Search

Chapter 3. What does the subscriptions service track?

download PDF

The subscriptions service currently tracks and reports usage information for Red Hat Enterprise Linux, some Red Hat OpenShift products, and some Red Hat Cloud Services services.

The subscriptions service identifies subscriptions through their stock-keeping units, or SKUs. Only a subset of Red Hat SKUs are tracked by the subscriptions service. In the usage reporting for a product, the tracked SKUs in your account contribute to the maximum capacity information, also known as the subscription threshold, for that product.

For the SKUs that are not tracked, the subscriptions service maintains an explicit deny list within the source code. To learn more about the SKUs that are not tracked, you can view this deny list in the code repository.

3.1. Red Hat Enterprise Linux

The subscriptions service tracks RHEL Annual subscription usage on physical systems, virtual systems, hypervisors, and public cloud. For a limited subset of subscriptions, currently Red Hat Enterprise Linux Extended Life Cycle Support Add-On on Amazon Web Services (AWS), it tracks RHEL pay-as-you-go On-Demand subscription usage for instances running in public cloud providers.

If your RHEL installations predate certificate-based subscription management, the subscriptions service will not track that inventory.

3.1.1. RHEL with a traditional Annual subscription

The subscriptions service tracks RHEL usage in sockets, as follows:

  • Tracks physical RHEL usage in CPU sockets, where usage is counted by socket pairs.
  • Tracks virtualized RHEL by the installed socket count for standard guest subscriptions with no detectable hypervisor management, where one virtual machine equals one socket.
  • Tracks hypervisor RHEL usage in CPU sockets, with the socket-pair method, for virtual data center (VDC) subscriptions and similar virtualized environments. RHEL based hypervisors are counted both for the copy of RHEL that is used to run the hypervisor and the copy of RHEL for the virtual guests. Hypervisors that are not RHEL based are counted for the copy of RHEL for the virtual guests.
  • Tracks public cloud RHEL instance usage in sockets, where one instance equals one socket.
  • Additionally, tracks Red Hat Satellite to enable the visibility of RHEL that is bundled with Satellite.

3.1.2. RHEL with a pay-as-you-go On-Demand subscription

The subscriptions service tracks metered RHEL in vCPU hours, as follows:

  • Tracks pay-as-you-go On-Demand instance usage in virtual CPU hours (vCPU hours), a measurement of availability for computational activity on one virtual core (as defined by the subscription terms), for a total of one hour, measured to the granularity of the meter that is used. For RHEL pay-as-you-go On-Demand subscription usage, availability for computational activity is the availability of the RHEL instance over time.
Note

Currently, Red Hat Enterprise Linux for Third Party Linux Migration with Extended Life Cycle Support Add-on is the only RHEL pay-as-you-go On-Demand subscription offering that is tracked by the subscriptions service.

The subscriptions service ultimately aggregates all instance vCPU hour data in the account into a monthly total, the unit of time that is used by the billing service for the cloud provider marketplace.

3.2. Red Hat OpenShift

Generally, the subscriptions service tracks Red Hat OpenShift usage as cluster size on physical and virtual systems. The cluster size is the sum of all subscribed nodes. A subscribed node is a compute or worker node that runs workloads, as opposed to a control plane or infrastructure node that manages the cluster.

However, beyond this general rule, tracking is dependent on several factors:

  • The Red Hat OpenShift product
  • The type of subscription that was purchased for that product
  • The version of that product
  • The unit of measurement for the product, as defined by the subscription terms, that determines how cluster size and overall usage is calculated
  • The structure of nodes, including any labels used to assign node roles and the configuration of scheduling to control pod placement on nodes

3.2.1. Understanding the subscribed cluster size compared to the total cluster size

For Red Hat OpenShift, the subscriptions service does not focus merely on the total size of the cluster and the nodes within it. The subscriptions service focuses on the subscribed portion of clusters, that is, the cluster nodes that are processing workloads. Therefore, the subscriptions service reporting is for the subscribed cluster size, not the entire size of the cluster.

3.2.2. Determining the subscribed cluster size

To determine the subscribed cluster size, the data collection tools and the subscriptions service examine both the node type and the presence of node labels. The subscriptions service uses this data to determine which nodes can accept workloads. The sum of all noninfrastructure nodes plus master nodes that are schedulable is considered available for workload use. The nodes that are available for workload use are counted as subscribed nodes, contribute to the subscribed cluster size, and appear in the usage reporting for the subscriptions service.

The following information provides additional details about how node labels affect the countability of those nodes and in turn affect subscribed cluster size. Analysis of both internal and customer environments shows that these labels and label combinations represent the majority of customer configurations.

Table 3.1. How nodes contribute to the subscribed cluster size
Node labelUsage countedExceptions

worker

yes

Unless there is a combination of the worker label with an infra label

worker + infra

no

See Note

custom label

yes

Unless there is a combination of the custom label with the master, infra, or control plane label

custom label + master, infra, control plane (any combination)

no

 

master + infra + control plane (any combination)

no

Unless there is a master label present and the node is marked as schedulable

schedulable master + infra, control plane (any combination)

yes

 
Note

A known issue with the Red Hat OpenShift monitoring stack tools can result in unexpected core counts for Red Hat OpenShift Container Platform versions earlier than 4.13. For those versions, the number of worker nodes can be artificially elevated.

For OpenShift Container Platform versions earlier than 4.13, the Machine Config Operator does not support a dual assignment of infra and worker roles on a node. The counting of worker nodes is correct in OpenShift Container Platform according to the principles of counting subscribed nodes, and this count will display correctly in the OpenShift Container Platform web console.

However, when the monitoring stack tools analyze this data and send it to the subscriptions service and other services in the Hybrid Cloud Console, the Machine Config Operator ignores the dual roles and sets the role on the node to worker. Therefore, worker node counts will be elevated in the subscriptions service and in OpenShift Cluster Manager.

3.2.3. Red Hat OpenShift Container Platform with a traditional Annual subscription

The subscriptions service tracks Red Hat OpenShift Container Platform usage in CPU cores or sockets for clusters and aggregates this data into an account view, as refined by the following version support:

  • RHOCP 4.1 and later with Red Hat Enterprise Linux CoreOS based nodes or a mixed environment of Red Hat Enterprise Linux CoreOS and RHEL based nodes
  • RHOCP 3.11

For RHOCP subscription usage, there was a change in reporting models between the major 3 and 4 versions. Version 3 usage is considered at the node level and version 4 usage is considered at the cluster level.

The difference in reporting models for the RHOCP major versions also results in some differences in how the subscriptions service and the associated services in the Cloud Services platform calculate usage. For RHOCP version 4, the subscriptions service follows the rules for examining node types and node labels to calculate the subscribed cluster size as described in Determining the subscribed cluster size. The subscriptions service recognizes and ignores the parts of the cluster that perform overhead tasks and do not accept workloads. The subscriptions service recognizes and tracks only the parts of the cluster that do accept workloads.

However, for RHOCP version 3.11, the version 3 era reporting model cannot distinguish the parts of the cluster that perform overhead tasks and do not accept workloads, so the reporting model cannot find the subscribed and nonsubscribed nodes. Therefore, for RHOCP version 3.11, you can assume that approximately 15% of the subscription data reported by the subscriptions service is overhead for the nonsubscribed nodes that perform infrastructure-related tasks. This percentage is based on analysis of cluster overhead in RHOCP version 3 installations. In this particular case, usage results that show up to 15% over capacity are likely to still be in compliance.

3.2.4. Red Hat OpenShift Container Platform or Red Hat OpenShift Dedicated with a pay-as-you-go On-Demand subscription

  • RHOCP or OpenShift Dedicated 4.7 and later

The subscriptions service tracks RHOCP or OpenShift Dedicated 4.7 and later usage from a pay-as-you-go On-Demand subscription in core hours, a measurement of cluster size in CPU cores over a range of time. For an OpenShift Dedicated On-Demand subscription, consumption of control plane resources by the availability of the service instance is tracked in instance hours. The subscriptions service ultimately aggregates all cluster core hour and instance hour data in the account into a monthly total, the unit of time that is used by the billing service for Red Hat Marketplace.

As described in the information about RHOCP 4.1 and later, The subscriptions service recognizes and tracks only the parts of the cluster that contain compute nodes, also commonly called worker nodes.

3.2.5. Red Hat OpenShift Service on AWS Hosted Control Planes with a pre-paid plus On-Demand subscription

The subscriptions service tracks Red Hat OpenShift Service on AWS Hosted Control Planes (ROSA Hosted Control Planes) usage from a pre-paid plus On-Demand subscription in vCPU hours and in control plane hours.

  • A vCPU hour is a measurement of availability for computational activity on one virtual core (as defined by the subscription terms) for a total of one hour, measured to the granularity of the meter that is used. For ROSA Hosted Control Planes, availability for computational activity is the availability of the vCPUs for the ROSA Hosted Control Planes subscribed clusters over time. A subscribed cluster is comprised of subscribed nodes, which are the noninfrastructure nodes plus schedulable master nodes that are available for workload use, if applicable. Note that for ROSA Hosted Control Planes, schedulable master nodes are not applicable, unlike other products that also use this measurement. The vCPUs that are available to run the workloads for a subscribed cluster contribute to the vCPU hour count.
  • A control plane hour is a measurement of the availability of the control plane. With ROSA Hosted Control Planes, each cluster has a dedicated control plane that is isolated in a ROSA Hosted Control Planes service account that is owned by Red Hat.

3.3. Red Hat Cloud Services

Because the services in the Red Hat Cloud Services portfolio consume different types of resources while handling different types of workloads, the subscriptions service tracks usage of these services in different ways.

3.3.1. Red Hat OpenShift AI with a pay-as-you-go On-Demand subscription

The subscriptions service tracks Red Hat OpenShift AI (RHOAI) in vCPU hours, a measurement of availability for computational activity on one virtual core (as defined by the subscription terms), for a total of one hour, measured to the granularity of the meter that is used. For RHOAI pay-as-you-go On-Demand subscription usage, the availability for computational activity is the availability of the cluster over time.

The subscriptions service ultimately aggregates all cluster vCPU hour data in the account into a monthly total, the unit of time that is used by the billing service for the cloud provider marketplace.

3.3.2. Red Hat Advanced Cluster Security for Kubernetes with a pay-as-you-go On-Demand subscription

The subscriptions service tracks Red Hat Advanced Cluster Security for Kubernetes (RHACS) in vCPU hours, a measurement of availability for computational activity on one virtual core (as defined by the subscription terms), for a total of one hour, measured to the granularity of the meter that is used. For RHACS pay-as-you-go On-Demand subscription usage, the availability for computational activity is the availability of the cluster over time.

The subscriptions service aggregates all cluster vCPU hour data and then sums the data for each cluster where RHACS is running into a monthly total, the unit of time that is used by the billing service for the cloud provider marketplace.

Additional resources

Red Hat logoGithubRedditYoutubeTwitter

Learn

Try, buy, & sell

Communities

About Red Hat Documentation

We help Red Hat users innovate and achieve their goals with our products and services with content they can trust.

Making open source more inclusive

Red Hat is committed to replacing problematic language in our code, documentation, and web properties. For more details, see the Red Hat Blog.

About Red Hat

We deliver hardened solutions that make it easier for enterprises to work across platforms and environments, from the core datacenter to the network edge.

© 2024 Red Hat, Inc.