Search

Chapter 8. Network File System (NFS)

download PDF
A Network File System (NFS) allows remote hosts to mount file systems over a network and interact with those file systems as though they are mounted locally. This enables system administrators to consolidate resources onto centralized servers on the network.
This chapter focuses on fundamental NFS concepts and supplemental information.

8.1. Introduction to NFS

Currently, there are two major versions of NFS included in Red Hat Enterprise Linux:
  • NFS version 3 (NFSv3) supports safe asynchronous writes and is more robust at error handling than the previous NFSv2. It also supports 64-bit file sizes and offsets, allowing clients to access more than 2 GB of file data.
  • NFS version 4 (NFSv4) works through firewalls and on the Internet, no longer requires an rpcbind service, supports ACLs, and utilizes stateful operations.
Red Hat Enterprise Linux fully supports NFS version 4.2 (NFSv4.2) since the Red Hat Enterprise Linux 7.4 release.
Following are the features of NFSv4.2 in Red Hat Enterprise Linux :
  • Sparse Files: It verifies space efficiency of a file and allows placeholder to improve storage efficiency. It is a file having one or more holes; holes are unallocated or uninitialized data blocks consisting only of zeroes. lseek() operation in NFSv4.2, supports seek_hole() and seek_data(), which allows application to map out the location of holes in the sparse file.
  • Space Reservation: It permits storage servers to reserve free space, which prohibits servers to run out of space. NFSv4.2 supports allocate() operation to reserve space, deallocate() operation to unreserve space, and fallocate() operation to preallocate or deallocate space in a file.
  • Labeled NFS: It enforces data access rights and enables SELinux labels between a client and a server for individual files on an NFS file system.
  • Layout Enhancements: NFSv4.2 provides new operation, layoutstats(), which the client can use to notify the metadata server about its communication with the layout.
Versions of Red Hat Enterprise Linux earlier than 7.4 support NFS up to version 4.1.
Following are the features of NFSv4.1:
  • Enhances performance and security of network, and also includes client-side support for Parallel NFS (pNFS).
  • No longer requires a separate TCP connection for callbacks, which allows an NFS server to grant delegations even when it cannot contact the client. For example, when NAT or a firewall interferes.
  • It provides exactly once semantics (except for reboot operations), preventing a previous issue whereby certain operations could return an inaccurate result if a reply was lost and the operation was sent twice.
NFS clients attempt to mount using NFSv4.1 by default, and fall back to NFSv4.0 when the server does not support NFSv4.1. The mount later fall back to NFSv3 when server does not support NFSv4.0.

Note

NFS version 2 (NFSv2) is no longer supported by Red Hat.
All versions of NFS can use Transmission Control Protocol (TCP) running over an IP network, with NFSv4 requiring it. NFSv3 can use the User Datagram Protocol (UDP) running over an IP network to provide a stateless network connection between the client and server.
When using NFSv3 with UDP, the stateless UDP connection (under normal conditions) has less protocol overhead than TCP. This can translate into better performance on very clean, non-congested networks. However, because UDP is stateless, if the server goes down unexpectedly, UDP clients continue to saturate the network with requests for the server. In addition, when a frame is lost with UDP, the entire RPC request must be retransmitted; with TCP, only the lost frame needs to be resent. For these reasons, TCP is the preferred protocol when connecting to an NFS server.
The mounting and locking protocols have been incorporated into the NFSv4 protocol. The server also listens on the well-known TCP port 2049. As such, NFSv4 does not need to interact with rpcbind [1], lockd, and rpc.statd daemons. The rpc.mountd daemon is still required on the NFS server to set up the exports, but is not involved in any over-the-wire operations.

Note

TCP is the default transport protocol for NFS version 3 under Red Hat Enterprise Linux. UDP can be used for compatibility purposes as needed, but is not recommended for wide usage. NFSv4 requires TCP.
All the RPC/NFS daemons have a '-p' command line option that can set the port, making firewall configuration easier.
After TCP wrappers grant access to the client, the NFS server refers to the /etc/exports configuration file to determine whether the client is allowed to access any exported file systems. Once verified, all file and directory operations are available to the user.

Important

In order for NFS to work with a default installation of Red Hat Enterprise Linux with a firewall enabled, configure IPTables with the default TCP port 2049. Without proper IPTables configuration, NFS will not function properly.
The NFS initialization script and rpc.nfsd process now allow binding to any specified port during system start up. However, this can be error-prone if the port is unavailable, or if it conflicts with another daemon.

8.1.1. Required Services

Red Hat Enterprise Linux uses a combination of kernel-level support and daemon processes to provide NFS file sharing. All NFS versions rely on Remote Procedure Calls (RPC) between clients and servers. RPC services under Red Hat Enterprise Linux 7 are controlled by the rpcbind service. To share or mount NFS file systems, the following services work together depending on which version of NFS is implemented:

Note

The portmap service was used to map RPC program numbers to IP address port number combinations in earlier versions of Red Hat Enterprise Linux. This service is now replaced by rpcbind in Red Hat Enterprise Linux 7 to enable IPv6 support.
nfs
systemctl start nfs starts the NFS server and the appropriate RPC processes to service requests for shared NFS file systems.
nfslock
systemctl start nfs-lock activates a mandatory service that starts the appropriate RPC processes allowing NFS clients to lock files on the server.
rpcbind
rpcbind accepts port reservations from local RPC services. These ports are then made available (or advertised) so the corresponding remote RPC services can access them. rpcbind responds to requests for RPC services and sets up connections to the requested RPC service. This is not used with NFSv4.
The following RPC processes facilitate NFS services:
rpc.mountd
This process is used by an NFS server to process MOUNT requests from NFSv3 clients. It checks that the requested NFS share is currently exported by the NFS server, and that the client is allowed to access it. If the mount request is allowed, the rpc.mountd server replies with a Success status and provides the File-Handle for this NFS share back to the NFS client.
rpc.nfsd
rpc.nfsd allows explicit NFS versions and protocols the server advertises to be defined. It works with the Linux kernel to meet the dynamic demands of NFS clients, such as providing server threads each time an NFS client connects. This process corresponds to the nfs service.
lockd
lockd is a kernel thread which runs on both clients and servers. It implements the Network Lock Manager (NLM) protocol, which allows NFSv3 clients to lock files on the server. It is started automatically whenever the NFS server is run and whenever an NFS file system is mounted.
rpc.statd
This process implements the Network Status Monitor (NSM) RPC protocol, which notifies NFS clients when an NFS server is restarted without being gracefully brought down. rpc.statd is started automatically by the nfslock service, and does not require user configuration. This is not used with NFSv4.
rpc.rquotad
This process provides user quota information for remote users. rpc.rquotad is started automatically by the nfs service and does not require user configuration.
rpc.idmapd
rpc.idmapd provides NFSv4 client and server upcalls, which map between on-the-wire NFSv4 names (strings in the form of user@domain) and local UIDs and GIDs. For idmapd to function with NFSv4, the /etc/idmapd.conf file must be configured. At a minimum, the "Domain" parameter should be specified, which defines the NFSv4 mapping domain. If the NFSv4 mapping domain is the same as the DNS domain name, this parameter can be skipped. The client and server must agree on the NFSv4 mapping domain for ID mapping to function properly.

Note

In Red Hat Enterprise Linux 7, only the NFSv4 server uses rpc.idmapd. The NFSv4 client uses the keyring-based idmapper nfsidmap. nfsidmap is a stand-alone program that is called by the kernel on-demand to perform ID mapping; it is not a daemon. If there is a problem with nfsidmap does the client fall back to using rpc.idmapd. More information regarding nfsidmap can be found on the nfsidmap man page.


[1] The rpcbind service replaces portmap, which was used in previous versions of Red Hat Enterprise Linux to map RPC program numbers to IP address port number combinations. For more information, refer to Section 8.1.1, “Required Services”.
Red Hat logoGithubRedditYoutubeTwitter

Learn

Try, buy, & sell

Communities

About Red Hat Documentation

We help Red Hat users innovate and achieve their goals with our products and services with content they can trust.

Making open source more inclusive

Red Hat is committed to replacing problematic language in our code, documentation, and web properties. For more details, see the Red Hat Blog.

About Red Hat

We deliver hardened solutions that make it easier for enterprises to work across platforms and environments, from the core datacenter to the network edge.

© 2024 Red Hat, Inc.