4.2. Debezium MongoDB コネクターの仕組み


コネクターがサポートする MongoDB トポロジーの概要は、アプリケーションを計画するときに役立ちます。

MongoDB コネクターが設定およびデプロイされると、シードアドレスの MongoDB サーバーに接続して起動し、利用可能な各レプリカセットの詳細を判断します。各レプリカセットには独立した独自の oplog があるため、コネクターはレプリカセットごとに個別のタスクの使用を試みます。コネクターは、使用するタスクの最大数を制限でき、十分なタスクが利用できない場合は、コネクターは各タスクに複数のレプリカセットを割り当てます。ただし、タスクはレプリカセットごとに個別のスレッドを使用します。

注記

シャードクラスターに対してコネクターを実行する場合は、レプリカセットの数よりも大きい tasks.max の値を使用します。これにより、コネクターはレプリカセットごとに 1 つのタスクを作成でき、Kafka Connect が利用可能なワーカープロセス全体でタスクを調整、配布、および管理できるようにします。

Debezium MongoDB コネクターの仕組みの詳細は、以下を参照してください。

4.2.1. Debezium コネクターでサポートされる MongoDB トポロジー

MongoDB コネクターは以下の MongoDB トポロジーをサポートします。

MongoDB レプリカセット

Debezium MongoDB コネクターは単一の MongoDB レプリカセットから変更をキャプチャーできます。実稼働のレプリカセットには、少なくとも 3 つのメンバー が必要です。

レプリカセットで MongoDB コネクターを使用するには、コネクターの mongodb.hosts プロパティーを使用して、1 つ以上のレプリカセットサーバーのアドレスを シードアドレス として提供します。コネクターはこれらのシードを使用してレプリカセットに接続した後、レプリカセットからメンバーの完全セットを取得し、どのメンバーがプライマリーであるかを認識します。コネクターは、プライマリーに接続するタスクを開始し、プライマリーの oplog から変更をキャプチャーします。レプリカセットが新しいプライマリーを選出すると、タスクは自動的に新しいプライマリーに切り替えます。

注記

MongoDB がプロキシーと面する場合 (Docker on OS X や Windows などのように)、クライアントがレプリカセットに接続し、メンバーを検出すると、MongoDB クライアントはプロキシーを有効なメンバーから除外し、プロキシーを経由せずに直接メンバーに接続しようとし、失敗します。

このような場合、コネクターのオプションの mongodb.members.auto.discover 設定プロパティーを false に設定して、コネクターにメンバーシップの検出を見送るように指示し、代わりに最初のシードアドレス (mongodb.hosts プロパティーによって指定) をプライマリーノードとして使用するよう指示します。これは機能する可能性がありますが、選出が行われるときに問題が発生します。

MongoDB のシャードクラスター

MongoDB のシャードクラスター は以下で設定されます。

  • レプリカセットとしてデプロイされる 1 つ以上のシャード
  • クラスターの設定サーバーとして動作する個別のレプリカセット。
  • クライアントが接続し、要求を適切なシャードにルーティングする 1 つ以上の ルーター ( mongos とも呼ばれます)。

    シャードクラスターで MongoDB コネクターを使用するには、コネクターを設定サーバーレプリカセットのホストアドレスで設定します。コネクターがこのレプリカセットに接続すると、シャードクラスターの設定サーバーとして動作していることを検出し、クラスターでシャードとして使用される各レプリカセットに関する情報を検出した後、各レプリカセットから変更をキャプチャーするために別のタスクを起動します。新しいシャードがクラスターに追加される場合または既存のシャードが削除される場合、コネクターはそのタスクを自動的に調整します。

MongoDB スタンドアロンサーバー
スタンドアロンサーバーには oplog がないため、MongoDB コネクターはスタンドアロン MongoDB サーバーの変更を監視できません。スタンドアロンサーバーが 1 つのメンバーを持つレプリカセットに変換されると、コネクターが動作します。
注記

MongoDB は、実稼働でのスタンドアロンサーバーの実行を推奨しません。詳細は MariaDB のドキュメント を参照してください。

4.2.2. Debezium MongoDB コネクターでレプリカセットおよびシャードクラスターに論理名を使用する方法

コネクター設定プロパティー mongodb.name は、MongoDB レプリカセットまたはシャードされたクラスターの 論理名 として提供されます。コネクターは、論理名をさまざまな方法で使用します。すべてトピック名のプレフィックとして使用したり、各レプリカセットの oplog の位置を記録するときに一意の識別子として使用したりします。

各 MongoDB コネクターに、ソース MongoDB システムを意味する一意の論理名を命名する必要があります。論理名は、アルファベットまたはアンダースコアで始まり、残りの文字を英数字またはアンダースコアとすることが推奨されます。

4.2.3. Debezium MongoDB コネクターでのスナップショットの実行方法

タスクがレプリカセットを使用して起動すると、コネクターの論理名とレプリカセット名を使用して、コネクターが変更の読み取りを停止した位置を示す オフセット を検出します。オフセットが検出され、oplog に存在する場合、タスクは記録されたオフセットの位置から即座に streaming changes を続行します。

ただし、オフセットが見つからない場合や、oplog にその位置が含まれなくなった場合、タスクは スナップショット を実行してレプリカセットの内容の現在の状態を取得する必要があります。このプロセスは、oplog の現在の位置を記録して開始され、オフセット (スナップショットが開始されたことを示すフラグとともに) として記録します。その後、タスクは各コレクションをコピーし、できるだけ多くのスレッドを生成し (snapshot.max.threads 設定プロパティーの値まで)、この作業を並行して行います。コネクターは、確認した各ドキュメントの個別の 読み取りイベント を記録します。読み取りイベントにはオブジェクトの識別子、オブジェクトの完全な状態、およびオブジェクトが見つかった MongoDB レプリカセットの ソース 情報が含まれます。ソース情報には、スナップショット中にイベントが生成されたことを示すフラグも含まれます。

このスナップショットは、コネクターのフィルターと一致するすべてのコレクションがコピーされるまで継続されます。タスクのスナップショットが完了する前にコネクターが停止した場合は、コネクターを再起動すると、再びスナップショットを開始します。

注記

コネクターがレプリカセットのスナップショットを実行している間は、タスクの再割り当てと再設定をしないようにします。コネクターはスナップショットの進捗とともにメッセージをログに記録します。最大限の制御を行う場合は、各コネクターに対して Kafka Connect の個別のクラスターを実行します。

4.2.4. Debezium MongoDB コネクターでの変更イベントレコードのストリーミング方法

レプリカセットレコードのコネクタータスクがオフセットを取得すると、オフセットを使用して変更のストリーミングを開始する oplog の位置を判断します。その後、タスクはレプリカセットのプライマリーノードに接続し、その位置から変更のストリーミングを開始します。すべての作成、挿入、および削除操作を処理して Debezium の 変更イベント に変換します。各変更イベントには操作が検出された oplog の位置が含まれ、コネクターはこれを最新のオフセットとして定期的に記録します。オフセットが記録される間隔は、Kafka Connect ワーカー設定プロパティーである offset.flush.interval.ms によって制御されます。

コネクターが正常に停止されると、処理された最後のオフセットが記録され、再起動時にコネクターは停止した場所から続行されます。しかし、コネクターのタスクが予期せず終了した場合、最後にオフセットが記録された後、最後のオフセットが記録される前に、タスクによってイベントが処理および生成されることがあります。再起動時に、コネクターは最後に 記録された オフセットから開始し、クラッシュの前に生成された同じイベントを生成する可能性があります。

注記

すべてが通常どおり動作している場合、Kafka コンシューマーは実際にすべてのメッセージを 1 度だけ 確認します。ただし、問題が発生した場合は、Kafka はコンシューマーが 少なくとも 1 度 各メッセージを確認することのみを保証します。したがって、コンシューマーが複数回メッセージを確認することを想定する必要があります。

前述のように、コネクタータスクは常にレプリカセットのプライマリーノードを使用して oplog からの変更をストリーミングし、コネクターが可能な限り最新の操作を確認できるようにし、代わりにセカンダリーが使用された場合よりも短いレイテンシーで変更をキャプチャーできるようにします。レプリカセットが新しいプライマリーを選出すると、コネクターは即座に変更のストリーミングを停止し、新しいプライマリーに接続して、同じ場所にある新しいプライマリーノードから変更のストリーミングを開始します。同様に、コネクターとレプリカセットメンバーとの通信で問題が発生した場合は、レプリカセットが過剰にならないように指数バックオフを使用して再接続を試みます。接続の確立後、停止した場所から変更のストリーミングを続行します。これにより、コネクターはレプリカセットメンバーシップの変更を動的に調整でき、通信障害を自動的に処理できます。

要約すると、MongoDB コネクターはほとんどの状況で実行を継続します。通信の問題により、問題が解決されるまでコネクターが待機する可能性があります。

4.2.5. Debezium MongoDB 変更イベントレコードを受信する Kafka トピックのデフォルト名

MongoDB コネクターは、各コレクションのドキュメントに対するすべての挿入、更新、および削除操作のイベントを 1 つの Kafka トピックに書き込みます。Kafka トピックの名前は常に logicalName.databaseName.collectionName の形式を取ります。logicalName は、mongodb.name 設定プロパティーで指定されるコネクターの 論理名databaseName は操作が発生したデータベースの名前、collectionName は影響を受けるドキュメントが存在する MongoDB コレクションの名前です。

たとえば、products, products_on_hand, customers, and orders の 4 つのコレクションで設定される inventory データベースを含む MongoDB レプリカセットについて考えてみましょう。コネクターが監視するこのデータベースの論理名が fulfillment である場合、コネクターは以下の 4 つの Kafka トピックでイベントを生成します。

  • fulfillment.inventory.products
  • fulfillment.inventory.products_on_hand
  • fulfillment.inventory.customers
  • fulfillment.inventory.orders

トピック名には、レプリカセット名やシャード名が含まれないことに注意してください。その結果、シャード化コレクションへの変更 (各シャードにコレクションのドキュメントのサブセットが含まれる) はすべて同じ Kafka トピックに移動します。

Kafka を設定して、必要に応じてトピックを 自動作成 できます。そうでない場合は、Kafka 管理ツールを使用してコネクターを起動する前にトピックを作成する必要があります。

4.2.6. イベントキーが Debezium MongoDB コネクターのトピックパーティション設定を制御する方法

MongoDB コネクターは、イベントのトピックパーティションを明示的に決定しません。代わりに、Kafka はイベントキーに基づいてトピックのパーティションを作成する方法を決定できます。Kafka Connect ワーカー設定に Partitioner 実装の名前を定義することで、Kafka のパーティショニングロジックを変更できます。

Kafka は、1 つのトピックパーティションに書き込まれたイベントのみ、合計順序を維持します。キーでイベントのパーティションを行うと、同じキーを持つすべてのイベントは常に同じパーティションに移動します。これにより、特定のドキュメントのすべてのイベントが常に完全に順序付けされます。

4.2.7. トランザクション境界を表す Debezium MongoDB コネクターによって生成されたイベント

Debezium は、トランザクションメタデータ境界を表すイベントを生成でき、データイベントメッセージを補完できます。

Debezium がトランザクションメタデータを受信する場合の制限

Debezium は、コネクターのデプロイ後に発生するトランザクションに対してのみメタデータを登録し、受信します。コネクターをデプロイする前に発生するトランザクションのメタデータは利用できません。

Debezium はすべてのトランザクションの BEGIN および END に対して、以下のフィールドが含まれるイベントを生成します。

status
BEGIN または END
id
一意のトランザクション識別子の文字列表現。
event_count (END イベント用)
トランザクションによって出力されるイベントの合計数。
data_collections (END イベント用)
指定のデータコレクションからの変更によって出力されたイベントの数を提供する data_collectionevent_count のペアの配列。

以下の例では、一般的なメッセージを示します。

{
  "status": "BEGIN",
  "id": "1462833718356672513",
  "event_count": null,
  "data_collections": null
}

{
  "status": "END",
  "id": "1462833718356672513",
  "event_count": 2,
  "data_collections": [
    {
      "data_collection": "rs0.testDB.collectiona",
      "event_count": 1
    },
    {
      "data_collection": "rs0.testDB.collectionb",
      "event_count": 1
    }
  ]
}

transaction.topic オプションでオーバーライドされない限り、トランザクションイベントは database.server.name.transaction という名前のトピックに書き込まれます。

変更データイベントのエンリッチメント

トランザクションメタデータを有効にすると、データメッセージ Envelope は新しい transaction フィールドでエンリッチされます。このフィールドは、複合フィールドの形式ですべてのイベントに関する情報を提供します。

id
一意のトランザクション識別子の文字列表現。
total_order
トランザクションによって生成されたすべてのイベントを対象とするイベントの絶対位置。
data_collection_order
トランザクションによって出力されたすべてのイベントを対象とするイベントのデータコレクションごとの位置。

以下は、メッセージの内容の例です。

{
  "patch": null,
  "after": "{\"_id\" : {\"$numberLong\" : \"1004\"},\"first_name\" : \"Anne\",\"last_name\" : \"Kretchmar\",\"email\" : \"annek@noanswer.org\"}",
  "source": {
...
  },
  "op": "c",
  "ts_ms": "1580390884335",
  "transaction": {
    "id": "1462833718356672513",
    "total_order": "1",
    "data_collection_order": "1"
  }
}
Red Hat logoGithubRedditYoutubeTwitter

詳細情報

試用、購入および販売

コミュニティー

Red Hat ドキュメントについて

Red Hat をお使いのお客様が、信頼できるコンテンツが含まれている製品やサービスを活用することで、イノベーションを行い、目標を達成できるようにします。

多様性を受け入れるオープンソースの強化

Red Hat では、コード、ドキュメント、Web プロパティーにおける配慮に欠ける用語の置き換えに取り組んでいます。このような変更は、段階的に実施される予定です。詳細情報: Red Hat ブログ.

会社概要

Red Hat は、企業がコアとなるデータセンターからネットワークエッジに至るまで、各種プラットフォームや環境全体で作業を簡素化できるように、強化されたソリューションを提供しています。

© 2024 Red Hat, Inc.