1.2. Prerequisites
1.2.1. Become Familiar with Java Enterprise Edition 6
1.2.1.1. Overview of EE 6 Profiles
Java Enterprise Edition 6 (EE 6) includes support for multiple profiles, or subsets of APIs. The only two profiles that the EE 6 specification defines are the Full Profile and the Web Profile.
EE 6 Full Profile includes all APIs and specifications included in the EE 6 specification. EE 6 Web Profile includes a subset of APIs which are useful to web developers.
JBoss EAP 6 is a certified implementation of the Java Enterprise Edition 6 Full Profile and Web Profile specifications.
1.2.1.2. Java Enterprise Edition 6 Web Profile
The Web Profile is one of two profiles defined by the Java Enterprise Edition 6 specification. It is designed for web application development. The other profile defined by the Java Enterprise Edition 6 specification is the Full Profile. See Section 1.2.1.3, “Java Enterprise Edition 6 Full Profile” for more details.
Java EE 6 Web Profile Requirements
- Java Platform, Enterprise Edition 6
Java Web Technologies
- Servlet 3.0 (JSR 315)
- JSP 2.2 and Expression Language (EL) 1.2
- JavaServer Faces (JSF) 2.1 (JSR 314)
- Java Standard Tag Library (JSTL) for JSP 1.2
- Debugging Support for Other Languages 1.0 (JSR 45)
Enterprise Application Technologies
- Contexts and Dependency Injection (CDI) (JSR 299)
- Dependency Injection for Java (JSR 330)
- Enterprise JavaBeans 3.1 Lite (JSR 318)
- Java Persistence API 2.0 (JSR 317)
- Common Annotations for the Java Platform 1.1 (JSR 250)
- Java Transaction API (JTA) 1.1 (JSR 907)
- Bean Validation (JSR 303)
1.2.1.3. Java Enterprise Edition 6 Full Profile
The Java Enterprise Edition 6 (EE 6) specification defines a concept of profiles, and defines two of them as part of the specification. Besides the items supported in the Java Enterprise Edition 6 Web Profile ( Section 1.2.1.2, “Java Enterprise Edition 6 Web Profile”), the Full Profile supports the following APIs.
Items Included in the EE 6 Full Profile
- EJB 3.1 (not Lite) (JSR 318)
- Java EE Connector Architecture 1.6 (JSR 322)
- Java Message Service (JMS) API 1.1 (JSR 914)
- JavaMail 1.4 (JSR 919)
Web Service Technologies
- Jax-RS RESTful Web Services 1.1 (JSR 311)
- Implementing Enterprise Web Services 1.3 (JSR 109)
- JAX-WS Java API for XML-Based Web Services 2.2 (JSR 224)
- Java Architecture for XML Binding (JAXB) 2.2 (JSR 222)
- Web Services Metadata for the Java Platform (JSR 181)
- Java APIs for XML-based RPC 1.1 (JSR 101)
- Java APIs for XML Messaging 1.3 (JSR 67)
- Java API for XML Registries (JAXR) 1.0 (JSR 93)
Management and Security Technologies
- Java Authentication Service Provider Interface for Containers 1.0 (JSR 196)
- Java Authentication Contract for Containers 1.3 (JSR 115)
- Java EE Application Deployment 1.2 (JSR 88)
- J2EE Management 1.1 (JSR 77)
1.2.2. About Modules and the New Modular Class Loading System used in JBoss EAP 6
1.2.2.1. Modules
A Module is a logical grouping of classes used for class loading and dependency management. JBoss EAP 6 identifies two different types of modules, sometimes called static and dynamic modules. However the only difference between the two is how they are packaged.
- Static Modules
- Static Modules are predefined in the
EAP_HOME/modules/
directory of the application server. Each sub-directory represents one module and defines amain/
subdirectory that contains a configuration file (module.xml
) and any required JAR files. The name of the module is defined in themodule.xml
file. All the application server provided APIs are provided as static modules, including the Java EE APIs as well as other APIs such as JBoss Logging.Example 1.1. Example module.xml file
<?xml version="1.0" encoding="UTF-8"?> <module xmlns="urn:jboss:module:1.0" name="com.mysql"> <resources> <resource-root path="mysql-connector-java-5.1.15.jar"/> </resources> <dependencies> <module name="javax.api"/> <module name="javax.transaction.api"/> </dependencies> </module>
The module name,com.mysql
, should match the directory structure for the module, excluding themain/
subdirectory name.The modules provided in JBoss EAP distributions are located in asystem
directory within theEAP_HOME/modules
directory. This keeps them separate from any modules provided by third parties.Any Red Hat provided layered products that layer on top of JBoss EAP 6.1 or later will also install their modules within thesystem
directory.Creating custom static modules can be useful if many applications are deployed on the same server that use the same third-party libraries. Instead of bundling those libraries with each application, a module containing these libraries can be created and installed by the JBoss administrator. The applications can then declare an explicit dependency on the custom static modules.Users must ensure that custom modules are installed into theEAP_HOME/modules
directory, using a one directory per module layout. This ensures that custom versions of modules that already exist in thesystem
directory are loaded instead of the shipped versions. In this way, user provided modules will take precedence over system modules.If you use theJBOSS_MODULEPATH
environment variable to change the locations in which JBoss EAP searches for modules, then the product will look for asystem
subdirectory structure within one of the locations specified. Asystem
structure must exist somewhere in the locations specified withJBOSS_MODULEPATH
. - Dynamic Modules
- Dynamic Modules are created and loaded by the application server for each JAR or WAR deployment (or subdeployment in an EAR). The name of a dynamic module is derived from the name of the deployed archive. Because deployments are loaded as modules, they can configure dependencies and be used as dependencies by other deployments.
Modules are only loaded when required. This usually only occurs when an application is deployed that has explicit or implicit dependencies.