2. Select a node.
  3. In the Node details page, click Terminal.
  4. In the terminal window, change your root directory to /host:

    sh-4.2# chroot /host
  5. View the kubelet.conf file:

    sh-4.2# cat /etc/kubernetes/kubelet.conf

    Sample output

    # ...
    featureGates:
      InsightsOperatorPullingSCA: true,
      LegacyNodeRoleBehavior: false
    # ...

    The features that are listed as true are enabled on your cluster.

    Note

    The features listed vary depending upon the OpenShift Container Platform version.

6.11. etcd tasks

Back up etcd, enable or disable etcd encryption, or defragment etcd data.

6.11.1. About etcd encryption

By default, etcd data is not encrypted in OpenShift Container Platform. You can enable etcd encryption for your cluster to provide an additional layer of data security. For example, it can help protect the loss of sensitive data if an etcd backup is exposed to the incorrect parties.

When you enable etcd encryption, the following OpenShift API server and Kubernetes API server resources are encrypted:

  • Secrets
  • Config maps
  • Routes
  • OAuth access tokens
  • OAuth authorize tokens

When you enable etcd encryption, encryption keys are created. These keys are rotated on a weekly basis. You must have these keys to restore from an etcd backup.

Note

Etcd encryption only encrypts values, not keys. Resource types, namespaces, and object names are unencrypted.

If etcd encryption is enabled during a backup, the static_kuberesources_<datetimestamp>.tar.gz file contains the encryption keys for the etcd snapshot. For security reasons, store this file separately from the etcd snapshot. However, this file is required to restore a previous state of etcd from the respective etcd snapshot.

6.11.2. Enabling etcd encryption

You can enable etcd encryption to encrypt sensitive resources in your cluster.

Warning

Do not back up etcd resources until the initial encryption process is completed. If the encryption process is not completed, the backup might be only partially encrypted.

After you enable etcd encryption, several changes can occur:

  • The etcd encryption might affect the memory consumption of a few resources.
  • You might notice a transient affect on backup performance because the leader must serve the backup.
  • A disk I/O can affect the node that receives the backup state.

Prerequisites

  • Access to the cluster as a user with the cluster-admin role.

Procedure

  1. Modify the APIServer object:

    $ oc edit apiserver
  2. Set the encryption field type to aescbc:

    spec:
      encryption:
        type: aescbc 1
    1
    The aescbc type means that AES-CBC with PKCS#7 padding and a 32 byte key is used to perform the encryption.
  3. Save the file to apply the changes.

    The encryption process starts. It can take 20 minutes or longer for this process to complete, depending on the size of your cluster.

  4. Verify that etcd encryption was successful.

    1. Review the Encrypted status condition for the OpenShift API server to verify that its resources were successfully encrypted:

      $ oc get openshiftapiserver -o=jsonpath='{range .items[0].status.conditions[?(@.type=="Encrypted")]}{.reason}{"\n"}{.message}{"\n"}'

      The output shows EncryptionCompleted upon successful encryption:

      EncryptionCompleted
      All resources encrypted: routes.route.openshift.io

      If the output shows EncryptionInProgress, encryption is still in progress. Wait a few minutes and try again.

    2. Review the Encrypted status condition for the Kubernetes API server to verify that its resources were successfully encrypted:

      $ oc get kubeapiserver -o=jsonpath='{range .items[0].status.conditions[?(@.type=="Encrypted")]}{.reason}{"\n"}{.message}{"\n"}'

      The output shows EncryptionCompleted upon successful encryption:

      EncryptionCompleted
      All resources encrypted: secrets, configmaps

      If the output shows EncryptionInProgress, encryption is still in progress. Wait a few minutes and try again.

    3. Review the Encrypted status condition for the OpenShift OAuth API server to verify that its resources were successfully encrypted:

      $ oc get authentication.operator.openshift.io -o=jsonpath='{range .items[0].status.conditions[?(@.type=="Encrypted")]}{.reason}{"\n"}{.message}{"\n"}'

      The output shows EncryptionCompleted upon successful encryption:

      EncryptionCompleted
      All resources encrypted: oauthaccesstokens.oauth.openshift.io, oauthauthorizetokens.oauth.openshift.io

      If the output shows EncryptionInProgress, encryption is still in progress. Wait a few minutes and try again.

6.11.3. Disabling etcd encryption

You can disable encryption of etcd data in your cluster.

Prerequisites

  • Access to the cluster as a user with the cluster-admin role.

Procedure

  1. Modify the APIServer object:

    $ oc edit apiserver
  2. Set the encryption field type to identity:

    spec:
      encryption:
        type: identity 1
    1
    The identity type is the default value and means that no encryption is performed.
  3. Save the file to apply the changes.

    The decryption process starts. It can take 20 minutes or longer for this process to complete, depending on the size of your cluster.

  4. Verify that etcd decryption was successful.

    1. Review the Encrypted status condition for the OpenShift API server to verify that its resources were successfully decrypted:

      $ oc get openshiftapiserver -o=jsonpath='{range .items[0].status.conditions[?(@.type=="Encrypted")]}{.reason}{"\n"}{.message}{"\n"}'

      The output shows DecryptionCompleted upon successful decryption:

      DecryptionCompleted
      Encryption mode set to identity and everything is decrypted

      If the output shows DecryptionInProgress, decryption is still in progress. Wait a few minutes and try again.

    2. Review the Encrypted status condition for the Kubernetes API server to verify that its resources were successfully decrypted:

      $ oc get kubeapiserver -o=jsonpath='{range .items[0].status.conditions[?(@.type=="Encrypted")]}{.reason}{"\n"}{.message}{"\n"}'

      The output shows DecryptionCompleted upon successful decryption:

      DecryptionCompleted
      Encryption mode set to identity and everything is decrypted

      If the output shows DecryptionInProgress, decryption is still in progress. Wait a few minutes and try again.

    3. Review the Encrypted status condition for the OpenShift OAuth API server to verify that its resources were successfully decrypted:

      $ oc get authentication.operator.openshift.io -o=jsonpath='{range .items[0].status.conditions[?(@.type=="Encrypted")]}{.reason}{"\n"}{.message}{"\n"}'

      The output shows DecryptionCompleted upon successful decryption:

      DecryptionCompleted
      Encryption mode set to identity and everything is decrypted

      If the output shows DecryptionInProgress, decryption is still in progress. Wait a few minutes and try again.

6.11.4. Backing up etcd data

Follow these steps to back up etcd data by creating an etcd snapshot and backing up the resources for the static pods. This backup can be saved and used at a later time if you need to restore etcd.

Important

Only save a backup from a single control plane host. Do not take a backup from each control plane host in the cluster.

Prerequisites

  • You have access to the cluster as a user with the cluster-admin role.
  • You have checked whether the cluster-wide proxy is enabled.

    Tip

    You can check whether the proxy is enabled by reviewing the output of oc get proxy cluster -o yaml. The proxy is enabled if the httpProxy, httpsProxy, and noProxy fields have values set.

Procedure

  1. Start a debug session for a control plane node:

    $ oc debug node/<node_name>
  2. Change your root directory to /host:

    sh-4.2# chroot /host
  3. If the cluster-wide proxy is enabled, be sure that you have exported the NO_PROXY, HTTP_PROXY, and HTTPS_PROXY environment variables.
  4. Run the cluster-backup.sh script and pass in the location to save the backup to.

    Tip

    The cluster-backup.sh script is maintained as a component of the etcd Cluster Operator and is a wrapper around the etcdctl snapshot save command.

    sh-4.4# /usr/local/bin/cluster-backup.sh /home/core/assets/backup

    Example script output

    found latest kube-apiserver: /etc/kubernetes/static-pod-resources/kube-apiserver-pod-6
    found latest kube-controller-manager: /etc/kubernetes/static-pod-resources/kube-controller-manager-pod-7
    found latest kube-scheduler: /etc/kubernetes/static-pod-resources/kube-scheduler-pod-6
    found latest etcd: /etc/kubernetes/static-pod-resources/etcd-pod-3
    ede95fe6b88b87ba86a03c15e669fb4aa5bf0991c180d3c6895ce72eaade54a1
    etcdctl version: 3.4.14
    API version: 3.4
    {"level":"info","ts":1624647639.0188997,"caller":"snapshot/v3_snapshot.go:119","msg":"created temporary db file","path":"/home/core/assets/backup/snapshot_2021-06-25_190035.db.part"}
    {"level":"info","ts":"2021-06-25T19:00:39.030Z","caller":"clientv3/maintenance.go:200","msg":"opened snapshot stream; downloading"}
    {"level":"info","ts":1624647639.0301006,"caller":"snapshot/v3_snapshot.go:127","msg":"fetching snapshot","endpoint":"https://10.0.0.5:2379"}
    {"level":"info","ts":"2021-06-25T19:00:40.215Z","caller":"clientv3/maintenance.go:208","msg":"completed snapshot read; closing"}
    {"level":"info","ts":1624647640.6032252,"caller":"snapshot/v3_snapshot.go:142","msg":"fetched snapshot","endpoint":"https://10.0.0.5:2379","size":"114 MB","took":1.584090459}
    {"level":"info","ts":1624647640.6047094,"caller":"snapshot/v3_snapshot.go:152","msg":"saved","path":"/home/core/assets/backup/snapshot_2021-06-25_190035.db"}
    Snapshot saved at /home/core/assets/backup/snapshot_2021-06-25_190035.db
    {"hash":3866667823,"revision":31407,"totalKey":12828,"totalSize":114446336}
    snapshot db and kube resources are successfully saved to /home/core/assets/backup

    In this example, two files are created in the /home/core/assets/backup/ directory on the control plane host:

    • snapshot_<datetimestamp>.db: This file is the etcd snapshot. The cluster-backup.sh script confirms its validity.
    • static_kuberesources_<datetimestamp>.tar.gz: This file contains the resources for the static pods. If etcd encryption is enabled, it also contains the encryption keys for the etcd snapshot.

      Note

      If etcd encryption is enabled, it is recommended to store this second file separately from the etcd snapshot for security reasons. However, this file is required to restore from the etcd snapshot.

      Keep in mind that etcd encryption only encrypts values, not keys. This means that resource types, namespaces, and object names are unencrypted.

6.11.5. Defragmenting etcd data

For large and dense clusters, etcd can suffer from poor performance if the keyspace grows too large and exceeds the space quota. Periodically maintain and defragment etcd to free up space in the data store. Monitor Prometheus for etcd metrics and defragment it when required; otherwise, etcd can raise a cluster-wide alarm that puts the cluster into a maintenance mode that accepts only key reads and deletes.

Monitor these key metrics:

  • etcd_server_quota_backend_bytes, which is the current quota limit
  • etcd_mvcc_db_total_size_in_use_in_bytes, which indicates the actual database usage after a history compaction
  • etcd_mvcc_db_total_size_in_bytes, which shows the database size, including free space waiting for defragmentation

Defragment etcd data to reclaim disk space after events that cause disk fragmentation, such as etcd history compaction.

History compaction is performed automatically every five minutes and leaves gaps in the back-end database. This fragmented space is available for use by etcd, but is not available to the host file system. You must defragment etcd to make this space available to the host file system.

Defragmentation occurs automatically, but you can also trigger it manually.

Note

Automatic defragmentation is good for most cases, because the etcd operator uses cluster information to determine the most efficient operation for the user.

6.11.5.1. Automatic defragmentation

The etcd Operator automatically defragments disks. No manual intervention is needed.

Verify that the defragmentation process is successful by viewing one of these logs:

  • etcd logs
  • cluster-etcd-operator pod
  • operator status error log
Warning

Automatic defragmentation can cause leader election failure in various OpenShift core components, such as the Kubernetes controller manager, which triggers a restart of the failing component. The restart is harmless and either triggers failover to the next running instance or the component resumes work again after the restart.

Example log output for successful defragmentation

etcd member has been defragmented: <member_name>, memberID: <member_id>

Example log output for unsuccessful defragmentation

failed defrag on member: <member_name>, memberID: <member_id>: <error_message>

6.11.5.2. Manual defragmentation

A Prometheus alert indicates when you need to use manual defragmentation. The alert is displayed in two cases:

  • When etcd uses more than 50% of its available space for more than 10 minutes
  • When etcd is actively using less than 50% of its total database size for more than 10 minutes

You can also determine whether defragmentation is needed by checking the etcd database size in MB that will be freed by defragmentation with the PromQL expression: (etcd_mvcc_db_total_size_in_bytes - etcd_mvcc_db_total_size_in_use_in_bytes)/1024/1024

Warning

Defragmenting etcd is a blocking action. The etcd member will not respond until defragmentation is complete. For this reason, wait at least one minute between defragmentation actions on each of the pods to allow the cluster to recover.

Follow this procedure to defragment etcd data on each etcd member.

Prerequisites

  • You have access to the cluster as a user with the cluster-admin role.

Procedure

  1. Determine which etcd member is the leader, because the leader should be defragmented last.

    1. Get the list of etcd pods:

      $ oc -n openshift-etcd get pods -l k8s-app=etcd -o wide

      Example output

      etcd-ip-10-0-159-225.example.redhat.com                3/3     Running     0          175m   10.0.159.225   ip-10-0-159-225.example.redhat.com   <none>           <none>
      etcd-ip-10-0-191-37.example.redhat.com                 3/3     Running     0          173m   10.0.191.37    ip-10-0-191-37.example.redhat.com    <none>           <none>
      etcd-ip-10-0-199-170.example.redhat.com                3/3     Running     0          176m   10.0.199.170   ip-10-0-199-170.example.redhat.com   <none>           <none>

    2. Choose a pod and run the following command to determine which etcd member is the leader:

      $ oc rsh -n openshift-etcd etcd-ip-10-0-159-225.example.redhat.com etcdctl endpoint status --cluster -w table

      Example output

      Defaulting container name to etcdctl.
      Use 'oc describe pod/etcd-ip-10-0-159-225.example.redhat.com -n openshift-etcd' to see all of the containers in this pod.
      +---------------------------+------------------+---------+---------+-----------+------------+-----------+------------+--------------------+--------+
      |         ENDPOINT          |        ID        | VERSION | DB SIZE | IS LEADER | IS LEARNER | RAFT TERM | RAFT INDEX | RAFT APPLIED INDEX | ERRORS |
      +---------------------------+------------------+---------+---------+-----------+------------+-----------+------------+--------------------+--------+
      |  https://10.0.191.37:2379 | 251cd44483d811c3 |   3.4.9 |  104 MB |     false |      false |         7 |      91624 |              91624 |        |
      | https://10.0.159.225:2379 | 264c7c58ecbdabee |   3.4.9 |  104 MB |     false |      false |         7 |      91624 |              91624 |        |
      | https://10.0.199.170:2379 | 9ac311f93915cc79 |   3.4.9 |  104 MB |      true |      false |         7 |      91624 |              91624 |        |
      +---------------------------+------------------+---------+---------+-----------+------------+-----------+------------+--------------------+--------+

      Based on the IS LEADER column of this output, the https://10.0.199.170:2379 endpoint is the leader. Matching this endpoint with the output of the previous step, the pod name of the leader is etcd-ip-10-0-199-170.example.redhat.com.

  2. Defragment an etcd member.

    1. Connect to the running etcd container, passing in the name of a pod that is not the leader:

      $ oc rsh -n openshift-etcd etcd-ip-10-0-159-225.example.redhat.com
    2. Unset the ETCDCTL_ENDPOINTS environment variable:

      sh-4.4# unset ETCDCTL_ENDPOINTS
    3. Defragment the etcd member:

      sh-4.4# etcdctl --command-timeout=30s --endpoints=https://localhost:2379 defrag

      Example output

      Finished defragmenting etcd member[https://localhost:2379]

      If a timeout error occurs, increase the value for --command-timeout until the command succeeds.

    4. Verify that the database size was reduced:

      sh-4.4# etcdctl endpoint status -w table --cluster

      Example output

      +---------------------------+------------------+---------+---------+-----------+------------+-----------+------------+--------------------+--------+
      |         ENDPOINT          |        ID        | VERSION | DB SIZE | IS LEADER | IS LEARNER | RAFT TERM | RAFT INDEX | RAFT APPLIED INDEX | ERRORS |
      +---------------------------+------------------+---------+---------+-----------+------------+-----------+------------+--------------------+--------+
      |  https://10.0.191.37:2379 | 251cd44483d811c3 |   3.4.9 |  104 MB |     false |      false |         7 |      91624 |              91624 |        |
      | https://10.0.159.225:2379 | 264c7c58ecbdabee |   3.4.9 |   41 MB |     false |      false |         7 |      91624 |              91624 |        | 1
      | https://10.0.199.170:2379 | 9ac311f93915cc79 |   3.4.9 |  104 MB |      true |      false |         7 |      91624 |              91624 |        |
      +---------------------------+------------------+---------+---------+-----------+------------+-----------+------------+--------------------+--------+

      This example shows that the database size for this etcd member is now 41 MB as opposed to the starting size of 104 MB.

    5. Repeat these steps to connect to each of the other etcd members and defragment them. Always defragment the leader last.

      Wait at least one minute between defragmentation actions to allow the etcd pod to recover. Until the etcd pod recovers, the etcd member will not respond.

  3. If any NOSPACE alarms were triggered due to the space quota being exceeded, clear them.

    1. Check if there are any NOSPACE alarms:

      sh-4.4# etcdctl alarm list

      Example output

      memberID:12345678912345678912 alarm:NOSPACE

    2. Clear the alarms:

      sh-4.4# etcdctl alarm disarm

6.11.6. Restoring to a previous cluster state

You can use a saved etcd backup to restore a previous cluster state or restore a cluster that has lost the majority of control plane hosts.

Note

If your cluster uses a control plane machine set, see "Troubleshooting the control plane machine set" for a more simple etcd recovery procedure.

Important

When you restore your cluster, you must use an etcd backup that was taken from the same z-stream release. For example, an OpenShift Container Platform 4.7.2 cluster must use an etcd backup that was taken from 4.7.2.

Prerequisites

  • Access to the cluster as a user with the cluster-admin role through a certificate-based kubeconfig file, like the one that was used during installation.
  • A healthy control plane host to use as the recovery host.
  • SSH access to control plane hosts.
  • A backup directory containing both the etcd snapshot and the resources for the static pods, which were from the same backup. The file names in the directory must be in the following formats: snapshot_<datetimestamp>.db and static_kuberesources_<datetimestamp>.tar.gz.
Important

For non-recovery control plane nodes, it is not required to establish SSH connectivity or to stop the static pods. You can delete and recreate other non-recovery, control plane machines, one by one.

Procedure

  1. Select a control plane host to use as the recovery host. This is the host that you will run the restore operation on.
  2. Establish SSH connectivity to each of the control plane nodes, including the recovery host.

    kube-apiserver becomes inaccessible after the restore process starts, so you cannot access the control plane nodes. For this reason, it is recommended to establish SSH connectivity to each control plane host in a separate terminal.

    Important

    If you do not complete this step, you will not be able to access the control plane hosts to complete the restore procedure, and you will be unable to recover your cluster from this state.

  3. Copy the etcd backup directory to the recovery control plane host.

    This procedure assumes that you copied the backup directory containing the etcd snapshot and the resources for the static pods to the /home/core/ directory of your recovery control plane host.

  4. Stop the static pods on any other control plane nodes.

    Note

    You do not need to stop the static pods on the recovery host.

    1. Access a control plane host that is not the recovery host.
    2. Move the existing etcd pod file out of the kubelet manifest directory by running:

      $ sudo mv /etc/kubernetes/manifests/etcd-pod.yaml /tmp
    3. Verify that the etcd pods are stopped by using:

      $ sudo crictl ps | grep etcd | egrep -v "operator|etcd-guard"

      If the output of this command is not empty, wait a few minutes and check again.

    4. Move the existing kube-apiserver file out of the kubelet manifest directory by running:

      $ sudo mv /etc/kubernetes/manifests/kube-apiserver-pod.yaml /tmp
    5. Verify that the kube-apiserver containers are stopped by running:

      $ sudo crictl ps | grep kube-apiserver | egrep -v "operator|guard"

      If the output of this command is not empty, wait a few minutes and check again.

    6. Move the existing kube-controller-manager file out of the kubelet manifest directory by using:

      $ sudo mv /etc/kubernetes/manifests/kube-controller-manager-pod.yaml /tmp
    7. Verify that the kube-controller-manager containers are stopped by running:

      $ sudo crictl ps | grep kube-controller-manager | egrep -v "operator|guard"

      If the output of this command is not empty, wait a few minutes and check again.

    8. Move the existing kube-scheduler file out of the kubelet manifest directory by using:

      $ sudo mv /etc/kubernetes/manifests/kube-scheduler-pod.yaml /tmp
    9. Verify that the kube-scheduler containers are stopped by using:

      $ sudo crictl ps | grep kube-scheduler | egrep -v "operator|guard"

      If the output of this command is not empty, wait a few minutes and check again.

    10. Move the etcd data directory to a different location with the following example:

      $ sudo mv /var/lib/etcd/ /tmp
    11. If the /etc/kubernetes/manifests/keepalived.yaml file exists, follow these steps:

      1. Move the /etc/kubernetes/manifests/keepalived.yaml file out of the kubelet manifest directory:

        $ sudo mv /etc/kubernetes/manifests/keepalived.yaml /tmp
      2. Verify that any containers managed by the keepalived daemon are stopped:

        $ sudo crictl ps --name keepalived

        The output of this command should be empty. If it is not empty, wait a few minutes and check again.

      3. Check if the control plane has any Virtual IPs (VIPs) assigned to it:

        $ ip -o address | egrep '<api_vip>|<ingress_vip>'
      4. For each reported VIP, run the following command to remove it:

        $ sudo ip address del <reported_vip> dev <reported_vip_device>
    12. Repeat this step on each of the other control plane hosts that is not the recovery host.
  5. Access the recovery control plane host.
  6. If the keepalived daemon is in use, verify that the recovery control plane node owns the VIP:

    $ ip -o address | grep <api_vip>

    The address of the VIP is highlighted in the output if it exists. This command returns an empty string if the VIP is not set or configured incorrectly.

  7. If the cluster-wide proxy is enabled, be sure that you have exported the NO_PROXY, HTTP_PROXY, and HTTPS_PROXY environment variables.

    Tip

    You can check whether the proxy is enabled by reviewing the output of oc get proxy cluster -o yaml. The proxy is enabled if the httpProxy, httpsProxy, and noProxy fields have values set.

  8. Run the restore script on the recovery control plane host and pass in the path to the etcd backup directory:

    $ sudo -E /usr/local/bin/cluster-restore.sh /home/core/backup

    Example script output

    ...stopping kube-scheduler-pod.yaml
    ...stopping kube-controller-manager-pod.yaml
    ...stopping etcd-pod.yaml
    ...stopping kube-apiserver-pod.yaml
    Waiting for container etcd to stop
    .complete
    Waiting for container etcdctl to stop
    .............................complete
    Waiting for container etcd-metrics to stop
    complete
    Waiting for container kube-controller-manager to stop
    complete
    Waiting for container kube-apiserver to stop
    ..........................................................................................complete
    Waiting for container kube-scheduler to stop
    complete
    Moving etcd data-dir /var/lib/etcd/member to /var/lib/etcd-backup
    starting restore-etcd static pod
    starting kube-apiserver-pod.yaml
    static-pod-resources/kube-apiserver-pod-7/kube-apiserver-pod.yaml
    starting kube-controller-manager-pod.yaml
    static-pod-resources/kube-controller-manager-pod-7/kube-controller-manager-pod.yaml
    starting kube-scheduler-pod.yaml
    static-pod-resources/kube-scheduler-pod-8/kube-scheduler-pod.yaml

    The cluster-restore.sh script must show that etcd, kube-apiserver, kube-controller-manager, and kube-scheduler pods are stopped and then started at the end of the restore process.

    Note

    The restore process can cause nodes to enter the NotReady state if the node certificates were updated after the last etcd backup.

  9. Check the nodes to ensure they are in the Ready state.

    1. Run the following command:

      $ oc get nodes -w

      Sample output

      NAME                STATUS  ROLES          AGE     VERSION
      host-172-25-75-28   Ready   master         3d20h   v1.24.0
      host-172-25-75-38   Ready   infra,worker   3d20h   v1.24.0
      host-172-25-75-40   Ready   master         3d20h   v1.24.0
      host-172-25-75-65   Ready   master         3d20h   v1.24.0
      host-172-25-75-74   Ready   infra,worker   3d20h   v1.24.0
      host-172-25-75-79   Ready   worker         3d20h   v1.24.0
      host-172-25-75-86   Ready   worker         3d20h   v1.24.0
      host-172-25-75-98   Ready   infra,worker   3d20h   v1.24.0

      It can take several minutes for all nodes to report their state.

    2. If any nodes are in the NotReady state, log in to the nodes and remove all of the PEM files from the /var/lib/kubelet/pki directory on each node. You can SSH into the nodes or use the terminal window in the web console.

      $  ssh -i <ssh-key-path> core@<master-hostname>

      Sample pki directory

      sh-4.4# pwd
      /var/lib/kubelet/pki
      sh-4.4# ls
      kubelet-client-2022-04-28-11-24-09.pem  kubelet-server-2022-04-28-11-24-15.pem
      kubelet-client-current.pem              kubelet-server-current.pem

  10. Restart the kubelet service on all control plane hosts.

    1. From the recovery host, run:

      $ sudo systemctl restart kubelet.service
    2. Repeat this step on all other control plane hosts.
  11. Approve the pending Certificate Signing Requests (CSRs):

    Note

    Clusters with no worker nodes, such as single-node clusters or clusters consisting of three schedulable control plane nodes, will not have any pending CSRs to approve. You can skip all the commands listed in this step.

    1. Get the list of current CSRs by running:

      $ oc get csr

      Example output

      NAME        AGE    SIGNERNAME                                    REQUESTOR                                                                   CONDITION
      csr-2s94x   8m3s   kubernetes.io/kubelet-serving                 system:node:<node_name>                                                     Pending 1
      csr-4bd6t   8m3s   kubernetes.io/kubelet-serving                 system:node:<node_name>                                                     Pending 2
      csr-4hl85   13m    kubernetes.io/kube-apiserver-client-kubelet   system:serviceaccount:openshift-machine-config-operator:node-bootstrapper   Pending 3
      csr-zhhhp   3m8s   kubernetes.io/kube-apiserver-client-kubelet   system:serviceaccount:openshift-machine-config-operator:node-bootstrapper   Pending 4
      ...

      1 1 2
      A pending kubelet service

CSR (for user-provisioned installations). <2> A pending node-bootstrapper CSR.

  1. Review the details of a CSR to verify that it is valid by running:

    $ oc describe csr <csr_name> 1
    1
    <csr_name> is the name of a CSR from the list of current CSRs.
  2. Approve each valid node-bootstrapper CSR by running:

    $ oc adm certificate approve <csr_name>
  3. For user-provisioned installations, approve each valid kubelet service CSR by running:

    $ oc adm certificate approve <csr_name>
    1. Verify that the single member control plane has started successfully.
  4. From the recovery host, verify that the etcd container is running by using:

    $ sudo crictl ps | grep etcd | egrep -v "operator|etcd-guard"

    Example output

    3ad41b7908e32       36f86e2eeaaffe662df0d21041eb22b8198e0e58abeeae8c743c3e6e977e8009                                                         About a minute ago   Running             etcd                                          0                   7c05f8af362f0

  5. From the recovery host, verify that the etcd pod is running by using:

    $ oc -n openshift-etcd get pods -l k8s-app=etcd

    Example output

    NAME                                             READY   STATUS      RESTARTS   AGE
    etcd-ip-10-0-143-125.ec2.internal                1/1     Running     1          2m47s

    If the status is Pending, or the output lists more than one running etcd pod, wait a few minutes and check again.

    1. If you are using the OVNKubernetes network plugin, you must restart ovnkube-controlplane pods.
  6. Delete all of the ovnkube-controlplane pods by running:

    $ oc -n openshift-ovn-kubernetes delete pod -l app=ovnkube-control-plane
  7. Verify that all of the ovnkube-controlplane pods were redeployed by using:

    $ oc -n openshift-ovn-kubernetes get pod -l app=ovnkube-control-plane
    1. Verify that the Cluster Network Operator (CNO) redeploys the OVN-Kubernetes control plane and that it no longer references the non-recovery controller IP addresses. To verify this result, regularly check the output of the following command. Wait until it returns an empty result before you proceed to restart the Open Virtual Network (OVN) Kubernetes pods on all of the hosts in the next step.

      $ oc -n openshift-ovn-kubernetes get ds/ovnkube-master -o yaml | grep -E '<non-recovery_controller_ip_1>|<non-recovery_controller_ip_2>'
      Note

      It can take at least 5-10 minutes for the OVN-Kubernetes control plane to be redeployed and the previous command to return empty output.

    2. Restart the Open Virtual Network (OVN) Kubernetes pods on all the hosts.

      Note

      Validating and mutating admission webhooks can reject pods. If you add any additional webhooks with the failurePolicy set to Fail, then they can reject pods and the restoration process can fail. You can avoid this by saving and deleting webhooks while restoring the cluster state. After the cluster state is restored successfully, you can enable the webhooks again.

      Alternatively, you can temporarily set the failurePolicy to Ignore while restoring the cluster state. After the cluster state is restored successfully, you can set the failurePolicy to Fail.

  8. Remove the northbound database (nbdb) and southbound database (sbdb). Access the recovery host and the remaining control plane nodes by using Secure Shell (SSH) and run:

    $ sudo rm -f /var/lib/ovn/etc/*.db
  9. Delete all OVN-Kubernetes control plane pods by running the following command:

    $ oc delete pods -l app=ovnkube-master -n openshift-ovn-kubernetes
  10. Ensure that any OVN-Kubernetes control plane pods are deployed again and are in a Running state by running the following command:

    $ oc get pods -l app=ovnkube-master -n openshift-ovn-kubernetes

    Example output

    NAME                   READY   STATUS    RESTARTS   AGE
    ovnkube-master-nb24h   4/4     Running   0          48s

  11. Verify that the ovnkube-node pod is running again with:

    $ oc get pods -n openshift-ovn-kubernetes -o name | grep ovnkube-node | while read p ; do oc delete $p -n openshift-ovn-kubernetes ; done
  12. Ensure that all the ovnkube-node pods are deployed again and are in a Running state by running the following command:

    $ oc get  pods -n openshift-ovn-kubernetes | grep ovnkube-node
    1. Delete and re-create other non-recovery, control plane machines, one by one. After the machines are re-created, a new revision is forced and etcd automatically scales up.

      • If you use a user-provisioned bare metal installation, you can re-create a control plane machine by using the same method that you used to originally create it. For more information, see "Installing a user-provisioned cluster on bare metal".

        Warning

        Do not delete and re-create the machine for the recovery host.

      • If you are running installer-provisioned infrastructure, or you used the Machine API to create your machines, follow these steps:

        Warning

        Do not delete and re-create the machine for the recovery host.

        For bare metal installations on installer-provisioned infrastructure, control plane machines are not re-created. For more information, see "Replacing a bare-metal control plane node".

  13. Obtain the machine for one of the lost control plane hosts.

    In a terminal that has access to the cluster as a cluster-admin user, run the following command:

    $ oc get machines -n openshift-machine-api -o wide

    Example output:

    NAME                                        PHASE     TYPE        REGION      ZONE         AGE     NODE                           PROVIDERID                              STATE
    clustername-8qw5l-master-0                  Running   m4.xlarge   us-east-1   us-east-1a   3h37m   ip-10-0-131-183.ec2.internal   aws:///us-east-1a/i-0ec2782f8287dfb7e   stopped 1
    clustername-8qw5l-master-1                  Running   m4.xlarge   us-east-1   us-east-1b   3h37m   ip-10-0-143-125.ec2.internal   aws:///us-east-1b/i-096c349b700a19631   running
    clustername-8qw5l-master-2                  Running   m4.xlarge   us-east-1   us-east-1c   3h37m   ip-10-0-154-194.ec2.internal    aws:///us-east-1c/i-02626f1dba9ed5bba  running
    clustername-8qw5l-worker-us-east-1a-wbtgd   Running   m4.large    us-east-1   us-east-1a   3h28m   ip-10-0-129-226.ec2.internal   aws:///us-east-1a/i-010ef6279b4662ced   running
    clustername-8qw5l-worker-us-east-1b-lrdxb   Running   m4.large    us-east-1   us-east-1b   3h28m   ip-10-0-144-248.ec2.internal   aws:///us-east-1b/i-0cb45ac45a166173b   running
    clustername-8qw5l-worker-us-east-1c-pkg26   Running   m4.large    us-east-1   us-east-1c   3h28m   ip-10-0-170-181.ec2.internal   aws:///us-east-1c/i-06861c00007751b0a   running
    1
    This is the control plane machine for the lost control plane host, ip-10-0-131-183.ec2.internal.
  14. Save the machine configuration to a file on your file system by running:

    $ oc get machine clustername-8qw5l-master-0 \ 1
        -n openshift-machine-api \
        -o yaml \
        > new-master-machine.yaml
    1
    Specify the name of the control plane machine for the lost control plane host.
  15. Edit the new-master-machine.yaml file that was created in the previous step to assign a new name and remove unnecessary fields.

    1. Remove the entire status section by running:

      status:
        addresses:
        - address: 10.0.131.183
          type: InternalIP
        - address: ip-10-0-131-183.ec2.internal
          type: InternalDNS
        - address: ip-10-0-131-183.ec2.internal
          type: Hostname
        lastUpdated: "2020-04-20T17:44:29Z"
        nodeRef:
          kind: Node
          name: ip-10-0-131-183.ec2.internal
          uid: acca4411-af0d-4387-b73e-52b2484295ad
        phase: Running
        providerStatus:
          apiVersion: awsproviderconfig.openshift.io/v1beta1
          conditions:
          - lastProbeTime: "2020-04-20T16:53:50Z"
            lastTransitionTime: "2020-04-20T16:53:50Z"
            message: machine successfully created
            reason: MachineCreationSucceeded
            status: "True"
            type: MachineCreation
          instanceId: i-0fdb85790d76d0c3f
          instanceState: stopped
          kind: AWSMachineProviderStatus
    2. Change the metadata.name field to a new name by running:

      It is recommended to keep the same base name as the old machine and change the ending number to the next available number. In this example, clustername-8qw5l-master-0 is changed to clustername-8qw5l-master-3:

      apiVersion: machine.openshift.io/v1beta1
      kind: Machine
      metadata:
        ...
        name: clustername-8qw5l-master-3
        ...
    3. Remove the spec.providerID field by running:

      providerID: aws:///us-east-1a/i-0fdb85790d76d0c3f
    4. Remove the metadata.annotations and metadata.generation fields by running:

      annotations:
        machine.openshift.io/instance-state: running
      ...
      generation: 2
    5. Remove the metadata.resourceVersion and metadata.uid fields by running:

      resourceVersion: "13291"
      uid: a282eb70-40a2-4e89-8009-d05dd420d31a
  16. Delete the machine of the lost control plane host by running:

    $ oc delete machine -n openshift-machine-api clustername-8qw5l-master-0 1
    1
    Specify the name of the control plane machine for the lost control plane host.
  17. Verify that the machine was deleted by running:

    $ oc get machines -n openshift-machine-api -o wide

    Example output:

    NAME                                        PHASE     TYPE        REGION      ZONE         AGE     NODE                           PROVIDERID                              STATE
    clustername-8qw5l-master-1                  Running   m4.xlarge   us-east-1   us-east-1b   3h37m   ip-10-0-143-125.ec2.internal   aws:///us-east-1b/i-096c349b700a19631   running
    clustername-8qw5l-master-2                  Running   m4.xlarge   us-east-1   us-east-1c   3h37m   ip-10-0-154-194.ec2.internal   aws:///us-east-1c/i-02626f1dba9ed5bba  running
    clustername-8qw5l-worker-us-east-1a-wbtgd   Running   m4.large    us-east-1   us-east-1a   3h28m   ip-10-0-129-226.ec2.internal   aws:///us-east-1a/i-010ef6279b4662ced   running
    clustername-8qw5l-worker-us-east-1b-lrdxb   Running   m4.large    us-east-1   us-east-1b   3h28m   ip-10-0-144-248.ec2.internal   aws:///us-east-1b/i-0cb45ac45a166173b   running
    clustername-8qw5l-worker-us-east-1c-pkg26   Running   m4.large    us-east-1   us-east-1c   3h28m   ip-10-0-170-181.ec2.internal   aws:///us-east-1c/i-06861c00007751b0a   running
  18. Create a machine by using the new-master-machine.yaml file by running:

    $ oc apply -f new-master-machine.yaml
  19. Verify that the new machine has been created by running:

    $ oc get machines -n openshift-machine-api -o wide

    Example output:

    NAME                                        PHASE          TYPE        REGION      ZONE         AGE     NODE                           PROVIDERID                              STATE
    clustername-8qw5l-master-1                  Running        m4.xlarge   us-east-1   us-east-1b   3h37m   ip-10-0-143-125.ec2.internal   aws:///us-east-1b/i-096c349b700a19631   running
    clustername-8qw5l-master-2                  Running        m4.xlarge   us-east-1   us-east-1c   3h37m   ip-10-0-154-194.ec2.internal    aws:///us-east-1c/i-02626f1dba9ed5bba  running
    clustername-8qw5l-master-3                  Provisioning   m4.xlarge   us-east-1   us-east-1a   85s     ip-10-0-173-171.ec2.internal    aws:///us-east-1a/i-015b0888fe17bc2c8  running 1
    clustername-8qw5l-worker-us-east-1a-wbtgd   Running        m4.large    us-east-1   us-east-1a   3h28m   ip-10-0-129-226.ec2.internal   aws:///us-east-1a/i-010ef6279b4662ced   running
    clustername-8qw5l-worker-us-east-1b-lrdxb   Running        m4.large    us-east-1   us-east-1b   3h28m   ip-10-0-144-248.ec2.internal   aws:///us-east-1b/i-0cb45ac45a166173b   running
    clustername-8qw5l-worker-us-east-1c-pkg26   Running        m4.large    us-east-1   us-east-1c   3h28m   ip-10-0-170-181.ec2.internal   aws:///us-east-1c/i-06861c00007751b0a   running
    1
    The new machine, clustername-8qw5l-master-3 is being created and is ready after the phase changes from Provisioning to Running.

    It might take a few minutes for the new machine to be created. The etcd cluster Operator will automatically sync when the machine or node returns to a healthy state.

  20. Repeat these steps for each lost control plane host that is not the recovery host.

    1. Turn off the quorum guard by entering:

      $ oc patch etcd/cluster --type=merge -p '{"spec": {"unsupportedConfigOverrides": {"useUnsupportedUnsafeNonHANonProductionUnstableEtcd": true}}}'

      This command ensures that you can successfully re-create secrets and roll out the static pods.

    2. In a separate terminal window within the recovery host, export the recovery kubeconfig file by running:

      $ export KUBECONFIG=/etc/kubernetes/static-pod-resources/kube-apiserver-certs/secrets/node-kubeconfigs/localhost-recovery.kubeconfig
    3. Force etcd redeployment.

      In the same terminal window where you exported the recovery kubeconfig file, run:

      $ oc patch etcd cluster -p='{"spec": {"forceRedeploymentReason": "recovery-'"$( date --rfc-3339=ns )"'"}}' --type=merge 1
      1
      The forceRedeploymentReason value must be unique, which is why a timestamp is appended.

      When the etcd cluster Operator performs a redeployment, the existing nodes are started with new pods similar to the initial bootstrap scale up.

    4. Turn the quorum guard back on by entering:

      $ oc patch etcd/cluster --type=merge -p '{"spec": {"unsupportedConfigOverrides": null}}'
    5. You can verify that the unsupportedConfigOverrides section is removed from the object by running:

      $ oc get etcd/cluster -oyaml
    6. Verify all nodes are updated to the latest revision.

      In a terminal that has access to the cluster as a cluster-admin user, run:

      $ oc get etcd -o=jsonpath='{range .items[0].status.conditions[?(@.type=="NodeInstallerProgressing")]}{.reason}{"\n"}{.message}{"\n"}'

      Review the NodeInstallerProgressing status condition for etcd to verify that all nodes are at the latest revision. The output shows AllNodesAtLatestRevision upon successful update:

      AllNodesAtLatestRevision
      3 nodes are at revision 7 1
      1
      In this example, the latest revision number is 7.

      If the output includes multiple revision numbers, such as 2 nodes are at revision 6; 1 nodes are at revision 7, this means that the update is still in progress. Wait a few minutes and try again.

    7. After etcd is redeployed, force new rollouts for the control plane. kube-apiserver will reinstall itself on the other nodes because the kubelet is connected to API servers using an internal load balancer.

      In a terminal that has access to the cluster as a cluster-admin user, run:

  21. Force a new rollout for kube-apiserver:

    $ oc patch kubeapiserver cluster -p='{"spec": {"forceRedeploymentReason": "recovery-'"$( date --rfc-3339=ns )"'"}}' --type=merge

    Verify all nodes are updated to the latest revision.

    $ oc get kubeapiserver -o=jsonpath='{range .items[0].status.conditions[?(@.type=="NodeInstallerProgressing")]}{.reason}{"\n"}{.message}{"\n"}'

    Review the NodeInstallerProgressing status condition to verify that all nodes are at the latest revision. The output shows AllNodesAtLatestRevision upon successful update:

    AllNodesAtLatestRevision
    3 nodes are at revision 7 1
    1
    In this example, the latest revision number is 7.

    If the output includes multiple revision numbers, such as 2 nodes are at revision 6; 1 nodes are at revision 7, this means that the update is still in progress. Wait a few minutes and try again.

  22. Force a new rollout for the Kubernetes controller manager by running the following command:

    $ oc patch kubecontrollermanager cluster -p='{"spec": {"forceRedeploymentReason": "recovery-'"$( date --rfc-3339=ns )"'"}}' --type=merge

    Verify all nodes are updated to the latest revision by running:

    $ oc get kubecontrollermanager -o=jsonpath='{range .items[0].status.conditions[?(@.type=="NodeInstallerProgressing")]}{.reason}{"\n"}{.message}{"\n"}'

    Review the NodeInstallerProgressing status condition to verify that all nodes are at the latest revision. The output shows AllNodesAtLatestRevision upon successful update:

    AllNodesAtLatestRevision
    3 nodes are at revision 7 1
    1
    In this example, the latest revision number is 7.

    If the output includes multiple revision numbers, such as 2 nodes are at revision 6; 1 nodes are at revision 7, this means that the update is still in progress. Wait a few minutes and try again.

  23. Force a new rollout for the kube-scheduler by running:

    $ oc patch kubescheduler cluster -p='{"spec": {"forceRedeploymentReason": "recovery-'"$( date --rfc-3339=ns )"'"}}' --type=merge

    Verify all nodes are updated to the latest revision by using:

    $ oc get kubescheduler -o=jsonpath='{range .items[0].status.conditions[?(@.type=="NodeInstallerProgressing")]}{.reason}{"\n"}{.message}{"\n"}'

    Review the NodeInstallerProgressing status condition to verify that all nodes are at the latest revision. The output shows AllNodesAtLatestRevision upon successful update:

    AllNodesAtLatestRevision
    3 nodes are at revision 7 1
    1
    In this example, the latest revision number is 7.

    If the output includes multiple revision numbers, such as 2 nodes are at revision 6; 1 nodes are at revision 7, this means that the update is still in progress. Wait a few minutes and try again.

    1. Verify that all control plane hosts have started and joined the cluster.

      In a terminal that has access to the cluster as a cluster-admin user, run the following command:

      $ oc -n openshift-etcd get pods -l k8s-app=etcd

      Example output

      etcd-ip-10-0-143-125.ec2.internal                2/2     Running     0          9h
      etcd-ip-10-0-154-194.ec2.internal                2/2     Running     0          9h
      etcd-ip-10-0-173-171.ec2.internal                2/2     Running     0          9h

To ensure that all workloads return to normal operation following a recovery procedure, restart each pod that stores kube-apiserver information. This includes OpenShift Container Platform components such as routers, Operators, and third-party components.

Note

On completion of the previous procedural steps, you might need to wait a few minutes for all services to return to their restored state. For example, authentication by using oc login might not immediately work until the OAuth server pods are restarted.

Consider using the system:admin kubeconfig file for immediate authentication. This method basis its authentication on SSL/TLS client certificates as against OAuth tokens. You can authenticate with this file by issuing the following command:

$ export KUBECONFIG=<installation_directory>/auth/kubeconfig

Issue the following command to display your authenticated user name:

$ oc whoami

6.11.7. Issues and workarounds for restoring a persistent storage state

If your OpenShift Container Platform cluster uses persistent storage of any form, a state of the cluster is typically stored outside etcd. It might be an Elasticsearch cluster running in a pod or a database running in a StatefulSet object. When you restore from an etcd backup, the status of the workloads in OpenShift Container Platform is also restored. However, if the etcd snapshot is old, the status might be invalid or outdated.

Important

The contents of persistent volumes (PVs) are never part of the etcd snapshot. When you restore an OpenShift Container Platform cluster from an etcd snapshot, non-critical workloads might gain access to critical data, or vice-versa.

The following are some example scenarios that produce an out-of-date status:

  • MySQL database is running in a pod backed up by a PV object. Restoring OpenShift Container Platform from an etcd snapshot does not bring back the volume on the storage provider, and does not produce a running MySQL pod, despite the pod repeatedly attempting to start. You must manually restore this pod by restoring the volume on the storage provider, and then editing the PV to point to the new volume.
  • Pod P1 is using volume A, which is attached to node X. If the etcd snapshot is taken while another pod uses the same volume on node Y, then when the etcd restore is performed, pod P1 might not be able to start correctly due to the volume still being attached to node Y. OpenShift Container Platform is not aware of the attachment, and does not automatically detach it. When this occurs, the volume must be manually detached from node Y so that the volume can attach on node X, and then pod P1 can start.
  • Cloud provider or storage provider credentials were updated after the etcd snapshot was taken. This causes any CSI drivers or Operators that depend on the those credentials to not work. You might have to manually update the credentials required by those drivers or Operators.
  • A device is removed or renamed from OpenShift Container Platform nodes after the etcd snapshot is taken. The Local Storage Operator creates symlinks for each PV that it manages from /dev/disk/by-id or /dev directories. This situation might cause the local PVs to refer to devices that no longer exist.

    To fix this problem, an administrator must:

    1. Manually remove the PVs with invalid devices.
    2. Remove symlinks from respective nodes.
    3. Delete LocalVolume or LocalVolumeSet objects (see StorageConfiguring persistent storagePersistent storage using local volumesDeleting the Local Storage Operator Resources).

6.12. Pod disruption budgets

Understand and configure pod disruption budgets.

6.12.1. Understanding how to use pod disruption budgets to specify the number of pods that must be up

A pod disruption budget allows the specification of safety constraints on pods during operations, such as draining a node for maintenance.

PodDisruptionBudget is an API object that specifies the minimum number or percentage of replicas that must be up at a time. Setting these in projects can be helpful during node maintenance (such as scaling a cluster down or a cluster upgrade) and is only honored on voluntary evictions (not on node failures).

A PodDisruptionBudget object’s configuration consists of the following key parts:

  • A label selector, which is a label query over a set of pods.
  • An availability level, which specifies the minimum number of pods that must be available simultaneously, either:

    • minAvailable is the number of pods must always be available, even during a disruption.
    • maxUnavailable is the number of pods can be unavailable during a disruption.
Note

Available refers to the number of pods that has condition Ready=True. Ready=True refers to the pod that is able to serve requests and should be added to the load balancing pools of all matching services.

A maxUnavailable of 0% or 0 or a minAvailable of 100% or equal to the number of replicas is permitted but can block nodes from being drained.

You can check for pod disruption budgets across all projects with the following:

$ oc get poddisruptionbudget --all-namespaces

Example output

NAMESPACE                              NAME                                    MIN AVAILABLE   MAX UNAVAILABLE   ALLOWED DISRUPTIONS   AGE
openshift-apiserver                    openshift-apiserver-pdb                 N/A             1                 1                     121m
openshift-cloud-controller-manager     aws-cloud-controller-manager            1               N/A               1                     125m
openshift-cloud-credential-operator    pod-identity-webhook                    1               N/A               1                     117m
openshift-cluster-csi-drivers          aws-ebs-csi-driver-controller-pdb       N/A             1                 1                     121m
openshift-cluster-storage-operator     csi-snapshot-controller-pdb             N/A             1                 1                     122m
openshift-cluster-storage-operator     csi-snapshot-webhook-pdb                N/A             1                 1                     122m
openshift-console                      console                                 N/A             1                 1                     116m
#...

The PodDisruptionBudget is considered healthy when there are at least minAvailable pods running in the system. Every pod above that limit can be evicted.

Note

Depending on your pod priority and preemption settings, lower-priority pods might be removed despite their pod disruption budget requirements.

6.12.2. Specifying the number of pods that must be up with pod disruption budgets

You can use a PodDisruptionBudget object to specify the minimum number or percentage of replicas that must be up at a time.

Procedure

To configure a pod disruption budget:

  1. Create a YAML file with the an object definition similar to the following:

    apiVersion: policy/v1 1
    kind: PodDisruptionBudget
    metadata:
      name: my-pdb
    spec:
      minAvailable: 2  2
      selector:  3
        matchLabels:
          name: my-pod
    1
    PodDisruptionBudget is part of the policy/v1 API group.
    2
    The minimum number of pods that must be available simultaneously. This can be either an integer or a string specifying a percentage, for example, 20%.
    3
    A label query over a set of resources. The result of matchLabels and matchExpressions are logically conjoined. Leave this paramter blank, for example selector {}, to select all pods in the project.

    Or:

    apiVersion: policy/v1 1
    kind: PodDisruptionBudget
    metadata:
      name: my-pdb
    spec:
      maxUnavailable: 25% 2
      selector: 3
        matchLabels:
          name: my-pod
    1
    PodDisruptionBudget is part of the policy/v1 API group.
    2
    The maximum number of pods that can be unavailable simultaneously. This can be either an integer or a string specifying a percentage, for example, 20%.
    3
    A label query over a set of resources. The result of matchLabels and matchExpressions are logically conjoined. Leave this paramter blank, for example selector {}, to select all pods in the project.
  2. Run the following command to add the object to project:

    $ oc create -f </path/to/file> -n <project_name>

6.13. Rotating or removing cloud provider credentials

After installing OpenShift Container Platform, some organizations require the rotation or removal of the cloud provider credentials that were used during the initial installation.

To allow the cluster to use the new credentials, you must update the secrets that the Cloud Credential Operator (CCO) uses to manage cloud provider credentials.

6.13.1. Rotating cloud provider credentials with the Cloud Credential Operator utility

The Cloud Credential Operator (CCO) utility ccoctl supports updating secrets for clusters installed on IBM Cloud.

6.13.1.1. Rotating API keys for IBM Cloud

You can rotate API keys for your existing service IDs and update the corresponding secrets.

Prerequisites

  • You have configured the ccoctl binary.
  • You have existing service IDs in a live OpenShift Container Platform cluster installed on IBM Cloud.

Procedure

  • Use the ccoctl utility to rotate your API keys for the service IDs and update the secrets:

    $ ccoctl ibmcloud refresh-keys \
        --kubeconfig <openshift_kubeconfig_file> \ 1
        --credentials-requests-dir <path_to_credential_requests_directory> \ 2
        --name <name> 3
    1
    The kubeconfig file associated with the cluster. For example, <installation_directory>/auth/kubeconfig.
    2
    The directory where the credential requests are stored.
    3
    The name of the OpenShift Container Platform cluster.
    Note

    If your cluster uses Technology Preview features that are enabled by the TechPreviewNoUpgrade feature set, you must include the --enable-tech-preview parameter.

6.13.2. Rotating cloud provider credentials manually

If your cloud provider credentials are changed for any reason, you must manually update the secret that the Cloud Credential Operator (CCO) uses to manage cloud provider credentials.

The process for rotating cloud credentials depends on the mode that the CCO is configured to use. After you rotate credentials for a cluster that is using mint mode, you must manually remove the component credentials that were created by the removed credential.

Prerequisites

  • Your cluster is installed on a platform that supports rotating cloud credentials manually with the CCO mode that you are using:

    • For mint mode, Amazon Web Services (AWS) and Google Cloud Platform (GCP) are supported.
    • For passthrough mode, Amazon Web Services (AWS), Microsoft Azure, Google Cloud Platform (GCP), Red Hat OpenStack Platform (RHOSP), Red Hat Virtualization (RHV), and VMware vSphere are supported.
  • You have changed the credentials that are used to interface with your cloud provider.
  • The new credentials have sufficient permissions for the mode CCO is configured to use in your cluster.

Procedure

  1. In the Administrator perspective of the web console, navigate to WorkloadsSecrets.
  2. In the table on the Secrets page, find the root secret for your cloud provider.

    PlatformSecret name

    AWS

    aws-creds

    Azure

    azure-credentials

    GCP

    gcp-credentials

    RHOSP

    openstack-credentials

    RHV

    ovirt-credentials

    VMware vSphere

    vsphere-creds

  3. Click the Options menu kebab in the same row as the secret and select Edit Secret.
  4. Record the contents of the Value field or fields. You can use this information to verify that the value is different after updating the credentials.
  5. Update the text in the Value field or fields with the new authentication information for your cloud provider, and then click Save.
  6. If you are updating the credentials for a vSphere cluster that does not have the vSphere CSI Driver Operator enabled, you must force a rollout of the Kubernetes controller manager to apply the updated credentials.

    Note

    If the vSphere CSI Driver Operator is enabled, this step is not required.

    To apply the updated vSphere credentials, log in to the OpenShift Container Platform CLI as a user with the cluster-admin role and run the following command:

    $ oc patch kubecontrollermanager cluster \
      -p='{"spec": {"forceRedeploymentReason": "recovery-'"$( date )"'"}}' \
      --type=merge

    While the credentials are rolling out, the status of the Kubernetes Controller Manager Operator reports Progressing=true. To view the status, run the following command:

    $ oc get co kube-controller-manager
  7. If the CCO for your cluster is configured to use mint mode, delete each component secret that is referenced by the individual CredentialsRequest objects.

    1. Log in to the OpenShift Container Platform CLI as a user with the cluster-admin role.
    2. Get the names and namespaces of all referenced component secrets:

      $ oc -n openshift-cloud-credential-operator get CredentialsRequest \
        -o json | jq -r '.items[] | select (.spec.providerSpec.kind=="<provider_spec>") | .spec.secretRef'

      where <provider_spec> is the corresponding value for your cloud provider:

      • AWS: AWSProviderSpec
      • GCP: GCPProviderSpec

      Partial example output for AWS

      {
        "name": "ebs-cloud-credentials",
        "namespace": "openshift-cluster-csi-drivers"
      }
      {
        "name": "cloud-credential-operator-iam-ro-creds",
        "namespace": "openshift-cloud-credential-operator"
      }

    3. Delete each of the referenced component secrets:

      $ oc delete secret <secret_name> \1
        -n <secret_namespace> 2
      1
      Specify the name of a secret.
      2
      Specify the namespace that contains the secret.

      Example deletion of an AWS secret

      $ oc delete secret ebs-cloud-credentials -n openshift-cluster-csi-drivers

      You do not need to manually delete the credentials from your provider console. Deleting the referenced component secrets will cause the CCO to delete the existing credentials from the platform and create new ones.

Verification

To verify that the credentials have changed:

  1. In the Administrator perspective of the web console, navigate to WorkloadsSecrets.
  2. Verify that the contents of the Value field or fields have changed.

Additional resources

6.13.3. Removing cloud provider credentials

After installing an OpenShift Container Platform cluster with the Cloud Credential Operator (CCO) in mint mode, you can remove the administrator-level credential secret from the kube-system namespace in the cluster. The administrator-level credential is required only during changes that require its elevated permissions, such as upgrades.

Note

Prior to a non z-stream upgrade, you must reinstate the credential secret with the administrator-level credential. If the credential is not present, the upgrade might be blocked.

Prerequisites

  • Your cluster is installed on a platform that supports removing cloud credentials from the CCO. Supported platforms are AWS and GCP.

Procedure

  1. In the Administrator perspective of the web console, navigate to WorkloadsSecrets.
  2. In the table on the Secrets page, find the root secret for your cloud provider.

    PlatformSecret name

    AWS

    aws-creds

    GCP

    gcp-credentials

  3. Click the Options menu kebab in the same row as the secret and select Delete Secret.

6.14. Configuring image streams for a disconnected cluster

After installing OpenShift Container Platform in a disconnected environment, configure the image streams for the Cluster Samples Operator and the must-gather image stream.

6.14.1. Cluster Samples Operator assistance for mirroring

During installation, OpenShift Container Platform creates a config map named imagestreamtag-to-image in the openshift-cluster-samples-operator namespace. The imagestreamtag-to-image config map contains an entry, the populating image, for each image stream tag.

The format of the key for each entry in the data field in the config map is <image_stream_name>_<image_stream_tag_name>.

During a disconnected installation of OpenShift Container Platform, the status of the Cluster Samples Operator is set to Removed. If you choose to change it to Managed, it installs samples.

Note

The use of samples in a network-restricted or discontinued environment may require access to services external to your network. Some example services include: Github, Maven Central, npm, RubyGems, PyPi and others. There might be additional steps to take that allow the cluster samples operators’s objects to reach the services they require.

You can use this config map as a reference for which images need to be mirrored for your image streams to import.

  • While the Cluster Samples Operator is set to Removed, you can create your mirrored registry, or determine which existing mirrored registry you want to use.
  • Mirror the samples you want to the mirrored registry using the new config map as your guide.
  • Add any of the image streams you did not mirror to the skippedImagestreams list of the Cluster Samples Operator configuration object.
  • Set samplesRegistry of the Cluster Samples Operator configuration object to the mirrored registry.
  • Then set the Cluster Samples Operator to Managed to install the image streams you have mirrored.

6.14.2. Using Cluster Samples Operator image streams with alternate or mirrored registries

Most image streams in the openshift namespace managed by the Cluster Samples Operator point to images located in the Red Hat registry at registry.redhat.io. Mirroring will not apply to these image streams.

Note

The cli, installer, must-gather, and tests image streams, while part of the install payload, are not managed by the Cluster Samples Operator. These are not addressed in this procedure.

Important

The Cluster Samples Operator must be set to Managed in a disconnected environment. To install the image streams, you have a mirrored registry.

Prerequisites

  • Access to the cluster as a user with the cluster-admin role.
  • Create a pull secret for your mirror registry.

Procedure

  1. Access the images of a specific image stream to mirror, for example:

    $ oc get is <imagestream> -n openshift -o json | jq .spec.tags[].from.name | grep registry.redhat.io
  2. Mirror images from registry.redhat.io associated with any image streams you need in the restricted network environment into one of the defined mirrors, for example:

    $ oc image mirror registry.redhat.io/rhscl/ruby-25-rhel7:latest ${MIRROR_ADDR}/rhscl/ruby-25-rhel7:latest
  3. Create the cluster’s image configuration object:

    $ oc create configmap registry-config --from-file=${MIRROR_ADDR_HOSTNAME}..5000=$path/ca.crt -n openshift-config
  4. Add the required trusted CAs for the mirror in the cluster’s image configuration object:

    $ oc patch image.config.openshift.io/cluster --patch '{"spec":{"additionalTrustedCA":{"name":"registry-config"}}}' --type=merge
  5. Update the samplesRegistry field in the Cluster Samples Operator configuration object to contain the hostname portion of the mirror location defined in the mirror configuration:

    $ oc edit configs.samples.operator.openshift.io -n openshift-cluster-samples-operator
    Note

    This is required because the image stream import process does not use the mirror or search mechanism at this time.

  6. Add any image streams that are not mirrored into the skippedImagestreams field of the Cluster Samples Operator configuration object. Or if you do not want to support any of the sample image streams, set the Cluster Samples Operator to Removed in the Cluster Samples Operator configuration object.

    Note

    The Cluster Samples Operator issues alerts if image stream imports are failing but the Cluster Samples Operator is either periodically retrying or does not appear to be retrying them.

    Many of the templates in the openshift namespace reference the image streams. So using Removed to purge both the image streams and templates will eliminate the possibility of attempts to use them if they are not functional because of any missing image streams.

6.14.3. Preparing your cluster to gather support data

Clusters using a restricted network must import the default must-gather image to gather debugging data for Red Hat support. The must-gather image is not imported by default, and clusters on a restricted network do not have access to the internet to pull the latest image from a remote repository.

Procedure

  1. If you have not added your mirror registry’s trusted CA to your cluster’s image configuration object as part of the Cluster Samples Operator configuration, perform the following steps:

    1. Create the cluster’s image configuration object:

      $ oc create configmap registry-config --from-file=${MIRROR_ADDR_HOSTNAME}..5000=$path/ca.crt -n openshift-config
    2. Add the required trusted CAs for the mirror in the cluster’s image configuration object:

      $ oc patch image.config.openshift.io/cluster --patch '{"spec":{"additionalTrustedCA":{"name":"registry-config"}}}' --type=merge
  2. Import the default must-gather image from your installation payload:

    $ oc import-image is/must-gather -n openshift

When running the oc adm must-gather command, use the --image flag and point to the payload image, as in the following example:

$ oc adm must-gather --image=$(oc adm release info --image-for must-gather)

6.15. Configuring periodic importing of Cluster Sample Operator image stream tags

You can ensure that you always have access to the latest versions of the Cluster Sample Operator images by periodically importing the image stream tags when new versions become available.

Procedure

  1. Fetch all the imagestreams in the openshift namespace by running the following command:

    oc get imagestreams -nopenshift
  2. Fetch the tags for every imagestream in the openshift namespace by running the following command:

    $ oc get is <image-stream-name> -o jsonpath="{range .spec.tags[*]}{.name}{'\t'}{.from.name}{'\n'}{end}" -nopenshift

    For example:

    $ oc get is ubi8-openjdk-17 -o jsonpath="{range .spec.tags[*]}{.name}{'\t'}{.from.name}{'\n'}{end}" -nopenshift

    Example output

    1.11	registry.access.redhat.com/ubi8/openjdk-17:1.11
    1.12	registry.access.redhat.com/ubi8/openjdk-17:1.12

  3. Schedule periodic importing of images for each tag present in the image stream by running the following command:

    $ oc tag <repository/image> <image-stream-name:tag> --scheduled -nopenshift

    For example:

    $ oc tag registry.access.redhat.com/ubi8/openjdk-17:1.11 ubi8-openjdk-17:1.11 --scheduled -nopenshift
    $ oc tag registry.access.redhat.com/ubi8/openjdk-17:1.12 ubi8-openjdk-17:1.12 --scheduled -nopenshift

    This command causes OpenShift Container Platform to periodically update this particular image stream tag. This period is a cluster-wide setting set to 15 minutes by default.

  4. Verify the scheduling status of the periodic import by running the following command:

    oc get imagestream <image-stream-name> -o jsonpath="{range .spec.tags[*]}Tag: {.name}{'\t'}Scheduled: {.importPolicy.scheduled}{'\n'}{end}" -nopenshift

    For example:

    oc get imagestream ubi8-openjdk-17 -o jsonpath="{range .spec.tags[*]}Tag: {.name}{'\t'}Scheduled: {.importPolicy.scheduled}{'\n'}{end}" -nopenshift

    Example output

    Tag: 1.11	Scheduled: true
    Tag: 1.12	Scheduled: true

Chapter 7. Postinstallation node tasks

After installing OpenShift Container Platform, you can further expand and customize your cluster to your requirements through certain node tasks.

7.1. Adding RHEL compute machines to an OpenShift Container Platform cluster

Understand and work with RHEL compute nodes.

7.1.1. About adding RHEL compute nodes to a cluster

In OpenShift Container Platform 4.11, you have the option of using Red Hat Enterprise Linux (RHEL) machines as compute machines in your cluster if you use a user-provisioned or installer-provisioned infrastructure installation on the x86_64 architecture. You must use Red Hat Enterprise Linux CoreOS (RHCOS) machines for the control plane machines in your cluster.

If you choose to use RHEL compute machines in your cluster, you are responsible for all operating system life cycle management and maintenance. You must perform system updates, apply patches, and complete all other required tasks.

For installer-provisioned infrastructure clusters, you must manually add RHEL compute machines because automatic scaling in installer-provisioned infrastructure clusters adds Red Hat Enterprise Linux CoreOS (RHCOS) compute machines by default.

Important
  • Because removing OpenShift Container Platform from a machine in the cluster requires destroying the operating system, you must use dedicated hardware for any RHEL machines that you add to the cluster.
  • Swap memory is disabled on all RHEL machines that you add to your OpenShift Container Platform cluster. You cannot enable swap memory on these machines.

You must add any RHEL compute machines to the cluster after you initialize the control plane.

7.1.2. System requirements for RHEL compute nodes

The Red Hat Enterprise Linux (RHEL) compute machine hosts in your OpenShift Container Platform environment must meet the following minimum hardware specifications and system-level requirements:

  • You must have an active OpenShift Container Platform subscription on your Red Hat account. If you do not, contact your sales representative for more information.
  • Production environments must provide compute machines to support your expected workloads. As a cluster administrator, you must calculate the expected workload and add about 10% for overhead. For production environments, allocate enough resources so that a node host failure does not affect your maximum capacity.
  • Each system must meet the following hardware requirements:

    • Physical or virtual system, or an instance running on a public or private IaaS.
    • Base OS: RHEL 8.6 and later with "Minimal" installation option.

      Important

      Adding RHEL 7 compute machines to an OpenShift Container Platform cluster is not supported.

      If you have RHEL 7 compute machines that were previously supported in a past OpenShift Container Platform version, you cannot upgrade them to RHEL 8. You must deploy new RHEL 8 hosts, and the old RHEL 7 hosts should be removed. See the "Deleting nodes" section for more information.

      For the most recent list of major functionality that has been deprecated or removed within OpenShift Container Platform, refer to the Deprecated and removed features section of the OpenShift Container Platform release notes.

    • If you deployed OpenShift Container Platform in FIPS mode, you must enable FIPS on the RHEL machine before you boot it. See Installing a RHEL 8 system with FIPS mode enabled in the RHEL 8 documentation.
Important

To enable FIPS mode for your cluster, you must run the installation program from a Red Hat Enterprise Linux (RHEL) computer configured to operate in FIPS mode. For more information about configuring FIPS mode on RHEL, see Installing the system in FIPS mode. The use of FIPS validated or Modules In Process cryptographic libraries is only supported on OpenShift Container Platform deployments on the x86_64 architecture.

  • NetworkManager 1.0 or later.
  • 1 vCPU.
  • Minimum 8 GB RAM.
  • Minimum 15 GB hard disk space for the file system containing /var/.
  • Minimum 1 GB hard disk space for the file system containing /usr/local/bin/.
  • Minimum 1 GB hard disk space for the file system containing its temporary directory. The temporary system directory is determined according to the rules defined in the tempfile module in the Python standard library.

    • Each system must meet any additional requirements for your system provider. For example, if you installed your cluster on VMware vSphere, your disks must be configured according to its storage guidelines and the disk.enableUUID=true attribute must be set.
    • Each system must be able to access the cluster’s API endpoints by using DNS-resolvable hostnames. Any network security access control that is in place must allow system access to the cluster’s API service endpoints.

Additional resources

7.1.2.1. Certificate signing requests management

Because your cluster has limited access to automatic machine management when you use infrastructure that you provision, you must provide a mechanism for approving cluster certificate signing requests (CSRs) after installation. The kube-controller-manager only approves the kubelet client CSRs. The machine-approver cannot guarantee the validity of a serving certificate that is requested by using kubelet credentials because it cannot confirm that the correct machine issued the request. You must determine and implement a method of verifying the validity of the kubelet serving certificate requests and approving them.

7.1.3. Preparing the machine to run the playbook

Before you can add compute machines that use Red Hat Enterprise Linux (RHEL) as the operating system to an OpenShift Container Platform 4.11 cluster, you must prepare a RHEL 8 machine to run an Ansible playbook that adds the new node to the cluster. This machine is not part of the cluster but must be able to access it.

Prerequisites

  • Install the OpenShift CLI (oc) on the machine that you run the playbook on.
  • Log in as a user with cluster-admin permission.

Procedure

  1. Ensure that the kubeconfig file for the cluster and the installation program that you used to install the cluster are on the RHEL 8 machine. One way to accomplish this is to use the same machine that you used to install the cluster.
  2. Configure the machine to access all of the RHEL hosts that you plan to use as compute machines. You can use any method that your company allows, including a bastion with an SSH proxy or a VPN.
  3. Configure a user on the machine that you run the playbook on that has SSH access to all of the RHEL hosts.

    Important

    If you use SSH key-based authentication, you must manage the key with an SSH agent.

  4. If you have not already done so, register the machine with RHSM and attach a pool with an OpenShift subscription to it:

    1. Register the machine with RHSM:

      # subscription-manager register --username=<user_name> --password=<password>
    2. Pull the latest subscription data from RHSM:

      # subscription-manager refresh
    3. List the available subscriptions:

      # subscription-manager list --available --matches '*OpenShift*'
    4. In the output for the previous command, find the pool ID for an OpenShift Container Platform subscription and attach it:

      # subscription-manager attach --pool=<pool_id>
  5. Enable the repositories required by OpenShift Container Platform 4.11:

    # subscription-manager repos \
        --enable="rhel-8-for-x86_64-baseos-rpms" \
        --enable="rhel-8-for-x86_64-appstream-rpms" \
        --enable="rhocp-4.11-for-rhel-8-x86_64-rpms"
  6. Install the required packages, including openshift-ansible:

    # yum install openshift-ansible openshift-clients jq

    The openshift-ansible package provides installation program utilities and pulls in other packages that you require to add a RHEL compute node to your cluster, such as Ansible, playbooks, and related configuration files. The openshift-clients provides the oc CLI, and the jq package improves the display of JSON output on your command line.

7.1.4. Preparing a RHEL compute node

Before you add a Red Hat Enterprise Linux (RHEL) machine to your OpenShift Container Platform cluster, you must register each host with Red Hat Subscription Manager (RHSM), attach an active OpenShift Container Platform subscription, and enable the required repositories. Ensure NetworkManager is enabled and configured to control all interfaces on the host.

  1. On each host, register with RHSM:

    # subscription-manager register --username=<user_name> --password=<password>
  2. Pull the latest subscription data from RHSM:

    # subscription-manager refresh
  3. List the available subscriptions:

    # subscription-manager list --available --matches '*OpenShift*'
  4. In the output for the previous command, find the pool ID for an OpenShift Container Platform subscription and attach it:

    # subscription-manager attach --pool=<pool_id>
  5. Disable all yum repositories:

    1. Disable all the enabled RHSM repositories:

      # subscription-manager repos --disable="*"
    2. List the remaining yum repositories and note their names under repo id, if any:

      # yum repolist
    3. Use yum-config-manager to disable the remaining yum repositories:

      # yum-config-manager --disable <repo_id>

      Alternatively, disable all repositories:

      # yum-config-manager --disable \*

      Note that this might take a few minutes if you have a large number of available repositories

  6. Enable only the repositories required by OpenShift Container Platform 4.11:

    # subscription-manager repos \
        --enable="rhel-8-for-x86_64-baseos-rpms" \
        --enable="rhel-8-for-x86_64-appstream-rpms" \
        --enable="rhocp-4.11-for-rhel-8-x86_64-rpms" \
        --enable="fast-datapath-for-rhel-8-x86_64-rpms"
  7. Stop and disable firewalld on the host:

    # systemctl disable --now firewalld.service
    Note

    You must not enable firewalld later. If you do, you cannot access OpenShift Container Platform logs on the worker.

7.1.5. Adding a RHEL compute machine to your cluster

You can add compute machines that use Red Hat Enterprise Linux as the operating system to an OpenShift Container Platform 4.11 cluster.

Prerequisites

  • You installed the required packages and performed the necessary configuration on the machine that you run the playbook on.
  • You prepared the RHEL hosts for installation.

Procedure

Perform the following steps on the machine that you prepared to run the playbook:

  1. Create an Ansible inventory file that is named /<path>/inventory/hosts that defines your compute machine hosts and required variables:

    [all:vars]
    ansible_user=root 1
    #ansible_become=True 2
    
    openshift_kubeconfig_path="~/.kube/config" 3
    
    [new_workers] 4
    mycluster-rhel8-0.example.com
    mycluster-rhel8-1.example.com
    1
    Specify the user name that runs the Ansible tasks on the remote compute machines.
    2
    If you do not specify root for the ansible_user, you must set ansible_become to True and assign the user sudo permissions.
    3
    Specify the path and file name of the kubeconfig file for your cluster.
    4
    List each RHEL machine to add to your cluster. You must provide the fully-qualified domain name for each host. This name is the hostname that the cluster uses to access the machine, so set the correct public or private name to access the machine.
  2. Navigate to the Ansible playbook directory:

    $ cd /usr/share/ansible/openshift-ansible
  3. Run the playbook:

    $ ansible-playbook -i /<path>/inventory/hosts playbooks/scaleup.yml 1
    1
    For <path>, specify the path to the Ansible inventory file that you created.

7.1.6. Required parameters for the Ansible hosts file

You must define the following parameters in the Ansible hosts file before you add Red Hat Enterprise Linux (RHEL) compute machines to your cluster.

ParameterDescriptionValues

ansible_user

The SSH user that allows SSH-based authentication without requiring a password. If you use SSH key-based authentication, then you must manage the key with an SSH agent.

A user name on the system. The default value is root.

ansible_become

If the values of ansible_user is not root, you must set ansible_become to True, and the user that you specify as the ansible_user must be configured for passwordless sudo access.

True. If the value is not True, do not specify and define this parameter.

openshift_kubeconfig_path

Specifies a path and file name to a local directory that contains the kubeconfig file for your cluster.

The path and name of the configuration file.

7.1.7. Optional: Removing RHCOS compute machines from a cluster

After you add the Red Hat Enterprise Linux (RHEL) compute machines to your cluster, you can optionally remove the Red Hat Enterprise Linux CoreOS (RHCOS) compute machines to free up resources.

Prerequisites

  • You have added RHEL compute machines to your cluster.

Procedure

  1. View the list of machines and record the node names of the RHCOS compute machines:

    $ oc get nodes -o wide
  2. For each RHCOS compute machine, delete the node:

    1. Mark the node as unschedulable by running the oc adm cordon command:

      $ oc adm cordon <node_name> 1
      1
      Specify the node name of one of the RHCOS compute machines.
    2. Drain all the pods from the node:

      $ oc adm drain <node_name> --force --delete-emptydir-data --ignore-daemonsets 1
      1
      Specify the node name of the RHCOS compute machine that you isolated.
    3. Delete the node:

      $ oc delete nodes <node_name> 1
      1
      Specify the node name of the RHCOS compute machine that you drained.
  3. Review the list of compute machines to ensure that only the RHEL nodes remain:

    $ oc get nodes -o wide
  4. Remove the RHCOS machines from the load balancer for your cluster’s compute machines. You can delete the virtual machines or reimage the physical hardware for the RHCOS compute machines.

7.2. Adding RHCOS compute machines to an OpenShift Container Platform cluster

You can add more Red Hat Enterprise Linux CoreOS (RHCOS) compute machines to your OpenShift Container Platform cluster on bare metal.

Before you add more compute machines to a cluster that you installed on bare metal infrastructure, you must create RHCOS machines for it to use. You can either use an ISO image or network PXE booting to create the machines.

7.2.1. Prerequisites

  • You installed a cluster on bare metal.
  • You have installation media and Red Hat Enterprise Linux CoreOS (RHCOS) images that you used to create your cluster. If you do not have these files, you must obtain them by following the instructions in the installation procedure.

7.2.2. Creating more RHCOS machines using an ISO image

You can create more Red Hat Enterprise Linux CoreOS (RHCOS) compute machines for your bare metal cluster by using an ISO image to create the machines.

Prerequisites

  • Obtain the URL of the Ignition config file for the compute machines for your cluster. You uploaded this file to your HTTP server during installation.

Procedure

  1. Use the ISO file to install RHCOS on more compute machines. Use the same method that you used when you created machines before you installed the cluster:

    • Burn the ISO image to a disk and boot it directly.
    • Use ISO redirection with a LOM interface.
  2. Boot the RHCOS ISO image without specifying any options, or interrupting the live boot sequence. Wait for the installer to boot into a shell prompt in the RHCOS live environment.

    Note

    You can interrupt the RHCOS installation boot process to add kernel arguments. However, for this ISO procedure you must use the coreos-installer command as outlined in the following steps, instead of adding kernel arguments.

  3. Run the coreos-installer command and specify the options that meet your installation requirements. At a minimum, you must specify the URL that points to the Ignition config file for the node type, and the device that you are installing to:

    $ sudo coreos-installer install --ignition-url=http://<HTTP_server>/<node_type>.ign <device> --ignition-hash=sha512-<digest> 12
    1
    You must run the coreos-installer command by using sudo, because the core user does not have the required root privileges to perform the installation.
    2
    The --ignition-hash option is required when the Ignition config file is obtained through an HTTP URL to validate the authenticity of the Ignition config file on the cluster node. <digest> is the Ignition config file SHA512 digest obtained in a preceding step.
    Note

    If you want to provide your Ignition config files through an HTTPS server that uses TLS, you can add the internal certificate authority (CA) to the system trust store before running coreos-installer.

    The following example initializes a bootstrap node installation to the /dev/sda device. The Ignition config file for the bootstrap node is obtained from an HTTP web server with the IP address 192.168.1.2:

    $ sudo coreos-installer install --ignition-url=http://192.168.1.2:80/installation_directory/bootstrap.ign /dev/sda --ignition-hash=sha512-a5a2d43879223273c9b60af66b44202a1d1248fc01cf156c46d4a79f552b6bad47bc8cc78ddf0116e80c59d2ea9e32ba53bc807afbca581aa059311def2c3e3b
  4. Monitor the progress of the RHCOS installation on the console of the machine.

    Important

    Ensure that the installation is successful on each node before commencing with the OpenShift Container Platform installation. Observing the installation process can also help to determine the cause of RHCOS installation issues that might arise.

  5. Continue to create more compute machines for your cluster.

7.2.3. Creating more RHCOS machines by PXE or iPXE booting

You can create more Red Hat Enterprise Linux CoreOS (RHCOS) compute machines for your bare metal cluster by using PXE or iPXE booting.

Prerequisites

  • Obtain the URL of the Ignition config file for the compute machines for your cluster. You uploaded this file to your HTTP server during installation.
  • Obtain the URLs of the RHCOS ISO image, compressed metal BIOS, kernel, and initramfs files that you uploaded to your HTTP server during cluster installation.
  • You have access to the PXE booting infrastructure that you used to create the machines for your OpenShift Container Platform cluster during installation. The machines must boot from their local disks after RHCOS is installed on them.
  • If you use UEFI, you have access to the grub.conf file that you modified during OpenShift Container Platform installation.

Procedure

  1. Confirm that your PXE or iPXE installation for the RHCOS images is correct.

    • For PXE:

      DEFAULT pxeboot
      TIMEOUT 20
      PROMPT 0
      LABEL pxeboot
          KERNEL http://<HTTP_server>/rhcos-<version>-live-kernel-<architecture> 1
          APPEND initrd=http://<HTTP_server>/rhcos-<version>-live-initramfs.<architecture>.img coreos.inst.install_dev=/dev/sda coreos.inst.ignition_url=http://<HTTP_server>/worker.ign coreos.live.rootfs_url=http://<HTTP_server>/rhcos-<version>-live-rootfs.<architecture>.img 2
      1
      Specify the location of the live kernel file that you uploaded to your HTTP server.
      2
      Specify locations of the RHCOS files that you uploaded to your HTTP server. The initrd parameter value is the location of the live initramfs file, the coreos.inst.ignition_url parameter value is the location of the worker Ignition config file, and the coreos.live.rootfs_url parameter value is the location of the live rootfs file. The coreos.inst.ignition_url and coreos.live.rootfs_url parameters only support HTTP and HTTPS.

This configuration does not enable serial console access on machines with a graphical console. To configure a different console, add one or more console= arguments to the APPEND line. For example, add console=tty0 console=ttyS0 to set the first PC serial port as the primary console and the graphical console as a secondary console. For more information, see How does one set up a serial terminal and/or console in Red Hat Enterprise Linux?.

  • For iPXE:

    kernel http://<HTTP_server>/rhcos-<version>-live-kernel-<architecture> initrd=main coreos.inst.install_dev=/dev/sda coreos.inst.ignition_url=http://<HTTP_server>/worker.ign coreos.live.rootfs_url=http://<HTTP_server>/rhcos-<version>-live-rootfs.<architecture>.img 1
    initrd --name main http://<HTTP_server>/rhcos-<version>-live-initramfs.<architecture>.img 2
    1
    Specify locations of the RHCOS files that you uploaded to your HTTP server. The kernel parameter value is the location of the kernel file, the initrd=main argument is needed for booting on UEFI systems, the coreos.inst.ignition_url parameter value is the location of the worker Ignition config file, and the coreos.live.rootfs_url parameter value is the location of the live rootfs file. The coreos.inst.ignition_url and coreos.live.rootfs_url parameters only support HTTP and HTTPS.
    2
    Specify the location of the initramfs file that you uploaded to your HTTP server.

This configuration does not enable serial console access on machines with a graphical console. To configure a different console, add one or more console= arguments to the kernel line. For example, add console=tty0 console=ttyS0 to set the first PC serial port as the primary console and the graphical console as a secondary console. For more information, see How does one set up a serial terminal and/or console in Red Hat Enterprise Linux?.

  1. Use the PXE or iPXE infrastructure to create the required compute machines for your cluster.

7.2.4. Approving the certificate signing requests for your machines

When you add machines to a cluster, two pending certificate signing requests (CSRs) are generated for each machine that you added. You must confirm that these CSRs are approved or, if necessary, approve them yourself. The client requests must be approved first, followed by the server requests.

Prerequisites

  • You added machines to your cluster.

Procedure

  1. Confirm that the cluster recognizes the machines:

    $ oc get nodes

    Example output

    NAME      STATUS    ROLES   AGE  VERSION
    master-0  Ready     master  63m  v1.24.0
    master-1  Ready     master  63m  v1.24.0
    master-2  Ready     master  64m  v1.24.0

    The output lists all of the machines that you created.

    Note

    The preceding output might not include the compute nodes, also known as worker nodes, until some CSRs are approved.

  2. Review the pending CSRs and ensure that you see the client requests with the Pending or Approved status for each machine that you added to the cluster:

    $ oc get csr

    Example output

    NAME        AGE     REQUESTOR                                                                   CONDITION
    csr-8b2br   15m     system:serviceaccount:openshift-machine-config-operator:node-bootstrapper   Pending
    csr-8vnps   15m     system:serviceaccount:openshift-machine-config-operator:node-bootstrapper   Pending
    ...

    In this example, two machines are joining the cluster. You might see more approved CSRs in the list.

  3. If the CSRs were not approved, after all of the pending CSRs for the machines you added are in Pending status, approve the CSRs for your cluster machines:

    Note

    Because the CSRs rotate automatically, approve your CSRs within an hour of adding the machines to the cluster. If you do not approve them within an hour, the certificates will rotate, and more than two certificates will be present for each node. You must approve all of these certificates. After the client CSR is approved, the Kubelet creates a secondary CSR for the serving certificate, which requires manual approval. Then, subsequent serving certificate renewal requests are automatically approved by the machine-approver if the Kubelet requests a new certificate with identical parameters.

    Note

    For clusters running on platforms that are not machine API enabled, such as bare metal and other user-provisioned infrastructure, you must implement a method of automatically approving the kubelet serving certificate requests (CSRs). If a request is not approved, then the oc exec, oc rsh, and oc logs commands cannot succeed, because a serving certificate is required when the API server connects to the kubelet. Any operation that contacts the Kubelet endpoint requires this certificate approval to be in place. The method must watch for new CSRs, confirm that the CSR was submitted by the node-bootstrapper service account in the system:node or system:admin groups, and confirm the identity of the node.

    • To approve them individually, run the following command for each valid CSR:

      $ oc adm certificate approve <csr_name> 1
      1
      <csr_name> is the name of a CSR from the list of current CSRs.
    • To approve all pending CSRs, run the following command:

      $ oc get csr -o go-template='{{range .items}}{{if not .status}}{{.metadata.name}}{{"\n"}}{{end}}{{end}}' | xargs --no-run-if-empty oc adm certificate approve
      Note

      Some Operators might not become available until some CSRs are approved.

  4. Now that your client requests are approved, you must review the server requests for each machine that you added to the cluster:

    $ oc get csr

    Example output

    NAME        AGE     REQUESTOR                                                                   CONDITION
    csr-bfd72   5m26s   system:node:ip-10-0-50-126.us-east-2.compute.internal                       Pending
    csr-c57lv   5m26s   system:node:ip-10-0-95-157.us-east-2.compute.internal                       Pending
    ...

  5. If the remaining CSRs are not approved, and are in the Pending status, approve the CSRs for your cluster machines:

    • To approve them individually, run the following command for each valid CSR:

      $ oc adm certificate approve <csr_name> 1
      1
      <csr_name> is the name of a CSR from the list of current CSRs.
    • To approve all pending CSRs, run the following command:

      $ oc get csr -o go-template='{{range .items}}{{if not .status}}{{.metadata.name}}{{"\n"}}{{end}}{{end}}' | xargs oc adm certificate approve
  6. After all client and server CSRs have been approved, the machines have the Ready status. Verify this by running the following command:

    $ oc get nodes

    Example output

    NAME      STATUS    ROLES   AGE  VERSION
    master-0  Ready     master  73m  v1.24.0
    master-1  Ready     master  73m  v1.24.0
    master-2  Ready     master  74m  v1.24.0
    worker-0  Ready     worker  11m  v1.24.0
    worker-1  Ready     worker  11m  v1.24.0

    Note

    It can take a few minutes after approval of the server CSRs for the machines to transition to the Ready status.

Additional information

7.2.5. Adding a new RHCOS worker node with a custom /var partition in AWS

OpenShift Container Platform supports partitioning devices during installation by using machine configs that are processed during the bootstrap. However, if you use /var partitioning, the device name must be determined at installation and cannot be changed. You cannot add different instance types as nodes if they have a different device naming schema. For example, if you configured the /var partition with the default AWS device name for m4.large instances, dev/xvdb, you cannot directly add an AWS m5.large instance, as m5.large instances use a /dev/nvme1n1 device by default. The device might fail to partition due to the different naming schema.

The procedure in this section shows how to add a new Red Hat Enterprise Linux CoreOS (RHCOS) compute node with an instance that uses a different device name from what was configured at installation. You create a custom user data secret and configure a new machine set. These steps are specific to an AWS cluster. The principles apply to other cloud deployments also. However, the device naming schema is different for other deployments and should be determined on a per-case basis.

Procedure

  1. On a command line, change to the openshift-machine-api namespace:

    $ oc project openshift-machine-api
  2. Create a new secret from the worker-user-data secret:

    1. Export the userData section of the secret to a text file:

      $ oc get secret worker-user-data --template='{{index .data.userData | base64decode}}' | jq > userData.txt
    2. Edit the text file to add the storage, filesystems, and systemd stanzas for the partitions you want to use for the new node. You can specify any Ignition configuration parameters as needed.

      Note

      Do not change the values in the ignition stanza.

      {
        "ignition": {
          "config": {
            "merge": [
              {
                "source": "https:...."
              }
            ]
          },
          "security": {
            "tls": {
              "certificateAuthorities": [
                {
                  "source": "data:text/plain;charset=utf-8;base64,.....=="
                }
              ]
            }
          },
          "version": "3.2.0"
        },
        "storage": {
          "disks": [
            {
              "device": "/dev/nvme1n1", 1
              "partitions": [
                {
                  "label": "var",
                  "sizeMiB": 50000, 2
                  "startMiB": 0 3
                }
              ]
            }
          ],
          "filesystems": [
            {
              "device": "/dev/disk/by-partlabel/var", 4
              "format": "xfs", 5
              "path": "/var" 6
            }
          ]
        },
        "systemd": {
          "units": [ 7
            {
              "contents": "[Unit]\nBefore=local-fs.target\n[Mount]\nWhere=/var\nWhat=/dev/disk/by-partlabel/var\nOptions=defaults,pquota\n[Install]\nWantedBy=local-fs.target\n",
              "enabled": true,
              "name": "var.mount"
            }
          ]
        }
      }
      1
      Specifies an absolute path to the AWS block device.
      2
      Specifies the size of the data partition in Mebibytes.
      3
      Specifies the start of the partition in Mebibytes. When adding a data partition to the boot disk, a minimum value of 25000 MB (Mebibytes) is recommended. The root file system is automatically resized to fill all available space up to the specified offset. If no value is specified, or if the specified value is smaller than the recommended minimum, the resulting root file system will be too small, and future reinstalls of RHCOS might overwrite the beginning of the data partition.
      4
      Specifies an absolute path to the /var partition.
      5
      Specifies the filesystem format.
      6
      Specifies the mount-point of the filesystem while Ignition is running relative to where the root filesystem will be mounted. This is not necessarily the same as where it should be mounted in the real root, but it is encouraged to make it the same.
      7
      Defines a systemd mount unit that mounts the /dev/disk/by-partlabel/var device to the /var partition.
    3. Extract the disableTemplating section from the work-user-data secret to a text file:

      $ oc get secret worker-user-data --template='{{index .data.disableTemplating | base64decode}}' | jq > disableTemplating.txt
    4. Create the new user data secret file from the two text files. This user data secret passes the additional node partition information in the userData.txt file to the newly created node.

      $ oc create secret generic worker-user-data-x5 --from-file=userData=userData.txt --from-file=disableTemplating=disableTemplating.txt
  3. Create a new machine set for the new node:

    1. Create a new machine set YAML file, similar to the following, which is configured for AWS. Add the required partitions and the newly-created user data secret:

      Tip

      Use an existing machine set as a template and change the parameters as needed for the new node.

      apiVersion: machine.openshift.io/v1beta1
      kind: MachineSet
      metadata:
        labels:
          machine.openshift.io/cluster-api-cluster: auto-52-92tf4
        name: worker-us-east-2-nvme1n1 1
        namespace: openshift-machine-api
      spec:
        replicas: 1
        selector:
          matchLabels:
            machine.openshift.io/cluster-api-cluster: auto-52-92tf4
            machine.openshift.io/cluster-api-machineset: auto-52-92tf4-worker-us-east-2b
        template:
          metadata:
            labels:
              machine.openshift.io/cluster-api-cluster: auto-52-92tf4
              machine.openshift.io/cluster-api-machine-role: worker
              machine.openshift.io/cluster-api-machine-type: worker
              machine.openshift.io/cluster-api-machineset: auto-52-92tf4-worker-us-east-2b
          spec:
            metadata: {}
            providerSpec:
              value:
                ami:
                  id: ami-0c2dbd95931a
                apiVersion: awsproviderconfig.openshift.io/v1beta1
                blockDevices:
                - DeviceName: /dev/nvme1n1 2
                  ebs:
                    encrypted: true
                    iops: 0
                    volumeSize: 120
                    volumeType: gp2
                - DeviceName: /dev/nvme1n2 3
                  ebs:
                    encrypted: true
                    iops: 0
                    volumeSize: 50
                    volumeType: gp2
                credentialsSecret:
                  name: aws-cloud-credentials
                deviceIndex: 0
                iamInstanceProfile:
                  id: auto-52-92tf4-worker-profile
                instanceType: m6i.large
                kind: AWSMachineProviderConfig
                metadata:
                  creationTimestamp: null
                placement:
                  availabilityZone: us-east-2b
                  region: us-east-2
                securityGroups:
                - filters:
                  - name: tag:Name
                    values:
                    - auto-52-92tf4-worker-sg
                subnet:
                  id: subnet-07a90e5db1
                tags:
                - name: kubernetes.io/cluster/auto-52-92tf4
                  value: owned
                userDataSecret:
                  name: worker-user-data-x5 4
      1
      Specifies a name for the new node.
      2
      Specifies an absolute path to the AWS block device, here an encrypted EBS volume.
      3
      Optional. Specifies an additional EBS volume.
      4
      Specifies the user data secret file.
    2. Create the machine set:

      $ oc create -f <file-name>.yaml

      The machines might take a few moments to become available.

  4. Verify that the new partition and nodes are created:

    1. Verify that the machine set is created:

      $ oc get machineset

      Example output

      NAME                                               DESIRED   CURRENT   READY   AVAILABLE   AGE
      ci-ln-2675bt2-76ef8-bdgsc-worker-us-east-1a        1         1         1       1           124m
      ci-ln-2675bt2-76ef8-bdgsc-worker-us-east-1b        2         2         2       2           124m
      worker-us-east-2-nvme1n1                           1         1         1       1           2m35s 1

      1
      This is the new machine set.
    2. Verify that the new node is created:

      $ oc get nodes

      Example output

      NAME                           STATUS   ROLES    AGE     VERSION
      ip-10-0-128-78.ec2.internal    Ready    worker   117m    v1.24.0+60f5a1c
      ip-10-0-146-113.ec2.internal   Ready    master   127m    v1.24.0+60f5a1c
      ip-10-0-153-35.ec2.internal    Ready    worker   118m    v1.24.0+60f5a1c
      ip-10-0-176-58.ec2.internal    Ready    master   126m    v1.24.0+60f5a1c
      ip-10-0-217-135.ec2.internal   Ready    worker   2m57s   v1.24.0+60f5a1c 1
      ip-10-0-225-248.ec2.internal   Ready    master   127m    v1.24.0+60f5a1c
      ip-10-0-245-59.ec2.internal    Ready    worker   116m    v1.24.0+60f5a1c

      1
      This is new new node.
    3. Verify that the custom /var partition is created on the new node:

      $ oc debug node/<node-name> -- chroot /host lsblk

      For example:

      $ oc debug node/ip-10-0-217-135.ec2.internal -- chroot /host lsblk

      Example output

      NAME        MAJ:MIN  RM  SIZE RO TYPE MOUNTPOINT
      nvme0n1     202:0    0   120G  0 disk
      |-nvme0n1p1 202:1    0     1M  0 part
      |-nvme0n1p2 202:2    0   127M  0 part
      |-nvme0n1p3 202:3    0   384M  0 part /boot
      `-nvme0n1p4 202:4    0 119.5G  0 part /sysroot
      nvme1n1     202:16   0    50G  0 disk
      `-nvme1n1p1 202:17   0  48.8G  0 part /var 1

      1
      The nvme1n1 device is mounted to the /var partition.

Additional resources

  • For more information on how OpenShift Container Platform uses disk partitioning, see Disk partitioning.

7.3. Deploying machine health checks

Understand and deploy machine health checks.

Important

You can use the advanced machine management and scaling capabilities only in clusters where the Machine API is operational. Clusters with user-provisioned infrastructure require additional validation and configuration to use the Machine API.

Clusters with the infrastructure platform type none cannot use the Machine API. This limitation applies even if the compute machines that are attached to the cluster are installed on a platform that supports the feature. This parameter cannot be changed after installation.

To view the platform type for your cluster, run the following command:

$ oc get infrastructure cluster -o jsonpath='{.status.platform}'

7.3.1. About machine health checks

Machine health checks automatically repair unhealthy machines in a particular machine pool.

To monitor machine health, create a resource to define the configuration for a controller. Set a condition to check, such as staying in the NotReady status for five minutes or displaying a permanent condition in the node-problem-detector, and a label for the set of machines to monitor.

Note

You cannot apply a machine health check to a machine with the master role.

The controller that observes a MachineHealthCheck resource checks for the defined condition. If a machine fails the health check, the machine is automatically deleted and one is created to take its place. When a machine is deleted, you see a machine deleted event.

To limit disruptive impact of the machine deletion, the controller drains and deletes only one node at a time. If there are more unhealthy machines than the maxUnhealthy threshold allows for in the targeted pool of machines, remediation stops and therefore enables manual intervention.

Note

Consider the timeouts carefully, accounting for workloads and requirements.

  • Long timeouts can result in long periods of downtime for the workload on the unhealthy machine.
  • Too short timeouts can result in a remediation loop. For example, the timeout for checking the NotReady status must be long enough to allow the machine to complete the startup process.

To stop the check, remove the resource.

7.3.1.1. Limitations when deploying machine health checks

There are limitations to consider before deploying a machine health check:

  • Only machines owned by a machine set are remediated by a machine health check.
  • Control plane machines are not currently supported and are not remediated if they are unhealthy.
  • If the node for a machine is removed from the cluster, a machine health check considers the machine to be unhealthy and remediates it immediately.
  • If the corresponding node for a machine does not join the cluster after the nodeStartupTimeout, the machine is remediated.
  • A machine is remediated immediately if the Machine resource phase is Failed.

7.3.2. Sample MachineHealthCheck resource

The MachineHealthCheck resource for all cloud-based installation types, and other than bare metal, resembles the following YAML file:

apiVersion: machine.openshift.io/v1beta1
kind: MachineHealthCheck
metadata:
  name: example 1
  namespace: openshift-machine-api
spec:
  selector:
    matchLabels:
      machine.openshift.io/cluster-api-machine-role: <role> 2
      machine.openshift.io/cluster-api-machine-type: <role> 3
      machine.openshift.io/cluster-api-machineset: <cluster_name>-<label>-<zone> 4
  unhealthyConditions:
  - type:    "Ready"
    timeout: "300s" 5
    status: "False"
  - type:    "Ready"
    timeout: "300s" 6
    status: "Unknown"
  maxUnhealthy: "40%" 7
  nodeStartupTimeout: "10m" 8
1
Specify the name of the machine health check to deploy.
2 3
Specify a label for the machine pool that you want to check.
4
Specify the machine set to track in <cluster_name>-<label>-<zone> format. For example, prod-node-us-east-1a.
5 6
Specify the timeout duration for a node condition. If a condition is met for the duration of the timeout, the machine will be remediated. Long timeouts can result in long periods of downtime for a workload on an unhealthy machine.
7
Specify the amount of machines allowed to be concurrently remediated in the targeted pool. This can be set as a percentage or an integer. If the number of unhealthy machines exceeds the limit set by maxUnhealthy, remediation is not performed.
8
Specify the timeout duration that a machine health check must wait for a node to join the cluster before a machine is determined to be unhealthy.
Note

The matchLabels are examples only; you must map your machine groups based on your specific needs.

7.3.2.1. Short-circuiting machine health check remediation

Short circuiting ensures that machine health checks remediate machines only when the cluster is healthy. Short-circuiting is configured through the maxUnhealthy field in the MachineHealthCheck resource.

If the user defines a value for the maxUnhealthy field, before remediating any machines, the MachineHealthCheck compares the value of maxUnhealthy with the number of machines within its target pool that it has determined to be unhealthy. Remediation is not performed if the number of unhealthy machines exceeds the maxUnhealthy limit.

Important

If maxUnhealthy is not set, the value defaults to 100% and the machines are remediated regardless of the state of the cluster.

The appropriate maxUnhealthy value depends on the scale of the cluster you deploy and how many machines the MachineHealthCheck covers. For example, you can use the maxUnhealthy value to cover multiple machine sets across multiple availability zones so that if you lose an entire zone, your maxUnhealthy setting prevents further remediation within the cluster. In global Azure regions that do not have multiple availability zones, you can use availability sets to ensure high availability.

The maxUnhealthy field can be set as either an integer or percentage. There are different remediation implementations depending on the maxUnhealthy value.

7.3.2.1.1. Setting maxUnhealthy by using an absolute value

If maxUnhealthy is set to 2:

  • Remediation will be performed if 2 or fewer nodes are unhealthy
  • Remediation will not be performed if 3 or more nodes are unhealthy

These values are independent of how many machines are being checked by the machine health check.

7.3.2.1.2. Setting maxUnhealthy by using percentages

If maxUnhealthy is set to 40% and there are 25 machines being checked:

  • Remediation will be performed if 10 or fewer nodes are unhealthy
  • Remediation will not be performed if 11 or more nodes are unhealthy

If maxUnhealthy is set to 40% and there are 6 machines being checked:

  • Remediation will be performed if 2 or fewer nodes are unhealthy
  • Remediation will not be performed if 3 or more nodes are unhealthy
Note

The allowed number of machines is rounded down when the percentage of maxUnhealthy machines that are checked is not a whole number.

7.3.3. Creating a MachineHealthCheck resource

You can create a MachineHealthCheck resource for all MachineSets in your cluster. You should not create a MachineHealthCheck resource that targets control plane machines.

Prerequisites

  • Install the oc command line interface.

Procedure

  1. Create a healthcheck.yml file that contains the definition of your machine health check.
  2. Apply the healthcheck.yml file to your cluster:

    $ oc apply -f healthcheck.yml

7.3.4. Scaling a machine set manually

To add or remove an instance of a machine in a machine set, you can manually scale the machine set.

This guidance is relevant to fully automated, installer-provisioned infrastructure installations. Customized, user-provisioned infrastructure installations do not have machine sets.

Prerequisites

  • Install an OpenShift Container Platform cluster and the oc command line.
  • Log in to oc as a user with cluster-admin permission.

Procedure

  1. View the machine sets that are in the cluster:

    $ oc get machinesets -n openshift-machine-api

    The machine sets are listed in the form of <clusterid>-worker-<aws-region-az>.

  2. View the machines that are in the cluster:

    $ oc get machine -n openshift-machine-api
  3. Set the annotation on the machine that you want to delete:

    $ oc annotate machine/<machine_name> -n openshift-machine-api machine.openshift.io/cluster-api-delete-machine="true"
  4. Scale the machine set by running one of the following commands:

    $ oc scale --replicas=2 machineset <machineset> -n openshift-machine-api

    Or:

    $ oc edit machineset <machineset> -n openshift-machine-api
    Tip

    You can alternatively apply the following YAML to scale the machine set:

    apiVersion: machine.openshift.io/v1beta1
    kind: MachineSet
    metadata:
      name: <machineset>
      namespace: openshift-machine-api
    spec:
      replicas: 2

    You can scale the machine set up or down. It takes several minutes for the new machines to be available.

    Important

    By default, the machine controller tries to drain the node that is backed by the machine until it succeeds. In some situations, such as with a misconfigured pod disruption budget, the drain operation might not be able to succeed. If the drain operation fails, the machine controller cannot proceed removing the machine.

    You can skip draining the node by annotating machine.openshift.io/exclude-node-draining in a specific machine.

Verification

  • Verify the deletion of the intended machine:

    $ oc get machines

7.3.5. Understanding the difference between machine sets and the machine config pool

MachineSet objects describe OpenShift Container Platform nodes with respect to the cloud or machine provider.

The MachineConfigPool object allows MachineConfigController components to define and provide the status of machines in the context of upgrades.

The MachineConfigPool object allows users to configure how upgrades are rolled out to the OpenShift Container Platform nodes in the machine config pool.

The NodeSelector object can be replaced with a reference to the MachineSet object.

7.4. Recommended node host practices

The OpenShift Container Platform node configuration file contains important options. For example, two parameters control the maximum number of pods that can be scheduled to a node: podsPerCore and maxPods.

When both options are in use, the lower of the two values limits the number of pods on a node. Exceeding these values can result in:

  • Increased CPU utilization.
  • Slow pod scheduling.
  • Potential out-of-memory scenarios, depending on the amount of memory in the node.
  • Exhausting the pool of IP addresses.
  • Resource overcommitting, leading to poor user application performance.
Important

In Kubernetes, a pod that is holding a single container actually uses two containers. The second container is used to set up networking prior to the actual container starting. Therefore, a system running 10 pods will actually have 20 containers running.

Note

Disk IOPS throttling from the cloud provider might have an impact on CRI-O and kubelet. They might get overloaded when there are large number of I/O intensive pods running on the nodes. It is recommended that you monitor the disk I/O on the nodes and use volumes with sufficient throughput for the workload.

podsPerCore sets the number of pods the node can run based on the number of processor cores on the node. For example, if podsPerCore is set to 10 on a node with 4 processor cores, the maximum number of pods allowed on the node will be 40.

kubeletConfig:
  podsPerCore: 10

Setting podsPerCore to 0 disables this limit. The default is 0. podsPerCore cannot exceed maxPods.

maxPods sets the number of pods the node can run to a fixed value, regardless of the properties of the node.

 kubeletConfig:
    maxPods: 250

7.4.1. Creating a KubeletConfig CRD to edit kubelet parameters

The kubelet configuration is currently serialized as an Ignition configuration, so it can be directly edited. However, there is also a new kubelet-config-controller added to the Machine Config Controller (MCC). This lets you use a KubeletConfig custom resource (CR) to edit the kubelet parameters.

Note

As the fields in the kubeletConfig object are passed directly to the kubelet from upstream Kubernetes, the kubelet validates those values directly. Invalid values in the kubeletConfig object might cause cluster nodes to become unavailable. For valid values, see the Kubernetes documentation.

Consider the following guidance:

  • Create one KubeletConfig CR for each machine config pool with all the config changes you want for that pool. If you are applying the same content to all of the pools, you need only one KubeletConfig CR for all of the pools.
  • Edit an existing KubeletConfig CR to modify existing settings or add new settings, instead of creating a CR for each change. It is recommended that you create a CR only to modify a different machine config pool, or for changes that are intended to be temporary, so that you can revert the changes.
  • As needed, create multiple KubeletConfig CRs with a limit of 10 per cluster. For the first KubeletConfig CR, the Machine Config Operator (MCO) creates a machine config appended with kubelet. With each subsequent CR, the controller creates another kubelet machine config with a numeric suffix. For example, if you have a kubelet machine config with a -2 suffix, the next kubelet machine config is appended with -3.

If you want to delete the machine configs, delete them in reverse order to avoid exceeding the limit. For example, you delete the kubelet-3 machine config before deleting the kubelet-2 machine config.

Note

If you have a machine config with a kubelet-9 suffix, and you create another KubeletConfig CR, a new machine config is not created, even if there are fewer than 10 kubelet machine configs.

Example KubeletConfig CR

$ oc get kubeletconfig

NAME                AGE
set-max-pods        15m

Example showing a KubeletConfig machine config

$ oc get mc | grep kubelet

...
99-worker-generated-kubelet-1                  b5c5119de007945b6fe6fb215db3b8e2ceb12511   3.2.0             26m
...

The following procedure is an example to show how to configure the maximum number of pods per node on the worker nodes.

Prerequisites

  1. Obtain the label associated with the static MachineConfigPool CR for the type of node you want to configure. Perform one of the following steps:

    1. View the machine config pool:

      $ oc describe machineconfigpool <name>

      For example:

      $ oc describe machineconfigpool worker

      Example output

      apiVersion: machineconfiguration.openshift.io/v1
      kind: MachineConfigPool
      metadata:
        creationTimestamp: 2019-02-08T14:52:39Z
        generation: 1
        labels:
          custom-kubelet: set-max-pods 1

      1
      If a label has been added it appears under labels.
    2. If the label is not present, add a key/value pair:

      $ oc label machineconfigpool worker custom-kubelet=set-max-pods

Procedure

  1. View the available machine configuration objects that you can select:

    $ oc get machineconfig

    By default, the two kubelet-related configs are 01-master-kubelet and 01-worker-kubelet.

  2. Check the current value for the maximum pods per node:

    $ oc describe node <node_name>

    For example:

    $ oc describe node ci-ln-5grqprb-f76d1-ncnqq-worker-a-mdv94

    Look for value: pods: <value> in the Allocatable stanza:

    Example output

    Allocatable:
     attachable-volumes-aws-ebs:  25
     cpu:                         3500m
     hugepages-1Gi:               0
     hugepages-2Mi:               0
     memory:                      15341844Ki
     pods:                        250

  3. Set the maximum pods per node on the worker nodes by creating a custom resource file that contains the kubelet configuration:

    Important

    Kubelet configurations that target a specific machine config pool also affect any dependent pools. For example, creating a kubelet configuration for the pool containing worker nodes will also apply to any subset pools, including the pool containing infrastructure nodes. To avoid this, you must create a new machine config pool with a selection expression that only includes worker nodes, and have your kubelet configuration target this new pool.

    apiVersion: machineconfiguration.openshift.io/v1
    kind: KubeletConfig
    metadata:
      name: set-max-pods
    spec:
      machineConfigPoolSelector:
        matchLabels:
          custom-kubelet: set-max-pods 1
      kubeletConfig:
        maxPods: 500 2
    1
    Enter the label from the machine config pool.
    2
    Add the kubelet configuration. In this example, use maxPods to set the maximum pods per node.
    Note

    The rate at which the kubelet talks to the API server depends on queries per second (QPS) and burst values. The default values, 50 for kubeAPIQPS and 100 for kubeAPIBurst, are sufficient if there are limited pods running on each node. It is recommended to update the kubelet QPS and burst rates if there are enough CPU and memory resources on the node.

    apiVersion: machineconfiguration.openshift.io/v1
    kind: KubeletConfig
    metadata:
      name: set-max-pods
    spec:
      machineConfigPoolSelector:
        matchLabels:
          custom-kubelet: set-max-pods
      kubeletConfig:
        maxPods: <pod_count>
        kubeAPIBurst: <burst_rate>
        kubeAPIQPS: <QPS>
    1. Update the machine config pool for workers with the label:

      $ oc label machineconfigpool worker custom-kubelet=set-max-pods
    2. Create the KubeletConfig object:

      $ oc create -f change-maxPods-cr.yaml
    3. Verify that the KubeletConfig object is created:

      $ oc get kubeletconfig

      Example output

      NAME                AGE
      set-max-pods        15m

      Depending on the number of worker nodes in the cluster, wait for the worker nodes to be rebooted one by one. For a cluster with 3 worker nodes, this could take about 10 to 15 minutes.

  4. Verify that the changes are applied to the node:

    1. Check on a worker node that the maxPods value changed:

      $ oc describe node <node_name>
    2. Locate the Allocatable stanza:

       ...
      Allocatable:
        attachable-volumes-gce-pd:  127
        cpu:                        3500m
        ephemeral-storage:          123201474766
        hugepages-1Gi:              0
        hugepages-2Mi:              0
        memory:                     14225400Ki
        pods:                       500 1
       ...
      1
      In this example, the pods parameter should report the value you set in the KubeletConfig object.
  5. Verify the change in the KubeletConfig object:

    $ oc get kubeletconfigs set-max-pods -o yaml

    This should show a status of True and type:Success, as shown in the following example:

    spec:
      kubeletConfig:
        maxPods: 500
      machineConfigPoolSelector:
        matchLabels:
          custom-kubelet: set-max-pods
    status:
      conditions:
      - lastTransitionTime: "2021-06-30T17:04:07Z"
        message: Success
        status: "True"
        type: Success

7.4.2. Modifying the number of unavailable worker nodes

By default, only one machine is allowed to be unavailable when applying the kubelet-related configuration to the available worker nodes. For a large cluster, it can take a long time for the configuration change to be reflected. At any time, you can adjust the number of machines that are updating to speed up the process.

Procedure

  1. Edit the worker machine config pool:

    $ oc edit machineconfigpool worker
  2. Add the maxUnavailable field and set the value:

    spec:
      maxUnavailable: <node_count>
    Important

    When setting the value, consider the number of worker nodes that can be unavailable without affecting the applications running on the cluster.

7.4.3. Control plane node sizing

The control plane node resource requirements depend on the number and type of nodes and objects in the cluster. The following control plane node size recommendations are based on the results of a control plane density focused testing, or Cluster-density. This test creates the following objects across a given number of namespaces:

  • 1 image stream
  • 1 build
  • 5 deployments, with 2 pod replicas in a sleep state, mounting 4 secrets, 4 config maps, and 1 downward API volume each
  • 5 services, each one pointing to the TCP/8080 and TCP/8443 ports of one of the previous deployments
  • 1 route pointing to the first of the previous services
  • 10 secrets containing 2048 random string characters
  • 10 config maps containing 2048 random string characters
Number of worker nodesCluster-density (namespaces)CPU coresMemory (GB)

24

500

4

16

120

1000

8

32

252

4000

16

64

501

4000

16

96

On a large and dense cluster with three masters or control plane nodes, the CPU and memory usage will spike up when one of the nodes is stopped, rebooted or fails. The failures can be due to unexpected issues with power, network or underlying infrastructure in addition to intentional cases where the cluster is restarted after shutting it down to save costs. The remaining two control plane nodes must handle the load in order to be highly available which leads to increase in the resource usage. This is also expected during upgrades because the masters are cordoned, drained, and rebooted serially to apply the operating system updates, as well as the control plane Operators update. To avoid cascading failures, keep the overall CPU and memory resource usage on the control plane nodes to at most 60% of all available capacity to handle the resource usage spikes. Increase the CPU and memory on the control plane nodes accordingly to avoid potential downtime due to lack of resources.

Important

The node sizing varies depending on the number of nodes and object counts in the cluster. It also depends on whether the objects are actively being created on the cluster. During object creation, the control plane is more active in terms of resource usage compared to when the objects are in the running phase.

Operator Lifecycle Manager (OLM ) runs on the control plane nodes and it’s memory footprint depends on the number of namespaces and user installed operators that OLM needs to manage on the cluster. Control plane nodes need to be sized accordingly to avoid OOM kills. Following data points are based on the results from cluster maximums testing.

Number of namespacesOLM memory at idle state (GB)OLM memory with 5 user operators installed (GB)

500

0.823

1.7

1000

1.2

2.5

1500

1.7

3.2

2000

2

4.4

3000

2.7

5.6

4000

3.8

7.6

5000

4.2

9.02

6000

5.8

11.3

7000

6.6

12.9

8000

6.9

14.8

9000

8

17.7

10,000

9.9

21.6

Important

You can modify the control plane node size in a running OpenShift Container Platform 4.11 cluster for the following configurations only:

  • Clusters installed with a user-provisioned installation method.
  • AWS clusters installed with an installer-provisioned infrastructure installation method.

For all other configurations, you must estimate your total node count and use the suggested control plane node size during installation.

Important

The recommendations are based on the data points captured on OpenShift Container Platform clusters with OpenShift SDN as the network plugin.

Note

In OpenShift Container Platform 4.11, half of a CPU core (500 millicore) is now reserved by the system by default compared to OpenShift Container Platform 3.11 and previous versions. The sizes are determined taking that into consideration.

7.4.4. Setting up CPU Manager

Procedure

  1. Optional: Label a node:

    # oc label node perf-node.example.com cpumanager=true
  2. Edit the MachineConfigPool of the nodes where CPU Manager should be enabled. In this example, all workers have CPU Manager enabled:

    # oc edit machineconfigpool worker
  3. Add a label to the worker machine config pool:

    metadata:
      creationTimestamp: 2020-xx-xxx
      generation: 3
      labels:
        custom-kubelet: cpumanager-enabled
  4. Create a KubeletConfig, cpumanager-kubeletconfig.yaml, custom resource (CR). Refer to the label created in the previous step to have the correct nodes updated with the new kubelet config. See the machineConfigPoolSelector section:

    apiVersion: machineconfiguration.openshift.io/v1
    kind: KubeletConfig
    metadata:
      name: cpumanager-enabled
    spec:
      machineConfigPoolSelector:
        matchLabels:
          custom-kubelet: cpumanager-enabled
      kubeletConfig:
         cpuManagerPolicy: static 1
         cpuManagerReconcilePeriod: 5s 2
    1
    Specify a policy:
    • none. This policy explicitly enables the existing default CPU affinity scheme, providing no affinity beyond what the scheduler does automatically. This is the default policy.
    • static. This policy allows containers in guaranteed pods with integer CPU requests. It also limits access to exclusive CPUs on the node. If static, you must use a lowercase s.
    2
    Optional. Specify the CPU Manager reconcile frequency. The default is 5s.
  5. Create the dynamic kubelet config:

    # oc create -f cpumanager-kubeletconfig.yaml

    This adds the CPU Manager feature to the kubelet config and, if needed, the Machine Config Operator (MCO) reboots the node. To enable CPU Manager, a reboot is not needed.

  6. Check for the merged kubelet config:

    # oc get machineconfig 99-worker-XXXXXX-XXXXX-XXXX-XXXXX-kubelet -o json | grep ownerReference -A7

    Example output

           "ownerReferences": [
                {
                    "apiVersion": "machineconfiguration.openshift.io/v1",
                    "kind": "KubeletConfig",
                    "name": "cpumanager-enabled",
                    "uid": "7ed5616d-6b72-11e9-aae1-021e1ce18878"
                }
            ]

  7. Check the worker for the updated kubelet.conf:

    # oc debug node/perf-node.example.com
    sh-4.2# cat /host/etc/kubernetes/kubelet.conf | grep cpuManager

    Example output

    cpuManagerPolicy: static        1
    cpuManagerReconcilePeriod: 5s   2

    1
    cpuManagerPolicy is defined when you create the KubeletConfig CR.
    2
    cpuManagerReconcilePeriod is defined when you create the KubeletConfig CR.
  8. Create a pod that requests a core or multiple cores. Both limits and requests must have their CPU value set to a whole integer. That is the number of cores that will be dedicated to this pod:

    # cat cpumanager-pod.yaml

    Example output

    apiVersion: v1
    kind: Pod
    metadata:
      generateName: cpumanager-
    spec:
      containers:
      - name: cpumanager
        image: gcr.io/google_containers/pause-amd64:3.0
        resources:
          requests:
            cpu: 1
            memory: "1G"
          limits:
            cpu: 1
            memory: "1G"
      nodeSelector:
        cpumanager: "true"

  9. Create the pod:

    # oc create -f cpumanager-pod.yaml
  10. Verify that the pod is scheduled to the node that you labeled:

    # oc describe pod cpumanager

    Example output

    Name:               cpumanager-6cqz7
    Namespace:          default
    Priority:           0
    PriorityClassName:  <none>
    Node:  perf-node.example.com/xxx.xx.xx.xxx
    ...
     Limits:
          cpu:     1
          memory:  1G
        Requests:
          cpu:        1
          memory:     1G
    ...
    QoS Class:       Guaranteed
    Node-Selectors:  cpumanager=true

  11. Verify that the cgroups are set up correctly. Get the process ID (PID) of the pause process:

    # ├─init.scope
    │ └─1 /usr/lib/systemd/systemd --switched-root --system --deserialize 17
    └─kubepods.slice
      ├─kubepods-pod69c01f8e_6b74_11e9_ac0f_0a2b62178a22.slice
      │ ├─crio-b5437308f1a574c542bdf08563b865c0345c8f8c0b0a655612c.scope
      │ └─32706 /pause

    Pods of quality of service (QoS) tier Guaranteed are placed within the kubepods.slice. Pods of other QoS tiers end up in child cgroups of kubepods:

    # cd /sys/fs/cgroup/cpuset/kubepods.slice/kubepods-pod69c01f8e_6b74_11e9_ac0f_0a2b62178a22.slice/crio-b5437308f1ad1a7db0574c542bdf08563b865c0345c86e9585f8c0b0a655612c.scope
    # for i in `ls cpuset.cpus tasks` ; do echo -n "$i "; cat $i ; done

    Example output

    cpuset.cpus 1
    tasks 32706

  12. Check the allowed CPU list for the task:

    # grep ^Cpus_allowed_list /proc/32706/status

    Example output

     Cpus_allowed_list:    1

  13. Verify that another pod (in this case, the pod in the burstable QoS tier) on the system cannot run on the core allocated for the Guaranteed pod:

    # cat /sys/fs/cgroup/cpuset/kubepods.slice/kubepods-besteffort.slice/kubepods-besteffort-podc494a073_6b77_11e9_98c0_06bba5c387ea.slice/crio-c56982f57b75a2420947f0afc6cafe7534c5734efc34157525fa9abbf99e3849.scope/cpuset.cpus
    0
    # oc describe node perf-node.example.com

    Example output

    ...
    Capacity:
     attachable-volumes-aws-ebs:  39
     cpu:                         2
     ephemeral-storage:           124768236Ki
     hugepages-1Gi:               0
     hugepages-2Mi:               0
     memory:                      8162900Ki
     pods:                        250
    Allocatable:
     attachable-volumes-aws-ebs:  39
     cpu:                         1500m
     ephemeral-storage:           124768236Ki
     hugepages-1Gi:               0
     hugepages-2Mi:               0
     memory:                      7548500Ki
     pods:                        250
    -------                               ----                           ------------  ----------  ---------------  -------------  ---
      default                                 cpumanager-6cqz7               1 (66%)       1 (66%)     1G (12%)         1G (12%)       29m
    
    Allocated resources:
      (Total limits may be over 100 percent, i.e., overcommitted.)
      Resource                    Requests          Limits
      --------                    --------          ------
      cpu                         1440m (96%)       1 (66%)

    This VM has two CPU cores. The system-reserved setting reserves 500 millicores, meaning that half of one core is subtracted from the total capacity of the node to arrive at the Node Allocatable amount. You can see that Allocatable CPU is 1500 millicores. This means you can run one of the CPU Manager pods since each will take one whole core. A whole core is equivalent to 1000 millicores. If you try to schedule a second pod, the system will accept the pod, but it will never be scheduled:

    NAME                    READY   STATUS    RESTARTS   AGE
    cpumanager-6cqz7        1/1     Running   0          33m
    cpumanager-7qc2t        0/1     Pending   0          11s

7.5. Huge pages

Understand and configure huge pages.

7.5.1. What huge pages do

Memory is managed in blocks known as pages. On most systems, a page is 4Ki. 1Mi of memory is equal to 256 pages; 1Gi of memory is 256,000 pages, and so on. CPUs have a built-in memory management unit that manages a list of these pages in hardware. The Translation Lookaside Buffer (TLB) is a small hardware cache of virtual-to-physical page mappings. If the virtual address passed in a hardware instruction can be found in the TLB, the mapping can be determined quickly. If not, a TLB miss occurs, and the system falls back to slower, software-based address translation, resulting in performance issues. Since the size of the TLB is fixed, the only way to reduce the chance of a TLB miss is to increase the page size.

A huge page is a memory page that is larger than 4Ki. On x86_64 architectures, there are two common huge page sizes: 2Mi and 1Gi. Sizes vary on other architectures. To use huge pages, code must be written so that applications are aware of them. Transparent Huge Pages (THP) attempt to automate the management of huge pages without application knowledge, but they have limitations. In particular, they are limited to 2Mi page sizes. THP can lead to performance degradation on nodes with high memory utilization or fragmentation due to defragmenting efforts of THP, which can lock memory pages. For this reason, some applications may be designed to (or recommend) usage of pre-allocated huge pages instead of THP.

7.5.2. How huge pages are consumed by apps

Nodes must pre-allocate huge pages in order for the node to report its huge page capacity. A node can only pre-allocate huge pages for a single size.

Huge pages can be consumed through container-level resource requirements using the resource name hugepages-<size>, where size is the most compact binary notation using integer values supported on a particular node. For example, if a node supports 2048KiB page sizes, it exposes a schedulable resource hugepages-2Mi. Unlike CPU or memory, huge pages do not support over-commitment.

apiVersion: v1
kind: Pod
metadata:
  generateName: hugepages-volume-
spec:
  containers:
  - securityContext:
      privileged: true
    image: rhel7:latest
    command:
    - sleep
    - inf
    name: example
    volumeMounts:
    - mountPath: /dev/hugepages
      name: hugepage
    resources:
      limits:
        hugepages-2Mi: 100Mi 1
        memory: "1Gi"
        cpu: "1"
  volumes:
  - name: hugepage
    emptyDir:
      medium: HugePages
1
Specify the amount of memory for hugepages as the exact amount to be allocated. Do not specify this value as the amount of memory for hugepages multiplied by the size of the page. For example, given a huge page size of 2MB, if you want to use 100MB of huge-page-backed RAM for your application, then you would allocate 50 huge pages. OpenShift Container Platform handles the math for you. As in the above example, you can specify 100MB directly.

Allocating huge pages of a specific size

Some platforms support multiple huge page sizes. To allocate huge pages of a specific size, precede the huge pages boot command parameters with a huge page size selection parameter hugepagesz=<size>. The <size> value must be specified in bytes with an optional scale suffix [kKmMgG]. The default huge page size can be defined with the default_hugepagesz=<size> boot parameter.

Huge page requirements

  • Huge page requests must equal the limits. This is the default if limits are specified, but requests are not.
  • Huge pages are isolated at a pod scope. Container isolation is planned in a future iteration.
  • EmptyDir volumes backed by huge pages must not consume more huge page memory than the pod request.
  • Applications that consume huge pages via shmget() with SHM_HUGETLB must run with a supplemental group that matches proc/sys/vm/hugetlb_shm_group.

7.5.3. Configuring huge pages

Nodes must pre-allocate huge pages used in an OpenShift Container Platform cluster. There are two ways of reserving huge pages: at boot time and at run time. Reserving at boot time increases the possibility of success because the memory has not yet been significantly fragmented. The Node Tuning Operator currently supports boot time allocation of huge pages on specific nodes.

7.5.3.1. At boot time

Procedure

To minimize node reboots, the order of the steps below needs to be followed:

  1. Label all nodes that need the same huge pages setting by a label.

    $ oc label node <node_using_hugepages> node-role.kubernetes.io/worker-hp=
  2. Create a file with the following content and name it hugepages-tuned-boottime.yaml:

    apiVersion: tuned.openshift.io/v1
    kind: Tuned
    metadata:
      name: hugepages 1
      namespace: openshift-cluster-node-tuning-operator
    spec:
      profile: 2
      - data: |
          [main]
          summary=Boot time configuration for hugepages
          include=openshift-node
          [bootloader]
          cmdline_openshift_node_hugepages=hugepagesz=2M hugepages=50 3
        name: openshift-node-hugepages
    
      recommend:
      - machineConfigLabels: 4
          machineconfiguration.openshift.io/role: "worker-hp"
        priority: 30
        profile: openshift-node-hugepages
    1
    Set the name of the Tuned resource to hugepages.
    2
    Set the profile section to allocate huge pages.
    3
    Note the order of parameters is important as some platforms support huge pages of various sizes.
    4
    Enable machine config pool based matching.
  3. Create the Tuned hugepages object

    $ oc create -f hugepages-tuned-boottime.yaml
  4. Create a file with the following content and name it hugepages-mcp.yaml:

    apiVersion: machineconfiguration.openshift.io/v1
    kind: MachineConfigPool
    metadata:
      name: worker-hp
      labels:
        worker-hp: ""
    spec:
      machineConfigSelector:
        matchExpressions:
          - {key: machineconfiguration.openshift.io/role, operator: In, values: [worker,worker-hp]}
      nodeSelector:
        matchLabels:
          node-role.kubernetes.io/worker-hp: ""
  5. Create the machine config pool:

    $ oc create -f hugepages-mcp.yaml

Given enough non-fragmented memory, all the nodes in the worker-hp machine config pool should now have 50 2Mi huge pages allocated.

$ oc get node <node_using_hugepages> -o jsonpath="{.status.allocatable.hugepages-2Mi}"
100Mi
Note

The TuneD bootloader plugin only supports Red Hat Enterprise Linux CoreOS (RHCOS) worker nodes.

7.6. Understanding device plugins

The device plugin provides a consistent and portable solution to consume hardware devices across clusters. The device plugin provides support for these devices through an extension mechanism, which makes these devices available to Containers, provides health checks of these devices, and securely shares them.

Important

OpenShift Container Platform supports the device plugin API, but the device plugin Containers are supported by individual vendors.

A device plugin is a gRPC service running on the nodes (external to the kubelet) that is responsible for managing specific hardware resources. Any device plugin must support following remote procedure calls (RPCs):

service DevicePlugin {
      // GetDevicePluginOptions returns options to be communicated with Device
      // Manager
      rpc GetDevicePluginOptions(Empty) returns (DevicePluginOptions) {}

      // ListAndWatch returns a stream of List of Devices
      // Whenever a Device state change or a Device disappears, ListAndWatch
      // returns the new list
      rpc ListAndWatch(Empty) returns (stream ListAndWatchResponse) {}

      // Allocate is called during container creation so that the Device
      // Plug-in can run device specific operations and instruct Kubelet
      // of the steps to make the Device available in the container
      rpc Allocate(AllocateRequest) returns (AllocateResponse) {}

      // PreStartcontainer is called, if indicated by Device Plug-in during
      // registration phase, before each container start. Device plug-in
      // can run device specific operations such as resetting the device
      // before making devices available to the container
      rpc PreStartcontainer(PreStartcontainerRequest) returns (PreStartcontainerResponse) {}
}
Example device plugins
Note

For easy device plugin reference implementation, there is a stub device plugin in the Device Manager code: vendor/k8s.io/kubernetes/pkg/kubelet/cm/deviceplugin/device_plugin_stub.go.

7.6.1. Methods for deploying a device plugin

  • Daemon sets are the recommended approach for device plugin deployments.
  • Upon start, the device plugin will try to create a UNIX domain socket at /var/lib/kubelet/device-plugin/ on the node to serve RPCs from Device Manager.
  • Since device plugins must manage hardware resources, access to the host file system, as well as socket creation, they must be run in a privileged security context.
  • More specific details regarding deployment steps can be found with each device plugin implementation.

7.6.2. Understanding the Device Manager

Device Manager provides a mechanism for advertising specialized node hardware resources with the help of plugins known as device plugins.

You can advertise specialized hardware without requiring any upstream code changes.

Important

OpenShift Container Platform supports the device plugin API, but the device plugin Containers are supported by individual vendors.

Device Manager advertises devices as Extended Resources. User pods can consume devices, advertised by Device Manager, using the same Limit/Request mechanism, which is used for requesting any other Extended Resource.

Upon start, the device plugin registers itself with Device Manager invoking Register on the /var/lib/kubelet/device-plugins/kubelet.sock and starts a gRPC service at /var/lib/kubelet/device-plugins/<plugin>.sock for serving Device Manager requests.

Device Manager, while processing a new registration request, invokes ListAndWatch remote procedure call (RPC) at the device plugin service. In response, Device Manager gets a list of Device objects from the plugin over a gRPC stream. Device Manager will keep watching on the stream for new updates from the plugin. On the plugin side, the plugin will also keep the stream open and whenever there is a change in the state of any of the devices, a new device list is sent to the Device Manager over the same streaming connection.

While handling a new pod admission request, Kubelet passes requested Extended Resources to the Device Manager for device allocation. Device Manager checks in its database to verify if a corresponding plugin exists or not. If the plugin exists and there are free allocatable devices as well as per local cache, Allocate RPC is invoked at that particular device plugin.

Additionally, device plugins can also perform several other device-specific operations, such as driver installation, device initialization, and device resets. These functionalities vary from implementation to implementation.

7.6.3. Enabling Device Manager

Enable Device Manager to implement a device plugin to advertise specialized hardware without any upstream code changes.

Device Manager provides a mechanism for advertising specialized node hardware resources with the help of plugins known as device plugins.

  1. Obtain the label associated with the static MachineConfigPool CRD for the type of node you want to configure by entering the following command. Perform one of the following steps:

    1. View the machine config:

      # oc describe machineconfig <name>

      For example:

      # oc describe machineconfig 00-worker

      Example output

      Name:         00-worker
      Namespace:
      Labels:       machineconfiguration.openshift.io/role=worker 1

      1
      Label required for the Device Manager.

Procedure

  1. Create a custom resource (CR) for your configuration change.

    Sample configuration for a Device Manager CR

    apiVersion: machineconfiguration.openshift.io/v1
    kind: KubeletConfig
    metadata:
      name: devicemgr 1
    spec:
      machineConfigPoolSelector:
        matchLabels:
           machineconfiguration.openshift.io: devicemgr 2
      kubeletConfig:
        feature-gates:
          - DevicePlugins=true 3

    1
    Assign a name to CR.
    2
    Enter the label from the Machine Config Pool.
    3
    Set DevicePlugins to 'true`.
  2. Create the Device Manager:

    $ oc create -f devicemgr.yaml

    Example output

    kubeletconfig.machineconfiguration.openshift.io/devicemgr created

  3. Ensure that Device Manager was actually enabled by confirming that /var/lib/kubelet/device-plugins/kubelet.sock is created on the node. This is the UNIX domain socket on which the Device Manager gRPC server listens for new plugin registrations. This sock file is created when the Kubelet is started only if Device Manager is enabled.

7.7. Taints and tolerations

Understand and work with taints and tolerations.

7.7.1. Understanding taints and tolerations

A taint allows a node to refuse a pod to be scheduled unless that pod has a matching toleration.

You apply taints to a node through the Node specification (NodeSpec) and apply tolerations to a pod through the Pod specification (PodSpec). When you apply a taint a node, the scheduler cannot place a pod on that node unless the pod can tolerate the taint.

Example taint in a node specification

apiVersion: v1
kind: Node
metadata:
  name: my-node
#...
spec:
  taints:
  - effect: NoExecute
    key: key1
    value: value1
#...

Example toleration in a Pod spec

apiVersion: v1
kind: Pod
metadata:
  name: my-pod
#...
spec:
  tolerations:
  - key: "key1"
    operator: "Equal"
    value: "value1"
    effect: "NoExecute"
    tolerationSeconds: 3600
#...

Taints and tolerations consist of a key, value, and effect.

Table 7.1. Taint and toleration components
ParameterDescription

key

The key is any string, up to 253 characters. The key must begin with a letter or number, and may contain letters, numbers, hyphens, dots, and underscores.

value

The value is any string, up to 63 characters. The value must begin with a letter or number, and may contain letters, numbers, hyphens, dots, and underscores.

effect

The effect is one of the following:

NoSchedule [1]

  • New pods that do not match the taint are not scheduled onto that node.
  • Existing pods on the node remain.

PreferNoSchedule

  • New pods that do not match the taint might be scheduled onto that node, but the scheduler tries not to.
  • Existing pods on the node remain.

NoExecute

  • New pods that do not match the taint cannot be scheduled onto that node.
  • Existing pods on the node that do not have a matching toleration are removed.

operator

Equal

The key/value/effect parameters must match. This is the default.

Exists

The key/effect parameters must match. You must leave a blank value parameter, which matches any.

  1. If you add a NoSchedule taint to a control plane node, the node must have the node-role.kubernetes.io/master=:NoSchedule taint, which is added by default.

    For example:

    apiVersion: v1
    kind: Node
    metadata:
      annotations:
        machine.openshift.io/machine: openshift-machine-api/ci-ln-62s7gtb-f76d1-v8jxv-master-0
        machineconfiguration.openshift.io/currentConfig: rendered-master-cdc1ab7da414629332cc4c3926e6e59c
      name: my-node
    #...
    spec:
      taints:
      - effect: NoSchedule
        key: node-role.kubernetes.io/master
    #...

A toleration matches a taint:

  • If the operator parameter is set to Equal:

    • the key parameters are the same;
    • the value parameters are the same;
    • the effect parameters are the same.
  • If the operator parameter is set to Exists:

    • the key parameters are the same;
    • the effect parameters are the same.

The following taints are built into OpenShift Container Platform:

  • node.kubernetes.io/not-ready: The node is not ready. This corresponds to the node condition Ready=False.
  • node.kubernetes.io/unreachable: The node is unreachable from the node controller. This corresponds to the node condition Ready=Unknown.
  • node.kubernetes.io/memory-pressure: The node has memory pressure issues. This corresponds to the node condition MemoryPressure=True.
  • node.kubernetes.io/disk-pressure: The node has disk pressure issues. This corresponds to the node condition DiskPressure=True.
  • node.kubernetes.io/network-unavailable: The node network is unavailable.
  • node.kubernetes.io/unschedulable: The node is unschedulable.
  • node.cloudprovider.kubernetes.io/uninitialized: When the node controller is started with an external cloud provider, this taint is set on a node to mark it as unusable. After a controller from the cloud-controller-manager initializes this node, the kubelet removes this taint.
  • node.kubernetes.io/pid-pressure: The node has pid pressure. This corresponds to the node condition PIDPressure=True.

    Important

    OpenShift Container Platform does not set a default pid.available evictionHard.

7.7.2. Adding taints and tolerations

You add tolerations to pods and taints to nodes to allow the node to control which pods should or should not be scheduled on them. For existing pods and nodes, you should add the toleration to the pod first, then add the taint to the node to avoid pods being removed from the node before you can add the toleration.

Procedure

  1. Add a toleration to a pod by editing the Pod spec to include a tolerations stanza:

    Sample pod configuration file with an Equal operator

    apiVersion: v1
    kind: Pod
    metadata:
      name: my-pod
    #...
    spec:
      tolerations:
      - key: "key1" 1
        value: "value1"
        operator: "Equal"
        effect: "NoExecute"
        tolerationSeconds: 3600 2
    #...

    1
    The toleration parameters, as described in the Taint and toleration components table.
    2
    The tolerationSeconds parameter specifies how long a pod can remain bound to a node before being evicted.

    For example:

    Sample pod configuration file with an Exists operator

    apiVersion: v1
    kind: Pod
    metadata:
      name: my-pod
    #...
    spec:
       tolerations:
        - key: "key1"
          operator: "Exists" 1
          effect: "NoExecute"
          tolerationSeconds: 3600
    #...

    1
    The Exists operator does not take a value.

    This example places a taint on node1 that has key key1, value value1, and taint effect NoExecute.

  2. Add a taint to a node by using the following command with the parameters described in the Taint and toleration components table:

    $ oc adm taint nodes <node_name> <key>=<value>:<effect>

    For example:

    $ oc adm taint nodes node1 key1=value1:NoExecute

    This command places a taint on node1 that has key key1, value value1, and effect NoExecute.

    Note

    If you add a NoSchedule taint to a control plane node, the node must have the node-role.kubernetes.io/master=:NoSchedule taint, which is added by default.

    For example:

    apiVersion: v1
    kind: Node
    metadata:
      annotations:
        machine.openshift.io/machine: openshift-machine-api/ci-ln-62s7gtb-f76d1-v8jxv-master-0
        machineconfiguration.openshift.io/currentConfig: rendered-master-cdc1ab7da414629332cc4c3926e6e59c
      name: my-node
    #...
    spec:
      taints:
      - effect: NoSchedule
        key: node-role.kubernetes.io/master
    #...

    The tolerations on the pod match the taint on the node. A pod with either toleration can be scheduled onto node1.

7.7.3. Adding taints and tolerations using a machine set

You can add taints to nodes using a machine set. All nodes associated with the MachineSet object are updated with the taint. Tolerations respond to taints added by a machine set in the same manner as taints added directly to the nodes.

Procedure

  1. Add a toleration to a pod by editing the Pod spec to include a tolerations stanza:

    Sample pod configuration file with Equal operator

    apiVersion: v1
    kind: Pod
    metadata:
      name: my-pod
    #...
    spec:
      tolerations:
      - key: "key1" 1
        value: "value1"
        operator: "Equal"
        effect: "NoExecute"
        tolerationSeconds: 3600 2
    #...

    1
    The toleration parameters, as described in the Taint and toleration components table.
    2
    The tolerationSeconds parameter specifies how long a pod is bound to a node before being evicted.

    For example:

    Sample pod configuration file with Exists operator

    apiVersion: v1
    kind: Pod
    metadata:
      name: my-pod
    #...
    spec:
      tolerations:
      - key: "key1"
        operator: "Exists"
        effect: "NoExecute"
        tolerationSeconds: 3600
    #...

  2. Add the taint to the MachineSet object:

    1. Edit the MachineSet YAML for the nodes you want to taint or you can create a new MachineSet object:

      $ oc edit machineset <machineset>
    2. Add the taint to the spec.template.spec section:

      Example taint in a machine set specification

      apiVersion: machine.openshift.io/v1beta1
      kind: MachineSet
      metadata:
        name: my-machineset
      #...
      spec:
      #...
        template:
      #...
          spec:
            taints:
            - effect: NoExecute
              key: key1
              value: value1
      #...

      This example places a taint that has the key key1, value value1, and taint effect NoExecute on the nodes.

    3. Scale down the machine set to 0:

      $ oc scale --replicas=0 machineset <machineset> -n openshift-machine-api
      Tip

      You can alternatively apply the following YAML to scale the machine set:

      apiVersion: machine.openshift.io/v1beta1
      kind: MachineSet
      metadata:
        name: <machineset>
        namespace: openshift-machine-api
      spec:
        replicas: 0

      Wait for the machines to be removed.

    4. Scale up the machine set as needed:

      $ oc scale --replicas=2 machineset <machineset> -n openshift-machine-api

      Or:

      $ oc edit machineset <machineset> -n openshift-machine-api

      Wait for the machines to start. The taint is added to the nodes associated with the MachineSet object.

7.7.4. Binding a user to a node using taints and tolerations

If you want to dedicate a set of nodes for exclusive use by a particular set of users, add a toleration to their pods. Then, add a corresponding taint to those nodes. The pods with the tolerations are allowed to use the tainted nodes or any other nodes in the cluster.

If you want ensure the pods are scheduled to only those tainted nodes, also add a label to the same set of nodes and add a node affinity to the pods so that the pods can only be scheduled onto nodes with that label.

Procedure

To configure a node so that users can use only that node:

  1. Add a corresponding taint to those nodes:

    For example:

    $ oc adm taint nodes node1 dedicated=groupName:NoSchedule
    Tip

    You can alternatively apply the following YAML to add the taint:

    kind: Node
    apiVersion: v1
    metadata:
      name: my-node
    #...
    spec:
      taints:
        - key: dedicated
          value: groupName
          effect: NoSchedule
    #...
  2. Add a toleration to the pods by writing a custom admission controller.

7.7.5. Controlling nodes with special hardware using taints and tolerations

In a cluster where a small subset of nodes have specialized hardware, you can use taints and tolerations to keep pods that do not need the specialized hardware off of those nodes, leaving the nodes for pods that do need the specialized hardware. You can also require pods that need specialized hardware to use specific nodes.

You can achieve this by adding a toleration to pods that need the special hardware and tainting the nodes that have the specialized hardware.

Procedure

To ensure nodes with specialized hardware are reserved for specific pods:

  1. Add a toleration to pods that need the special hardware.

    For example:

    apiVersion: v1
    kind: Pod
    metadata:
      name: my-pod
    #...
    spec:
      tolerations:
        - key: "disktype"
          value: "ssd"
          operator: "Equal"
          effect: "NoSchedule"
          tolerationSeconds: 3600
    #...
  2. Taint the nodes that have the specialized hardware using one of the following commands:

    $ oc adm taint nodes <node-name> disktype=ssd:NoSchedule

    Or:

    $ oc adm taint nodes <node-name> disktype=ssd:PreferNoSchedule
    Tip

    You can alternatively apply the following YAML to add the taint:

    kind: Node
    apiVersion: v1
    metadata:
      name: my_node
    #...
    spec:
      taints:
        - key: disktype
          value: ssd
          effect: PreferNoSchedule
    #...

7.7.6. Removing taints and tolerations

You can remove taints from nodes and tolerations from pods as needed. You should add the toleration to the pod first, then add the taint to the node to avoid pods being removed from the node before you can add the toleration.

Procedure

To remove taints and tolerations:

  1. To remove a taint from a node:

    $ oc adm taint nodes <node-name> <key>-

    For example:

    $ oc adm taint nodes ip-10-0-132-248.ec2.internal key1-

    Example output

    node/ip-10-0-132-248.ec2.internal untainted

  2. To remove a toleration from a pod, edit the Pod spec to remove the toleration:

    apiVersion: v1
    kind: Pod
    metadata:
      name: my-pod
    #...
    spec:
      tolerations:
      - key: "key2"
        operator: "Exists"
        effect: "NoExecute"
        tolerationSeconds: 3600
    #...

7.8. Topology Manager

Understand and work with Topology Manager.

7.8.1. Topology Manager policies

Topology Manager aligns Pod resources of all Quality of Service (QoS) classes by collecting topology hints from Hint Providers, such as CPU Manager and Device Manager, and using the collected hints to align the Pod resources.

Topology Manager supports four allocation policies, which you assign in the KubeletConfig custom resource (CR) named cpumanager-enabled:

none policy
This is the default policy and does not perform any topology alignment.
best-effort policy
For each container in a pod with the best-effort topology management policy, kubelet calls each Hint Provider to discover their resource availability. Using this information, the Topology Manager stores the preferred NUMA Node affinity for that container. If the affinity is not preferred, Topology Manager stores this and admits the pod to the node.
restricted policy
For each container in a pod with the restricted topology management policy, kubelet calls each Hint Provider to discover their resource availability. Using this information, the Topology Manager stores the preferred NUMA Node affinity for that container. If the affinity is not preferred, Topology Manager rejects this pod from the node, resulting in a pod in a Terminated state with a pod admission failure.
single-numa-node policy
For each container in a pod with the single-numa-node topology management policy, kubelet calls each Hint Provider to discover their resource availability. Using this information, the Topology Manager determines if a single NUMA Node affinity is possible. If it is, the pod is admitted to the node. If a single NUMA Node affinity is not possible, the Topology Manager rejects the pod from the node. This results in a pod in a Terminated state with a pod admission failure.

7.8.2. Setting up Topology Manager

To use Topology Manager, you must configure an allocation policy in the KubeletConfig custom resource (CR) named cpumanager-enabled. This file might exist if you have set up CPU Manager. If the file does not exist, you can create the file.

Prequisites

  • Configure the CPU Manager policy to be static.

Procedure

To activate Topololgy Manager:

  1. Configure the Topology Manager allocation policy in the custom resource.

    $ oc edit KubeletConfig cpumanager-enabled
    apiVersion: machineconfiguration.openshift.io/v1
    kind: KubeletConfig
    metadata:
      name: cpumanager-enabled
    spec:
      machineConfigPoolSelector:
        matchLabels:
          custom-kubelet: cpumanager-enabled
      kubeletConfig:
         cpuManagerPolicy: static 1
         cpuManagerReconcilePeriod: 5s
         topologyManagerPolicy: single-numa-node 2
    1
    This parameter must be static with a lowercase s.
    2
    Specify your selected Topology Manager allocation policy. Here, the policy is single-numa-node. Acceptable values are: default, best-effort, restricted, single-numa-node.

7.8.3. Pod interactions with Topology Manager policies

The example Pod specs below help illustrate pod interactions with Topology Manager.

The following pod runs in the BestEffort QoS class because no resource requests or limits are specified.

spec:
  containers:
  - name: nginx
    image: nginx

The next pod runs in the Burstable QoS class because requests are less than limits.

spec:
  containers:
  - name: nginx
    image: nginx
    resources:
      limits:
        memory: "200Mi"
      requests:
        memory: "100Mi"

If the selected policy is anything other than none, Topology Manager would not consider either of these Pod specifications.

The last example pod below runs in the Guaranteed QoS class because requests are equal to limits.

spec:
  containers:
  - name: nginx
    image: nginx
    resources:
      limits:
        memory: "200Mi"
        cpu: "2"
        example.com/device: "1"
      requests:
        memory: "200Mi"
        cpu: "2"
        example.com/device: "1"

Topology Manager would consider this pod. The Topology Manager would consult the hint providers, which are CPU Manager and Device Manager, to get topology hints for the pod.

Topology Manager will use this information to store the best topology for this container. In the case of this pod, CPU Manager and Device Manager will use this stored information at the resource allocation stage.

7.9. Resource requests and overcommitment

For each compute resource, a container may specify a resource request and limit. Scheduling decisions are made based on the request to ensure that a node has enough capacity available to meet the requested value. If a container specifies limits, but omits requests, the requests are defaulted to the limits. A container is not able to exceed the specified limit on the node.

The enforcement of limits is dependent upon the compute resource type. If a container makes no request or limit, the container is scheduled to a node with no resource guarantees. In practice, the container is able to consume as much of the specified resource as is available with the lowest local priority. In low resource situations, containers that specify no resource requests are given the lowest quality of service.

Scheduling is based on resources requested, while quota and hard limits refer to resource limits, which can be set higher than requested resources. The difference between request and limit determines the level of overcommit; for instance, if a container is given a memory request of 1Gi and a memory limit of 2Gi, it is scheduled based on the 1Gi request being available on the node, but could use up to 2Gi; so it is 200% overcommitted.

7.10. Cluster-level overcommit using the Cluster Resource Override Operator

The Cluster Resource Override Operator is an admission webhook that allows you to control the level of overcommit and manage container density across all the nodes in your cluster. The Operator controls how nodes in specific projects can exceed defined memory and CPU limits.

You must install the Cluster Resource Override Operator using the OpenShift Container Platform console or CLI as shown in the following sections. During the installation, you create a ClusterResourceOverride custom resource (CR), where you set the level of overcommit, as shown in the following example:

apiVersion: operator.autoscaling.openshift.io/v1
kind: ClusterResourceOverride
metadata:
    name: cluster 1
spec:
  podResourceOverride:
    spec:
      memoryRequestToLimitPercent: 50 2
      cpuRequestToLimitPercent: 25 3
      limitCPUToMemoryPercent: 200 4
# ...
1
The name must be cluster.
2
Optional. If a container memory limit has been specified or defaulted, the memory request is overridden to this percentage of the limit, between 1-100. The default is 50.
3
Optional. If a container CPU limit has been specified or defaulted, the CPU request is overridden to this percentage of the limit, between 1-100. The default is 25.
4
Optional. If a container memory limit has been specified or defaulted, the CPU limit is overridden to a percentage of the memory limit, if specified. Scaling 1Gi of RAM at 100 percent is equal to 1 CPU core. This is processed prior to overriding the CPU request (if configured). The default is 200.
Note

The Cluster Resource Override Operator overrides have no effect if limits have not been set on containers. Create a LimitRange object with default limits per individual project or configure limits in Pod specs for the overrides to apply.

When configured, overrides can be enabled per-project by applying the following label to the Namespace object for each project:

apiVersion: v1
kind: Namespace
metadata:

# ...

  labels:
    clusterresourceoverrides.admission.autoscaling.openshift.io/enabled: "true"

# ...

The Operator watches for the ClusterResourceOverride CR and ensures that the ClusterResourceOverride admission webhook is installed into the same namespace as the operator.

7.10.1. Installing the Cluster Resource Override Operator using the web console

You can use the OpenShift Container Platform web console to install the Cluster Resource Override Operator to help control overcommit in your cluster.

Prerequisites

  • The Cluster Resource Override Operator has no effect if limits have not been set on containers. You must specify default limits for a project using a LimitRange object or configure limits in Pod specs for the overrides to apply.

Procedure

To install the Cluster Resource Override Operator using the OpenShift Container Platform web console:

  1. In the OpenShift Container Platform web console, navigate to HomeProjects

    1. Click Create Project.
    2. Specify clusterresourceoverride-operator as the name of the project.
    3. Click Create.
  2. Navigate to OperatorsOperatorHub.

    1. Choose ClusterResourceOverride Operator from the list of available Operators and click Install.
    2. On the Install Operator page, make sure A specific Namespace on the cluster is selected for Installation Mode.
    3. Make sure clusterresourceoverride-operator is selected for Installed Namespace.
    4. Select an Update Channel and Approval Strategy.
    5. Click Install.
  3. On the Installed Operators page, click ClusterResourceOverride.

    1. On the ClusterResourceOverride Operator details page, click Create ClusterResourceOverride.
    2. On the Create ClusterResourceOverride page, click YAML view and edit the YAML template to set the overcommit values as needed:

      apiVersion: operator.autoscaling.openshift.io/v1
      kind: ClusterResourceOverride
      metadata:
        name: cluster 1
      spec:
        podResourceOverride:
          spec:
            memoryRequestToLimitPercent: 50 2
            cpuRequestToLimitPercent: 25 3
            limitCPUToMemoryPercent: 200 4
      # ...
      1
      The name must be cluster.
      2
      Optional. Specify the percentage to override the container memory limit, if used, between 1-100. The default is 50.
      3
      Optional. Specify the percentage to override the container CPU limit, if used, between 1-100. The default is 25.
      4
      Optional. Specify the percentage to override the container memory limit, if used. Scaling 1Gi of RAM at 100 percent is equal to 1 CPU core. This is processed prior to overriding the CPU request, if configured. The default is 200.
    3. Click Create.
  4. Check the current state of the admission webhook by checking the status of the cluster custom resource:

    1. On the ClusterResourceOverride Operator page, click cluster.
    2. On the ClusterResourceOverride Details page, click YAML. The mutatingWebhookConfigurationRef section appears when the webhook is called.

      apiVersion: operator.autoscaling.openshift.io/v1
      kind: ClusterResourceOverride
      metadata:
        annotations:
          kubectl.kubernetes.io/last-applied-configuration: |
            {"apiVersion":"operator.autoscaling.openshift.io/v1","kind":"ClusterResourceOverride","metadata":{"annotations":{},"name":"cluster"},"spec":{"podResourceOverride":{"spec":{"cpuRequestToLimitPercent":25,"limitCPUToMemoryPercent":200,"memoryRequestToLimitPercent":50}}}}
        creationTimestamp: "2019-12-18T22:35:02Z"
        generation: 1
        name: cluster
        resourceVersion: "127622"
        selfLink: /apis/operator.autoscaling.openshift.io/v1/clusterresourceoverrides/cluster
        uid: 978fc959-1717-4bd1-97d0-ae00ee111e8d
      spec:
        podResourceOverride:
          spec:
            cpuRequestToLimitPercent: 25
            limitCPUToMemoryPercent: 200
            memoryRequestToLimitPercent: 50
      status:
      
      # ...
      
          mutatingWebhookConfigurationRef: 1
            apiVersion: admissionregistration.k8s.io/v1
            kind: MutatingWebhookConfiguration
            name: clusterresourceoverrides.admission.autoscaling.openshift.io
            resourceVersion: "127621"
            uid: 98b3b8ae-d5ce-462b-8ab5-a729ea8f38f3
      
      # ...
      1
      Reference to the ClusterResourceOverride admission webhook.

7.10.2. Installing the Cluster Resource Override Operator using the CLI

You can use the OpenShift Container Platform CLI to install the Cluster Resource Override Operator to help control overcommit in your cluster.

Prerequisites

  • The Cluster Resource Override Operator has no effect if limits have not been set on containers. You must specify default limits for a project using a LimitRange object or configure limits in Pod specs for the overrides to apply.

Procedure

To install the Cluster Resource Override Operator using the CLI:

  1. Create a namespace for the Cluster Resource Override Operator:

    1. Create a Namespace object YAML file (for example, cro-namespace.yaml) for the Cluster Resource Override Operator:

      apiVersion: v1
      kind: Namespace
      metadata:
        name: clusterresourceoverride-operator
    2. Create the namespace:

      $ oc create -f <file-name>.yaml

      For example:

      $ oc create -f cro-namespace.yaml
  2. Create an Operator group:

    1. Create an OperatorGroup object YAML file (for example, cro-og.yaml) for the Cluster Resource Override Operator:

      apiVersion: operators.coreos.com/v1
      kind: OperatorGroup
      metadata:
        name: clusterresourceoverride-operator
        namespace: clusterresourceoverride-operator
      spec:
        targetNamespaces:
          - clusterresourceoverride-operator
    2. Create the Operator Group:

      $ oc create -f <file-name>.yaml

      For example:

      $ oc create -f cro-og.yaml
  3. Create a subscription:

    1. Create a Subscription object YAML file (for example, cro-sub.yaml) for the Cluster Resource Override Operator:

      apiVersion: