7.2. Debezium PostgreSQL コネクターの仕組み
Debezium PostgreSQL コネクターを最適に設定および実行するには、コネクターによるスナップショットの実行方法、変更イベントのストリーム方法、Kafka トピック名の決定方法、およびメタデータの使用方法を理解すると便利です。
詳細は以下を参照してください。
7.2.1. PostgreSQL コネクターのセキュリティー
Debezium コネクターを使用して PostgreSQL データベースから変更をストリーミングするには、コネクターは特定の権限がデータベースで必要になります。必要な権限を付与する方法の 1 つとして、ユーザーに superuser
権限を付与する方法がありますが、これにより PostgreSQL データが不正アクセスによって公開される可能性ああります。Debezium ユーザーに過剰な権限を付与するのではなく、特定の特権を付与する専用の Debezium レプリケーションユーザーを作成することが推奨されます。
Debezium PostgreSQL ユーザーの権限設定の詳細は、パーミッションの設定 を参照してください。PostgreSQL の論理レプリケーションセキュリティーの詳細は、PostgreSQL のドキュメント を参照してください。
7.2.2. Debezium PostgreSQL コネクターによるデータベーススナップショットの実行方法
ほとんどの PostgreSQL サーバーは、WAL セグメントにデータベースの完全な履歴を保持しないように設定されています。つまり、PostgreSQL コネクターは WAL のみを読み取ってもデータベースの履歴全体を確認できません。そのため、コネクターが最初に起動すると、データベースの最初の 整合性スナップショット が実行されます。スナップショットを実行するためのデフォルト動作は、以下の手順で設定されます。この動作を変更するには、snapshot.mode
コネクター設定プロパティー を initial
以外の値に設定します。
-
SERIALIZABLE、READ ONLY、DEFERRABLE 分離レベルでトランザクションを開始し、このトランザクションでの後続の読み取りがデータの単一バージョンに対して行われるようにします。他のクライアントによる後続の
INSERT
、UPDATE
、およびDELETE
操作によるデータの変更は、このトランザクションでは確認できません。 - サーバーのトランザクションログの現在の位置を読み取ります。
-
データベーステーブルとスキーマをスキャンし、各行の
READ
イベントを生成し、そのイベントを適切なテーブル固有の Kafka トピックに書き込みます。 - トランザクションをコミットします。
- コネクターオフセットにスナップショットの正常な完了を記録します。
コネクターに障害が発生した場合、コネクターのリバランスが発生した場合、または 1. の後で 6. の完了前に停止した場合、コネクターは再起動後に新しいスナップショットを開始します。コネクターによって最初のスナップショットが完了した後、PostgreSQL コネクターは 3. で読み取りした位置からストリーミングを続行します。これにより、コネクターが更新を見逃さないようします。何らかの理由でコネクターが再び停止した場合、コネクターは再起動後に最後に停止した位置から変更のストリーミングを続行します。
設定 | 説明 |
---|---|
|
コネクターは起動時に常にスナップショットを実行します。スナップショットが完了した後、コネクターは上記の手順の 3. から変更のストリーミングを続行します。このモードは、以下のような状況で使用すると便利です。
|
|
コネクターはスナップショットを実行しません。このようにコネクターを設定したすると、起動時の動作は次のようになります。Kafka オフセットトピックに以前保存された LSN がある場合、コネクターはその位置から変更をストリーミングを続行します。保存された LSN がない場合、コネクターはサーバーで PostgreSQL の論理レプリケーションスロットが作成された時点で変更のストリーミングを開始します。 |
| コネクターはデータベースのスナップショットを実行し、変更イベントレコードをストリーミングする前に停止します。コネクターが起動していても、停止前にスナップショットを完了しなかった場合、コネクターはスナップショットプロセスを再起動し、スナップショットの完了時に停止します。 |
| 非推奨、全てのモードがロックレスになります。 |
7.2.2.1. アドホックスナップショット
アドホックスナップショットの使用はテクノロジープレビュー機能です。テクノロジープレビュー機能は、Red Hat の実稼働環境のサービスレベルアグリーメント (SLA) ではサポートされません。また、機能的に完全ではない可能性があるため、Red Hat はテクノロジープレビュー機能を実稼働環境に実装することは推奨しません。テクノロジープレビューの機能は、最新の技術をいち早く提供して、開発段階で機能のテストやフィードバックの収集を可能にするために提供されます。サポート範囲の詳細は、テクノロジープレビュー機能のサポート範囲 を参照してください。
デフォルトでは、コネクターは初回スナップショット操作の開始後にのみ実行されます。通常の状況では、この最初のスナップショットが作成されると、コネクターではスナップショットプロセスは繰り返し処理されません。コネクターがキャプチャーする今後の変更イベントデータはストリーミングプロセス経由でのみ行われます。
ただし、場合によっては、最初のスナップショット中にコネクターを取得したデータが古くなったり、失われたり、または不完全となったり可能性があります。テーブルデータを再キャプチャーするメカニズムを提供するため、Debezium にはアドホックスナップショットを実行するオプションがあります。データベースで以下が変更されたことで、アドホックスナップショットが実行される場合があります。
- コネクター設定は、異なるテーブルセットをキャプチャーするように変更されます。
- Kafka トピックを削除して、再構築する必要があります。
- 設定エラーや他の問題が原因で、データの破損が発生します。
アドホックと呼ばれるスナップショット を開始することで、以前にスナップショットをキャプチャーしたテーブルのスナップショットを再実行できます。アドホックスナップショットには、シグナルテーブル を使用する必要があります。シグナルリクエストを Debezium シグナルテーブルに送信して、アドホックスナップショットを開始します。
既存のテーブルのアドホックスナップショットを開始すると、コネクターはテーブルにすでに存在するトピックにコンテンツを追加します。既存のトピックが削除された場合には、トピックの自動作成 が有効になっているのであれば、Debezium は自動的にトピックを作成できます。
アドホックのスナップショットシグナルは、スナップショットに追加するテーブルを指定します。スナップショットは、データベースの内容全体をキャプチャーしたり、データベース内のテーブルのサブセットのみをキャプチャーしたりできます。
execute-snapshot
メッセージをシグナルテーブルに送信してキャプチャーするテーブルを指定します。以下の表で説明されているように、run-snapshot
シグナルのタイプを incremental
に設定し、スナップショットに追加するテーブルの名前を指定します。
フィールド | デフォルト | 値 |
---|---|---|
|
|
実行するスナップショットのタイプを指定します。 |
| 該当なし |
スナップショットを作成するテーブルの完全修飾名が含まれる配列。 |
アドホックスナップショットのトリガー
execute-snapshot
シグナルタイプのエントリーをシグナルテーブルに追加して、アドホックスナップショットを開始します。コネクターがメッセージを処理した後に、スナップショット操作を開始します。スナップショットプロセスは、最初と最後のプライマリーキーの値を読み取り、これらの値を各テーブルの開始ポイントおよびエンドポイントとして使用します。テーブルのエントリー数と設定されたチャンクサイズに基づいて、Debezium はテーブルをチャンクに分割し、チャンクごとに 1 度に 1 つずつスナップショットを順番に作成していきます。
現在、execute-snapshot
アクションタイプは 増分スナップショット のみをトリガーします。詳細は、スナップショットの増分を参照してください。
7.2.2.2. 増分スナップショット
増分スナップショットの使用はテクノロジープレビュー機能です。テクノロジープレビュー機能は、Red Hat の実稼働環境のサービスレベルアグリーメント (SLA) ではサポートされません。また、機能的に完全ではない可能性があるため、Red Hat はテクノロジープレビュー機能を実稼働環境に実装することは推奨しません。テクノロジープレビューの機能は、最新の技術をいち早く提供して、開発段階で機能のテストやフィードバックの収集を可能にするために提供されます。サポート範囲の詳細は、テクノロジープレビュー機能のサポート範囲 を参照してください。
スナップショットを柔軟に管理するため、Debezium には 増分スナップショット と呼ばれる補助スナップショットメカニズムが含まれています。増分スナップショットは、Debezium コネクターにシグナルを送信するための Debezium メカニズムに依存します。
増分スナップショットでは、最初のスナップショットのように、データベースの完全な状態を一度にすべてキャプチャーする代わりに、一連の設定可能なチャンクで各テーブルを段階的にキャプチャーします。スナップショットがキャプチャーするテーブルと、各チャンクのサイズ を指定できます。チャンクのサイズにより、データベース上の各フェッチ操作中にスナップショットで収集される行数が決まります。増分スナップショットのデフォルトのチャンクサイズは 1 KB です。
増分スナップショットが進むと、Debezium はウォーターマークを使用して進捗を追跡し、キャプチャーする各テーブル行のレコードを管理します。この段階的なアプローチでは、標準の初期スナップショットプロセスと比較して、以下の利点があります。
- スナップショットが完了するまで、ストリーミングストリーミングを延期する代わりに、ストリームしたデータキャプチャーと並行して増分スナップショットを実行できます。コネクターはスナップショットプロセス全体で変更ログからのほぼリアルタイムイベントをキャプチャーし続け、他の操作はブロックしません。
- 増分スナップショットの進捗が中断された場合は、データを失うことなく再開できます。プロセスが再開すると、スナップショットは最初からテーブルをキャプチャーするのではなく、停止した時点から開始します。
-
いつでも増分スナップショットを実行し、必要に応じてプロセスを繰り返してデータベースの更新に適合できます。たとえば、コネクター設定を変更してテーブルを
table.include.list
プロパティーに追加した後にスナップショットを再実行します。
増分スナップショットプロセス
増分スナップショットを実行する場合には、Debezium は各テーブルをプライマリーキー別に分類して、設定されたチャンクサイズ に基づいてテーブルをチャンクに分割します。チャンクごとに作業し、テーブルの行ごとにチャンクでキャプチャーします。キャプチャーする行ごとに、スナップショットは READ
イベントを出力します。そのイベントは、対象となるチャンクのスナップショットを開始する時の行の値を表します。
スナップショットの作成が進むにつれ、他のプロセスがデータベースへのアクセスを継続し、テーブルレコードが変更される可能性があります。このような変更を反映させるように、通常通りに INSERT
、UPDATE
、DELETE
操作がトランザクションログにコミットされます。同様に、継続中の Debezium ストリーミングプロセスは、これらの変更イベントを検出し、対応する変更イベントレコードを Kafka に出力します。
Debezium を使用してプライマリーキーが同じレコード間での競合を解決する方法
場合によっては、ストリーミングプロセスが出力する UPDATE
または DELETE
イベントを順番に受信できます。つまり、ストリーミングプロセスは、スナップショットがその行の READ
イベントが含まれるチャンクをキャプチャーする前に、テーブルの行を変更するイベントを生成する可能性があります。スナップショットが最終的に対象の行にあった READ
イベントを出力すると、その値はすでに置き換えられています。Debezium は、シーケンスが到達する増分スナップショットイベントが正しい論理順序で処理されるように、競合を解決するためにバッファースキームを使用します。スナップショットのイベント間で競合が発生し、ストリームされたイベントが解決されてからでないと、Debezium はイベントのレコードを Kafka に送信しません。
スナップショットウィンドウ
遅れて入ってきた READ
イベントと、同じテーブルの行を変更するストリーミングイベント間の競合の解決を容易にするために、Debezium は スナップショットウィンドウ と呼ばれるものを使用します。スナップショットウィンドウは、増分スナップショットが指定のテーブルチャンクのデータをキャプチャーしている途中に、間隔を決定します。チャンクのスナップショットウィンドウを開く前に、Debezium は通常の動作に従い、トランザクションログから直接ターゲットの Kafka トピックにイベントをダウンストリームに出力します。ただし、特定のチャンクのスナップショットが開放された瞬間から終了するまで、Debezium は重複除去のステップを実行して、プライマリーキーが同じイベント間での競合を解決します。
データコレクションごとに、Debezium は 2 種類のイベントを出力し、それらの両方のレコードを単一の宛先 Kafka トピックに保存します。テーブルから直接キャプチャーするスナップショットレコードは、READ
操作として出力されます。その間、ユーザーはデータコレクションのレコードの更新を続け、各コミットを反映するようにトランザクションログが更新されるので、Debezium は変更ごとに UPDATE
または DELETE
操作を出力します。
スナップショットウィンドウが開放され、Debezium がスナップショットチャンクの処理を開始すると、スナップショットレコードをメモリーバッファーに提供します。スナップショットウィンドウ中に、バッファー内の READ
イベントのプライマリーキーは、受信ストリームイベントのプライマリーキーと比較されます。一致するものが見つからない場合、ストリーミングされたイベントレコードが Kafka に直接送信されます。Debezium が一致を検出すると、バッファーされた READ
イベントを破棄し、ストリーミングされたレコードを宛先トピックに書き込みます。これは、ストリーミングされたイベントが静的スナップショットイベントよりも論理的に優先されるためです。チャンクのスナップショットウィンドウが終了すると、バッファーに含まれるのは、関連するトランザクションログイベントが存在しない READ
イベントのみです。Debezium は、これらの残りの READ
イベントをテーブルの Kafka トピックに出力します。
コネクターは各スナップショットチャンクにプロセスを繰り返します。
増分スナップショットのトリガー
現在、増分スナップショットを開始する唯一の方法は、アドホックスナップショットシグナル をソースデータベースのシグナルテーブルに送信することです。SQL INSERT
クエリーとしてテーブルにシグナルを送信します。Debezium がシグナルテーブルの変更を検出すると、シグナルを読み取り、要求されたスナップショット操作を実行します。
送信するクエリーはスナップショットに追加するテーブルを指定し、必要に応じてスナップショット操作の種類を指定します。現在、スナップショット操作で唯一の有効なオプションはデフォルト値の incremental
だけです。
スナップショットに追加するテーブルを指定するには、テーブルをリスト表示する data-collections
アレイを指定します (例:
{"data-collections": ["public.MyFirstTable", "public.MySecondTable"]}
)。
増分スナップショットシグナルの data-collections
アレイにはデフォルト値がありません。data-collections
アレイが空である場合には、アクションが不要であり、スナップショットを実行しないことが、Debezium で検出されます。
前提条件
- シグナルデータコレクションがソースのデータベースに存在し、コネクターはこれをキャプチャーするように設定されています。
-
シグナルデータコレクションは
signal.data.collection
プロパティーで指定されます。
手順
SQL クエリーを送信し、アドホック増分スナップショット要求をシグナルテーブルに追加します。
INSERT INTO _<signalTable>_ (id, type, data) VALUES (_'<id>'_, _'<snapshotType>'_, '{"data-collections": ["_<tableName>_","_<tableName>_"],"type":"_<snapshotType>_"}');
以下に例を示します。
INSERT INTO myschema.debezium_signal (id, type, data) VALUES('ad-hoc-1', 'execute-snapshot', '{"data-collections": ["schema1.table1", "schema2.table2"],"type":"incremental"}');
コマンドの
id
、type
、およびdata
パラメーターの値は、シグナルテーブルのフィールド に対応します。以下の表では、これらのパラメーターについて説明しています。
表7.3 シグナルテーブルに増分スナップショットシグナルを送信する SQL コマンドのフィールドの説明 値 説明 myschema.debezium_signal
ソースデータベースにあるシグナルテーブルの完全修飾名を指定します。
ad-hoc-1
id
パラメーターは、シグナルリクエストのID
識別子として割り当てられる任意の文字列を指定します。
この文字列を使用して、シグナルテーブルのエントリーへのログメッセージを特定します。Debezium はこの文字列を使用しません。代わりに、スナップショット作成中に、Debezium は独自のID
文字列をウォーターマークシグナルとして生成します。execute-snapshot
type
パラメーターを指定し、シグナルがトリガーする操作を指定します。
data-collections
スナップショットに含めるテーブル名の配列を指定するシグナルの
data
フィールドの必須コンポーネント。
配列は、signal.data.collection
設定プロパティーにコネクターのシグナルテーブルの名前を指定するときに使用する形式で、完全修飾名別にテーブルをリスト表示します。incremental
実行するスナップショット操作の種類指定するシグナルの
data
フィールドの任意のtype
コンポーネント。
現在、唯一の有効なオプションはデフォルト値incremental
だけです。
シグナルテーブルに送信する SQL クエリーでのtype
値の指定は任意です。
値を指定しない場合には、コネクターは増分スナップショットを実行します。
以下の例は、コネクターによってキャプチャーされる増分スナップショットイベントの JSON を示しています。
例: 増分スナップショットイベントメッセージ
{ "before":null, "after": { "pk":"1", "value":"New data" }, "source": { ... "snapshot":"incremental" 1 }, "op":"r", 2 "ts_ms":"1620393591654", "transaction":null }
項目 | フィールド名 | 説明 |
---|---|---|
1 |
|
実行するスナップショット操作タイプを指定します。 |
2 |
|
イベントタイプを指定します。 |
PostgreSQL の Debezium コネクターでは、増分スナップショットの実行中のスキーマの変更はサポートしません。増分スナップショットの開始 前にスキーマの変更が行われ、シグナルが送信された後にスキーマの変更が行われた場合は、スキーマの変更を正しく処理するために、パススルーの設定オプション database.autosave
が conservative
に設定されます。
7.2.3. Debezium PostgreSQL コネクターによる変更イベントレコードのストリーミング方法
通常、PostgreSQL コネクターは、接続されている PostgreSQL サーバーから変更をストリーミングするのに大半の時間を費やします。このメカニズムは、PostgreSQL のレプリケーションプロトコル に依存します。このプロトコルにより、クライアントはログシーケンス番号 (LSN) と呼ばれる特定の場所で変更がサーバーのトランザクションログにコミットされる際に、サーバーから変更を受信することができます。
サーバーがトランザクションをコミットするたびに、別のサーバープロセスが 論理デコードプラグイン からコールバック関数を呼び出します。この関数はトランザクションからの変更を処理し、特定の形式 (Debezium プラグインの場合は Protobuf または JSON) に変換して、出力ストリームに書き込みます。その後、クライアントは変更を使用できます。
Debezium PostgreSQL コネクターは PostgreSQL クライアントとして動作します。コネクターが変更を受信すると、イベントを Debezium の create、update、または delete イベントに変換します。これには、イベントの LSN が含まれます。PostgreSQL コネクターは、同じプロセスで実行されている Kafka Connect フレームワークにレコードのこれらの変更イベントを転送します。Kafka Connect プロセスは、変更イベントレコードを適切な Kafka トピックに生成された順序で非同期に書き込みます。
Kafka Connect は定期的に最新の オフセット を別の Kafka トピックに記録します。オフセットは、各イベントに含まれるソース固有の位置情報を示します。PostgreSQL コネクターでは、各変更イベントに記録された LSN がオフセットです。
Kafka Connect が正常にシャットダウンすると、コネクターを停止し、すべてのイベントレコードを Kafka にフラッシュして、各コネクターから受け取った最後のオフセットを記録します。Kafka Connect の再起動時に、各コネクターの最後に記録されたオフセットを読み取り、最後に記録されたオフセットで各コネクターを起動します。コネクターを再起動すると、PostgreSQL サーバーにリクエストを送信し、その位置の直後に開始されるイベントを送信します。
PostgreSQL コネクターは、論理デコードプラグインによって送信されるイベントの一部としてスキーマ情報を取得します。ただし、コネクターはプライマリーキーが設定される列に関する情報を取得しません。コネクターは JDBC メタデータ (サイドチャネル) からこの情報を取得します。テーブルのプライマリーキー定義が変更される場合 (プライマリーキー列の追加、削除、または名前変更によって)、変更される場合、JDBC からのプライマリーキー情報が論理デコードプラグインが生成する変更イベントと同期されないごくわずかな期間が発生します。このごくわずかな期間に、キーの構造が不整合な状態でメッセージが作成される可能性があります。不整合にならないようにするには、以下のようにプライマリーキーの構造を更新します。
- データベースまたはアプリケーションを読み取り専用モードにします。
- Debezium に残りのイベントをすべて処理させます。
- Debezium を停止します。
- 関連するテーブルのプライマリーキー定義を更新します。
- データベースまたはアプリケーションを読み取り/書き込みモードにします。
- Debezium を再起動します。
PostgreSQL 10+ 論理デコードサポート (pgoutput
)
PostgreSQL 10+ の時点で、PostgreSQL でネイティブにサポートされる pgoutput
と呼ばれる論理レプリケーションストリームモードがあります。つまり、Debezium PostgreSQL コネクターは追加のプラグインを必要とせずにそのレプリケーションストリームを使用できます。これは、プラグインのインストールがサポートされないまたは許可されない環境で特に便利です。
詳細は、PostgreSQL の設定 を参照してください。
7.2.4. Debezium PostgreSQL の変更イベントレコードを受信する Kafka トピックのデフォルト名
デフォルトでは、PostgreSQL コネクターは、テーブルで発生するすべての INSERT
、UPDATE
、DELETE
操作の変更イベントを、そのテーブルに固有の単一の Apache Kafka トピックに書き込みます。コネクターは以下の規則を使用して変更イベントトピックに名前を付けます。
serverName.schemaName.tableName
以下のリストは、デフォルト名のコンポーネントの定義を示しています。
- serverName
-
database.server.name
コネクター設定プロパティーで指定したコネクターの論理名です。 - schemaName
- 変更イベントが発生したデータベーススキーマの名前。
- tableName
- 変更イベントが発生したデータベーステーブルの名前。
例えば、postgres
データベースと、products
、products_on_hand
、customers
、orders
の 4 つのテーブルを含む inventory
スキーマを持つ PostgreSQL インストレーションの変更をキャプチャするコネクターの設定において、fulfillment
が論理的なサーバー名であるとします。コネクターは以下の 4 つの Kafka トピックにレコードをストリーミングします。
-
fulfillment.inventory.products
-
fulfillment.inventory.products_on_hand
-
fulfillment.inventory.customers
-
fulfillment.inventory.orders
テーブルは特定のスキーマの一部ではなく、デフォルトの public
PostgreSQL スキーマで作成されたとします。Kafka トピックの名前は以下になります。
-
fulfillment.public.products
-
fulfillment.public.products_on_hand
-
fulfillment.public.customers
-
fulfillment.public.orders
コネクターは、同様の命名規則を適用して、トランザクション メタデータのトピックをラベル付けします。
デフォルトのトピック名が要件を満たさない場合は、カスタムトピック名を設定できます。カスタムトピック名を設定するには、論理トピックルーティング SMT に正規表現を指定します。論理トピックルーティング SMT を使用してトピックの命名をカスタマイズする方法は、トピックルーティング を参照してください。
7.2.5. Debezium PostgreSQL 変更イベントレコードのメタデータ
PostgreSQL コネクターによって生成された各レコードには、データベース変更イベント の他に、一部のメタデータも含まれています。メタデータには、サーバーでイベントが発生した場所、ソースパーティションの名前、イベントが置かれる Kafka トピックおよびパーティションの名前が含まれています。
"sourcePartition": { "server": "fulfillment" }, "sourceOffset": { "lsn": "24023128", "txId": "555", "ts_ms": "1482918357011" }, "kafkaPartition": null
-
source Partition
は、常にdatabase.server.name
コネクター設定プロパティーの設定をデフォルトとします。 sourceOffset
にはイベントが発生したサーバーの場所に関する情報が含まれています。-
lsn
はトランザクションログの PostgreSQL ログシーケンス番号 またはoffset
を表します。 -
txId
はイベント発生の原因となったサーバートランザクションの識別子を表します。 -
ts_ms
はトランザクションがコミットされたサーバー時間をエポックからの経過時間 (ミリ秒単位) で表します。
-
-
kafkaPartition
にnull
が設定されると、コネクターは特定の Kafka パーティションを使用しません。PostgreSQL コネクターは Kafka Connect パーティションを 1 つだけ使用し、生成されたイベントを 1 つの Kafka パーティションに配置します。
7.2.6. トランザクション境界を表す Debezium PostgreSQL コネクターによって生成されたイベント
Debezium は、トランザクション境界を表し、データ変更イベントメッセージをエンリッチするイベントを生成できます。
Debezium は、コネクターのデプロイ後に発生するトランザクションに対してのみメタデータを登録し、受信します。コネクターをデプロイする前に発生するトランザクションのメタデータは利用できません。
Debezium はすべてのトランザクションの BEGIN
および END
に対して、以下のフィールドが含まれるイベントを生成します。
-
status
:BEGIN
またはEND
-
id
- 一意のトランザクション識別子の文字列表現。 -
event_count
(END
イベントの場合) -トランザクションによって出力されたイベントの合計数。 -
data_collections
(END
イベントの場合): 指定のデータコレクションからの変更によって出力されたイベントの数を提供するdata_collection
とevent_count
のペアの配列。
例
{ "status": "BEGIN", "id": "571", "event_count": null, "data_collections": null } { "status": "END", "id": "571", "event_count": 2, "data_collections": [ { "data_collection": "s1.a", "event_count": 1 }, { "data_collection": "s2.a", "event_count": 1 } ] }
トランザクションイベントは、database.server.name.transaction
という名前のトピックに書き込まれます。
変更データイベントのエンリッチメント
トランザクションメタデータを有効にすると、データメッセージ Envelope
は新しい transaction
フィールドでエンリッチされます。このフィールドは、複合フィールドの形式ですべてのイベントに関する情報を提供します。
-
id
- 一意のトランザクション識別子の文字列表現。 -
total_order
- トランザクションによって生成されたすべてのイベントを対象とするイベントの絶対位置。 -
data_collection_order
- トランザクションによって出力されたすべてのイベントを対象とするイベントのデータコレクションごとの位置。
以下は、メッセージの例になります。
{ "before": null, "after": { "pk": "2", "aa": "1" }, "source": { ... }, "op": "c", "ts_ms": "1580390884335", "transaction": { "id": "571", "total_order": "1", "data_collection_order": "1" } }