Chapter 12. Managing security context constraints
12.1. About security context constraints
Similar to the way that RBAC resources control user access, administrators can use security context constraints (SCCs) to control permissions for pods. These permissions include actions that a pod, a collection of containers, can perform and what resources it can access. You can use SCCs to define a set of conditions that a pod must run with in order to be accepted into the system.
SCCs allow an administrator to control:
- Whether a pod can run privileged containers.
- The capabilities that a container can request.
- The use of host directories as volumes.
- The SELinux context of the container.
- The container user ID.
- The use of host namespaces and networking.
-
The allocation of an
FSGroup
that owns the pod’s volumes. - The configuration of allowable supplemental groups.
- Whether a container requires the use of a read only root file system.
- The usage of volume types.
-
The configuration of allowable
seccomp
profiles.
The cluster contains eight default SCCs:
-
anyuid
-
hostaccess
-
hostmount-anyuid
hostnetwork
WarningIf additional workloads are run on master hosts, use caution when providing access to
hostnetwork
. A workload that runshostnetwork
on a master host is effectively root on the cluster and must be trusted accordingly.-
node-exporter
-
nonroot
-
privileged
-
restricted
Do not modify the default SCCs. Customizing the default SCCs can lead to issues when some of the platform pods deploy or OpenShift Container Platform is upgraded. During upgrades between some versions of OpenShift Container Platform, the values of the default SCCs are reset to the default values, which discards all customizations to those SCCs. Instead, create new SCCs.
The privileged
SCC allows:
- Users to run privileged pods
- Pods to mount host directories as volumes
- Pods to run as any user
- Pods to run with any MCS label
- Pods to use the host’s IPC namespace
- Pods to use the host’s PID namespace
- Pods to use any FSGroup
- Pods to use any supplemental group
- Pods to use any seccomp profiles
- Pods to request any capabilities
The restricted
SCC:
- Ensures that pods cannot run as privileged.
- Ensures that pods cannot mount host directory volumes.
- Requires that a pod run as a user in a pre-allocated range of UIDs.
- Requires that a pod run with a pre-allocated MCS label.
- Allows pods to use any FSGroup.
- Allows pods to use any supplemental group.
For more information about each SCC, see the kubernetes.io/description
annotation available on the SCC.
SCCs are composed of settings and strategies that control the security features a pod has access to. These settings fall into three categories:
Category | Description |
---|---|
Controlled by a boolean |
Fields of this type default to the most restrictive value. For example, |
Controlled by an allowable set | Fields of this type are checked against the set to ensure their value is allowed. |
Controlled by a strategy | Items that have a strategy to generate a value provide:
|
CRI-O has the following default list of capabilities that are allowed for each container of a pod:
-
CHOWN
-
DAC_OVERRIDE
-
FSETID
-
FOWNER
-
SETGID
-
SETUID
-
SETPCAP
-
NET_BIND_SERVICE
-
KILL
The containers use the capabilities from this default list, but pod manifest authors can alter it by requesting additional capabilities or removing some of the default behaviors. Use the allowedCapabilities
, defaultAddCapabilities
, and requiredDropCapabilities
parameters to control such requests from the pods and to dictate which capabilities can be requested, which ones must be added to each container, and which ones must be forbidden.
12.1.1. SCC Strategies
RunAsUser
-
MustRunAs
- Requires arunAsUser
to be configured. Uses the configuredrunAsUser
as the default. Validates against the configuredrunAsUser
. -
MustRunAsRange
- Requires minimum and maximum values to be defined if not using pre-allocated values. Uses the minimum as the default. Validates against the entire allowable range. -
MustRunAsNonRoot
- Requires that the pod be submitted with a non-zerorunAsUser
or have theUSER
directive defined in the image. No default provided. -
RunAsAny
- No default provided. Allows anyrunAsUser
to be specified.
SELinuxContext
-
MustRunAs
- RequiresseLinuxOptions
to be configured if not using pre-allocated values. UsesseLinuxOptions
as the default. Validates againstseLinuxOptions
. -
RunAsAny
- No default provided. Allows anyseLinuxOptions
to be specified.
SupplementalGroups
-
MustRunAs
- Requires at least one range to be specified if not using pre-allocated values. Uses the minimum value of the first range as the default. Validates against all ranges. -
RunAsAny
- No default provided. Allows anysupplementalGroups
to be specified.
FSGroup
-
MustRunAs
- Requires at least one range to be specified if not using pre-allocated values. Uses the minimum value of the first range as the default. Validates against the first ID in the first range. -
RunAsAny
- No default provided. Allows anyfsGroup
ID to be specified.
12.1.2. Controlling volumes
The usage of specific volume types can be controlled by setting the volumes
field of the SCC. The allowable values of this field correspond to the volume sources that are defined when creating a volume:
-
azureFile
-
azureDisk
-
flocker
-
flexVolume
-
hostPath
-
emptyDir
-
gcePersistentDisk
-
awsElasticBlockStore
-
gitRepo
-
secret
-
nfs
-
iscsi
-
glusterfs
-
persistentVolumeClaim
-
rbd
-
cinder
-
cephFS
-
downwardAPI
-
fc
-
configMap
-
vsphereVolume
-
quobyte
-
photonPersistentDisk
-
projected
-
portworxVolume
-
scaleIO
-
storageos
- * (a special value to allow the use of all volume types)
-
none
(a special value to disallow the use of all volumes types. Exist only for backwards compatibility)
The recommended minimum set of allowed volumes for new SCCs are configMap
, downwardAPI
, emptyDir
, persistentVolumeClaim
, secret
, and projected
.
The list of allowable volume types is not exhaustive because new types are added with each release of OpenShift Container Platform.
For backwards compatibility, the usage of allowHostDirVolumePlugin
overrides settings in the volumes
field. For example, if allowHostDirVolumePlugin
is set to false but allowed in the volumes
field, then the hostPath
value will be removed from volumes
.
12.1.3. Admission
Admission control with SCCs allows for control over the creation of resources based on the capabilities granted to a user.
In terms of the SCCs, this means that an admission controller can inspect the user information made available in the context to retrieve an appropriate set of SCCs. Doing so ensures the pod is authorized to make requests about its operating environment or to generate a set of constraints to apply to the pod.
The set of SCCs that admission uses to authorize a pod are determined by the user identity and groups that the user belongs to. Additionally, if the pod specifies a service account, the set of allowable SCCs includes any constraints accessible to the service account.
Admission uses the following approach to create the final security context for the pod:
- Retrieve all SCCs available for use.
- Generate field values for security context settings that were not specified on the request.
- Validate the final settings against the available constraints.
If a matching set of constraints is found, then the pod is accepted. If the request cannot be matched to an SCC, the pod is rejected.
A pod must validate every field against the SCC. The following are examples for just two of the fields that must be validated:
These examples are in the context of a strategy using the preallocated values.
A FSGroup SCC strategy of MustRunAs
If the pod defines a fsGroup
ID, then that ID must equal the default fsGroup
ID. Otherwise, the pod is not validated by that SCC and the next SCC is evaluated.
If the SecurityContextConstraints.fsGroup
field has value RunAsAny
and the pod specification omits the Pod.spec.securityContext.fsGroup
, then this field is considered valid. Note that it is possible that during validation, other SCC settings will reject other pod fields and thus cause the pod to fail.
A SupplementalGroups
SCC strategy of MustRunAs
If the pod specification defines one or more supplementalGroups
IDs, then the pod’s IDs must equal one of the IDs in the namespace’s openshift.io/sa.scc.supplemental-groups
annotation. Otherwise, the pod is not validated by that SCC and the next SCC is evaluated.
If the SecurityContextConstraints.supplementalGroups
field has value RunAsAny
and the pod specification omits the Pod.spec.securityContext.supplementalGroups
, then this field is considered valid. Note that it is possible that during validation, other SCC settings will reject other pod fields and thus cause the pod to fail.
12.1.4. SCC prioritization
SCCs have a priority field that affects the ordering when attempting to validate a request by the admission controller. A higher priority SCC is moved to the front of the set when sorting. When the complete set of available SCCs are determined they are ordered by:
- Highest priority first, nil is considered a 0 priority
- If priorities are equal, the SCCs will be sorted from most restrictive to least restrictive
- If both priorities and restrictions are equal the SCCs will be sorted by name
By default, the anyuid
SCC granted to cluster administrators is given priority in their SCC set. This allows cluster administrators to run pods as any user by without specifying a RunAsUser
on the pod’s SecurityContext
. The administrator may still specify a RunAsUser
if they wish.
12.2. About pre-allocated security context constraints values
The admission controller is aware of certain conditions in the security context constraints (SCCs) that trigger it to look up pre-allocated values from a namespace and populate the SCC before processing the pod. Each SCC strategy is evaluated independently of other strategies, with the pre-allocated values, where allowed, for each policy aggregated with pod specification values to make the final values for the various IDs defined in the running pod.
The following SCCs cause the admission controller to look for pre-allocated values when no ranges are defined in the pod specification:
-
A
RunAsUser
strategy ofMustRunAsRange
with no minimum or maximum set. Admission looks for theopenshift.io/sa.scc.uid-range
annotation to populate range fields. -
An
SELinuxContext
strategy ofMustRunAs
with no level set. Admission looks for theopenshift.io/sa.scc.mcs
annotation to populate the level. -
A
FSGroup
strategy ofMustRunAs
. Admission looks for theopenshift.io/sa.scc.supplemental-groups
annotation. -
A
SupplementalGroups
strategy ofMustRunAs
. Admission looks for theopenshift.io/sa.scc.supplemental-groups
annotation.
During the generation phase, the security context provider uses default values for any parameter values that are not specifically set in the pod. Default values are based on the selected strategy:
-
RunAsAny
andMustRunAsNonRoot
strategies do not provide default values. If the pod needs a parameter value, such as a group ID, you must define the value in the pod specification. -
MustRunAs
(single value) strategies provide a default value that is always used. For example, for group IDs, even if the pod specification defines its own ID value, the namespace’s default parameter value also appears in the pod’s groups. -
MustRunAsRange
andMustRunAs
(range-based) strategies provide the minimum value of the range. As with a single valueMustRunAs
strategy, the namespace’s default parameter value appears in the running pod. If a range-based strategy is configurable with multiple ranges, it provides the minimum value of the first configured range.
FSGroup
and SupplementalGroups
strategies fall back to the openshift.io/sa.scc.uid-range
annotation if the openshift.io/sa.scc.supplemental-groups
annotation does not exist on the namespace. If neither exists, the SCC is not created.
By default, the annotation-based FSGroup
strategy configures itself with a single range based on the minimum value for the annotation. For example, if your annotation reads 1/3
, the FSGroup
strategy configures itself with a minimum and maximum value of 1
. If you want to allow more groups to be accepted for the FSGroup
field, you can configure a custom SCC that does not use the annotation.
The openshift.io/sa.scc.supplemental-groups
annotation accepts a comma-delimited list of blocks in the format of <start>/<length
or <start>-<end>
. The openshift.io/sa.scc.uid-range
annotation accepts only a single block.
12.3. Example security context constraints
The following examples show the security context constraints (SCC) format and annotations:
Annotated priviledged
SCC
allowHostDirVolumePlugin: true allowHostIPC: true allowHostNetwork: true allowHostPID: true allowHostPorts: true allowPrivilegedContainer: true allowedCapabilities: 1 - '*' apiVersion: security.openshift.io/v1 defaultAddCapabilities: [] 2 fsGroup: 3 type: RunAsAny groups: 4 - system:cluster-admins - system:nodes kind: SecurityContextConstraints metadata: annotations: kubernetes.io/description: 'privileged allows access to all privileged and host features and the ability to run as any user, any group, any fsGroup, and with any SELinux context. WARNING: this is the most relaxed SCC and should be used only for cluster administration. Grant with caution.' creationTimestamp: null name: privileged priority: null readOnlyRootFilesystem: false requiredDropCapabilities: [] 5 runAsUser: 6 type: RunAsAny seLinuxContext: 7 type: RunAsAny seccompProfiles: - '*' supplementalGroups: 8 type: RunAsAny users: 9 - system:serviceaccount:default:registry - system:serviceaccount:default:router - system:serviceaccount:openshift-infra:build-controller volumes: - '*'
- 1
- A list of capabilities that a pod can request. An empty list means that none of capabilities can be requested while the special symbol
*
allows any capabilities. - 2
- A list of additional capabilities that are added to any pod.
- 3
- The
FSGroup
strategy, which dictates the allowable values for the security context. - 4
- The groups that can access this SCC.
- 5
- A list of capabilities that are be dropped from a pod.
- 6
- The
runAsUser
strategy type, which dictates the allowable values for the Security Context. - 7
- The
seLinuxContext
strategy type, which dictates the allowable values for the Security Context. - 8
- The
supplementalGroups
strategy, which dictates the allowable supplemental groups for the Security Context. - 9
- The users who can access this SCC.
The users
and groups
fields on the SCC control which users can access the SCC. By default, cluster administrators, nodes, and the build controller are granted access to the privileged SCC. All authenticated users are granted access to the restricted SCC.
Without explicit runAsUser
setting
apiVersion: v1
kind: Pod
metadata:
name: security-context-demo
spec:
securityContext: 1
containers:
- name: sec-ctx-demo
image: gcr.io/google-samples/node-hello:1.0
- 1
- When a container or pod does not request a user ID under which it should be run, the effective UID depends on the SCC that emits this pod. Because restricted SCC is granted to all authenticated users by default, it will be available to all users and service accounts and used in most cases. The restricted SCC uses
MustRunAsRange
strategy for constraining and defaulting the possible values of thesecurityContext.runAsUser
field. The admission plug-in will look for theopenshift.io/sa.scc.uid-range
annotation on the current project to populate range fields, as it does not provide this range. In the end, a container will haverunAsUser
equal to the first value of the range that is hard to predict because every project has different ranges.
With explicit runAsUser
setting
apiVersion: v1
kind: Pod
metadata:
name: security-context-demo
spec:
securityContext:
runAsUser: 1000 1
containers:
- name: sec-ctx-demo
image: gcr.io/google-samples/node-hello:1.0
- 1
- A container or pod that requests a specific user ID will be accepted by OpenShift Container Platform only when a service account or a user is granted access to a SCC that allows such a user ID. The SCC can allow arbitrary IDs, an ID that falls into a range, or the exact user ID specific to the request.
This configuration is valid for SELinux, fsGroup, and Supplemental Groups.
12.4. Creating security context constraints
You can create security context constraints (SCCs) by using the OpenShift CLI (oc
).
Prerequisites
-
Install the OpenShift CLI (
oc
). -
Log in to the cluster as a user with the
cluster-admin
role.
Procedure
Define the SCC in a YAML file named
scc_admin.yaml
:SecurityContextConstraints
object definitionkind: SecurityContextConstraints apiVersion: security.openshift.io/v1 metadata: name: scc-admin allowPrivilegedContainer: true runAsUser: type: RunAsAny seLinuxContext: type: RunAsAny fsGroup: type: RunAsAny supplementalGroups: type: RunAsAny users: - my-admin-user groups: - my-admin-group
Optionally, you can specify drop capabilities for an SCC by setting the
requiredDropCapabilities
field with the desired values. Any specified capabilities are dropped from the container. For example, to create an SCC with theKILL
,MKNOD
, andSYS_CHROOT
required drop capabilities, add the following to the SCC object:requiredDropCapabilities: - KILL - MKNOD - SYS_CHROOT
CRI-O supports the same list of capability values that are found in the Docker documentation.
Create the SCC by passing in the file:
$ oc create -f scc_admin.yaml
Example output
securitycontextconstraints "scc-admin" created
Verification
Verify that the SCC was created:
$ oc get scc scc-admin
Example output
NAME PRIV CAPS SELINUX RUNASUSER FSGROUP SUPGROUP PRIORITY READONLYROOTFS VOLUMES scc-admin true [] RunAsAny RunAsAny RunAsAny RunAsAny <none> false [awsElasticBlockStore azureDisk azureFile cephFS cinder configMap downwardAPI emptyDir fc flexVolume flocker gcePersistentDisk gitRepo glusterfs iscsi nfs persistentVolumeClaim photonPersistentDisk quobyte rbd secret vsphere]
12.5. Role-based access to security context constraints
You can specify SCCs as resources that are handled by RBAC. This allows you to scope access to your SCCs to a certain project or to the entire cluster. Assigning users, groups, or service accounts directly to an SCC retains cluster-wide scope.
You cannot assign a SCC to pods created in one of the default namespaces: default
, kube-system
, kube-public
, openshift-node
, openshift-infra
, openshift
. These namespaces should not be used for running pods or services.
To include access to SCCs for your role, specify the scc
resource when creating a role.
$ oc create role <role-name> --verb=use --resource=scc --resource-name=<scc-name> -n <namespace>
This results in the following role definition:
apiVersion: rbac.authorization.k8s.io/v1 kind: Role metadata: ... name: role-name 1 namespace: namespace 2 ... rules: - apiGroups: - security.openshift.io 3 resourceNames: - scc-name 4 resources: - securitycontextconstraints 5 verbs: 6 - use
- 1
- The role’s name.
- 2
- Namespace of the defined role. Defaults to
default
if not specified. - 3
- The API group that includes the
SecurityContextConstraints
resource. Automatically defined whenscc
is specified as a resource. - 4
- An example name for an SCC you want to have access.
- 5
- Name of the resource group that allows users to specify SCC names in the
resourceNames
field. - 6
- A list of verbs to apply to the role.
A local or cluster role with such a rule allows the subjects that are bound to it with a role binding or a cluster role binding to use the user-defined SCC called scc-name
.
Because RBAC is designed to prevent escalation, even project administrators are unable to grant access to an SCC. By default, they are not allowed to use the verb use
on SCC resources, including the restricted
SCC.
12.6. Security context constraints reference commands
You can manage SCCs in your instance as normal API objects using the CLI.
You must have cluster-admin
privileges to manage SCCs.
Do not modify the default SCCs. Customizing the default SCCs can lead to issues when some of the platform pods deploy or OpenShift Container Platform is upgraded. During upgrades between some versions of OpenShift Container Platform, the values of the default SCCs are reset to the default values, which discards all customizations to those SCCs.
12.6.1. Listing SCCs
To get a current list of SCCs:
$ oc get scc
Example output
NAME PRIV CAPS SELINUX RUNASUSER FSGROUP SUPGROUP PRIORITY READONLYROOTFS VOLUMES anyuid false [] MustRunAs RunAsAny RunAsAny RunAsAny 10 false [configMap downwardAPI emptyDir persistentVolumeClaim projected secret] hostaccess false [] MustRunAs MustRunAsRange MustRunAs RunAsAny <none> false [configMap downwardAPI emptyDir hostPath persistentVolumeClaim projected secret] hostmount-anyuid false [] MustRunAs RunAsAny RunAsAny RunAsAny <none> false [configMap downwardAPI emptyDir hostPath nfs persistentVolumeClaim projected secret] hostnetwork false [] MustRunAs MustRunAsRange MustRunAs MustRunAs <none> false [configMap downwardAPI emptyDir persistentVolumeClaim projected secret] node-exporter false [] RunAsAny RunAsAny RunAsAny RunAsAny <none> false [*] nonroot false [] MustRunAs MustRunAsNonRoot RunAsAny RunAsAny <none> false [configMap downwardAPI emptyDir persistentVolumeClaim projected secret] privileged true [*] RunAsAny RunAsAny RunAsAny RunAsAny <none> false [*] restricted false [] MustRunAs MustRunAsRange MustRunAs RunAsAny <none> false [configMap downwardAPI emptyDir persistentVolumeClaim projected secret]
12.6.2. Examining an SCC
You can view information about a particular SCC, including which users, service accounts, and groups the SCC is applied to.
For example, to examine the restricted
SCC:
$ oc describe scc restricted
Example output
Name: restricted Priority: <none> Access: Users: <none> 1 Groups: system:authenticated 2 Settings: Allow Privileged: false Default Add Capabilities: <none> Required Drop Capabilities: KILL,MKNOD,SYS_CHROOT,SETUID,SETGID Allowed Capabilities: <none> Allowed Seccomp Profiles: <none> Allowed Volume Types: configMap,downwardAPI,emptyDir,persistentVolumeClaim,projected,secret Allow Host Network: false Allow Host Ports: false Allow Host PID: false Allow Host IPC: false Read Only Root Filesystem: false Run As User Strategy: MustRunAsRange UID: <none> UID Range Min: <none> UID Range Max: <none> SELinux Context Strategy: MustRunAs User: <none> Role: <none> Type: <none> Level: <none> FSGroup Strategy: MustRunAs Ranges: <none> Supplemental Groups Strategy: RunAsAny Ranges: <none>
To preserve customized SCCs during upgrades, do not edit settings on the default SCCs.
12.6.3. Deleting an SCC
To delete an SCC:
$ oc delete scc <scc_name>
If you delete a default SCC, it will regenerate when you restart the cluster.
12.6.4. Updating an SCC
To update an existing SCC:
$ oc edit scc <scc_name>
To preserve customized SCCs during upgrades, do not edit settings on the default SCCs.