Questo contenuto non è disponibile nella lingua selezionata.

17.2.5. Advanced Features of BIND


Most BIND implementations only use the named service to provide name resolution services or to act as an authority for a particular domain. However, BIND version 9 has a number of advanced features that allow for a more secure and efficient DNS service.

Important

Before attempting to use advanced features like DNSSEC, TSIG, or IXFR (Incremental Zone Transfer), make sure that the particular feature is supported by all nameservers in the network environment, especially when you use older versions of BIND or non-BIND servers.
All of the features mentioned are discussed in greater detail in the BIND 9 Administrator Reference Manual referenced in Section 17.2.7.1, “Installed Documentation”.

17.2.5.1. Multiple Views

Optionally, different information can be presented to a client depending on the network a request originates from. This is primarily used to deny sensitive DNS entries from clients outside of the local network, while allowing queries from clients inside the local network.
To configure multiple views, add the view statement to the /etc/named.conf configuration file. Use the match-clients option to match IP addresses or entire networks and give them special options and zone data.

17.2.5.2. Incremental Zone Transfers (IXFR)

Incremental Zone Transfers (IXFR) allow a secondary nameserver to only download the updated portions of a zone modified on a primary nameserver. Compared to the standard transfer process, this makes the notification and update process much more efficient.
Note that IXFR is only available when using dynamic updating to make changes to master zone records. If manually editing zone files to make changes, Automatic Zone Transfer (AXFR) is used.

17.2.5.3. Transaction SIGnatures (TSIG)

Transaction SIGnatures (TSIG) ensure that a shared secret key exists on both primary and secondary nameserver before allowing a transfer. This strengthens the standard IP address-based method of transfer authorization, since attackers would not only need to have access to the IP address to transfer the zone, but they would also need to know the secret key.
Since version 9, BIND also supports TKEY, which is another shared secret key method of authorizing zone transfers.

Important

When communicating over an insecure network, do not rely on IP address-based authentication only.

17.2.5.4. DNS Security Extensions (DNSSEC)

Domain Name System Security Extensions (DNSSEC) provide origin authentication of DNS data, authenticated denial of existence, and data integrity. When a particular domain is marked as secure, the SERFVAIL response is returned for each resource record that fails the validation.
Note that to debug a DNSSEC-signed domain or a DNSSEC-aware resolver, you can use the dig utility as described in Section 17.2.4, “Using the dig Utility”. Useful options are +dnssec (requests DNSSEC-related resource records by setting the DNSSEC OK bit), +cd (tells recursive nameserver not to validate the response), and +bufsize=512 (changes the packet size to 512B to get through some firewalls).

17.2.5.5. Internet Protocol version 6 (IPv6)

Internet Protocol version 6 (IPv6) is supported through the use of AAAA resource records, and the listen-on-v6 directive as described in Table 17.3, “Commonly used options”.
Red Hat logoGithubRedditYoutubeTwitter

Formazione

Prova, acquista e vendi

Community

Informazioni sulla documentazione di Red Hat

Aiutiamo gli utenti Red Hat a innovarsi e raggiungere i propri obiettivi con i nostri prodotti e servizi grazie a contenuti di cui possono fidarsi.

Rendiamo l’open source più inclusivo

Red Hat si impegna a sostituire il linguaggio problematico nel codice, nella documentazione e nelle proprietà web. Per maggiori dettagli, visita ilBlog di Red Hat.

Informazioni su Red Hat

Forniamo soluzioni consolidate che rendono più semplice per le aziende lavorare su piattaforme e ambienti diversi, dal datacenter centrale all'edge della rete.

© 2024 Red Hat, Inc.