Logging
Configuring and using logging in OpenShift Container Platform
Abstract
Chapter 1. Release notes
1.1. Logging 5.9
Logging is provided as an installable component, with a distinct release cycle from the core OpenShift Container Platform. The Red Hat OpenShift Container Platform Life Cycle Policy outlines release compatibility.
The stable channel only provides updates to the most recent release of logging. To continue receiving updates for prior releases, you must change your subscription channel to stable-x.y, where x.y
represents the major and minor version of logging you have installed. For example, stable-5.7.
1.1.1. Logging 5.9.6
This release includes OpenShift Logging Bug Fix Release 5.9.6.
1.1.1.1. Bug fixes
- Before this update, the collector deployment ignored secret changes, causing receivers to reject logs. With this update, the system rolls out a new pod when there is a change in the secret value, ensuring that the collector reloads the updated secrets. (LOG-5525)
-
Before this update, the Vector could not correctly parse field values that included a single dollar sign (
$
). With this update, field values with a single dollar sign are automatically changed to two dollar signs ($$
), ensuring proper parsing by the Vector. (LOG-5602) -
Before this update, the drop filter could not handle non-string values (e.g.,
.responseStatus.code: 403
). With this update, the drop filter now works properly with these values. (LOG-5815) - Before this update, the collector used the default settings to collect audit logs, without handling the backload from output receivers. With this update, the process for collecting audit logs has been improved to better manage file handling and log reading efficiency. (LOG-5866)
-
Before this update, the
must-gather
tool failed on clusters with non-AMD64 architectures such as Azure Resource Manager (ARM) or PowerPC. With this update, the tool now detects the cluster architecture at runtime and uses architecture-independent paths and dependencies. The detection allowsmust-gather
to run smoothly on platforms like ARM and PowerPC. (LOG-5997) - Before this update, the log level was set using a mix of structured and unstructured keywords that were unclear. With this update, the log level follows a clear, documented order, starting with structured keywords. (LOG-6016)
-
Before this update, multiple unnamed pipelines writing to the default output in the
ClusterLogForwarder
caused a validation error due to duplicate auto-generated names. With this update, the pipeline names are now generated without duplicates. (LOG-6033) -
Before this update, the collector pods did not have the
PreferredScheduling
annotation. With this update, thePreferredScheduling
annotation is added to the collector daemonset. (LOG-6023)
1.1.1.2. CVEs
1.1.2. Logging 5.9.5
This release includes OpenShift Logging Bug Fix Release 5.9.5
1.1.2.1. Bug Fixes
- Before this update, duplicate conditions in the LokiStack resource status led to invalid metrics from the Loki Operator. With this update, the Operator removes duplicate conditions from the status. (LOG-5855)
- Before this update, the Loki Operator did not trigger alerts when it dropped log events due to validation failures. With this update, the Loki Operator includes a new alert definition that triggers an alert if Loki drops log events due to validation failures. (LOG-5895)
- Before this update, the Loki Operator overwrote user annotations on the LokiStack Route resource, causing customizations to drop. With this update, the Loki Operator no longer overwrites Route annotations, fixing the issue. (LOG-5945)
1.1.2.2. CVEs
None.
1.1.3. Logging 5.9.4
This release includes OpenShift Logging Bug Fix Release 5.9.4
1.1.3.1. Bug Fixes
- Before this update, an incorrectly formatted timeout configuration caused the OCP plugin to crash. With this update, a validation prevents the crash and informs the user about the incorrect configuration. (LOG-5373)
-
Before this update, workloads with labels containing
-
caused an error in the collector when normalizing log entries. With this update, the configuration change ensures the collector uses the correct syntax. (LOG-5524) - Before this update, an issue prevented selecting pods that no longer existed, even if they had generated logs. With this update, this issue has been fixed, allowing selection of such pods. (LOG-5697)
-
Before this update, the Loki Operator would crash if the
CredentialRequest
specification was registered in an environment without thecloud-credentials-operator
. With this update, theCredentialRequest
specification only registers in environments that arecloud-credentials-operator
enabled. (LOG-5701) - Before this update, the Logging Operator watched and processed all config maps across the cluster. With this update, the dashboard controller only watches the config map for the logging dashboard. (LOG-5702)
-
Before this update, the
ClusterLogForwarder
introduced an extra space in the message payload which did not follow theRFC3164
specification. With this update, the extra space has been removed, fixing the issue. (LOG-5707) -
Before this update, removing the seeding for
grafana-dashboard-cluster-logging
as a part of (LOG-5308) broke new greenfield deployments without dashboards. With this update, the Logging Operator seeds the dashboard at the beginning and continues to update it for changes. (LOG-5747) -
Before this update, LokiStack was missing a route for the Volume API causing the following error:
404 not found
. With this update, LokiStack exposes the Volume API, resolving the issue. (LOG-5749)
1.1.3.2. CVEs
1.1.4. Logging 5.9.3
This release includes OpenShift Logging Bug Fix Release 5.9.3
1.1.4.1. Bug Fixes
-
Before this update, there was a delay in restarting Ingesters when configuring
LokiStack
, because the Loki Operator sets the write-ahead logreplay_memory_ceiling
to zero bytes for the1x.demo
size. With this update, the minimum value used for thereplay_memory_ceiling
has been increased to avoid delays. (LOG-5614) - Before this update, monitoring the Vector collector output buffer state was not possible. With this update, monitoring and alerting the Vector collector output buffer size is possible that improves observability capabilities and helps keep the system running optimally. (LOG-5586)
1.1.4.2. CVEs
1.1.5. Logging 5.9.2
This release includes OpenShift Logging Bug Fix Release 5.9.2
1.1.5.1. Bug Fixes
-
Before this update, changes to the Logging Operator caused an error due to an incorrect configuration in the
ClusterLogForwarder
CR. As a result, upgrades to logging deleted the daemonset collector. With this update, the Logging Operator re-creates collector daemonsets except when aNot authorized to collect
error occurs. (LOG-4910) - Before this update, the rotated infrastructure log files were sent to the application index in some scenarios due to an incorrect configuration in the Vector log collector. With this update, the Vector log collector configuration avoids collecting any rotated infrastructure log files. (LOG-5156)
-
Before this update, the Logging Operator did not monitor changes to the
grafana-dashboard-cluster-logging
config map. With this update, the Logging Operator monitors changes in theConfigMap
objects, ensuring the system stays synchronized and responds effectively to config map modifications. (LOG-5308) - Before this update, an issue in the metrics collection code of the Logging Operator caused it to report stale telemetry metrics. With this update, the Logging Operator does not report stale telemetry metrics. (LOG-5426)
-
Before this change, the Fluentd
out_http
plugin ignored theno_proxy
environment variable. With this update, the Fluentd patches theHTTP#start
method of ruby to honor theno_proxy
environment variable. (LOG-5466)
1.1.5.2. CVEs
1.1.6. Logging 5.9.1
This release includes OpenShift Logging Bug Fix Release 5.9.1
1.1.6.1. Enhancements
- Before this update, the Loki Operator configured Loki to use path-based style access for the Amazon Simple Storage Service (S3), which has been deprecated. With this update, the Loki Operator defaults to virtual-host style without users needing to change their configuration. (LOG-5401)
-
Before this update, the Loki Operator did not validate the Amazon Simple Storage Service (S3) endpoint used in the storage secret. With this update, the validation process ensures the S3 endpoint is a valid S3 URL, and the
LokiStack
status updates to indicate any invalid URLs. (LOG-5395)
1.1.6.2. Bug Fixes
- Before this update, a bug in LogQL parsing left out some line filters from the query. With this update, the parsing now includes all the line filters while keeping the original query unchanged. (LOG-5268)
-
Before this update, a prune filter without a defined
pruneFilterSpec
would cause a segfault. With this update, there is a validation error if a prune filter is without a definedpuneFilterSpec
. (LOG-5322) -
Before this update, a drop filter without a defined
dropTestsSpec
would cause a segfault. With this update, there is a validation error if a prune filter is without a definedpuneFilterSpec
. (LOG-5323) -
Before this update, the Loki Operator did not validate the Amazon Simple Storage Service (S3) endpoint URL format used in the storage secret. With this update, the S3 endpoint URL goes through a validation step that reflects on the status of the
LokiStack
. (LOG-5397) -
Before this update, poorly formatted timestamp fields in audit log records led to
WARN
messages in Red Hat OpenShift Logging Operator logs. With this update, a remap transformation ensures that the timestamp field is properly formatted. (LOG-4672) -
Before this update, the error message thrown while validating a
ClusterLogForwarder
resource name and namespace did not correspond to the correct error. With this update, the system checks if aClusterLogForwarder
resource with the same name exists in the same namespace. If not, it corresponds to the correct error. (LOG-5062) - Before this update, the validation feature for output config required a TLS URL, even for services such as Amazon CloudWatch or Google Cloud Logging where a URL is not needed by design. With this update, the validation logic for services without URLs are improved, and the error message are more informative. (LOG-5307)
- Before this update, defining an infrastructure input type did not exclude logging workloads from the collection. With this update, the collection excludes logging services to avoid feedback loops. (LOG-5309)
1.1.6.3. CVEs
No CVEs.
1.1.7. Logging 5.9.0
This release includes OpenShift Logging Bug Fix Release 5.9.0
1.1.7.1. Removal notice
The Logging 5.9 release does not contain an updated version of the OpenShift Elasticsearch Operator. Instances of OpenShift Elasticsearch Operator from prior logging releases, remain supported until the EOL of the logging release. As an alternative to using the OpenShift Elasticsearch Operator to manage the default log storage, you can use the Loki Operator. For more information on the Logging lifecycle dates, see Platform Agnostic Operators.
1.1.7.2. Deprecation notice
- In Logging 5.9, Fluentd, and Kibana are deprecated and are planned to be removed in Logging 6.0, which is expected to be shipped alongside a future release of OpenShift Container Platform. Red Hat will provide critical and above CVE bug fixes and support for these components during the current release lifecycle, but these components will no longer receive feature enhancements. The Vector-based collector provided by the Red Hat OpenShift Logging Operator and LokiStack provided by the Loki Operator are the preferred Operators for log collection and storage. We encourage all users to adopt the Vector and Loki log stack, as this will be the stack that will be enhanced going forward.
-
In Logging 5.9, the
Fields
option for the Splunk output type was never implemented and is now deprecated. It will be removed in a future release.
1.1.7.3. Enhancements
1.1.7.3.1. Log Collection
-
This enhancement adds the ability to refine the process of log collection by using a workload’s metadata to
drop
orprune
logs based on their content. Additionally, it allows the collection of infrastructure logs, such as journal or container logs, and audit logs, such askube api
orovn
logs, to only collect individual sources. (LOG-2155) - This enhancement introduces a new type of remote log receiver, the syslog receiver. You can configure it to expose a port over a network, allowing external systems to send syslog logs using compatible tools such as rsyslog. (LOG-3527)
-
With this update, the
ClusterLogForwarder
API now supports log forwarding to Azure Monitor Logs, giving users better monitoring abilities. This feature helps users to maintain optimal system performance and streamline the log analysis processes in Azure Monitor, which speeds up issue resolution and improves operational efficiency. (LOG-4605) -
This enhancement improves collector resource utilization by deploying collectors as a deployment with two replicas. This occurs when the only input source defined in the
ClusterLogForwarder
custom resource (CR) is a receiver input instead of using a daemon set on all nodes. Additionally, collectors deployed in this manner do not mount the host file system. To use this enhancement, you need to annotate theClusterLogForwarder
CR with thelogging.openshift.io/dev-preview-enable-collector-as-deployment
annotation. (LOG-4779) - This enhancement introduces the capability for custom tenant configuration across all supported outputs, facilitating the organization of log records in a logical manner. However, it does not permit custom tenant configuration for logging managed storage. (LOG-4843)
-
With this update, the
ClusterLogForwarder
CR that specifies an application input with one or more infrastructure namespaces likedefault
,openshift*
, orkube*
, now requires a service account with thecollect-infrastructure-logs
role. (LOG-4943) -
This enhancement introduces the capability for tuning some output settings, such as compression, retry duration, and maximum payloads, to match the characteristics of the receiver. Additionally, this feature includes a delivery mode to allow administrators to choose between throughput and log durability. For example, the
AtLeastOnce
option configures minimal disk buffering of collected logs so that the collector can deliver those logs after a restart. (LOG-5026) - This enhancement adds three new Prometheus alerts, warning users about the deprecation of Elasticsearch, Fluentd, and Kibana. (LOG-5055)
1.1.7.3.2. Log Storage
- This enhancement in LokiStack improves support for OTEL by using the new V13 object storage format and enabling automatic stream sharding by default. This also prepares the collector for future enhancements and configurations. (LOG-4538)
-
This enhancement introduces support for short-lived token workload identity federation with Azure and AWS log stores for STS enabled OpenShift Container Platform 4.14 and later clusters. Local storage requires the addition of a
CredentialMode: static
annotation underspec.storage.secret
in the LokiStack CR. (LOG-4540) - With this update, the validation of the Azure storage secret is now extended to give early warning for certain error conditions. (LOG-4571)
- With this update, Loki now adds upstream and downstream support for GCP workload identity federation mechanism. This allows authenticated and authorized access to the corresponding object storage services. (LOG-4754)
1.1.7.4. Bug Fixes
-
Before this update, the logging must-gather could not collect any logs on a FIPS-enabled cluster. With this update, a new
oc
client is available incluster-logging-rhel9-operator
, and must-gather works properly on FIPS clusters. (LOG-4403) - Before this update, the LokiStack ruler pods could not format the IPv6 pod IP in HTTP URLs used for cross-pod communication. This issue caused querying rules and alerts through the Prometheus-compatible API to fail. With this update, the LokiStack ruler pods encapsulate the IPv6 pod IP in square brackets, resolving the problem. Now, querying rules and alerts through the Prometheus-compatible API works just like in IPv4 environments. (LOG-4709)
- Before this fix, the YAML content from the logging must-gather was exported in a single line, making it unreadable. With this update, the YAML white spaces are preserved, ensuring that the file is properly formatted. (LOG-4792)
-
Before this update, when the
ClusterLogForwarder
CR was enabled, the Red Hat OpenShift Logging Operator could run into a nil pointer exception whenClusterLogging.Spec.Collection
was nil. With this update, the issue is now resolved in the Red Hat OpenShift Logging Operator. (LOG-5006) -
Before this update, in specific corner cases, replacing the
ClusterLogForwarder
CR status field caused theresourceVersion
to constantly update due to changing timestamps inStatus
conditions. This condition led to an infinite reconciliation loop. With this update, all status conditions synchronize, so that timestamps remain unchanged if conditions stay the same. (LOG-5007) -
Before this update, there was an internal buffering behavior to
drop_newest
to address high memory consumption by the collector resulting in significant log loss. With this update, the behavior reverts to using the collector defaults. (LOG-5123) -
Before this update, the Loki Operator
ServiceMonitor
in theopenshift-operators-redhat
namespace used static token and CA files for authentication, causing errors in the Prometheus Operator in the User Workload Monitoring spec on theServiceMonitor
configuration. With this update, the Loki OperatorServiceMonitor
inopenshift-operators-redhat
namespace now references a service account token secret by aLocalReference
object. This approach allows the User Workload Monitoring spec in the Prometheus Operator to handle the Loki OperatorServiceMonitor
successfully, enabling Prometheus to scrape the Loki Operator metrics. (LOG-5165) -
Before this update, the configuration of the Loki Operator
ServiceMonitor
could match many Kubernetes services, resulting in the Loki Operator metrics being collected multiple times. With this update, the configuration ofServiceMonitor
now only matches the dedicated metrics service. (LOG-5212)
1.1.7.5. Known Issues
None.
1.1.7.6. CVEs
1.2. Logging 5.8
Logging is provided as an installable component, with a distinct release cycle from the core OpenShift Container Platform. The Red Hat OpenShift Container Platform Life Cycle Policy outlines release compatibility.
The stable channel only provides updates to the most recent release of logging. To continue receiving updates for prior releases, you must change your subscription channel to stable-x.y, where x.y
represents the major and minor version of logging you have installed. For example, stable-5.7.
1.2.1. Logging 5.8.12
This release includes OpenShift Logging Bug Fix Release 5.8.12 and OpenShift Logging Bug Fix Release 5.8.12.
1.2.1.1. Bug fixes
-
Before this update, the collector used internal buffering with the
drop_newest
setting to reduce high memory usage, which caused significant log loss. With this update, the collector goes back to its default behavior, wheresink<>.buffer
is not customized. (LOG-6026)
1.2.1.2. CVEs
- CVE-2023-52771
- CVE-2023-52880
- CVE-2024-2398
- CVE-2024-6345
- CVE-2024-6923
- CVE-2024-26581
- CVE-2024-26668
- CVE-2024-26810
- CVE-2024-26855
- CVE-2024-26908
- CVE-2024-26925
- CVE-2024-27016
- CVE-2024-27019
- CVE-2024-27020
- CVE-2024-27415
- CVE-2024-35839
- CVE-2024-35896
- CVE-2024-35897
- CVE-2024-35898
- CVE-2024-35962
- CVE-2024-36003
- CVE-2024-36025
- CVE-2024-37370
- CVE-2024-37371
- CVE-2024-37891
- CVE-2024-38428
- CVE-2024-38476
- CVE-2024-38538
- CVE-2024-38540
- CVE-2024-38544
- CVE-2024-38579
- CVE-2024-38608
- CVE-2024-39476
- CVE-2024-40905
- CVE-2024-40911
- CVE-2024-40912
- CVE-2024-40914
- CVE-2024-40929
- CVE-2024-40939
- CVE-2024-40941
- CVE-2024-40957
- CVE-2024-40978
- CVE-2024-40983
- CVE-2024-41041
- CVE-2024-41076
- CVE-2024-41090
- CVE-2024-41091
- CVE-2024-42110
- CVE-2024-42152
1.2.2. Logging 5.8.11
This release includes OpenShift Logging Bug Fix Release 5.8.11 and OpenShift Logging Bug Fix Release 5.8.11.
1.2.2.1. Bug fixes
-
Before this update, the TLS section was added without verifying the broker URL schema, leading to SSL connection errors if the URLs did not start with
tls
. With this update, the TLS section is added only if broker URLs start withtls
, preventing SSL connection errors. (LOG-5139) - Before this update, the Loki Operator did not trigger alerts when it dropped log events due to validation failures. With this update, the Loki Operator includes a new alert definition that triggers an alert if Loki drops log events due to validation failures. (LOG-5896)
- Before this update, the 4.16 GA catalog did not include Elasticsearch Operator 5.8, preventing the installation of products like Service Mesh, Kiali, and Tracing. With this update, Elasticsearch Operator 5.8 is now available on 4.16, resolving the issue and providing support for Elasticsearch storage for these products only. (LOG-5911)
- Before this update, duplicate conditions in the LokiStack resource status led to invalid metrics from the Loki Operator. With this update, the Operator removes duplicate conditions from the status. (LOG-5857)
- Before this update, the Loki Operator overwrote user annotations on the LokiStack Route resource, causing customizations to drop. With this update, the Loki Operator no longer overwrites Route annotations, fixing the issue. (LOG-5946)
1.2.2.2. CVEs
- CVE-2021-47548
- CVE-2021-47596
- CVE-2022-48627
- CVE-2023-52638
- CVE-2024-4032
- CVE-2024-6409
- CVE-2024-21131
- CVE-2024-21138
- CVE-2024-21140
- CVE-2024-21144
- CVE-2024-21145
- CVE-2024-21147
- CVE-2024-24806
- CVE-2024-26783
- CVE-2024-26858
- CVE-2024-27397
- CVE-2024-27435
- CVE-2024-35235
- CVE-2024-35958
- CVE-2024-36270
- CVE-2024-36886
- CVE-2024-36904
- CVE-2024-36957
- CVE-2024-38473
- CVE-2024-38474
- CVE-2024-38475
- CVE-2024-38477
- CVE-2024-38543
- CVE-2024-38586
- CVE-2024-38593
- CVE-2024-38663
- CVE-2024-39573
1.2.3. Logging 5.8.10
This release includes OpenShift Logging Bug Fix Release 5.8.10 and OpenShift Logging Bug Fix Release 5.8.10.
1.2.3.1. Known issues
- Before this update, when enabling retention, the Loki Operator produced an invalid configuration. As a result, Loki did not start properly. With this update, Loki pods can set retention. (LOG-5821)
1.2.3.2. Bug fixes
-
Before this update, the
ClusterLogForwarder
introduced an extra space in the message payload that did not follow theRFC3164
specification. With this update, the extra space has been removed, fixing the issue. (LOG-5647)
1.2.3.3. CVEs
1.2.4. Logging 5.8.9
This release includes OpenShift Logging Bug Fix Release 5.8.9 and OpenShift Logging Bug Fix Release 5.8.9.
1.2.4.1. Bug fixes
- Before this update, an issue prevented selecting pods that no longer existed, even if they had generated logs. With this update, this issue has been fixed, allowing selection of such pods. (LOG-5698)
-
Before this update, LokiStack was missing a route for the Volume API, which caused the following error:
404 not found
. With this update, LokiStack exposes the Volume API, resolving the issue. (LOG-5750) -
Before this update, the Elasticsearch operator overwrote all service account annotations without considering ownership. As a result, the
kube-controller-manager
recreated service account secrets because it logged the link to the owning service account. With this update, the Elasticsearch operator merges annotations, resolving the issue. (LOG-5776)
1.2.4.2. CVEs
1.2.5. Logging 5.8.8
This release includes OpenShift Logging Bug Fix Release 5.8.8 and OpenShift Logging Bug Fix Release 5.8.8.
1.2.5.1. Bug fixes
-
Before this update, there was a delay in restarting Ingesters when configuring
LokiStack
, because the Loki Operator sets the write-ahead logreplay_memory_ceiling
to zero bytes for the1x.demo
size. With this update, the minimum value used for thereplay_memory_ceiling
has been increased to avoid delays. (LOG-5615)
1.2.5.2. CVEs
- CVE-2020-15778
- CVE-2021-43618
- CVE-2023-6004
- CVE-2023-6597
- CVE-2023-6918
- CVE-2023-7008
- CVE-2024-0450
- CVE-2024-2961
- CVE-2024-22365
- CVE-2024-25062
- CVE-2024-26458
- CVE-2024-26461
- CVE-2024-26642
- CVE-2024-26643
- CVE-2024-26673
- CVE-2024-26804
- CVE-2024-28182
- CVE-2024-32487
- CVE-2024-33599
- CVE-2024-33600
- CVE-2024-33601
- CVE-2024-33602
1.2.6. Logging 5.8.7
This release includes OpenShift Logging Bug Fix Release 5.8.7 Security Update and OpenShift Logging Bug Fix Release 5.8.7.
1.2.6.1. Bug fixes
-
Before this update, the
elasticsearch-im-<type>-*
pods failed if no<type>
logs (audit, infrastructure, or application) were collected. With this update, the pods no longer fail when<type>
logs are not collected. (LOG-4949) - Before this update, the validation feature for output config required an SSL/TLS URL, even for services such as Amazon CloudWatch or Google Cloud Logging where a URL is not needed by design. With this update, the validation logic for services without URLs are improved, and the error message is more informative. (LOG-5467)
- Before this update, an issue in the metrics collection code of the Logging Operator caused it to report stale telemetry metrics. With this update, the Logging Operator does not report stale telemetry metrics. (LOG-5471)
-
Before this update, changes to the Logging Operator caused an error due to an incorrect configuration in the
ClusterLogForwarder
CR. As a result, upgrades to logging deleted the daemonset collector. With this update, the Logging Operator re-creates collector daemonsets except when aNot authorized to collect
error occurs. (LOG-5514)
1.2.6.2. CVEs
- CVE-2020-26555
- CVE-2021-29390
- CVE-2022-0480
- CVE-2022-38096
- CVE-2022-40090
- CVE-2022-45934
- CVE-2022-48554
- CVE-2022-48624
- CVE-2023-2975
- CVE-2023-3446
- CVE-2023-3567
- CVE-2023-3618
- CVE-2023-3817
- CVE-2023-4133
- CVE-2023-5678
- CVE-2023-6040
- CVE-2023-6121
- CVE-2023-6129
- CVE-2023-6176
- CVE-2023-6228
- CVE-2023-6237
- CVE-2023-6531
- CVE-2023-6546
- CVE-2023-6622
- CVE-2023-6915
- CVE-2023-6931
- CVE-2023-6932
- CVE-2023-7008
- CVE-2023-24023
- CVE-2023-25193
- CVE-2023-25775
- CVE-2023-28464
- CVE-2023-28866
- CVE-2023-31083
- CVE-2023-31122
- CVE-2023-37453
- CVE-2023-38469
- CVE-2023-38470
- CVE-2023-38471
- CVE-2023-38472
- CVE-2023-38473
- CVE-2023-39189
- CVE-2023-39193
- CVE-2023-39194
- CVE-2023-39198
- CVE-2023-40745
- CVE-2023-41175
- CVE-2023-42754
- CVE-2023-42756
- CVE-2023-43785
- CVE-2023-43786
- CVE-2023-43787
- CVE-2023-43788
- CVE-2023-43789
- CVE-2023-45288
- CVE-2023-45863
- CVE-2023-46862
- CVE-2023-47038
- CVE-2023-51043
- CVE-2023-51779
- CVE-2023-51780
- CVE-2023-52434
- CVE-2023-52448
- CVE-2023-52476
- CVE-2023-52489
- CVE-2023-52522
- CVE-2023-52529
- CVE-2023-52574
- CVE-2023-52578
- CVE-2023-52580
- CVE-2023-52581
- CVE-2023-52597
- CVE-2023-52610
- CVE-2023-52620
- CVE-2024-0565
- CVE-2024-0727
- CVE-2024-0841
- CVE-2024-1085
- CVE-2024-1086
- CVE-2024-21011
- CVE-2024-21012
- CVE-2024-21068
- CVE-2024-21085
- CVE-2024-21094
- CVE-2024-22365
- CVE-2024-25062
- CVE-2024-26582
- CVE-2024-26583
- CVE-2024-26584
- CVE-2024-26585
- CVE-2024-26586
- CVE-2024-26593
- CVE-2024-26602
- CVE-2024-26609
- CVE-2024-26633
- CVE-2024-27316
- CVE-2024-28834
- CVE-2024-28835
1.2.7. Logging 5.8.6
This release includes OpenShift Logging Bug Fix Release 5.8.6 Security Update and OpenShift Logging Bug Fix Release 5.8.6.
1.2.7.1. Enhancements
-
Before this update, the Loki Operator did not validate the Amazon Simple Storage Service (S3) endpoint used in the storage secret. With this update, the validation process ensures the S3 endpoint is a valid S3 URL, and the
LokiStack
status updates to indicate any invalid URLs. (LOG-5392) - Before this update, the Loki Operator configured Loki to use path-based style access for the Amazon Simple Storage Service (S3), which has been deprecated. With this update, the Loki Operator defaults to virtual-host style without users needing to change their configuration. (LOG-5402)
1.2.7.2. Bug fixes
-
Before this update, the Elastisearch Operator
ServiceMonitor
in theopenshift-operators-redhat
namespace used static token and certificate authority (CA) files for authentication, causing errors in the Prometheus Operator in the User Workload Monitoring specification on theServiceMonitor
configuration. With this update, the Elastisearch OperatorServiceMonitor
in theopenshift-operators-redhat
namespace now references a service account token secret by aLocalReference
object. This approach allows the User Workload Monitoring specifications in the Prometheus Operator to handle the Elastisearch OperatorServiceMonitor
successfully. This enables Prometheus to scrape the Elastisearch Operator metrics. (LOG-5164) -
Before this update, the Loki Operator did not validate the Amazon Simple Storage Service (S3) endpoint URL format used in the storage secret. With this update, the S3 endpoint URL goes through a validation step that reflects on the status of the
LokiStack
. (LOG-5398)
1.2.7.3. CVEs
1.2.8. Logging 5.8.5
This release includes OpenShift Logging Bug Fix Release 5.8.5.
1.2.8.1. Bug fixes
-
Before this update, the configuration of the Loki Operator’s
ServiceMonitor
could match many Kubernetes services, resulting in the Loki Operator’s metrics being collected multiple times. With this update, the configuration ofServiceMonitor
now only matches the dedicated metrics service. (LOG-5250) - Before this update, the Red Hat build pipeline did not use the existing build details in Loki builds and omitted information such as revision, branch, and version. With this update, the Red Hat build pipeline now adds these details to the Loki builds, fixing the issue. (LOG-5201)
-
Before this update, the Loki Operator checked if the pods were running to decide if the
LokiStack
was ready. With this update, it also checks if the pods are ready, so that the readiness of theLokiStack
reflects the state of its components. (LOG-5171) - Before this update, running a query for log metrics caused an error in the histogram. With this update, the histogram toggle function and the chart are disabled and hidden because the histogram doesn’t work with log metrics. (LOG-5044)
-
Before this update, the Loki and Elasticsearch bundle had the wrong
maxOpenShiftVersion
, resulting inIncompatibleOperatorsInstalled
alerts. With this update, including 4.16 as themaxOpenShiftVersion
property in the bundle fixes the issue. (LOG-5272) -
Before this update, the build pipeline did not include linker flags for the build date, causing Loki builds to show empty strings for
buildDate
andgoVersion
. With this update, adding the missing linker flags in the build pipeline fixes the issue. (LOG-5274) - Before this update, a bug in LogQL parsing left out some line filters from the query. With this update, the parsing now includes all the line filters while keeping the original query unchanged. (LOG-5270)
-
Before this update, the Loki Operator
ServiceMonitor
in theopenshift-operators-redhat
namespace used static token and CA files for authentication, causing errors in the Prometheus Operator in the User Workload Monitoring spec on theServiceMonitor
configuration. With this update, the Loki OperatorServiceMonitor
inopenshift-operators-redhat
namespace now references a service account token secret by aLocalReference
object. This approach allows the User Workload Monitoring spec in the Prometheus Operator to handle the Loki OperatorServiceMonitor
successfully, enabling Prometheus to scrape the Loki Operator metrics. (LOG-5240)
1.2.8.2. CVEs
1.2.9. Logging 5.8.4
This release includes OpenShift Logging Bug Fix Release 5.8.4.
1.2.9.1. Bug fixes
- Before this update, the developer console’s logs did not account for the current namespace, resulting in query rejection for users without cluster-wide log access. With this update, all supported OCP versions ensure correct namespace inclusion. (LOG-4905)
-
Before this update, the Cluster Logging Operator deployed
ClusterRoles
supporting LokiStack deployments only when the default log output was LokiStack. With this update, the roles are split into two groups: read and write. The write roles deploys based on the setting of the default log storage, just like all the roles used to do before. The read roles deploys based on whether the logging console plugin is active. (LOG-4987) -
Before this update, multiple
ClusterLogForwarders
defining the same input receiver name had their service endlessly reconciled because of changingownerReferences
on one service. With this update, each receiver input will have its own service named with the convention of<CLF.Name>-<input.Name>
. (LOG-5009) -
Before this update, the
ClusterLogForwarder
did not report errors when forwarding logs to cloudwatch without a secret. With this update, the following error message appears when forwarding logs to cloudwatch without a secret:secret must be provided for cloudwatch output
. (LOG-5021) -
Before this update, the
log_forwarder_input_info
includedapplication
,infrastructure
, andaudit
input metric points. With this update,http
is also added as a metric point. (LOG-5043)
1.2.9.2. CVEs
- CVE-2021-35937
- CVE-2021-35938
- CVE-2021-35939
- CVE-2022-3545
- CVE-2022-24963
- CVE-2022-36402
- CVE-2022-41858
- CVE-2023-2166
- CVE-2023-2176
- CVE-2023-3777
- CVE-2023-3812
- CVE-2023-4015
- CVE-2023-4622
- CVE-2023-4623
- CVE-2023-5178
- CVE-2023-5363
- CVE-2023-5388
- CVE-2023-5633
- CVE-2023-6679
- CVE-2023-7104
- CVE-2023-27043
- CVE-2023-38409
- CVE-2023-40283
- CVE-2023-42753
- CVE-2023-43804
- CVE-2023-45803
- CVE-2023-46813
- CVE-2024-20918
- CVE-2024-20919
- CVE-2024-20921
- CVE-2024-20926
- CVE-2024-20945
- CVE-2024-20952
1.2.10. Logging 5.8.3
This release includes Logging Bug Fix 5.8.3 and Logging Security Fix 5.8.3
1.2.10.1. Bug fixes
- Before this update, when configured to read a custom S3 Certificate Authority the Loki Operator would not automatically update the configuration when the name of the ConfigMap or the contents changed. With this update, the Loki Operator is watching for changes to the ConfigMap and automatically updates the generated configuration. (LOG-4969)
- Before this update, Loki outputs configured without a valid URL caused the collector pods to crash. With this update, outputs are subject to URL validation, resolving the issue. (LOG-4822)
- Before this update the Cluster Logging Operator would generate collector configuration fields for outputs that did not specify a secret to use the service account bearer token. With this update, an output does not require authentication, resolving the issue. (LOG-4962)
-
Before this update, the
tls.insecureSkipVerify
field of an output was not set to a value oftrue
without a secret defined. With this update, a secret is no longer required to set this value. (LOG-4963) - Before this update, output configurations allowed the combination of an insecure (HTTP) URL with TLS authentication. With this update, outputs configured for TLS authentication require a secure (HTTPS) URL. (LOG-4893)
1.2.10.2. CVEs
1.2.11. Logging 5.8.2
This release includes OpenShift Logging Bug Fix Release 5.8.2.
1.2.11.1. Bug fixes
- Before this update, the LokiStack ruler pods would not format the IPv6 pod IP in HTTP URLs used for cross pod communication, causing querying rules and alerts through the Prometheus-compatible API to fail. With this update, the LokiStack ruler pods encapsulate the IPv6 pod IP in square brackets, resolving the issue. (LOG-4890)
- Before this update, the developer console logs did not account for the current namespace, resulting in query rejection for users without cluster-wide log access. With this update, namespace inclusion has been corrected, resolving the issue. (LOG-4947)
- Before this update, the logging view plugin of the OpenShift Container Platform web console did not allow for custom node placement and tolerations. With this update, defining custom node placements and tolerations has been added to the logging view plugin of the OpenShift Container Platform web console. (LOG-4912)
1.2.11.2. CVEs
1.2.12. Logging 5.8.1
This release includes OpenShift Logging Bug Fix Release 5.8.1 and OpenShift Logging Bug Fix Release 5.8.1 Kibana.
1.2.12.1. Enhancements
1.2.12.1.1. Log Collection
- With this update, while configuring Vector as a collector, you can add logic to the Red Hat OpenShift Logging Operator to use a token specified in the secret in place of the token associated with the service account. (LOG-4780)
- With this update, the BoltDB Shipper Loki dashboards are now renamed to Index dashboards. (LOG-4828)
1.2.12.2. Bug fixes
-
Before this update, the
ClusterLogForwarder
created empty indices after enabling the parsing of JSON logs, even when the rollover conditions were not met. With this update, theClusterLogForwarder
skips the rollover when thewrite-index
is empty. (LOG-4452) -
Before this update, the Vector set the
default
log level incorrectly. With this update, the correct log level is set by improving the enhancement of regular expression, orregexp
, for log level detection. (LOG-4480) -
Before this update, during the process of creating index patterns, the default alias was missing from the initial index in each log output. As a result, Kibana users were unable to create index patterns by using OpenShift Elasticsearch Operator. This update adds the missing aliases to OpenShift Elasticsearch Operator, resolving the issue. Kibana users can now create index patterns that include the
{app,infra,audit}-000001
indexes. (LOG-4683) -
Before this update, Fluentd collector pods were in a
CrashLoopBackOff
state due to binding of the Prometheus server on IPv6 clusters. With this update, the collectors work properly on IPv6 clusters. (LOG-4706) -
Before this update, the Red Hat OpenShift Logging Operator would undergo numerous reconciliations whenever there was a change in the
ClusterLogForwarder
. With this update, the Red Hat OpenShift Logging Operator disregards the status changes in the collector daemonsets that triggered the reconciliations. (LOG-4741) -
Before this update, the Vector log collector pods were stuck in the
CrashLoopBackOff
state on IBM Power machines. With this update, the Vector log collector pods start successfully on IBM Power architecture machines. (LOG-4768) -
Before this update, forwarding with a legacy forwarder to an internal LokiStack would produce SSL certificate errors using Fluentd collector pods. With this update, the log collector service account is used by default for authentication, using the associated token and
ca.crt
. (LOG-4791) -
Before this update, forwarding with a legacy forwarder to an internal LokiStack would produce SSL certificate errors using Vector collector pods. With this update, the log collector service account is used by default for authentication and also using the associated token and
ca.crt
. (LOG-4852) - Before this fix, IPv6 addresses would not be parsed correctly after evaluating a host or multiple hosts for placeholders. With this update, IPv6 addresses are correctly parsed. (LOG-4811)
-
Before this update, it was necessary to create a
ClusterRoleBinding
to collect audit permissions for HTTP receiver inputs. With this update, it is not necessary to create theClusterRoleBinding
because the endpoint already depends upon the cluster certificate authority. (LOG-4815) - Before this update, the Loki Operator did not mount a custom CA bundle to the ruler pods. As a result, during the process to evaluate alerting or recording rules, object storage access failed. With this update, the Loki Operator mounts the custom CA bundle to all ruler pods. The ruler pods can download logs from object storage to evaluate alerting or recording rules. (LOG-4836)
-
Before this update, while removing the
inputs.receiver
section in theClusterLogForwarder
, the HTTP input services and its associated secrets were not deleted. With this update, the HTTP input resources are deleted when not needed. (LOG-4612) -
Before this update, the
ClusterLogForwarder
indicated validation errors in the status, but the outputs and the pipeline status did not accurately reflect the specific issues. With this update, the pipeline status displays the validation failure reasons correctly in case of misconfigured outputs, inputs, or filters. (LOG-4821) -
Before this update, changing a
LogQL
query that used controls such as time range or severity changed the label matcher operator defining it like a regular expression. With this update, regular expression operators remain unchanged when updating the query. (LOG-4841)
1.2.12.3. CVEs
- CVE-2007-4559
- CVE-2021-3468
- CVE-2021-3502
- CVE-2021-3826
- CVE-2021-43618
- CVE-2022-3523
- CVE-2022-3565
- CVE-2022-3594
- CVE-2022-4285
- CVE-2022-38457
- CVE-2022-40133
- CVE-2022-40982
- CVE-2022-41862
- CVE-2022-42895
- CVE-2023-0597
- CVE-2023-1073
- CVE-2023-1074
- CVE-2023-1075
- CVE-2023-1076
- CVE-2023-1079
- CVE-2023-1206
- CVE-2023-1249
- CVE-2023-1252
- CVE-2023-1652
- CVE-2023-1855
- CVE-2023-1981
- CVE-2023-1989
- CVE-2023-2731
- CVE-2023-3138
- CVE-2023-3141
- CVE-2023-3161
- CVE-2023-3212
- CVE-2023-3268
- CVE-2023-3316
- CVE-2023-3358
- CVE-2023-3576
- CVE-2023-3609
- CVE-2023-3772
- CVE-2023-3773
- CVE-2023-4016
- CVE-2023-4128
- CVE-2023-4155
- CVE-2023-4194
- CVE-2023-4206
- CVE-2023-4207
- CVE-2023-4208
- CVE-2023-4273
- CVE-2023-4641
- CVE-2023-22745
- CVE-2023-26545
- CVE-2023-26965
- CVE-2023-26966
- CVE-2023-27522
- CVE-2023-29491
- CVE-2023-29499
- CVE-2023-30456
- CVE-2023-31486
- CVE-2023-32324
- CVE-2023-32573
- CVE-2023-32611
- CVE-2023-32665
- CVE-2023-33203
- CVE-2023-33285
- CVE-2023-33951
- CVE-2023-33952
- CVE-2023-34241
- CVE-2023-34410
- CVE-2023-35825
- CVE-2023-36054
- CVE-2023-37369
- CVE-2023-38197
- CVE-2023-38545
- CVE-2023-38546
- CVE-2023-39191
- CVE-2023-39975
- CVE-2023-44487
1.2.13. Logging 5.8.0
This release includes OpenShift Logging Bug Fix Release 5.8.0 and OpenShift Logging Bug Fix Release 5.8.0 Kibana.
1.2.13.1. Deprecation notice
In Logging 5.8, Elasticsearch, Fluentd, and Kibana are deprecated and are planned to be removed in Logging 6.0, which is expected to be shipped alongside a future release of OpenShift Container Platform. Red Hat will provide critical and above CVE bug fixes and support for these components during the current release lifecycle, but these components will no longer receive feature enhancements. The Vector-based collector provided by the Red Hat OpenShift Logging Operator and LokiStack provided by the Loki Operator are the preferred Operators for log collection and storage. We encourage all users to adopt the Vector and Loki log stack, as this will be the stack that will be enhanced going forward.
1.2.13.2. Enhancements
1.2.13.2.1. Log Collection
-
With this update, the LogFileMetricExporter is no longer deployed with the collector by default. You must manually create a
LogFileMetricExporter
custom resource (CR) to generate metrics from the logs produced by running containers. If you do not create theLogFileMetricExporter
CR, you may see a No datapoints found message in the OpenShift Container Platform web console dashboard for Produced Logs. (LOG-3819) With this update, you can deploy multiple, isolated, and RBAC-protected
ClusterLogForwarder
custom resource (CR) instances in any namespace. This allows independent groups to forward desired logs to any destination while isolating their configuration from other collector deployments. (LOG-1343)ImportantIn order to support multi-cluster log forwarding in additional namespaces other than the
openshift-logging
namespace, you must update the Red Hat OpenShift Logging Operator to watch all namespaces. This functionality is supported by default in new Red Hat OpenShift Logging Operator version 5.8 installations.- With this update, you can use the flow control or rate limiting mechanism to limit the volume of log data that can be collected or forwarded by dropping excess log records. The input limits prevent poorly-performing containers from overloading the Logging and the output limits put a ceiling on the rate of logs shipped to a given data store. (LOG-884)
- With this update, you can configure the log collector to look for HTTP connections and receive logs as an HTTP server, also known as a webhook. (LOG-4562)
- With this update, you can configure audit polices to control which Kubernetes and OpenShift API server events are forwarded by the log collector. (LOG-3982)
1.2.13.2.2. Log Storage
- With this update, LokiStack administrators can have more fine-grained control over who can access which logs by granting access to logs on a namespace basis. (LOG-3841)
-
With this update, the Loki Operator introduces
PodDisruptionBudget
configuration on LokiStack deployments to ensure normal operations during OpenShift Container Platform cluster restarts by keeping ingestion and the query path available. (LOG-3839) - With this update, the reliability of existing LokiStack installations are seamlessly improved by applying a set of default Affinity and Anti-Affinity policies. (LOG-3840)
- With this update, you can manage zone-aware data replication as an administrator in LokiStack, in order to enhance reliability in the event of a zone failure. (LOG-3266)
- With this update, a new supported small-scale LokiStack size of 1x.extra-small is introduced for OpenShift Container Platform clusters hosting a few workloads and smaller ingestion volumes (up to 100GB/day). (LOG-4329)
- With this update, the LokiStack administrator has access to an official Loki dashboard to inspect the storage performance and the health of each component. (LOG-4327)
1.2.13.2.3. Log Console
- With this update, you can enable the Logging Console Plugin when Elasticsearch is the default Log Store. (LOG-3856)
- With this update, OpenShift Container Platform application owners can receive notifications for application log-based alerts on the OpenShift Container Platform web console Developer perspective for OpenShift Container Platform version 4.14 and later. (LOG-3548)
1.2.13.3. Known Issues
Currently, Splunk log forwarding might not work after upgrading to version 5.8 of the Red Hat OpenShift Logging Operator. This issue is caused by transitioning from OpenSSL version 1.1.1 to version 3.0.7. In the newer OpenSSL version, there is a default behavior change, where connections to TLS 1.2 endpoints are rejected if they do not expose the RFC 5746 extension.
As a workaround, enable TLS 1.3 support on the TLS terminating load balancer in front of the Splunk HEC (HTTP Event Collector) endpoint. Splunk is a third-party system and this should be configured from the Splunk end.
-
Currently, there is a flaw in handling multiplexed streams in the HTTP/2 protocol, where you can repeatedly make a request for a new multiplex stream and immediately send an
RST_STREAM
frame to cancel it. This created extra work for the server set up and tore down the streams, resulting in a denial of service due to server resource consumption. There is currently no workaround for this issue. (LOG-4609) -
Currently, when using FluentD as the collector, the collector pod cannot start on the OpenShift Container Platform IPv6-enabled cluster. The pod logs produce the
fluentd pod [error]: unexpected error error_class=SocketError error="getaddrinfo: Name or service not known
error. There is currently no workaround for this issue. (LOG-4706) - Currently, the log alert is not available on an IPv6-enabled cluster. There is currently no workaround for this issue. (LOG-4709)
-
Currently,
must-gather
cannot gather any logs on a FIPS-enabled cluster, because the required OpenSSL library is not available in thecluster-logging-rhel9-operator
. There is currently no workaround for this issue. (LOG-4403) -
Currently, when deploying the logging version 5.8 on a FIPS-enabled cluster, the collector pods cannot start and are stuck in
CrashLoopBackOff
status, while using FluentD as a collector. There is currently no workaround for this issue. (LOG-3933)
1.2.13.4. CVEs
1.3. Logging 5.7
Logging is provided as an installable component, with a distinct release cycle from the core OpenShift Container Platform. The Red Hat OpenShift Container Platform Life Cycle Policy outlines release compatibility.
The stable channel only provides updates to the most recent release of logging. To continue receiving updates for prior releases, you must change your subscription channel to stable-x.y, where x.y
represents the major and minor version of logging you have installed. For example, stable-5.7.
1.3.1. Logging 5.7.15
This release includes OpenShift Logging Bug Fix 5.7.15.
1.3.1.1. Bug fixes
-
Before this update, there was a delay in restarting Ingesters when configuring
LokiStack
, because the Loki Operator sets the write-ahead logreplay_memory_ceiling
to zero bytes for the1x.demo
size. With this update, the minimum value used for thereplay_memory_ceiling
has been increased to avoid delays. (LOG-5616)
1.3.1.2. CVEs
- CVE-2019-25162
- CVE-2020-15778
- CVE-2020-36777
- CVE-2021-43618
- CVE-2021-46934
- CVE-2021-47013
- CVE-2021-47055
- CVE-2021-47118
- CVE-2021-47153
- CVE-2021-47171
- CVE-2021-47185
- CVE-2022-4645
- CVE-2022-48627
- CVE-2022-48669
- CVE-2023-6004
- CVE-2023-6240
- CVE-2023-6597
- CVE-2023-6918
- CVE-2023-7008
- CVE-2023-43785
- CVE-2023-43786
- CVE-2023-43787
- CVE-2023-43788
- CVE-2023-43789
- CVE-2023-52439
- CVE-2023-52445
- CVE-2023-52477
- CVE-2023-52513
- CVE-2023-52520
- CVE-2023-52528
- CVE-2023-52565
- CVE-2023-52578
- CVE-2023-52594
- CVE-2023-52595
- CVE-2023-52598
- CVE-2023-52606
- CVE-2023-52607
- CVE-2023-52610
- CVE-2024-0340
- CVE-2024-0450
- CVE-2024-22365
- CVE-2024-23307
- CVE-2024-25062
- CVE-2024-25744
- CVE-2024-26458
- CVE-2024-26461
- CVE-2024-26593
- CVE-2024-26603
- CVE-2024-26610
- CVE-2024-26615
- CVE-2024-26642
- CVE-2024-26643
- CVE-2024-26659
- CVE-2024-26664
- CVE-2024-26693
- CVE-2024-26694
- CVE-2024-26743
- CVE-2024-26744
- CVE-2024-26779
- CVE-2024-26872
- CVE-2024-26892
- CVE-2024-26987
- CVE-2024-26901
- CVE-2024-26919
- CVE-2024-26933
- CVE-2024-26934
- CVE-2024-26964
- CVE-2024-26973
- CVE-2024-26993
- CVE-2024-27014
- CVE-2024-27048
- CVE-2024-27052
- CVE-2024-27056
- CVE-2024-27059
- CVE-2024-28834
- CVE-2024-33599
- CVE-2024-33600
- CVE-2024-33601
- CVE-2024-33602
1.3.2. Logging 5.7.14
This release includes OpenShift Logging Bug Fix 5.7.14.
1.3.2.1. Bug fixes
- Before this update, an issue in the metrics collection code of the Logging Operator caused it to report stale telemetry metrics. With this update, the Logging Operator does not report stale telemetry metrics. (LOG-5472)
1.3.2.2. CVEs
1.3.3. Logging 5.7.13
This release includes OpenShift Logging Bug Fix 5.7.13.
1.3.3.1. Enhancements
- Before this update, the Loki Operator configured Loki to use path-based style access for the Amazon Simple Storage Service (S3), which has been deprecated. With this update, the Loki Operator defaults to virtual-host style without users needing to change their configuration. (LOG-5403)
-
Before this update, the Loki Operator did not validate the Amazon Simple Storage Service (S3) endpoint used in the storage secret. With this update, the validation process ensures the S3 endpoint is a valid S3 URL, and the
LokiStack
status updates to indicate any invalid URLs. (LOG-5393)
1.3.3.2. Bug fixes
-
Before this update, the Elastisearch Operator
ServiceMonitor
in theopenshift-operators-redhat
namespace used static token and certificate authority (CA) files for authentication, causing errors in the Prometheus Operator in the User Workload Monitoring specification on theServiceMonitor
configuration. With this update, the Elastisearch OperatorServiceMonitor
in theopenshift-operators-redhat
namespace now references a service account token secret by aLocalReference
object. This approach allows the User Workload Monitoring specifications in the Prometheus Operator to handle the Elastisearch OperatorServiceMonitor
successfully. This enables Prometheus to scrape the Elastisearch Operator metrics. (LOG-5243) -
Before this update, the Loki Operator did not validate the Amazon Simple Storage Service (S3) endpoint URL format used in the storage secret. With this update, the S3 endpoint URL goes through a validation step that reflects on the status of the
LokiStack
. (LOG-5399)
1.3.3.3. CVEs
1.3.4. Logging 5.7.12
This release includes OpenShift Logging Bug Fix 5.7.12.
1.3.4.1. Bug fixes
-
Before this update, the Loki Operator checked if the pods were running to decide if the
LokiStack
was ready. With this update, it also checks if the pods are ready, so that the readiness of theLokiStack
reflects the state of its components. (LOG-5172) - Before this update, the Red Hat build pipeline didn’t use the existing build details in Loki builds and omitted information such as revision, branch, and version. With this update, the Red Hat build pipeline now adds these details to the Loki builds, fixing the issue. (LOG-5202)
-
Before this update, the configuration of the Loki Operator’s
ServiceMonitor
could match many Kubernetes services, resulting in the Loki Operator’s metrics being collected multiple times. With this update, the configuration ofServiceMonitor
now only matches the dedicated metrics service. (LOG-5251) -
Before this update, the build pipeline did not include linker flags for the build date, causing Loki builds to show empty strings for
buildDate
andgoVersion
. With this update, adding the missing linker flags in the build pipeline fixes the issue. (LOG-5275) -
Before this update, the Loki Operator
ServiceMonitor
in theopenshift-operators-redhat
namespace used static token and CA files for authentication, causing errors in the Prometheus Operator in the User Workload Monitoring spec on theServiceMonitor
configuration. With this update, the Loki OperatorServiceMonitor
inopenshift-operators-redhat
namespace now references a service account token secret by aLocalReference
object. This approach allows the User Workload Monitoring spec in the Prometheus Operator to handle the Loki OperatorServiceMonitor
successfully, enabling Prometheus to scrape the Loki Operator metrics. (LOG-5241)
1.3.4.2. CVEs
- CVE-2021-35937
- CVE-2021-35938
- CVE-2021-35939
- CVE-2022-3545
- CVE-2022-41858
- CVE-2023-1073
- CVE-2023-1838
- CVE-2023-2166
- CVE-2023-2176
- CVE-2023-4623
- CVE-2023-4921
- CVE-2023-5717
- CVE-2023-6135
- CVE-2023-6356
- CVE-2023-6535
- CVE-2023-6536
- CVE-2023-6606
- CVE-2023-6610
- CVE-2023-6817
- CVE-2023-7104
- CVE-2023-27043
- CVE-2023-40283
- CVE-2023-45871
- CVE-2023-46813
- CVE-2023-48795
- CVE-2023-51385
- CVE-2024-0553
- CVE-2024-0646
- CVE-2024-24786
1.3.5. Logging 5.7.11
This release includes Logging Bug Fix 5.7.11.
1.3.5.1. Bug fixes
-
Before this update, when configured to read a custom S3 Certificate Authority, the Loki Operator would not automatically update the configuration when the name of the
ConfigMap
object or the contents changed. With this update, the Loki Operator now watches for changes to theConfigMap
object and automatically updates the generated configuration. (LOG-4968)
1.3.5.2. CVEs
1.3.6. Logging 5.7.10
This release includes OpenShift Logging Bug Fix Release 5.7.10.
1.3.6.1. Bug fix
Before this update, the LokiStack ruler pods would not format the IPv6 pod IP in HTTP URLs used for cross pod communication, causing querying rules and alerts through the Prometheus-compatible API to fail. With this update, the LokiStack ruler pods encapsulate the IPv6 pod IP in square brackets, resolving the issue. (LOG-4891)
1.3.6.2. CVEs
- CVE-2007-4559
- CVE-2021-43975
- CVE-2022-3594
- CVE-2022-3640
- CVE-2022-4285
- CVE-2022-4744
- CVE-2022-28388
- CVE-2022-38457
- CVE-2022-40133
- CVE-2022-40982
- CVE-2022-41862
- CVE-2022-42895
- CVE-2022-45869
- CVE-2022-45887
- CVE-2022-48337
- CVE-2022-48339
- CVE-2023-0458
- CVE-2023-0590
- CVE-2023-0597
- CVE-2023-1073
- CVE-2023-1074
- CVE-2023-1075
- CVE-2023-1079
- CVE-2023-1118
- CVE-2023-1206
- CVE-2023-1252
- CVE-2023-1382
- CVE-2023-1855
- CVE-2023-1989
- CVE-2023-1998
- CVE-2023-2513
- CVE-2023-3138
- CVE-2023-3141
- CVE-2023-3161
- CVE-2023-3212
- CVE-2023-3268
- CVE-2023-3446
- CVE-2023-3609
- CVE-2023-3611
- CVE-2023-3772
- CVE-2023-3817
- CVE-2023-4016
- CVE-2023-4128
- CVE-2023-4132
- CVE-2023-4155
- CVE-2023-4206
- CVE-2023-4207
- CVE-2023-4208
- CVE-2023-4641
- CVE-2023-4732
- CVE-2023-5678
- CVE-2023-22745
- CVE-2023-23455
- CVE-2023-26545
- CVE-2023-28328
- CVE-2023-28772
- CVE-2023-30456
- CVE-2023-31084
- CVE-2023-31436
- CVE-2023-31486
- CVE-2023-33203
- CVE-2023-33951
- CVE-2023-33952
- CVE-2023-35823
- CVE-2023-35824
- CVE-2023-35825
- CVE-2023-38037
- CVE-2024-0443
1.3.7. Logging 5.7.9
This release includes OpenShift Logging Bug Fix Release 5.7.9.
1.3.7.1. Bug fixes
- Before this fix, IPv6 addresses would not be parsed correctly after evaluating a host or multiple hosts for placeholders. With this update, IPv6 addresses are correctly parsed. (LOG-4281)
-
Before this update, the Vector failed to start on IPv4-only nodes. As a result, it failed to create a listener for its metrics endpoint with the following error:
Failed to start Prometheus exporter: TCP bind failed: Address family not supported by protocol (os error 97)
. With this update, the Vector operates normally on IPv4-only nodes. (LOG-4589) -
Before this update, during the process of creating index patterns, the default alias was missing from the initial index in each log output. As a result, Kibana users were unable to create index patterns by using OpenShift Elasticsearch Operator. This update adds the missing aliases to OpenShift Elasticsearch Operator, resolving the issue. Kibana users can now create index patterns that include the
{app,infra,audit}-000001
indexes. (LOG-4806) - Before this update, the Loki Operator did not mount a custom CA bundle to the ruler pods. As a result, during the process to evaluate alerting or recording rules, object storage access failed. With this update, the Loki Operator mounts the custom CA bundle to all ruler pods. The ruler pods can download logs from object storage to evaluate alerting or recording rules. (LOG-4837)
- Before this update, changing a LogQL query using controls such as time range or severity changed the label matcher operator as though it was defined like a regular expression. With this update, regular expression operators remain unchanged when updating the query. (LOG-4842)
- Before this update, the Vector collector deployments relied upon the default retry and buffering behavior. As a result, the delivery pipeline backed up trying to deliver every message when the availability of an output was unstable. With this update, the Vector collector deployments limit the number of message retries and drop messages after the threshold has been exceeded. (LOG-4536)
1.3.7.2. CVEs
- CVE-2007-4559
- CVE-2021-43975
- CVE-2022-3594
- CVE-2022-3640
- CVE-2022-4744
- CVE-2022-28388
- CVE-2022-38457
- CVE-2022-40133
- CVE-2022-40982
- CVE-2022-41862
- CVE-2022-42895
- CVE-2022-45869
- CVE-2022-45887
- CVE-2022-48337
- CVE-2022-48339
- CVE-2023-0458
- CVE-2023-0590
- CVE-2023-0597
- CVE-2023-1073
- CVE-2023-1074
- CVE-2023-1075
- CVE-2023-1079
- CVE-2023-1118
- CVE-2023-1206
- CVE-2023-1252
- CVE-2023-1382
- CVE-2023-1855
- CVE-2023-1981
- CVE-2023-1989
- CVE-2023-1998
- CVE-2023-2513
- CVE-2023-3138
- CVE-2023-3141
- CVE-2023-3161
- CVE-2023-3212
- CVE-2023-3268
- CVE-2023-3609
- CVE-2023-3611
- CVE-2023-3772
- CVE-2023-4016
- CVE-2023-4128
- CVE-2023-4132
- CVE-2023-4155
- CVE-2023-4206
- CVE-2023-4207
- CVE-2023-4208
- CVE-2023-4641
- CVE-2023-4732
- CVE-2023-22745
- CVE-2023-23455
- CVE-2023-26545
- CVE-2023-28328
- CVE-2023-28772
- CVE-2023-30456
- CVE-2023-31084
- CVE-2023-31436
- CVE-2023-31486
- CVE-2023-32324
- CVE-2023-33203
- CVE-2023-33951
- CVE-2023-33952
- CVE-2023-34241
- CVE-2023-35823
- CVE-2023-35824
- CVE-2023-35825
1.3.8. Logging 5.7.8
This release includes OpenShift Logging Bug Fix Release 5.7.8.
1.3.8.1. Bug fixes
-
Before this update, there was a potential conflict when the same name was used for the
outputRefs
andinputRefs
parameters in theClusterLogForwarder
custom resource (CR). As a result, the collector pods entered in aCrashLoopBackOff
status. With this update, the output labels contain theOUTPUT_
prefix to ensure a distinction between output labels and pipeline names. (LOG-4383) -
Before this update, while configuring the JSON log parser, if you did not set the
structuredTypeKey
orstructuredTypeName
parameters for the Cluster Logging Operator, no alert would display about an invalid configuration. With this update, the Cluster Logging Operator informs you about the configuration issue. (LOG-4441) -
Before this update, if the
hecToken
key was missing or incorrect in the secret specified for a Splunk output, the validation failed because the Vector forwarded logs to Splunk without a token. With this update, if thehecToken
key is missing or incorrect, the validation fails with theA non-empty hecToken entry is required
error message. (LOG-4580) -
Before this update, selecting a date from the
Custom time range
for logs caused an error in the web console. With this update, you can select a date from the time range model in the web console successfully. (LOG-4684)
1.3.8.2. CVEs
1.3.9. Logging 5.7.7
This release includes OpenShift Logging Bug Fix Release 5.7.7.
1.3.9.1. Bug fixes
- Before this update, FluentD normalized the logs emitted by the EventRouter differently from Vector. With this update, the Vector produces log records in a consistent format. (LOG-4178)
- Before this update, there was an error in the query used for the FluentD Buffer Availability graph in the metrics dashboard created by the Cluster Logging Operator as it showed the minimum buffer usage. With this update, the graph shows the maximum buffer usage and is now renamed to FluentD Buffer Usage. (LOG-4555)
-
Before this update, deploying a LokiStack on IPv6-only or dual-stack OpenShift Container Platform clusters caused the LokiStack memberlist registration to fail. As a result, the distributor pods went into a crash loop. With this update, an administrator can enable IPv6 by setting the
lokistack.spec.hashRing.memberlist.enableIPv6:
value totrue
, which resolves the issue. (LOG-4569) - Before this update, the log collector relied on the default configuration settings for reading the container log lines. As a result, the log collector did not read the rotated files efficiently. With this update, there is an increase in the number of bytes read, which allows the log collector to efficiently process rotated files. (LOG-4575)
- Before this update, the unused metrics in the Event Router caused the container to fail due to excessive memory usage. With this update, there is reduction in the memory usage of the Event Router by removing the unused metrics. (LOG-4686)
1.3.9.2. CVEs
1.3.10. Logging 5.7.6
This release includes OpenShift Logging Bug Fix Release 5.7.6.
1.3.10.1. Bug fixes
- Before this update, the collector relied on the default configuration settings for reading the container log lines. As a result, the collector did not read the rotated files efficiently. With this update, there is an increase in the number of bytes read, which allows the collector to efficiently process rotated files. (LOG-4501)
- Before this update, when users pasted a URL with predefined filters, some filters did not reflect. With this update, the UI reflects all the filters in the URL. (LOG-4459)
- Before this update, forwarding to Loki using custom labels generated an error when switching from Fluentd to Vector. With this update, the Vector configuration sanitizes labels in the same way as Fluentd to ensure the collector starts and correctly processes labels. (LOG-4460)
- Before this update, the Observability Logs console search field did not accept special characters that it should escape. With this update, it is escaping special characters properly in the query. (LOG-4456)
-
Before this update, the following warning message appeared while sending logs to Splunk:
Timestamp was not found.
With this update, the change overrides the name of the log field used to retrieve the Timestamp and sends it to Splunk without warning. (LOG-4413) -
Before this update, the CPU and memory usage of Vector was increasing over time. With this update, the Vector configuration now contains the
expire_metrics_secs=60
setting to limit the lifetime of the metrics and cap the associated CPU usage and memory footprint. (LOG-4171) - Before this update, the LokiStack gateway cached authorized requests very broadly. As a result, this caused wrong authorization results. With this update, LokiStack gateway caches on a more fine-grained basis which resolves this issue. (LOG-4393)
- Before this update, the Fluentd runtime image included builder tools which were unnecessary at runtime. With this update, the builder tools are removed, resolving the issue. (LOG-4467)
1.3.10.2. CVEs
1.3.11. Logging 5.7.4
This release includes OpenShift Logging Bug Fix Release 5.7.4.
1.3.11.1. Bug fixes
-
Before this update, when forwarding logs to CloudWatch, a
namespaceUUID
value was not appended to thelogGroupName
field. With this update, thenamespaceUUID
value is included, so alogGroupName
in CloudWatch appears aslogGroupName: vectorcw.b443fb9e-bd4c-4b6a-b9d3-c0097f9ed286
. (LOG-2701) - Before this update, when forwarding logs over HTTP to an off-cluster destination, the Vector collector was unable to authenticate to the cluster-wide HTTP proxy even though correct credentials were provided in the proxy URL. With this update, the Vector log collector can now authenticate to the cluster-wide HTTP proxy. (LOG-3381)
- Before this update, the Operator would fail if the Fluentd collector was configured with Splunk as an output, due to this configuration being unsupported. With this update, configuration validation rejects unsupported outputs, resolving the issue. (LOG-4237)
-
Before this update, when the Vector collector was updated an
enabled = true
value in the TLS configuration for AWS Cloudwatch logs and the GCP Stackdriver caused a configuration error. With this update,enabled = true
value will be removed for these outputs, resolving the issue. (LOG-4242) -
Before this update, the Vector collector occasionally panicked with the following error message in its log:
thread 'vector-worker' panicked at 'all branches are disabled and there is no else branch', src/kubernetes/reflector.rs:26:9
. With this update, the error has been resolved. (LOG-4275) -
Before this update, an issue in the Loki Operator caused the
alert-manager
configuration for the application tenant to disappear if the Operator was configured with additional options for that tenant. With this update, the generated Loki configuration now contains both the custom and the auto-generated configuration. (LOG-4361) - Before this update, when multiple roles were used to authenticate using STS with AWS Cloudwatch forwarding, a recent update caused the credentials to be non-unique. With this update, multiple combinations of STS roles and static credentials can once again be used to authenticate with AWS Cloudwatch. (LOG-4368)
- Before this update, Loki filtered label values for active streams but did not remove duplicates, making Grafana’s Label Browser unusable. With this update, Loki filters out duplicate label values for active streams, resolving the issue. (LOG-4389)
-
Pipelines with no
name
field specified in theClusterLogForwarder
custom resource (CR) stopped working after upgrading to OpenShift Logging 5.7. With this update, the error has been resolved. (LOG-4120)
1.3.11.2. CVEs
1.3.12. Logging 5.7.3
This release includes OpenShift Logging Bug Fix Release 5.7.3.
1.3.12.1. Bug fixes
- Before this update, when viewing logs within the OpenShift Container Platform web console, cached files caused the data to not refresh. With this update the bootstrap files are not cached, resolving the issue. (LOG-4100)
- Before this update, the Loki Operator reset errors in a way that made identifying configuration problems difficult to troubleshoot. With this update, errors persist until the configuration error is resolved. (LOG-4156)
-
Before this update, the LokiStack ruler did not restart after changes were made to the
RulerConfig
custom resource (CR). With this update, the Loki Operator restarts the ruler pods after theRulerConfig
CR is updated. (LOG-4161) -
Before this update, the vector collector terminated unexpectedly when input match label values contained a
/
character within theClusterLogForwarder
. This update resolves the issue by quoting the match label, enabling the collector to start and collect logs. (LOG-4176) -
Before this update, the Loki Operator terminated unexpectedly when a
LokiStack
CR defined tenant limits, but not global limits. With this update, the Loki Operator can processLokiStack
CRs without global limits, resolving the issue. (LOG-4198) - Before this update, Fluentd did not send logs to an Elasticsearch cluster when the private key provided was passphrase-protected. With this update, Fluentd properly handles passphrase-protected private keys when establishing a connection with Elasticsearch. (LOG-4258)
-
Before this update, clusters with more than 8,000 namespaces caused Elasticsearch to reject queries because the list of namespaces was larger than the
http.max_header_size
setting. With this update, the default value for header size has been increased, resolving the issue. (LOG-4277) -
Before this update, label values containing a
/
character within theClusterLogForwarder
CR would cause the collector to terminate unexpectedly. With this update, slashes are replaced with underscores, resolving the issue. (LOG-4095) -
Before this update, the Cluster Logging Operator terminated unexpectedly when set to an unmanaged state. With this update, a check to ensure that the
ClusterLogging
resource is in the correct Management state before initiating the reconciliation of theClusterLogForwarder
CR, resolving the issue. (LOG-4177) - Before this update, when viewing logs within the OpenShift Container Platform web console, selecting a time range by dragging over the histogram didn’t work on the aggregated logs view inside the pod detail. With this update, the time range can be selected by dragging on the histogram in this view. (LOG-4108)
- Before this update, when viewing logs within the OpenShift Container Platform web console, queries longer than 30 seconds timed out. With this update, the timeout value can be configured in the configmap/logging-view-plugin. (LOG-3498)
- Before this update, when viewing logs within the OpenShift Container Platform web console, clicking the more data available option loaded more log entries only the first time it was clicked. With this update, more entries are loaded with each click. (OU-188)
- Before this update, when viewing logs within the OpenShift Container Platform web console, clicking the streaming option would only display the streaming logs message without showing the actual logs. With this update, both the message and the log stream are displayed correctly. (OU-166)
1.3.12.2. CVEs
1.3.13. Logging 5.7.2
This release includes OpenShift Logging Bug Fix Release 5.7.2.
1.3.13.1. Bug fixes
-
Before this update, it was not possible to delete the
openshift-logging
namespace directly due to the presence of a pending finalizer. With this update, the finalizer is no longer utilized, enabling direct deletion of the namespace. (LOG-3316) -
Before this update, the
run.sh
script would display an incorrectchunk_limit_size
value if it was changed according to the OpenShift Container Platform documentation. However, when setting thechunk_limit_size
via the environment variable$BUFFER_SIZE_LIMIT
, the script would show the correct value. With this update, therun.sh
script now consistently displays the correctchunk_limit_size
value in both scenarios. (LOG-3330) - Before this update, the OpenShift Container Platform web console’s logging view plugin did not allow for custom node placement or tolerations. This update adds the ability to define node placement and tolerations for the logging view plugin. (LOG-3749)
-
Before this update, the Cluster Logging Operator encountered an Unsupported Media Type exception when trying to send logs to DataDog via the Fluentd HTTP Plugin. With this update, users can seamlessly assign the content type for log forwarding by configuring the HTTP header Content-Type. The value provided is automatically assigned to the
content_type
parameter within the plugin, ensuring successful log transmission. (LOG-3784) -
Before this update, when the
detectMultilineErrors
field was set totrue
in theClusterLogForwarder
custom resource (CR), PHP multi-line errors were recorded as separate log entries, causing the stack trace to be split across multiple messages. With this update, multi-line error detection for PHP is enabled, ensuring that the entire stack trace is included in a single log message. (LOG-3878) -
Before this update,
ClusterLogForwarder
pipelines containing a space in their name caused the Vector collector pods to continuously crash. With this update, all spaces, dashes (-), and dots (.) in pipeline names are replaced with underscores (_). (LOG-3945) -
Before this update, the
log_forwarder_output
metric did not include thehttp
parameter. This update adds the missing parameter to the metric. (LOG-3997) - Before this update, Fluentd did not identify some multi-line JavaScript client exceptions when they ended with a colon. With this update, the Fluentd buffer name is prefixed with an underscore, resolving the issue. (LOG-4019)
- Before this update, when configuring log forwarding to write to a Kafka output topic which matched a key in the payload, logs dropped due to an error. With this update, Fluentd’s buffer name has been prefixed with an underscore, resolving the issue.(LOG-4027)
- Before this update, the LokiStack gateway returned label values for namespaces without applying the access rights of a user. With this update, the LokiStack gateway applies permissions to label value requests, resolving the issue. (LOG-4049)
Before this update, the Cluster Logging Operator API required a certificate to be provided by a secret when the
tls.insecureSkipVerify
option was set totrue
. With this update, the Cluster Logging Operator API no longer requires a certificate to be provided by a secret in such cases. The following configuration has been added to the Operator’s CR:tls.verify_certificate = false tls.verify_hostname = false
(LOG-3445)
-
Before this update, the LokiStack route configuration caused queries running longer than 30 seconds to timeout. With this update, the LokiStack global and per-tenant
queryTimeout
settings affect the route timeout settings, resolving the issue. (LOG-4052) -
Before this update, a prior fix to remove defaulting of the
collection.type
resulted in the Operator no longer honoring the deprecated specs for resource, node selections, and tolerations. This update modifies the Operator behavior to always prefer thecollection.logs
spec over those ofcollection
. This varies from previous behavior that allowed using both the preferred fields and deprecated fields but would ignore the deprecated fields whencollection.type
was populated. (LOG-4185) - Before this update, the Vector log collector did not generate TLS configuration for forwarding logs to multiple Kafka brokers if the broker URLs were not specified in the output. With this update, TLS configuration is generated appropriately for multiple brokers. (LOG-4163)
- Before this update, the option to enable passphrase for log forwarding to Kafka was unavailable. This limitation presented a security risk as it could potentially expose sensitive information. With this update, users now have a seamless option to enable passphrase for log forwarding to Kafka. (LOG-3314)
-
Before this update, Vector log collector did not honor the
tlsSecurityProfile
settings for outgoing TLS connections. After this update, Vector handles TLS connection settings appropriately. (LOG-4011) -
Before this update, not all available output types were included in the
log_forwarder_output_info
metrics. With this update, metrics contain Splunk and Google Cloud Logging data which was missing previously. (LOG-4098) -
Before this update, when
follow_inodes
was set totrue
, the Fluentd collector could crash on file rotation. With this update, thefollow_inodes
setting does not crash the collector. (LOG-4151) - Before this update, the Fluentd collector could incorrectly close files that should be watched because of how those files were tracked. With this update, the tracking parameters have been corrected. (LOG-4149)
Before this update, forwarding logs with the Vector collector and naming a pipeline in the
ClusterLogForwarder
instanceaudit
,application
orinfrastructure
resulted in collector pods staying in theCrashLoopBackOff
state with the following error in the collector log:ERROR vector::cli: Configuration error. error=redefinition of table transforms.audit for key transforms.audit
After this update, pipeline names no longer clash with reserved input names, and pipelines can be named
audit
,application
orinfrastructure
. (LOG-4218)-
Before this update, when forwarding logs to a syslog destination with the Vector collector and setting the
addLogSource
flag totrue
, the following extra empty fields were added to the forwarded messages:namespace_name=
,container_name=
, andpod_name=
. With this update, these fields are no longer added to journal logs. (LOG-4219) -
Before this update, when a
structuredTypeKey
was not found, and astructuredTypeName
was not specified, log messages were still parsed into structured object. With this update, parsing of logs is as expected. (LOG-4220)
1.3.13.2. CVEs
- CVE-2021-26341
- CVE-2021-33655
- CVE-2021-33656
- CVE-2022-1462
- CVE-2022-1679
- CVE-2022-1789
- CVE-2022-2196
- CVE-2022-2663
- CVE-2022-3028
- CVE-2022-3239
- CVE-2022-3522
- CVE-2022-3524
- CVE-2022-3564
- CVE-2022-3566
- CVE-2022-3567
- CVE-2022-3619
- CVE-2022-3623
- CVE-2022-3625
- CVE-2022-3627
- CVE-2022-3628
- CVE-2022-3707
- CVE-2022-3970
- CVE-2022-4129
- CVE-2022-20141
- CVE-2022-25147
- CVE-2022-25265
- CVE-2022-30594
- CVE-2022-36227
- CVE-2022-39188
- CVE-2022-39189
- CVE-2022-41218
- CVE-2022-41674
- CVE-2022-42703
- CVE-2022-42720
- CVE-2022-42721
- CVE-2022-42722
- CVE-2022-43750
- CVE-2022-47929
- CVE-2023-0394
- CVE-2023-0461
- CVE-2023-1195
- CVE-2023-1582
- CVE-2023-2491
- CVE-2023-22490
- CVE-2023-23454
- CVE-2023-23946
- CVE-2023-25652
- CVE-2023-25815
- CVE-2023-27535
- CVE-2023-29007
1.3.14. Logging 5.7.1
This release includes: OpenShift Logging Bug Fix Release 5.7.1.
1.3.14.1. Bug fixes
- Before this update, the presence of numerous noisy messages within the Cluster Logging Operator pod logs caused reduced log readability, and increased difficulty in identifying important system events. With this update, the issue is resolved by significantly reducing the noisy messages within Cluster Logging Operator pod logs. (LOG-3482)
-
Before this update, the API server would reset the value for the
CollectorSpec.Type
field tovector
, even when the custom resource used a different value. This update removes the default for theCollectorSpec.Type
field to restore the previous behavior. (LOG-4086) - Before this update, a time range could not be selected in the OpenShift Container Platform web console by clicking and dragging over the logs histogram. With this update, clicking and dragging can be used to successfully select a time range. (LOG-4501)
- Before this update, clicking on the Show Resources link in the OpenShift Container Platform web console did not produce any effect. With this update, the issue is resolved by fixing the functionality of the "Show Resources" link to toggle the display of resources for each log entry. (LOG-3218)
1.3.14.2. CVEs
1.3.15. Logging 5.7.0
This release includes OpenShift Logging Bug Fix Release 5.7.0.
1.3.15.1. Enhancements
With this update, you can enable logging to detect multi-line exceptions and reassemble them into a single log entry.
To enable logging to detect multi-line exceptions and reassemble them into a single log entry, ensure that the ClusterLogForwarder
Custom Resource (CR) contains a detectMultilineErrors
field, with a value of true
.
1.3.15.2. Known Issues
None.
1.3.15.3. Bug fixes
-
Before this update, the
nodeSelector
attribute for the Gateway component of the LokiStack did not impact node scheduling. With this update, thenodeSelector
attribute works as expected. (LOG-3713)
1.3.15.4. CVEs
1.4. Logging 5.6
Logging is provided as an installable component, with a distinct release cycle from the core OpenShift Container Platform. The Red Hat OpenShift Container Platform Life Cycle Policy outlines release compatibility.
The stable channel only provides updates to the most recent release of logging. To continue receiving updates for prior releases, you must change your subscription channel to stable-x.y, where x.y
represents the major and minor version of logging you have installed. For example, stable-5.7.
1.4.1. Logging 5.6.23
This release includes OpenShift Logging Bug Fix Release 5.6.23.
1.4.1.1. Bug fixes
None.
1.4.1.2. CVEs
- CVE-2018-15209
- CVE-2021-46939
- CVE-2021-47018
- CVE-2021-47257
- CVE-2021-47284
- CVE-2021-47304
- CVE-2021-47373
- CVE-2021-47408
- CVE-2021-47461
- CVE-2021-47468
- CVE-2021-47491
- CVE-2021-47548
- CVE-2021-47579
- CVE-2021-47624
- CVE-2022-48632
- CVE-2022-48743
- CVE-2022-48747
- CVE-2022-48757
- CVE-2023-6228
- CVE-2023-25433
- CVE-2023-28746
- CVE-2023-52356
- CVE-2023-52451
- CVE-2023-52463
- CVE-2023-52469
- CVE-2023-52471
- CVE-2023-52486
- CVE-2023-52530
- CVE-2023-52619
- CVE-2023-52622
- CVE-2023-52623
- CVE-2023-52648
- CVE-2023-52653
- CVE-2023-52658
- CVE-2023-52662
- CVE-2023-52679
- CVE-2023-52707
- CVE-2023-52730
- CVE-2023-52756
- CVE-2023-52762
- CVE-2023-52764
- CVE-2023-52775
- CVE-2023-52777
- CVE-2023-52784
- CVE-2023-52791
- CVE-2023-52796
- CVE-2023-52803
- CVE-2023-52811
- CVE-2023-52832
- CVE-2023-52834
- CVE-2023-52845
- CVE-2023-52847
- CVE-2023-52864
- CVE-2024-2201
- CVE-2024-2398
- CVE-2024-6345
- CVE-2024-21131
- CVE-2024-21138
- CVE-2024-21140
- CVE-2024-21144
- CVE-2024-21145
- CVE-2024-21147
- CVE-2024-21823
- CVE-2024-25739
- CVE-2024-26586
- CVE-2024-26614
- CVE-2024-26640
- CVE-2024-26660
- CVE-2024-26669
- CVE-2024-26686
- CVE-2024-26698
- CVE-2024-26704
- CVE-2024-26733
- CVE-2024-26740
- CVE-2024-26772
- CVE-2024-26773
- CVE-2024-26802
- CVE-2024-26810
- CVE-2024-26837
- CVE-2024-26840
- CVE-2024-26843
- CVE-2024-26852
- CVE-2024-26853
- CVE-2024-26870
- CVE-2024-26878
- CVE-2024-26908
- CVE-2024-26921
- CVE-2024-26925
- CVE-2024-26940
- CVE-2024-26958
- CVE-2024-26960
- CVE-2024-26961
- CVE-2024-27010
- CVE-2024-27011
- CVE-2024-27019
- CVE-2024-27020
- CVE-2024-27025
- CVE-2024-27065
- CVE-2024-27388
- CVE-2024-27395
- CVE-2024-27434
- CVE-2024-31076
- CVE-2024-33621
- CVE-2024-35790
- CVE-2024-35801
- CVE-2024-35807
- CVE-2024-35810
- CVE-2024-35814
- CVE-2024-35823
- CVE-2024-35824
- CVE-2024-35847
- CVE-2024-35876
- CVE-2024-35893
- CVE-2024-35896
- CVE-2024-35897
- CVE-2024-35899
- CVE-2024-35900
- CVE-2024-35910
- CVE-2024-35912
- CVE-2024-35924
- CVE-2024-35925
- CVE-2024-35930
- CVE-2024-35937
- CVE-2024-35938
- CVE-2024-35946
- CVE-2024-35947
- CVE-2024-35952
- CVE-2024-36000
- CVE-2024-36005
- CVE-2024-36006
- CVE-2024-36010
- CVE-2024-36016
- CVE-2024-36017
- CVE-2024-36020
- CVE-2024-36025
- CVE-2024-36270
- CVE-2024-36286
- CVE-2024-36489
- CVE-2024-36886
- CVE-2024-36889
- CVE-2024-36896
- CVE-2024-36904
- CVE-2024-36905
- CVE-2024-36917
- CVE-2024-36921
- CVE-2024-36927
- CVE-2024-36929
- CVE-2024-36933
- CVE-2024-36940
- CVE-2024-36941
- CVE-2024-36945
- CVE-2024-36950
- CVE-2024-36954
- CVE-2024-36960
- CVE-2024-36971
- CVE-2024-36978
- CVE-2024-36979
- CVE-2024-37370
- CVE-2024-37371
- CVE-2024-37891
- CVE-2024-38428
- CVE-2024-38538
- CVE-2024-38555
- CVE-2024-38573
- CVE-2024-38575
- CVE-2024-38596
- CVE-2024-38598
- CVE-2024-38615
- CVE-2024-38627
- CVE-2024-39276
- CVE-2024-39472
- CVE-2024-39476
- CVE-2024-39487
- CVE-2024-39502
- CVE-2024-40927
- CVE-2024-40974
1.4.2. Logging 5.6.22
This release includes OpenShift Logging Bug Fix 5.6.22
1.4.2.1. Bug fixes
- Before this update, the Loki Operator overwrote user annotations on the LokiStack Route resource, causing customizations to drop. With this update, the Loki Operator no longer overwrites Route annotations, fixing the issue. (LOG-5947)
1.4.2.2. CVEs
1.4.3. Logging 5.6.21
This release includes OpenShift Logging Bug Fix 5.6.21
1.4.3.1. Bug fixes
-
Before this update, LokiStack was missing a route for the Volume API, which caused the following error:
404 not found
. With this update, LokiStack exposes the Volume API, resolving the issue. (LOG-5751)
1.4.3.2. CVEs
- CVE-2020-26555
- CVE-2021-46909
- CVE-2021-46972
- CVE-2021-47069
- CVE-2021-47073
- CVE-2021-47236
- CVE-2021-47310
- CVE-2021-47311
- CVE-2021-47353
- CVE-2021-47356
- CVE-2021-47456
- CVE-2021-47495
- CVE-2022-48624
- CVE-2023-2953
- CVE-2023-5090
- CVE-2023-52464
- CVE-2023-52560
- CVE-2023-52615
- CVE-2023-52626
- CVE-2023-52667
- CVE-2023-52669
- CVE-2023-52675
- CVE-2023-52686
- CVE-2023-52700
- CVE-2023-52703
- CVE-2023-52781
- CVE-2023-52813
- CVE-2023-52835
- CVE-2023-52877
- CVE-2023-52878
- CVE-2023-52881
- CVE-2024-3651
- CVE-2024-24790
- CVE-2024-24806
- CVE-2024-26583
- CVE-2024-26584
- CVE-2024-26585
- CVE-2024-26656
- CVE-2024-26675
- CVE-2024-26735
- CVE-2024-26759
- CVE-2024-26801
- CVE-2024-26804
- CVE-2024-26826
- CVE-2024-26859
- CVE-2024-26906
- CVE-2024-26907
- CVE-2024-26974
- CVE-2024-26982
- CVE-2024-27397
- CVE-2024-27410
- CVE-2024-28182
- CVE-2024-32002
- CVE-2024-32004
- CVE-2024-32020
- CVE-2024-32021
- CVE-2024-32465
- CVE-2024-32487
- CVE-2024-35235
- CVE-2024-35789
- CVE-2024-35835
- CVE-2024-35838
- CVE-2024-35845
- CVE-2024-35852
- CVE-2024-35853
- CVE-2024-35854
- CVE-2024-35855
- CVE-2024-35888
- CVE-2024-35890
- CVE-2024-35958
- CVE-2024-35959
- CVE-2024-35960
- CVE-2024-36004
- CVE-2024-36007
1.4.4. Logging 5.6.20
This release includes OpenShift Logging Bug Fix 5.6.20
1.4.4.1. Bug fixes
-
Before this update, there was a delay in restarting Ingesters when configuring
LokiStack
, because the Loki Operator sets the write-ahead logreplay_memory_ceiling
to zero bytes for the1x.demo
size. With this update, the minimum value used for thereplay_memory_ceiling
has been increased to avoid delays. (LOG-5617)
1.4.4.2. CVEs
- CVE-2019-25162
- CVE-2020-15778
- CVE-2020-36777
- CVE-2021-43618
- CVE-2021-46934
- CVE-2021-47013
- CVE-2021-47055
- CVE-2021-47118
- CVE-2021-47153
- CVE-2021-47171
- CVE-2021-47185
- CVE-2022-4645
- CVE-2022-48627
- CVE-2022-48669
- CVE-2023-6004
- CVE-2023-6240
- CVE-2023-6597
- CVE-2023-6918
- CVE-2023-7008
- CVE-2023-43785
- CVE-2023-43786
- CVE-2023-43787
- CVE-2023-43788
- CVE-2023-43789
- CVE-2023-52439
- CVE-2023-52445
- CVE-2023-52477
- CVE-2023-52513
- CVE-2023-52520
- CVE-2023-52528
- CVE-2023-52565
- CVE-2023-52578
- CVE-2023-52594
- CVE-2023-52595
- CVE-2023-52598
- CVE-2023-52606
- CVE-2023-52607
- CVE-2023-52610
- CVE-2024-0340
- CVE-2024-0450
- CVE-2024-22365
- CVE-2024-23307
- CVE-2024-25062
- CVE-2024-25744
- CVE-2024-26458
- CVE-2024-26461
- CVE-2024-26593
- CVE-2024-26603
- CVE-2024-26610
- CVE-2024-26615
- CVE-2024-26642
- CVE-2024-26643
- CVE-2024-26659
- CVE-2024-26664
- CVE-2024-26693
- CVE-2024-26694
- CVE-2024-26743
- CVE-2024-26744
- CVE-2024-26779
- CVE-2024-26872
- CVE-2024-26892
- CVE-2024-26987
- CVE-2024-26901
- CVE-2024-26919
- CVE-2024-26933
- CVE-2024-26934
- CVE-2024-26964
- CVE-2024-26973
- CVE-2024-26993
- CVE-2024-27014
- CVE-2024-27048
- CVE-2024-27052
- CVE-2024-27056
- CVE-2024-27059
- CVE-2024-28834
- CVE-2024-33599
- CVE-2024-33600
- CVE-2024-33601
- CVE-2024-33602
1.4.5. Logging 5.6.19
This release includes OpenShift Logging Bug Fix 5.6.19
1.4.5.1. Bug fixes
- Before this update, an issue in the metrics collection code of the Logging Operator caused it to report stale telemetry metrics. With this update, the Logging Operator does not report stale telemetry metrics. (LOG-5529)
1.4.5.2. CVEs
1.4.6. Logging 5.6.18
This release includes OpenShift Logging Bug Fix 5.6.18
1.4.6.1. Enhancements
- Before this update, Loki Operator set up Loki to use path-based style access for the Amazon Simple Storage Service (S3), which has been deprecated. With this update, the Loki Operator defaults to virtual-host style without users needing to change their configuration. (LOG-5404)
-
Before this update, the Loki Operator did not validate the Amazon Simple Storage Service (S3) endpoint used in the storage secret. With this update, the validation process ensures the S3 endpoint is a valid S3 URL, and the
LokiStack
status updates to indicate any invalid URLs. (LOG-5396)
1.4.6.2. Bug fixes
-
Before this update, the Elastisearch Operator
ServiceMonitor
in theopenshift-operators-redhat
namespace used static token and certificate authority (CA) files for authentication, causing errors in the Prometheus Operator in the User Workload Monitoring specification on theServiceMonitor
configuration. With this update, the Elastisearch OperatorServiceMonitor
in theopenshift-operators-redhat
namespace now references a service account token secret by aLocalReference
object. This approach allows the User Workload Monitoring specifications in the Prometheus Operator to handle the Elastisearch OperatorServiceMonitor
successfully. This enables Prometheus to scrape the Elastisearch Operator metrics. (LOG-5244) -
Before this update, the Loki Operator did not validate the Amazon Simple Storage Service (S3) endpoint URL format used in the storage secret. With this update, the S3 endpoint URL goes through a validation step that reflects on the status of the
LokiStack
. (LOG-5400)
1.4.6.3. CVEs
1.4.7. Logging 5.6.17
This release includes OpenShift Logging Bug Fix 5.6.17
1.4.7.1. Bug fixes
- Before this update, the Red Hat build pipeline did not use the existing build details in Loki builds and omitted information such as revision, branch, and version. With this update, the Red Hat build pipeline now adds these details to the Loki builds, fixing the issue. (LOG-5203)
-
Before this update, the configuration of the
ServiceMonitor
by Loki Operator could match many Kubernetes services, which led to Loki Operator’s metrics being collected multiple times. With this update, theServiceMonitor
setup now only matches the dedicated metrics service. (LOG-5252) -
Before this update, the build pipeline did not include linker flags for the build date, causing Loki builds to show empty strings for
buildDate
andgoVersion
. With this update, adding the missing linker flags in the build pipeline fixes the issue. (LOG-5276) -
Before this update, the Loki Operator
ServiceMonitor
in theopenshift-operators-redhat
namespace used static token and CA files for authentication, causing errors in the Prometheus Operator in the User Workload Monitoring spec on theServiceMonitor
configuration. With this update, the Loki OperatorServiceMonitor
inopenshift-operators-redhat
namespace now references a service account token secret by aLocalReference
object. This approach allows the User Workload Monitoring spec in the Prometheus Operator to handle the Loki OperatorServiceMonitor
successfully, enabling Prometheus to scrape the Loki Operator metrics. (LOG-5242)
1.4.7.2. CVEs
1.4.8. Logging 5.6.16
This release includes Logging Bug Fix 5.6.16
1.4.8.1. Bug fixes
- Before this update, when configured to read a custom S3 Certificate Authority the Loki Operator would not automatically update the configuration when the name of the ConfigMap or the contents changed. With this update, the Loki Operator is watching for changes to the ConfigMap and automatically updates the generated configuration. (LOG-4967)
1.4.8.2. CVEs
1.4.9. Logging 5.6.15
This release includes OpenShift Logging Bug Fix Release 5.6.15.
1.4.9.1. Bug fixes
Before this update, the LokiStack ruler pods would not format the IPv6 pod IP in HTTP URLs used for cross pod communication, causing querying rules and alerts through the Prometheus-compatible API to fail. With this update, the LokiStack ruler pods encapsulate the IPv6 pod IP in square brackets, resolving the issue. (LOG-4892)
1.4.9.2. CVEs
1.4.10. Logging 5.6.14
This release includes OpenShift Logging Bug Fix Release 5.6.14.
1.4.10.1. Bug fixes
-
Before this update, during the process of creating index patterns, the default alias was missing from the initial index in each log output. As a result, Kibana users were unable to create index patterns by using OpenShift Elasticsearch Operator. This update adds the missing aliases to OpenShift Elasticsearch Operator, resolving the issue. Kibana users can now create index patterns that include the
{app,infra,audit}-000001
indexes. (LOG-4807) - Before this update, the Loki Operator did not mount a custom CA bundle to the ruler pods. As a result, during the process to evaluate alerting or recording rules, object storage access failed. With this update, the Loki Operator mounts the custom CA bundle to all ruler pods. The ruler pods can download logs from object storage to evaluate alerting or recording rules. (LOG-4838)
1.4.10.2. CVEs
- CVE-2007-4559
- CVE-2021-43975
- CVE-2022-3594
- CVE-2022-3640
- CVE-2022-4744
- CVE-2022-28388
- CVE-2022-38457
- CVE-2022-40133
- CVE-2022-40982
- CVE-2022-41862
- CVE-2022-42895
- CVE-2022-45869
- CVE-2022-45887
- CVE-2022-48337
- CVE-2022-48339
- CVE-2023-0458
- CVE-2023-0590
- CVE-2023-0597
- CVE-2023-1073
- CVE-2023-1074
- CVE-2023-1075
- CVE-2023-1079
- CVE-2023-1118
- CVE-2023-1206
- CVE-2023-1252
- CVE-2023-1382
- CVE-2023-1855
- CVE-2023-1981
- CVE-2023-1989
- CVE-2023-1998
- CVE-2023-2513
- CVE-2023-3138
- CVE-2023-3141
- CVE-2023-3161
- CVE-2023-3212
- CVE-2023-3268
- CVE-2023-3609
- CVE-2023-3611
- CVE-2023-3772
- CVE-2023-4016
- CVE-2023-4128
- CVE-2023-4132
- CVE-2023-4155
- CVE-2023-4206
- CVE-2023-4207
- CVE-2023-4208
- CVE-2023-4641
- CVE-2023-4732
- CVE-2023-22745
- CVE-2023-23455
- CVE-2023-26545
- CVE-2023-28328
- CVE-2023-28772
- CVE-2023-30456
- CVE-2023-31084
- CVE-2023-31436
- CVE-2023-31486
- CVE-2023-32324
- CVE-2023-33203
- CVE-2023-33951
- CVE-2023-33952
- CVE-2023-34241
- CVE-2023-35823
- CVE-2023-35824
- CVE-2023-35825
1.4.11. Logging 5.6.13
This release includes OpenShift Logging Bug Fix Release 5.6.13.
1.4.11.1. Bug fixes
None.
1.4.11.2. CVEs
1.4.12. Logging 5.6.12
This release includes OpenShift Logging Bug Fix Release 5.6.12.
1.4.12.1. Bug fixes
-
Before this update, deploying a LokiStack on IPv6-only or dual-stack OpenShift Container Platform clusters caused the LokiStack memberlist registration to fail. As a result, the distributor pods went into a crash loop. With this update, an administrator can enable IPv6 by setting the
lokistack.spec.hashRing.memberlist.enableIPv6:
value totrue
, which resolves the issue. Currently, the log alert is not available on an IPv6-enabled cluster. (LOG-4570) - Before this update, there was an error in the query used for the FluentD Buffer Availability graph in the metrics dashboard created by the Cluster Logging Operator as it showed the minimum buffer usage. With this update, the graph shows the maximum buffer usage and is now renamed to FluentD Buffer Usage. (LOG-4579)
- Before this update, the unused metrics in the Event Router caused the container to fail due to excessive memory usage. With this update, there is reduction in the memory usage of the Event Router by removing the unused metrics. (LOG-4687)
1.4.12.2. CVEs
1.4.13. Logging 5.6.11
This release includes OpenShift Logging Bug Fix Release 5.6.11.
1.4.13.1. Bug fixes
- Before this update, the LokiStack gateway cached authorized requests very broadly. As a result, this caused wrong authorization results. With this update, LokiStack gateway caches on a more fine-grained basis which resolves this issue. (LOG-4435)
1.4.13.2. CVEs
1.4.14. Logging 5.6.9
This release includes OpenShift Logging Bug Fix Release 5.6.9.
1.4.14.1. Bug fixes
- Before this update, when multiple roles were used to authenticate using STS with AWS Cloudwatch forwarding, a recent update caused the credentials to be non-unique. With this update, multiple combinations of STS roles and static credentials can once again be used to authenticate with AWS Cloudwatch. (LOG-4084)
-
Before this update, the Vector collector occasionally panicked with the following error message in its log:
thread 'vector-worker' panicked at 'all branches are disabled and there is no else branch', src/kubernetes/reflector.rs:26:9
. With this update, the error has been resolved. (LOG-4276) - Before this update, Loki filtered label values for active streams but did not remove duplicates, making Grafana’s Label Browser unusable. With this update, Loki filters out duplicate label values for active streams, resolving the issue. (LOG-4390)
1.4.14.2. CVEs
1.4.15. Logging 5.6.8
This release includes OpenShift Logging Bug Fix Release 5.6.8.
1.4.15.1. Bug fixes
-
Before this update, the vector collector terminated unexpectedly when input match label values contained a
/
character within theClusterLogForwarder
. This update resolves the issue by quoting the match label, enabling the collector to start and collect logs. (LOG-4091) - Before this update, when viewing logs within the OpenShift Container Platform web console, clicking the more data available option loaded more log entries only the first time it was clicked. With this update, more entries are loaded with each click. (OU-187)
- Before this update, when viewing logs within the OpenShift Container Platform web console, clicking the streaming option would only display the streaming logs message without showing the actual logs. With this update, both the message and the log stream are displayed correctly. (OU-189)
- Before this update, the Loki Operator reset errors in a way that made identifying configuration problems difficult to troubleshoot. With this update, errors persist until the configuration error is resolved. (LOG-4158)
-
Before this update, clusters with more than 8,000 namespaces caused Elasticsearch to reject queries because the list of namespaces was larger than the
http.max_header_size
setting. With this update, the default value for header size has been increased, resolving the issue. (LOG-4278)
1.4.15.2. CVEs
1.4.16. Logging 5.6.5
This release includes OpenShift Logging Bug Fix Release 5.6.5.
1.4.16.1. Bug fixes
- Before this update, the template definitions prevented Elasticsearch from indexing some labels and namespace_labels, causing issues with data ingestion. With this update, the fix replaces dots and slashes in labels to ensure proper ingestion, effectively resolving the issue. (LOG-3419)
- Before this update, if the Logs page of the OpenShift Web Console failed to connect to the LokiStack, a generic error message was displayed, providing no additional context or troubleshooting suggestions. With this update, the error message has been enhanced to include more specific details and recommendations for troubleshooting. (LOG-3750)
- Before this update, time range formats were not validated, leading to errors selecting a custom date range. With this update, time formats are now validated, enabling users to select a valid range. If an invalid time range format is selected, an error message is displayed to the user. (LOG-3583)
- Before this update, when searching logs in Loki, even if the length of an expression did not exceed 5120 characters, the query would fail in many cases. With this update, query authorization label matchers have been optimized, resolving the issue. (LOG-3480)
- Before this update, the Loki Operator failed to produce a memberlist configuration that was sufficient for locating all the components when using a memberlist for private IPs. With this update, the fix ensures that the generated configuration includes the advertised port, allowing for successful lookup of all components. (LOG-4008)
1.4.16.2. CVEs
1.4.17. Logging 5.6.4
This release includes OpenShift Logging Bug Fix Release 5.6.4.
1.4.17.1. Bug fixes
- Before this update, when LokiStack was deployed as the log store, the logs generated by Loki pods were collected and sent to LokiStack. With this update, the logs generated by Loki are excluded from collection and will not be stored. (LOG-3280)
- Before this update, when the query editor on the Logs page of the OpenShift Web Console was empty, the drop-down menus did not populate. With this update, if an empty query is attempted, an error message is displayed and the drop-down menus now populate as expected. (LOG-3454)
-
Before this update, when the
tls.insecureSkipVerify
option was set totrue
, the Cluster Logging Operator would generate incorrect configuration. As a result, the operator would fail to send data to Elasticsearch when attempting to skip certificate validation. With this update, the Cluster Logging Operator generates the correct TLS configuration even whentls.insecureSkipVerify
is enabled. As a result, data can be sent successfully to Elasticsearch even when attempting to skip certificate validation. (LOG-3475) - Before this update, when structured parsing was enabled and messages were forwarded to multiple destinations, they were not deep copied. This resulted in some of the received logs including the structured message, while others did not. With this update, the configuration generation has been modified to deep copy messages before JSON parsing. As a result, all received messages now have structured messages included, even when they are forwarded to multiple destinations. (LOG-3640)
-
Before this update, if the
collection
field contained{}
it could result in the Operator crashing. With this update, the Operator will ignore this value, allowing the operator to continue running smoothly without interruption. (LOG-3733) -
Before this update, the
nodeSelector
attribute for the Gateway component of LokiStack did not have any effect. With this update, thenodeSelector
attribute functions as expected. (LOG-3783) - Before this update, the static LokiStack memberlist configuration relied solely on private IP networks. As a result, when the OpenShift Container Platform cluster pod network was configured with a public IP range, the LokiStack pods would crashloop. With this update, the LokiStack administrator now has the option to use the pod network for the memberlist configuration. This resolves the issue and prevents the LokiStack pods from entering a crashloop state when the OpenShift Container Platform cluster pod network is configured with a public IP range. (LOG-3814)
-
Before this update, if the
tls.insecureSkipVerify
field was set totrue
, the Cluster Logging Operator would generate an incorrect configuration. As a result, the Operator would fail to send data to Elasticsearch when attempting to skip certificate validation. With this update, the Operator generates the correct TLS configuration even whentls.insecureSkipVerify
is enabled. As a result, data can be sent successfully to Elasticsearch even when attempting to skip certificate validation. (LOG-3838) - Before this update, if the Cluster Logging Operator (CLO) was installed without the Elasticsearch Operator, the CLO pod would continuously display an error message related to the deletion of Elasticsearch. With this update, the CLO now performs additional checks before displaying any error messages. As a result, error messages related to Elasticsearch deletion are no longer displayed in the absence of the Elasticsearch Operator.(LOG-3763)
1.4.17.2. CVEs
1.4.18. Logging 5.6.3
This release includes OpenShift Logging Bug Fix Release 5.6.3.
1.4.18.1. Bug fixes
- Before this update, the operator stored gateway tenant secret information in a config map. With this update, the operator stores this information in a secret. (LOG-3717)
-
Before this update, the Fluentd collector did not capture OAuth login events stored in
/var/log/auth-server/audit.log
. With this update, Fluentd captures these OAuth login events, resolving the issue. (LOG-3729)
1.4.18.2. CVEs
1.4.19. Logging 5.6.2
This release includes OpenShift Logging Bug Fix Release 5.6.2.
1.4.19.1. Bug fixes
-
Before this update, the collector did not set
level
fields correctly based on priority for systemd logs. With this update,level
fields are set correctly. (LOG-3429) - Before this update, the Operator incorrectly generated incompatibility warnings on OpenShift Container Platform 4.12 or later. With this update, the Operator max OpenShift Container Platform version value has been corrected, resolving the issue. (LOG-3584)
-
Before this update, creating a
ClusterLogForwarder
custom resource (CR) with an output value ofdefault
did not generate any errors. With this update, an error warning that this value is invalid generates appropriately. (LOG-3437) -
Before this update, when the
ClusterLogForwarder
custom resource (CR) had multiple pipelines configured with one output set asdefault
, the collector pods restarted. With this update, the logic for output validation has been corrected, resolving the issue. (LOG-3559) - Before this update, collector pods restarted after being created. With this update, the deployed collector does not restart on its own. (LOG-3608)
- Before this update, patch releases removed previous versions of the Operators from the catalog. This made installing the old versions impossible. This update changes bundle configurations so that previous releases of the same minor version stay in the catalog. (LOG-3635)
1.4.19.2. CVEs
1.4.20. Logging 5.6.1
This release includes OpenShift Logging Bug Fix Release 5.6.1.
1.4.20.1. Bug fixes
- Before this update, the compactor would report TLS certificate errors from communications with the querier when retention was active. With this update, the compactor and querier no longer communicate erroneously over HTTP. (LOG-3494)
-
Before this update, the Loki Operator would not retry setting the status of the
LokiStack
CR, which caused stale status information. With this update, the Operator retries status information updates on conflict. (LOG-3496) -
Before this update, the Loki Operator Webhook server caused TLS errors when the
kube-apiserver-operator
Operator checked the webhook validity. With this update, the Loki Operator Webhook PKI is managed by the Operator Lifecycle Manager (OLM), resolving the issue. (LOG-3510) - Before this update, the LokiStack Gateway Labels Enforcer generated parsing errors for valid LogQL queries when using combined label filters with boolean expressions. With this update, the LokiStack LogQL implementation supports label filters with boolean expression and resolves the issue. (LOG-3441), (LOG-3397)
- Before this update, records written to Elasticsearch would fail if multiple label keys had the same prefix and some keys included dots. With this update, underscores replace dots in label keys, resolving the issue. (LOG-3463)
-
Before this update, the
Red Hat OpenShift Logging
Operator was not available for OpenShift Container Platform 4.10 clusters because of an incompatibility between OpenShift Container Platform console and the logging-view-plugin. With this update, the plugin is properly integrated with the OpenShift Container Platform 4.10 admin console. (LOG-3447) -
Before this update the reconciliation of the
ClusterLogForwarder
custom resource would incorrectly report a degraded status of pipelines that reference the default logstore. With this update, the pipeline validates properly.(LOG-3477)
1.4.20.2. CVEs
1.4.21. Logging 5.6.0
This release includes OpenShift Logging Release 5.6.
1.4.21.1. Deprecation notice
In logging version 5.6, Fluentd is deprecated and is planned to be removed in a future release. Red Hat will provide bug fixes and support for this feature during the current release lifecycle, but this feature will no longer receive enhancements and will be removed. As an alternative to Fluentd, you can use Vector instead.
1.4.21.2. Enhancements
- With this update, Logging is compliant with OpenShift Container Platform cluster-wide cryptographic policies. (LOG-895)
- With this update, you can declare per-tenant, per-stream, and global policies retention policies through the LokiStack custom resource, ordered by priority. (LOG-2695)
- With this update, Splunk is an available output option for log forwarding. (LOG-2913)
- With this update, Vector replaces Fluentd as the default Collector. (LOG-2222)
- With this update, the Developer role can access the per-project workload logs they are assigned to within the Log Console Plugin on clusters running OpenShift Container Platform 4.11 and higher. (LOG-3388)
With this update, logs from any source contain a field
openshift.cluster_id
, the unique identifier of the cluster in which the Operator is deployed. You can view theclusterID
value by using the following command:$ oc get clusterversion/version -o jsonpath='{.spec.clusterID}{"\n"}'
(LOG-2715)
1.4.21.3. Known Issues
-
Before this update, Elasticsearch would reject logs if multiple label keys had the same prefix and some keys included the
.
character. This fixes the limitation of Elasticsearch by replacing.
in the label keys with_
. As a workaround for this issue, remove the labels that cause errors, or add a namespace to the label. (LOG-3463)
1.4.21.4. Bug fixes
- Before this update, if you deleted the Kibana Custom Resource, the OpenShift Container Platform web console continued displaying a link to Kibana. With this update, removing the Kibana Custom Resource also removes that link. (LOG-2993)
- Before this update, a user was not able to view the application logs of namespaces they have access to. With this update, the Loki Operator automatically creates a cluster role and cluster role binding allowing users to read application logs. (LOG-3072)
-
Before this update, the Operator removed any custom outputs defined in the
ClusterLogForwarder
custom resource when using LokiStack as the default log storage. With this update, the Operator merges custom outputs with the default outputs when processing theClusterLogForwarder
custom resource. (LOG-3090) - Before this update, the CA key was used as the volume name for mounting the CA into Loki, causing error states when the CA Key included non-conforming characters, such as dots. With this update, the volume name is standardized to an internal string which resolves the issue. (LOG-3331)
-
Before this update, a default value set within the LokiStack Custom Resource Definition, caused an inability to create a LokiStack instance without a
ReplicationFactor
of1
. With this update, the operator sets the actual value for the size used. (LOG-3296) -
Before this update, Vector parsed the message field when JSON parsing was enabled without also defining
structuredTypeKey
orstructuredTypeName
values. With this update, a value is required for eitherstructuredTypeKey
orstructuredTypeName
when writing structured logs to Elasticsearch. (LOG-3195) - Before this update, the secret creation component of the Elasticsearch Operator modified internal secrets constantly. With this update, the existing secret is properly handled. (LOG-3161)
- Before this update, the Operator could enter a loop of removing and recreating the collector daemonset while the Elasticsearch or Kibana deployments changed their status. With this update, a fix in the status handling of the Operator resolves the issue. (LOG-3157)
-
Before this update, Kibana had a fixed
24h
OAuth cookie expiration time, which resulted in 401 errors in Kibana whenever theaccessTokenInactivityTimeout
field was set to a value lower than24h
. With this update, Kibana’s OAuth cookie expiration time synchronizes to theaccessTokenInactivityTimeout
, with a default value of24h
. (LOG-3129) - Before this update, the Operators general pattern for reconciling resources was to try and create before attempting to get or update which would lead to constant HTTP 409 responses after creation. With this update, Operators first attempt to retrieve an object and only create or update it if it is either missing or not as specified. (LOG-2919)
-
Before this update, the
.level
and`.structure.level` fields in Fluentd could contain different values. With this update, the values are the same for each field. (LOG-2819) - Before this update, the Operator did not wait for the population of the trusted CA bundle and deployed the collector a second time once the bundle updated. With this update, the Operator waits briefly to see if the bundle has been populated before it continues the collector deployment. (LOG-2789)
- Before this update, logging telemetry info appeared twice when reviewing metrics. With this update, logging telemetry info displays as expected. (LOG-2315)
- Before this update, Fluentd pod logs contained a warning message after enabling the JSON parsing addition. With this update, that warning message does not appear. (LOG-1806)
-
Before this update, the
must-gather
script did not complete becauseoc
needs a folder with write permission to build its cache. With this update,oc
has write permissions to a folder, and themust-gather
script completes successfully. (LOG-3446) - Before this update the log collector SCC could be superseded by other SCCs on the cluster, rendering the collector unusable. This update sets the priority of the log collector SCC so that it takes precedence over the others. (LOG-3235)
-
Before this update, Vector was missing the field
sequence
, which was added to fluentd as a way to deal with a lack of actual nanoseconds precision. With this update, the fieldopenshift.sequence
has been added to the event logs. (LOG-3106)
1.4.21.5. CVEs
Chapter 2. Support
Only the configuration options described in this documentation are supported for logging.
Do not use any other configuration options, as they are unsupported. Configuration paradigms might change across OpenShift Container Platform releases, and such cases can only be handled gracefully if all configuration possibilities are controlled. If you use configurations other than those described in this documentation, your changes will be overwritten, because Operators are designed to reconcile any differences.
If you must perform configurations not described in the OpenShift Container Platform documentation, you must set your Red Hat OpenShift Logging Operator to Unmanaged
. An unmanaged logging instance is not supported and does not receive updates until you return its status to Managed
.
Logging is provided as an installable component, with a distinct release cycle from the core OpenShift Container Platform. The Red Hat OpenShift Container Platform Life Cycle Policy outlines release compatibility.
Logging for Red Hat OpenShift is an opinionated collector and normalizer of application, infrastructure, and audit logs. It is intended to be used for forwarding logs to various supported systems.
Logging is not:
- A high scale log collection system
- Security Information and Event Monitoring (SIEM) compliant
- Historical or long term log retention or storage
- A guaranteed log sink
- Secure storage - audit logs are not stored by default
2.1. Supported API custom resource definitions
LokiStack development is ongoing. Not all APIs are currently supported.
CustomResourceDefinition (CRD) | ApiVersion | Support state |
---|---|---|
LokiStack | lokistack.loki.grafana.com/v1 | Supported in 5.5 |
RulerConfig | rulerconfig.loki.grafana/v1 | Supported in 5.7 |
AlertingRule | alertingrule.loki.grafana/v1 | Supported in 5.7 |
RecordingRule | recordingrule.loki.grafana/v1 | Supported in 5.7 |
2.2. Unsupported configurations
You must set the Red Hat OpenShift Logging Operator to the Unmanaged
state to modify the following components:
-
The
Elasticsearch
custom resource (CR) - The Kibana deployment
-
The
fluent.conf
file - The Fluentd daemon set
You must set the OpenShift Elasticsearch Operator to the Unmanaged
state to modify the Elasticsearch deployment files.
Explicitly unsupported cases include:
- Configuring default log rotation. You cannot modify the default log rotation configuration.
-
Configuring the collected log location. You cannot change the location of the log collector output file, which by default is
/var/log/fluentd/fluentd.log
. - Throttling log collection. You cannot throttle down the rate at which the logs are read in by the log collector.
- Configuring the logging collector using environment variables. You cannot use environment variables to modify the log collector.
- Configuring how the log collector normalizes logs. You cannot modify default log normalization.
2.3. Support policy for unmanaged Operators
The management state of an Operator determines whether an Operator is actively managing the resources for its related component in the cluster as designed. If an Operator is set to an unmanaged state, it does not respond to changes in configuration nor does it receive updates.
While this can be helpful in non-production clusters or during debugging, Operators in an unmanaged state are unsupported and the cluster administrator assumes full control of the individual component configurations and upgrades.
An Operator can be set to an unmanaged state using the following methods:
Individual Operator configuration
Individual Operators have a
managementState
parameter in their configuration. This can be accessed in different ways, depending on the Operator. For example, the Red Hat OpenShift Logging Operator accomplishes this by modifying a custom resource (CR) that it manages, while the Cluster Samples Operator uses a cluster-wide configuration resource.Changing the
managementState
parameter toUnmanaged
means that the Operator is not actively managing its resources and will take no action related to the related component. Some Operators might not support this management state as it might damage the cluster and require manual recovery.WarningChanging individual Operators to the
Unmanaged
state renders that particular component and functionality unsupported. Reported issues must be reproduced inManaged
state for support to proceed.Cluster Version Operator (CVO) overrides
The
spec.overrides
parameter can be added to the CVO’s configuration to allow administrators to provide a list of overrides to the CVO’s behavior for a component. Setting thespec.overrides[].unmanaged
parameter totrue
for a component blocks cluster upgrades and alerts the administrator after a CVO override has been set:Disabling ownership via cluster version overrides prevents upgrades. Please remove overrides before continuing.
WarningSetting a CVO override puts the entire cluster in an unsupported state. Reported issues must be reproduced after removing any overrides for support to proceed.
2.4. Collecting logging data for Red Hat Support
When opening a support case, it is helpful to provide debugging information about your cluster to Red Hat Support.
You can use the must-gather
tool to collect diagnostic information for project-level resources, cluster-level resources, and each of the logging components.
For prompt support, supply diagnostic information for both OpenShift Container Platform and logging.
Do not use the hack/logging-dump.sh
script. The script is no longer supported and does not collect data.
2.4.1. About the must-gather tool
The oc adm must-gather
CLI command collects the information from your cluster that is most likely needed for debugging issues.
For your logging, must-gather
collects the following information:
- Project-level resources, including pods, configuration maps, service accounts, roles, role bindings, and events at the project level
- Cluster-level resources, including nodes, roles, and role bindings at the cluster level
-
OpenShift Logging resources in the
openshift-logging
andopenshift-operators-redhat
namespaces, including health status for the log collector, the log store, and the log visualizer
When you run oc adm must-gather
, a new pod is created on the cluster. The data is collected on that pod and saved in a new directory that starts with must-gather.local
. This directory is created in the current working directory.
2.4.2. Collecting logging data
You can use the oc adm must-gather
CLI command to collect information about logging.
Procedure
To collect logging information with must-gather
:
-
Navigate to the directory where you want to store the
must-gather
information. Run the
oc adm must-gather
command against the logging image:$ oc adm must-gather --image=$(oc -n openshift-logging get deployment.apps/cluster-logging-operator -o jsonpath='{.spec.template.spec.containers[?(@.name == "cluster-logging-operator")].image}')
The
must-gather
tool creates a new directory that starts withmust-gather.local
within the current directory. For example:must-gather.local.4157245944708210408
.Create a compressed file from the
must-gather
directory that was just created. For example, on a computer that uses a Linux operating system, run the following command:$ tar -cvaf must-gather.tar.gz must-gather.local.4157245944708210408
- Attach the compressed file to your support case on the Red Hat Customer Portal.
Chapter 3. Troubleshooting logging
3.1. Viewing Logging status
You can view the status of the Red Hat OpenShift Logging Operator and other logging components.
3.1.1. Viewing the status of the Red Hat OpenShift Logging Operator
You can view the status of the Red Hat OpenShift Logging Operator.
Prerequisites
- The Red Hat OpenShift Logging Operator and OpenShift Elasticsearch Operator are installed.
Procedure
Change to the
openshift-logging
project by running the following command:$ oc project openshift-logging
Get the
ClusterLogging
instance status by running the following command:$ oc get clusterlogging instance -o yaml
Example output
apiVersion: logging.openshift.io/v1 kind: ClusterLogging # ... status: 1 collection: logs: fluentdStatus: daemonSet: fluentd 2 nodes: collector-2rhqp: ip-10-0-169-13.ec2.internal collector-6fgjh: ip-10-0-165-244.ec2.internal collector-6l2ff: ip-10-0-128-218.ec2.internal collector-54nx5: ip-10-0-139-30.ec2.internal collector-flpnn: ip-10-0-147-228.ec2.internal collector-n2frh: ip-10-0-157-45.ec2.internal pods: failed: [] notReady: [] ready: - collector-2rhqp - collector-54nx5 - collector-6fgjh - collector-6l2ff - collector-flpnn - collector-n2frh logstore: 3 elasticsearchStatus: - ShardAllocationEnabled: all cluster: activePrimaryShards: 5 activeShards: 5 initializingShards: 0 numDataNodes: 1 numNodes: 1 pendingTasks: 0 relocatingShards: 0 status: green unassignedShards: 0 clusterName: elasticsearch nodeConditions: elasticsearch-cdm-mkkdys93-1: nodeCount: 1 pods: client: failed: notReady: ready: - elasticsearch-cdm-mkkdys93-1-7f7c6-mjm7c data: failed: notReady: ready: - elasticsearch-cdm-mkkdys93-1-7f7c6-mjm7c master: failed: notReady: ready: - elasticsearch-cdm-mkkdys93-1-7f7c6-mjm7c visualization: 4 kibanaStatus: - deployment: kibana pods: failed: [] notReady: [] ready: - kibana-7fb4fd4cc9-f2nls replicaSets: - kibana-7fb4fd4cc9 replicas: 1
3.1.1.1. Example condition messages
The following are examples of some condition messages from the Status.Nodes
section of the ClusterLogging
instance.
A status message similar to the following indicates a node has exceeded the configured low watermark and no shard will be allocated to this node:
Example output
nodes: - conditions: - lastTransitionTime: 2019-03-15T15:57:22Z message: Disk storage usage for node is 27.5gb (36.74%). Shards will be not be allocated on this node. reason: Disk Watermark Low status: "True" type: NodeStorage deploymentName: example-elasticsearch-clientdatamaster-0-1 upgradeStatus: {}
A status message similar to the following indicates a node has exceeded the configured high watermark and shards will be relocated to other nodes:
Example output
nodes: - conditions: - lastTransitionTime: 2019-03-15T16:04:45Z message: Disk storage usage for node is 27.5gb (36.74%). Shards will be relocated from this node. reason: Disk Watermark High status: "True" type: NodeStorage deploymentName: cluster-logging-operator upgradeStatus: {}
A status message similar to the following indicates the Elasticsearch node selector in the CR does not match any nodes in the cluster:
Example output
Elasticsearch Status: Shard Allocation Enabled: shard allocation unknown Cluster: Active Primary Shards: 0 Active Shards: 0 Initializing Shards: 0 Num Data Nodes: 0 Num Nodes: 0 Pending Tasks: 0 Relocating Shards: 0 Status: cluster health unknown Unassigned Shards: 0 Cluster Name: elasticsearch Node Conditions: elasticsearch-cdm-mkkdys93-1: Last Transition Time: 2019-06-26T03:37:32Z Message: 0/5 nodes are available: 5 node(s) didn't match node selector. Reason: Unschedulable Status: True Type: Unschedulable elasticsearch-cdm-mkkdys93-2: Node Count: 2 Pods: Client: Failed: Not Ready: elasticsearch-cdm-mkkdys93-1-75dd69dccd-f7f49 elasticsearch-cdm-mkkdys93-2-67c64f5f4c-n58vl Ready: Data: Failed: Not Ready: elasticsearch-cdm-mkkdys93-1-75dd69dccd-f7f49 elasticsearch-cdm-mkkdys93-2-67c64f5f4c-n58vl Ready: Master: Failed: Not Ready: elasticsearch-cdm-mkkdys93-1-75dd69dccd-f7f49 elasticsearch-cdm-mkkdys93-2-67c64f5f4c-n58vl Ready:
A status message similar to the following indicates that the requested PVC could not bind to PV:
Example output
Node Conditions: elasticsearch-cdm-mkkdys93-1: Last Transition Time: 2019-06-26T03:37:32Z Message: pod has unbound immediate PersistentVolumeClaims (repeated 5 times) Reason: Unschedulable Status: True Type: Unschedulable
A status message similar to the following indicates that the Fluentd pods cannot be scheduled because the node selector did not match any nodes:
Example output
Status: Collection: Logs: Fluentd Status: Daemon Set: fluentd Nodes: Pods: Failed: Not Ready: Ready:
3.1.2. Viewing the status of logging components
You can view the status for a number of logging components.
Prerequisites
- The Red Hat OpenShift Logging Operator and OpenShift Elasticsearch Operator are installed.
Procedure
Change to the
openshift-logging
project.$ oc project openshift-logging
View the status of logging environment:
$ oc describe deployment cluster-logging-operator
Example output
Name: cluster-logging-operator .... Conditions: Type Status Reason ---- ------ ------ Available True MinimumReplicasAvailable Progressing True NewReplicaSetAvailable .... Events: Type Reason Age From Message ---- ------ ---- ---- ------- Normal ScalingReplicaSet 62m deployment-controller Scaled up replica set cluster-logging-operator-574b8987df to 1----
View the status of the logging replica set:
Get the name of a replica set:
Example output
$ oc get replicaset
Example output
NAME DESIRED CURRENT READY AGE cluster-logging-operator-574b8987df 1 1 1 159m elasticsearch-cdm-uhr537yu-1-6869694fb 1 1 1 157m elasticsearch-cdm-uhr537yu-2-857b6d676f 1 1 1 156m elasticsearch-cdm-uhr537yu-3-5b6fdd8cfd 1 1 1 155m kibana-5bd5544f87 1 1 1 157m
Get the status of the replica set:
$ oc describe replicaset cluster-logging-operator-574b8987df
Example output
Name: cluster-logging-operator-574b8987df .... Replicas: 1 current / 1 desired Pods Status: 1 Running / 0 Waiting / 0 Succeeded / 0 Failed .... Events: Type Reason Age From Message ---- ------ ---- ---- ------- Normal SuccessfulCreate 66m replicaset-controller Created pod: cluster-logging-operator-574b8987df-qjhqv----
3.2. Troubleshooting log forwarding
3.2.1. Redeploying Fluentd pods
When you create a ClusterLogForwarder
custom resource (CR), if the Red Hat OpenShift Logging Operator does not redeploy the Fluentd pods automatically, you can delete the Fluentd pods to force them to redeploy.
Prerequisites
-
You have created a
ClusterLogForwarder
custom resource (CR) object.
Procedure
Delete the Fluentd pods to force them to redeploy by running the following command:
$ oc delete pod --selector logging-infra=collector
3.2.2. Troubleshooting Loki rate limit errors
If the Log Forwarder API forwards a large block of messages that exceeds the rate limit to Loki, Loki generates rate limit (429
) errors.
These errors can occur during normal operation. For example, when adding the logging to a cluster that already has some logs, rate limit errors might occur while the logging tries to ingest all of the existing log entries. In this case, if the rate of addition of new logs is less than the total rate limit, the historical data is eventually ingested, and the rate limit errors are resolved without requiring user intervention.
In cases where the rate limit errors continue to occur, you can fix the issue by modifying the LokiStack
custom resource (CR).
The LokiStack
CR is not available on Grafana-hosted Loki. This topic does not apply to Grafana-hosted Loki servers.
Conditions
- The Log Forwarder API is configured to forward logs to Loki.
Your system sends a block of messages that is larger than 2 MB to Loki. For example:
"values":[["1630410392689800468","{\"kind\":\"Event\",\"apiVersion\":\ ....... ...... ...... ...... \"received_at\":\"2021-08-31T11:46:32.800278+00:00\",\"version\":\"1.7.4 1.6.0\"}},\"@timestamp\":\"2021-08-31T11:46:32.799692+00:00\",\"viaq_index_name\":\"audit-write\",\"viaq_msg_id\":\"MzFjYjJkZjItNjY0MC00YWU4LWIwMTEtNGNmM2E5ZmViMGU4\",\"log_type\":\"audit\"}"]]}]}
After you enter
oc logs -n openshift-logging -l component=collector
, the collector logs in your cluster show a line containing one of the following error messages:429 Too Many Requests Ingestion rate limit exceeded
Example Vector error message
2023-08-25T16:08:49.301780Z WARN sink{component_kind="sink" component_id=default_loki_infra component_type=loki component_name=default_loki_infra}: vector::sinks::util::retries: Retrying after error. error=Server responded with an error: 429 Too Many Requests internal_log_rate_limit=true
Example Fluentd error message
2023-08-30 14:52:15 +0000 [warn]: [default_loki_infra] failed to flush the buffer. retry_times=2 next_retry_time=2023-08-30 14:52:19 +0000 chunk="604251225bf5378ed1567231a1c03b8b" error_class=Fluent::Plugin::LokiOutput::LogPostError error="429 Too Many Requests Ingestion rate limit exceeded for user infrastructure (limit: 4194304 bytes/sec) while attempting to ingest '4082' lines totaling '7820025' bytes, reduce log volume or contact your Loki administrator to see if the limit can be increased\n"
The error is also visible on the receiving end. For example, in the LokiStack ingester pod:
Example Loki ingester error message
level=warn ts=2023-08-30T14:57:34.155592243Z caller=grpc_logging.go:43 duration=1.434942ms method=/logproto.Pusher/Push err="rpc error: code = Code(429) desc = entry with timestamp 2023-08-30 14:57:32.012778399 +0000 UTC ignored, reason: 'Per stream rate limit exceeded (limit: 3MB/sec) while attempting to ingest for stream
Procedure
Update the
ingestionBurstSize
andingestionRate
fields in theLokiStack
CR:apiVersion: loki.grafana.com/v1 kind: LokiStack metadata: name: logging-loki namespace: openshift-logging spec: limits: global: ingestion: ingestionBurstSize: 16 1 ingestionRate: 8 2 # ...
- 1
- The
ingestionBurstSize
field defines the maximum local rate-limited sample size per distributor replica in MB. This value is a hard limit. Set this value to at least the maximum logs size expected in a single push request. Single requests that are larger than theingestionBurstSize
value are not permitted. - 2
- The
ingestionRate
field is a soft limit on the maximum amount of ingested samples per second in MB. Rate limit errors occur if the rate of logs exceeds the limit, but the collector retries sending the logs. As long as the total average is lower than the limit, the system recovers and errors are resolved without user intervention.
3.3. Troubleshooting logging alerts
You can use the following procedures to troubleshoot logging alerts on your cluster.
3.3.1. Elasticsearch cluster health status is red
At least one primary shard and its replicas are not allocated to a node. Use the following procedure to troubleshoot this alert.
Some commands in this documentation reference an Elasticsearch pod by using a $ES_POD_NAME
shell variable. If you want to copy and paste the commands directly from this documentation, you must set this variable to a value that is valid for your Elasticsearch cluster.
You can list the available Elasticsearch pods by running the following command:
$ oc -n openshift-logging get pods -l component=elasticsearch
Choose one of the pods listed and set the $ES_POD_NAME
variable, by running the following command:
$ export ES_POD_NAME=<elasticsearch_pod_name>
You can now use the $ES_POD_NAME
variable in commands.
Procedure
Check the Elasticsearch cluster health and verify that the cluster
status
is red by running the following command:$ oc exec -n openshift-logging -c elasticsearch $ES_POD_NAME -- health
List the nodes that have joined the cluster by running the following command:
$ oc exec -n openshift-logging -c elasticsearch $ES_POD_NAME \ -- es_util --query=_cat/nodes?v
List the Elasticsearch pods and compare them with the nodes in the command output from the previous step, by running the following command:
$ oc -n openshift-logging get pods -l component=elasticsearch
If some of the Elasticsearch nodes have not joined the cluster, perform the following steps.
Confirm that Elasticsearch has an elected master node by running the following command and observing the output:
$ oc exec -n openshift-logging -c elasticsearch $ES_POD_NAME \ -- es_util --query=_cat/master?v
Review the pod logs of the elected master node for issues by running the following command and observing the output:
$ oc logs <elasticsearch_master_pod_name> -c elasticsearch -n openshift-logging
Review the logs of nodes that have not joined the cluster for issues by running the following command and observing the output:
$ oc logs <elasticsearch_node_name> -c elasticsearch -n openshift-logging
If all the nodes have joined the cluster, check if the cluster is in the process of recovering by running the following command and observing the output:
$ oc exec -n openshift-logging -c elasticsearch $ES_POD_NAME \ -- es_util --query=_cat/recovery?active_only=true
If there is no command output, the recovery process might be delayed or stalled by pending tasks.
Check if there are pending tasks by running the following command and observing the output:
$ oc exec -n openshift-logging -c elasticsearch $ES_POD_NAME \ -- health | grep number_of_pending_tasks
- If there are pending tasks, monitor their status. If their status changes and indicates that the cluster is recovering, continue waiting. The recovery time varies according to the size of the cluster and other factors. Otherwise, if the status of the pending tasks does not change, this indicates that the recovery has stalled.
If it seems like the recovery has stalled, check if the
cluster.routing.allocation.enable
value is set tonone
, by running the following command and observing the output:$ oc exec -n openshift-logging -c elasticsearch $ES_POD_NAME \ -- es_util --query=_cluster/settings?pretty
If the
cluster.routing.allocation.enable
value is set tonone
, set it toall
, by running the following command:$ oc exec -n openshift-logging -c elasticsearch $ES_POD_NAME \ -- es_util --query=_cluster/settings?pretty \ -X PUT -d '{"persistent": {"cluster.routing.allocation.enable":"all"}}'
Check if any indices are still red by running the following command and observing the output:
$ oc exec -n openshift-logging -c elasticsearch $ES_POD_NAME \ -- es_util --query=_cat/indices?v
If any indices are still red, try to clear them by performing the following steps.
Clear the cache by running the following command:
$ oc exec -n openshift-logging -c elasticsearch $ES_POD_NAME \ -- es_util --query=<elasticsearch_index_name>/_cache/clear?pretty
Increase the max allocation retries by running the following command:
$ oc exec -n openshift-logging -c elasticsearch $ES_POD_NAME \ -- es_util --query=<elasticsearch_index_name>/_settings?pretty \ -X PUT -d '{"index.allocation.max_retries":10}'
Delete all the scroll items by running the following command:
$ oc exec -n openshift-logging -c elasticsearch $ES_POD_NAME \ -- es_util --query=_search/scroll/_all -X DELETE
Increase the timeout by running the following command:
$ oc exec -n openshift-logging -c elasticsearch $ES_POD_NAME \ -- es_util --query=<elasticsearch_index_name>/_settings?pretty \ -X PUT -d '{"index.unassigned.node_left.delayed_timeout":"10m"}'
If the preceding steps do not clear the red indices, delete the indices individually.
Identify the red index name by running the following command:
$ oc exec -n openshift-logging -c elasticsearch $ES_POD_NAME \ -- es_util --query=_cat/indices?v
Delete the red index by running the following command:
$ oc exec -n openshift-logging -c elasticsearch $ES_POD_NAME \ -- es_util --query=<elasticsearch_red_index_name> -X DELETE
If there are no red indices and the cluster status is red, check for a continuous heavy processing load on a data node.
Check if the Elasticsearch JVM Heap usage is high by running the following command:
$ oc exec -n openshift-logging -c elasticsearch $ES_POD_NAME \ -- es_util --query=_nodes/stats?pretty
In the command output, review the
node_name.jvm.mem.heap_used_percent
field to determine the JVM Heap usage.- Check for high CPU utilization. For more information about CPU utilitzation, see the OpenShift Container Platform "Reviewing monitoring dashboards" documentation.
Additional resources
3.3.2. Elasticsearch cluster health status is yellow
Replica shards for at least one primary shard are not allocated to nodes. Increase the node count by adjusting the nodeCount
value in the ClusterLogging
custom resource (CR).
Additional resources
3.3.3. Elasticsearch node disk low watermark reached
Elasticsearch does not allocate shards to nodes that reach the low watermark.
Some commands in this documentation reference an Elasticsearch pod by using a $ES_POD_NAME
shell variable. If you want to copy and paste the commands directly from this documentation, you must set this variable to a value that is valid for your Elasticsearch cluster.
You can list the available Elasticsearch pods by running the following command:
$ oc -n openshift-logging get pods -l component=elasticsearch
Choose one of the pods listed and set the $ES_POD_NAME
variable, by running the following command:
$ export ES_POD_NAME=<elasticsearch_pod_name>
You can now use the $ES_POD_NAME
variable in commands.
Procedure
Identify the node on which Elasticsearch is deployed by running the following command:
$ oc -n openshift-logging get po -o wide
Check if there are unassigned shards by running the following command:
$ oc exec -n openshift-logging -c elasticsearch $ES_POD_NAME \ -- es_util --query=_cluster/health?pretty | grep unassigned_shards
If there are unassigned shards, check the disk space on each node, by running the following command:
$ for pod in `oc -n openshift-logging get po -l component=elasticsearch -o jsonpath='{.items[*].metadata.name}'`; \ do echo $pod; oc -n openshift-logging exec -c elasticsearch $pod \ -- df -h /elasticsearch/persistent; done
In the command output, check the
Use
column to determine the used disk percentage on that node.Example output
elasticsearch-cdm-kcrsda6l-1-586cc95d4f-h8zq8 Filesystem Size Used Avail Use% Mounted on /dev/nvme1n1 19G 522M 19G 3% /elasticsearch/persistent elasticsearch-cdm-kcrsda6l-2-5b548fc7b-cwwk7 Filesystem Size Used Avail Use% Mounted on /dev/nvme2n1 19G 522M 19G 3% /elasticsearch/persistent elasticsearch-cdm-kcrsda6l-3-5dfc884d99-59tjw Filesystem Size Used Avail Use% Mounted on /dev/nvme3n1 19G 528M 19G 3% /elasticsearch/persistent
If the used disk percentage is above 85%, the node has exceeded the low watermark, and shards can no longer be allocated to this node.
To check the current
redundancyPolicy
, run the following command:$ oc -n openshift-logging get es elasticsearch \ -o jsonpath='{.spec.redundancyPolicy}'
If you are using a
ClusterLogging
resource on your cluster, run the following command:$ oc -n openshift-logging get cl \ -o jsonpath='{.items[*].spec.logStore.elasticsearch.redundancyPolicy}'
If the cluster
redundancyPolicy
value is higher than theSingleRedundancy
value, set it to theSingleRedundancy
value and save this change.If the preceding steps do not fix the issue, delete the old indices.
Check the status of all indices on Elasticsearch by running the following command:
$ oc exec -n openshift-logging -c elasticsearch $ES_POD_NAME -- indices
- Identify an old index that can be deleted.
Delete the index by running the following command:
$ oc exec -n openshift-logging -c elasticsearch $ES_POD_NAME \ -- es_util --query=<elasticsearch_index_name> -X DELETE
3.3.4. Elasticsearch node disk high watermark reached
Elasticsearch attempts to relocate shards away from a node that has reached the high watermark to a node with low disk usage that has not crossed any watermark threshold limits.
To allocate shards to a particular node, you must free up some space on that node. If increasing the disk space is not possible, try adding a new data node to the cluster, or decrease the total cluster redundancy policy.
Some commands in this documentation reference an Elasticsearch pod by using a $ES_POD_NAME
shell variable. If you want to copy and paste the commands directly from this documentation, you must set this variable to a value that is valid for your Elasticsearch cluster.
You can list the available Elasticsearch pods by running the following command:
$ oc -n openshift-logging get pods -l component=elasticsearch
Choose one of the pods listed and set the $ES_POD_NAME
variable, by running the following command:
$ export ES_POD_NAME=<elasticsearch_pod_name>
You can now use the $ES_POD_NAME
variable in commands.
Procedure
Identify the node on which Elasticsearch is deployed by running the following command:
$ oc -n openshift-logging get po -o wide
Check the disk space on each node:
$ for pod in `oc -n openshift-logging get po -l component=elasticsearch -o jsonpath='{.items[*].metadata.name}'`; \ do echo $pod; oc -n openshift-logging exec -c elasticsearch $pod \ -- df -h /elasticsearch/persistent; done
Check if the cluster is rebalancing:
$ oc exec -n openshift-logging -c elasticsearch $ES_POD_NAME \ -- es_util --query=_cluster/health?pretty | grep relocating_shards
If the command output shows relocating shards, the high watermark has been exceeded. The default value of the high watermark is 90%.
- Increase the disk space on all nodes. If increasing the disk space is not possible, try adding a new data node to the cluster, or decrease the total cluster redundancy policy.
To check the current
redundancyPolicy
, run the following command:$ oc -n openshift-logging get es elasticsearch \ -o jsonpath='{.spec.redundancyPolicy}'
If you are using a
ClusterLogging
resource on your cluster, run the following command:$ oc -n openshift-logging get cl \ -o jsonpath='{.items[*].spec.logStore.elasticsearch.redundancyPolicy}'
If the cluster
redundancyPolicy
value is higher than theSingleRedundancy
value, set it to theSingleRedundancy
value and save this change.If the preceding steps do not fix the issue, delete the old indices.
Check the status of all indices on Elasticsearch by running the following command:
$ oc exec -n openshift-logging -c elasticsearch $ES_POD_NAME -- indices
- Identify an old index that can be deleted.
Delete the index by running the following command:
$ oc exec -n openshift-logging -c elasticsearch $ES_POD_NAME \ -- es_util --query=<elasticsearch_index_name> -X DELETE
3.3.5. Elasticsearch node disk flood watermark reached
Elasticsearch enforces a read-only index block on every index that has both of these conditions:
- One or more shards are allocated to the node.
- One or more disks exceed the flood stage.
Use the following procedure to troubleshoot this alert.
Some commands in this documentation reference an Elasticsearch pod by using a $ES_POD_NAME
shell variable. If you want to copy and paste the commands directly from this documentation, you must set this variable to a value that is valid for your Elasticsearch cluster.
You can list the available Elasticsearch pods by running the following command:
$ oc -n openshift-logging get pods -l component=elasticsearch
Choose one of the pods listed and set the $ES_POD_NAME
variable, by running the following command:
$ export ES_POD_NAME=<elasticsearch_pod_name>
You can now use the $ES_POD_NAME
variable in commands.
Procedure
Get the disk space of the Elasticsearch node:
$ for pod in `oc -n openshift-logging get po -l component=elasticsearch -o jsonpath='{.items[*].metadata.name}'`; \ do echo $pod; oc -n openshift-logging exec -c elasticsearch $pod \ -- df -h /elasticsearch/persistent; done
In the command output, check the
Avail
column to determine the free disk space on that node.Example output
elasticsearch-cdm-kcrsda6l-1-586cc95d4f-h8zq8 Filesystem Size Used Avail Use% Mounted on /dev/nvme1n1 19G 522M 19G 3% /elasticsearch/persistent elasticsearch-cdm-kcrsda6l-2-5b548fc7b-cwwk7 Filesystem Size Used Avail Use% Mounted on /dev/nvme2n1 19G 522M 19G 3% /elasticsearch/persistent elasticsearch-cdm-kcrsda6l-3-5dfc884d99-59tjw Filesystem Size Used Avail Use% Mounted on /dev/nvme3n1 19G 528M 19G 3% /elasticsearch/persistent
- Increase the disk space on all nodes. If increasing the disk space is not possible, try adding a new data node to the cluster, or decrease the total cluster redundancy policy.
To check the current
redundancyPolicy
, run the following command:$ oc -n openshift-logging get es elasticsearch \ -o jsonpath='{.spec.redundancyPolicy}'
If you are using a
ClusterLogging
resource on your cluster, run the following command:$ oc -n openshift-logging get cl \ -o jsonpath='{.items[*].spec.logStore.elasticsearch.redundancyPolicy}'
If the cluster
redundancyPolicy
value is higher than theSingleRedundancy
value, set it to theSingleRedundancy
value and save this change.If the preceding steps do not fix the issue, delete the old indices.
Check the status of all indices on Elasticsearch by running the following command:
$ oc exec -n openshift-logging -c elasticsearch $ES_POD_NAME -- indices
- Identify an old index that can be deleted.
Delete the index by running the following command:
$ oc exec -n openshift-logging -c elasticsearch $ES_POD_NAME \ -- es_util --query=<elasticsearch_index_name> -X DELETE
Continue freeing up and monitoring the disk space. After the used disk space drops below 90%, unblock writing to this node by running the following command:
$ oc exec -n openshift-logging -c elasticsearch $ES_POD_NAME \ -- es_util --query=_all/_settings?pretty \ -X PUT -d '{"index.blocks.read_only_allow_delete": null}'
3.3.6. Elasticsearch JVM heap usage is high
The Elasticsearch node Java virtual machine (JVM) heap memory used is above 75%. Consider increasing the heap size.
3.3.7. Aggregated logging system CPU is high
System CPU usage on the node is high. Check the CPU of the cluster node. Consider allocating more CPU resources to the node.
3.3.8. Elasticsearch process CPU is high
Elasticsearch process CPU usage on the node is high. Check the CPU of the cluster node. Consider allocating more CPU resources to the node.
3.3.9. Elasticsearch disk space is running low
Elasticsearch is predicted to run out of disk space within the next 6 hours based on current disk usage. Use the following procedure to troubleshoot this alert.
Procedure
Get the disk space of the Elasticsearch node:
$ for pod in `oc -n openshift-logging get po -l component=elasticsearch -o jsonpath='{.items[*].metadata.name}'`; \ do echo $pod; oc -n openshift-logging exec -c elasticsearch $pod \ -- df -h /elasticsearch/persistent; done
In the command output, check the
Avail
column to determine the free disk space on that node.Example output
elasticsearch-cdm-kcrsda6l-1-586cc95d4f-h8zq8 Filesystem Size Used Avail Use% Mounted on /dev/nvme1n1 19G 522M 19G 3% /elasticsearch/persistent elasticsearch-cdm-kcrsda6l-2-5b548fc7b-cwwk7 Filesystem Size Used Avail Use% Mounted on /dev/nvme2n1 19G 522M 19G 3% /elasticsearch/persistent elasticsearch-cdm-kcrsda6l-3-5dfc884d99-59tjw Filesystem Size Used Avail Use% Mounted on /dev/nvme3n1 19G 528M 19G 3% /elasticsearch/persistent
- Increase the disk space on all nodes. If increasing the disk space is not possible, try adding a new data node to the cluster, or decrease the total cluster redundancy policy.
To check the current
redundancyPolicy
, run the following command:$ oc -n openshift-logging get es elasticsearch -o jsonpath='{.spec.redundancyPolicy}'
If you are using a
ClusterLogging
resource on your cluster, run the following command:$ oc -n openshift-logging get cl \ -o jsonpath='{.items[*].spec.logStore.elasticsearch.redundancyPolicy}'
If the cluster
redundancyPolicy
value is higher than theSingleRedundancy
value, set it to theSingleRedundancy
value and save this change.If the preceding steps do not fix the issue, delete the old indices.
Check the status of all indices on Elasticsearch by running the following command:
$ oc exec -n openshift-logging -c elasticsearch $ES_POD_NAME -- indices
- Identify an old index that can be deleted.
Delete the index by running the following command:
$ oc exec -n openshift-logging -c elasticsearch $ES_POD_NAME \ -- es_util --query=<elasticsearch_index_name> -X DELETE
Additional resources
3.3.10. Elasticsearch FileDescriptor usage is high
Based on current usage trends, the predicted number of file descriptors on the node is insufficient. Check the value of max_file_descriptors
for each node as described in the Elasticsearch File Descriptors documentation.
3.4. Viewing the status of the Elasticsearch log store
You can view the status of the OpenShift Elasticsearch Operator and for a number of Elasticsearch components.
3.4.1. Viewing the status of the Elasticsearch log store
You can view the status of the Elasticsearch log store.
Prerequisites
- The Red Hat OpenShift Logging Operator and OpenShift Elasticsearch Operator are installed.
Procedure
Change to the
openshift-logging
project by running the following command:$ oc project openshift-logging
To view the status:
Get the name of the Elasticsearch log store instance by running the following command:
$ oc get Elasticsearch
Example output
NAME AGE elasticsearch 5h9m
Get the Elasticsearch log store status by running the following command:
$ oc get Elasticsearch <Elasticsearch-instance> -o yaml
For example:
$ oc get Elasticsearch elasticsearch -n openshift-logging -o yaml
The output includes information similar to the following:
Example output
status: 1 cluster: 2 activePrimaryShards: 30 activeShards: 60 initializingShards: 0 numDataNodes: 3 numNodes: 3 pendingTasks: 0 relocatingShards: 0 status: green unassignedShards: 0 clusterHealth: "" conditions: [] 3 nodes: 4 - deploymentName: elasticsearch-cdm-zjf34ved-1 upgradeStatus: {} - deploymentName: elasticsearch-cdm-zjf34ved-2 upgradeStatus: {} - deploymentName: elasticsearch-cdm-zjf34ved-3 upgradeStatus: {} pods: 5 client: failed: [] notReady: [] ready: - elasticsearch-cdm-zjf34ved-1-6d7fbf844f-sn422 - elasticsearch-cdm-zjf34ved-2-dfbd988bc-qkzjz - elasticsearch-cdm-zjf34ved-3-c8f566f7c-t7zkt data: failed: [] notReady: [] ready: - elasticsearch-cdm-zjf34ved-1-6d7fbf844f-sn422 - elasticsearch-cdm-zjf34ved-2-dfbd988bc-qkzjz - elasticsearch-cdm-zjf34ved-3-c8f566f7c-t7zkt master: failed: [] notReady: [] ready: - elasticsearch-cdm-zjf34ved-1-6d7fbf844f-sn422 - elasticsearch-cdm-zjf34ved-2-dfbd988bc-qkzjz - elasticsearch-cdm-zjf34ved-3-c8f566f7c-t7zkt shardAllocationEnabled: all
- 1
- In the output, the cluster status fields appear in the
status
stanza. - 2
- The status of the Elasticsearch log store:
- The number of active primary shards.
- The number of active shards.
- The number of shards that are initializing.
- The number of Elasticsearch log store data nodes.
- The total number of Elasticsearch log store nodes.
- The number of pending tasks.
-
The Elasticsearch log store status:
green
,red
,yellow
. - The number of unassigned shards.
- 3
- Any status conditions, if present. The Elasticsearch log store status indicates the reasons from the scheduler if a pod could not be placed. Any events related to the following conditions are shown:
- Container Waiting for both the Elasticsearch log store and proxy containers.
- Container Terminated for both the Elasticsearch log store and proxy containers.
- Pod unschedulable. Also, a condition is shown for a number of issues; see Example condition messages.
- 4
- The Elasticsearch log store nodes in the cluster, with
upgradeStatus
. - 5
- The Elasticsearch log store client, data, and master pods in the cluster, listed under
failed
,notReady
, orready
state.
3.4.1.1. Example condition messages
The following are examples of some condition messages from the Status
section of the Elasticsearch instance.
The following status message indicates that a node has exceeded the configured low watermark, and no shard will be allocated to this node.
status: nodes: - conditions: - lastTransitionTime: 2019-03-15T15:57:22Z message: Disk storage usage for node is 27.5gb (36.74%). Shards will be not be allocated on this node. reason: Disk Watermark Low status: "True" type: NodeStorage deploymentName: example-elasticsearch-cdm-0-1 upgradeStatus: {}
The following status message indicates that a node has exceeded the configured high watermark, and shards will be relocated to other nodes.
status: nodes: - conditions: - lastTransitionTime: 2019-03-15T16:04:45Z message: Disk storage usage for node is 27.5gb (36.74%). Shards will be relocated from this node. reason: Disk Watermark High status: "True" type: NodeStorage deploymentName: example-elasticsearch-cdm-0-1 upgradeStatus: {}
The following status message indicates that the Elasticsearch log store node selector in the custom resource (CR) does not match any nodes in the cluster:
status: nodes: - conditions: - lastTransitionTime: 2019-04-10T02:26:24Z message: '0/8 nodes are available: 8 node(s) didn''t match node selector.' reason: Unschedulable status: "True" type: Unschedulable
The following status message indicates that the Elasticsearch log store CR uses a non-existent persistent volume claim (PVC).
status: nodes: - conditions: - last Transition Time: 2019-04-10T05:55:51Z message: pod has unbound immediate PersistentVolumeClaims (repeated 5 times) reason: Unschedulable status: True type: Unschedulable
The following status message indicates that your Elasticsearch log store cluster does not have enough nodes to support the redundancy policy.
status: clusterHealth: "" conditions: - lastTransitionTime: 2019-04-17T20:01:31Z message: Wrong RedundancyPolicy selected. Choose different RedundancyPolicy or add more nodes with data roles reason: Invalid Settings status: "True" type: InvalidRedundancy
This status message indicates your cluster has too many control plane nodes:
status: clusterHealth: green conditions: - lastTransitionTime: '2019-04-17T20:12:34Z' message: >- Invalid master nodes count. Please ensure there are no more than 3 total nodes with master roles reason: Invalid Settings status: 'True' type: InvalidMasters
The following status message indicates that Elasticsearch storage does not support the change you tried to make.
For example:
status: clusterHealth: green conditions: - lastTransitionTime: "2021-05-07T01:05:13Z" message: Changing the storage structure for a custom resource is not supported reason: StorageStructureChangeIgnored status: 'True' type: StorageStructureChangeIgnored
The reason
and type
fields specify the type of unsupported change:
StorageClassNameChangeIgnored
- Unsupported change to the storage class name.
StorageSizeChangeIgnored
- Unsupported change the storage size.
StorageStructureChangeIgnored
Unsupported change between ephemeral and persistent storage structures.
ImportantIf you try to configure the
ClusterLogging
CR to switch from ephemeral to persistent storage, the OpenShift Elasticsearch Operator creates a persistent volume claim (PVC) but does not create a persistent volume (PV). To clear theStorageStructureChangeIgnored
status, you must revert the change to theClusterLogging
CR and delete the PVC.
3.4.2. Viewing the status of the log store components
You can view the status for a number of the log store components.
- Elasticsearch indices
You can view the status of the Elasticsearch indices.
Get the name of an Elasticsearch pod:
$ oc get pods --selector component=elasticsearch -o name
Example output
pod/elasticsearch-cdm-1godmszn-1-6f8495-vp4lw pod/elasticsearch-cdm-1godmszn-2-5769cf-9ms2n pod/elasticsearch-cdm-1godmszn-3-f66f7d-zqkz7
Get the status of the indices:
$ oc exec elasticsearch-cdm-4vjor49p-2-6d4d7db474-q2w7z -- indices
Example output
Defaulting container name to elasticsearch. Use 'oc describe pod/elasticsearch-cdm-4vjor49p-2-6d4d7db474-q2w7z -n openshift-logging' to see all of the containers in this pod. green open infra-000002 S4QANnf1QP6NgCegfnrnbQ 3 1 119926 0 157 78 green open audit-000001 8_EQx77iQCSTzFOXtxRqFw 3 1 0 0 0 0 green open .security iDjscH7aSUGhIdq0LheLBQ 1 1 5 0 0 0 green open .kibana_-377444158_kubeadmin yBywZ9GfSrKebz5gWBZbjw 3 1 1 0 0 0 green open infra-000001 z6Dpe__ORgiopEpW6Yl44A 3 1 871000 0 874 436 green open app-000001 hIrazQCeSISewG3c2VIvsQ 3 1 2453 0 3 1 green open .kibana_1 JCitcBMSQxKOvIq6iQW6wg 1 1 0 0 0 0 green open .kibana_-1595131456_user1 gIYFIEGRRe-ka0W3okS-mQ 3 1 1 0 0 0
- Log store pods
You can view the status of the pods that host the log store.
Get the name of a pod:
$ oc get pods --selector component=elasticsearch -o name
Example output
pod/elasticsearch-cdm-1godmszn-1-6f8495-vp4lw pod/elasticsearch-cdm-1godmszn-2-5769cf-9ms2n pod/elasticsearch-cdm-1godmszn-3-f66f7d-zqkz7
Get the status of a pod:
$ oc describe pod elasticsearch-cdm-1godmszn-1-6f8495-vp4lw
The output includes the following status information:
Example output
.... Status: Running .... Containers: elasticsearch: Container ID: cri-o://b7d44e0a9ea486e27f47763f5bb4c39dfd2 State: Running Started: Mon, 08 Jun 2020 10:17:56 -0400 Ready: True Restart Count: 0 Readiness: exec [/usr/share/elasticsearch/probe/readiness.sh] delay=10s timeout=30s period=5s #success=1 #failure=3 .... proxy: Container ID: cri-o://3f77032abaddbb1652c116278652908dc01860320b8a4e741d06894b2f8f9aa1 State: Running Started: Mon, 08 Jun 2020 10:18:38 -0400 Ready: True Restart Count: 0 .... Conditions: Type Status Initialized True Ready True ContainersReady True PodScheduled True .... Events: <none>
- Log storage pod deployment configuration
You can view the status of the log store deployment configuration.
Get the name of a deployment configuration:
$ oc get deployment --selector component=elasticsearch -o name
Example output
deployment.extensions/elasticsearch-cdm-1gon-1 deployment.extensions/elasticsearch-cdm-1gon-2 deployment.extensions/elasticsearch-cdm-1gon-3
Get the deployment configuration status:
$ oc describe deployment elasticsearch-cdm-1gon-1
The output includes the following status information:
Example output
.... Containers: elasticsearch: Image: registry.redhat.io/openshift-logging/elasticsearch6-rhel8 Readiness: exec [/usr/share/elasticsearch/probe/readiness.sh] delay=10s timeout=30s period=5s #success=1 #failure=3 .... Conditions: Type Status Reason ---- ------ ------ Progressing Unknown DeploymentPaused Available True MinimumReplicasAvailable .... Events: <none>
- Log store replica set
You can view the status of the log store replica set.
Get the name of a replica set:
$ oc get replicaSet --selector component=elasticsearch -o name replicaset.extensions/elasticsearch-cdm-1gon-1-6f8495 replicaset.extensions/elasticsearch-cdm-1gon-2-5769cf replicaset.extensions/elasticsearch-cdm-1gon-3-f66f7d
Get the status of the replica set:
$ oc describe replicaSet elasticsearch-cdm-1gon-1-6f8495
The output includes the following status information:
Example output
.... Containers: elasticsearch: Image: registry.redhat.io/openshift-logging/elasticsearch6-rhel8@sha256:4265742c7cdd85359140e2d7d703e4311b6497eec7676957f455d6908e7b1c25 Readiness: exec [/usr/share/elasticsearch/probe/readiness.sh] delay=10s timeout=30s period=5s #success=1 #failure=3 .... Events: <none>
3.4.3. Elasticsearch cluster status
A dashboard in the Observe section of the OpenShift Container Platform web console displays the status of the Elasticsearch cluster.
To get the status of the OpenShift Elasticsearch cluster, visit the dashboard in the Observe section of the OpenShift Container Platform web console at <cluster_url>/monitoring/dashboards/grafana-dashboard-cluster-logging
.
Elasticsearch status fields
eo_elasticsearch_cr_cluster_management_state
Shows whether the Elasticsearch cluster is in a managed or unmanaged state. For example:
eo_elasticsearch_cr_cluster_management_state{state="managed"} 1 eo_elasticsearch_cr_cluster_management_state{state="unmanaged"} 0
eo_elasticsearch_cr_restart_total
Shows the number of times the Elasticsearch nodes have restarted for certificate restarts, rolling restarts, or scheduled restarts. For example:
eo_elasticsearch_cr_restart_total{reason="cert_restart"} 1 eo_elasticsearch_cr_restart_total{reason="rolling_restart"} 1 eo_elasticsearch_cr_restart_total{reason="scheduled_restart"} 3
es_index_namespaces_total
Shows the total number of Elasticsearch index namespaces. For example:
Total number of Namespaces. es_index_namespaces_total 5
es_index_document_count
Shows the number of records for each namespace. For example:
es_index_document_count{namespace="namespace_1"} 25 es_index_document_count{namespace="namespace_2"} 10 es_index_document_count{namespace="namespace_3"} 5
The "Secret Elasticsearch fields are either missing or empty" message
If Elasticsearch is missing the admin-cert
, admin-key
, logging-es.crt
, or logging-es.key
files, the dashboard shows a status message similar to the following example:
message": "Secret \"elasticsearch\" fields are either missing or empty: [admin-cert, admin-key, logging-es.crt, logging-es.key]", "reason": "Missing Required Secrets",
Chapter 4. About Logging
As a cluster administrator, you can deploy logging on an OpenShift Container Platform cluster, and use it to collect and aggregate node system audit logs, application container logs, and infrastructure logs. You can forward logs to your chosen log outputs, including on-cluster, Red Hat managed log storage. You can also visualize your log data in the OpenShift Container Platform web console, or the Kibana web console, depending on your deployed log storage solution.
The Kibana web console is now deprecated is planned to be removed in a future logging release.
OpenShift Container Platform cluster administrators can deploy logging by using Operators. For information, see Installing logging.
The Operators are responsible for deploying, upgrading, and maintaining logging. After the Operators are installed, you can create a ClusterLogging
custom resource (CR) to schedule logging pods and other resources necessary to support logging. You can also create a ClusterLogForwarder
CR to specify which logs are collected, how they are transformed, and where they are forwarded to.
Because the internal OpenShift Container Platform Elasticsearch log store does not provide secure storage for audit logs, audit logs are not stored in the internal Elasticsearch instance by default. If you want to send the audit logs to the default internal Elasticsearch log store, for example to view the audit logs in Kibana, you must use the Log Forwarding API as described in Forward audit logs to the log store.
4.1. Logging architecture
The major components of the logging are:
- Collector
The collector is a daemonset that deploys pods to each OpenShift Container Platform node. It collects log data from each node, transforms the data, and forwards it to configured outputs. You can use the Vector collector or the legacy Fluentd collector.
NoteFluentd is deprecated and is planned to be removed in a future release. Red Hat provides bug fixes and support for this feature during the current release lifecycle, but this feature no longer receives enhancements. As an alternative to Fluentd, you can use Vector instead.
- Log store
The log store stores log data for analysis and is the default output for the log forwarder. You can use the default LokiStack log store, the legacy Elasticsearch log store, or forward logs to additional external log stores.
NoteThe Logging 5.9 release does not contain an updated version of the OpenShift Elasticsearch Operator. If you currently use the OpenShift Elasticsearch Operator released with Logging 5.8, it will continue to work with Logging until the EOL of Logging 5.8. As an alternative to using the OpenShift Elasticsearch Operator to manage the default log storage, you can use the Loki Operator. For more information on the Logging lifecycle dates, see Platform Agnostic Operators.
- Visualization
You can use a UI component to view a visual representation of your log data. The UI provides a graphical interface to search, query, and view stored logs. The OpenShift Container Platform web console UI is provided by enabling the OpenShift Container Platform console plugin.
NoteThe Kibana web console is now deprecated is planned to be removed in a future logging release.
Logging collects container logs and node logs. These are categorized into types:
- Application logs
- Container logs generated by user applications running in the cluster, except infrastructure container applications.
- Infrastructure logs
-
Container logs generated by infrastructure namespaces:
openshift*
,kube*
, ordefault
, as well as journald messages from nodes. - Audit logs
-
Logs generated by auditd, the node audit system, which are stored in the /var/log/audit/audit.log file, and logs from the
auditd
,kube-apiserver
,openshift-apiserver
services, as well as theovn
project if enabled.
Additional resources
4.2. About deploying logging
Administrators can deploy the logging by using the OpenShift Container Platform web console or the OpenShift CLI (oc
) to install the logging Operators. The Operators are responsible for deploying, upgrading, and maintaining the logging.
Administrators and application developers can view the logs of the projects for which they have view access.
4.2.1. Logging custom resources
You can configure your logging deployment with custom resource (CR) YAML files implemented by each Operator.
Red Hat OpenShift Logging Operator:
-
ClusterLogging
(CL) - After the Operators are installed, you create aClusterLogging
custom resource (CR) to schedule logging pods and other resources necessary to support the logging. TheClusterLogging
CR deploys the collector and forwarder, which currently are both implemented by a daemonset running on each node. The Red Hat OpenShift Logging Operator watches theClusterLogging
CR and adjusts the logging deployment accordingly. -
ClusterLogForwarder
(CLF) - Generates collector configuration to forward logs per user configuration.
Loki Operator:
-
LokiStack
- Controls the Loki cluster as log store and the web proxy with OpenShift Container Platform authentication integration to enforce multi-tenancy.
OpenShift Elasticsearch Operator:
These CRs are generated and managed by the OpenShift Elasticsearch Operator. Manual changes cannot be made without being overwritten by the Operator.
-
ElasticSearch
- Configure and deploy an Elasticsearch instance as the default log store. -
Kibana
- Configure and deploy Kibana instance to search, query and view logs.
4.2.2. About JSON OpenShift Container Platform Logging
You can use JSON logging to configure the Log Forwarding API to parse JSON strings into a structured object. You can perform the following tasks:
- Parse JSON logs
- Configure JSON log data for Elasticsearch
- Forward JSON logs to the Elasticsearch log store
4.2.3. About collecting and storing Kubernetes events
The OpenShift Container Platform Event Router is a pod that watches Kubernetes events and logs them for collection by OpenShift Container Platform Logging. You must manually deploy the Event Router.
For information, see About collecting and storing Kubernetes events.
4.2.4. About troubleshooting OpenShift Container Platform Logging
You can troubleshoot the logging issues by performing the following tasks:
- Viewing logging status
- Viewing the status of the log store
- Understanding logging alerts
- Collecting logging data for Red Hat Support
- Troubleshooting for critical alerts
4.2.5. About exporting fields
The logging system exports fields. Exported fields are present in the log records and are available for searching from Elasticsearch and Kibana.
For information, see About exporting fields.
4.2.6. About event routing
The Event Router is a pod that watches OpenShift Container Platform events so they can be collected by logging. The Event Router collects events from all projects and writes them to STDOUT
. Fluentd collects those events and forwards them into the OpenShift Container Platform Elasticsearch instance. Elasticsearch indexes the events to the infra
index.
You must manually deploy the Event Router.
For information, see Collecting and storing Kubernetes events.
Chapter 5. Installing Logging
You can deploy logging by installing the Red Hat OpenShift Logging Operator. The Red Hat OpenShift Logging Operator creates and manages the components of the logging stack.
Logging is provided as an installable component, with a distinct release cycle from the core OpenShift Container Platform. The Red Hat OpenShift Container Platform Life Cycle Policy outlines release compatibility.
For new installations, use Vector and LokiStack. Elasticsearch and Fluentd are deprecated and are planned to be removed in a future release.
5.1. Installing the Red Hat OpenShift Logging Operator by using the web console
You can install the Red Hat OpenShift Logging Operator by using the OpenShift Container Platform web console.
Prerequisites
- You have administrator permissions.
- You have access to the OpenShift Container Platform web console.
Procedure
- In the OpenShift Container Platform web console, click Operators → OperatorHub.
-
Type
OpenShift Logging
in the Filter by keyword box. - Choose Red Hat OpenShift Logging from the list of available Operators, and click Install.
- Ensure that A specific namespace on the cluster is selected under Installation mode.
- Ensure that Operator recommended namespace is openshift-logging under Installed Namespace.
Select Enable operator recommended cluster monitoring on this namespace.
This option sets the
openshift.io/cluster-monitoring: "true"
label in theNamespace
object. You must select this option to ensure that cluster monitoring scrapes theopenshift-logging
namespace.Select stable-5.y as the Update channel.
NoteThe stable channel only provides updates to the most recent release of logging. To continue receiving updates for prior releases, you must change your subscription channel to stable-x.y, where
x.y
represents the major and minor version of logging you have installed. For example, stable-5.7.Select an Update approval.
- The Automatic strategy allows Operator Lifecycle Manager (OLM) to automatically update the Operator when a new version is available.
- The Manual strategy requires a user with appropriate credentials to approve the Operator update.
- Select Enable or Disable for the Console plugin.
- Click Install.
Verification
- Verify that the Red Hat OpenShift Logging Operator is installed by switching to the Operators → Installed Operators page.
- In the Status column, verify that you see green checkmarks with InstallSucceeded and the text Up to date.
An Operator might display a Failed
status before the installation finishes. If the Operator install completes with an InstallSucceeded
message, refresh the page.
If the Operator does not show as installed, choose one of the following troubleshooting options:
- Go to the Operators → Installed Operators page, and inspect the Status column for any errors or failures.
-
Go to the Workloads → Pods page, and check the logs in any pods in the
openshift-logging
project that are reporting issues.
5.2. Creating a ClusterLogging object by using the web console
After you have installed the logging Operators, you must create a ClusterLogging
custom resource to configure log storage, visualization, and the log collector for your cluster.
Prerequisites
- You have installed the Red Hat OpenShift Logging Operator.
- You have access to the OpenShift Container Platform web console Administrator perspective.
Procedure
- Navigate to the Custom Resource Definitions page.
- On the Custom Resource Definitions page, click ClusterLogging.
- On the Custom Resource Definition details page, select View Instances from the Actions menu.
- On the ClusterLoggings page, click Create ClusterLogging.
In the collection section, select a Collector Implementation.
NoteFluentd is deprecated and is planned to be removed in a future release. Red Hat provides bug fixes and support for this feature during the current release lifecycle, but this feature no longer receives enhancements. As an alternative to Fluentd, you can use Vector instead.
In the logStore section, select a type.
NoteThe Logging 5.9 release does not contain an updated version of the OpenShift Elasticsearch Operator. If you currently use the OpenShift Elasticsearch Operator released with Logging 5.8, it will continue to work with Logging until the EOL of Logging 5.8. As an alternative to using the OpenShift Elasticsearch Operator to manage the default log storage, you can use the Loki Operator. For more information on the Logging lifecycle dates, see Platform Agnostic Operators.
- Click Create.
5.3. Installing the Red Hat OpenShift Logging Operator by using the CLI
You can use the OpenShift CLI (oc
) to install the Red Hat OpenShift Logging Operator.
Prerequisites
- You have administrator permissions.
-
You have installed the OpenShift CLI (
oc
).
Procedure
Create a
Namespace
object as a YAML file:Example
Namespace
objectapiVersion: v1 kind: Namespace metadata: name: <name> 1 annotations: openshift.io/node-selector: "" labels: openshift.io/cluster-monitoring: "true"
- 1
- You must specify
openshift-logging
as the name of the namespace for logging versions 5.7 and earlier versions. For logging 5.8 and later versions, you can use any name.
Apply the
Namespace
object by running the following command:$ oc apply -f <filename>.yaml
Create an
OperatorGroup
object as a YAML file:Example
OperatorGroup
objectapiVersion: operators.coreos.com/v1 kind: OperatorGroup metadata: name: cluster-logging namespace: openshift-logging 1 spec: targetNamespaces: [ ] 2
Apply the
OperatorGroup
object by running the following command:$ oc apply -f <filename>.yaml
Create a
Subscription
object to subscribe the namespace to the Red Hat OpenShift Logging Operator:Example
Subscription
objectapiVersion: operators.coreos.com/v1alpha1 kind: Subscription metadata: name: cluster-logging namespace: openshift-logging 1 spec: channel: stable 2 name: cluster-logging source: redhat-operators 3 sourceNamespace: openshift-marketplace
- 1
- You must specify the
openshift-logging
namespace for logging versions 5.7 and older. For logging 5.8 and later versions, you can use any namespace. - 2
- Specify
stable
orstable-x.y
as the channel. - 3
- Specify
redhat-operators
. If your OpenShift Container Platform cluster is installed on a restricted network, also known as a disconnected cluster, specify the name of theCatalogSource
object you created when you configured the Operator Lifecycle Manager (OLM).
Apply the subscription by running the following command:
$ oc apply -f <filename>.yaml
The Red Hat OpenShift Logging Operator is installed to the
openshift-logging
namespace.
Verification
Run the following command:
$ oc get csv -n <namespace>
Observe the output and confirm that the Red Hat OpenShift Logging Operator exists in the namespace:
Example output
NAMESPACE NAME DISPLAY VERSION REPLACES PHASE ... openshift-logging clusterlogging.5.8.0-202007012112.p0 OpenShift Logging 5.8.0-202007012112.p0 Succeeded ...
5.4. Creating a ClusterLogging object by using the CLI
This default logging configuration supports a wide array of environments. Review the topics on tuning and configuring components for information about modifications you can make.
Prerequisites
- You have installed the Red Hat OpenShift Logging Operator.
- You have installed the OpenShift Elasticsearch Operator for your log store.
-
You have installed the OpenShift CLI (
oc
).
Procedure
Create a
ClusterLogging
object as a YAML file:Example
ClusterLogging
objectapiVersion: logging.openshift.io/v1 kind: ClusterLogging metadata: name: instance 1 namespace: openshift-logging spec: managementState: Managed 2 logStore: type: elasticsearch 3 retentionPolicy: 4 application: maxAge: 1d infra: maxAge: 7d audit: maxAge: 7d elasticsearch: nodeCount: 3 5 storage: storageClassName: <storage_class_name> 6 size: 200G resources: 7 limits: memory: 16Gi requests: memory: 16Gi proxy: 8 resources: limits: memory: 256Mi requests: memory: 256Mi redundancyPolicy: SingleRedundancy visualization: type: kibana 9 kibana: replicas: 1 collection: type: fluentd 10 fluentd: {}
- 1
- The name must be
instance
. - 2
- The OpenShift Logging management state. In some cases, if you change the OpenShift Logging defaults, you must set this to
Unmanaged
. However, an unmanaged deployment does not receive updates until OpenShift Logging is placed back into a managed state. - 3
- Settings for configuring Elasticsearch. Using the CR, you can configure shard replication policy and persistent storage.
- 4
- Specify the length of time that Elasticsearch should retain each log source. Enter an integer and a time designation: weeks(w), hours(h/H), minutes(m) and seconds(s). For example,
7d
for seven days. Logs older than themaxAge
are deleted. You must specify a retention policy for each log source or the Elasticsearch indices will not be created for that source. - 5
- Specify the number of Elasticsearch nodes. See the note that follows this list.
- 6
- Enter the name of an existing storage class for Elasticsearch storage. For best performance, specify a storage class that allocates block storage. If you do not specify a storage class, OpenShift Logging uses ephemeral storage.
- 7
- Specify the CPU and memory requests for Elasticsearch as needed. If you leave these values blank, the OpenShift Elasticsearch Operator sets default values that should be sufficient for most deployments. The default values are
16Gi
for the memory request and1
for the CPU request. - 8
- Specify the CPU and memory requests for the Elasticsearch proxy as needed. If you leave these values blank, the OpenShift Elasticsearch Operator sets default values that should be sufficient for most deployments. The default values are
256Mi
for the memory request and100m
for the CPU request. - 9
- Settings for configuring Kibana. Using the CR, you can scale Kibana for redundancy and configure the CPU and memory for your Kibana nodes. For more information, see Configuring the log visualizer.
- 10
- Settings for configuring Fluentd. Using the CR, you can configure Fluentd CPU and memory limits. For more information, see "Configuring Fluentd".
NoteThe maximum number of Elasticsearch control plane nodes is three. If you specify a
nodeCount
greater than3
, OpenShift Container Platform creates three Elasticsearch nodes that are Master-eligible nodes, with the master, client, and data roles. The additional Elasticsearch nodes are created as data-only nodes, using client and data roles. Control plane nodes perform cluster-wide actions such as creating or deleting an index, shard allocation, and tracking nodes. Data nodes hold the shards and perform data-related operations such as CRUD, search, and aggregations. Data-related operations are I/O-, memory-, and CPU-intensive. It is important to monitor these resources and to add more Data nodes if the current nodes are overloaded.For example, if
nodeCount=4
, the following nodes are created:$ oc get deployment
Example output
NAME READY UP-TO-DATE AVAILABLE AGE cluster-logging-operator 1/1 1 1 18h elasticsearch-cd-x6kdekli-1 1/1 1 1 6m54s elasticsearch-cdm-x6kdekli-1 1/1 1 1 18h elasticsearch-cdm-x6kdekli-2 1/1 1 1 6m49s elasticsearch-cdm-x6kdekli-3 1/1 1 1 6m44s
The number of primary shards for the index templates is equal to the number of Elasticsearch data nodes.
Verification
You can verify the installation by listing the pods in the openshift-logging
project.
List the pods by running the following command:
$ oc get pods -n openshift-logging
Observe the pods for components of the logging, similar to the following list:
Example output
NAME READY STATUS RESTARTS AGE cluster-logging-operator-66f77ffccb-ppzbg 1/1 Running 0 7m elasticsearch-cdm-ftuhduuw-1-ffc4b9566-q6bhp 2/2 Running 0 2m40s elasticsearch-cdm-ftuhduuw-2-7b4994dbfc-rd2gc 2/2 Running 0 2m36s elasticsearch-cdm-ftuhduuw-3-84b5ff7ff8-gqnm2 2/2 Running 0 2m4s collector-587vb 1/1 Running 0 2m26s collector-7mpb9 1/1 Running 0 2m30s collector-flm6j 1/1 Running 0 2m33s collector-gn4rn 1/1 Running 0 2m26s collector-nlgb6 1/1 Running 0 2m30s collector-snpkt 1/1 Running 0 2m28s kibana-d6d5668c5-rppqm 2/2 Running 0 2m39s
5.5. Postinstallation tasks
After you have installed the Red Hat OpenShift Logging Operator, you can configure your deployment by creating and modifying a ClusterLogging
custom resource (CR).
If you are not using the Elasticsearch log store, you can remove the internal Elasticsearch logStore
and Kibana visualization
components from the ClusterLogging
custom resource (CR). Removing these components is optional but saves resources. See Removing unused components if you do not use the Elasticsearch log store.
5.5.1. About the ClusterLogging custom resource
To make changes to your logging environment, create and modify the ClusterLogging
custom resource (CR).
Sample ClusterLogging
custom resource (CR)
apiVersion: logging.openshift.io/v1 kind: ClusterLogging metadata: name: instance 1 namespace: openshift-logging 2 spec: managementState: Managed 3 # ...
5.5.2. Configuring log storage
You can configure which log storage type your logging uses by modifying the ClusterLogging
custom resource (CR).
Prerequisites
- You have administrator permissions.
-
You have installed the OpenShift CLI (
oc
). - You have installed the Red Hat OpenShift Logging Operator and an internal log store that is either the LokiStack or Elasticsearch.
-
You have created a
ClusterLogging
CR.
The Logging 5.9 release does not contain an updated version of the OpenShift Elasticsearch Operator. If you currently use the OpenShift Elasticsearch Operator released with Logging 5.8, it will continue to work with Logging until the EOL of Logging 5.8. As an alternative to using the OpenShift Elasticsearch Operator to manage the default log storage, you can use the Loki Operator. For more information on the Logging lifecycle dates, see Platform Agnostic Operators.
Procedure
Modify the
ClusterLogging
CRlogStore
spec:ClusterLogging
CR exampleapiVersion: logging.openshift.io/v1 kind: ClusterLogging metadata: # ... spec: # ... logStore: type: <log_store_type> 1 elasticsearch: 2 nodeCount: <integer> resources: {} storage: {} redundancyPolicy: <redundancy_type> 3 lokistack: 4 name: {} # ...
- 1
- Specify the log store type. This can be either
lokistack
orelasticsearch
. - 2
- Optional configuration options for the Elasticsearch log store.
- 3
- Specify the redundancy type. This value can be
ZeroRedundancy
,SingleRedundancy
,MultipleRedundancy
, orFullRedundancy
. - 4
- Optional configuration options for LokiStack.
Example
ClusterLogging
CR to specify LokiStack as the log storeapiVersion: logging.openshift.io/v1 kind: ClusterLogging metadata: name: instance namespace: openshift-logging spec: managementState: Managed logStore: type: lokistack lokistack: name: logging-loki # ...
Apply the
ClusterLogging
CR by running the following command:$ oc apply -f <filename>.yaml
5.5.3. Configuring the log collector
You can configure which log collector type your logging uses by modifying the ClusterLogging
custom resource (CR).
Fluentd is deprecated and is planned to be removed in a future release. Red Hat provides bug fixes and support for this feature during the current release lifecycle, but this feature no longer receives enhancements. As an alternative to Fluentd, you can use Vector instead.
Prerequisites
- You have administrator permissions.
-
You have installed the OpenShift CLI (
oc
). - You have installed the Red Hat OpenShift Logging Operator.
-
You have created a
ClusterLogging
CR.
Procedure
Modify the
ClusterLogging
CRcollection
spec:ClusterLogging
CR exampleapiVersion: logging.openshift.io/v1 kind: ClusterLogging metadata: # ... spec: # ... collection: type: <log_collector_type> 1 resources: {} tolerations: {} # ...
- 1
- The log collector type you want to use for the logging. This can be
vector
orfluentd
.
Apply the
ClusterLogging
CR by running the following command:$ oc apply -f <filename>.yaml
5.5.4. Configuring the log visualizer
You can configure which log visualizer type your logging uses by modifying the ClusterLogging
custom resource (CR).
Prerequisites
- You have administrator permissions.
-
You have installed the OpenShift CLI (
oc
). - You have installed the Red Hat OpenShift Logging Operator.
-
You have created a
ClusterLogging
CR.
If you want to use the OpenShift Container Platform web console for visualization, you must enable the logging Console Plugin. See the documentation about "Log visualization with the web console".
Procedure
Modify the
ClusterLogging
CRvisualization
spec:ClusterLogging
CR exampleapiVersion: logging.openshift.io/v1 kind: ClusterLogging metadata: # ... spec: # ... visualization: type: <visualizer_type> 1 kibana: 2 resources: {} nodeSelector: {} proxy: {} replicas: {} tolerations: {} ocpConsole: 3 logsLimit: {} timeout: {} # ...
- 1
- The type of visualizer you want to use for your logging. This can be either
kibana
orocp-console
. The Kibana console is only compatible with deployments that use Elasticsearch log storage, while the OpenShift Container Platform console is only compatible with LokiStack deployments. - 2
- Optional configurations for the Kibana console.