OpenShift Virtualization


OpenShift Container Platform 4.7

OpenShift Virtualization のインストール、使用方法、およびリリースノート

概要

本書では、OpenShift Container Platform で OpenShift Virtualization を使用する方法についての情報を提供します。

第1章 OpenShift Virtualization について

OpenShift Virtualization の機能およびサポート範囲について確認します。

1.1. OpenShift Virtualization の機能

OpenShift virtualization は OpenShift Container Platform のアドオンであり、仮想マシンのワークロードを実行し、このワークロードをコンテナーのワークロードと共に管理することを可能にします。

OpenShift Virtualization は、Kubernetes カスタムリソースにより新規オブジェクトを OpenShift Container Platform クラスターに追加し、仮想化タスクを有効にします。これらのタスクには、以下が含まれます。

  • Linux および Windows 仮想マシンの作成と管理
  • 各種コンソールおよび CLI ツールの使用による仮想マシンへの接続
  • 既存の仮想マシンのインポートおよびクローン作成
  • ネットワークインターフェイスコントローラーおよび仮想マシンに割り当てられたストレージディスクの管理
  • 仮想マシンのノード間でのライブマイグレーション

機能強化された Web コンソールは、これらの仮想化されたリソースを OpenShift Container Platform クラスターコンテナーおよびインフラストラクチャーと共に管理するためのグラフィカルポータルを提供します。

OpenShift Virtualization は OpenShift Container Storage (OCS) でテストされ、最適なエクスペリエンスを得るために OCS 機能と共に使用するように設計されています。

OVN-Kubernetes または OpenShiftSDN のデフォルトの Container Network Interface (CNI) ネットワークプロバイダーのいずれかで OpenShift Virtualization を使用できます。

1.1.1. OpenShift Virtualization サポートのクラスターバージョン

OpenShift Virtualization 2.6 は OpenShift Container Platform 4.7 クラスターで使用するためにサポートされます。Open Shift Virtualization の最新の z-stream リリースを使用するには、最初に Open Shift Container Platform の最新バージョンにアップグレードする必要があります。

第2章 OpenShift Virtualization リリースノート

2.1. Red Hat OpenShift Virtualization について

Red Hat OpenShift Virtualization は、従来の仮想マシン (VM) をコンテナーと共に実行される OpenShift Container Platform に組み込み、それらをネイティブ Kubernetes オブジェクトとして管理することを可能にします。

OpenShift Virtualization は、 OpenShift Virtualization ロゴで表されます。

OVN-Kubernetes または OpenShiftSDN のデフォルトの Container Network Interface (CNI) ネットワークプロバイダーのいずれかで OpenShift Virtualization を使用できます。

OpenShift Virtualization の機能 について参照してください。

2.1.1. OpenShift Virtualization サポートのクラスターバージョン

OpenShift Virtualization 2.6 は OpenShift Container Platform 4.7 クラスターで使用するためにサポートされます。Open Shift Virtualization の最新の z-stream リリースを使用するには、最初に Open Shift Container Platform の最新バージョンにアップグレードする必要があります。

2.1.2. サポート対象のゲストオペレーティングシステム

OpenShift Virtualization ゲストは以下のオペレーティングシステムを使用できます。

  • Red Hat Enterprise Linux 6, 7, and 8。
  • Microsoft Windows Server 2012 R2、2016、および 2019。
  • Microsoft Windows 10。

OpenShift Virtualization に同梱される他のオペレーティングシステムテンプレートはサポートされていません。

2.2. 多様性を受け入れるオープンソースの強化

Red Hat では、コード、ドキュメント、Web プロパティーにおける配慮に欠ける用語の置き換えに取り組んでいます。まずは、マスター (master)、スレーブ (slave)、ブラックリスト (blacklist)、ホワイトリスト (whitelist) の 4 つの用語の置き換えから始めます。この取り組みは膨大な作業を要するため、今後の複数のリリースで段階的に用語の置き換えを実施して参ります。詳細は、Red Hat CTO である Chris Wright のメッセージ をご覧ください。

2.3. 新機能および変更された機能

  • OpenShift Virtualization は、Windows Server のワークロードを実行する Microsoft の Windows Server Virtualization Validation Program (SVVP) で認定されています。

    SVVP の認定は以下に適用されます。

    • Red Hat Enterprise Linux CoreOS ワーカー。Microsoft SVVP Catalog では、Red Hat OpenShift Container Platform 4 on RHEL CoreOS という名前が付けられます。
    • Intel および AMD CPU。
  • LiveMigratable の状態が True に設定され、spec.evictionStrategy フィールドが LiveMigrate に設定された仮想マシンは、メンテナーンスに備えてノードがドレインされる場合に移行されるようになりました。oc adm drain コマンドを実行して、CLI でノードをメンテナーンスモードに設定 できます。
  • Extensible Firmware Interface (EFI) モードで仮想マシン (VM) を起動 できます。

    注記

    OpenShift Virtualization は、EFI モードを使用する場合、セキュアブートを使用した仮想マシンのみをサポートします。セキュアブートが有効にされていない場合は、仮想マシンが繰り返しクラッシュします。ただし、仮想マシンはセキュアブートに対応していない可能性があります。仮想マシンを起動する前に、仮想マシン設定を確認して、これがセキュアブートに対応していることを確認します。

2.3.1. インストール

2.3.2. ストレージ

  • Filesystem ボリュームモードを使用する 永続ボリューム要求 (PVC) に仮想マシンディスクを追加する場合、Containerized Data Importer (CDI) はファイルシステムのオーバーヘッド用に PVC 領域の 5.5% を確保するようになりました。デフォルト値がユースケースに適さない場合、CDI がこの目的のために確保している 割合を変更 できます。
  • 仮想マシンディスクイメージ用にローカルストレージを準備する際に、ボリュームは仮想マシンで必要なものとは異なるノードから割り当てられる可能性があります。スケジューリングの問題を防ぐために、Containerized Data Importer は Kubernetes WaitForFirstConsumer バインディングモードと統合し、ボリュームが正しいノードから割り当てられるようになりました。
  • Containerized Data Importer は、ディスク領域を事前に割り当て、データのインポートおよびアップロードのほか、より高速に空のデータボリュームを作成できるようになりました。
  • 以下のアノテーションを DataVolume オブジェクトの metadata.annotations フィールドに追加して、仮想マシンディスクイメージのインポート時に Containerized Data Importer (CDI) が使用するネットワークを制御できます。

    k8s.v1.cni.cncf.io/networks: <network_name>
    このアノテーションを使用する場合、転送 Pod はクラスターからのデフォルトのネットワークとセカンダリー Multus ネットワークの両方を使用します。

2.3.3. Web コンソール

2.4. 主な技術上の変更点

  • Web コンソールで OpenShift Virtualization をインストール する手順が単純化されました。Create HyperConverged をクリックして、OpenShift Virtualization Operator のインストール直後に HyperConverged カスタムリソースを作成できるようになりました。
  • 以前は、HyperConverged オブジェクトに spec.BareMetalPlatform フィールドがありました。このフィールドは削除されました。
  • Containerized Data Importer (CDI) 設定パラメーターは CDIConfig オブジェクトから CDI オブジェクトに移動しました。CDI 設定への変更はすべて、CDI オブジェクトの spec.config フィールドに加える必要があります。
  • Pod を転送する Istio サイドカーの挿入はデフォルトで無効にされるようになりました。DataVolume オブジェクトの metadata.annotations フィールドで以下のアノテーションを使用してデフォルトのオプションを上書きできます。

    sidecar.istio.io/inject: “true"
    このオプションを設定して、転送 Pod へのサイドカーの挿入を有効にします。

2.5. 既知の問題

  • cdrom ドライブが VMI 仕様で readonly: true に設定される場合、仮想マシンインスタンス (VMI) は移行に失敗します。以下のメッセージが表示されます: Operation not supported: Cannot migrate empty or read-only disk sdb(BZ#1927378)
  • 現時点で、一部の Containerized Data Importer (CDI) の操作は、要求時に 事前割り当て られません。これらには以下が含まれます。

    • 空のブロックディスクの作成
    • VMWare ディスクイメージのインポート
  • クローン操作がクローン作成するソースが利用可能になる前に開始されると、操作は無期限に停止します。これは、クローン操作の開始前にクローンの承認の期限が切れるためです。(BZ#1855182)

    • 回避策として、クローンを要求する DataVolume オブジェクトを削除します。ソースが利用可能になると、削除した DataVolume オブジェクトを再作成し、クローン操作を正常に完了できるようにします。
  • Containerized Data Importer および KubeVirt は、NFS バージョン 3 をサポートしない QEMU に依存します。したがって、NFS バージョン 4 のみがサポートされます。(BZ#1892445)
  • openshift-virtualization-os-images namespace の Fedora PVC の名前は、fedora32 ではなく fedora です。OpenShift Virtualization 2.5 以前で fedora32 PVC を設定している場合、仮想マシンは Web コンソールに表示されません。また、これを使用して別の仮想マシンのクローンを作成することはできません。(BZ#1913352)

    • 回避策として、PVC を fedora32 ではなく fedora と名付けることで、Fedora イメージをアップロードします。
  • HPP ブートソースの作成時に、ユーザーが Upload local file (creates PVC) オプション以外の方法を使用してブートソースを作成する場合、データボリュームは WaitForFirstConsumer ステータスで pending となります。(BZ#1929177)

    • 回避策として、StoragePersistent Volume Claims Web コンソール画面で、データボリュームの基礎となる PVC の YAML を編集し、cdi.kubevirt.io/storage.bind.immediate.requested: "true" アノテーションを追加します。

      metadata:
        annotations: cdi.kubevirt.io/storage.bind.immediate.requested: "true"
  • Fedora イメージをブートソースとして使用する場合に、ブートソースの割り当てに使用した PVC が以前にプロビジョニングされていた場合は、テンプレートに割り当てられなくなりました。(BZ#1907187) (BZ#1913352)

    • 回避策として、fedora という名前の新規 PVC をテンプレートに割り当ててから、これを使用してブートソースから仮想マシンを作成します。
  • OpenShift Container Platform クラスターが OVN-Kubernetes をデフォルトの Container Network Interface (CNI) プロバイダーとして使用する場合、OVN-Kubernetes のホストネットワークトポロジーの変更により、Linux ブリッジまたはボンディングをホストのデフォルトインターフェイスに割り当てることはできません。(BZ#1885605)

    • 回避策として、ホストに接続されたセカンダリーネットワークインターフェイスを使用するか、OpenShift SDN デフォルト CNI プロバイダーに切り替えることができます。
  • ライブマイグレーションを実行できない仮想マシンを実行すると、OpenShift Container Platform クラスターのアップグレードがブロックされる可能性があります。これには、hostpath-provisioner ストレージまたは SR-IOV ネットワークインターフェイスを使用する仮想マシンが含まれます。(BZ#1858777)

    • 回避策として、仮想マシンを再設定し、クラスターのアップグレード時にそれらの電源をオフにするようにできます。仮想マシン設定ファイルの spec セクションで、以下を実行します。

      1. evictionStrategy: LiveMigrate フィールドを削除します。エビクションストラテジーの設定方法についての詳細は、仮想マシンのエビクションストラテジーの設定 を参照してください。
      2. runStrategy フィールドを Always に設定します。
  • ノードの CPU モデルが異なると、ライブマイグレーションに失敗します。ノードに同じ物理 CPU モデルがある場合でも、マイクロコードの更新によって導入される違いにより同じ状況が生じます。これは、デフォルト設定が、ライブマイグレーションと互換性のないホスト CPU パススルー動作をトリガーするためです。(BZ#1760028)

    • 回避策として、以下の例のように kubevirt-config 設定マップ にデフォルトの CPU モデルを設定します。

      注記

      ライブマイグレーションをサポートする仮想マシンを起動する前に、この変更を行う必要があります。

      1. 以下のコマンドを実行して、編集するために kubevirt-config 設定マップ を開きます。

        $ oc edit configmap kubevirt-config -n openshift-cnv
      2. 設定マップを編集します。

        kind: ConfigMap
        metadata:
          name: kubevirt-config
        data:
          default-cpu-model: "<cpu-model>" 1
        1
        <cpu-model> を実際の CPU モデルの値に置き換えます。すべてのノードに oc describe node <node> を実行し、cpu-model-<name> ラベルを確認してこの値を判別できます。すべてのノードに存在する CPU モデルを選択します。
  • RHV 仮想マシンのインポート時に RHV Manager の誤った認証情報を入力すると、vm-import-operator が RHV API への接続を繰り返し試行するため、Manager は admin ユーザーアカウントをロックする可能性があります。(BZ#1887140)

    • アカウントのロックを解除するには、Manager にログインし、以下のコマンドを入力します。

      $ ovirt-aaa-jdbc-tool user unlock admin

第3章 OpenShift virtualization のインストール

3.1. OpenShift Virtualization のクラスターの準備

OpenShift Virtualization をインストールする前にこのセクションを確認して、クラスターが要件を満たしていることを確認してください。

重要

ユーザープロビジョニング、インストーラープロビジョニング、または支援付きインストーラーなど、任意のインストール方法を使用して、OpenShift Container Platform をデプロイできます。ただし、インストール方法とクラスタートポロジーは、スナップショットやライブマイグレーションなどの OpenShift Virtualization 機能に影響を与える可能性があります。

FIPS モード

クラスターを FIPS モード でインストールする場合、OpenShift Virtualization に追加の設定は必要ありません。

3.1.1. ハードウェアとオペレーティングシステムの要件

OpenShift Virtualization の次のハードウェアおよびオペレーティングシステム要件を確認してください。

サポートされるプラットフォーム

  • オンプレミスのベアメタルサーバー
  • Amazon Web Services のベアメタルインスタンス
重要

AWS ベアメタルインスタンスへの Open Shift Virtualization のインストールは、テクノロジープレビュー機能としてのみ提供されます。テクノロジープレビュー機能は、Red Hat 製品のサービスレベルアグリーメント (SLA) の対象外であり、機能的に完全ではないことがあります。Red Hat は実稼働環境でこれらを使用することを推奨していません。テクノロジープレビューの機能は、最新の製品機能をいち早く提供して、開発段階で機能のテストを行いフィードバックを提供していただくことを目的としています。

Red Hat のテクノロジープレビュー機能のサポート範囲に関する詳細は、テクノロジープレビュー機能のサポート範囲 を参照してください。

  • 他のクラウドプロバイダーが提供するベアメタルインスタンスまたはサーバーはサポートされていません。

CPU の要件

  • Red Hat Enterprise Linux (RHEL) 8 でサポート
  • Intel 64 または AMD64 CPU 拡張機能のサポート
  • Intel VT または AMD-V ハードウェア仮想化拡張機能が有効化されている。
  • NX (実行なし) フラグが有効

ストレージ要件

  • OpenShift Container Platform によるサポート

オペレーティングシステム要件

  • ワーカーノードにインストールされた Red Hat Enterprise Linux CoreOS (RHCOS)

    注記

    RHEL ワーカー ノードはサポートされていません。

関連情報

3.1.2. 物理リソースのオーバーヘッド要件

OpenShift Virtualization は OpenShift Container Platform のアドオンであり、クラスターの計画時に考慮する必要のある追加のオーバーヘッドを強要します。各クラスターマシンは、OpenShift Container Platform の要件に加えて、以下のオーバーヘッドの要件を満たす必要があります。クラスター内の物理リソースを過剰にサブスクライブすると、パフォーマンスに影響する可能性があります。

重要

本書に記載されている数は、Red Hat のテスト方法およびセットアップに基づいています。これらの数は、独自のセットアップおよび環境に応じて異なります。

3.1.2.1. メモリーのオーバーヘッド

以下の式を使用して、OpenShift Virtualization のメモリーオーバーヘッドの値を計算します。

クラスターメモリーのオーバーヘッド

Memory overhead per infrastructure node ≈ 150 MiB

Memory overhead per worker node ≈ 360 MiB

さらに、OpenShift Virtualization 環境リソースには、すべてのインフラストラクチャーノードに分散される合計 2179 MiB の RAM が必要です。

仮想マシンのメモリーオーバーヘッド

Memory overhead per virtual machine ≈ (1.002 * requested memory) + 146 MiB  \
                + 8 MiB * (number of vCPUs) \ 1
             + 16 MiB * (number of graphics devices) 2

1
仮想マシンが要求する仮想 CPU の数
2
仮想マシンが要求する仮想グラフィックスカードの数

お使いの環境に Single Root I/O Virtualization (SR-IOV) ネットワークデバイスまたは Graphics Processing Unit (GPU) が含まれる場合、それぞれのデバイスに 1 GiB の追加のメモリーオーバーヘッドを割り当てます。

3.1.2.2. CPU オーバーヘッド

以下の式を使用して、OpenShift Virtualization のクラスタープロセッサーのオーバーヘッド要件を計算します。仮想マシンごとの CPU オーバーヘッドは、個々の設定によって異なります。

クラスターの CPU オーバーヘッド

CPU overhead for infrastructure nodes ≈ 4 cores

OpenShift Virtualization は、ロギング、ルーティング、およびモニターリングなどのクラスターレベルのサービスの全体的な使用率を増加させます。このワークロードに対応するには、インフラストラクチャーコンポーネントをホストするノードに、4 つの追加コア (4000 ミリコア) の容量があり、これがそれらのノード間に分散されていることを確認します。

CPU overhead for worker nodes ≈ 2 cores + CPU overhead per virtual machine

仮想マシンをホストする各ワーカーノードには、仮想マシンのワークロードに必要な CPU に加えて、OpenShift Virtualization 管理ワークロード用に 2 つの追加コア (2000 ミリコア) の容量が必要です。

仮想マシンの CPU オーバーヘッド

専用の CPU が要求される場合は、仮想マシン 1 台につき CPU 1 つとなり、クラスターの CPU オーバーヘッド要件に影響が出てきます。それ以外の場合は、仮想マシンに必要な CPU の数に関する特別なルールはありません。

3.1.2.3. ストレージのオーバーヘッド

以下のガイドラインを使用して、OpenShift Virtualization 環境のストレージオーバーヘッド要件を見積もります。

クラスターストレージオーバーヘッド

Aggregated storage overhead per node ≈ 10 GiB

10 GiB は、OpenShift Virtualization のインストール時にクラスター内の各ノードについてのディスク上のストレージの予想される影響に相当します。

仮想マシンのストレージオーバーヘッド

仮想マシンごとのストレージオーバーヘッドは、仮想マシン内のリソース割り当ての特定の要求により異なります。この要求は、クラスター内の別の場所でホストされるノードまたはストレージリソースの一時ストレージに対するものである可能性があります。OpenShift Virtualization は現在、実行中のコンテナー自体に追加の一時ストレージを割り当てていません。

3.1.2.4. 例

クラスター管理者が、クラスター内の 10 台の (それぞれ 1 GiB の RAM と 2 つの vCPU の) 仮想マシンをホストする予定の場合、クラスター全体で影響を受けるメモリーは 11.68 GiB になります。クラスターの各ノードについて予想されるディスク上のストレージの影響は 10 GiB で示され、仮想マシンのワークロードをホストするワーカーノードについての CPU の影響は最小 2 コアで示されます。

3.1.3. オブジェクトの最大値

クラスターを計画するときは、次のテスト済みオブジェクトの最大数を考慮する必要があります。

3.1.4. 制限されたネットワーク環境

インターネット接続のない制限された環境に OpenShift Virtualization をインストールする場合は、制限されたネットワーク用に Operator Lifecycle Manager を設定 する必要があります。

インターネット接続が制限されている場合、Operator Lifecycle Manager でプロキシーサポートを設定 して、Red Hat が提供する OperatorHub にアクセスすることができます。

3.1.5. ライブマイグレーション

ライブマイグレーションには次の要件があります。

  • ReadWriteMany (RWX) アクセスモードの共有ストレージ
  • 十分な RAM とネットワーク帯域幅
  • ワーカーノードに十分な容量を持つ適切な CPU。CPU の容量が異なる場合、ライブマイグレーションは非常に遅くなるか失敗する可能性があります。

3.1.6. スナップショットとクローン作成

スナップショットとクローン作成の要件は、OpenShift Virtualization ストレージ機能 を参照してください。

3.1.7. クラスターの高可用性

インストーラーによってプロビジョニングされたインフラストラクチャー (IPI) の 自動高可用性は、マシンの可用性チェック をデプロイすることで利用できます。

注記

インストーラーでプロビジョニングされるインフラストラクチャーを使用してインストールされ、MachineHealthCheck が適切に設定された OpenShift Container Platform クラスターで、ノードで MachineHealthCheck が失敗し、クラスターで利用できなくなると、そのノードは再利用されます。障害が発生したノードで実行された仮想マシンでは、一連の条件によって次に起こる動作が変わります。予想される結果や RunStrategies がそれらの結果に与える影響についての詳細は、仮想マシンの RunStrategy について を参照してください。

3.2. OpenShift Virtualization コンポーネントのノードの指定

ノードの配置ルールを設定して、OpenShift Virtualization Operator、ワークロード、およびコントローラーをデプロイするノードを指定します。

注記

OpenShift Virtualization のインストール後に一部のコンポーネントのノードの配置を設定できますが、ワークロード用にノードの配置を設定する場合には仮想マシンを含めることはできません。

3.2.1. 仮想化コンポーネントのノード配置について

OpenShift Virtualization がそのコンポーネントをデプロイする場所をカスタマイズして、以下を確認する必要がある場合があります。

  • 仮想マシンは、仮想化ワークロード用のノードにのみデプロイされる。
  • Operator はインフラストラクチャーノードにのみデプロイされる。
  • 特定のノードは OpenShift Virtualization の影響を受けない。たとえば、クラスターで実行される仮想化に関連しないワークロードがあり、それらのワークロードを OpenShift Virtualization から分離する必要があるとします。
3.2.1.1. ノードの配置ルールを仮想化コンポーネントに適用する方法

対応するオブジェクトを直接編集するか、または Web コンソールを使用して、コンポーネントのノードの配置ルールを指定できます。

  • Operator Lifecycle Manager (OLM) がデプロイする OpenShift Virtualization Operator の場合は、OLM Subscription オブジェクトを直接編集します。現時点では、Web コンソールを使用して Subscription オブジェクトのノードの配置ルールを設定することはできません。
  • OpenShift Virtualization Operator がデプロイするコンポーネントの場合は、HyperConverged オブジェクトを直接編集するか、または OpenShift Virtualization のインストール時に Web コンソールを使用してこれを設定します。
  • ホストパスプロビジョナーの場合、HostPathProvisioner オブジェクトを直接編集するか、または Web コンソールを使用してこれを設定します。

    警告

    ホストパスプロビジョナーと仮想化コンポーネントを同じノードでスケジュールする必要があります。スケジュールしない場合は、ホストパスプロビジョナーを使用する仮想化 Pod を実行できません。

オブジェクトに応じて、以下のルールタイプを 1 つ以上使用できます。

nodeSelector
Pod は、キーと値のペアまたはこのフィールドで指定したペアを使用してラベルが付けられたノードに Pod をスケジュールできます。ノードには、一覧表示されたすべてのペアに一致するラベルがなければなりません。
affinity
より表現的な構文を使用して、ノードと Pod に一致するルールを設定できます。アフィニティーを使用すると、ルールの適用方法に追加のニュアンスを持たせることができます。たとえば、ルールがハード要件ではなく基本設定になるように指定し、ルールの条件が満たされない場合も Pod がスケジュールされるようにすることができます。
tolerations
一致するテイントを持つノードで Pod をスケジュールできます。テイントがノードに適用される場合、そのノードはテイントを容認する Pod のみを受け入れます。
3.2.1.2. OLM Subscription オブジェクトのノード配置

OLM が OpenShift Virtualization Operator をデプロイするノードを指定するには、OpenShift Virtualization のインストール時に Subscription オブジェクトを編集します。以下の例に示されるように、spec.config フィールドにノードの配置ルールを追加できます。

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
  name: hco-operatorhub
  namespace: openshift-cnv
spec:
  source: redhat-operators
  sourceNamespace: openshift-marketplace
  name: kubevirt-hyperconverged
  startingCSV: kubevirt-hyperconverged-operator.v2.6.10
  channel: "stable"
  config: 1
1
config フィールドは nodeSelector および tolerations をサポートしますが、affinity はサポートしません。
3.2.1.3. HyperConverged オブジェクトのノード配置

OpenShift Virtualization がそのコンポーネントをデプロイするノードを指定するには、OpenShift Virtualization のインストール時に作成する HyperConverged Cluster カスタムリソース (CR) ファイルに nodePlacement オブジェクトを含めることができます。以下の例のように、spec.infra および spec.workloads フィールドに nodePlacement を含めることができます。

apiVersion: hco.kubevirt.io/v1beta1
kind: HyperConverged
metadata:
  name: kubevirt-hyperconverged
  namespace: openshift-cnv
spec:
  infra:
    nodePlacement: 1
    ...
  workloads:
    nodePlacement:
    ...
1
nodePlacement フィールドは、nodeSelectoraffinity、および tolerations フィールドをサポートします。
3.2.1.4. HostPathProvisioner オブジェクトのノード配置

ノードの配置ルールは、ホストパスプロビジョナーのインストール時に作成する HostPathProvisioner オブジェクトの spec.workload フィールドで設定できます。

apiVersion: hostpathprovisioner.kubevirt.io/v1beta1
kind: HostPathProvisioner
metadata:
  name: hostpath-provisioner
spec:
  imagePullPolicy: IfNotPresent
  pathConfig:
    path: "</path/to/backing/directory>"
    useNamingPrefix: false
  workload: 1
1
workload フィールドは、nodeSelectoraffinity、および tolerations フィールドをサポートします。
3.2.1.5. 関連情報

3.2.2. マニフェストの例

以下の YAML ファイルの例では、nodePlacementaffinity、および tolerations オブジェクトを使用して OpenShift Virtualization コンポーネントのノード配置をカスタマイズします。

3.2.2.1. Operator Lifecycle Manager サブスクリプションオブジェクト
3.2.2.1.1. 例: OLM Subscription オブジェクトの nodeSelector を使用したノード配置

この例では、OLM が example.io/example-infra-key = example-infra-value のラベルが付けられたノードに OpenShift Virtualization Operator を配置するように、nodeSelector を設定します。

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
  name: hco-operatorhub
  namespace: openshift-cnv
spec:
  source: redhat-operators
  sourceNamespace: openshift-marketplace
  name: kubevirt-hyperconverged
  startingCSV: kubevirt-hyperconverged-operator.v2.6.10
  channel: "stable"
  config:
    nodeSelector:
      example.io/example-infra-key: example-infra-value
3.2.2.1.2. 例: OLM Subscription オブジェクトの容認を使用したノード配置

この例では、OLM が OpenShift Virtualization Operator をデプロイするために予約されるノードには key=virtualization:NoSchedule テイントのラベルが付けられます。一致する容認のある Pod のみがこれらのノードにスケジュールされます。

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
  name: hco-operatorhub
  namespace: openshift-cnv
spec:
  source: redhat-operators
  sourceNamespace: openshift-marketplace
  name: kubevirt-hyperconverged
  startingCSV: kubevirt-hyperconverged-operator.v2.6.10
  channel: "stable"
  config:
    tolerations:
    - key: "key"
      operator: "Equal"
      value: "virtualization"
      effect: "NoSchedule"
3.2.2.2. HyperConverged オブジェクト
3.2.2.2.1. 例: HyperConverged Cluster CR の nodeSelector を使用したノード配置

この例では、nodeSelector は、インフラストラクチャーリソースが example.io/example-infra-key = example-infra-value のラベルが付けられたノードに配置されるように設定され、ワークロードは example.io/example-workloads-key = example-workloads-value のラベルが付けられたノードに配置されるように設定されます。

apiVersion: hco.kubevirt.io/v1beta1
kind: HyperConverged
metadata:
  name: kubevirt-hyperconverged
  namespace: openshift-cnv
spec:
  infra:
    nodePlacement:
      nodeSelector:
        example.io/example-infra-key: example-infra-value
  workloads:
    nodePlacement:
      nodeSelector:
        example.io/example-workloads-key: example-workloads-value
3.2.2.2.2. 例: HyperConverged Cluster CR のアフィニティーを使用したノード配置

この例では、affinity は、インフラストラクチャーリソースが example.io/example-infra-key = example-infra-value のラベルが付けられたノードに配置されるように設定され、ワークロードが example.io/example-workloads-key = example-workloads-value のラベルが付けられたノードに配置されるように設定されます。ワークロード用には 9 つ以上の CPU を持つノードが優先されますが、それらが利用可能ではない場合も、Pod は依然としてスケジュールされます。

apiVersion: hco.kubevirt.io/v1beta1
kind: HyperConverged
metadata:
  name: kubevirt-hyperconverged
  namespace: openshift-cnv
spec:
  infra:
    nodePlacement:
      affinity:
        nodeAffinity:
          requiredDuringSchedulingIgnoredDuringExecution:
            nodeSelectorTerms:
            - matchExpressions:
              - key: example.io/example-infra-key
                operator: In
                values:
                - example-infra-value
  workloads:
    nodePlacement:
      affinity:
        nodeAffinity:
          requiredDuringSchedulingIgnoredDuringExecution:
            nodeSelectorTerms:
            - matchExpressions:
              - key: example.io/example-workloads-key
                operator: In
                values:
                - example-workloads-value
          preferredDuringSchedulingIgnoredDuringExecution:
          - weight: 1
            preference:
              matchExpressions:
              - key: example.io/num-cpus
                operator: gt
                values:
                - 8
3.2.2.2.3. 例: HyperConverged Cluster CR の容認を使用したノード配置

この例では、OpenShift Virtualization コンポーネント用に予約されるノードには key=virtualization:NoSchedule テイントのラベルが付けられます。一致する容認のある Pod のみがこれらのノードにスケジュールされます。

apiVersion: hco.kubevirt.io/v1beta1
kind: HyperConverged
metadata:
  name: kubevirt-hyperconverged
  namespace: openshift-cnv
spec:
  workloads:
    nodePlacement:
      tolerations:
      - key: "key"
        operator: "Equal"
        value: "virtualization"
        effect: "NoSchedule"
3.2.2.3. HostPathProvisioner オブジェクト
3.2.2.3.1. 例: HostPathProvisioner オブジェクトの nodeSelector を使用したノード配置

この例では、example.io/example-workloads-key = example-workloads-value のラベルが付けられたノードにワークロードが配置されるように nodeSelector を設定します。

apiVersion: hostpathprovisioner.kubevirt.io/v1beta1
kind: HostPathProvisioner
metadata:
  name: hostpath-provisioner
spec:
  imagePullPolicy: IfNotPresent
  pathConfig:
    path: "</path/to/backing/directory>"
    useNamingPrefix: false
  workload:
    nodeSelector:
      example.io/example-workloads-key: example-workloads-value

3.3. Web コンソールを使用した OpenShift Virtualization のインストール

OpenShift Virtualization をインストールし、仮想化機能を OpenShift Container Platform クラスターに追加します。

OpenShift Container Platform 4.7 Web コンソール を使用して、OpenShift Virtualization Operator にサブスクライブし、これをデプロイすることができます。

3.3.1. OpenShift Virtualization Operator のインストール

OpenShift Container Platform Web コンソールから OpenShift Virtualization Operator をインストールできます。

前提条件

  • OpenShift Container Platform 4.7 をクラスターにインストールすること。
  • cluster-admin パーミッションを持つユーザーとして OpenShift Container Platform Web コンソールにログインすること。

手順

  1. ブラウザーウィンドウを開き、OpenShift Container Platform Web コンソールにログインします。
  2. Administrator パースペクティブから、OperatorsOperatorHub をクリックします。
  3. Filter by keyword フィールドに OpenShift Virtualization を入力します。
  4. OpenShift Virtualization タイルを選択します。
  5. Operator についての情報を確認してから、Install をクリックします。
  6. Install Operator ページで以下を行います。

    1. 選択可能な Update Channel オプションの一覧から stable を選択します。これにより、以下が確保されます。

      • OpenShift Container Platform バージョンと互換性がある OpenShift Virtualization のバージョンをインストールします。
      • OpenShift Container Platform の更新時に、OpenShift Virtualization は次のマイナーバージョンに自動的に更新されます。
    2. インストールされた namespace の場合、Operator recommended namespace オプションが選択されていることを確認します。これにより、Operator が必須の openshift-cnv namespace にインストールされます。この namespace は存在しない場合は、自動的に作成されます。

      警告

      OpenShift Virtualization Operator を openshift-cnv 以外の namespace にインストールしようとすると、インストールが失敗します。

    3. Approval Strategy の場合、デフォルト値である Automatic が選択されていることを確認します。OpenShift Virtualization は、z-stream の新規リリースが利用可能になると自動的に更新されます。
  7. Install をクリックし、Operator を openshift-cnv namespace で利用可能にします。
  8. Operator が正常にインストールされたら、Create HyperConverged をクリックします。
  9. オプション: OpenShift Virtualization コンポーネントの Infra および Workloads ノード配置オプションを設定します。
  10. Create をクリックして OpenShift Virtualization を起動します。

検証

  • WorkloadsPods ページに移動して、OpenShift Virtualization Pod がすべて Running 状態になるまでこれらの Pod をモニターします。すべての Pod で Running 状態が表示された後に、OpenShift Virtualization を使用できます。

3.3.2. 次のステップ

以下のコンポーネントを追加で設定する必要がある場合があります。

  • KubeMacPool コンポーネントは、指定の namespace に仮想マシン NIC の MAC アドレスプールサービスを提供します。KubeMacPool ラベルをその namespace に適用して、namespace の MAC アドレスプールを有効にします
  • ホストパスプロビジョナー は、OpenShift Virtualization 用に設計されたローカルストレージプロビジョナーです。仮想マシンのローカルストレージを設定する必要がある場合、まずホストパスプロビジョナーを有効にする必要があります。

OpenShift Virtualization をインストールし、仮想化機能を OpenShift Container Platform クラスターに追加します。コマンドラインを使用してマニフェストをクラスターに適用し、OpenShift Virtualization Operator にサブスクライブし、デプロイできます。

注記

OpenShift Virtualization がそのコンポーネントをインストールするノードを指定するには、ノードの配置ルールを設定 します。

3.3.3. 前提条件

  • OpenShift Container Platform 4.7 をクラスターにインストールすること。
  • OpenShift CLI (oc) をインストールすること。
  • cluster-admin 権限を持つユーザーとしてログインしている。

3.3.4. CLI を使用した OpenShift Virtualization カタログのサブスクライブ

OpenShift Virtualization をインストールする前に、OpenShift Virtualization カタログにサブスクライブする必要があります。サブスクライブにより、openshift-cnv namespace に OpenShift Virtualization Operator へのアクセスが付与されます。

単一マニフェストをクラスターに適用して NamespaceOperatorGroup、および Subscription オブジェクトをサブスクライブし、設定します。

手順

  1. 以下のマニフェストを含む YAML ファイルを作成します。

    apiVersion: v1
    kind: Namespace
    metadata:
      name: openshift-cnv
    ---
    apiVersion: operators.coreos.com/v1
    kind: OperatorGroup
    metadata:
      name: kubevirt-hyperconverged-group
      namespace: openshift-cnv
    spec:
      targetNamespaces:
        - openshift-cnv
    ---
    apiVersion: operators.coreos.com/v1alpha1
    kind: Subscription
    metadata:
      name: hco-operatorhub
      namespace: openshift-cnv
    spec:
      source: redhat-operators
      sourceNamespace: openshift-marketplace
      name: kubevirt-hyperconverged
      startingCSV: kubevirt-hyperconverged-operator.v2.6.10
      channel: "stable" 1
    1
    stable チャネルを使用することで、OpenShift Container Platform バージョンと互換性のある OpenShift Virtualization のバージョンをインストールすることができます。
  2. 以下のコマンドを実行して、OpenShift Virtualization に必要な NamespaceOperatorGroup、および Subscription オブジェクトを作成します。

    $ oc apply -f <file name>.yaml

3.3.5. CLI を使用した OpenShift Virtualization Operator のデプロイ

oc CLI を使用して OpenShift Virtualization Operator をデプロイすることができます。

前提条件

  • openshift-cnv namespace の OpenShift Virtualization カタログへのアクティブなサブスクリプション。

手順

  1. 以下のマニフェストを含む YAML ファイルを作成します。

    apiVersion: hco.kubevirt.io/v1beta1
    kind: HyperConverged
    metadata:
      name: kubevirt-hyperconverged
      namespace: openshift-cnv
    spec:
  2. 以下のコマンドを実行して OpenShift Virtualization Operator をデプロイします。

    $ oc apply -f <file_name>.yaml

検証

  • openshift-cnv namespace の Cluster Service Version (CSV) の PHASE を監視して、OpenShift Virtualization が正常にデプロイされたことを確認します。以下のコマンドを実行します。

    $ watch oc get csv -n openshift-cnv

    以下の出力は、デプロイメントに成功したかどうかを表示します。

    出力例

    NAME                                      DISPLAY                    VERSION   REPLACES   PHASE
    kubevirt-hyperconverged-operator.v2.6.10   OpenShift Virtualization   2.6.10                Succeeded

3.3.6. 次のステップ

以下のコンポーネントを追加で設定する必要がある場合があります。

  • KubeMacPool コンポーネントは、指定の namespace に仮想マシン NIC の MAC アドレスプールサービスを提供します。KubeMacPool ラベルをその namespace に適用して、namespace の MAC アドレスプールを有効にします
  • ホストパスプロビジョナー は、OpenShift Virtualization 用に設計されたローカルストレージプロビジョナーです。仮想マシンのローカルストレージを設定する必要がある場合、まずホストパスプロビジョナーを有効にする必要があります。

3.4. virtctl クライアントのインストール

virtctl クライアントは、OpenShift Virtualization リソースを管理するためのコマンドラインユーティリティーです。これは、Linux、macOS、および Windows ディストリビューションで利用できます。

virtctl クライアントのインストールは、 OpenShift Virtualization Web コンソールからか、または OpenShift Virtualization リポジトリーを有効にし、 kubevirt-virtctl パッケージをインストールして実行できます。

3.4.1. Web コンソールからの virtctl クライアントのインストール

Red Hat カスタマーポータルから virtctl クライアントをダウンロードできます。これは、Command Line Toolsページの OpenShift Virtualization Web コンソールでリンクされています。

前提条件

  • カスタマーポータルのダウンロードページにアクセスするには、有効な OpenShift Container Platform サブスクリプションが必要である。

手順

  1. Web コンソールの右上にある question circle アイコンをクリックし、Command Line Tools を選択して、カスタマーポータルにアクセスします。
  2. Version: 一覧からクラスターの適切なバージョンが選択されていることを確認します。
  3. 使用するディストリビューション用に virtctl クライアントをダウンロードします。すべてのダウンロードの形式は tar.gz です。
  4. tarball を展開します。以下の CLI コマンドは、これを tarball と同じディレクトリーに展開します。これはすべてのディストリビューションに適用できます。

    $ tar -xvf <virtctl-version-distribution.arch>.tar.gz
  5. Linux および macOS の場合:

    1. 展開したフォルダー階層に移動し、virtctl バイナリーを実行可能にします。

      $ chmod +x <virtctl-file-name>
    2. virtctl バイナリーをパスにあるディレクトリーに移動します。

      1. PATH を確認するには、以下を実行します。

        $ echo $PATH
  6. Windows ユーザーの場合:

    1. 展開したフォルダー階層に移動し、virtctl 実行可能ファイルをダブルクリックしてクライアントをインストールします。

3.4.2. OpenShift Virtualization リポジトリーの有効化

Red Hat は、Red Hat Enterprise Linux 8 および Red Hat Enterprise Linux 7 向けの OpenShift Virtualization リポジトリーを提供します。

  • Red Hat Enterprise Linux 8 リポジトリー: cnv-2.6-for-rhel-8-x86_64-rpms
  • Red Hat Enterprise Linux 7 リポジトリー: rhel-7-server-cnv-2.6-rpms

subscription-manager でリポジトリーを有効にするプロセスはどちらのプラットフォームでも同様です。

手順

  • 以下のコマンドを実行して、お使いのシステムに適した OpenShift Virtualization リポジトリーを有効にします。

    # subscription-manager repos --enable <repository>

3.4.3. virtctl クライアントのインストール

kubevirt-virtctl パッケージから virtctl クライアントをインストールします。

手順

  • kubevirt-virtctl パッケージをインストールします。

    # yum install kubevirt-virtctl

3.4.4. 関連情報

3.5. Web コンソールを使用した OpenShift Virtualization のアンインストール

OpenShift Container Platform Web コンソール を使用して OpenShift Virtualization をアンインストールできます。

3.5.1. 前提条件

3.5.2. OpenShift Virtualization Operator Deployment カスタムリソースの削除

OpenShift Virtualization をアンインストールするには、まず OpenShift Virtualization Operator Deployment カスタムリソースを削除する必要がある。

前提条件

  • OpenShift Virtualization Operator Deployment カスタムリソースを作成すること。

手順

  1. OpenShift Container Platform Web コンソールから、Projects 一覧より openshift-cnv を選択します。
  2. OperatorsInstalled Operators ページに移動します。
  3. OpenShift Virtualization をクリックします。
  4. OpenShift Virtualization Operator Deployment タブをクリックします。
  5. Options メニュー kebabkubevirt-hyperconverged カスタムリソースを含む行でクリックします。拡張されたメニューで、Delete HyperConverged Cluster をクリックします。
  6. 確認ウィンドウで Delete をクリックします。
  7. WorkloadsPods ページに移動し、Operator Pod のみが実行中であることを確認します。
  8. ターミナルウィンドウを開き、以下のコマンドを実行して残りのリソースをクリーンアップします。

    $ oc delete apiservices v1alpha3.subresources.kubevirt.io -n openshift-cnv

3.5.3. OpenShift Virtualization カタログサブスクリプションの削除

OpenShift Virtualization のアンインストールを終了するには、OpenShift Virtualization カタログサブスクリプションを削除します。

前提条件

  • OpenShift Virtualization カタログの有効なサブスクリプション。

手順

  1. OperatorsOperatorHub ページに移動します。
  2. OpenShift Virtualization を検索し、これを選択します。
  3. Uninstall をクリックします。
注記

openshift-cnv namespace を削除できるようになりました。

3.5.4. Web コンソールを使用した namespace の削除

OpenShift Container Platform Web コンソールを使用して namespace を削除できます。

注記

namespace を削除するパーミッションがない場合、Delete Namespace オプションは選択できなくなります。

手順

  1. AdministrationNamespaces に移動します。
  2. namespace の一覧で削除する必要のある namespace を見つけます。
  3. namespace の一覧の右端で、Options メニュー kebab から Delete Namespace を選択します。
  4. Delete Namespace ペインが表示されたら、フィールドから削除する namespace の名前を入力します。
  5. Delete をクリックします。

3.6. CLI を使用した OpenShift Virtualization のアンインストール

OpenShift Container Platform CLI を使用して OpenShift Virtualization をアンインストールできます。

3.6.1. 前提条件

3.6.2. OpenShift Virtualization の削除

CLI を使用して OpenShift Virtualization を削除できます。

前提条件

  • OpenShift CLI (oc) をインストールしている。
  • cluster-admin パーミッションを持つアカウントを使用して OpenShift Virtualization クラスターにアクセスできる。
注記

CLI を使用して OLM で OpenShift Virtualization Operator のサブスクリプションを削除すると、ClusterServiceVersion (CSV) オブジェクトはクラスターから削除されません。OpenShift Virtualization を完全にアンインストールするには、CSV を明示的に削除する必要があります。

手順

  1. HyperConverged カスタムリソースを削除します。

    $ oc delete HyperConverged kubevirt-hyperconverged -n openshift-cnv
  2. Operator Lifecycle Manager (OLM) で OpenShift Virtualization Operator のサブスクリプションを削除します。

    $ oc delete subscription kubevirt-hyperconverged -n openshift-cnv
  3. OpenShift Virtualization の Cluster Service Version (CSV) 名を環境変数として設定します。

    $ CSV_NAME=$(oc get csv -n openshift-cnv -o=custom-columns=:metadata.name)
  4. 直前の手順で CSV 名を指定して、OpenShift Virtualization クラスターから CSV を削除します。

    $ oc delete csv ${CSV_NAME} -n openshift-cnv

    OpenShift Virtualization は、CSV が正常に削除されたことを示す確認メッセージが表示される際にアンインストールされます。

    出力例

    clusterserviceversion.operators.coreos.com "kubevirt-hyperconverged-operator.v2.6.10" deleted

第4章 OpenShift Virtualization のアップグレード

次のマイナーバージョンの OpenShift Virtualization に手動でアップグレードし、Web コンソールを使用して更新のステータスをモニターできます。

4.1. OpenShift Virtualization のアップグレードについて

4.1.1. OpenShift Virtualization のアップグレードの仕組み

  • OpenShift Container Platform Web コンソールを使用して Operator サブスクリプションのチャネルを変更することで、OpenShift Virtualization の次のマイナーバージョンにアップグレードできます。
  • OpenShift Virtualization のインストール時に z-stream の自動更新を有効にできます。
  • 更新は、OpenShift Container Platform のインストール時にデプロイされる Marketplace Operator 経由で送信されます。Marketplace Operator は外部 Operator をクラスターに対して利用可能にします。
  • 更新の完了までにかかる時間は、ネットワーク接続によって異なります。ほとんどの自動更新は 15 分以内に完了します。

4.1.2. OpenShift Virtualization アップグレードのクラスターへの影響

  • アップグレードを実行しても仮想マシンのワークロードは中断しません。

    • 仮想マシン Pod は、アップグレード時に再起動したり、移行したりしません。virt-launcher Pod を更新する必要がある場合は、仮想マシンの再起動またはライブマイグレーションが必要になります。

      注記

      各仮想マシンには、仮想マシンインスタンスを実行する virt-launcher Pod があります。virt-launcher Pod は、仮想マシンのプロセスを管理するために使用される libvirt のインスタンスを実行します。

  • アップグレードによってネットワーク接続が中断されることはありません。
  • データボリュームおよびその関連付けられた永続ボリューム要求 (PVC) はアップグレード時に保持されます。

    重要

    ライブマイグレーションを実行できない仮想マシンを実行すると、OpenShift Container Platform クラスターのアップグレードがブロックされる可能性があります。これには、hostpath-provisioner ストレージまたは SR-IOV ネットワークインターフェイスを使用する仮想マシンが含まれます。

    回避策として、仮想マシンを再設定し、クラスターのアップグレード時にそれらの電源を自動的にオフになるようにできます。evictionStrategy: LiveMigrate フィールドを削除し、runStrategy フィールドを Always に設定します。

4.2. OpenShift Virtualization の次のマイナーバージョンへのアップグレード

OpenShift Container Platform Web コンソールを使用して Operator サブスクリプションのチャネルを変更することで、OpenShift Virtualization を次のマイナーバージョンに手動でアップグレードできます。

前提条件

  • cluster-admin ロールを持つユーザーとしてクラスターにログインすること。

手順

  1. OpenShift Container Platform Web コンソールにアクセスし、OperatorsInstalled Operators に移動します。
  2. OpenShift Virtualization をクリックし、Operator Details ページを開きます。
  3. Subscription タブをクリックし、Subscription Overview ページを開きます。
  4. Channel ペインで、バージョン番号の右側にある鉛筆アイコンをクリックし、Change Subscription Update Channel ウィンドウを開きます。
  5. stable を選択します。これにより、OpenShift Container Platform バージョンと互換性がある OpenShift Virtualization のバージョンをインストールすることができます。
  6. Save をクリックします。
  7. OperatorsInstalled Operators に移動してアップグレードのステータスを確認します。以下の oc コマンドを実行してステータスを確認することもできます。

    $ oc get csv -n openshift-cnv

4.3. アップグレードステータスの監視

OpenShift Virtualization アップグレードステータスをモニターする最適な方法として、Cluster Service Version (CSV) PHASE を監視できます。Web コンソールを使用するか、ここに提供されているコマンドを実行して CSV の状態をモニターすることもできます。

注記

PHASE および状態の値は利用可能な情報に基づく近似値になります。

前提条件

  • cluster-admin ロールを持つユーザーとしてクラスターにログインすること。
  • OpenShift CLI (oc) をインストールしている。

手順

  1. 以下のコマンドを実行します。

    $ oc get csv
  2. 出力を確認し、PHASE フィールドをチェックします。以下に例を示します。

    出力例

    VERSION  REPLACES                                        PHASE
    2.5.0    kubevirt-hyperconverged-operator.v2.4.3         Installing
    2.4.3                                                    Replacing

  3. オプション: 以下のコマンドを実行して、すべての OpenShift Virtualization コンポーネントの状態の集約されたステータスをモニターします。

    $ oc get hco -n openshift-cnv kubevirt-hyperconverged \
    -o=jsonpath='{range .status.conditions[*]}{.type}{"\t"}{.status}{"\t"}{.message}{"\n"}{end}'

    アップグレードが成功すると、以下の出力が得られます。

    出力例

    ReconcileComplete  True  Reconcile completed successfully
    Available          True  Reconcile completed successfully
    Progressing        False Reconcile completed successfully
    Degraded           False Reconcile completed successfully
    Upgradeable        True  Reconcile completed successfully

4.4. 関連情報

第5章 kubevirt-controller および virt-launcher に付与される追加のセキュリティー権限

kubevirt-controller および virt-launcher Pod には、通常の Pod 所有者の権限に加えて一部の SELinux ポリシーおよび SCC (Security Context Constraints) 権限が付与されます。これらの権限により、仮想マシンは OpenShift Virtualization 機能を使用できます。

5.1. virt-launcher Pod の拡張 SELinux ポリシー

virt-launcher Pod の container_t SELinux ポリシーは以下のルールで拡張されます。

  • allow process self (tun_socket (relabelfrom relabelto attach_queue))
  • allow process sysfs_t (file (write))
  • allow process hugetlbfs_t (dir (add_name create write remove_name rmdir setattr))
  • allow process hugetlbfs_t (file (create unlink))

これらのルールは、以下の仮想化機能を有効にします。

  • キューを独自の TUN ソケットに再度ラベル付けし、これに割り当てます。これは、ネットワークのマルチキューをサポートするために必要です。マルチキューは、利用可能な vCPU の数が増える際にネットワークのパフォーマンスをスケーリングできます。
  • virt-launcher Pod が情報を sysfs (/sys) ファイルに書き込むことを許可します。これは SR-IOV (Single Root I/O Virtualization) を有効にするために必要です。
  • hugetlbfs エントリーの読み取り/書き込みを実行します。これは、Huge Page をサポートするために必要です。Huge Page は、メモリーページサイズを増やすことで大量のメモリーを管理する方法です。

5.2. kubevirt-controller サービスアカウントの追加の OpenShift Container Platform SCC (Security Context Constraints) および Linux 機能

SCC (Security Context Constraints) は Pod のパーミッションを制御します。これらのパーミッションには、コンテナーのコレクションである Pod が実行できるアクションおよびそれがアクセスできるリソース情報が含まれます。SCC を使用して、Pod がシステムに受け入れられるために必要な Pod の実行についての条件の一覧を定義することができます。

kubevirt-controller は、クラスター内の仮想マシンの virt-launcher Pod を作成するクラスターコントローラーです。これらの virt-launcher Pod には、kubevirt-controller サービスアカウントによってパーミッションが付与されます。

5.2.1. kubevirt-controller サービスアカウントに付与される追加の SCC

kubevirt-controller サービスアカウントには追加の SCC および Linux 機能が付与され、これにより適切なパーミッションを持つ virt-launcher Pod を作成できます。これらの拡張パーミッションにより、仮想マシンは通常の Pod の範囲外の OpenShift Virtualization 機能を利用できます。

kubevirt-controller サービスアカウントには以下の SCC が付与されます。

  • scc.AllowHostDirVolumePlugin = true
    これは、仮想マシンが hostpath ボリュームプラグインを使用することを可能にします。
  • scc.AllowPrivilegedContainer = false
    これは、virt-launcher Pod が権限付きコンテナーとして実行されないようにします。
  • scc.AllowedCapabilities = []corev1.Capability{"NET_ADMIN", "NET_RAW", "SYS_NICE"}
    This provides the following additional Linux capabilities NET_ADMIN, NET_RAW, and SYS_NICE.

5.2.2. kubevirt-controller の SCC および RBAC 定義の表示

oc ツールを使用して kubevirt-controllerSecurityContextConstraints 定義を表示できます。

$ oc get scc kubevirt-controller -o yaml

oc ツールを使用して kubevirt-controller クラスターロールの RBAC 定義を表示できます。

$ oc get clusterrole kubevirt-controller -o yaml

5.3. 関連情報

  • Red Hat Enterprise Linux 仮想化のチューニングと最適化ガイドには、ネットワークマルチキューHuge Page についての詳細情報が記載されています。
  • capabilities man ページには、Linux 機能についての詳細情報が記載されています。
  • sysfs(5) man ページには、sysfs についての詳細情報が記載されています。
  • OpenShift Container Platform 認証ガイドには、SCC (Security Context Constraints) についての詳細が記載されています。

第6章 CLI ツールの使用

クラスターでリソースを管理するために使用される 2 つの主な CLI ツールは以下の通りです。

  • OpenShift virtualization virtctl クライアント
  • OpenShift Container Platform oc クライアント

6.1. 前提条件

6.2. Virtctl クライアントコマンド

virtctl クライアントは、OpenShift Virtualization リソースを管理するためのコマンドラインユーティリティーです。以下の表には、OpenShift Virtualization のドキュメント全体で使用されている virtctl コマンドが記載されています。

コマンドで使用できるオプションの一覧を表示するには、これを -h または --help フラグを指定して実行します。以下は例になります。

$ virtctl image-upload -h
表6.1 virtctl クライアントコマンド
コマンド説明

virtctl start <vm_name>

仮想マシンを起動します。

virtctl stop <vm_name>

仮想マシンを停止します。

virtctl pause vm|vmi <object_name>

仮想マシンまたは仮想マシンインスタンスを一時停止します。マシンの状態がメモリーに保持されます。

virtctl unpause vm|vmi <object_name>

仮想マシンまたは仮想マシンインスタンスの一時停止を解除します。

virtctl migrate <vm_name>

仮想マシンを移行します。

virtctl restart <vm_name>

仮想マシンを再起動します。

virtctl expose <vm_name>

仮想マシンまたは仮想マシンインスタンスの指定されたポートを転送するサービスを作成し、このサービスをノードの指定されたポートで公開します。

virtctl console <vmi_name>

仮想マシンインスタンスのシリアルコンソールに接続します。

virtctl vnc <vmi_name>

仮想マシンインスタンスへの VNC 接続を開きます。

virtctl image-upload dv <datavolume_name> --image-path=</path/to/image> --no-create

仮想マシンイメージをすでに存在するデータボリュームにアップロードします。

virtctl image-upload dv <datavolume_name> --size=<datavolume_size> --image-path=</path/to/image>

仮想マシンイメージを新規データボリューム にアップロードします。

virtctl version

クライアントおよびサーバーのバージョン情報を表示します。

virtctl help

virtctl コマンドの説明的な一覧を表示します。

virtctl fslist <vmi_name>

ゲストマシンで利用可能なファイルシステムの詳細な一覧を返します。

virtctl guestosinfo <vmi_name>

オペレーティングシステムに関するゲストエージェント情報を返します。

virtctl userlist <vmi_name>

ゲストマシンでログインしているユーザーの詳細な一覧を返します。

6.3. OpenShift Container Platform クライアントコマンド

OpenShift Container Platform oc クライアントは、VirtualMachine (vm) および VirtualMachineInstance (vmi) オブジェクトタイプを含む、OpenShift Container Platform リソースを管理するためのコマンドラインユーティリティーです。

注記

-n <namespace> フラグを使用して、別のプロジェクトを指定できます。

表6.2 oc コマンド
コマンド説明

oc login -u <user_name>

OpenShift Container Platform クラスターに <user_name> としてログインします。

oc get <object_type>

現在のプロジェクトの指定されたオブジェクトタイプのオブジェクトの一覧を表示します。

oc describe <object_type> <resource_name>

現在のプロジェクトで特定のリソースの詳細を表示します。

oc create -f <object_config>

現在のプロジェクトで、ファイル名または標準入力 (stdin) からリソースを作成します。

oc edit <object_type> <resource_name>

現在のプロジェクトのリソースを編集します。

oc delete <object_type> <resource_name>

現在のプロジェクトのリソースを削除します。

oc client コマンドについてのより総合的な情報については、OpenShift Container Platform CLI ツール のドキュメントを参照してください。

第7章 仮想マシン

7.1. 仮想マシンの作成

以下のいずれかの手順を使用して、仮想マシンを作成します。

警告

openshift-* namespace に仮想マシンを作成しないでください。代わりに、openshift 接頭辞なしの新規 namespace を作成するか、または既存 namespace を使用します。

Web コンソールから仮想マシンを作成する場合、ブートソースで設定される仮想マシンテンプレートを選択します。ブートソースを含む仮想マシンテンプレートには Available boot source というラベルが付けられるか、またはそれらはカスタマイズされたラベルテキストを表示します。選択可能なブートソースでテンプレートを使用すると、仮想マシンの作成プロセスをスピードアップできます。

ブートソースのないテンプレートには、Boot source required というラベルが付けられます。ブートソースを仮想マシンに追加する 手順が完了したら、これらのテンプレートを使用できます。

7.1.1. クイックスタートの使用による仮想マシンの作成

Web コンソールは、仮想マシンを作成するためのガイド付きツアーを含むクイックスタートを提供します。Administrator パースペクティブの Help メニューを選択して Quick Starts カタログにアクセスし、Quick Starts カタログを表示できます。Quick Starts タイルをクリックし、ツアーを開始すると、システムによるプロセスのガイドが開始します。

Quick Starts のタスクは、Red Hat テンプレートの選択から開始します。次に、ブートソースを追加して、オペレーティングシステムイメージをインポートできます。最後に、カスタムテンプレートを保存し、これを使用して仮想マシンを作成できます。

前提条件

  • オペレーティングシステムイメージの URL リンクをダウンロードできる Web サイトにアクセスすること。

手順

  1. Web コンソールで、Help メニューから Quick Starts を選択します。
  2. Quick Starts カタログのタイルをクリックします。例: Red Hat Linux Enterprise Linux 仮想マシンの作成
  3. ガイド付きツアーの手順に従い、オペレーティングシステムイメージのインポートと仮想マシンの作成タスクを実行します。Virtual Machines タブで、仮想マシンが表示されます。

7.1.2. 仮想マシンウィザードの実行による仮想マシンの作成

Web コンソールは、仮想マシンテンプレートの選択と仮想マシンの作成プロセスをガイドするウィザードを特長としています。Red Hat 仮想マシンテンプレートは、オペレーティングシステムイメージ、オペレーティングシステム、フレーバー (CPU およびメモリー)、およびワークロードタイプ (サーバー) のデフォルト設定で事前に設定されます。テンプレートがブートソースで設定される場合、それらのテンプレートにはカスタマイズされたラベルテキストテキストまたはデフォルトのラベルテキスト (Available boot source) のラベルが付けられます。その後、これらのテンプレートは仮想マシンの作成に使用する準備が整います。

事前に設定されたテンプレートの一覧からテンプレートを選択し、設定を確認し、 Create virtual machine from template ウィザードで仮想マシンを作成できます。仮想マシンのカスタマイズを選択した場合には、ウィザードが GeneralNetworkingStorageAdvanced、および Review の手順をガイドします。ウィザードに表示されるすべての必須フィールドには * のマークが付けられます。

ネットワークインターフェイスコントローラー (NIC) およびストレージディスクを作成し、それらを仮想マシンに割り当てます。

手順

  1. サイドメニューから WorkloadsVirtualization をクリックします。
  2. Virtual Machines タブまたは Templates タブで、Create をクリックし、Virtual Machine with Wizard を選択します。
  3. ブートソースで設定したテンプレートを選択します。
  4. Next をクリックして Review and create ステップに移動します。
  5. 仮想マシンをすぐに起動する必要がない場合は、Start this virtual machine after creation チェックボックスをクリアします。
  6. Create virtual machine をクリックし、ウィザードを終了するか、またはウィザードを継続して使用し、仮想マシンをカスタマイズします。
  7. Customize virtual machine をクリックして General ステップに移動します。

    1. オプション: Name フィールドを編集して、仮想マシンのカスタム名を指定します。
    2. オプション: Description フィールドに説明を追加します。
  8. Next をクリックして Networking ステップに進みます。デフォルトで nic0 NIC が割り当てられます。

    1. オプション: Add Network Interface をクリックし、追加の NIC を作成します。
    2. オプション: すべての NIC の削除は、Options メニュー kebab をクリックし、Delete を選択して実行できます。仮想マシンの作成において、NIC が割り当てられている必要はありません。NIC は仮想マシンの作成後に作成することができます。
  9. Next をクリックして Storage ステップに進みます。

    1. オプション: Add Disk をクリックして追加のディスクを作成します。これらのディスクの削除は、Options メニュー kebab をクリックし、Delete を選択して実行できます。
    2. オプション: Options メニュー kebab をクリックし、ディスクを編集して変更内容を保存します。
  10. Next をクリックして Advanced ステップに移動し、Cloud-init の詳細を確認します。
  11. Next をクリックして Review ステップに移動し、仮想マシンの設定を確認します。
  12. Create Virtual Machine をクリックします。
  13. See virtual machine details をクリックして、この仮想マシンの Overview を表示します。

    仮想マシンは Virtual Machines タブに一覧表示されます。

Web コンソールウィザードを実行する際は、仮想マシンウィザードのフィールドを参照します。

7.1.2.1. 仮想マシンウィザードのフィールド
名前パラメーター説明

名前

 

この名前には、小文字 (a-z)、数字 (0-9)、およびハイフン (-) を含めることができ、最大 253 文字を使用できます。最初と最後の文字は英数字にする必要があります。この名前には、大文字、スペース、ピリオド (.)、または特殊文字を使用できません。

説明

 

オプションの説明フィールド。

Operating System

 

テンプレートで仮想マシン用に選択される主なオペレーティングシステム。テンプレートから仮想マシンを作成する場合、このフィールドを編集することはできません。

Boot Source

URL を使用したインポート (PVC の作成)

HTTP または HTTPS エンドポイントで利用できるイメージからコンテンツをインポートします。例: オペレーティングシステムイメージのある Web ページから URL リンクを取得します。

既存の PVC のクローン作成 (PVC の作成)

クラスターで利用可能な既存の永続ボリューム要求 (PVC) を選択し、これをクローンします。

レジストリーを使用したインポート (PVC の作成)

クラスターからアクセスできるレジストリーの起動可能なオペレーティングシステムコンテナーから仮想マシンをプロビジョニングします。例: kubevirt/cirros-registry-disk-demo

PXE (ネットワークブート: ネットワークインターフェイスの追加)

ネットワークのサーバーからオペレーティングシステムを起動します。PXE ブート可能なネットワーク接続定義が必要です。

永続ボリューム要求 (PVC) のプロジェクト

 

PVC のクローン作成に使用するプロジェクト名。

永続ボリューム要求 (PVC) の名前

 

既存の PVC のクローンを作成する場合にこの仮想マシンテンプレートに適用する必要のある PVC 名。

これを CD-ROM ブートソースとしてマウントする

 

CD-ROM には、オペレーティングシステムをインストールするための追加のディスクが必要です。チェックボックスを選択して、ディスクを追加し、後でカスタマイズします。

Flavor

Tiny、Small、Medium、Large、Custom

仮想マシンに割り当てられる CPU およびメモリーの量を決定するプリセット。Flavor に設定される Preset はオペレーティングシステムによって決まります。

Workload Type

Desktop

デスクトップで使用するための仮想マシン設定。小規模な環境での使用に適しています。Web コンソールでの使用に推奨されます。

Server

パフォーマンスのバランスを図り、さまざまなサーバーのワークロードと互換性があります。

High-Performance

高パフォーマンスのワークロードに対して最適化された仮想マシン設定。

作成後にこの仮想マシンを起動します。

 

このチェックボックスはデフォルトで選択され、仮想マシンは作成後に実行を開始します。仮想マシンの作成時に起動する必要がない場合は、チェックボックスをクリアします。

7.1.2.2. ネットワークフィールド
名前説明

名前

ネットワークインターフェイスコントローラーの名前。

モデル

ネットワークインターフェイスコントローラーのモデルを示します。サポートされる値は e1000e および virtio です。

ネットワーク

利用可能なネットワーク接続定義の一覧。

Type

利用可能なバインディングメソッドの一覧。デフォルトの Pod ネットワークについては、masquerade が唯一の推奨されるバインディングメソッドになります。セカンダリーネットワークの場合は、 bridge バインディングメソッドを使用します。masquerade メソッドは、デフォルト以外のネットワークではサポートされません。SR-IOV ネットワークデバイスを設定し、namespace でそのネットワークを定義した場合は、SR-IOV を選択します。

MAC Address

ネットワークインターフェイスコントローラーの MAC アドレス。MAC アドレスが指定されていない場合、これは自動的に割り当てられます。

7.1.2.3. ストレージフィールド
名前選択説明

Source

空白 (PVC の作成)

空のディスクを作成します。

URL を使用したインポート (PVC の作成)

URL (HTTP または HTTPS エンドポイント) を介してコンテンツをインポートします。

既存 PVC の使用

クラスターですでに利用可能な PVC を使用します。

既存の PVC のクローン作成 (PVC の作成)

クラスターで利用可能な既存の PVC を選択し、このクローンを作成します。

レジストリーを使用したインポート (PVC の作成)

コンテナーレジストリーを使用してコンテンツをインポートします。

コンテナー (一時的)

クラスターからアクセスできるレジストリーにあるコンテナーからコンテンツをアップロードします。コンテナーディスクは、CD-ROM や一時的な仮想マシンなどの読み取り専用ファイルシステムにのみ使用する必要があります。

名前

 

ディスクの名前。この名前には、小文字 (a-z)、数字 (0-9)、ハイフン (-) およびピリオド (.) を含めることができ、最大 253 文字を使用できます。最初と最後の文字は英数字にする必要があります。この名前には、大文字、スペース、または特殊文字を使用できません。

Size

 

ディスクのサイズ (GiB 単位)。

Type

 

ディスクのタイプ。例: Disk または CD-ROM

Interface

 

ディスクデバイスのタイプ。サポートされるインターフェイスは、virtIOSATA、および SCSI です。

Storage Class

 

ディスクの作成に使用されるストレージクラス。

Advanced → Volume Mode

 

永続ボリュームがフォーマットされたファイルシステムまたは raw ブロック状態を使用するかどうかを定義します。デフォルトは Filesystem です。

Advanced → Access Mode

 

永続ボリュームのアクセスモード。サポートされるアクセスモードは、Single User (RWO)Shared Access (RWX)、および Read Only (ROX) です。

ストレージの詳細設定

以下のストレージの詳細設定は、BlankImport via URLURL、および Clone existing PVC ディスクで利用できます。これらのパラメーターはオプションです。これらのパラメーターを指定しない場合、システムは kubevirt-storage-class-defaults 設定マップのデフォルト値を使用します。

名前パラメーター説明

ボリュームモード

Filesystem

ファイルシステムベースのボリュームで仮想ディスクを保存します。

Block

ブロックボリュームで仮想ディスクを直接保存します。基礎となるストレージがサポートしている場合は、 Block を使用します。

アクセスモード

Single User (RWO)

ディスクは単一ノードで読み取り/書き込みとしてマウントできます。

Shared Access (RWX)

ディスクは数多くのノードで読み取り/書き込みとしてマウントできます。

注記

これは、ノード間の仮想マシンのライブマイグレーションなどの、一部の機能で必要になります。

Read Only (ROX)

ディスクは数多くのノードで読み取り専用としてマウントできます。

7.1.2.4. Cloud-init フィールド
名前説明

Hostname

仮想マシンの特定のホスト名を設定します。

認可された SSH キー

仮想マシンの ~/.ssh/authorized_keys にコピーされるユーザーの公開鍵。

カスタムスクリプト

他のオプションを、カスタム cloud-init スクリプトを貼り付けるフィールドに置き換えます。

kubevirt-storage-class-defaults 設定マップについての詳細は、データボリュームのストレージのデフォルト について参照してください。

7.1.2.5. 仮想マシンウィザードの作成用の事前に設定された YAML ファイルの貼り付け

YAML 設定ファイルを作成し、解析して仮想マシンを作成します。YAML 編集画面を開くと、常に有効な example 仮想マシン設定がデフォルトで提供されます。

Create をクリックする際に YAML 設定が無効な場合、エラーメッセージでエラーが発生したパラメーターが示唆されます。エラーは一度に 1 つのみ表示されます。

注記

編集中に YAML 画面から離れると、設定に対して加えた変更が取り消されます。

手順

  1. サイドメニューから WorkloadsVirtualization をクリックします。
  2. Virtual Machines タブをクリックします。
  3. Create をクリックし、Virtual Machine With YAML を選択します。
  4. 編集可能なウィンドウで仮想マシンの設定を作成するか、またはこれを貼り付けます。

    1. または、YAML 画面にデフォルトで提供される example 仮想マシンを使用します。
  5. オプション: Download をクリックして YAML 設定ファイルをその現在の状態でダウンロードします。
  6. Create をクリックして仮想マシンを作成します。

仮想マシンは Virtual Machines タブに一覧表示されます。

7.1.3. CLI の使用による仮想マシンの作成

virtualMachine マニフェストから仮想マシンを作成できます。

手順

  1. 仮想マシンの VirtualMachine マニフェストを編集します。たとえば、次のマニフェストは Red Hat Enterprise Linux (RHEL) 仮想マシンを設定します。

    例7.1 RHEL 仮想マシンのマニフェストの例

    apiVersion: kubevirt.io/v1
    kind: VirtualMachine
    metadata:
      labels:
        app: <vm_name> 1
      name: <vm_name>
    spec:
      dataVolumeTemplates:
      - apiVersion: cdi.kubevirt.io/v1beta1
        kind: DataVolume
        metadata:
          name: <vm_name>
        spec:
          sourceRef:
            kind: DataSource
            name: rhel9
            namespace: openshift-virtualization-os-images
          storage:
            resources:
              requests:
                storage: 30Gi
      running: false
      template:
        metadata:
          labels:
            kubevirt.io/domain: <vm_name>
        spec:
          domain:
            cpu:
              cores: 1
              sockets: 2
              threads: 1
            devices:
              disks:
              - disk:
                  bus: virtio
                name: rootdisk
              - disk:
                  bus: virtio
                name: cloudinitdisk
              interfaces:
              - masquerade: {}
                name: default
              rng: {}
            features:
              smm:
                enabled: true
            firmware:
              bootloader:
                efi: {}
            resources:
              requests:
                memory: 8Gi
          evictionStrategy: LiveMigrate
          networks:
          - name: default
            pod: {}
          volumes:
          - dataVolume:
              name: <vm_name>
            name: rootdisk
          - cloudInitNoCloud:
              userData: |-
                #cloud-config
                user: cloud-user
                password: '<password>' 2
                chpasswd: { expire: False }
            name: cloudinitdisk
    1
    仮想マシンの名前を指定します。
    2
    cloud-user のパスワードを指定します。
  2. マニフェストファイルを使用して仮想マシンを作成します。

    $ oc create -f <vm_manifest_file>.yaml
  3. オプション: 仮想マシンを開始します。

    $ virtctl start <vm_name>

7.1.4. 仮想マシンのストレージボリュームタイプ

ストレージボリュームタイプ説明

ephemeral

ネットワークボリュームを読み取り専用のバッキングストアとして使用するローカルの copy-on-write (COW) イメージ。バッキングボリュームは PersistentVolumeClaim である必要があります。一時イメージは仮想マシンの起動時に作成され、すべての書き込みをローカルに保存します。一時イメージは、仮想マシンの停止、再起動または削除時に破棄されます。バッキングボリューム (PVC) はいずれの方法でも変更されません。

persistentVolumeClaim

利用可能な PV を仮想マシンに割り当てます。PV の割り当てにより、仮想マシンデータのセッション間での永続化が可能になります。

CDI を使用して既存の仮想マシンディスクを PVC にインポートし、PVC を仮想マシンインスタンスに割り当てる方法は、既存の仮想マシンを OpenShift Container Platform にインポートするための推奨される方法です。ディスクを PVC 内で使用できるようにするためのいくつかの要件があります。

dataVolume

データボリュームは、インポート、クローンまたはアップロード操作で仮想マシンディスクの準備プロセスを管理することによって persistentVolumeClaim ディスクタイプにビルドされます。このボリュームタイプを使用する仮想マシンは、ボリュームが準備できるまで起動しないことが保証されます。

type: dataVolume または type: "" を指定します。persistentVolumeClaim などの type に他の値を指定すると、警告が表示され、仮想マシンは起動しません。

cloudInitNoCloud

参照される cloud-init NoCloud データソースが含まれるディスクを割り当て、ユーザーデータおよびメタデータを仮想マシンに提供します。cloud-init インストールは仮想マシンディスク内で必要になります。

containerDisk

コンテナーイメージレジストリーに保存される、仮想マシンディスクなどのイメージを参照します。イメージはレジストリーからプルされ、仮想マシンの起動時にディスクとして仮想マシンに割り当てられます。

containerDisk ボリュームは、単一の仮想マシンに制限されず、永続ストレージを必要としない多数の仮想マシンのクローンを作成するのに役立ちます。

RAW および QCOW2 形式のみがコンテナーイメージレジストリーのサポートされるディスクタイプです。QCOW2 は、縮小されたイメージサイズの場合に推奨されます。

注記

containerDisk ボリュームは一時的なボリュームです。これは、仮想マシンが停止されるか、再起動するか、または削除される際に破棄されます。containerDisk ボリュームは、CD-ROM などの読み取り専用ファイルシステムや破棄可能な仮想マシンに役立ちます。

emptyDisk

仮想マシンインターフェイスのライフサイクルに関連付けられるスパースの QCOW2 ディスクを追加で作成します。データは仮想マシンのゲストによって実行される再起動後も存続しますが、仮想マシンが Web コンソールから停止または再起動する場合には破棄されます。空のディスクは、アプリケーションの依存関係および一時ディスクの一時ファイルシステムの制限を上回るデータを保存するために使用されます。

ディスク 容量 サイズも指定する必要があります。

7.1.5. 仮想マシンの RunStrategy について

仮想マシンの RunStrategy は、一連の条件に応じて仮想マシンインスタンス (VMI) の動作を判別します。spec.runStrategy 設定は、spec.running 設定の代わりに仮想マシン設定プロセスに存在します。spec.runStrategy 設定を使用すると、true または false の応答のみを伴う spec.running 設定とは対照的に、VMI の作成および管理をより柔軟に行えます。ただし、2 つの設定は相互排他的です。spec.running または spec.runStrategy のいずれかを使用できます。両方を使用する場合は、エラーが発生します。

4 つ RunStrategy が定義されています。

Always
VMI は仮想マシンの作成時に常に表示されます。元の VMI が何らかの理由で停止する場合に、新規の VMI が作成されます。これは spec.running: true と同じ動作です。
RerunOnFailure
前のインスタンスがエラーが原因で失敗する場合は、VMI が再作成されます。インスタンスは、仮想マシンが正常に停止する場合 (シャットダウン時など) には再作成されません。
Manual (手動)
startstop、および restart virtctl クライアントコマンドは、 VMI の状態および存在を制御するために使用できます。
Halted
仮想マシンが作成される際に VMI は存在しません。これは spec.running: false と同じ動作です。

startstop、および restart の virtctl コマンドの各種の組み合わせは、どの RunStrategy が使用されるかに影響を与えます。

以下の表は、仮想マシンの各種の状態からの移行について示しています。最初の列には、仮想マシンの初期の RunStrategy が表示されます。それぞれの追加の列には、virtctl コマンドと、このコマンド実行後の新規 RunStrategy が表示されます。

初期 RunStrategystartstoprestart

Always

-

Halted

Always

RerunOnFailure

-

Halted

RerunOnFailure

Manual

Manual

Manual

Manual

Halted

Always

-

-

注記

インストーラーでプロビジョニングされるインフラストラクチャーを使用してインストールされた OpenShift Virtualization クラスターでは、ノードで MachineHealthCheck に失敗し、クラスターで利用できなくなると、RunStrategy が Always または RerunOnFailure の仮想マシンが新規ノードで再スケジュールされます。

apiVersion: kubevirt.io/v1alpha3
kind: VirtualMachine
spec:
  RunStrategy: Always 1
  template:
...
1
VMI の現在の RunStrategy 設定。

7.1.6. 関連情報

7.2. 仮想マシンの編集

Web コンソールの YAML エディターまたはコマンドラインの OpenShift クライアントのいずれかを使用して、仮想マシン設定を更新できます。Virtual Machine Details 画面でパラメーターのサブセットを更新することもできます。

7.2.1. Web コンソールでの仮想マシンの編集

関連するフィールドの横にある鉛筆アイコンをクリックして、Web コンソールで仮想マシンの選択する値 (select values) を編集します。他の値は、CLI を使用して編集できます。

ラベルとアノテーションは、事前に設定された Red Hat テンプレートとカスタム仮想マシンテンプレートの両方について編集されます。その他のすべての値は、ユーザーが Red Hat テンプレートまたは Create Virtual Machine Template ウィザードを使用して作成したカスタム仮想マシンテンプレートについてのみ編集されます。

手順

  1. サイドメニューから WorkloadsVirtualization をクリックします。
  2. Virtual Machines タブをクリックします。
  3. 仮想マシンを選択します。
  4. Details タブをクリックします。
  5. 鉛筆アイコンをクリックして、フィールドを編集可能にします。
  6. 関連する変更を加え、Save をクリックします。
注記

仮想マシンが実行されている場合、Boot Order または Flavor への変更は仮想マシンを再起動するまで反映されません。

関連するフィールドの右側にある View Pending Changes をクリックして、保留中の変更を表示できます。ページ上部の Pending Changes バナーには、仮想マシンの再起動時に適用されるすべての変更の一覧が表示されます。

7.2.2. Web コンソールを使用した仮想マシンの YAML 設定の編集

Web コンソールで、仮想マシンの YAML 設定を編集できます。一部のパラメーターは変更できません。無効な設定で Save をクリックすると、エラーメッセージで変更できないパラメーターが示唆されます。

仮想マシンが実行中に YAML 設定を編集する場合、変更内容は仮想マシンが再起動されるまで反映されません。

注記

編集中に YAML 画面から離れると、設定に対して加えた変更が取り消されます。

手順

  1. サイドメニューから WorkloadsVirtualization をクリックします。
  2. 仮想マシンを選択します。
  3. YAML タブをクリックして編集可能な設定を表示します。
  4. オプション: Download をクリックして YAML ファイルをその現在の状態でローカルにダウンロードできます。
  5. ファイルを編集し、Save をクリックします。

オブジェクトの更新されたバージョン番号を含む、変更が正常に行われたことを示す確認メッセージが表示されます。

7.2.3. CLI を使用した仮想マシン YAML 設定の編集

以下の手順を使用し、CLI を使用して仮想マシン YAML 設定を編集します。

前提条件

  • YAML オブジェクト設定ファイルを使って仮想マシンを設定していること。
  • oc CLI をインストールしていること。

手順

  1. 以下のコマンドを実行して、仮想マシン設定を更新します。

    $ oc edit <object_type> <object_ID>
  2. オブジェクト設定を開きます。
  3. YAML を編集します。
  4. 実行中の仮想マシンを編集する場合は、以下のいずれかを実行する必要があります。

    • 仮想マシンを再起動します。
    • 新規の設定を有効にするために、以下のコマンドを実行します。

      $ oc apply <object_type> <object_ID>

7.2.4. 仮想マシンへの仮想ディスクの追加

以下の手順を使用して仮想ディスクを仮想マシンに追加します。

手順

  1. サイドメニューから WorkloadsVirtualization をクリックします。
  2. Virtual Machines タブをクリックします。
  3. 仮想マシンを選択して、Virtual Machine Overview 画面を開きます。
  4. Disks タブをクリックします。
  5. Add Disk ウィンドウで、SourceNameSizeTypeInterface、および Storage Class を指定します。

    1. オプション: Advanced 一覧で、仮想ディスクの Volume Mode および Access Mode を指定します。これらのパラメーターを指定しない場合、システムは kubevirt-storage-class-defaults 設定マップのデフォルト値を使用します。
  6. Add をクリックします。
注記

仮想マシンが実行中の場合、新規ディスクは pending restart 状態にあり、仮想マシンを再起動するまで割り当てられません。

ページ上部の Pending Changes バナーには、仮想マシンの再起動時に適用されるすべての変更の一覧が表示されます。

kubevirt-storage-class-defaults 設定マップについての詳細は、データボリュームのストレージのデフォルト について参照してください。

7.2.4.1. ストレージフィールド
名前選択説明

Source

空白 (PVC の作成)

空のディスクを作成します。

URL を使用したインポート (PVC の作成)

URL (HTTP または HTTPS エンドポイント) を介してコンテンツをインポートします。

既存 PVC の使用

クラスターですでに利用可能な PVC を使用します。

既存の PVC のクローン作成 (PVC の作成)

クラスターで利用可能な既存の PVC を選択し、このクローンを作成します。

レジストリーを使用したインポート (PVC の作成)

コンテナーレジストリーを使用してコンテンツをインポートします。

コンテナー (一時的)

クラスターからアクセスできるレジストリーにあるコンテナーからコンテンツをアップロードします。コンテナーディスクは、CD-ROM や一時的な仮想マシンなどの読み取り専用ファイルシステムにのみ使用する必要があります。

名前

 

ディスクの名前。この名前には、小文字 (a-z)、数字 (0-9)、ハイフン (-) およびピリオド (.) を含めることができ、最大 253 文字を使用できます。最初と最後の文字は英数字にする必要があります。この名前には、大文字、スペース、または特殊文字を使用できません。

Size

 

ディスクのサイズ (GiB 単位)。

Type

 

ディスクのタイプ。例: Disk または CD-ROM

Interface

 

ディスクデバイスのタイプ。サポートされるインターフェイスは、virtIOSATA、および SCSI です。

Storage Class

 

ディスクの作成に使用されるストレージクラス。

Advanced → Volume Mode

 

永続ボリュームがフォーマットされたファイルシステムまたは raw ブロック状態を使用するかどうかを定義します。デフォルトは Filesystem です。

Advanced → Access Mode

 

永続ボリュームのアクセスモード。サポートされるアクセスモードは、Single User (RWO)Shared Access (RWX)、および Read Only (ROX) です。

ストレージの詳細設定

以下のストレージの詳細設定は、BlankImport via URLURL、および Clone existing PVC ディスクで利用できます。これらのパラメーターはオプションです。これらのパラメーターを指定しない場合、システムは kubevirt-storage-class-defaults 設定マップのデフォルト値を使用します。

名前パラメーター説明

ボリュームモード

Filesystem

ファイルシステムベースのボリュームで仮想ディスクを保存します。

Block

ブロックボリュームで仮想ディスクを直接保存します。基礎となるストレージがサポートしている場合は、 Block を使用します。

アクセスモード

Single User (RWO)

ディスクは単一ノードで読み取り/書き込みとしてマウントできます。

Shared Access (RWX)

ディスクは数多くのノードで読み取り/書き込みとしてマウントできます。

注記

これは、ノード間の仮想マシンのライブマイグレーションなどの、一部の機能で必要になります。

Read Only (ROX)

ディスクは数多くのノードで読み取り専用としてマウントできます。

7.2.5. 仮想マシンへのネットワークインターフェイスの追加

以下の手順を使用してネットワークインターフェイスを仮想マシンに追加します。

手順

  1. サイドメニューから WorkloadsVirtualization をクリックします。
  2. Virtual Machines タブをクリックします。
  3. 仮想マシンを選択して、Virtual Machine Overview 画面を開きます。
  4. Network Interfaces タブをクリックします。
  5. Add Network Interface をクリックします。
  6. Add Network Interface ウィンドウで、ネットワークインターフェイスの NameModelNetworkType、および MAC Address を指定します。
  7. Add をクリックします。
注記

仮想マシンが実行中の場合、新規ネットワークインターフェイスは pending restart 状態にあり、仮想マシンを再起動するまで変更は反映されません。

ページ上部の Pending Changes バナーには、仮想マシンの再起動時に適用されるすべての変更の一覧が表示されます。

7.2.5.1. ネットワークフィールド
名前説明

名前

ネットワークインターフェイスコントローラーの名前。

モデル

ネットワークインターフェイスコントローラーのモデルを示します。サポートされる値は e1000e および virtio です。

ネットワーク

利用可能なネットワーク接続定義の一覧。

Type

利用可能なバインディングメソッドの一覧。デフォルトの Pod ネットワークについては、masquerade が唯一の推奨されるバインディングメソッドになります。セカンダリーネットワークの場合は、 bridge バインディングメソッドを使用します。masquerade メソッドは、デフォルト以外のネットワークではサポートされません。SR-IOV ネットワークデバイスを設定し、namespace でそのネットワークを定義した場合は、SR-IOV を選択します。

MAC Address

ネットワークインターフェイスコントローラーの MAC アドレス。MAC アドレスが指定されていない場合、これは自動的に割り当てられます。

7.2.6. 仮想マシンの CD-ROM の編集

以下の手順を使用して、仮想マシンの CD-ROM を編集します。

手順

  1. サイドメニューから WorkloadsVirtualization をクリックします。
  2. Virtual Machines タブをクリックします。
  3. 仮想マシンを選択して、Virtual Machine Overview 画面を開きます。
  4. Disks タブをクリックします。
  5. 編集する CD-ROM の Options メニュー kebab をクリックし、Edit を選択します。
  6. Edit CD-ROM ウィンドウで、SourcePersistent Volume ClaimNameType、および Interface フィールドを編集します。
  7. Save をクリックします。

7.3. ブート順序の編集

Web コンソールまたは CLI を使用して、ブート順序リストの値を更新できます。

Virtual Machine Overview ページの Boot Order で、以下を実行できます。

  • ディスクまたはネットワークインターフェイスコントローラー (NIC) を選択し、これをブート順序の一覧に追加します。
  • ブート順序の一覧でディスクまたは NIC の順序を編集します。
  • ブート順序の一覧からディスクまたは NIC を削除して、起動可能なソースのインベントリーに戻します。

7.3.1. Web コンソールでのブート順序一覧への項目の追加

Web コンソールを使用して、ブート順序一覧に項目を追加します。

手順

  1. サイドメニューから WorkloadsVirtualization をクリックします。
  2. Virtual Machines タブをクリックします。
  3. 仮想マシンを選択して、Virtual Machine Overview 画面を開きます。
  4. Details タブをクリックします。
  5. Boot Order の右側にある鉛筆アイコンをクリックします。YAML 設定が存在しない場合や、これがブート順序一覧の初回作成時の場合、以下のメッセージが表示されます。No resource selected.仮想マシンは、YAML ファイルでの出現順にディスクからの起動を試行します。
  6. Add Source をクリックして、仮想マシンのブート可能なディスクまたはネットワークインターフェイスコントローラー (NIC) を選択します。
  7. 追加のディスクまたは NIC をブート順序一覧に追加します。
  8. Save をクリックします。
注記

仮想マシンが実行されている場合、Boot Order への変更は仮想マシンを再起動するまで反映されません。

Boot Order フィールドの右側にある View Pending Changes をクリックして、保留中の変更を表示できます。ページ上部の Pending Changes バナーには、仮想マシンの再起動時に適用されるすべての変更の一覧が表示されます。

7.3.2. Web コンソールでのブート順序一覧の編集

Web コンソールで起動順序一覧を編集します。

手順

  1. サイドメニューから WorkloadsVirtualization をクリックします。
  2. Virtual Machines タブをクリックします。
  3. 仮想マシンを選択して、Virtual Machine Overview 画面を開きます。
  4. Details タブをクリックします。
  5. Boot Order の右側にある鉛筆アイコンをクリックします。
  6. ブート順序一覧で項目を移動するのに適した方法を選択します。

    • スクリーンリーダーを使用しない場合、移動する項目の横にある矢印アイコンにカーソルを合わせ、項目を上下にドラッグし、選択した場所にドロップします。
    • スクリーンリーダーを使用する場合は、上矢印キーまたは下矢印を押して、ブート順序一覧で項目を移動します。次に Tab キーを押して、選択した場所に項目をドロップします。
  7. Save をクリックします。
注記

仮想マシンが実行されている場合、ブート順序の変更は仮想マシンが再起動されるまで反映されません。

Boot Order フィールドの右側にある View Pending Changes をクリックして、保留中の変更を表示できます。ページ上部の Pending Changes バナーには、仮想マシンの再起動時に適用されるすべての変更の一覧が表示されます。

7.3.3. YAML 設定ファイルでのブート順序一覧の編集

CLI を使用して、YAML 設定ファイルのブート順序の一覧を編集します。

手順

  1. 以下のコマンドを実行して、仮想マシンの YAML 設定ファイルを開きます。

    $ oc edit vm example
  2. YAML ファイルを編集し、ディスクまたはネットワークインターフェイスコントローラー (NIC) に関連付けられたブート順序の値を変更します。以下に例を示します。

    disks:
      - bootOrder: 1 1
        disk:
          bus: virtio
        name: containerdisk
      - disk:
          bus: virtio
        name: cloudinitdisk
      - cdrom:
          bus: virtio
        name: cd-drive-1
    interfaces:
      - boot Order: 2 2
        macAddress: '02:96:c4:00:00'
        masquerade: {}
        name: default
    1
    ディスクに指定されたブート順序の値。
    2
    ネットワークインターフェイスコントローラーに指定されたブート順序の値。
  3. YAML ファイルを保存します。
  4. reload the content をクリックして、Web コンソールで YAML ファイルの更新されたブート順序の値をブート順序一覧に適用します。

7.3.4. Web コンソールでのブート順序一覧からの項目の削除

Web コンソールを使用して、ブート順序の一覧から項目を削除します。

手順

  1. サイドメニューから WorkloadsVirtualization をクリックします。
  2. Virtual Machines タブをクリックします。
  3. 仮想マシンを選択して、Virtual Machine Overview 画面を開きます。
  4. Details タブをクリックします。
  5. Boot Order の右側にある鉛筆アイコンをクリックします。
  6. 項目の横にある Remove アイコン delete をクリックします。この項目はブート順序の一覧から削除され、利用可能なブートソースの一覧に保存されます。ブート順序一覧からすべての項目を削除する場合、以下のメッセージが表示されます。No resource selected.仮想マシンは、YAML ファイルでの出現順にディスクからの起動を試行します。
注記

仮想マシンが実行されている場合、Boot Order への変更は仮想マシンを再起動するまで反映されません。

Boot Order フィールドの右側にある View Pending Changes をクリックして、保留中の変更を表示できます。ページ上部の Pending Changes バナーには、仮想マシンの再起動時に適用されるすべての変更の一覧が表示されます。

7.4. 仮想マシンの削除

Web コンソールまたは oc コマンドラインインターフェイスを使用して、仮想マシンを削除できます。

7.4.1. Web コンソールの使用による仮想マシンの削除

仮想マシンを削除すると、仮想マシンはクラスターから永続的に削除されます。

注記

仮想マシンを削除する際に、これが使用するデータボリュームは自動的に削除されます。

手順

  1. OpenShift Virtualization コンソールのサイドメニューから WorkloadsVirtualization をクリックします。
  2. Virtual Machines タブをクリックします。
  3. 削除する仮想マシンの Options メニュー kebab をクリックして Delete Virtual Machine を選択します。

    • または、仮想マシン名をクリックして Virtual Machine Overview 画面を開き、ActionsDelete Virtual Machine をクリックします。
  4. 確認のポップアップウィンドウで、Delete をクリックし、仮想マシンを永続的に削除します。

7.4.2. CLI の使用による仮想マシンの削除

oc コマンドラインインターフェイス (CLI) を使用して仮想マシンを削除できます。oc クライアントを使用すると、複数の仮想マシンで各種のアクションを実行できます。

注記

仮想マシンを削除する際に、これが使用するデータボリュームは自動的に削除されます。

前提条件

  • 削除する仮想マシンの名前を特定すること。

手順

  • 以下のコマンドを実行し、仮想マシンを削除します。

    $ oc delete vm <vm_name>
    注記

    このコマンドは、現在のプロジェクトに存在するオブジェクトのみを削除します。削除する必要のあるオブジェクトが別のプロジェクトまたは namespace にある場合、-n <project_name> オプションを指定します。

7.5. 仮想マシンインスタンスの管理

OpenShift Virtualization 環境外に独立して作成されたスタンドアロンの仮想マシンインスタンス (VMI) がある場合、Web コンソールまたはコマンドラインインターフェイス (CLI) を使用してこれらを管理できます。

7.5.1. 仮想マシンインスタンスについて

仮想マシンインスタンス (VMI) は、実行中の仮想マシンを表します。VMI が仮想マシンまたは別のオブジェクトによって所有されている場合、Web コンソールで、または oc コマンドラインインターフェイス (CLI) を使用し、所有者を通してこれを管理します。

スタンドアロンの VMI は、自動化または CLI で他の方法により、スクリプトを使用して独立して作成され、起動します。お使いの環境では、OpenShift Virtualization 環境外で開発され、起動されたスタンドアロンの VMI が存在する可能性があります。CLI を使用すると、引き続きそれらのスタンドアロン VMI を管理できます。スタンドアロン VMI に関連付けられた特定のタスクに Web コンソールを使用することもできます。

  • スタンドアロン VMI とそれらの詳細を一覧表示します。
  • スタンドアロン VMI のラベルとアノテーションを編集します。
  • スタンドアロン VMI を削除します。

仮想マシンを削除する際に、関連付けられた VMI は自動的に削除されます。仮想マシンまたは他のオブジェクトによって所有されていないため、スタンドアロン VMI を直接削除します。

注記

OpenShift Virtualization をアンインストールする前に、CLI または Web コンソールを使用してスタンドアロンの VMI の一覧を表示します。次に、未処理の VMI を削除します。

7.5.2. CLI を使用した仮想マシンインスタンスの一覧表示

oc コマンドラインインターフェイス (CLI) を使用して、スタンドアロンおよび仮想マシンによって所有されている VMI を含むすべての仮想マシンの一覧を表示できます。

手順

  • 以下のコマンドを実行して、すべての VMI の一覧を表示します。

    $ oc get vmis

7.5.3. Web コンソールを使用したスタンドアロン仮想マシンインスタンスの一覧表示

Web コンソールを使用して、仮想マシンによって所有されていないクラスター内のスタンドアロンの仮想マシンインスタンス (VMI) の一覧を表示できます。

注記

仮想マシンまたは他のオブジェクトが所有する VMI は、Web コンソールには表示されません。Web コンソールは、スタンドアロンの VMI のみを表示します。クラスター内のすべての VMI を一覧表示するには、CLI を使用する必要があります。

手順

  • サイドメニューから Workloads → Virtualization をクリックします。仮想マシンおよびスタンドアロン VMI の一覧が表示されます。スタンドアロン VMI は、仮想マシンインスタンス名の横に表示される暗い配色のバッジで特定できます。

7.5.4. Web コンソールを使用したスタンドアロン仮想マシンインスタンスの編集

Web コンソールを使用して、スタンドアロン仮想マシンインスタンスのアノテーションおよびラベルを編集できます。スタンドアロン VMI の Details ページに表示される他の項目は編集できません。

手順

  1. サイドメニューから WorkloadsVirtualization をクリックします。仮想マシン (VM) およびスタンドアロン VMI の一覧が表示されます。
  2. スタンドアロン VMI の名前をクリックして、 Virtual Machine Instance Overview 画面を開きます。
  3. Details タブをクリックします。
  4. Annotations の右側にある鉛筆アイコンをクリックします。
  5. 関連する変更を加え、Save をクリックします。
注記

スタンドアロン VMI のラベルを編集するには、Actions をクリックして、Edit Labels を選択します。関連する変更を加え、Save をクリックします。

7.5.5. CLI を使用したスタンドアロン仮想マシンインスタンスの削除

oc コマンドラインインターフェイス (CLI) を使用してスタンドアロン仮想マシンインスタンス (VMI) を削除できます。

前提条件

  • 削除する必要のある VMI の名前を特定すること。

手順

  • 以下のコマンドを実行して VMI を削除します。

    $ oc delete vmi <vmi_name>

7.5.6. Web コンソールを使用したスタンドアロン仮想マシンインスタンスの削除

Web コンソールからスタンドアロン仮想マシンインスタンス (VMI) を削除します。

手順

  1. OpenShift Container Platform Web コンソールで、サイドメニューから WorkloadsVirtualization をクリックします。
  2. 削除する必要のあるスタンドアロン仮想マシンインスタンス (VMI) の ⋮ ボタンをクリックし、 Delete Virtual Machine Instance を選択します。

    • または、スタンドアロン VMI の名前をクリックします。Virtual Machine Instance Overview ページが表示されます。
  3. ActionsDelete Virtual Machine Instance を選択します。
  4. 確認のポップアップウィンドウで、Delete をクリックし、スタンドアロン VMI を永続的に削除します。

7.6. 仮想マシンの状態の制御

Web コンソールから仮想マシンを停止し、起動し、再起動し、一時停止を解除することができます。

注記

コマンドラインインターフェイス (CLI) から仮想マシンを制御するには、virtctl クライアント を使用します。

7.6.1. 仮想マシンの起動

Web コンソールから仮想マシンを起動できます。

手順

  1. サイドメニューから WorkloadsVirtualization をクリックします。
  2. Virtual Machines タブをクリックします。
  3. 起動する仮想マシンが含まれる行を見つけます。
  4. ユースケースに適したメニューに移動します。

    • 複数の仮想マシンでのアクションの実行が可能なこのページに留まるには、以下を実行します。

      1. 行の右端にある Options メニュー kebab をクリックします。
    • 選択した仮想マシンを起動する前に、その仮想マシンの総合的な情報を表示するには、以下を実行します。

      1. 仮想マシンの名前をクリックして、Virtual Machine Overview ページにアクセスします。
      2. Actions をクリックします。
  5. Start Virtual Machine を選択します。
  6. 確認ウィンドウで Start をクリックし、仮想マシンを起動します。
注記

URL ソースからプロビジョニングされる仮想マシンの初回起動時に、OpenShift Virtualization が URL エンドポイントからコンテナーをインポートする間、仮想マシンの状態は Importing になります。このプロセスは、イメージのサイズによって数分の時間がかかる可能性があります。

7.6.2. 仮想マシンの再起動

Web コンソールから実行中の仮想マシンを再起動できます。

重要

エラーを回避するには、ステータスが Importing の仮想マシンは再起動しないでください。

手順

  1. サイドメニューから WorkloadsVirtualization をクリックします。
  2. Virtual Machines タブをクリックします。
  3. 再起動する仮想マシンが含まれる行を見つけます。
  4. ユースケースに適したメニューに移動します。

    • 複数の仮想マシンでのアクションの実行が可能なこのページに留まるには、以下を実行します。

      1. 行の右端にある Options メニュー kebab をクリックします。
    • 選択した仮想マシンを再起動する前に、その仮想マシンの総合的な情報を表示するには、以下を実行します。

      1. 仮想マシンの名前をクリックして、Virtual Machine Overview ページにアクセスします。
      2. Actions をクリックします。
  5. Restart Virtual Machine を選択します。
  6. 確認ウィンドウで Restart をクリックし、仮想マシンを再起動します。

7.6.3. 仮想マシンの停止

Web コンソールから仮想マシンを停止できます。

手順

  1. サイドメニューから WorkloadsVirtualization をクリックします。
  2. Virtual Machines タブをクリックします。
  3. 停止する仮想マシンが含まれる行を見つけます。
  4. ユースケースに適したメニューに移動します。

    • 複数の仮想マシンでのアクションの実行が可能なこのページに留まるには、以下を実行します。

      1. 行の右端にある Options メニュー kebab をクリックします。
    • 選択した仮想マシンを停止する前に、その仮想マシンの総合的な情報を表示するには、以下を実行します。

      1. 仮想マシンの名前をクリックして、Virtual Machine Overview ページにアクセスします。
      2. Actions をクリックします。
  5. Stop Virtual Machine を選択します。
  6. 確認ウィンドウで Stop をクリックし、仮想マシンを停止します。

7.6.4. 仮想マシンの一時停止の解除

Web コンソールから仮想マシンの一時停止を解除できます。

前提条件

  • 1 つ以上の仮想マシンのステータスが Paused である必要がある。

    注記

    virtctl クライアントを使用して仮想マシンを一時停止することができます。

手順

  1. サイドメニューから WorkloadsVirtualization をクリックします。
  2. Virtual Machines タブをクリックします。
  3. 一時停止を解除する仮想マシンが含まれる行を見つけます。
  4. ユースケースに適したメニューに移動します。

    • 複数の仮想マシンでのアクションの実行が可能なこのページに留まるには、以下を実行します。

      1. Status 列で、Paused をクリックします。
    • 選択した仮想マシンの一時停止を解除する前に、その仮想マシンの総合的な情報を表示するには、以下を実行します。

      1. 仮想マシンの名前をクリックして、Virtual Machine Overview ページにアクセスします。
      2. Status の右側にある鉛筆アイコンをクリックします。
  5. 確認ウィンドウで Stop をクリックし、仮想マシンの一時停止を解除します。

7.7. 仮想マシンコンソールへのアクセス

OpenShift Virtualization は、異なる製品タスクを実現するために使用できる異なる仮想マシンコンソールを提供します。これらのコンソールには、OpenShift Container Platform Web コンソールから、また CLI コマンドを使用してアクセスできます。

7.7.1. OpenShift Container Platform Web コンソールでの仮想マシンコンソールへのアクセス

OpenShift Container Platform Web コンソールでシリアルコンソールまたは VNC コンソールを使用して、仮想マシンに接続できます。

OpenShift Container Platform Web コンソールで、RDP (リモートデスクトッププロトコル) を使用するデスクトップビューアーコンソールを使用して、Windows 仮想マシンに接続できます。

7.7.1.1. シリアルコンソールへの接続

Web コンソールの Virtual Machine Overview 画面の Consoles タブから、実行中の仮想マシンのコンソールに接続します。

手順

  1. OpenShift Virtualization コンソールのサイドメニューから WorkloadsVirtualization をクリックします。
  2. Virtual Machines タブをクリックします。
  3. 仮想マシンを選択して、Virtual Machine Overview ページを開きます。
  4. Consoles をクリックします。VNC コンソールがデフォルトで開きます。
  5. 一度に 1 つのコンソールセッションのみが開かれるようにするには、Disconnect before switching を選択します。それ以外の場合、VNC コンソール セッションはバックグラウンドでアクティブなままになります。
  6. VNC Console ドロップダウンリストをクリックし、Serial Console を選択します。
  7. Disconnect をクリックして、コンソールセッションを終了します。
  8. オプション: Open Console in New Window をクリックして、別のウィンドウでシリアルコンソールを開きます。
7.7.1.2. VNC コンソールへの接続

Web コンソールの Virtual Machine Overview 画面の Console タブから実行中の仮想マシンの VNC コンソールに接続します。

手順

  1. OpenShift Virtualization コンソールのサイドメニューから WorkloadsVirtualization をクリックします。
  2. Virtual Machines タブをクリックします。
  3. 仮想マシンを選択して、Virtual Machine Overview ページを開きます。
  4. Console タブをクリックします。VNC コンソールがデフォルトで開きます。
  5. オプション: Open Console in New Window をクリックして、別のウィンドウで VNC コンソールを開きます。
  6. オプション: Send Key をクリックして、キーの組み合わせを仮想マシンに送信します。
7.7.1.3. RDP を使用した Windows 仮想マシンへの接続

Remote Desktop Protocol (RDP) を使用するデスクトップビューアーコンソールは、Windows 仮想マシンに接続するためのより使いやすいコンソールを提供します。

RDP を使用して Windows 仮想マシンに接続するには、Web コンソールの Virtual Machine Details 画面の Consoles タブから仮想マシンの console.rdp ファイルをダウンロードし、これを優先する RDP クライアントに指定します。

前提条件

  • QEMU ゲストエージェントがインストールされた実行中の Windows 仮想マシン。qemu-guest-agent は VirtIO ドライバーに含まれています。
  • 仮想マシンに接続された layer-2 NIC。
  • Windows 仮想マシンと同じネットワーク上のマシンにインストールされた RDP クライアント。

手順

  1. OpenShift Virtualization コンソールのサイドメニューから WorkloadsVirtualization をクリックします。
  2. Virtual Machines タブをクリックします。
  3. Windows 仮想マシンを選択して、Virtual Machine Overview 画面を開きます。
  4. Console タブをクリックします。
  5. Console 一覧で、Desktop Viewer を選択します。
  6. Network Interface 一覧で、 layer-2 NIC を選択します。
  7. Launch Remote Desktop をクリックし、 console.rdp ファイルをダウンロードします。
  8. RDP クライアントを開き、console.rdp ファイルを参照します。たとえば、remmina を使用します。

    $ remmina --connect /path/to/console.rdp
  9. Administrator ユーザー名およびパスワードを入力して、Windows 仮想マシンに接続します。
7.7.1.4. Web コンソールから SSH コマンドをコピーする

コマンドをコピーして、Web コンソールの Actions リストから SSH 経由で実行中の仮想マシン (VM) にアクセスします。

手順

  1. OpenShift Container Platform コンソールで、サイドメニューから WorkloadsVirtualization をクリックします。
  2. Virtual Machines タブをクリックします。
  3. 仮想マシンを選択して、Virtual Machine Overview ページを開きます。
  4. Actions リストから Copy SSH Command を選択します。このコマンドを OpenShift CLI (oc) に貼り付けることができるようになりました。

7.7.2. CLI コマンドの使用による仮想マシンコンソールへのアクセス

7.7.2.1. SSH 経由での仮想マシンインスタンスへのアクセス

仮想マシン (仮想マシン) にポート 22 を公開した後に、SSH を使用して仮想マシンにアクセスできます。

virtctl expose コマンドは、仮想マシンインスタンス (VMI) のポートをノードポートに転送し、有効にされたアクセスのサービスを作成します。以下の例では、fedora-vm-ssh サービスを作成します。このサービスは、クラスターノードの特定のポートから <fedora-vm> 仮想マシンのポート 22 にトラフィックを転送します。

前提条件

  • VMI と同じプロジェクトを使用する。
  • アクセスする VMI は、masquerade バインディング方法を使用してデフォルトの Pod ネットワークに接続されている。
  • アクセスする VMI が実行中であること。
  • OpenShift CLI (oc) をインストールしている。

手順

  1. 以下のコマンドを実行して fedora-vm-ssh サービスを作成します。

    $ virtctl expose vm <fedora-vm> --port=22 --name=fedora-vm-ssh --type=NodePort 1
    1
    <fedora-vm> は、fedora-vm-ssh サービスを実行する仮想マシンの名前です。
  2. サービスをチェックし、サービスが取得したポートを見つけます。

    $ oc get svc

出力例

NAME            TYPE       CLUSTER-IP     EXTERNAL-IP   PORT(S)           AGE
fedora-vm-ssh   NodePort   127.0.0.1      <none>        22:32551/TCP   6s

+ この例では、サービスは 32551 ポートを取得しています。

  1. SSH 経由で VMI にログインします。クラスターノードの ipAddress および直前の手順で確認したポートを使用します。

    $ ssh username@<node_IP_address> -p 32551
7.7.2.2. 仮想マシンインスタンスのシリアルコンソールへのアクセス

virtctl console コマンドは、指定された仮想マシンインスタンスへのシリアルコンソールを開きます。

前提条件

  • virt-viewer パッケージがインストールされていること。
  • アクセスする仮想マシンインスタンスが実行中であること。

手順

  • virtctl でシリアルコンソールに接続します。

    $ virtctl console <VMI>
7.7.2.3. VNC を使用した仮想マシンインスタンスのグラフィカルコンソールへのアクセス

virtctl クライアントユーティリティーは remote-viewer 機能を使用し、実行中の仮想マシンインスタンスに対してグラフィカルコンソールを開くことができます。この機能は virt-viewer パッケージに組み込まれています。

前提条件

  • virt-viewer パッケージがインストールされていること。
  • アクセスする仮想マシンインスタンスが実行中であること。
注記

リモートマシンで SSH 経由で virtctl を使用する場合、X セッションをマシンに転送する必要があります。

手順

  1. virtctl ユーティリティーを使用してグラフィカルインターフェイスに接続します。

    $ virtctl vnc <VMI>
  2. コマンドが失敗した場合には、トラブルシューティング情報を収集するために -v フラグの使用を試行します。

    $ virtctl vnc <VMI> -v 4
7.7.2.4. RDP コンソールの使用による Windows 仮想マシンへの接続

Remote Desktop Protocol (RDP) は、Windows 仮想マシンに接続するためのより使いやすいコンソールを提供します。

RDP を使用して Windows 仮想マシンに接続するには、割り当てられた L2 NIC の IP アドレスを RDP クライアントに対して指定します。

前提条件

  • QEMU ゲストエージェントがインストールされた実行中の Windows 仮想マシン。qemu-guest-agent は VirtIO ドライバーに含まれています。
  • 仮想マシンに接続された layer-2 NIC。
  • Windows 仮想マシンと同じネットワーク上のマシンにインストールされた RDP クライアント。

手順

  1. アクセストークンを持つユーザーとして、oc CLI ツールを使って OpenShift Virtualization クラスターにログインします。

    $ oc login -u <user> https://<cluster.example.com>:8443
  2. oc describe vmi を使用して、実行中の Windows 仮想マシンの設定を表示します。

    $ oc describe vmi <windows-vmi-name>

    出力例

    ...
    spec:
      networks:
      - name: default
        pod: {}
      - multus:
          networkName: cnv-bridge
        name: bridge-net
    ...
    status:
      interfaces:
      - interfaceName: eth0
        ipAddress: 198.51.100.0/24
        ipAddresses:
          198.51.100.0/24
        mac: a0:36:9f:0f:b1:70
        name: default
      - interfaceName: eth1
        ipAddress: 192.0.2.0/24
        ipAddresses:
          192.0.2.0/24
          2001:db8::/32
        mac: 00:17:a4:77:77:25
        name: bridge-net
    ...

  3. レイヤー 2 ネットワークインターフェイスの IP アドレスを特定し、これをコピーします。これは直前の例では 192.0.2.0 であり、IPv6 を選択する場合は 2001:db8:: になります。
  4. RDP クライアントを開き、接続用に直前の手順でコピーした IP アドレスを使用します。
  5. Administrator ユーザー名およびパスワードを入力して、Windows 仮想マシンに接続します。

7.8. 障害が発生したノードの解決による仮想マシンのフェイルオーバーのトリガー

ノードに障害が発生し、マシンヘルスチェック がクラスターにデプロイされていない場合、RunStrategy: Always が設定された仮想マシン (VM) は正常なノードに自動的に移動しません。仮想マシンのフェイルオーバーをトリガーするには、Node オブジェクトを手動で削除する必要があります。

注記

インストーラーでプロビジョニングされるインフラストラクチャー を使用してクラスターをインストールし、マシンヘルスチェックを適切に設定している場合は、以下のようになります。

  • 障害が発生したノードは自動的に再利用されます。
  • RunStrategyAlways または RerunOnFailure に設定された仮想マシンは正常なノードで自動的にスケジュールされます。

7.8.1. 前提条件

  • 仮想マシンが実行されているノードには NotReady 状態 が設定されている。
  • 障害のあるノードで実行されていた仮想マシンでは、 RunStrategyAlways に設定されている。
  • OpenShift CLI (oc) がインストールされている。

7.8.2. ベアメタルクラスターからのノードの削除

CLI を使用してノードを削除する場合、ノードオブジェクトは Kubernetes で削除されますが、ノード自体にある Pod は削除されません。レプリケーションコントローラーで管理されないベア Pod は、OpenShift Container Platform からはアクセスできなくなります。レプリケーションコントローラーで管理されるベア Pod は、他の利用可能なノードに再スケジュールされます。ローカルのマニフェスト Pod は削除する必要があります。

手順

以下の手順を実行して、ベアメタルで実行されている OpenShift Container Platform クラスターからノードを削除します。

  1. ノードにスケジュール対象外 (unschedulable) のマークを付けます。

    $ oc adm cordon <node_name>
  2. ノード上のすべての Pod をドレイン (解放) します。

    $ oc adm drain <node_name> --force=true

    このステップは、ノードがオフラインまたは応答しない場合に失敗する可能性があります。ノードが応答しない場合でも、共有ストレージに書き込むワークロードを実行している可能性があります。データの破損を防ぐには、続行する前に物理ハードウェアの電源を切ります。

  3. クラスターからノードを削除します。

    $ oc delete node <node_name>

    ノードオブジェクトはクラスターから削除されていますが、これは再起動後や kubelet サービスが再起動される場合にクラスターに再び参加することができます。ノードとそのすべてのデータを永続的に削除するには、ノードの使用を停止 する必要があります。

  4. 物理ハードウェアを電源を切っている場合は、ノードがクラスターに再度加わるように、そのハードウェアを再びオンに切り替えます。

7.8.3. 仮想マシンのフェイルオーバーの確認

すべてのリソースが正常でないノードで終了すると、移行した仮想マシンのそれぞれについて、新しい仮想マシンインスタンス (VMI) が正常なノードに自動的に作成されます。VMI が作成されていることを確認するには、oc CLI を使用してすべての VMI を表示します。

7.8.3.1. CLI を使用した仮想マシンインスタンスの一覧表示

oc コマンドラインインターフェイス (CLI) を使用して、スタンドアロンおよび仮想マシンによって所有されている VMI を含むすべての仮想マシンの一覧を表示できます。

手順

  • 以下のコマンドを実行して、すべての VMI の一覧を表示します。

    $ oc get vmis

7.9. QEMU ゲストエージェントの仮想マシンへのインストール

QEMU ゲストエージェント は、仮想マシンで実行され、仮想マシン、ユーザー、ファイルシステム、およびセカンダリーネットワークに関する情報をホストに渡すデーモンです。

7.9.1. QEMU ゲストエージェントの Linux 仮想マシンへのインストール

qemu-guest-agent は広く利用されており、Red Hat 仮想マシンでデフォルトで利用できます。このエージェントをインストールし、サービスを起動します。

手順

  1. コンソールのいずれか、または SSH を使用して仮想マシンのコマンドラインにアクセスします。
  2. QEMU ゲストエージェントを仮想マシンにインストールします。

    $ yum install -y qemu-guest-agent
  3. サービスに永続性があることを確認し、これを起動します。

    $ systemctl enable --now qemu-guest-agent

Web コンソールで仮想マシンまたは仮想マシンテンプレートのいずれかを作成する際に、ウィザードの cloud-init セクションの custom script フィールドを使用して QEMU ゲストエージェントをインストールし、起動することもできます。

7.9.2. QEMU ゲストエージェントの Windows 仮想マシンへのインストール

Windows 仮想マシンの場合、QEMU ゲストエージェントは、以下の手順のいずれかを使用してインストールできる VirtIO ドライバーに含まれています。

7.9.2.1. VirtIO ドライバーの既存 Windows 仮想マシンへのインストール

VirtIO ドライバーを、割り当てられた SATA CD ドライブから既存の Windows 仮想マシンにインストールします。

注記

この手順では、ドライバーを Windows に追加するための汎用的なアプローチを使用しています。このプロセスは Windows のバージョンごとに若干異なる可能性があります。特定のインストール手順については、お使いの Windows バージョンについてのインストールドキュメントを参照してください。

手順

  1. 仮想マシンを起動し、グラフィカルコンソールに接続します。
  2. Windows ユーザーセッションにログインします。
  3. Device Manager を開き、Other devices を拡張して、Unknown device を一覧表示します。

    1. Device Properties を開いて、不明なデバイスを特定します。デバイスを右クリックし、Properties を選択します。
    2. Details タブをクリックし、Property リストで Hardware Ids を選択します。
    3. Hardware IdsValue をサポートされる VirtIO ドライバーと比較します。
  4. デバイスを右クリックし、Update Driver Software を選択します。
  5. Browse my computer for driver software をクリックし、VirtIO ドライバーが置かれている割り当て済みの SATA CD ドライブの場所に移動します。ドライバーは、ドライバーのタイプ、オペレーティングシステム、および CPU アーキテクチャー別に階層的に編成されます。
  6. Next をクリックしてドライバーをインストールします。
  7. 必要なすべての VirtIO ドライバーに対してこのプロセスを繰り返します。
  8. ドライバーのインストール後に、Close をクリックしてウィンドウを閉じます。
  9. 仮想マシンを再起動してドライバーのインストールを完了します。
7.9.2.2. Windows インストール時の VirtIO ドライバーのインストール

Windows のインストール時に割り当てられた SATA CD ドライバーから VirtIO ドライバーをインストールします。

注記

この手順では、Windows インストールの汎用的なアプローチを使用しますが、インストール方法は Windows のバージョンごとに異なる可能性があります。インストールする Windows のバージョンについてのドキュメントを参照してください。

手順

  1. 仮想マシンを起動し、グラフィカルコンソールに接続します。
  2. Windows インストールプロセスを開始します。
  3. Advanced インストールを選択します。
  4. ストレージの宛先は、ドライバーがロードされるまで認識されません。Load driver をクリックします。
  5. ドライバーは SATA CD ドライブとして割り当てられます。OK をクリックし、CD ドライバーでロードするストレージドライバーを参照します。ドライバーは、ドライバーのタイプ、オペレーティングシステム、および CPU アーキテクチャー別に階層的に編成されます。
  6. 必要なすべてのドライバーについて直前の 2 つの手順を繰り返します。
  7. Windows インストールを完了します。

7.10. 仮想マシンの QEMU ゲストエージェント情報の表示

QEMU ゲストエージェントが仮想マシンで実行されている場合は、Web コンソールを使用して、仮想マシン、ユーザー、ファイルシステム、およびセカンダリーネットワークに関する情報を表示できます。

7.10.1. 前提条件

7.10.2. Web コンソールでの QEMU ゲストエージェント情報について

QEMU ゲストエージェントがインストールされると、Virtual Machine Overview タブの Details ペインと、Details タブにホスト名、オペレーティングシステム、タイムゾーン、およびログインユーザーに関する情報が表示されます。

Virtual Machine Overview には、仮想マシンにインストールされたゲストオペレーティングシステムについての情報が表示されます。Details タブには、ログインユーザーの情報が含まれる表が表示されます。Disks タブには、ファイルシステムの情報が含まれる表が表示されます。

注記

QEMU ゲストエージェントがインストールされていない場合、Virtual Machine Overview タブおよび Details タブには、仮想マシンの作成時に指定したオペレーティングシステムについての情報が表示されます。

7.10.3. Web コンソールでの QEMU ゲストエージェント情報の表示

Web コンソールを使用して、QEMU ゲストエージェントによってホストに渡される仮想マシンの情報を表示できます。

手順

  1. サイドメニューから WorkloadsVirtual Machines をクリックします。
  2. Virtual Machines タブをクリックします。
  3. 仮想マシン名を選択して Virtual Machine Overview 画面を開き、Details ペインを表示します。
  4. Logged in users をクリックして、ユーザーについての情報を表示する Details タブを表示します。
  5. Disks タブをクリックして、ファイルシステムについての情報を表示します。

7.11. 仮想マシンでの config map、シークレット、およびサービスアカウントの管理

シークレット、config map、およびサービスアカウントを使用して設定データを仮想マシンに渡すことができます。たとえば、以下を実行できます。

  • シークレットを仮想マシンに追加して認証情報を必要とするサービスに仮想マシンのアクセスを付与します。
  • Pod または別のオブジェクトがデータを使用できるように、機密データではない設定データを config map に保存します。
  • サービスアカウントをそのコンポーネントに関連付けることにより、コンポーネントが API サーバーにアクセスできるようにします。
注記

OpenShift Virtualization はシークレット、設定マップ、およびサービスアカウントを仮想マシンディスクとして公開し、追加のオーバーヘッドなしにプラットフォーム全体でそれらを使用できるようにします。

7.11.1. シークレット、設定マップ、またはサービスアカウントの仮想マシンへの追加

OpenShift Container Platform Web コンソールを使用して、シークレット、設定マップ、またはサービスアカウントを仮想マシンに追加します。

前提条件

  • 追加するシークレット、設定マップ、またはサービスアカウントは、ターゲット仮想マシンと同じ namespace に存在する必要がある。

手順

  1. サイドメニューから WorkloadsVirtualization をクリックします。
  2. Virtual Machines タブをクリックします。
  3. 仮想マシンを選択して、Virtual Machine Overview 画面を開きます。
  4. Environment タブをクリックします。
  5. Select a resource をクリックし、一覧からシークレット、設定マップ、またはサービスアカウントを選択します。6 文字のシリアル番号が、選択したリソースについて自動的に生成されます。
  6. Save をクリックします。
  7. オプション。Add Config Map, Secret or Service Account をクリックして別のオブジェクトを追加します。
注記
  1. Reload をクリックし、最後に保存された状態にフォームをリセットできます。
  2. Environment リソースが仮想マシンにディスクとして追加されます。他のディスクをマウントするように、シークレット、設定マップ、またはサービスアカウントをマウントできます。
  3. 仮想マシンが実行中の場合、変更内容は仮想マシンが再起動されるまで反映されません。新規に追加されたリソースは、ページ上部の Pending Changes バナーの Environment および Disks タブの両方に保留中のリソースとしてマークされます。

検証

  1. Virtual Machine Overview ページから、Disks タブをクリックします。
  2. シークレット、設定マップ、またはサービスアカウントがディスクの一覧に含まれていることを確認します。
  3. オプション。変更を適用する適切な方法を選択します。

    1. 仮想マシンが実行されている場合、ActionsRestart Virtual Machine をクリックして仮想マシンを再起動します。
    2. 仮想マシンが停止している場合は、ActionsStart Virtual Machine をクリックして仮想マシンを起動します。

他のディスクをマウントするように、シークレット、設定マップ、またはサービスアカウントをマウントできるようになりました。

7.11.2. 仮想マシンからのシークレット、設定マップ、またはサービスアカウントの削除

OpenShift Container Platform Web コンソールを使用して、シークレット、設定マップ、またはサービスアカウントを仮想マシンから削除します。

前提条件

  • 仮想マシンに割り当てられるシークレット、設定マップ、またはサービスアカウントが少なくとも 1 つ必要である。

手順

  1. サイドメニューから WorkloadsVirtualization をクリックします。
  2. Virtual Machines タブをクリックします。
  3. 仮想マシンを選択して、Virtual Machine Overview 画面を開きます。
  4. Environment タブをクリックします。
  5. 一覧で削除する項目を見つけ、項目の右上にある Remove delete をクリックします。
  6. Save をクリックします。
注記

Reload をクリックし、最後に保存された状態にフォームをリセットできます。

検証

  1. Virtual Machine Overview ページから、Disks タブをクリックします。
  2. 削除したシークレット、設定マップ、またはサービスアカウントがディスクの一覧に含まれていないことを確認します。

7.11.3. 関連情報

7.12. VirtIO ドライバーの既存の Windows 仮想マシンへのインストール

7.12.1. VirtIO ドライバーについて

VirtIO ドライバーは、Microsoft Windows 仮想マシンが OpenShift Virtualization で実行されるために必要な準仮想化デバイスドライバーです。サポートされるドライバーは、Red Hat Ecosystem Catalogcontainer-native-virtualization/virtio-win コンテナーディスクで利用できます。

container-native-virtualization/virtio-win コンテナーディスクは、ドライバーのインストールを有効にするために SATA CD ドライブとして仮想マシンに割り当てられる必要があります。仮想マシン上での Windows のインストール時に VirtIO ドライバーをインストールすることも、既存の Windows インストールに追加することもできます。

ドライバーのインストール後に、container-native-virtualization/virtio-win コンテナーディスクは仮想マシンから削除できます。

Installing Virtio drivers on a new Windows virtual machine も参照してください。

7.12.2. Microsoft Windows 仮想マシンのサポートされる VirtIO ドライバー

表7.1 サポートされるドライバー
ドライバー名ハードウェア ID説明

viostor

VEN_1AF4&DEV_1001
VEN_1AF4&DEV_1042

ブロックドライバー。Other devices グループの SCSI Controller として表示される場合があります。

viorng

VEN_1AF4&DEV_1005
VEN_1AF4&DEV_1044

エントロピーソースドライバー。Other devices グループの PCI Device として表示される場合があります。

NetKVM

VEN_1AF4&DEV_1000
VEN_1AF4&DEV_1041

ネットワークドライバー。Other devices グループの Ethernet Controller として表示される場合があります。VirtIO NIC が設定されている場合にのみ利用できます。

7.12.3. VirtIO ドライバーコンテナーディスクの仮想マシンへの追加

OpenShift Virtualization は、Red Hat Ecosystem Catalog で利用できる Microsoft Windows の VirtIO ドライバーをコンテナーディスクとして配布します。これらのドライバーを Windows 仮想マシンにインストールするには、仮想マシン設定ファイルで container-native-virtualization/virtio-win コンテナーディスクを SATA CD ドライブとして仮想マシンに割り当てます。

前提条件

  • container-native-virtualization/virtio-win コンテナーディスクを Red Hat Ecosystem Catalog からダウンロードすること。コンテナーディスクがクラスターにない場合は Red Hat レジストリーからダウンロードされるため、これは必須ではありません。

手順

  1. container-native-virtualization/virtio-win コンテナーディスクを cdrom ディスクとして Windows 仮想マシン設定ファイルに追加します。コンテナーディスクは、クラスターにない場合はレジストリーからダウンロードされます。

    spec:
      domain:
        devices:
          disks:
            - name: virtiocontainerdisk
              bootOrder: 2 1
              cdrom:
                bus: sata
    volumes:
      - containerDisk:
          image: container-native-virtualization/virtio-win
        name: virtiocontainerdisk
    1
    OpenShift Virtualization は、VirtualMachine 設定ファイルに定義される順序で仮想マシンディスクを起動します。container-native-virtualization/virtio-win コンテナーディスクの前に仮想マシンの他のディスクを定義するか、またはオプションの bootOrder パラメーターを使用して仮想マシンが正しいディスクから起動するようにできます。ディスクに bootOrder を指定する場合、これは設定のすべてのディスクに指定される必要があります。
  2. ディスクは、仮想マシンが起動すると利用可能になります。

    • コンテナーディスクを実行中の仮想マシンに追加する場合、変更を有効にするために CLI で oc apply -f <vm.yaml> を使用するか、または仮想マシンを再起動します。
    • 仮想マシンが実行されていない場合、virtctl start <vm> を使用します。

仮想マシンが起動したら、VirtIO ドライバーを割り当てられた SATA CD ドライブからインストールできます。

7.12.4. VirtIO ドライバーの既存 Windows 仮想マシンへのインストール

VirtIO ドライバーを、割り当てられた SATA CD ドライブから既存の Windows 仮想マシンにインストールします。

注記

この手順では、ドライバーを Windows に追加するための汎用的なアプローチを使用しています。このプロセスは Windows のバージョンごとに若干異なる可能性があります。特定のインストール手順については、お使いの Windows バージョンについてのインストールドキュメントを参照してください。

手順

  1. 仮想マシンを起動し、グラフィカルコンソールに接続します。
  2. Windows ユーザーセッションにログインします。
  3. Device Manager を開き、Other devices を拡張して、Unknown device を一覧表示します。

    1. Device Properties を開いて、不明なデバイスを特定します。デバイスを右クリックし、Properties を選択します。
    2. Details タブをクリックし、Property リストで Hardware Ids を選択します。
    3. Hardware IdsValue をサポートされる VirtIO ドライバーと比較します。
  4. デバイスを右クリックし、Update Driver Software を選択します。
  5. Browse my computer for driver software をクリックし、VirtIO ドライバーが置かれている割り当て済みの SATA CD ドライブの場所に移動します。ドライバーは、ドライバーのタイプ、オペレーティングシステム、および CPU アーキテクチャー別に階層的に編成されます。
  6. Next をクリックしてドライバーをインストールします。
  7. 必要なすべての VirtIO ドライバーに対してこのプロセスを繰り返します。
  8. ドライバーのインストール後に、Close をクリックしてウィンドウを閉じます。
  9. 仮想マシンを再起動してドライバーのインストールを完了します。

7.12.5. 仮想マシンからの VirtIO コンテナーディスクの削除

必要なすべての VirtIO ドライバーを仮想マシンにインストールした後は、container-native-virtualization/virtio-win コンテナーディスクを仮想マシンに割り当てる必要はなくなります。container-native-virtualization/virtio-win コンテナーディスクを仮想マシン設定ファイルから削除します。

手順

  1. 設定ファイルを編集し、disk および volume を削除します。

    $ oc edit vm <vm-name>
    spec:
      domain:
        devices:
          disks:
            - name: virtiocontainerdisk
              bootOrder: 2
              cdrom:
                bus: sata
    volumes:
      - containerDisk:
          image: container-native-virtualization/virtio-win
        name: virtiocontainerdisk
  2. 変更を有効にするために仮想マシンを再起動します。

7.13. VirtIO ドライバーの新規 Windows 仮想マシンへのインストール

7.13.1. 前提条件

7.13.2. VirtIO ドライバーについて

VirtIO ドライバーは、Microsoft Windows 仮想マシンが OpenShift Virtualization で実行されるために必要な準仮想化デバイスドライバーです。サポートされるドライバーは、Red Hat Ecosystem Catalogcontainer-native-virtualization/virtio-win コンテナーディスクで利用できます。

container-native-virtualization/virtio-win コンテナーディスクは、ドライバーのインストールを有効にするために SATA CD ドライブとして仮想マシンに割り当てられる必要があります。仮想マシン上での Windows のインストール時に VirtIO ドライバーをインストールすることも、既存の Windows インストールに追加することもできます。

ドライバーのインストール後に、container-native-virtualization/virtio-win コンテナーディスクは仮想マシンから削除できます。

VirtIO ドライバーの既存の Windows 仮想マシンへのインストール も参照してください。

7.13.3. Microsoft Windows 仮想マシンのサポートされる VirtIO ドライバー

表7.2 サポートされるドライバー
ドライバー名ハードウェア ID説明

viostor

VEN_1AF4&DEV_1001
VEN_1AF4&DEV_1042

ブロックドライバー。Other devices グループの SCSI Controller として表示される場合があります。

viorng

VEN_1AF4&DEV_1005
VEN_1AF4&DEV_1044

エントロピーソースドライバー。Other devices グループの PCI Device として表示される場合があります。

NetKVM

VEN_1AF4&DEV_1000
VEN_1AF4&DEV_1041

ネットワークドライバー。Other devices グループの Ethernet Controller として表示される場合があります。VirtIO NIC が設定されている場合にのみ利用できます。

7.13.4. VirtIO ドライバーコンテナーディスクの仮想マシンへの追加

OpenShift Virtualization は、Red Hat Ecosystem Catalog で利用できる Microsoft Windows の VirtIO ドライバーをコンテナーディスクとして配布します。これらのドライバーを Windows 仮想マシンにインストールするには、仮想マシン設定ファイルで container-native-virtualization/virtio-win コンテナーディスクを SATA CD ドライブとして仮想マシンに割り当てます。

前提条件

  • container-native-virtualization/virtio-win コンテナーディスクを Red Hat Ecosystem Catalog からダウンロードすること。コンテナーディスクがクラスターにない場合は Red Hat レジストリーからダウンロードされるため、これは必須ではありません。

手順

  1. container-native-virtualization/virtio-win コンテナーディスクを cdrom ディスクとして Windows 仮想マシン設定ファイルに追加します。コンテナーディスクは、クラスターにない場合はレジストリーからダウンロードされます。

    spec:
      domain:
        devices:
          disks:
            - name: virtiocontainerdisk
              bootOrder: 2 1
              cdrom:
                bus: sata
    volumes:
      - containerDisk:
          image: container-native-virtualization/virtio-win
        name: virtiocontainerdisk
    1
    OpenShift Virtualization は、VirtualMachine 設定ファイルに定義される順序で仮想マシンディスクを起動します。container-native-virtualization/virtio-win コンテナーディスクの前に仮想マシンの他のディスクを定義するか、またはオプションの bootOrder パラメーターを使用して仮想マシンが正しいディスクから起動するようにできます。ディスクに bootOrder を指定する場合、これは設定のすべてのディスクに指定される必要があります。
  2. ディスクは、仮想マシンが起動すると利用可能になります。

    • コンテナーディスクを実行中の仮想マシンに追加する場合、変更を有効にするために CLI で oc apply -f <vm.yaml> を使用するか、または仮想マシンを再起動します。
    • 仮想マシンが実行されていない場合、virtctl start <vm> を使用します。

仮想マシンが起動したら、VirtIO ドライバーを割り当てられた SATA CD ドライブからインストールできます。

7.13.5. Windows インストール時の VirtIO ドライバーのインストール

Windows のインストール時に割り当てられた SATA CD ドライバーから VirtIO ドライバーをインストールします。

注記

この手順では、Windows インストールの汎用的なアプローチを使用しますが、インストール方法は Windows のバージョンごとに異なる可能性があります。インストールする Windows のバージョンについてのドキュメントを参照してください。

手順

  1. 仮想マシンを起動し、グラフィカルコンソールに接続します。
  2. Windows インストールプロセスを開始します。
  3. Advanced インストールを選択します。
  4. ストレージの宛先は、ドライバーがロードされるまで認識されません。Load driver をクリックします。
  5. ドライバーは SATA CD ドライブとして割り当てられます。OK をクリックし、CD ドライバーでロードするストレージドライバーを参照します。ドライバーは、ドライバーのタイプ、オペレーティングシステム、および CPU アーキテクチャー別に階層的に編成されます。
  6. 必要なすべてのドライバーについて直前の 2 つの手順を繰り返します。
  7. Windows インストールを完了します。

7.13.6. 仮想マシンからの VirtIO コンテナーディスクの削除

必要なすべての VirtIO ドライバーを仮想マシンにインストールした後は、container-native-virtualization/virtio-win コンテナーディスクを仮想マシンに割り当てる必要はなくなります。container-native-virtualization/virtio-win コンテナーディスクを仮想マシン設定ファイルから削除します。

手順

  1. 設定ファイルを編集し、disk および volume を削除します。

    $ oc edit vm <vm-name>
    spec:
      domain:
        devices:
          disks:
            - name: virtiocontainerdisk
              bootOrder: 2
              cdrom:
                bus: sata
    volumes:
      - containerDisk:
          image: container-native-virtualization/virtio-win
        name: virtiocontainerdisk
  2. 変更を有効にするために仮想マシンを再起動します。

7.14. 高度な仮想マシン管理

7.14.1. 管理タスクの自動化

Red Hat Ansible Automation Platform を使用すると、OpenShift Virtualization 管理タスクを自動化できます。Ansible Playbook を使用して新規の仮想マシンを作成する際の基本事項を確認します。

7.14.1.1. Red Hat Ansible Automation について

Ansible は、システムの設定、ソフトウェアのデプロイ、およびローリング更新の実行に使用する自動化ツールです。Ansible には OpenShift Virtualization のサポートが含まれ、Ansible モジュールを使用すると、テンプレート、永続ボリューム要求 (PVC) および仮想マシンの操作などのクラスター管理タスクを自動化できます。

Ansible は、oc CLI ツールや API を使用しても実行できる OpenShift Virtualization の管理を自動化する方法を提供します。Ansible は、KubeVirt モジュール を他の Ansible モジュールと統合できる点でユニークであると言えます。

7.14.1.2. 仮想マシン作成の自動化

kubevirt_vm Ansible Playbook を使用し、Red Hat Ansible Automation Platform を使用して OpenShift Container Platform クラスターに仮想マシンを作成できます。

前提条件

手順

  1. kubevirt_vm タスクを含むように Ansible Playbook YAML ファイルを編集します。

      kubevirt_vm:
        namespace:
        name:
        cpu_cores:
        memory:
        disks:
          - name:
            volume:
              containerDisk:
                image:
            disk:
              bus:
    注記

    このスニペットには Playbook の kubevirt_vm 部分のみが含まれます。

  2. namespacecpu_cores の数、memory、および disks を含む、作成する必要のある仮想マシンを反映させるように値を編集します。以下に例を示します。

      kubevirt_vm:
        namespace: default
        name: vm1
        cpu_cores: 1
        memory: 64Mi
        disks:
          - name: containerdisk
            volume:
              containerDisk:
                image: kubevirt/cirros-container-disk-demo:latest
            disk:
              bus: virtio
  3. 仮想マシンを作成後すぐに起動する必要がある場合には、state: running を YAML ファイルに追加します。以下に例を示します。

      kubevirt_vm:
        namespace: default
        name: vm1
        state: running 1
        cpu_cores: 1
    1
    この値を state: absent に変更すると、すでに存在する場合に仮想マシンは削除されます。
  4. Playbook のファイル名を引数としてのみ使用して、 ansible-playbook コマンドを実行します。

    $ ansible-playbook create-vm.yaml
  5. 出力を確認し、プレイが正常に実行されたかどうかを確認します。

    出力例

    (...)
    TASK [Create my first VM] ************************************************************************
    changed: [localhost]
    
    PLAY RECAP ********************************************************************************************************
    localhost                  : ok=2    changed=1    unreachable=0    failed=0    skipped=0    rescued=0    ignored=0

  6. Playbook ファイルに state: running を含めず、すぐに仮想マシンを起動する必要がある場合には、 state: running を含めるようにファイルを編集し、Playbook を再度実行します。

    $ ansible-playbook create-vm.yaml

仮想マシンが作成されたことを確認するには、仮想マシンコンソールへのアクセス を試行します。

7.14.1.3. 例: 仮想マシンを作成するための Ansible Playbook

kubevirt_vm Ansible Playbook を使用して仮想マシン作成を自動化できます。

以下の YAML ファイルは kubevirt_vm Playbook の例です。これには、Playbook を実行する際に独自の情報を置き換える必要のあるサンプルの値が含まれます。

---
- name: Ansible Playbook 1
  hosts: localhost
  connection: local
  tasks:
    - name: Create my first VM
      kubevirt_vm:
        namespace: default
        name: vm1
        cpu_cores: 1
        memory: 64Mi
        disks:
          - name: containerdisk
            volume:
              containerDisk:
                image: kubevirt/cirros-container-disk-demo:latest
            disk:
              bus: virtio

7.14.2. 仮想マシンの EFI モードの使用

Extensible Firmware Interface (EFI) モードで仮想マシンを起動できます。

7.14.2.1. 仮想マシンの EFI モードについて

レガシー BIOS などの Extensible Firmware Interface (EFI) は、コンピューターの起動時にハードウェアコンポーネントやオペレーティングシステムのイメージファイルを初期化します。EFI は BIOS よりも最新の機能とカスタマイズオプションをサポートするため、起動時間を短縮できます。

これは、.efi 拡張子を持つファイルに初期化と起動に関する情報をすべて保存します。このファイルは、EFI System Partition (ESP) と呼ばれる特別なパーティションに保管されます。ESP には、コンピューターにインストールされるオペレーティングシステムのブートローダープログラムも含まれます。

注記

OpenShift Virtualization は、EFI モードを使用する場合、セキュアブートを使用した仮想マシン (VM) のみをサポートします。セキュアブートが有効にされていない場合は、仮想マシンが繰り返しクラッシュします。ただし、仮想マシンはセキュアブートに対応していない可能性があります。仮想マシンを起動する前に、仮想マシン設定を確認して、これがセキュアブートに対応していることを確認します。

7.14.2.2. EFI モードでの仮想マシンのブート

仮想マシンまたは VMI マニフェストを編集して、仮想マシンを EFI モードで起動するように設定できます。

前提条件

  • OpenShift CLI (oc) をインストールしている。

手順

  1. 仮想マシンオブジェクトまたは Virtual Machine Instance (VMI) オブジェクトを定義する YAML ファイルを作成します。サンプル YAML ファイルのファームウェアの スタンザを使用します。

    セキュアブートがアクティブな状態の EFI モードでのブート

      apiversion: kubevirt.io/v1
      kind: VirtualMachineInstance
      metadata:
        labels:
          special: vmi-secureboot
        name: vmi-secureboot
      spec:
        domain:
          devices:
            disks:
            - disk:
                bus: virtio
              name: containerdisk
          features:
            acpi: {}
            smm:
              enabled: true 1
          firmware:
            bootloader:
              efi:
                secureBoot: true 2
    ...

    1
    OpenShift Virtualization では、EFI モードでセキュアブートを実行するために SMM (System Management Mode) を有効にする必要があります。
    2
    OpenShift Virtualization は、EFI モードを使用する場合、セキュアブートを使用した仮想マシン (VM) のみをサポートします。セキュアブートが有効にされていない場合は、仮想マシンが繰り返しクラッシュします。ただし、仮想マシンはセキュアブートに対応していない可能性があります。仮想マシンを起動する前に、仮想マシン設定を確認して、これがセキュアブートに対応していることを確認します。
  2. 以下のコマンドを実行して、マニフェストをクラスターに適用します。

    $ oc create -f <file_name>.yaml

7.14.3. 仮想マシンの PXE ブートの設定

PXE ブートまたはネットワークブートは OpenShift Virtualization で利用できます。ネットワークブートにより、ローカルに割り当てられたストレージデバイスなしにコンピューターを起動し、オペレーティングシステムまたは他のプログラムを起動し、ロードすることができます。たとえば、これにより、新規ホストのデプロイ時に PXE サーバーから必要な OS イメージを選択できます。

7.14.3.1. 前提条件
  • Linux ブリッジが 接続されている
  • PXE サーバーがブリッジとして同じ VLAN に接続されていること。
7.14.3.2. MAC アドレスを指定した PXE ブート

まず、管理者は PXE ネットワークの NetworkAttachmentDefinition オブジェクトを作成し、ネットワーク経由でクライアントを起動できます。次に、仮想マシンインスタンスの設定ファイルでネットワーク接続定義を参照して仮想マシンインスタンスを起動します。また PXE サーバーで必要な場合には、仮想マシンインスタンスの設定ファイルで MAC アドレスを指定することもできます。

前提条件

  • Linux ブリッジが接続されていること。
  • PXE サーバーがブリッジとして同じ VLAN に接続されていること。

手順

  1. クラスターに PXE ネットワークを設定します。

    1. PXE ネットワーク pxe-net-conf のネットワーク接続定義ファイルを作成します。

      apiVersion: "k8s.cni.cncf.io/v1"
      kind: NetworkAttachmentDefinition
      metadata:
        name: pxe-net-conf
      spec:
        config: '{
          "cniVersion": "0.3.1",
          "name": "pxe-net-conf",
          "plugins": [
            {
              "type": "cnv-bridge",
              "bridge": "br1",
              "vlan": 1 1
            },
            {
              "type": "cnv-tuning" 2
            }
          ]
        }'
      1
      オプション: VLAN タグ。
      2
      cnv-tuning プラグインは、カスタム MAC アドレスのサポートを提供します。
      注記

      仮想マシンインスタンスは、必要な VLAN のアクセスポートでブリッジ br1 に割り当てられます。

  2. 直前の手順で作成したファイルを使用してネットワーク接続定義を作成します。

    $ oc create -f pxe-net-conf.yaml
  3. 仮想マシンインスタンス設定ファイルを、インターフェイスおよびネットワークの詳細を含めるように編集します。

    1. PXE サーバーで必要な場合には、ネットワークおよび MAC アドレスを指定します。MAC アドレスが指定されていない場合、値は自動的に割り当てられます。ただし、この時点で自動的に割り当てられる MAC アドレスは永続しないことに注意してください。

      bootOrder1 に設定されており、インターフェイスが最初に起動することを確認します。この例では、インターフェイスは <pxe-net> というネットワークに接続されています。

      interfaces:
      - masquerade: {}
        name: default
      - bridge: {}
        name: pxe-net
        macAddress: de:00:00:00:00:de
        bootOrder: 1
      注記

      複数のインターフェイスおよびディスクのブートの順序はグローバル順序になります。

    2. オペレーティングシステムのプロビジョニング後に起動が適切に実行されるよう、ブートデバイス番号をディスクに割り当てます。

      ディスク bootOrder の値を 2 に設定します。

      devices:
        disks:
        - disk:
            bus: virtio
          name: containerdisk
          bootOrder: 2
    3. 直前に作成されたネットワーク接続定義に接続されるネットワークを指定します。このシナリオでは、<pxe-net><pxe-net-conf> というネットワーク接続定義に接続されます。

      networks:
      - name: default
        pod: {}
      - name: pxe-net
        multus:
          networkName: pxe-net-conf
  4. 仮想マシンインスタンスを作成します。

    $ oc create -f vmi-pxe-boot.yaml

出力例

  virtualmachineinstance.kubevirt.io "vmi-pxe-boot" created

  1. 仮想マシンインスタンスの実行を待機します。

    $ oc get vmi vmi-pxe-boot -o yaml | grep -i phase
      phase: Running
  2. VNC を使用して仮想マシンインスタンスを表示します。

    $ virtctl vnc vmi-pxe-boot
  3. ブート画面で、PXE ブートが正常に実行されていることを確認します。
  4. 仮想マシンインスタンスにログインします。

    $ virtctl console vmi-pxe-boot
  5. 仮想マシンのインターフェイスおよび MAC アドレスを確認し、ブリッジに接続されたインターフェイスに MAC アドレスが指定されていることを確認します。この場合、PXE ブートには IP アドレスなしに eth1 を使用しています。他のインターフェイス eth0 は OpenShift Container Platform から IP アドレスを取得しています。

    $ ip addr

出力例

...
3. eth1: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN group default qlen 1000
   link/ether de:00:00:00:00:de brd ff:ff:ff:ff:ff:ff

7.14.3.3. テンプレート: PXE ブートの仮想マシンインスタンス設定ファイル
apiVersion: kubevirt.io/v1alpha3
kind: VirtualMachineInstance
metadata:
  creationTimestamp: null
  labels:
    special: vmi-pxe-boot
  name: vmi-pxe-boot
spec:
  domain:
    devices:
      disks:
      - disk:
          bus: virtio
        name: containerdisk
        bootOrder: 2
      - disk:
          bus: virtio
        name: cloudinitdisk
      interfaces:
      - masquerade: {}
        name: default
      - bridge: {}
        name: pxe-net
        macAddress: de:00:00:00:00:de
        bootOrder: 1
    machine:
      type: ""
    resources:
      requests:
        memory: 1024M
  networks:
  - name: default
    pod: {}
  - multus:
      networkName: pxe-net-conf
    name: pxe-net
  terminationGracePeriodSeconds: 0
  volumes:
  - name: containerdisk
    containerDisk:
      image: kubevirt/fedora-cloud-container-disk-demo
  - cloudInitNoCloud:
      userData: |
        #!/bin/bash
        echo "fedora" | passwd fedora --stdin
    name: cloudinitdisk
status: {}
7.14.3.4. OpenShift Virtualization ネットワークの用語集

OpenShift Virtualization は、カスタムリソースおよびプラグインを使用して高度なネットワーク機能を提供します。

以下の用語は、OpenShift Virtualization ドキュメント全体で使用されています。

Container Network Interface (CNI)
コンテナーのネットワーク接続に重点を置く Cloud Native Computing Foundation プロジェクト。OpenShift Virtualization は CNI プラグインを使用して基本的な Kubernetes ネットワーク機能を強化します。
Multus
複数の CNI の存在を可能にし、Pod または仮想マシンが必要なインターフェイスを使用できるようにするメタ CNI プラグイン。
カスタムリソース定義 (CRD、Custom Resource Definition)
カスタムリソースの定義を可能にする Kubernetes API リソース、または CRD API リソースを使用して定義されるオブジェクト。
ネットワーク接続定義
Pod、仮想マシン、および仮想マシンインスタンスを 1 つ以上のネットワークに割り当てることを可能にする Multus プロジェクトによって導入される CRD。
PXE (Preboot eXecution Environment)
管理者がネットワーク経由でサーバーからクライアントマシンを起動できるようにするインターフェイス。ネットワークのブートにより、オペレーティングシステムおよび他のソフトウェアをクライアントにリモートでロードできます。

7.14.4. ゲストメモリーの管理

ゲストメモリー設定を特定のユースケースに合わせて調整する必要がある場合、ゲストの YAML 設定ファイルを編集してこれを実行できます。OpenShift Virtualization は、ゲストメモリーのオーバーコミットの設定と、ゲストメモリーのオーバーコミットアカウンティングの無効化を許可します。

警告

以下の手順では、メモリー不足により仮想マシンのプロセスが強制終了される可能性を高めます。リスクを理解している場合にのみ続行してください。

7.14.4.1. ゲストメモリーのオーバーコミットの設定

仮想ワークロードに利用可能な量を上回るメモリーが必要な場合、メモリーのオーバーコミットを使用してホストのメモリーのすべてまたはそのほとんどを仮想マシンインスタンス (VMI) に割り当てることができます。メモリーのオーバーコミットを有効にすることは、通常ホストに予約されるリソースを最大化できることを意味します。

たとえば、ホストに 32 GB RAM がある場合、メモリーのオーバーコミットを使用してそれぞれ 4 GB RAM を持つ 8 つの仮想マシン (VM) に対応できます。これは、仮想マシンがそれらのメモリーのすべてを同時に使用しないという前提で機能します。

重要

メモリーのオーバーコミットにより、メモリー不足 (OOM による強制終了) が原因で仮想マシンプロセスが強制終了される可能性が高くなります。

仮想マシンが OOM で強制終了される可能性は、特定の設定、ノードメモリー、利用可能な swap 領域、仮想マシンのメモリー消費、カーネルの same-page merging (KSM) の使用その他の要因によって変わります。

手順

  1. 仮想マシンインスタンスに対し、クラスターから要求された以上のメモリーが利用可能であることを明示的に示すために、仮想マシン設定ファイルを編集し、spec.domain.memory.guestspec.domain.resources.requests.memory よりも高い値に設定します。このプロセスはメモリーのオーバーコミットと呼ばれています。

    以下の例では、1024M がクラスターから要求されますが、仮想マシンインスタンスには 2048M が利用可能であると通知されます。ノードに利用可能な空のメモリーが十分にある限り、仮想マシンインスタンスは最大 2048M を消費します。

    kind: VirtualMachine
    spec:
      template:
        domain:
        resources:
            requests:
              memory: 1024M
        memory:
            guest: 2048M
    注記

    ノードがメモリー不足の状態になると、Pod のエビクションルールと同じルールが仮想マシンインスタンスに適用されます。

  2. 仮想マシンを作成します。

    $ oc create -f <file_name>.yaml
7.14.4.2. ゲストメモリーオーバーヘッドアカウンティングの無効化

要求する量に加えて、少量のメモリーが各仮想マシンインスタンスによって要求されます。追加のメモリーは、それぞれの VirtualMachineInstance プロセスをラップするインフラストラクチャーに使用されます。

通常は推奨される方法ではありませんが、ゲストメモリーオーバーヘッドアカウンティングを無効にすることでノード上の仮想マシンインスタンスの密度を増やすことは可能です。

重要

ゲストメモリーのオーバーヘッドアカウンティングを無効にすると、メモリー不足 (OOM による強制終了) による仮想マシンプロセスが強制終了の可能性が高くなります。

仮想マシンが OOM で強制終了される可能性は、特定の設定、ノードメモリー、利用可能な swap 領域、仮想マシンのメモリー消費、カーネルの same-page merging (KSM) の使用その他の要因によって変わります。

手順

  1. ゲストメモリーオーバーヘッドアカウンティングを無効にするには、YAML 設定ファイルを編集し、overcommitGuestOverhead の値を true に設定します。このパラメーターはデフォルトで無効にされています。

    kind: VirtualMachine
    spec:
      template:
        domain:
        resources:
            overcommitGuestOverhead: true
            requests:
              memory: 1024M
    注記

    overcommitGuestOverhead が有効にされている場合、これはゲストのオーバーヘッドをメモリー制限 (ある場合) に追加します。

  2. 仮想マシンを作成します。

    $ oc create -f <file_name>.yaml

7.14.5. 仮想マシンでの Huge Page の使用

Huge Page は、クラスター内の仮想マシンのバッキングメモリーとして使用できます。

7.14.5.1. 前提条件
7.14.5.2. Huge Page の機能

メモリーは Page と呼ばれるブロックで管理されます。多くのシステムでは、1 ページは 4Ki です。メモリー 1Mi は 256 ページに、メモリー 1Gi は 256,000 ページに相当します。CPU には、内蔵のメモリー管理ユニットがあり、ハードウェアでこのようなページリストを管理します。トランスレーションルックアサイドバッファー (TLB: Translation Lookaside Buffer) は、仮想から物理へのページマッピングの小規模なハードウェアキャッシュのことです。ハードウェアの指示で渡された仮想アドレスが TLB にあれば、マッピングをすばやく決定できます。そうでない場合には、TLB ミスが発生し、システムは速度が遅く、ソフトウェアベースのアドレス変換にフォールバックされ、パフォーマンスの問題が発生します。TLB のサイズは固定されているので、TLB ミスの発生率を減らすには Page サイズを大きくする必要があります。

Huge Page とは、4Ki より大きいメモリーページのことです。x86_64 アーキテクチャーでは、2Mi と 1Gi の 2 つが一般的な Huge Page サイズです。別のアーキテクチャーではサイズは異なります。Huge Page を使用するには、アプリケーションが認識できるようにコードを書き込む必要があります。Transparent Huge Pages (THP) は、アプリケーションによる認識なしに、Huge Page の管理を自動化しようとしますが、制約があります。特に、ページサイズは 2Mi に制限されます。THP では、THP のデフラグが原因で、メモリー使用率が高くなり、断片化が起こり、パフォーマンスの低下につながり、メモリーページがロックされてしまう可能性があります。このような理由から、アプリケーションは THP ではなく、事前割り当て済みの Huge Page を使用するように設計 (また推奨) される場合があります。

OpenShift Virtualization では、事前に割り当てられた Huge Page を使用できるように仮想マシンを設定できます。

7.14.5.3. 仮想マシンの Huge Page の設定

memory.hugepages.pageSize および resources.requests.memory パラメーターを仮想マシン設定に組み込み、仮想マシンを事前に割り当てられた Huge Page を使用するように設定できます。

メモリー要求はページサイズ別に分ける必要があります。たとえば、ページサイズ 1Gi の場合に 500Mi メモリーを要求することはできません。

注記

ホストおよびゲスト OS のメモリーレイアウトには関連性がありません。仮想マシンマニフェストで要求される Huge Page が QEMU に適用されます。ゲスト内の Huge Page は、仮想マシンインスタンスの利用可能なメモリー量に基づいてのみ設定できます。

実行中の仮想マシンを編集する場合は、変更を有効にするために仮想マシンを再起動する必要があります。

前提条件

  • ノードには、事前に割り当てられた Huge Page が設定されている必要がある。

手順

  1. 仮想マシン設定で、resources.requests.memory および memory.hugepages.pageSize パラメーターを spec.domain に追加します。以下の設定スニペットは、ページサイズが 1Gi の合計 4Gi メモリーを要求する仮想マシンについてのものです。

    kind: VirtualMachine
    ...
    spec:
      domain:
        resources:
          requests:
            memory: "4Gi" 1
        memory:
          hugepages:
            pageSize: "1Gi" 2
    ...
    1
    仮想マシンに要求されるメモリーの合計量。この値はページサイズで分ける必要があります。
    2
    各 Huge Page のサイズ。x86_64 アーキテクチャーの有効な値は 1Gi および 2Mi です。ページサイズは要求されたメモリーよりも小さくなければなりません。
  2. 仮想マシン設定を適用します。

    $ oc apply -f <virtual_machine>.yaml

7.14.6. 仮想マシン用の専用リソースの有効化

パフォーマンスを向上させるために、CPU などのノードリソースを仮想マシン専用に確保できます。

7.14.6.1. 専用リソースについて

仮想マシンの専用リソースを有効にする場合、仮想マシンのワークロードは他のプロセスで使用されない CPU でスケジュールされます。専用リソースを使用することで、仮想マシンのパフォーマンスとレイテンシーの予測の精度を向上させることができます。

7.14.6.2. 前提条件
  • CPU マネージャー はノードに設定される必要がある。仮想マシンのワークロードをスケジュールする前に、ノードに cpumanager = true ラベルが設定されていることを確認します。
  • 仮想マシンの電源がオフになっていること。
7.14.6.3. 仮想マシンの専用リソースの有効化

Details タブで仮想マシンの専用リソースを有効にすることができます。Red Hat テンプレートまたはウィザードを使用して作成された仮想マシンは、専用のリソースで有効にできます。

手順

  1. サイドメニューから WorkloadsVirtual Machines をクリックします。
  2. 仮想マシンを選択して、Virtual Machine タブを開きます。
  3. Details タブをクリックします。
  4. Dedicated Resources フィールドの右側にある鉛筆アイコンをクリックして、Dedicated Resources ウィンドウを開きます。
  5. Schedule this workload with dedicated resources (guaranteed policy) を選択します。
  6. Save をクリックします。

7.14.7. 仮想マシンのスケジュール

仮想マシンの CPU モデルとポリシー属性が、ノードがサポートする CPU モデルおよびポリシー属性との互換性について一致することを確認して、ノードで仮想マシン (VM) をスケジュールできます。

7.14.7.1. ポリシー属性について

仮想マシン (VM) をスケジュールするには、ポリシー属性と、仮想マシンがノードでスケジュールされる際の互換性について一致する CPU 機能を指定します。仮想マシンに指定されるポリシー属性は、その仮想マシンをノードにスケジュールする方法を決定します。

ポリシー属性説明

force

仮想マシンは強制的にノードでスケジュールされます。これは、ホストの CPU が仮想マシンの CPU に対応していない場合でも該当します。

require

仮想マシンが特定の CPU モデルおよび機能仕様で設定されていない場合に仮想マシンに適用されるデフォルトのポリシー。このデフォルトポリシー属性または他のポリシー属性のいずれかを持つ CPU ノードの検出をサポートするようにノードが設定されていない場合、仮想マシンはそのノードでスケジュールされません。ホストの CPU が仮想マシンの CPU をサポートしているか、ハイパーバイザーが対応している CPU モデルをエミュレートできる必要があります。

optional

仮想マシンがホストの物理マシンの CPU でサポートされている場合は、仮想マシンがノードに追加されます。

disable

仮想マシンは CPU ノードの検出機能と共にスケジュールすることはできません。

forbid

この機能がホストの CPU でサポートされ、CPU ノード検出が有効になっている場合でも、仮想マシンはスケジュールされません。

7.14.7.2. ポリシー属性および CPU 機能の設定

それぞれの仮想マシン (VM) にポリシー属性および CPU 機能を設定して、これがポリシーおよび機能に従ってノードでスケジュールされるようにすることができます。設定する CPU 機能は、ホストの CPU によってサポートされ、またはハイパーバイザーがエミュレートされることを確認するために検証されます。

手順

  • 仮想マシン設定ファイルの domain 仕様を編集します。以下の例では、仮想マシンインスタンス (VMI) について CPU 機能および require ポリシーを設定します。

    apiVersion: kubevirt.io/v1alpha3
    kind: VirtualMachine
    metadata:
      name: myvmi
    spec:
      domain:
        cpu:
          features:
          - name: apic 1
            policy: require 2
    1
    仮想マシンまたは仮想マシンインスタンス (VMI) の名前。
    2
    仮想マシンまたは仮想マシンインスタンス (VMI) のポリシー属性。
7.14.7.3. サポートされている CPU モデルでの仮想マシンのスケジューリング

仮想マシン (VM) の CPU モデルまたは仮想マシンインスタンス (VMI) を設定して、CPU モデルがサポートされているノードにこれをスケジュールできます。

手順

  • 仮想マシン設定ファイルの domain 仕様を編集します。以下の例は、VMI 向けに定義された特定の CPU モデルを示しています。

    apiVersion: kubevirt.io/v1alpha3
    kind: VirtualMachineInstance
    metadata:
      name: myvmi
    spec:
      domain:
        cpu:
          model: Conroe 1
    1
    VMI の CPU モデル。
7.14.7.4. ホストモデルでの仮想マシンのスケジューリング

仮想マシン (VM) の CPU モデルが host-model に設定されている場合、仮想マシンはスケジュールされているノードの CPU モデルを継承します。

手順

  • 仮想マシン設定ファイルの domain 仕様を編集します。以下の例は、仮想マシンインスタンス (VMI) に指定される host-model を示しています。

    apiVersion: kubevirt/v1alpha3
    kind: VirtualMachineInstance
    metadata:
      name: myvmi
    spec:
      domain:
        cpu:
          model: host-model 1
    1
    スケジュールされるノードの CPU モデルを継承する仮想マシンまたは仮想マシンインスタンス (VMI)。

7.15. 仮想マシンのインポート

7.15.1. データボリュームインポートの TLS 証明書

7.15.1.1. データボリュームインポートの認証に使用する TLS 証明書の追加

ソースからデータをインポートするには、レジストリーまたは HTTPS エンドポイントの TLS 証明書を設定マップに追加する必要があります。この設定マップは、宛先データボリュームの namespace に存在する必要があります。

TLS 証明書の相対パスを参照して設定マップ を作成します。

手順

  1. 正しい namespace にあることを確認します。設定マップは、同じ namespace にある場合にデータボリュームによってのみ参照されます。

    $ oc get ns
  2. 設定マップを作成します。

    $ oc create configmap <configmap-name> --from-file=</path/to/file/ca.pem>
7.15.1.2. 例: TLS 証明書から作成される設定マップ

以下は、ca.pem TLS 証明書で作成される設定マップの例です。

apiVersion: v1
kind: ConfigMap
metadata:
  name: tls-certs
data:
  ca.pem: |
    -----BEGIN CERTIFICATE-----
    ... <base64 encoded cert> ...
    -----END CERTIFICATE-----

7.15.2. データボリュームの使用による仮想マシンイメージのインポート

Containerized Data Importer (CDI) を使用し、データボリュームを使用して仮想マシンイメージを永続ボリューム要求 (PVC) にインポートします。次に、データボリュームを永続ストレージの仮想マシンに割り当てることができます。

仮想マシンイメージは、HTTP または HTTPS エンドポイントでホストするか、またはコンテナーディスクに組み込み、コンテナーレジストリーで保存できます。

重要

ディスクイメージを PVC にインポートする際に、ディスクイメージは PVC で要求されるストレージの全容量を使用するように拡張されます。この領域を使用するには、仮想マシンのディスクパーティションおよびファイルシステムの拡張が必要になる場合があります。

サイズ変更の手順は、仮想マシンにインストールされるオペレーティングシステムによって異なります。詳細は、該当するオペレーティングシステムのドキュメントを参照してください。

7.15.2.1. 前提条件
7.15.2.2. CDI がサポートする操作マトリックス

このマトリックスにはエンドポイントに対してコンテンツタイプのサポートされる CDI 操作が表示されます。これらの操作にはスクラッチ領域が必要です。

コンテンツタイプHTTPHTTPSHTTP Basic 認証レジストリーアップロード

kubevirt (QCOW2)

✓ QCOW2
✓ GZ*
✓ XZ*

✓ QCOW2**
✓ GZ*
✓ XZ*

✓ QCOW2
✓ GZ*
✓ XZ*

✓ QCOW2*
□ GZ
□ XZ

✓ QCOW2*
✓ GZ*
✓ XZ*

KubeVirt (RAW)

✓ RAW
✓ GZ
✓ XZ

✓ RAW
✓ GZ
✓ XZ

✓ RAW
✓ GZ
✓ XZ

✓ RAW*
□ GZ
□ XZ

✓ RAW*
✓ GZ*
✓ XZ*

✓ サポートされる操作

□ サポートされない操作

* スクラッチ領域が必要

**カスタム認証局が必要な場合にスクラッチ領域が必要

7.15.2.3. データボリュームについて

DataVolume オブジェクトは、Containerized Data Importer (CDI) プロジェクトで提供されるカスタムリソースです。データボリュームは、基礎となる永続ボリューム要求 (PVC) に関連付けられるインポート、クローン作成、およびアップロード操作のオーケストレーションを行います。データボリュームは OpenShift Virtualization に統合され、仮想マシンが PVC の作成前に起動することを防ぎます。

7.15.2.4. データボリュームを使用して仮想マシンイメージをストレージにインポートする

データボリュームを使用して、仮想マシンイメージをストレージにインポートできます。

仮想マシンイメージは、HTTP または HTTPS エンドポイントでホストするか、またはイメージをコンテナーディスクに組み込み、コンテナーレジストリーで保存できます。

イメージのデータソースは、VirtualMachine 設定ファイルで指定します。仮想マシンが作成されると、仮想マシンイメージを含むデータボリュームがストレージにインポートされます。

前提条件

  • 仮想マシンイメージをインポートするには、以下が必要である。

    • RAW、ISO、または QCOW2 形式の仮想マシンディスクイメージ (オプションで xz または gz を使用して圧縮される)。
    • データソースにアクセスするために必要な認証情報と共にイメージがホストされる HTTP または HTTPS エンドポイント
  • コンテナーディスクをインポートするには、仮想マシンイメージをコンテナーディスクに組み込み、データソースにアクセスするために必要な認証クレデンシャルとともにコンテナーレジストリーに保存する必要があります。
  • 仮想マシンが自己署名証明書またはシステム CA バンドルによって署名されていない証明書を使用するサーバーと通信する必要がある場合は、データボリュームと同じ namespace に config map を作成する必要があります。

手順

  1. データソースに認証が必要な場合は、データソースのクレデンシャルを指定して Secret マニフェストを作成し、endpoint-secret.yaml として保存します。

    apiVersion: v1
    kind: Secret
    metadata:
      name: endpoint-secret 1
      labels:
        app: containerized-data-importer
    type: Opaque
    data:
      accessKeyId: "" 2
      secretKey:   "" 3
    1
    Secret の名前を指定します。
    2
    Base64 でエンコードされたキー ID またはユーザー名を指定します。
    3
    Base64 でエンコードされた秘密鍵またはパスワードを指定します。
  2. Secret マニフェストを適用します。

    $ oc apply -f endpoint-secret.yaml
  3. VirtualMachine マニフェストを編集し、インポートする仮想マシンイメージのデータソースを指定して、vm-fedora-datavolume.yaml として保存します。

    apiVersion: kubevirt.io/v1alpha3
    kind: VirtualMachine
    metadata:
      creationTimestamp: null
      labels:
        kubevirt.io/vm: vm-fedora-datavolume
      name: vm-fedora-datavolume 1
    spec:
      dataVolumeTemplates:
      - metadata:
          creationTimestamp: null
          name: fedora-dv 2
        spec:
          storage:
            resources:
              requests:
                storage: 10Gi
            storageClassName: local
          source:
            http: 3
              url: "https://mirror.arizona.edu/fedora/linux/releases/35/Cloud/x86_64/images/Fedora-Cloud-Base-35-1.2.x86_64.qcow2" 4
              secretRef: endpoint-secret 5
              certConfigMap: "" 6
        status: {}
      running: true
      template:
        metadata:
          creationTimestamp: null
          labels:
            kubevirt.io/vm: vm-fedora-datavolume
        spec:
          domain:
            devices:
              disks:
              - disk:
                  bus: virtio
                name: datavolumedisk1
            machine:
              type: ""
            resources:
              requests:
                memory: 1.5Gi
          terminationGracePeriodSeconds: 60
          volumes:
          - dataVolume:
              name: fedora-dv
            name: datavolumedisk1
    status: {}
    1
    仮想マシンの名前を指定します。
    2
    データボリュームの名前を指定します。
    3
    HTTP または HTTPS エンドポイントに http を指定します。レジストリーからインポートされたコンテナーディスクイメージの registry を指定します。
    4
    インポートする必要のある仮想マシンイメージのソース。この例では、HTTPS エンドポイントで仮想マシンイメージを参照します。コンテナーレジストリーエンドポイントのサンプルは url: "docker://kubevirt/fedora-cloud-container-disk-demo:latest" です。
    5
    データソースの Secret を作成した場合は必須です。
    6
    オプション: CA 証明書 config map を指定します。
  4. 仮想マシンを作成します。

    $ oc create -f vm-fedora-datavolume.yaml
    注記

    oc create コマンドは、データボリュームおよび仮想マシンを作成します。CDI コントローラーは適切なアノテーションを使って基礎となる PVC を作成し、インポートプロセスが開始されます。インポートが完了すると、データボリュームのステータスが Succeeded に変わります。仮想マシンを起動できます。

    データボリュームのプロビジョニングはバックグランドで実行されるため、これをプロセスをモニターする必要はありません。

検証

  1. インポーター Pod は指定された URL から仮想マシンイメージまたはコンテナーディスクをダウンロードし、これをプロビジョニングされた PV に保存します。以下のコマンドを実行してインポーター Pod のステータスを確認します。

    $ oc get pods
  2. 次のコマンドを実行して、ステータスが Succeeded になるまでデータボリュームを監視します。

    $ oc describe dv fedora-dv 1
    1
    VirtualMachine マニフェストで定義したデータボリューム名を指定します。
  3. シリアルコンソールにアクセスして、プロビジョニングが完了し、仮想マシンが起動したことを確認します。

    $ virtctl console vm-fedora-datavolume
7.15.2.5. 関連情報

7.15.3. データボリュームの使用による仮想マシンイメージのブロックストレージへのインポート

既存の仮想マシンイメージは OpenShift Container Platform クラスターにインポートできます。OpenShift Virtualization はデータボリュームを使用してデータのインポートおよび基礎となる永続ボリューム要求 (PVC) の作成を自動化します。

重要

ディスクイメージを PVC にインポートする際に、ディスクイメージは PVC で要求されるストレージの全容量を使用するように拡張されます。この領域を使用するには、仮想マシンのディスクパーティションおよびファイルシステムの拡張が必要になる場合があります。

サイズ変更の手順は、仮想マシンにインストールされるオペレーティングシステムによって異なります。詳細は、該当するオペレーティングシステムのドキュメントを参照してください。

7.15.3.1. 前提条件
7.15.3.2. データボリュームについて

DataVolume オブジェクトは、Containerized Data Importer (CDI) プロジェクトで提供されるカスタムリソースです。データボリュームは、基礎となる永続ボリューム要求 (PVC) に関連付けられるインポート、クローン作成、およびアップロード操作のオーケストレーションを行います。データボリュームは OpenShift Virtualization に統合され、仮想マシンが PVC の作成前に起動することを防ぎます。

7.15.3.3. ブロック永続ボリュームについて

ブロック永続ボリューム (PV) は、raw ブロックデバイスによってサポートされる PV です。これらのボリュームにはファイルシステムがなく、オーバーヘッドを削減することで、仮想マシンのパフォーマンス上の利点をもたらすことができます。

raw ブロックボリュームは、PV および永続ボリューム要求 (PVC) 仕様で volumeMode: Block を指定してプロビジョニングされます。

7.15.3.4. ローカルブロック永続ボリュームの作成

ファイルにデータを設定し、これをループデバイスとしてマウントすることにより、ノードでローカルブロック永続ボリューム (PV) を作成します。次に、このループデバイスを PV マニフェストで Block ボリュームとして参照し、これを仮想マシンイメージのブロックデバイスとして使用できます。

手順

  1. ローカル PV を作成するノードに root としてログインします。この手順では、node01 を例に使用します。
  2. ファイルを作成して、これを null 文字で設定し、ブロックデバイスとして使用できるようにします。以下の例では、2Gb (20 100Mb ブロック) のサイズのファイル loop10 を作成します。

    $ dd if=/dev/zero of=<loop10> bs=100M count=20
  3. loop10 ファイルをループデバイスとしてマウントします。

    $ losetup </dev/loop10>d3 <loop10> 1 2
    1
    ループデバイスがマウントされているファイルパスです。
    2
    前の手順で作成したファイルはループデバイスとしてマウントされます。
  4. マウントされたループデバイスを参照する PersistentVolume マニフェストを作成します。

    kind: PersistentVolume
    apiVersion: v1
    metadata:
      name: <local-block-pv10>
      annotations:
    spec:
      local:
        path: </dev/loop10> 1
      capacity:
        storage: <2Gi>
      volumeMode: Block 2
      storageClassName: local 3
      accessModes:
        - ReadWriteOnce
      persistentVolumeReclaimPolicy: Delete
      nodeAffinity:
        required:
          nodeSelectorTerms:
          - matchExpressions:
            - key: kubernetes.io/hostname
              operator: In
              values:
              - <node01> 4
    1
    ノード上のループデバイスのパス。
    2
    ブロック PV であることを指定します。
    3
    オプション: PV にストレージクラスを設定します。これを省略する場合、クラスターのデフォルトが使用されます。
    4
    ブロックデバイスがマウントされたノード。
  5. ブロック PV を作成します。

    # oc create -f <local-block-pv10.yaml>1
    1
    直前の手順で作成された永続ボリュームのファイル名。
7.15.3.5. データボリュームを使用して仮想マシンイメージをブロックストレージにインポートする

データボリュームを使用して、仮想マシンイメージをブロックストレージにインポートできます。仮想マシンを作成する前に、VirtualMachine マニフェストでデータボリュームを参照します。

前提条件

  • RAW、ISO、または QCOW2 形式の仮想マシンディスクイメージ (オプションで xz または gz を使用して圧縮される)。
  • データソースにアクセスするために必要な認証情報と共にイメージがホストされる HTTP または HTTPS エンドポイント

手順

  1. データソースに認証が必要な場合は、データソースのクレデンシャルを指定して Secret マニフェストを作成し、endpoint-secret.yaml として保存します。

    apiVersion: v1
    kind: Secret
    metadata:
      name: endpoint-secret 1
      labels:
        app: containerized-data-importer
    type: Opaque
    data:
      accessKeyId: "" 2
      secretKey:   "" 3
    1
    Secret の名前を指定します。
    2
    Base64 でエンコードされたキー ID またはユーザー名を指定します。
    3
    Base64 でエンコードされた秘密鍵またはパスワードを指定します。
  2. Secret マニフェストを適用します。

    $ oc apply -f endpoint-secret.yaml
  3. データ DataVolume マニフェストを作成し、仮想マシンイメージのデータソースと storage.volumeModeBlock を指定します。

    apiVersion: cdi.kubevirt.io/v1beta1
    kind: DataVolume
    metadata:
      name: import-pv-datavolume 1
    spec:
      storageClassName: local 2
        source:
          http:
            url: "https://mirror.arizona.edu/fedora/linux/releases/35/Cloud/x86_64/images/Fedora-Cloud-Base-35-1.2.x86_64.qcow2" 3
            secretRef: endpoint-secret 4
      storage:
        volumeMode: Block 5
        resources:
          requests:
            storage: 10Gi
    1
    データボリュームの名前を指定します。
    2
    オプション: ストレージクラスを設定するか、またはこれを省略してクラスターのデフォルトを受け入れます。
    3
    インポートするイメージの HTTP または HTTPS URL を指定します。
    4
    データソースの Secret を作成した場合は必須です。
    5
    ボリュームモードとアクセスモードは、既知のストレージプロビジョナーに対して自動的に検出されます。それ以外の場合は、Block を指定します。
  4. 仮想マシンイメージをインポートするために data volume を作成します。

    $ oc create -f import-pv-datavolume.yaml

仮想マシンを作成する前に、VirtualMachine マニフェストでこのデータボリュームを参照できます。

7.15.3.6. CDI がサポートする操作マトリックス

このマトリックスにはエンドポイントに対してコンテンツタイプのサポートされる CDI 操作が表示されます。これらの操作にはスクラッチ領域が必要です。

コンテンツタイプHTTPHTTPSHTTP Basic 認証レジストリーアップロード

kubevirt (QCOW2)

✓ QCOW2
✓ GZ*
✓ XZ*

✓ QCOW2**
✓ GZ*
✓ XZ*

✓ QCOW2
✓ GZ*
✓ XZ*

✓ QCOW2*
□ GZ
□ XZ

✓ QCOW2*
✓ GZ*
✓ XZ*

KubeVirt (RAW)

✓ RAW
✓ GZ
✓ XZ

✓ RAW
✓ GZ
✓ XZ

✓ RAW
✓ GZ
✓ XZ

✓ RAW*
□ GZ
□ XZ

✓ RAW*
✓ GZ*
✓ XZ*

✓ サポートされる操作

□ サポートされない操作

* スクラッチ領域が必要

**カスタム認証局が必要な場合にスクラッチ領域が必要

7.15.3.7. 関連情報

7.15.4. 単一の Red Hat Virtualization 仮想マシンのインポート

VM Import ウィザードまたは CLI を使用して、単一の Red Hat Virtualization (RHV) 仮想マシンを OpenShift Virtualization にインポートできます。

7.15.4.1. OpenShift Virtualization ストレージ機能マトリクス

以下の表は、仮想マシンのインポートをサポートする OpenShift Virtualization ストレージタイプについて説明しています。

表7.3 OpenShift Virtualization ストレージ機能マトリクス
 RHV 仮想マシンのインポート

OpenShift Container Storage: RBD ブロックモードボリューム

Yes

OpenShift Virtualization ホストパスプロビジョナー

No

他の複数ノードの書き込み可能なストレージ

[1]

他の単一ノードの書き込み可能なストレージ

[2]

  1. PVC は ReadWriteMany アクセスモードを要求する必要があります。
  2. PVC は ReadWriteOnce アクセスモードを要求する必要があります。
7.15.4.2. 仮想マシンをインポートするための前提条件

仮想マシンを Red Hat Virtualization (RHV) から OpenShift Virtualization にインポートするには、以下の前提条件を満たす必要があります。

  • 管理者ユーザー権限があること。
  • ストレージ:

    • OpenShift Virtualization のローカルおよび共有永続ストレージクラスは、仮想マシンのインポートをサポートする必要があります。
    • Ceph RBD ブロックモードのボリュームを使用していて、仮想ディスクに利用可能なストレージ領域が小さすぎると、インポートプロセスバーは 75% で 20 分以上停止し、移行は成功しません。Web コンソールにエラーメッセージは表示されません。BZ#1910019
  • ネットワーク:

    • RHV および OpenShift Virtualization ネットワークは同じ名前を持つか、または相互にマップされる必要があります。
    • RHV 仮想マシンネットワークインターフェイスは e1000rtl8139、または virtio である必要があります。
  • 仮想マシンディスク:

    • ディスクインターフェイスは satavirtio_scsi、または virtio である必要があります。
    • ディスクは直接の LUN として設定することはできません。
    • ディスクのステータスは illegal または locked にすることができません。
    • ストレージタイプは image である必要があります。
    • SCSI 予約を無効にする必要があります。
    • ScsiGenericIO を無効にする必要があります。
  • 仮想マシンの設定:

    • 仮想マシンが GPU リソースを使用する場合は、GPU を提供するノードを設定する必要があります。
    • 仮想マシンを vGPU リソース用に設定することはできません。
    • 仮想マシンには、illegal 状態のスナップショットを含めることはできません。
    • 仮想マシンは OpenShift Container Platform で作成されから、その後に RHV に追加することはできません。
    • 仮想マシンを USB デバイス用に設定することはできません。
    • watchdog モデルは diag288 にすることができません。
7.15.4.3. VM Import ウィザードを使用した仮想マシンのインポート

VM Import ウィザードを使用して、単一の仮想マシンをインポートできます。

手順

  1. Web コンソールで、WorkloadsVirtual Machines をクリックします。
  2. Create Virtual Machine をクリックし、Import with Wizard を選択します。
  3. Provider 一覧で Red Hat Virtualization (RHV) を選択します。
  4. Connect to New Instance または保存された RHV インスタンスを選択します。

    • Connect to New Instance を選択する場合は、以下のフィールドに入力します。

      • API URL: https://<RHV_Manager_FQDN>/ovirt-engine/api など。
      • CA certificate: Browse をクリックして RHV Manager CA 証明書をアップロードするか、またはフィールドに CA 証明書を貼り付けます。

        以下のコマンドを実行して CA 証明書を表示します。

        $ openssl s_client -connect <RHV_Manager_FQDN>:443 -showcerts < /dev/null

        CA 証明書は、出力内の 2 番目の証明書です。

      • Username: RHV Manager ユーザー名 (例: ocpadmin@internal)
      • Password: RHV Manager パスワード
    • 保存された RHV インスタンスを選択する場合、ウィザードは保存された認証情報を使用して RHV インスタンスに接続します。
  5. Check and Save をクリックし、接続が完了するまで待ちます。

    注記

    接続の詳細はシークレットに保存されます。正しくない URL、ユーザー名またはパスワードを使用してプロバイダーを追加する場合、WorkloadsSecrets をクリックし、プロバイダーのシークレットを削除します。

  6. クラスターおよび仮想マシンを選択します。
  7. Next をクリックします。
  8. Review 画面で、設定を確認します。
  9. オプション:Start virtual machine on creation を選択します。
  10. Edit をクリックして、以下の設定を更新します。

    • GeneralName: 仮想マシン名は 63 文字に制限されます。
    • GeneralDescription: 仮想マシンの説明 (オプション)。

      • Storage Class: NFS または ocs-storagecluster-ceph-rbd を選択します。

        ocs-storagecluster-ceph-rbd を選択する場合、ディスクの Volume ModeBlock に設定する必要があります。

      • AdvancedVolume Mode: Block を選択します。
    • AdvancedVolume Mode: Block を選択します。
    • NetworkingNetwork: 利用可能なネットワーク割り当て定義オブジェクトの一覧からネットワークを選択できます。
  11. インポート設定を編集した場合は、Import または Review and Import をクリックします。

    Successfully created virtual machine というメッセージが表示され、仮想マシンに作成されたリソースの一覧が表示されます。仮想マシンが WorkloadsVirtual Machines に表示されます。

仮想マシンウィザードのフィールド
名前パラメーター説明

名前

 

この名前には、小文字 (a-z)、数字 (0-9)、およびハイフン (-) を含めることができ、最大 253 文字を使用できます。最初と最後の文字は英数字にする必要があります。この名前には、大文字、スペース、ピリオド (.)、または特殊文字を使用できません。

説明

 

オプションの説明フィールド。

Operating System

 

テンプレートで仮想マシン用に選択される主なオペレーティングシステム。テンプレートから仮想マシンを作成する場合、このフィールドを編集することはできません。

Boot Source

URL を使用したインポート (PVC の作成)

HTTP または HTTPS エンドポイントで利用できるイメージからコンテンツをインポートします。例: オペレーティングシステムイメージのある Web ページから URL リンクを取得します。

既存の PVC のクローン作成 (PVC の作成)

クラスターで利用可能な既存の永続ボリューム要求 (PVC) を選択し、これをクローンします。

レジストリーを使用したインポート (PVC の作成)

クラスターからアクセスできるレジストリーの起動可能なオペレーティングシステムコンテナーから仮想マシンをプロビジョニングします。例: kubevirt/cirros-registry-disk-demo

PXE (ネットワークブート: ネットワークインターフェイスの追加)

ネットワークのサーバーからオペレーティングシステムを起動します。PXE ブート可能なネットワーク接続定義が必要です。

永続ボリューム要求 (PVC) のプロジェクト

 

PVC のクローン作成に使用するプロジェクト名。

永続ボリューム要求 (PVC) の名前

 

既存の PVC のクローンを作成する場合にこの仮想マシンテンプレートに適用する必要のある PVC 名。

これを CD-ROM ブートソースとしてマウントする

 

CD-ROM には、オペレーティングシステムをインストールするための追加のディスクが必要です。チェックボックスを選択して、ディスクを追加し、後でカスタマイズします。

Flavor

Tiny、Small、Medium、Large、Custom

仮想マシンに割り当てられる CPU およびメモリーの量を決定するプリセット。Flavor に設定される Preset はオペレーティングシステムによって決まります。

Workload Type

Desktop

デスクトップで使用するための仮想マシン設定。小規模な環境での使用に適しています。Web コンソールでの使用に推奨されます。

Server

パフォーマンスのバランスを図り、さまざまなサーバーのワークロードと互換性があります。

High-Performance

高パフォーマンスのワークロードに対して最適化された仮想マシン設定。

作成後にこの仮想マシンを起動します。

 

このチェックボックスはデフォルトで選択され、仮想マシンは作成後に実行を開始します。仮想マシンの作成時に起動する必要がない場合は、チェックボックスをクリアします。

ネットワークフィールド
名前説明

名前

ネットワークインターフェイスコントローラーの名前。

モデル

ネットワークインターフェイスコントローラーのモデルを示します。サポートされる値は e1000e および virtio です。

ネットワーク

利用可能なネットワーク接続定義の一覧。

Type

利用可能なバインディングメソッドの一覧。デフォルトの Pod ネットワークについては、masquerade が唯一の推奨されるバインディングメソッドになります。セカンダリーネットワークの場合は、 bridge バインディングメソッドを使用します。masquerade メソッドは、デフォルト以外のネットワークではサポートされません。SR-IOV ネットワークデバイスを設定し、namespace でそのネットワークを定義した場合は、SR-IOV を選択します。

MAC Address

ネットワークインターフェイスコントローラーの MAC アドレス。MAC アドレスが指定されていない場合、これは自動的に割り当てられます。

ストレージフィールド
名前選択説明

Source

空白 (PVC の作成)

空のディスクを作成します。

URL を使用したインポート (PVC の作成)

URL (HTTP または HTTPS エンドポイント) を介してコンテンツをインポートします。

既存 PVC の使用

クラスターですでに利用可能な PVC を使用します。

既存の PVC のクローン作成 (PVC の作成)

クラスターで利用可能な既存の PVC を選択し、このクローンを作成します。

レジストリーを使用したインポート (PVC の作成)

コンテナーレジストリーを使用してコンテンツをインポートします。

コンテナー (一時的)

クラスターからアクセスできるレジストリーにあるコンテナーからコンテンツをアップロードします。コンテナーディスクは、CD-ROM や一時的な仮想マシンなどの読み取り専用ファイルシステムにのみ使用する必要があります。

名前

 

ディスクの名前。この名前には、小文字 (a-z)、数字 (0-9)、ハイフン (-) およびピリオド (.) を含めることができ、最大 253 文字を使用できます。最初と最後の文字は英数字にする必要があります。この名前には、大文字、スペース、または特殊文字を使用できません。

Size

 

ディスクのサイズ (GiB 単位)。

Type

 

ディスクのタイプ。例: Disk または CD-ROM

Interface

 

ディスクデバイスのタイプ。サポートされるインターフェイスは、virtIOSATA、および SCSI です。

Storage Class

 

ディスクの作成に使用されるストレージクラス。

Advanced → Volume Mode

 

永続ボリュームがフォーマットされたファイルシステムまたは raw ブロック状態を使用するかどうかを定義します。デフォルトは Filesystem です。

ストレージの詳細設定
名前パラメーター説明

ボリュームモード

Filesystem

ファイルシステムベースのボリュームで仮想ディスクを保存します。

Block

ブロックボリュームで仮想ディスクを直接保存します。基礎となるストレージがサポートしている場合は、 Block を使用します。

アクセスモード [1]

Single User (RWO)

ディスクは単一ノードで読み取り/書き込みとしてマウントできます。

Shared Access (RWX)

ディスクは数多くのノードで読み取り/書き込みとしてマウントできます。

Read Only (ROX)

ディスクは数多くのノードで読み取り専用としてマウントできます。

  1. コマンドラインインターフェイスを使用してアクセスモードを変更できます。
7.15.4.4. CLI を使用した仮想マシンのインポート

Secret および VirtualMachineImport カスタムリソース (CR) を作成して、CLI で仮想マシンをインポートできます。Secret CR は RHV Manager の認証情報および CA 証明書を保存します。VirtualMachineImport CR は仮想マシンのインポートプロセスのパラメーターを定義します。

オプション: VirtualMachineImport CR とは別に ResourceMapping CR を作成できます。ResourceMapping CR は、追加の RHV 仮想マシンをインポートする場合などに柔軟性を提供します。

重要

デフォルトのターゲットストレージクラスは NFS である必要があります。Cinder は RHV 仮想マシンのインポートをサポートしません。

手順

  1. 以下のコマンドを実行して Secret CR を作成します。

    $ cat <<EOF | oc create -f -
    apiVersion: v1
    kind: Secret
    metadata:
      name: rhv-credentials
      namespace: default 1
    type: Opaque
    stringData:
      ovirt: |
        apiUrl: <api_endpoint> 2
        username: ocpadmin@internal
        password: 3
        caCert: |
          -----BEGIN CERTIFICATE-----
          4
          -----END CERTIFICATE-----
    EOF
    1
    オプション。すべての CR に異なる namespace を指定できます。
    2
    RHV Manager の API エンドポイントを指定します (例: \"https://www.example.com:8443/ovirt-engine/api")。
    3
    ocpadmin@internal のパスワードを指定します。
    4
    RHV Manager CA 証明書を指定します。以下のコマンドを実行して CA 証明書を取得できます。
    $ openssl s_client -connect :443 -showcerts < /dev/null
  2. オプション: 以下のコマンドを実行して、リソースマッピングを VirtualMachineImport CR から分離する必要がある場合に ResourceMapping を作成します。

    $ cat <<EOF | kubectl create -f -
    apiVersion: v2v.kubevirt.io/v1alpha1
    kind: ResourceMapping
    metadata:
      name: resourcemapping_example
      namespace: default
    spec:
      ovirt:
        networkMappings:
          - source:
              name: <rhv_logical_network>/<vnic_profile> 1
            target:
              name: <target_network> 2
            type: pod
        storageMappings: 3
          - source:
              name: <rhv_storage_domain> 4
            target:
              name: <target_storage_class> 5
            volumeMode: <volume_mode> 6
    EOF
    1
    RHV の論理ネットワークおよび vNIC プロファイルを指定します。
    2
    OpenShift Virtualization ネットワークを指定します。
    3
    ストレージマッピングが ResourceMapping および VirtualMachineImport CR の両方に指定される場合、VirtualMachineImport CR が優先されます。
    4
    RHV ストレージドメインを指定します。
    5
    nfs または ocs-storagecluster-ceph-rbd を指定します。
    6
    ocs-storagecluster-ceph-rbd ストレージクラスを指定した場合、Block をボリュームモードとして指定する必要があります。
  3. 以下のコマンドを実行して VirtualMachineImport CR を作成します。

    $ cat <<EOF | oc create -f -
    apiVersion: v2v.kubevirt.io/v1beta1
    kind: VirtualMachineImport
    metadata:
      name: vm-import
      namespace: default
    spec:
      providerCredentialsSecret:
        name: rhv-credentials
        namespace: default
    # resourceMapping: 1
    #   name: resourcemapping-example
    #   namespace: default
      targetVmName: vm_example 2
      startVm: true
      source:
        ovirt:
          vm:
            id: <source_vm_id> 3
            name: <source_vm_name> 4
          cluster:
            name: <source_cluster_name> 5
          mappings: 6
            networkMappings:
              - source:
                  name: <source_logical_network>/<vnic_profile> 7
                target:
                  name: <target_network> 8
                type: pod
            storageMappings: 9
              - source:
                  name: <source_storage_domain> 10
                target:
                  name: <target_storage_class> 11
                accessMode: <volume_access_mode> 12
            diskMappings:
              - source:
                  id: <source_vm_disk_id> 13
                target:
                  name: <target_storage_class> 14
    EOF
    1
    ResourceMapping CR を作成する場合、resourceMapping セクションのコメントを解除します。
    2
    ターゲットの仮想マシン名を指定します。
    3
    ソース仮想マシン ID を指定します (例: 80554327-0569-496b-bdeb-fcbbf52b827b)。Manager マシンの Web ブラウザーで https://www.example.com/ovirt-engine/api/vms/ を入力して仮想マシン ID を取得し、すべての仮想マシンを一覧表示できます。インポートする仮想マシンとその対応する仮想マシン ID を見つけます。仮想マシン名またはクラスター名を指定する必要はありません。
    4
    ソース仮想マシン名を指定する場合、ソースクラスターも指定する必要があります。ソース仮想マシン ID は指定しないでください。
    5
    ソースクラスターを指定する場合、ソース仮想マシン名も指定する必要があります。ソース仮想マシン ID は指定しないでください。
    6
    ResourceMapping CR を作成する場合、mappings セクションをコメントアウトします。
    7
    ソース仮想マシンの論理ネットワークおよび vNIC プロファイルを指定します。
    8
    OpenShift Virtualization ネットワークを指定します。
    9
    ストレージマッピングが ResourceMapping および VirtualMachineImport CR の両方に指定される場合、VirtualMachineImport CR が優先されます。
    10
    ソースストレージドメインを指定します。
    11
    ターゲットストレージクラスを指定します。
    12
    ReadWriteOnceReadWriteMany、または ReadOnlyMany を指定します。アクセスモードが指定されていない場合、{virt} は RHV 仮想マシンまたは仮想ディスクアクセスモード上の HostMigration mode 設定に基づいて正しいボリュームアクセスモードを判別します。
    • RHV 仮想マシン移行モードが Allow manual and automatic migration の場合、デフォルトのアクセスモードは ReadWriteMany になります。
    • RHV 仮想ディスクのアクセスモードが ReadOnly の場合、デフォルトのアクセスモードは ReadOnlyMany になります。
    • その他のすべての設定では、デフォルトのアクセスモードは ReadWriteOnce です。
    13
    ソース仮想マシンディスク ID を指定します (例: 8181ecc1-5db8-4193-9c92-3ddab3be7b05)。Manager マシンの Web ブラウザーで https://www.example.com/ovirt-engine/api/vms/vm23 を入力して仮想マシンの詳細を確認し、ディスク ID 取得できます。
    14
    ターゲットストレージクラスを指定します。
  4. 仮想マシンインポートの進捗に従い、インポートが正常に完了したことを確認します。

    $ oc get vmimports vm-import -n default

    インポートが成功したことを示す出力は、以下のようになります。

    出力例

    ...
    status:
      conditions:
      - lastHeartbeatTime: "2020-07-22T08:58:52Z"
        lastTransitionTime: "2020-07-22T08:58:52Z"
        message: Validation completed successfully
        reason: ValidationCompleted
        status: "True"
        type: Valid
      - lastHeartbeatTime: "2020-07-22T08:58:52Z"
        lastTransitionTime: "2020-07-22T08:58:52Z"
        message: 'VM specifies IO Threads: 1, VM has NUMA tune mode specified: interleave'
        reason: MappingRulesVerificationReportedWarnings
        status: "True"
        type: MappingRulesVerified
      - lastHeartbeatTime: "2020-07-22T08:58:56Z"
        lastTransitionTime: "2020-07-22T08:58:52Z"
        message: Copying virtual machine disks
        reason: CopyingDisks
        status: "True"
        type: Processing
      dataVolumes:
      - name: fedora32-b870c429-11e0-4630-b3df-21da551a48c0
      targetVmName: fedora32

7.15.4.4.1. 仮想マシンをインポートするための設定マップの作成

デフォルトの vm-import-controller マッピングを上書きする場合や、追加のマッピングを追加する場合は、Red Hat Virtualization (RHV) 仮想マシンオペレーティングシステムを OpenShift Virtualization テンプレートにマップする設定マップを作成できます。

デフォルトの vm-import-controller 設定マップには、以下の RHV オペレーティングシステムおよびそれらの対応する共通の OpenShift Virtualization テンプレートが含まれます。

表7.4 オペレーティングシステムおよびテンプレートのマッピング
RHV 仮想マシンオペレーティングシステムOpenShift Virtualization テンプレート

rhel_6_9_plus_ppc64

rhel6.9

rhel_6_ppc64

rhel6.9

rhel_6

rhel6.9

rhel_6x64

rhel6.9

rhel_7_ppc64

rhel7.7

rhel_7_s390x

rhel7.7

rhel_7x64

rhel7.7

rhel_8x64

rhel8.1

sles_11_ppc64

opensuse15.0

sles_11

opensuse15.0

sles_12_s390x

opensuse15.0

ubuntu_12_04

ubuntu18.04

ubuntu_12_10

ubuntu18.04

ubuntu_13_04

ubuntu18.04

ubuntu_13_10

ubuntu18.04

ubuntu_14_04_ppc64

ubuntu18.04

ubuntu_14_04

ubuntu18.04

ubuntu_16_04_s390x

ubuntu18.04

windows_10

win10

windows_10x64

win10

windows_2003

win10

windows_2003x64

win10

windows_2008R2x64

win2k8

windows_2008

win2k8

windows_2008x64

win2k8

windows_2012R2x64

win2k12r2

windows_2012x64

win2k12r2

windows_2016x64

win2k16

windows_2019x64

win2k19

windows_7

win10

windows_7x64

win10

windows_8

win10

windows_8x64

win10

windows_xp

win10

手順

  1. Web ブラウザーで、http://<RHV_Manager_FQDN>/ovirt-engine/api/vms/<VM_ID> に移動して RHV 仮想マシンオペレーティングシステムの REST API 名を特定します。以下の例のように、オペレーティングシステム名が XML 出力の <os> セクションに表示されます。

    ...
    <os>
    ...
    <type>rhel_8x64</type>
    </os>
  2. 利用可能な OpenShift Virtualization テンプレートの一覧を表示します。

    $ oc get templates -n openshift --show-labels | tr ',' '\n' | grep os.template.kubevirt.io | sed -r 's#os.template.kubevirt.io/(.*)=.*#\1#g' | sort -u

    出力例

    fedora31
    fedora32
    ...
    rhel8.1
    rhel8.2
    ...

  3. RHV 仮想マシンオペレーティングシステムに一致する OpenShift Virtualization テンプレートが利用可能なテンプレートの一覧に表示されない場合は、OpenShift Virtualization Web コンソールでテンプレートを作成します。
  4. RHV 仮想マシンオペレーティングシステムを OpenShift Virtualization テンプレートにマップするために設定マップを作成します。

    $ cat <<EOF | oc create -f -
    apiVersion: v1
    kind: ConfigMap
    metadata:
      name: os-configmap
      namespace: default 1
    data:
      guestos2common: |
        "Red Hat Enterprise Linux Server": "rhel"
        "CentOS Linux": "centos"
        "Fedora": "fedora"
        "Ubuntu": "ubuntu"
        "openSUSE": "opensuse"
      osinfo2common: |
        "<rhv-operating-system>": "<vm-template>" 2
    EOF
    1
    オプション: namespace パラメーターの値を変更できます。
    2
    以下の例のように、RHV オペレーティングシステムおよび対応する仮想マシンテンプレートの REST API 名を指定します。

    設定マップの例

    $ cat <<EOF | oc apply -f -
    apiVersion: v1
    kind: ConfigMap
    metadata:
      name: os-configmap
      namespace: default
    data:
      osinfo2common: |
        "other_linux": "fedora31"
    EOF

  5. カスタム設定マップが作成されていることを確認します。

    $ oc get cm -n default os-configmap -o yaml
  6. vm-import-controller-config 設定マップにパッチを適用し、新規設定マップを適用します。

    $ oc patch configmap vm-import-controller-config -n openshift-cnv --patch '{
        "data": {
            "osConfigMap.name": "os-configmap",
            "osConfigMap.namespace": "default" 1
        }
    }'
    1
    設定マップで namespace を変更した場合は、namespace を更新します。
  7. テンプレートが OpenShift Virtualization Web コンソールに表示されることを確認します。

    1. サイドメニューから WorkloadsVirtualization をクリックします。
    2. Virtual Machine Templates タブをクリックして、一覧でテンプレートを見つけます。
7.15.4.5. 仮想マシンのインポートのトラブルシューティング
7.15.4.5.1. ログ

VM Import Controller Pod ログでエラーの有無を確認できます。

手順

  1. 以下のコマンドを実行して、VM Import Controller Pod 名を表示します。

    $ oc get pods -n <namespace> | grep import 1
    1
    インポートされた仮想マシンの namespace を指定します。

    出力例

    vm-import-controller-f66f7d-zqkz7            1/1     Running     0          4h49m

  2. 以下のコマンドを実行して、VM Import Controller Pod ログを表示します。

    $ oc logs <vm-import-controller-f66f7d-zqkz7> -f -n <namespace> 1
    1
    VM Import Controller Pod 名および namespace を指定します。
7.15.4.5.2. エラーメッセージ

以下のエラーメッセージが表示される場合があります。

  • 以下のエラーメッセージが VM Import Controller Pod ログに表示され、OpenShift Virtualization ストレージ PV が適切でない場合は進捗バーは 10% で停止します。

    Failed to bind volumes: provisioning failed for PVC

    互換性のあるストレージクラスを使用する必要があります。Cinder ストレージクラスはサポートされません。

7.15.4.5.3. 既知の問題
  • Ceph RBD ブロックモードのボリュームを使用していて、仮想ディスクに利用可能なストレージ領域が小さすぎると、インポートプロセスバーは 75% で 20 分以上停止し、移行は成功しません。Web コンソールにエラーメッセージは表示されません。BZ#1910019

7.15.5. 単一 VMware 仮想マシンまたはテンプレートのインポート

VM Import ウィザードを使用して、VMware vSphere 6.5、6.7、または 7.0 の仮想マシンまたは仮想マシンテンプレートを OpenShift Virtualization にインポートできます。

VM テンプレートをインポートする場合、OpenShift Virtualization はテンプレートに基づいて仮想マシンを作成します。

7.15.5.1. OpenShift Virtualization ストレージ機能マトリクス

以下の表は、仮想マシンのインポートをサポートする OpenShift Virtualization ストレージタイプについて説明しています。

表7.5 OpenShift Virtualization ストレージ機能マトリクス
 VMware VM のインポート

OpenShift Container Storage: RBD ブロックモードボリューム

Yes

OpenShift Virtualization ホストパスプロビジョナー

Yes

他の複数ノードの書き込み可能なストレージ

[1]

他の単一ノードの書き込み可能なストレージ

[2]

  1. PVC は ReadWriteMany アクセスモードを要求する必要があります。
  2. PVC は ReadWriteOnce アクセスモードを要求する必要があります。
7.15.5.2. VDDK イメージの作成

インポートプロセスでは、VMware Virtual Disk Development Kit (VDDK) を使用して VMware 仮想ディスクをコピーします。

VDDK SDK をダウンロードし、VDDK イメージを作成し、イメージレジストリーにイメージをアップロードしてからこれを v2v-vmware 設定マップに追加できます。

内部 OpenShift Container Platform イメージレジストリーまたは VDDK イメージのセキュアな外部イメージレジストリーのいずれかを設定できます。レジストリーは OpenShift Virtualization 環境からアクセスできる必要があります。

注記

VDDK イメージをパブリックリポジトリーに保存すると、VMware ライセンスの条件に違反する可能性があります。

7.15.5.2.1. 内部イメージレジストリーの設定

イメージレジストリー Operator 設定を更新して、ベアメタルに内部 OpenShift Container Platform イメージレジストリーを設定できます。

レジストリーをルートで公開して、OpenShift Container Platform クラスターから、または外部からレジストリーに直接アクセスできます。

イメージレジストリーの管理状態の変更

イメージレジストリーを起動するには、イメージレジストリー Operator 設定の managementStateRemoved から Managed に変更する必要があります。

手順

  • ManagementState イメージレジストリー Operator 設定を Removed から Managed に変更します。以下に例を示します。

    $ oc patch configs.imageregistry.operator.openshift.io cluster --type merge --patch '{"spec":{"managementState":"Managed"}}'
ベアメタルおよび他の手動インストールの場合のレジストリーストレージの設定

クラスター管理者は、インストール後にレジストリーをストレージを使用できるように設定する必要があります。

前提条件

  • クラスター管理者のパーミッション。
  • ベアメタルなどの、手動でプロビジョニングされた Red Hat Enterprise Linux CoreOS (RHCOS) ノードを使用するクラスター。
  • Red Hat OpenShift Container Storage などのクラスターのプロビジョニングされた永続ストレージ。

    重要

    OpenShift Container Platform は、1 つのレプリカのみが存在する場合にイメージレジストリーストレージの ReadWriteOnce アクセスをサポートします。2 つ以上のレプリカで高可用性をサポートするイメージレジストリーをデプロイするには、ReadWriteMany アクセスが必要です。

  • 100Gi の容量が必要です。

手順

  1. レジストリーをストレージを使用できるように設定するには、configs.imageregistry/cluster リソースの spec.storage.pvc を変更します。

    注記

    共有ストレージを使用する場合は、外部からアクセスを防ぐためにセキュリティー設定を確認します。

  2. レジストリー Pod がないことを確認します。

    $ oc get pod -n openshift-image-registry -l docker-registry=default

    出力例

    No resourses found in openshift-image-registry namespace

    注記

    出力にレジストリー Pod がある場合は、この手順を続行する必要はありません。

  3. レジストリー設定を確認します。

    $ oc edit configs.imageregistry.operator.openshift.io

    出力例

    storage:
      pvc:
        claim:

    claim フィールドを空のままにし、image-registry-storage PVC の自動作成を可能にします。

  4. clusteroperator ステータスを確認します。

    $ oc get clusteroperator image-registry

    出力例

    NAME             VERSION                              AVAILABLE   PROGRESSING   DEGRADED   SINCE   MESSAGE
    image-registry   4.7                                  True        False         False      6h50m

  5. イメージのビルドおよびプッシュを有効にするためにレジストリーが managed に設定されていることを確認します。

    • 以下を実行します。

      $ oc edit configs.imageregistry/cluster

      次に、行を変更します。

      managementState: Removed

      上記を以下のように変更します。

      managementState: Managed
クラスターからレジストリーへの直接アクセス

クラスター内からレジストリーにアクセスすることができます。

手順

内部ルートを使用して、クラスターからレジストリーにアクセスします。

  1. ノードの名前を取得してノードにアクセスします。

    $ oc get nodes
    $ oc debug nodes/<node_name>
  2. ノード上で ocpodman などのツールへのアクセスを有効にするには、以下のコマンドを実行します。

    sh-4.2# chroot /host
  3. アクセストークンを使用してコンテナーイメージレジストリーにログインします。

    sh-4.2# oc login -u kubeadmin -p <password_from_install_log> https://api-int.<cluster_name>.<base_domain>:6443
    sh-4.2# podman login -u kubeadmin -p $(oc whoami -t) image-registry.openshift-image-registry.svc:5000

    以下のようなログインを確認するメッセージが表示されるはずです。

    Login Succeeded!
    注記

    ユーザー名には任意の値を指定でき、トークンには必要な情報がすべて含まれます。コロンが含まれるユーザー名を指定すると、ログインに失敗します。

    イメージレジストリー Operator はルートを作成するため、 default-route-openshift-image-registry.<cluster_name> のようになります。

  4. レジストリーに対して podman pull および podman push 操作を実行します。

    重要

    任意のイメージをプルできますが、system:registry ロールを追加している場合は、各自のプロジェクトにあるレジストリーにのみイメージをプッシュすることができます。

    次の例では、以下を使用します。

    コンポーネント

    <registry_ip>

    172.30.124.220

    <port>

    5000

    <project>

    openshift

    <image>

    image

    <tag>

    省略 (デフォルトは latest)

    1. 任意のイメージをプルします。

      sh-4.2# podman pull name.io/image
    2. 新規イメージに <registry_ip>:<port>/<project>/<image> 形式でタグ付けします。プロジェクト名は、イメージを正しくレジストリーに配置し、これに後でアクセスできるようにするために OpenShift Container Platform のプル仕様に表示される必要があります。

      sh-4.2# podman tag name.io/image image-registry.openshift-image-registry.svc:5000/openshift/image
      注記

      指定されたプロジェクトについて system:image-builder ロールを持っている必要があります。このロールにより、ユーザーはイメージの書き出しやプッシュを実行できます。そうでない場合は、次の手順の podman push は失敗します。これをテストするには、新規プロジェクトを作成し、イメージをプッシュできます。

    3. 新しくタグ付けされたイメージをレジストリーにプッシュします。

      sh-4.2# podman push image-registry.openshift-image-registry.svc:5000/openshift/image
セキュアなレジストリーの手動による公開

クラスター内から OpenShift Container Platform レジストリーにログインするのではなく、外部からレジストリーにアクセスできるように、このレジストリーをルートに公開します。これにより、ルートアドレスを使用してクラスターの外部からレジストリーにログインし、ルートホストを使用してイメージにタグを付けて既存のプロジェクトにプッシュすることができます。

前提条件:

  • 以下の前提条件は自動的に実行されます。

    • レジストリー Operator のデプロイ。
    • Ingress Operator のデプロイ。

手順

configs.imageregistry.operator.openshift.io リソースで DefaultRoute パラメーターを使用するか、またはカスタムルートを使用してルートを公開することができます。

DefaultRoute を使用してレジストリーを公開するには、以下を実行します。

  1. DefaultRouteTrue に設定します。

    $ oc patch configs.imageregistry.operator.openshift.io/cluster --patch '{"spec":{"defaultRoute":true}}' --type=merge
  2. podman でログインします。

    $ HOST=$(oc get route default-route -n openshift-image-registry --template='{{ .spec.host }}')
    $ podman login -u kubeadmin -p $(oc whoami -t) --tls-verify=false $HOST 1
    1
    --tls-verify=false は、ルートのクラスターのデフォルト証明書が信頼されない場合に必要になります。Ingress Operator で、信頼されるカスタム証明書をデフォルト証明書として設定できます。

カスタムルートを使用してレジストリーを公開するには、以下を実行します。

  1. ルートの TLS キーでシークレットを作成します。

    $ oc create secret tls public-route-tls \
        -n openshift-image-registry \
        --cert=</path/to/tls.crt> \
        --key=</path/to/tls.key>

    この手順はオプションです。シークレットを作成しない場合、ルートは Ingress Operator からデフォルトの TLS 設定を使用します。

  2. レジストリー Operator では、以下のようになります。

    spec:
      routes:
        - name: public-routes
          hostname: myregistry.mycorp.organization
          secretName: public-route-tls
    ...
    注記

    レジストリーのルートのカスタム TLS 設定を指定している場合は secretName のみを設定します。

7.15.5.2.2. 外部イメージレジストリーの設定

VDDK イメージの外部イメージレジストリーを使用する場合、外部イメージレジストリーの認証局を OpenShift Container Platform クラスターに追加できます。

オプションで、Docker 認証情報からプルシークレットを作成し、これをサービスアカウントに追加できます。

クラスターへの認証局の追加

以下の手順でイメージのプッシュおよびプル時に使用する認証局 (CA) をクラスターに追加することができます。

前提条件

  • クラスター管理者の権限があること。
  • レジストリーの公開証明書 (通常は、/etc/docker/certs.d/ ディレクトリーにある hostname/ca.crt ファイル)。

手順

  1. 自己署名証明書を使用するレジストリーの信頼される証明書が含まれる ConfigMapopenshift-config namespace に作成します。それぞれの CA ファイルについて、ConfigMap のキーが hostname[..port] 形式のレジストリーのホスト名であることを確認します。

    $ oc create configmap registry-cas -n openshift-config \
    --from-file=myregistry.corp.com..5000=/etc/docker/certs.d/myregistry.corp.com:5000/ca.crt \
    --from-file=otherregistry.com=/etc/docker/certs.d/otherregistry.com/ca.crt
  2. クラスターイメージの設定を更新します。

    $ oc patch image.config.openshift.io/cluster --patch '{"spec":{"additionalTrustedCA":{"name":"registry-cas"}}}' --type=merge
Pod が他のセキュリティー保護されたレジストリーからイメージを参照できるようにする設定

Docker クライアントの .dockercfg $HOME/.docker/config.json ファイルは、セキュア/非セキュアなレジストリーに事前にログインしている場合に認証情報を保存する Docker 認証情報ファイルです。

OpenShift Container Platform の内部レジストリーにないセキュリティー保護されたコンテナーイメージをプルするには、Docker 認証情報でプルシークレットを作成し、これをサービスアカウントに追加する必要があります。

手順

  • セキュリティー保護されたレジストリーの .dockercfg ファイルがすでにある場合は、以下を実行してそのファイルからシークレットを作成できます。

    $ oc create secret generic <pull_secret_name> \
        --from-file=.dockercfg=<path/to/.dockercfg> \
        --type=kubernetes.io/dockercfg
  • または、$HOME/.docker/config.json ファイルがある場合は以下を実行します。

    $ oc create secret generic <pull_secret_name> \
        --from-file=.dockerconfigjson=<path/to/.docker/config.json> \
        --type=kubernetes.io/dockerconfigjson
  • セキュアなレジストリーについての Docker 認証情報ファイルがまだない場合には、以下のコマンドを実行してシークレットを作成することができます。

    $ oc create secret docker-registry <pull_secret_name> \
        --docker-server=<registry_server> \
        --docker-username=<user_name> \
        --docker-password=<password> \
        --docker-email=<email>
  • Pod のイメージをプルするためのシークレットを使用するには、そのシークレットをサービスアカウントに追加する必要があります。この例では、サービスアカウントの名前は、Pod が使用するサービスアカウントの名前に一致している必要があります。デフォルトのサービスアカウントは default です。

    $ oc secrets link default <pull_secret_name> --for=pull
7.15.5.2.3. VDDK イメージの作成および使用

VMware Virtual Disk Development Kit (VDDK) をダウンロードして、VDDK イメージをビルドし、VDDK イメージをイメージレジストリーにプッシュできます。VDDK イメージを v2v-vmware 設定マップに追加します。

前提条件

  • OpenShift Container Platform 内部イメージレジストリーまたはセキュアな外部レジストリーにアクセスできる必要がある。

手順

  1. 一時ディレクトリーを作成し、これに移動します。

    $ mkdir /tmp/<dir_name> && cd /tmp/<dir_name>
  2. ブラウザーで VMware code に移動し、SDKs をクリックします。
  3. Compute VirtualizationVirtual Disk Development Kit(VDDK) をクリックします。
  4. VMware vSphere のバージョンに対応する VDDK バージョンを選択します。たとえば、vSphere 7.0 の場合は VDDK 7.0 を選択し、Download をクリックしてから、VDDK アーカイブを一時ディレクトリーに保存します。
  5. VDDK アーカイブを展開します。

    $ tar -xzf VMware-vix-disklib-<version>.x86_64.tar.gz
  6. Dockerfile を作成します。

    $ cat > Dockerfile <<EOF
    FROM busybox:latest
    COPY vmware-vix-disklib-distrib /vmware-vix-disklib-distrib
    RUN mkdir -p /opt
    ENTRYPOINT ["cp", "-r", "/vmware-vix-disklib-distrib", "/opt"]
    EOF
  7. イメージをビルドします。

    $ podman build . -t <registry_route_or_server_path>/vddk:<tag> 1
    1
    イメージレジストリーを指定します。
    • 内部 OpenShift Container Platform レジストリーの場合は、内部レジストリールート (例: image-registry.openshift-image-registry.svc:5000/openshift/vddk:<tag>) を使用します。
    • 外部レジストリーの場合は、サーバー名、パスおよびタグを指定します (例: server.example.com:5000/vddk:<tag>)。
  8. イメージをレジストリーにプッシュします。

    $ podman push <registry_route_or_server_path>/vddk:<tag>
  9. イメージが OpenShift virtualization 環境からアクセスできることを確認します。
  10. openshift-cnv プロジェクトで v2v-vmware 設定マップを編集します。

    $ oc edit configmap v2v-vmware -n openshift-cnv
  11. vddk-init-image パラメーターを data スタンザに追加します。

    ...
    data:
      vddk-init-image: <registry_route_or_server_path>/vddk:<tag>
7.15.5.3. VM Import ウィザードを使用した仮想マシンのインポート

VM Import ウィザードを使用して、単一の仮想マシンをインポートできます。

仮想マシンテンプレートをインポートすることもできます。VM テンプレートをインポートする場合、OpenShift Virtualization はテンプレートに基づいて仮想マシンを作成します。

前提条件

  • 管理者ユーザー権限があること。
  • VMware Virtual Disk Development Kit (VDDK) イメージは、OpenShift Virtualization 環境からアクセスできるイメージレジストリーにある。
  • VDDK イメージは v2v-vmware 設定マップに追加されている。
  • 仮想マシンの電源がオフになっている。
  • 仮想ディスクが IDE または SCSI コントローラーに接続されている。仮想ディスクが SATA コントローラーに接続されている場合は、それらを IDE コントローラーに変更してから、仮想マシンを移行できます。
  • OpenShift Virtualization のローカルおよび共有永続ストレージクラスは、仮想マシンのインポートをサポートする必要があります。
  • OpenShift Virtualization ストレージは、仮想ディスクに対応するのに十分な大きさである。

    警告

    Ceph RBD ブロックモードのボリュームを使用している場合、ストレージは仮想ディスクに対応するのに十分な大きさである必要があります。ディスクが利用可能なストレージに対して大きすぎると、インポートプロセスが失敗し、仮想ディスクのコピーに使用される PV は解放されません。オブジェクトの削除をサポートするためのリソースが十分にないため、別の仮想マシンをインポートしたり、ストレージをクリーンアップしたりすることはできません。この状況を解決するには、ストレージバックエンドにオブジェクトストレージデバイスをさらに追加する必要があります。

  • OpenShift Virtualization egress ネットワークポリシーは以下のトラフィックを許可する必要がある。

    宛先プロトコルポート

    VMware ESXi ホスト

    TCP

    443

    VMware ESXi ホスト

    TCP

    902

    VMware vCenter

    TCP

    5840

手順

  1. Web コンソールで、WorkloadsVirtual Machines をクリックします。
  2. Create Virtual Machine をクリックし、Import with Wizard を選択します。
  3. Provider 一覧から、VMware を選択します。
  4. Connect to New Instance または保存された vCenter インスタンスを選択します。

    • Connect to New Instance を選択する場合、vCenter hostnameUsernamePassword を入力します。
    • 保存された vCenter インスタンスを選択する場合、ウィザードは保存された認証情報を使用して vCenter に接続します。
  5. Check and Save をクリックし、接続が完了するまで待ちます。

    注記

    接続の詳細はシークレットに保存されます。ホスト名、ユーザー名、またはパスワードが正しくないプロバイダーを追加した場合は、WorkloadsSecrets をクリックし、プロバイダーのシークレットを削除します。

  6. 仮想マシンまたはテンプレートを選択します。
  7. Next をクリックします。
  8. Review 画面で、設定を確認します。
  9. Edit をクリックして、以下の設定を更新します。

    • General:

      • 説明
      • オペレーティングシステム
      • Flavor
      • Memory
      • CPU
      • Workload Profile
    • Networking:

      • 名前
      • Model
      • Network
      • Type
      • MAC Address
    • ストレージ: 仮想マシンディスクの Options メニュー kebab をクリックし、Edit を選択して以下のフィールドを更新します。

      • 名前
      • Source: Import Disk など。
      • Size
      • Interface
      • Storage Class: NFS または ocs-storagecluster-ceph-rbd (ceph-rbd) を選択します。

        ocs-storagecluster-ceph-rbd を選択する場合、ディスクの Volume ModeBlock に設定する必要があります。

        他のストレージクラスは機能する可能性がありますが、正式にサポートされていません。

      • AdvancedVolume Mode: Block を選択します。
      • AdvancedAccess Mode
    • AdvancedCloud-init:

      • Form: Hostname および Authenticated SSH Keys を入力します。
      • Custom script: テキストフィールドに cloud-init スクリプトを入力します。
    • AdvancedVirtual Hardware: 仮想 CD-ROM をインポートされた仮想マシンに割り当てることができます。
  10. インポート設定を編集した場合は、Import または Review and Import をクリックします。

    Successfully created virtual machine というメッセージが表示され、仮想マシンに作成されたリソースの一覧が表示されます。仮想マシンが WorkloadsVirtual Machines に表示されます。

仮想マシンウィザードのフィールド
名前パラメーター説明

名前

 

この名前には、小文字 (a-z)、数字 (0-9)、およびハイフン (-) を含めることができ、最大 253 文字を使用できます。最初と最後の文字は英数字にする必要があります。この名前には、大文字、スペース、ピリオド (.)、または特殊文字を使用できません。

説明

 

オプションの説明フィールド。

Operating System

 

テンプレートで仮想マシン用に選択される主なオペレーティングシステム。テンプレートから仮想マシンを作成する場合、このフィールドを編集することはできません。

Boot Source

URL を使用したインポート (PVC の作成)

HTTP または HTTPS エンドポイントで利用できるイメージからコンテンツをインポートします。例: オペレーティングシステムイメージのある Web ページから URL リンクを取得します。

既存の PVC のクローン作成 (PVC の作成)

クラスターで利用可能な既存の永続ボリューム要求 (PVC) を選択し、これをクローンします。

レジストリーを使用したインポート (PVC の作成)

クラスターからアクセスできるレジストリーの起動可能なオペレーティングシステムコンテナーから仮想マシンをプロビジョニングします。例: kubevirt/cirros-registry-disk-demo

PXE (ネットワークブート: ネットワークインターフェイスの追加)

ネットワークのサーバーからオペレーティングシステムを起動します。PXE ブート可能なネットワーク接続定義が必要です。

永続ボリューム要求 (PVC) のプロジェクト

 

PVC のクローン作成に使用するプロジェクト名。

永続ボリューム要求 (PVC) の名前

 

既存の PVC のクローンを作成する場合にこの仮想マシンテンプレートに適用する必要のある PVC 名。

これを CD-ROM ブートソースとしてマウントする

 

CD-ROM には、オペレーティングシステムをインストールするための追加のディスクが必要です。チェックボックスを選択して、ディスクを追加し、後でカスタマイズします。

Flavor

Tiny、Small、Medium、Large、Custom

仮想マシンに割り当てられる CPU およびメモリーの量を決定するプリセット。Flavor に設定される Preset はオペレーティングシステムによって決まります。

Workload Type

Desktop

デスクトップで使用するための仮想マシン設定。小規模な環境での使用に適しています。Web コンソールでの使用に推奨されます。

Server

パフォーマンスのバランスを図り、さまざまなサーバーのワークロードと互換性があります。

High-Performance

高パフォーマンスのワークロードに対して最適化された仮想マシン設定。

作成後にこの仮想マシンを起動します。

 

このチェックボックスはデフォルトで選択され、仮想マシンは作成後に実行を開始します。仮想マシンの作成時に起動する必要がない場合は、チェックボックスをクリアします。

Cloud-init フィールド
名前説明

Hostname

仮想マシンの特定のホスト名を設定します。

認可された SSH キー

仮想マシンの ~/.ssh/authorized_keys にコピーされるユーザーの公開鍵。

カスタムスクリプト

他のオプションを、カスタム cloud-init スクリプトを貼り付けるフィールドに置き換えます。

ネットワークフィールド
名前説明

名前

ネットワークインターフェイスコントローラーの名前。

モデル

ネットワークインターフェイスコントローラーのモデルを示します。サポートされる値は e1000e および virtio です。

ネットワーク

利用可能なネットワーク接続定義の一覧。

Type

利用可能なバインディングメソッドの一覧。デフォルトの Pod ネットワークについては、masquerade が唯一の推奨されるバインディングメソッドになります。セカンダリーネットワークの場合は、 bridge バインディングメソッドを使用します。masquerade メソッドは、デフォルト以外のネットワークではサポートされません。SR-IOV ネットワークデバイスを設定し、namespace でそのネットワークを定義した場合は、SR-IOV を選択します。

MAC Address

ネットワークインターフェイスコントローラーの MAC アドレス。MAC アドレスが指定されていない場合、これは自動的に割り当てられます。

ストレージフィールド
名前選択説明

Source

空白 (PVC の作成)

空のディスクを作成します。

URL を使用したインポート (PVC の作成)

URL (HTTP または HTTPS エンドポイント) を介してコンテンツをインポートします。

既存 PVC の使用

クラスターですでに利用可能な PVC を使用します。

既存の PVC のクローン作成 (PVC の作成)

クラスターで利用可能な既存の PVC を選択し、このクローンを作成します。

レジストリーを使用したインポート (PVC の作成)

コンテナーレジストリーを使用してコンテンツをインポートします。

コンテナー (一時的)

クラスターからアクセスできるレジストリーにあるコンテナーからコンテンツをアップロードします。コンテナーディスクは、CD-ROM や一時的な仮想マシンなどの読み取り専用ファイルシステムにのみ使用する必要があります。

名前

 

ディスクの名前。この名前には、小文字 (a-z)、数字 (0-9)、ハイフン (-) およびピリオド (.) を含めることができ、最大 253 文字を使用できます。最初と最後の文字は英数字にする必要があります。この名前には、大文字、スペース、または特殊文字を使用できません。

Size

 

ディスクのサイズ (GiB 単位)。

Type

 

ディスクのタイプ。例: Disk または CD-ROM

Interface

 

ディスクデバイスのタイプ。サポートされるインターフェイスは、virtIOSATA、および SCSI です。

Storage Class

 

ディスクの作成に使用されるストレージクラス。

Advanced → Volume Mode

 

永続ボリュームがフォーマットされたファイルシステムまたは raw ブロック状態を使用するかどうかを定義します。デフォルトは Filesystem です。

Advanced → Access Mode

 

永続ボリュームのアクセスモード。サポートされるアクセスモードは、Single User (RWO)Shared Access (RWX)、および Read Only (ROX) です。

ストレージの詳細設定

以下のストレージの詳細設定は、BlankImport via URLURL、および Clone existing PVC ディスクで利用できます。これらのパラメーターはオプションです。これらのパラメーターを指定しない場合、システムは kubevirt-storage-class-defaults 設定マップのデフォルト値を使用します。

名前パラメーター説明

ボリュームモード

Filesystem

ファイルシステムベースのボリュームで仮想ディスクを保存します。

Block

ブロックボリュームで仮想ディスクを直接保存します。基礎となるストレージがサポートしている場合は、 Block を使用します。

アクセスモード

Single User (RWO)

ディスクは単一ノードで読み取り/書き込みとしてマウントできます。

Shared Access (RWX)

ディスクは数多くのノードで読み取り/書き込みとしてマウントできます。

注記

これは、ノード間の仮想マシンのライブマイグレーションなどの、一部の機能で必要になります。

Read Only (ROX)

ディスクは数多くのノードで読み取り専用としてマウントできます。

7.15.5.3.1. インポートされた仮想マシンの NIC 名の更新

VMware からインポートされた仮想マシンの NIC 名を、 OpenShift Virtualization の命名規則に適合するように更新する必要があります。

手順

  1. 仮想マシンにログインします。
  2. /etc/sysconfig/network-scripts ディレクトリーに移動します。
  3. ネットワーク設定ファイルの名前を変更します。

    $ mv vmnic0 ifcfg-eth0 1
    1
    ネットワーク設定ファイルの名前を ifcfg-eth0 に変更します。追加のネットワーク設定ファイルには、ifcfg-eth1ifcfg-eth2 などの番号が順番に付けられます。
  4. ネットワーク設定ファイルで NAME および DEVICE パラメーターを更新します。

    NAME=eth0
    DEVICE=eth0
  5. ネットワークを再起動します。

    $ systemctl restart network
7.15.5.4. 仮想マシンのインポートのトラブルシューティング
7.15.5.4.1. ログ

V2V Conversion Pod ログでエラーの有無を確認できます。

手順

  1. 以下のコマンドを実行して、V2V Conversion Pod 名を表示します。

    $ oc get pods -n <namespace> | grep v2v 1
    1
    インポートされた仮想マシンの namespace を指定します。

    出力例

    kubevirt-v2v-conversion-f66f7d-zqkz7            1/1     Running     0          4h49m

  2. 以下のコマンドを実行して V2V Conversion Pod ログを表示します。

    $ oc logs <kubevirt-v2v-conversion-f66f7d-zqkz7> -f -n <namespace> 1
    1
    VM Conversion Pod 名および namespace を指定します。
7.15.5.4.2. エラーメッセージ

以下のエラーメッセージが表示される場合があります。

  • インポート前に VMware 仮想マシンがシャットダウンされない場合、OpenShift Container Platform コンソールのインポートされた仮想マシンにはエラーメッセージ Readiness probe failed が表示され、V2V Conversion Pod ログには以下のエラーメッセージが表示されます。

    INFO - have error: ('virt-v2v error: internal error: invalid argument: libvirt domain ‘v2v_migration_vm_1’ is running or paused. It must be shut down in order to perform virt-v2v conversion',)"
  • 管理者以外のユーザーが仮想マシンのインポートを試みると、以下のエラーメッセージが OpenShift Container Platform コンソールに表示されます。

    Could not load config map vmware-to-kubevirt-os in kube-public namespace
    Restricted Access: configmaps "vmware-to-kubevirt-os" is forbidden: User cannot get resource "configmaps" in API group "" in the namespace "kube-public"

    仮想マシンをインポートできるのは、管理者ユーザーのみです。

7.16. 仮想マシンのクローン作成

7.16.1. 複数の namespace 間でデータボリュームをクローン作成するためのユーザーパーミッションの有効化

namespace には相互に分離する性質があるため、ユーザーはデフォルトでは namespace をまたがってリソースのクローンを作成することができません。

ユーザーが仮想マシンのクローンを別の namespace に作成できるようにするには、cluster-admin ロールを持つユーザーが新規のクラスターロールを作成する必要があります。このクラスターロールをユーザーにバインドし、それらのユーザーが仮想マシンのクローンを宛先 namespace に対して作成できるようにします。

7.16.1.1. 前提条件
  • cluster-admin ロールを持つユーザーのみがクラスターロールを作成できること。
7.16.1.2. データボリュームについて

DataVolume オブジェクトは、Containerized Data Importer (CDI) プロジェクトで提供されるカスタムリソースです。データボリュームは、基礎となる永続ボリューム要求 (PVC) に関連付けられるインポート、クローン作成、およびアップロード操作のオーケストレーションを行います。データボリュームは OpenShift Virtualization に統合され、仮想マシンが PVC の作成前に起動することを防ぎます。

7.16.1.3. データボリュームのクローン作成のための RBAC リソースの作成

datavolumes リソースのすべてのアクションのパーミッションを有効にする新規のくスターロールを作成します。

手順

  1. ClusterRole マニフェストを作成します。

    apiVersion: rbac.authorization.k8s.io/v1
    kind: ClusterRole
    metadata:
      name: <datavolume-cloner> 1
    rules:
    - apiGroups: ["cdi.kubevirt.io"]
      resources: ["datavolumes/source"]
      verbs: ["*"]
    1
    クラスターロールの一意の名前。
  2. クラスターにクラスターロールを作成します。

    $ oc create -f <datavolume-cloner.yaml> 1
    1
    直前の手順で作成された ClusterRole マニフェストのファイル名です。
  3. 移行元および宛先 namespace の両方に適用される RoleBinding マニフェストを作成し、直前の手順で作成したクラスターロールを参照します。

    apiVersion: rbac.authorization.k8s.io/v1
    kind: RoleBinding
    metadata:
      name: <allow-clone-to-user> 1
      namespace: <Source namespace> 2
    subjects:
    - kind: ServiceAccount
      name: default
      namespace: <Destination namespace> 3
    roleRef:
      kind: ClusterRole
      name: datavolume-cloner 4
      apiGroup: rbac.authorization.k8s.io
    1
    ロールバインディングの一意の名前。
    2
    ソースデータボリュームの namespace。
    3
    データボリュームのクローンが作成される namespace。
    4
    直前の手順で作成したクラスターロールの名前。
  4. クラスターにロールバインディングを作成します。

    $ oc create -f <datavolume-cloner.yaml> 1
    1
    直前の手順で作成された RoleBinding マニフェストのファイル名です。

7.16.2. 新規データボリュームへの仮想マシンディスクのクローン作成

データボリューム設定ファイルでソース PVC を参照し、新規データボリュームに仮想マシンディスクの永続ボリューム要求 (PVC) のクローンを作成できます。

警告

異なるボリュームモード間でのクローン作成操作はサポートされていません。volumeMode の値は、ソースとターゲットの両方の仕様で一致している必要があります。

たとえば、volumeMode: Block の永続ボリューム (PV) から volumeMode: Filesystem の PV へのクローン作成を試行する場合、操作はエラーメッセージを出して失敗します。

7.16.2.1. 前提条件
  • ユーザーは、仮想マシンディスクの PVC のクローンを別の namespace に作成するために 追加のパーミッション が必要である。
7.16.2.2. データボリュームについて

DataVolume オブジェクトは、Containerized Data Importer (CDI) プロジェクトで提供されるカスタムリソースです。データボリュームは、基礎となる永続ボリューム要求 (PVC) に関連付けられるインポート、クローン作成、およびアップロード操作のオーケストレーションを行います。データボリュームは OpenShift Virtualization に統合され、仮想マシンが PVC の作成前に起動することを防ぎます。

7.16.2.3. 新規データボリュームへの仮想マシンディスクの永続ボリューム要求 (PVC) のクローン作成

既存の仮想マシンディスクの永続ボリューム要求 (PVC) のクローンを新規データボリュームに作成できます。その後、新規データボリュームは新規の仮想マシンに使用できます。

注記

データボリュームが仮想マシンとは別に作成される場合、データボリュームのライフサイクルは仮想マシンから切り離されます。仮想マシンが削除されても、データボリュームもその関連付けられた PVC も削除されません。

前提条件

  • 使用する既存の仮想マシンディスクの PVC を判別すること。クローン作成の前に、PVC に関連付けられた仮想マシンの電源を切る必要があります。
  • OpenShift CLI (oc) をインストールしている。

手順

  1. 関連付けられた PVC の名前および namespace を特定するために、クローン作成に必要な仮想マシンディスクを確認します。
  2. 新規データボリュームの名前、ソース PVC の名前および namespace、および新規データボリュームのサイズを指定するデータボリュームの YAML ファイルを作成します。

    以下に例を示します。

    apiVersion: cdi.kubevirt.io/v1beta1
    kind: DataVolume
    metadata:
      name: <cloner-datavolume> 1
    spec:
      source:
        pvc:
          namespace: "<source-namespace>" 2
          name: "<my-favorite-vm-disk>" 3
      pvc:
        accessModes:
          - ReadWriteOnce
        resources:
          requests:
            storage: <2Gi> 4
    1
    新規データボリュームの名前。
    2
    ソース PVC が存在する namespace。
    3
    ソース PVC の名前。
    4
    新規データボリュームのサイズ。十分な領域を割り当てる必要があります。そうでない場合には、クローン操作は失敗します。サイズはソース PVC と同じか、またはそれよりも大きくなければなりません。
  3. データボリュームを作成して PVC のクローン作成を開始します。

    $ oc create -f <cloner-datavolume>.yaml
    注記

    データボリュームは仮想マシンが PVC の作成前に起動することを防ぐため、PVC のクローン作成中に新規データボリュームを参照する仮想マシンを作成できます。

7.16.2.4. テンプレート: データボリュームクローン設定ファイル

example-clone-dv.yaml

apiVersion: cdi.kubevirt.io/v1beta1
kind: DataVolume
metadata:
  name: "example-clone-dv"
spec:
  source:
      pvc:
        name: source-pvc
        namespace: example-ns
  pvc:
    accessModes:
      - ReadWriteOnce
    resources:
      requests:
        storage: "1G"
7.16.2.5. CDI がサポートする操作マトリックス

このマトリックスにはエンドポイントに対してコンテンツタイプのサポートされる CDI 操作が表示されます。これらの操作にはスクラッチ領域が必要です。

コンテンツタイプHTTPHTTPSHTTP Basic 認証レジストリーアップロード

kubevirt (QCOW2)

✓ QCOW2
✓ GZ*
✓ XZ*

✓ QCOW2**
✓ GZ*
✓ XZ*

✓ QCOW2
✓ GZ*
✓ XZ*

✓ QCOW2*
□ GZ
□ XZ

✓ QCOW2*
✓ GZ*
✓ XZ*

KubeVirt (RAW)

✓ RAW
✓ GZ
✓ XZ

✓ RAW
✓ GZ
✓ XZ

✓ RAW
✓ GZ
✓ XZ

✓ RAW*
□ GZ
□ XZ

✓ RAW*
✓ GZ*
✓ XZ*

✓ サポートされる操作

□ サポートされない操作

* スクラッチ領域が必要

**カスタム認証局が必要な場合にスクラッチ領域が必要

7.16.3. データボリュームテンプレートの使用による仮想マシンのクローン作成

既存の仮想マシンの永続ボリューム要求 (PVC) のクローン作成により、新規の仮想マシンを作成できます。dataVolumeTemplate を仮想マシン設定ファイルに含めることにより、元の PVC から新規のデータボリュームを作成します。

警告

異なるボリュームモード間でのクローン作成操作はサポートされていません。volumeMode の値は、ソースとターゲットの両方の仕様で一致している必要があります。

たとえば、volumeMode: Block の永続ボリューム (PV) から volumeMode: Filesystem の PV へのクローン作成を試行する場合、操作はエラーメッセージを出して失敗します。

7.16.3.1. 前提条件
  • ユーザーは、仮想マシンディスクの PVC のクローンを別の namespace に作成するために 追加のパーミッション が必要である。
7.16.3.2. データボリュームについて

DataVolume オブジェクトは、Containerized Data Importer (CDI) プロジェクトで提供されるカスタムリソースです。データボリュームは、基礎となる永続ボリューム要求 (PVC) に関連付けられるインポート、クローン作成、およびアップロード操作のオーケストレーションを行います。データボリュームは OpenShift Virtualization に統合され、仮想マシンが PVC の作成前に起動することを防ぎます。

7.16.3.3. データボリュームテンプレートの使用による、クローン作成された永続ボリューム要求 (PVC) からの仮想マシンの新規作成

既存の仮想マシンの永続ボリューム要求 (PVC) のクローンをデータボリュームに作成する仮想マシンを作成できます。仮想マシンマニフェストの dataVolumeTemplate を参照することにより、source PVC のクローンがデータボリュームに作成され、これは次に仮想マシンを作成するために自動的に使用されます。

注記

データボリュームが仮想マシンのデータボリュームテンプレートの一部として作成されると、データボリュームのライフサイクルは仮想マシンに依存します。つまり、仮想マシンが削除されると、データボリュームおよび関連付けられた PVC も削除されます。

前提条件

  • 使用する既存の仮想マシンディスクの PVC を判別すること。クローン作成の前に、PVC に関連付けられた仮想マシンの電源を切る必要があります。
  • OpenShift CLI (oc) をインストールしている。

手順

  1. 関連付けられた PVC の名前および namespace を特定するために、クローン作成に必要な仮想マシンを確認します。
  2. VirtualMachine オブジェクトの YAML ファイルを作成します。以下の仮想マシンのサンプルでは、source-namespace namespace にある my-favorite-vm-disk のクローンを作成します。favorite-clone という 2Gi データは my-favorite-vm-disk から作成されます。

    以下に例を示します。

    apiVersion: kubevirt.io/v1alpha3
    kind: VirtualMachine
    metadata:
      labels:
        kubevirt.io/vm: vm-dv-clone
      name: vm-dv-clone 1
    spec:
      running: false
      template:
        metadata:
          labels:
            kubevirt.io/vm: vm-dv-clone
        spec:
          domain:
            devices:
              disks:
              - disk:
                  bus: virtio
                name: root-disk
            resources:
              requests:
                memory: 64M
          volumes:
          - dataVolume:
              name: favorite-clone
            name: root-disk
      dataVolumeTemplates:
      - metadata:
          name: favorite-clone
        spec:
          pvc:
            accessModes:
            - ReadWriteOnce
            resources:
              requests:
                storage: 2Gi
          source:
            pvc:
              namespace: "source-namespace"
              name: "my-favorite-vm-disk"
    1
    作成する仮想マシン。
  3. PVC のクローンが作成されたデータボリュームで仮想マシンを作成します。

    $ oc create -f <vm-clone-datavolumetemplate>.yaml
7.16.3.4. テンプレート: データボリューム仮想マシン設定ファイル

example-dv-vm.yaml

apiVersion: kubevirt.io/v1alpha3
kind: VirtualMachine
metadata:
  labels:
    kubevirt.io/vm: example-vm
  name: example-vm
spec:
  dataVolumeTemplates:
  - metadata:
      name: example-dv
    spec:
      pvc:
        accessModes:
        - ReadWriteOnce
        resources:
          requests:
            storage: 1G
      source:
          http:
             url: "" 1
  running: false
  template:
    metadata:
      labels:
        kubevirt.io/vm: example-vm
    spec:
      domain:
        cpu:
          cores: 1
        devices:
          disks:
          - disk:
              bus: virtio
            name: example-dv-disk
        machine:
          type: q35
        resources:
          requests:
            memory: 1G
      terminationGracePeriodSeconds: 0
      volumes:
      - dataVolume:
          name: example-dv
        name: example-dv-disk
1
インポートする必要のあるイメージの HTTP ソース (該当する場合)。
7.16.3.5. CDI がサポートする操作マトリックス

このマトリックスにはエンドポイントに対してコンテンツタイプのサポートされる CDI 操作が表示されます。これらの操作にはスクラッチ領域が必要です。

コンテンツタイプHTTPHTTPSHTTP Basic 認証レジストリーアップロード

kubevirt (QCOW2)

✓ QCOW2
✓ GZ*
✓ XZ*

✓ QCOW2**
✓ GZ*
✓ XZ*

✓ QCOW2
✓ GZ*
✓ XZ*

✓ QCOW2*
□ GZ
□ XZ

✓ QCOW2*
✓ GZ*
✓ XZ*

KubeVirt (RAW)

✓ RAW
✓ GZ
✓ XZ

✓ RAW
✓ GZ
✓ XZ

✓ RAW
✓ GZ
✓ XZ

✓ RAW*
□ GZ
□ XZ

✓ RAW*
✓ GZ*
✓ XZ*

✓ サポートされる操作

□ サポートされない操作

* スクラッチ領域が必要

**カスタム認証局が必要な場合にスクラッチ領域が必要

7.16.4. 新規ブロックストレージデータボリュームへの仮想マシンディスクのクローン作成

データボリューム設定ファイルでソース PVC を参照し、新規ブロックデータボリュームに仮想マシンディスクの永続ボリューム要求 (PVC) のクローンを作成できます。

警告

異なるボリュームモード間でのクローン作成操作はサポートされていません。volumeMode の値は、ソースとターゲットの両方の仕様で一致している必要があります。

たとえば、volumeMode: Block の永続ボリューム (PV) から volumeMode: Filesystem の PV へのクローン作成を試行する場合、操作はエラーメッセージを出して失敗します。

7.16.4.1. 前提条件
  • ユーザーは、仮想マシンディスクの PVC のクローンを別の namespace に作成するために 追加のパーミッション が必要である。
7.16.4.2. データボリュームについて

DataVolume オブジェクトは、Containerized Data Importer (CDI) プロジェクトで提供されるカスタムリソースです。データボリュームは、基礎となる永続ボリューム要求 (PVC) に関連付けられるインポート、クローン作成、およびアップロード操作のオーケストレーションを行います。データボリュームは OpenShift Virtualization に統合され、仮想マシンが PVC の作成前に起動することを防ぎます。

7.16.4.3. ブロック永続ボリュームについて

ブロック永続ボリューム (PV) は、raw ブロックデバイスによってサポートされる PV です。これらのボリュームにはファイルシステムがなく、オーバーヘッドを削減することで、仮想マシンのパフォーマンス上の利点をもたらすことができます。

raw ブロックボリュームは、PV および永続ボリューム要求 (PVC) 仕様で volumeMode: Block を指定してプロビジョニングされます。

7.16.4.4. ローカルブロック永続ボリュームの作成

ファイルにデータを設定し、これをループデバイスとしてマウントすることにより、ノードでローカルブロック永続ボリューム (PV) を作成します。次に、このループデバイスを PV マニフェストで Block ボリュームとして参照し、これを仮想マシンイメージのブロックデバイスとして使用できます。

手順

  1. ローカル PV を作成するノードに root としてログインします。この手順では、node01 を例に使用します。
  2. ファイルを作成して、これを null 文字で設定し、ブロックデバイスとして使用できるようにします。以下の例では、2Gb (20 100Mb ブロック) のサイズのファイル loop10 を作成します。

    $ dd if=/dev/zero of=<loop10> bs=100M count=20
  3. loop10 ファイルをループデバイスとしてマウントします。

    $ losetup </dev/loop10>d3 <loop10> 1 2
    1
    ループデバイスがマウントされているファイルパスです。
    2
    前の手順で作成したファイルはループデバイスとしてマウントされます。
  4. マウントされたループデバイスを参照する PersistentVolume マニフェストを作成します。

    kind: PersistentVolume
    apiVersion: v1
    metadata:
      name: <local-block-pv10>
      annotations:
    spec:
      local:
        path: </dev/loop10> 1
      capacity:
        storage: <2Gi>
      volumeMode: Block 2
      storageClassName: local 3
      accessModes:
        - ReadWriteOnce
      persistentVolumeReclaimPolicy: Delete
      nodeAffinity:
        required:
          nodeSelectorTerms:
          - matchExpressions:
            - key: kubernetes.io/hostname
              operator: In
              values:
              - <node01> 4
    1
    ノード上のループデバイスのパス。
    2
    ブロック PV であることを指定します。
    3
    オプション: PV にストレージクラスを設定します。これを省略する場合、クラスターのデフォルトが使用されます。
    4
    ブロックデバイスがマウントされたノード。
  5. ブロック PV を作成します。

    # oc create -f <local-block-pv10.yaml>1
    1
    直前の手順で作成された永続ボリュームのファイル名。
7.16.4.5. 新規データボリュームへの仮想マシンディスクの永続ボリューム要求 (PVC) のクローン作成

既存の仮想マシンディスクの永続ボリューム要求 (PVC) のクローンを新規データボリュームに作成できます。その後、新規データボリュームは新規の仮想マシンに使用できます。

注記

データボリュームが仮想マシンとは別に作成される場合、データボリュームのライフサイクルは仮想マシンから切り離されます。仮想マシンが削除されても、データボリュームもその関連付けられた PVC も削除されません。

前提条件

  • 使用する既存の仮想マシンディスクの PVC を判別すること。クローン作成の前に、PVC に関連付けられた仮想マシンの電源を切る必要があります。
  • OpenShift CLI (oc) をインストールしている。
  • ソース PVC と同じか、またはこれよりも大きい 1 つ以上の利用可能なブロック永続ボリューム (PV)。

手順

  1. 関連付けられた PVC の名前および namespace を特定するために、クローン作成に必要な仮想マシンディスクを確認します。
  2. 新規データボリュームの名前、ソース PVC の名前および namespace、利用可能なブロック PV を使用できるようにするために volumeMode: Block、および新規データボリュームのサイズを指定するデータボリュームの YAML ファイルを作成します。

    以下に例を示します。

    apiVersion: cdi.kubevirt.io/v1beta1
    kind: DataVolume
    metadata:
      name: <cloner-datavolume> 1
    spec:
      source:
        pvc:
          namespace: "<source-namespace>" 2
          name: "<my-favorite-vm-disk>" 3
      pvc:
        accessModes:
          - ReadWriteOnce
        resources:
          requests:
            storage: <2Gi> 4
        volumeMode: Block 5
    1
    新規データボリュームの名前。
    2
    ソース PVC が存在する namespace。
    3
    ソース PVC の名前。
    4
    新規データボリュームのサイズ。十分な領域を割り当てる必要があります。そうでない場合には、クローン操作は失敗します。サイズはソース PVC と同じか、またはそれよりも大きくなければなりません。
    5
    宛先がブロック PV であることを指定します。
  3. データボリュームを作成して PVC のクローン作成を開始します。

    $ oc create -f <cloner-datavolume>.yaml
    注記

    データボリュームは仮想マシンが PVC の作成前に起動することを防ぐため、PVC のクローン作成中に新規データボリュームを参照する仮想マシンを作成できます。

7.16.4.6. CDI がサポートする操作マトリックス

このマトリックスにはエンドポイントに対してコンテンツタイプのサポートされる CDI 操作が表示されます。これらの操作にはスクラッチ領域が必要です。

コンテンツタイプHTTPHTTPSHTTP Basic 認証レジストリーアップロード

kubevirt (QCOW2)

✓ QCOW2
✓ GZ*
✓ XZ*

✓ QCOW2**
✓ GZ*
✓ XZ*

✓ QCOW2
✓ GZ*
✓ XZ*

✓ QCOW2*
□ GZ
□ XZ

✓ QCOW2*
✓ GZ*
✓ XZ*

KubeVirt (RAW)

✓ RAW
✓ GZ
✓ XZ

✓ RAW
✓ GZ
✓ XZ

✓ RAW
✓ GZ
✓ XZ

✓ RAW*
□ GZ
□ XZ

✓ RAW*
✓ GZ*
✓ XZ*

✓ サポートされる操作

□ サポートされない操作

* スクラッチ領域が必要

**カスタム認証局が必要な場合にスクラッチ領域が必要

7.17. 仮想マシンのネットワーク

7.17.1. デフォルトの Pod ネットワーク用の仮想マシンの設定

masquerade バインディングモードを使用するようにネットワークインターフェイスを設定することで、仮想マシンをデフォルトの内部 Pod ネットワークに接続できます。

注記

KubeMacPool コンポーネントは、指定の namespace に仮想マシン NIC の MAC アドレスプールサービスを提供します。これはデフォルトで有効にされません。KubeMacPool ラベルをその namespace に適用して、namespace の MAC アドレスプールを有効にします

7.17.1.1. コマンドラインでのマスカレードモードの設定

マスカレードモードを使用し、仮想マシンの送信トラフィックを Pod IP アドレスの背後で非表示にすることができます。マスカレードモードは、ネットワークアドレス変換 (NAT) を使用して仮想マシンを Linux ブリッジ経由で Pod ネットワークバックエンドに接続します。

仮想マシンの設定ファイルを編集して、マスカレードモードを有効にし、トラフィックが仮想マシンに到達できるようにします。

前提条件

  • 仮想マシンは、IPv4 アドレスを取得するために DHCP を使用できるように設定される必要がある。以下の例では、DHCP を使用するように設定されます。

手順

  1. 仮想マシン設定ファイルの interfaces 仕様を編集します。

    kind: VirtualMachine
    spec:
      domain:
        devices:
          interfaces:
            - name: default
              masquerade: {} 1
              ports:
                - port: 80 2
      networks:
      - name: default
        pod: {}
    1
    マスカレードモードを使用した接続
    2
    オプション: 仮想マシンから公開するポートを、port フィールドで指定して一覧表示します。port の値は 0 から 65536 の間の数字である必要があります。ports 配列を使用しない場合、有効な範囲内の全ポートが受信トラフィックに対して開きます。この例では、着信トラフィックはポート 80 で許可されます。
    注記

    ポート 49152 および 49153 は libvirt プラットフォームで使用するために予約され、これらのポートへの他のすべての受信トラフィックは破棄されます。

  2. 仮想マシンを作成します。

    $ oc create -f <vm-name>.yaml
7.17.1.2. 仮想マシンからのサービスの作成

仮想マシンを公開するために Service オブジェクトを最初に作成し、実行中の仮想マシンからサービスを作成します。

ClusterIP サービスタイプは、クラスター内で仮想マシンを内部に公開します。NodePort または LoadBalancer サービスタイプは、クラスター外から仮想マシンを外部に公開します。

この手順では、type: ClusterIPService オブジェクトを仮想マシンバックエンドサービスとして作成し、これに接続し、公開する方法についての例を示します。

注記

ClusterIP は、サービスの type が指定されていない場合のデフォルトサービスの type です。

手順

  1. 以下のように仮想マシンの YAML を編集します。

    apiVersion: kubevirt.io/v1alpha3
    kind: VirtualMachine
    metadata:
      name: vm-ephemeral
      namespace: example-namespace
    spec:
      running: false
      template:
        metadata:
          labels:
            special: key 1
        spec:
          domain:
            devices:
              disks:
                - name: containerdisk
                  disk:
                    bus: virtio
                - name: cloudinitdisk
                  disk:
                    bus: virtio
              interfaces:
              - masquerade: {}
                name: default
            resources:
              requests:
                memory: 1024M
          networks:
            - name: default
              pod: {}
          volumes:
            - name: containerdisk
              containerDisk:
                image: kubevirt/fedora-cloud-container-disk-demo
            - name: cloudinitdisk
              cloudInitNoCloud:
                userData: |
                  #!/bin/bash
                  echo "fedora" | passwd fedora --stdin
    1
    ラベル special: keyspec.template.metadata.labels セクションに追加します。
    注記

    仮想マシンのラベルは Pod に渡されます。VirtualMachine 設定のラベル (例: special: key) は、この手順の後で作成する Service YAML selector 属性のラベルに一致する必要があります。

  2. 仮想マシン YAML を保存して変更を適用します。
  3. Service YAML を編集し、Service オブジェクトを作成し、公開するために必要な設定を行います。

    apiVersion: v1
    kind: Service
    metadata:
      name: vmservice 1
      namespace: example-namespace 2
    spec:
      ports:
      - port: 27017
        protocol: TCP
        targetPort: 22 3
      selector:
        special: key 4
      type: ClusterIP 5
    1
    作成および公開するサービスの name を指定します。
    2
    仮想マシン YAML に指定する namespace に対応する Service YAML の metadata セクションの namespace を指定します。
    3
    targetPort: 22 を追加し、SSH ポート 22 にサービスを公開します。
    4
    Service YAML の spec セクションで、special: keyselector 属性に追加します。これは、仮想マシン YAML 設定ファイルに追加した labels に対応します。
    5
    Service YAML の spec セクションで、ClusterIP サービスの type: ClusterIP を追加します。NodePortLoadBalancer などのクラスター外にある他のタイプのサービスを作成し、公開するには、type: ClusterIPtype: NodePort または type: LoadBalancer に随時置き換えます。
  4. Service YAML を保存し、サービス設定を保管します。
  5. ClusterIP サービスを作成します。

    $ oc create -f <service_name>.yaml
  6. 仮想マシンを起動します。仮想マシンがすでに実行中の場合は、これを再起動します。
  7. Service オブジェクトをクエリーし、これが利用可能であり、ClusterIP タイプで設定されていることを確認します。

    検証

    • oc get service コマンドを実行し、仮想マシンで参照する namespace および Service YAML ファイルを指定します。

      $ oc get service -n example-namespace

      出力例

      NAME        TYPE        CLUSTER-IP     EXTERNAL-IP   PORT(S)     AGE
      vmservice   ClusterIP   172.30.3.149   <none>        27017/TCP   2m

      • 出力で示されているように、vmservice が実行されています。
      • TYPE は、Service YAML で指定したように ClusterIP として表示されます。
  8. サービスをサポートするために使用する仮想マシンへの接続を確立します。別の仮想マシンなど、クラスター内のオブジェクトから接続します。

    1. 以下のように仮想マシンの YAML を編集します。

      apiVersion: kubevirt.io/v1alpha3
      kind: VirtualMachine
      metadata:
        name: vm-connect
        namespace: example-namespace
      spec:
        running: false
        template:
          spec:
            domain:
              devices:
                disks:
                  - name: containerdisk
                    disk:
                      bus: virtio
                  - name: cloudinitdisk
                    disk:
                      bus: virtio
                interfaces:
                - masquerade: {}
                  name: default
              resources:
                requests:
                  memory: 1024M
            networks:
              - name: default
                pod: {}
            volumes:
              - name: containerdisk
                containerDisk:
                  image: kubevirt/fedora-cloud-container-disk-demo
              - name: cloudinitdisk
                cloudInitNoCloud:
                  userData: |
                    #!/bin/bash
                    echo "fedora" | passwd fedora --stdin
    2. oc create コマンドを実行して 2 番目の仮想マシンを作成します。ここで、file.yaml は仮想マシン YAML の名前になります。

      $ oc create -f <file.yaml>
    3. 仮想マシンを起動します。
    4. 以下の virtctl コマンドを実行して仮想マシンに接続します。

      $ virtctl -n example-namespace console <new-vm-name>
      注記

      サービスタイプ LoadBalancer の場合、vinagre クライアントを使用し、パブリック IP およびポートを使用して仮想マシンに接続します。外部ポートは、サービスタイプ LoadBalancer を使用する場合に動的に割り当てられます。

    5. ssh コマンドを実行して接続を認証します。ここで、172.30.3.149 はサービスの ClusterIP であり、fedora は仮想マシンのユーザー名です。

      $ ssh fedora@172.30.3.149 -p 27017

      検証

      • 公開するサービスをサポートする仮想マシンのコマンドプロンプトが表示されます。実行中の仮想マシンがサポートするサービスの準備ができました。

7.17.2. Linux ブリッジ ネットワークへの仮想マシンの接続

デフォルトでは、OpenShift Virtualization は単一の内部 Pod ネットワークとともにインストールされます。

追加のネットワークに接続するには、Linux ブリッジ ネットワーク接続定義 (NAD) を作成する必要があります。

仮想マシンを追加のネットワークに割り当てるには、以下を実行します。

  1. Linux ブリッジ ノード ネットワーク設定ポリシーを作成します。
  2. Linux ブリッジ ネットワーク接続定義を作成します。
  3. 仮想マシンを設定して、仮想マシンがネットワーク接続定義を認識できるようにします。

スケジューリング、インターフェイスタイプ、およびその他のノードのネットワークアクティビティーについての詳細は、node networking セクションを参照してください。

7.17.2.1. ネットワーク接続定義によるネットワークへの接続
7.17.2.1.1. Linux ブリッジ ノード ネットワーク設定ポリシーの作成

NodeNetworkConfigurationPolicy マニフェスト YAML ファイルを使用して、Linux ブリッジを作成します。

手順

  • NodeNetworkConfigurationPolicy マニフェストを作成します。この例には、独自の情報で置き換える必要のあるサンプルの値が含まれます。

    apiVersion: nmstate.io/v1
    kind: NodeNetworkConfigurationPolicy
    metadata:
      name: br1-eth1-policy 1
    spec:
      desiredState:
        interfaces:
          - name: br1 2
            description: Linux bridge with eth1 as a port 3
            type: linux-bridge 4
            state: up 5
            ipv4:
              enabled: false 6
            bridge:
              options:
                stp:
                  enabled: false 7
              port:
                - name: eth1 8
    1
    ポリシーの名前。
    2
    インターフェイスの名前。
    3
    オプション: 人間が判読できるインターフェイスの説明。
    4
    インターフェイスのタイプ。この例では、ブリッジを作成します。
    5
    作成後のインターフェイスの要求された状態。
    6
    この例では IPv4 を無効にします。
    7
    この例では STP を無効にします。
    8
    ブリッジが接続されているノード NIC。
7.17.2.2. Linux ブリッジネットワーク接続定義の作成
7.17.2.2.1. 前提条件
  • Linux ブリッジは、すべてのノードに設定して割り当てる必要がある。詳細は、ノードのネットワーク セクションを参照してください。
警告

仮想マシンのネットワークアタッチメント定義での IP アドレス管理 (IPAM) の設定はサポートされていません。

7.17.2.2.2. Web コンソールでの Linux ブリッジネットワーク接続定義の作成

ネットワーク接続定義は、layer-2 デバイスを OpenShift Virtualization クラスターの特定の namespace に公開するカスタムリソースです。

ネットワーク管理者は、ネットワーク接続定義を作成して既存の layer-2 ネットワークを Pod および仮想マシンに提供できます。

手順

  1. Web コンソールで、NetworkingNetwork Attachment Definitions をクリックします。
  2. Create Network Attachment Definition をクリックします。

    注記

    ネットワーク接続定義は Pod または仮想マシンと同じ namespace にある必要があります。

  3. 一意の Name およびオプションの Description を入力します。
  4. Network Type 一覧をクリックし、CNV Linux bridge を選択します。
  5. Bridge Name フィールドにブリッジの名前を入力します。
  6. オプション: リソースに VLAN ID が設定されている場合、 VLAN Tag Number フィールドに ID 番号を入力します。
  7. オプション: MAC Spoof Check を選択して、MAC スプーフ フィルターリングを有効にします。この機能により、Pod を終了するための MAC アドレスを 1 つだけ許可することで、MAC スプーフィング攻撃に対してセキュリティーを確保します。
  8. Create をクリックします。

    注記

    Linux ブリッジ ネットワーク接続定義は、仮想マシンを VLAN に接続するための最も効率的な方法です。

7.17.2.2.3. CLI での Linux ブリッジネットワーク接続定義の作成

ネットワーク管理者は、タイプ cnv-bridge のネットワーク接続定義を、レイヤー 2 ネットワークを Pod および仮想マシンに提供するように設定できます。

前提条件

  • MAC スプーフィングチェックを有効にするには、ノードが nftables をサポートして、nft バイナリーがデプロイされている必要があります。

手順

  1. 仮想マシンと同じ namespace にネットワーク接続定義を作成します。
  2. 次の例のように、仮想マシンをネットワーク接続定義に追加します。

    apiVersion: "k8s.cni.cncf.io/v1"
    kind: NetworkAttachmentDefinition
    metadata:
      name: <bridge-network> 1
      annotations:
        k8s.v1.cni.cncf.io/resourceName: bridge.network.kubevirt.io/<bridge-interface> 2
    spec:
      config: '{
        "cniVersion": "0.3.1",
        "name": "<bridge-network>", 3
        "type": "cnv-bridge", 4
        "bridge": "<bridge-interface>", 5
        "macspoofchk": true, 6
        "vlan": 1 7
      }'
    1
    NetworkAttachmentDefinition オブジェクトの名前。
    2
    オプション: ノード選択のアノテーションのキーと値のペア。bridge-interface は一部のノードに設定されるブリッジの名前に一致する必要があります。このアノテーションをネットワーク接続定義に追加する場合、仮想マシンインスタンスは bridge-interface ブリッジが接続されているノードでのみ実行されます。
    3
    設定の名前。設定名をネットワーク接続定義の name 値に一致させることが推奨されます。
    4
    このネットワーク接続定義のネットワークを提供する Container Network Interface (CNI) プラグインの実際の名前。異なる CNI を使用するのでない限り、このフィールドは変更しないでください。
    5
    ノードに設定される Linux ブリッジの名前。
    6
    オプション:MAC スプーフィングチェックを有効にする。true に設定すると、Pod またはゲストインターフェイスの MAC アドレスを変更できません。この属性は、Pod からの MAC アドレスを 1 つだけ許可することで、MAC スプーフィング攻撃に対してセキュリティーを確保します。
    7
    オプション: VLAN タグ。ノードのネットワーク設定ポリシーでは、追加の VLAN 設定は必要ありません。
    注記

    Linux ブリッジ ネットワーク接続定義は、仮想マシンを VLAN に接続するための最も効率的な方法です。

  3. ネットワーク接続定義を作成します。

    $ oc create -f <network-attachment-definition.yaml> 1
    1
    ここで、<network-attachment-definition.yaml> はネットワーク接続定義マニフェストのファイル名です。

検証

  • 次のコマンドを実行して、ネットワーク接続定義が作成されたことを確認します。

    $ oc get network-attachment-definition <bridge-network>
7.17.2.3. Linux ブリッジネットワーク用の仮想マシンの設定
7.17.2.3.1. Web コンソールでの仮想マシンの NIC の作成

Web コンソールから追加の NIC を作成し、これを仮想マシンに割り当てます。

手順

  1. OpenShift Virtualization コンソールの適切なプロジェクトで、サイドメニューから WorkloadsVirtualization をクリックします。
  2. Virtual Machines タブをクリックします。
  3. 仮想マシンを選択して、Virtual Machine Overview 画面を開きます。
  4. Network Interfaces をクリックし、仮想マシンにすでに割り当てられている NIC を表示します。
  5. Add Network Interface をクリックし、一覧に新規スロットを作成します。
  6. Network ドロップダウンリストを使用して、追加ネットワークのネットワーク接続定義を選択します。
  7. 新規 NIC の NameModelType、および MAC Address に入力します。
  8. Add をクリックして NIC を保存し、これを仮想マシンに割り当てます。
7.17.2.3.2. ネットワークフィールド
名前説明

名前

ネットワークインターフェイスコントローラーの名前。

モデル

ネットワークインターフェイスコントローラーのモデルを示します。サポートされる値は e1000e および virtio です。

ネットワーク

利用可能なネットワーク接続定義の一覧。

Type

利用可能なバインディングメソッドの一覧。デフォルトの Pod ネットワークについては、masquerade が唯一の推奨されるバインディングメソッドになります。セカンダリーネットワークの場合は、 bridge バインディングメソッドを使用します。masquerade メソッドは、デフォルト以外のネットワークではサポートされません。SR-IOV ネットワークデバイスを設定し、namespace でそのネットワークを定義した場合は、SR-IOV を選択します。

MAC Address

ネットワークインターフェイスコントローラーの MAC アドレス。MAC アドレスが指定されていない場合、これは自動的に割り当てられます。

7.17.2.3.3. CLI で仮想マシンを追加のネットワークに接続する

ブリッジインターフェイスを追加し、仮想マシン設定でネットワーク接続定義を指定して、仮想マシンを追加のネットワークに割り当てます。

以下の手順では、YAML ファイルを使用して設定を編集し、更新されたファイルをクラスターに適用します。oc edit <object> <name> コマンドを使用して、既存の仮想マシンを編集することもできます。

前提条件

  • 設定を編集する前に仮想マシンをシャットダウンします。実行中の仮想マシンを編集する場合は、変更を有効にするために仮想マシンを再起動する必要があります。

手順

  1. ブリッジネットワークに接続する仮想マシンの設定を作成または編集します。
  2. ブリッジインターフェイスを spec.template.spec.domain.devices.interfaces 一覧に追加し、ネットワーク接続定義を spec.template.spec.networks 一覧に追加します。この例では、a-bridge-network ネットワーク接続定義に接続される bridge-net というブリッジインターフェイスを追加します。

    apiVersion: kubevirt.io/v1alpha3
    kind: VirtualMachine
    metadata:
        name: <example-vm>
    spec:
      template:
        spec:
          domain:
            devices:
              interfaces:
                - masquerade: {}
                  name: <default>
                - bridge: {}
                  name: <bridge-net> 1
    ...
          networks:
            - name: <default>
              pod: {}
            - name: <bridge-net> 2
              multus:
                networkName: <a-bridge-network> 3
    ...
    1
    ブリッジインターフェイスの名前。
    2
    ネットワークの名前。この値は、対応する spec.template.spec.domain.devices.interfaces エントリーの name 値と一致する必要があります。
    3
    ネットワーク接続定義の名前。接頭辞は、存在する namespace になります。namespace は、default の namespace または仮想マシンが作成される namespace と同じでなければなりません。この場合、multus が使用されます。Multus は、Pod または仮想マシンが必要なインターフェイスを使用できるように、複数の CNI が存在できるようにするクラウドネットワークインターフェイス (CNI) プラグインです。
  3. 設定を適用します。

    $ oc apply -f <example-vm.yaml>
  4. オプション: 実行中の仮想マシンを編集している場合は、変更を有効にするためにこれを再起動する必要があります。

7.17.3. 仮想マシンの IP アドレスの設定

動的または静的のいずれかでプロビジョニングされた仮想マシンの IP アドレスを設定できます。

前提条件

  • 仮想マシンは、外部ネットワーク に接続する必要があります。
  • 仮想マシンの動的 IP を設定するには、追加のネットワークで使用可能な DHCP サーバーが必要です。
7.17.3.1. cloud-init を使用した新規仮想マシンの IP アドレスの設定

仮想マシンの作成時に cloud-init を使用して IP アドレスを設定できます。IP アドレスは、動的または静的にプロビジョニングできます。

手順

  • 仮想マシン設定を作成し、仮想マシン設定の spec.volumes.cloudInitNoCloud.networkData フィールドに cloud-init ネットワークの詳細を追加します。

    1. 動的 IP を設定するには、インターフェイス名と dhcp4 ブール値を指定します。

      kind: VirtualMachine
      spec:
      ...
        volumes:
        - cloudInitNoCloud:
            networkData: |
              version: 2
              ethernets:
                eth1: 1
                  dhcp4: true 2
      1
      インターフェイスの名前。
      2
      DHCP を使用して IPv4 アドレスをプロビジョニングします。
    2. 静的 IP を設定するには、インターフェイス名と IP アドレスを指定します。

      kind: VirtualMachine
      spec:
      ...
        volumes:
        - cloudInitNoCloud:
            networkData: |
              version: 2
              ethernets:
                eth1: 1
                  addresses:
                  - 10.10.10.14/24 2
      1
      インターフェイスの名前。
      2
      仮想マシンの静的 IP アドレス。

7.17.4. 仮想マシンの SR-IOV ネットワークデバイスの設定

クラスターで Single Root I/O Virtualization (SR-IOV) デバイスを設定できます。このプロセスは、OpenShift Container Platform の SR-IOV デバイスの設定と似ていますが、同じではありません。

注記

ライブマイグレーションは SR-IOV ネットワークインターフェイスに接続されている仮想マシンにはサポートされません。

7.17.4.1. 前提条件
7.17.4.2. SR-IOV ネットワークデバイスの自動検出

SR-IOV Network Operator は、クラスターでワーカーノード上の SR-IOV 対応ネットワークデバイスを検索します。Operator は、互換性のある SR-IOV ネットワークデバイスを提供する各ワーカーノードの SriovNetworkNodeState カスタムリソース (CR) を作成し、更新します。

CR にはワーカーノードと同じ名前が割り当てられます。status.interfaces 一覧は、ノード上のネットワークデバイスについての情報を提供します。

重要

SriovNetworkNodeState オブジェクトは変更しないでください。Operator はこれらのリソースを自動的に作成し、管理します。

7.17.4.2.1. SriovNetworkNodeState オブジェクトの例

以下の YAML は、SR-IOV Network Operator によって作成される SriovNetworkNodeState オブジェクトの例です。

SriovNetworkNodeState オブジェクト

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovNetworkNodeState
metadata:
  name: node-25 1
  namespace: openshift-sriov-network-operator
  ownerReferences:
  - apiVersion: sriovnetwork.openshift.io/v1
    blockOwnerDeletion: true
    controller: true
    kind: SriovNetworkNodePolicy
    name: default
spec:
  dpConfigVersion: "39824"
status:
  interfaces: 2
  - deviceID: "1017"
    driver: mlx5_core
    mtu: 1500
    name: ens785f0
    pciAddress: "0000:18:00.0"
    totalvfs: 8
    vendor: 15b3
  - deviceID: "1017"
    driver: mlx5_core
    mtu: 1500
    name: ens785f1
    pciAddress: "0000:18:00.1"
    totalvfs: 8
    vendor: 15b3
  - deviceID: 158b
    driver: i40e
    mtu: 1500
    name: ens817f0
    pciAddress: 0000:81:00.0
    totalvfs: 64
    vendor: "8086"
  - deviceID: 158b
    driver: i40e
    mtu: 1500
    name: ens817f1
    pciAddress: 0000:81:00.1
    totalvfs: 64
    vendor: "8086"
  - deviceID: 158b
    driver: i40e
    mtu: 1500
    name: ens803f0
    pciAddress: 0000:86:00.0
    totalvfs: 64
    vendor: "8086"
  syncStatus: Succeeded

1
name フィールドの値はワーカーノードの名前と同じです。
2
interfaces スタンザには、ワーカーノード上の Operator によって検出されるすべての SR-IOV デバイスの一覧が含まれます。
7.17.4.3. SR-IOV ネットワークデバイスの設定

SR-IOV Network Operator は SriovNetworkNodePolicy.sriovnetwork.openshift.io CustomResourceDefinition を OpenShift Container Platform に追加します。SR-IOV ネットワークデバイスは、SriovNetworkNodePolicy カスタムリソース (CR) を作成して設定できます。

注記

SriovNetworkNodePolicy オブジェクトで指定された設定を適用する際に、SR-IOV Operator はノードをドレイン (解放) する可能性があり、場合によってはノードの再起動を行う場合があります。

設定の変更が適用されるまでに数分かかる場合があります。

前提条件

  • OpenShift CLI (oc) がインストールされている。
  • cluster-admin ロールを持つユーザーとしてクラスターにアクセスできる。
  • SR-IOV Network Operator がインストールされている。
  • ドレイン (解放) されたノードからエビクトされたワークロードを処理するために、クラスター内に利用可能な十分なノードがあること。
  • SR-IOV ネットワークデバイス設定についてコントロールプレーンノードを選択していないこと。

手順

  1. SriovNetworkNodePolicy オブジェクトを作成してから、YAML を <name>-sriov-node-network.yaml ファイルに保存します。<name> をこの設定の名前に置き換えます。
apiVersion: sriovnetwork.openshift.io/v1
kind: SriovNetworkNodePolicy
metadata:
  name: <name> 1
  namespace: openshift-sriov-network-operator 2
spec:
  resourceName: <sriov_resource_name> 3
  nodeSelector:
    feature.node.kubernetes.io/network-sriov.capable: "true" 4
  priority: <priority> 5
  mtu: <mtu> 6
  numVfs: <num> 7
  nicSelector: 8
    vendor: "<vendor_code>" 9
    deviceID: "<device_id>" 10
    pfNames: ["<pf_name>", ...] 11
    rootDevices: ["<pci_bus_id>", "..."] 12
  deviceType: vfio-pci 13
  isRdma: false 14
1
CR オブジェクトの名前を指定します。
2
SR-IOV Operator がインストールされている namespace を指定します。
3
SR-IOV デバイスプラグインのリソース名を指定します。1 つのリソース名に複数の SriovNetworkNodePolicy オブジェクトを作成できます。
4
設定するノードを選択するノードセレクターを指定します。選択したノード上の SR-IOV ネットワークデバイスのみが設定されます。SR-IOV Container Network Interface (CNI) プラグインおよびデバイスプラグインは、選択したノードにのみデプロイされます。
5
オプション: 0 から 99 までの整数値を指定します。数値が小さいほど優先度が高くなります。したがって、1099 よりも優先度が高くなります。デフォルト値は 99 です。
6
オプション: 仮想機能 (VF) の最大転送単位 (MTU) の値を指定します。MTU の最大値は NIC モデルによって異なります。
7
SR-IOV 物理ネットワークデバイス用に作成する仮想機能 (VF) の数を指定します。Intel ネットワークインターフェイスコントローラー (NIC) の場合、VF の数はデバイスがサポートする VF の合計よりも大きくすることはできません。Mellanox NIC の場合、VF の数は 128 よりも大きくすることはできません。
8
nicSelector マッピングは、Operator が設定するイーサネットデバイスを選択します。すべてのパラメーターの値を指定する必要はありません。意図せずにイーサネットデバイスを選択する可能性を最低限に抑えるために、イーサネットアダプターを正確に特定できるようにすることが推奨されます。rootDevices を指定する場合、vendordeviceID、または pfName の値も指定する必要があります。pfNamesrootDevices の両方を同時に指定する場合、それらが同一のデバイスをポイントすることを確認します。
9
オプション: SR-IOV ネットワークデバイスのベンダー 16 進コードを指定します。許可される値は 8086 または 15b3 のいずれかのみになります。
10
オプション: SR-IOV ネットワークデバイスのデバイス 16 進コードを指定します。許可される値は 158b10151017 のみになります。
11
オプション: このパラメーターは、1 つ以上のイーサネットデバイスの物理機能 (PF) 名の配列を受け入れます。
12
このパラメーターは、イーサネットデバイスの物理機能についての 1 つ以上の PCI バスアドレスの配列を受け入れます。以下の形式でアドレスを指定します: 0000:02:00.1
13
OpenShift Virtualization の仮想機能には、vfio-pci ドライバータイプが必要です。
14
オプション: Remote Direct Memory Access (RDMA) モードを有効にするかどうかを指定します。Mellanox カードの場合、isRdmafalse に設定します。デフォルト値は false です。
注記

isRDMA フラグが true に設定される場合、引き続き RDMA 対応の VF を通常のネットワークデバイスとして使用できます。デバイスはどちらのモードでも使用できます。

  1. オプション: SR-IOV 対応のクラスターノードにまだラベルが付いていない場合は、SriovNetworkNodePolicy.Spec.NodeSelector でラベルを付けます。ノードのラベル付けについて、詳しくはノードのラベルを更新する方法についてを参照してください。
  1. SriovNetworkNodePolicy オブジェクトを作成します。

    $ oc create -f <name>-sriov-node-network.yaml

    ここで、<name> はこの設定の名前を指定します。

    設定の更新が適用された後に、sriov-network-operator namespace のすべての Pod が Running ステータスに移行します。

  2. SR-IOV ネットワークデバイスが設定されていることを確認するには、以下のコマンドを実行します。<node_name> を、設定したばかりの SR-IOV ネットワークデバイスを持つノードの名前に置き換えます。

    $ oc get sriovnetworknodestates -n openshift-sriov-network-operator <node_name> -o jsonpath='{.status.syncStatus}'
7.17.4.4. 次のステップ

7.17.5. SR-IOV ネットワークの定義

仮想マシンの Single Root I/O Virtualization (SR-IOV) デバイスのネットワーク割り当てを作成できます。

ネットワークが定義された後に、仮想マシンを SR-IOV ネットワークに割り当てることができます。

7.17.5.1. 前提条件
7.17.5.2. SR-IOV の追加ネットワークの設定

SriovNetwork オブジェクト を作成して、SR-IOV ハードウェアを使用する追加のネットワークを設定できます。SriovNetwork オブジェクトの作成時に、SR-IOV Operator は NetworkAttachmentDefinition オブジェクトを自動的に作成します。

次に、ユーザーはネットワークを仮想マシン設定で指定することで、仮想マシンを SR-IOV ネットワークに割り当てることができます。

注記

SriovNetwork オブジェクトが running 状態の Pod または仮想マシンに割り当てられている場合、これを変更したり、削除したりしないでください。

前提条件

  • OpenShift CLI (oc) をインストールしている。
  • cluster-admin 権限を持つユーザーとしてログインしている。

手順

  1. 以下の SriovNetwork オブジェクトを作成してから、YAML を <name>-sriov-network.yaml ファイルに保存します。<name> を、この追加ネットワークの名前に置き換えます。
apiVersion: sriovnetwork.openshift.io/v1
kind: SriovNetwork
metadata:
  name: <name> 1
  namespace: openshift-sriov-network-operator 2
spec:
  resourceName: <sriov_resource_name> 3
  networkNamespace: <target_namespace> 4
  vlan: <vlan> 5
  spoofChk: "<spoof_check>" 6
  linkState: <link_state> 7
  maxTxRate: <max_tx_rate> 8
  minTxRate: <min_rx_rate> 9
  vlanQoS: <vlan_qos> 10
  trust: "<trust_vf>" 11
  capabilities: <capabilities> 12
1
<name> をオブジェクトの名前に置き換えます。SR-IOV Network Operator は、同じ名前を持つ NetworkAttachmentDefinition オブジェクトを作成します。
2
SR-IOV ネットワーク Operator がインストールされている namespace を指定します。
3
<sriov_resource_name> を、この追加ネットワークの SR-IOV ハードウェアを定義する SriovNetworkNodePolicy オブジェクトの .spec.resourceName パラメーターの値に置き換えます。
4
<target_namespace> を SriovNetwork のターゲット namespace に置き換えます。ターゲット namespace の Pod または仮想マシンのみを SriovNetwork に割り当てることができます。
5
オプション: <vlan> を、追加ネットワークの仮想 LAN (VLAN) ID に置き換えます。整数値は 0 から 4095 である必要があります。デフォルト値は 0 です。
6
オプション: <spoof_check> を VF の spoof check モードに置き換えます。許可される値は、文字列の "on" および "off" です。
重要

指定する値を引用符で囲む必要があります。そうしないと、CR は SR-IOV ネットワーク Operator によって拒否されます。

7
オプション: <link_state> を仮想機能 (VF) のリンクの状態に置き換えます。許可される値は、enabledisable、および auto です。
8
オプション: <max_tx_rate> を VF の最大伝送レート (Mbps) に置き換えます。
9
オプション: <min_tx_rate> を VF の最小伝送レート (Mbps) に置き換えます。この値は、常に最大伝送レート以下である必要があります。
注記

Intel NIC は minTxRate パラメーターをサポートしません。詳細は、BZ#1772847 を参照してください。

10
オプション: <vlan_qos> を VF の IEEE 802.1p 優先レベルに置き換えます。デフォルト値は 0 です。
11
オプション: <trust_vf> を VF の信頼モードに置き換えます。許可される値は、文字列の "on" および "off" です。
重要

指定する値を引用符で囲む必要があります。そうしないと、CR は SR-IOV ネットワーク Operator によって拒否されます。

12
オプション: <capabilities> を、このネットワークに設定する機能に置き換えます。
  1. オブジェクトを作成するには、以下のコマンドを入力します。<name> を、この追加ネットワークの名前に置き換えます。

    $ oc create -f <name>-sriov-network.yaml
  2. オプション: 以下のコマンドを実行して、直前の手順で作成した SriovNetwork オブジェクトに関連付けられた NetworkAttachmentDefinition オブジェクトが存在することを確認するには、以下のコマンドを入力します。<namespace> を、SriovNetwork オブジェクト で指定した namespace に置き換えます。

    $ oc get net-attach-def -n <namespace>
7.17.5.3. 次のステップ

7.17.6. 仮想マシンの SR-IOV ネットワークへの割り当て

SR-IOV (Single Root I/O Virtualization) ネットワークをセカンダリーネットワークとして使用するために仮想マシンを割り当てることができます。

7.17.6.1. 前提条件
7.17.6.2. 仮想マシンの SR-IOV ネットワークへの割り当て

仮想マシンの設定にネットワークの詳細を含めることで、仮想マシンを SR-IOV ネットワークに割り当てることができます。

手順

  1. SR-IOV ネットワークの詳細を仮想マシン設定の spec.domain.devices.interfaces および spec.networks に追加します。

    kind: VirtualMachine
    ...
    spec:
      domain:
        devices:
          interfaces:
          - name: <default> 1
            masquerade: {} 2
          - name: <nic1> 3
            sriov: {}
      networks:
      - name: <default> 4
        pod: {}
      - name: <nic1> 5
        multus:
            networkName: <sriov-network> 6
    ...
    1
    Pod ネットワークに接続されているインターフェイスの一意の名前。
    2
    デフォルト Pod ネットワークへの masquerade バインディング。
    3
    SR-IOV インターフェイスの一意の名前。
    4
    Pod ネットワークインターフェイスの名前。これは、前のステップで定義した interfaces.name と同じである必要があります。
    5
    SR-IOV ネットワークの名前。これは、前のステップで定義した interfaces.name と同じである必要があります。
    6
    SR-IOV ネットワーク割り当て定義の名前。
  2. 仮想マシン設定を適用します。

    $ oc apply -f <vm-sriov.yaml> 1
    1
    仮想マシン YAML ファイルの名前。

7.17.7. NIC の IP アドレスの仮想マシンへの表示

Web コンソールまたは oc クライアントを使用して、ネットワークインターフェイスコントローラー (NIC) の IP アドレスを表示できます。QEMU ゲストエージェント は、仮想マシンのセカンダリーネットワークに関する追加情報を表示します。

7.17.7.1. CLI での仮想マシンインターフェイスの IP アドレスの表示

ネットワークインターフェイス設定は oc describe vmi <vmi_name> コマンドに含まれます。

IP アドレス情報は、仮想マシン上で ip addr を実行するか、または oc get vmi <vmi_name> -o yaml を実行して表示することもできます。

手順

  • oc describe コマンドを使用して、仮想マシンインターフェイス設定を表示します。

    $ oc describe vmi <vmi_name>

    出力例

    ...
    Interfaces:
       Interface Name:  eth0
       Ip Address:      10.244.0.37/24
       Ip Addresses:
         10.244.0.37/24
         fe80::858:aff:fef4:25/64
       Mac:             0a:58:0a:f4:00:25
       Name:            default
       Interface Name:  v2
       Ip Address:      1.1.1.7/24
       Ip Addresses:
         1.1.1.7/24
         fe80::f4d9:70ff:fe13:9089/64
       Mac:             f6:d9:70:13:90:89
       Interface Name:  v1
       Ip Address:      1.1.1.1/24
       Ip Addresses:
         1.1.1.1/24
         1.1.1.2/24
         1.1.1.4/24
         2001:de7:0:f101::1/64
         2001:db8:0:f101::1/64
         fe80::1420:84ff:fe10:17aa/64
       Mac:             16:20:84:10:17:aa

7.17.7.2. Web コンソールでの仮想マシンインターフェイスの IP アドレスの表示

IP 情報は、仮想マシンの Virtual Machine Overview 画面に表示されます。

手順

  1. OpenShift Virtualization コンソールのサイドメニューから WorkloadsVirtualization をクリックします。
  2. Virtual Machines タブをクリックします。
  3. 仮想マシン名を選択して、Virtual Machine Overview 画面を開きます。

それぞれの割り当てられた NIC の情報は IP Address の下に表示されます。

7.17.8. 仮想マシンの MAC アドレスプールの使用

KubeMacPool コンポーネントは、指定の namespace に仮想マシン NIC の MAC アドレスプールサービスを提供します。KubeMacPool ラベルをその namespace に適用して、namespace の MAC アドレスプールを有効にします。

7.17.8.1. KubeMacPool について

namespace の KubeMacPool コンポーネントを有効にする場合、その namespace の仮想マシン NIC には MAC アドレスプールから MAC アドレスが割り当てられます。これにより、NIC には別の仮想マシンの MAC アドレスと競合しない一意の MAC アドレスが割り当てられます。

仮想マシンから作成される仮想マシンインスタンスは、再起動時に割り当てられる MAC アドレスを保持します。

注記

KubeMacPool は、仮想マシンから独立して作成される仮想マシンインスタンスを処理しません。

KubeMacPool はデフォルトで無効にされます。KubeMacPool ラベルを namespace に適用して、namespace の MAC アドレスプールを有効にします。

7.17.8.2. CLI での namespace の MAC アドレスプールの有効化

mutatevirtualmachines.kubemacpool.io=allocate ラベルを namespace に適用して namespace の仮想マシンの MAC アドレスプールを有効にします。

手順

  • KubeMacPool ラベルを namespace に追加します。以下の例では、KubeMacPool ラベルを 2 つの namespace (<namespace1> および <namespace2>) に追加します。

    $ oc label namespace <namespace1> <namespace2> mutatevirtualmachines.kubemacpool.io=allocate
7.17.8.3. CLI での namespace の MAC アドレスプールの無効化

mutatevirtualmachines.kubemacpool.io ラベルを削除して、namespace の仮想マシンの MAC アドレスプールを無効にします。

手順

  • KubeMacPool ラベルを namespace から削除します。以下の例では、KubeMacPool ラベルを 2 つの namespace (<namespace1> および <namespace2>) から削除します。

    $ oc label namespace <namespace1> <namespace2> mutatevirtualmachines.kubemacpool.io-

7.18. 仮想マシンディスク

7.18.1. ストレージ機能

以下の表を使用して、OpenShift Virtualization のローカルおよび共有の永続ストレージ機能の可用性を確認できます。

7.18.1.1. OpenShift Virtualization ストレージ機能マトリクス
表7.6 OpenShift Virtualization ストレージ機能マトリクス
 仮想マシンのライブマイグレーションホスト支援型仮想マシンディスクのクローン作成ストレージ支援型仮想マシンディスクのクローン作成仮想マシンのスナップショット

OpenShift Container Storage: RBD ブロックモードボリューム

Yes

はい

はい

はい

OpenShift Virtualization ホストパスプロビジョナー

いいえ

はい

いいえ

いいえ

他の複数ノードの書き込み可能なストレージ

はい [1]

はい

はい [2]

はい [2]

他の単一ノードの書き込み可能なストレージ

いいえ

はい

はい [2]

はい [2]

  1. PVC は ReadWriteMany アクセスモードを要求する必要があります。
  2. ストレージプロバイダーが Kubernetes および CSI スナップショット API の両方をサポートする必要があります。
注記

以下を使用する仮想マシンのライブマイグレーションを行うことはできません。

  • ReadWriteOnce (RWO) アクセスモードのストレージクラス
  • SR-IOV や GPU などのパススルー機能

それらの仮想マシンの evictionStrategy フィールドを LiveMigrate に設定しないでください。

7.18.2. 仮想マシンのローカルストレージの設定

ホストパスプロビジョナー機能を使用して、仮想マシンのローカルストレージを設定できます。

7.18.2.1. ホストパスプロビジョナーについて

ホストパスプロビジョナーは、OpenShift Virtualization 用に設計されたローカルストレージプロビジョナーです。仮想マシンのローカルストレージを設定する必要がある場合、まずホストパスプロビジョナーを有効にする必要があります。

OpenShift Virtualization Operator のインストール時に、ホストパスプロビジョナー Operator は自動的にインストールされます。これを使用するには、以下を実行する必要があります。

  • SELinux を設定します。

    • Red Hat Enterprise Linux CoreOS (RHCOS) 8 ワーカーを使用する場合は、各ノードに MachineConfig オブジェクトを作成する必要があります。
    • それ以外の場合には、SELinux ラベル container_file_t を各ノードの永続ボリューム (PV) バッキングディレクトリーに適用します。
  • HostPathProvisioner カスタムリソースを作成します。
  • ホストパスプロビジョナーの StorageClass オブジェクトを作成します。

ホストパスプロビジョナー Operator は、カスタムリソースの作成時にプロビジョナーを各ノードに DaemonSet としてデプロイします。カスタムリソースファイルでは、ホストパスプロビジョナーが作成する永続ボリュームのバッキングディレクトリーを指定します。

7.18.2.2. Red Hat Enterprise Linux CoreOS (RHCOS) 8 でのホストパスプロビジョナー用の SELinux の設定

HostPathProvisioner カスタムリソースを作成する前に、SELinux を設定する必要があります。Red Hat Enterprise Linux CoreOS (RHCOS) 8 ワーカーで SELinux を設定するには、各ノードに MachineConfig オブジェクトを作成する必要があります。

前提条件

  • ホストパスプロビジョナーが作成する永続ボリューム (PV) 用に、各ノードにバッキングディレクトリーを作成すること。

    重要

    / パーティションは RHCOS で読み取り専用であるため、バッキングディレクトリーをファイルシステムの root ディレクトリーに置かないでください。たとえば、/var/<directory_name> は使用できますが、/<directory_name> は使用できません。

手順

  1. MachineConfig ファイルを作成します。以下に例を示します。

    $ touch machineconfig.yaml
  2. ファイルを編集し、ホストパスプロビジョナーが PV を作成するディレクトリーを組み込みます。以下に例を示します。

    apiVersion: machineconfiguration.openshift.io/v1
    kind: MachineConfig
    metadata:
      name: 50-set-selinux-for-hostpath-provisioner
      labels:
        machineconfiguration.openshift.io/role: worker
    spec:
      config:
        ignition:
          version: 3.2.0
        systemd:
          units:
            - contents: |
                [Unit]
                Description=Set SELinux chcon for hostpath provisioner
                Before=kubelet.service
    
                [Service]
                ExecStart=/usr/bin/chcon -Rt container_file_t <backing_directory_path> 1
    
                [Install]
                WantedBy=multi-user.target
              enabled: true
              name: hostpath-provisioner.service
    1
    プロビジョナーが PV を作成するバッキングディレクトリーを指定します。このディレクトリーは、ファイルシステムの root ディレクトリー (/) に置かないでください。
  3. MachineConfig オブジェクトを作成します。

    $ oc create -f machineconfig.yaml -n <namespace>
7.18.2.3. ホストパスプロビジョナーを使用したローカルストレージの有効化

ホストパスプロビジョナーをデプロイし、仮想マシンがローカルストレージを使用できるようにするには、最初に HostPathProvisioner カスタムリソースを作成します。

前提条件

  • ホストパスプロビジョナーが作成する永続ボリューム (PV) 用に、各ノードにバッキングディレクトリーを作成すること。

    重要

    / パーティションは Red Hat Enterprise Linux CoreOS (RHCOS) で読み取り専用であるため、バッキングディレクトリーをファイルシステムの root ディレクトリーに置かないでください。たとえば、/var/<directory_name> は使用できますが、/<directory_name> は使用できません。

  • SELinux コンテキスト container_file_t を各ノードの PV バッキングディレクトリーに適用すること。以下に例を示します。

    $ sudo chcon -t container_file_t -R <backing_directory_path>
    注記

    Red Hat Enterprise Linux CoreOS 8 (RHCOS) ワーカーを使用する場合は、代わりに MachineConfig マニフェストを使用して SELinux を設定する必要があります。

手順

  1. HostPathProvisioner カスタムリソースファイルを作成します。以下に例を示します。

    $ touch hostpathprovisioner_cr.yaml
  2. ファイルを編集し、spec.pathConfig.path の値がホストパスプロビジョナーが PV を作成するディレクトリーであることを確認します。以下に例を示します。

    apiVersion: hostpathprovisioner.kubevirt.io/v1beta1
    kind: HostPathProvisioner
    metadata:
      name: hostpath-provisioner
    spec:
      imagePullPolicy: IfNotPresent
      pathConfig:
        path: "<backing_directory_path>" 1
        useNamingPrefix: false 2
      workload: 3
    1
    プロビジョナーが PV を作成するバッキングディレクトリーを指定します。このディレクトリーは、ファイルシステムの root ディレクトリー (/) に置かないでください。
    2
    作成された PV にバインドされる永続ボリューム要求 (PVC) の名前をディレクトリー名の接頭辞として使用する場合には、この値を true に変更します。
    3
    オプション: spec.workload フィールドを使用して、ホストパスプロビジョナーのノードの配置ルールを設定できます。
    注記

    バッキングディレクトリーを作成していない場合、プロビジョナーはこの作成を試行します。container_file_t SELinux コンテキストを適用していない場合、これにより Permission denied エラーが生じる可能性があります。

  3. openshift-cnv namespace にカスタムリソースを作成します。

    $ oc create -f hostpathprovisioner_cr.yaml -n openshift-cnv
7.18.2.4. ストレージクラスの作成

ストレージクラスの作成時に、ストレージクラスに属する永続ボリューム (PV) の動的プロビジョニングに影響するパラメーターを設定します。StorageClass オブジェクトの作成後には、このオブジェクトのパラメーターを更新できません。

重要

OpenShift Container Platform Container Storage と共に OpenShift Virtualization を使用する場合、仮想マシンディスクの作成時に RBD ブロックモードの永続ボリューム要求 (PVC) を指定します。仮想マシンディスクの場合、RBD ブロックモードのボリュームは効率的で、Ceph FS または RBD ファイルシステムモードの PVC よりも優れたパフォーマンスを提供します。

RBD ブロックモードの PVC を指定するには、'ocs-storagecluster-ceph-rbd' ストレージクラスおよび VolumeMode: Block を使用します。

手順

  1. ストレージクラスを定義する YAML ファイルを作成します。以下に例を示します。

    $ touch storageclass.yaml
  2. ファイルを編集します。以下に例を示します。

    apiVersion: storage.k8s.io/v1
    kind: StorageClass
    metadata:
      name: hostpath-provisioner 1
    provisioner: kubevirt.io/hostpath-provisioner
    reclaimPolicy: Delete 2
    volumeBindingMode: WaitForFirstConsumer 3
    1
    この値を変更することで、オプションでストレージクラスの名前を変更できます。
    2
    reclaimPolicy には、Delete および Retain の 2 つの値があります。値を指定しない場合、ストレージクラスはデフォルトで Delete に設定されます。
    3
    volumeBindingMode 値は、動的プロビジョニングおよびボリュームバインディングが実行されるタイミングを決定します。WaitForFirstConsumer を指定して、永続ボリューム要求 (PVC) を使用する Pod が作成されるまで PV のバインディングおよびプロビジョニングを遅延させます。これにより、PV が Pod のスケジュール要件を満たすようになります。
    注記

    仮想マシンは、ローカル PV に基づくデータボリュームを使用します。ローカル PV は特定のノードにバインドされます。ディスクイメージは仮想マシンで使用するために準備されますが、ローカルストレージ PV がすでに固定されたノードに仮想マシンをスケジュールすることができない可能性があります。

    この問題を解決するには、Kubernetes Pod スケジューラーを使用して PVC を正しいノード上の PV にバインドします。volumeBindingModeWaitForFirstConsumer に設定された StorageClass を使用すると、PV のバインディングおよびプロビジョニングは、Pod が PVC を使用して作成されるまで遅延します。

  3. StorageClass オブジェクトを作成します。

    $ oc create -f storageclass.yaml

7.18.3. ファイルシステムオーバーヘッドの PVC 領域の確保

デフォルトで、Containerized Data Importer (CDI) は、Filesystem ボリュームモードを使用する永続ボリューム要求 (PVC) のファイルシステムのオーバーヘッドデータ用に領域を確保します。CDI がこの目的で予約する割合をクローバルに設定し、また特定のストレージクラス用に設定できます。

7.18.3.1. ファイルシステムのオーバーヘッドが仮想マシンディスクの領域に影響を与える仕組み

仮想マシンディスクを Filesystem ボリュームモードを使用する永続ボリューム要求 (PVC) に追加する場合、PVC で十分な容量があることを確認する必要があります。

  • 仮想マシンディスク。
  • Containerized Data Importer (CDI) が、メタデータなどのファイルシステムのオーバーヘッドに予約する領域。

デフォルトで、CDI はオーバーヘッド用に PVC 領域の 5.5% を予約し、その分、仮想マシンディスクに利用可能な領域を縮小します。

特定のユースケースに異なる値を使用する方が良い場合は、CDI オブジェクトを編集してオーバーヘッドの値を設定できます。値はグローバルに変更でき、特定のストレージクラスの値を指定できます。

7.18.3.2. デフォルトのファイルシステムオーバーヘッド値の上書き

CDI オブジェクトの spec.config.filesystemOverhead 属性を編集し、Containerized Data Importer (CDI) がファイルシステムのオーバーヘッド用に予約する永続ボリューム要求 (PVC) 領域の量を変更します。

前提条件

  • OpenShift CLI (oc) をインストールしている。

手順

  1. 以下のコマンドを実行して、編集するために CDI オブジェクトを開きます。

    $ oc edit cdi
  2. spec.config.filesystemOverhead フィールドを編集して、選択した値でデータを設定します。

    ...
    spec:
      config:
        filesystemOverhead:
          global: "<new_global_value>" 1
          storageClass:
            <storage_class_name>: "<new_value_for_this_storage_class>" 2
    1
    CDI がクラスター全体で使用するファイルシステムのオーバーヘッドの割合 (パーセント)。たとえば、global: "0.07" は、ファイルシステムのオーバーヘッド用に PVC の 7% を確保します。
    2
    指定されたストレージクラスのファイルシステムのオーバーヘッドの割合 (パーセンテージ)。たとえば、mystorageclass: "0.04" は、mystorageclass ストレージクラスの PVC のデフォルトオーバーヘッド値を 4% に変更します。
  3. エディターを保存し、終了して CDI オブジェクトを更新します。

検証

  • 以下のコマンドを実行して CDI ステータスを表示し、変更を確認します。

    $ oc get cdi -o yaml

7.18.4. コンピュートリソースクォータを持つ namespace で機能する CDI の設定

Containerized Data Importer (CDI) を使用して、CPU およびメモリーリソースの制限が適用される namespace に仮想マシンディスクをインポートし、アップロードし、そのクローンを作成できるようになりました。

7.18.4.1. namespace の CPU およびメモリークォータについて

ResourceQuota オブジェクトで定義される リソースクォータ は、その namespace 内のリソースが消費できるコンピュートリソースの全体量を制限する制限を namespace に課します。

CDI オブジェクトは Containerized Data Importer (CDI) のユーザー設定を定義します。CDI オブジェクトの CPU およびメモリーの要求および制限の値はデフォルト値の 0 に設定されます。これにより、コンピュートリソース要件を指定しない CDI によって作成される Pod にデフォルト値が付与され、クォータで制限される namespace での実行が許可されます。

7.18.4.2. CPU およびメモリーのデフォルトを上書きするための CDI オブジェクトの編集

CDI オブジェクトの spec.config.podResourceRequirements フィールドを編集して、ユースケースに応じて CPU およびメモリーの要求および制限のデフォルト設定を変更します。

前提条件

  • OpenShift CLI (oc) をインストールしている。

手順

  1. 以下のコマンドを実行して CDI オブジェクトを編集します。

    $ oc edit cdi
  2. CDI オブジェクトの spec: podResourceRequirements フィールドを編集して、デフォルトの CPU およびメモリーの要求および制限を変更します。

    apiVersion: cdi.kubevirt.io/v1beta1
    kind: CDI
    ...
    spec:
      config:
        podResourceRequirements:
          limits:
            cpu: "4"
            memory: "1Gi"
          requests:
            cpu: "1"
            memory: "250Mi"
    ...
  3. エディターを保存し、終了して CDI オブジェクトを更新します。

検証

  • CDI オブジェクトの status フィールドを表示して変更を確認します。

    $ oc get cdi -o yaml
7.18.4.3. 関連情報

7.18.5. データボリュームの事前割り当ての使用

Containerized Data Importer は、データボリュームの作成時に書き込みパフォーマンスを向上させるために、ディスク領域を事前に割り当てることができます。

クラスターまたは特定のデータボリュームに対して、事前割り当てをグローバルに有効にできます。

7.18.5.1. 事前割り当てについて

Containerized Data Importer (CDI) は、データボリュームに QEMU 事前割り当てモードを使用し、書き込みパフォーマンスを向上できます。操作のインポートおよびアップロードには、事前割り当てモードを使用できます。また、空のデータボリュームを作成する際にも使用できます。

事前割り当てが有効化されている場合、CDI は基礎となるファイルシステムおよびデバイスタイプに応じて、より適切な事前割り当て方法を使用します。

fallocate
ファイルシステムがこれをサポートする場合、CDI は posix_fallocate 関数を使って領域を事前に割り当てるためにオペレーティングシステムの fallocate 呼び出しを使用します。これは、ブロックを割り当て、それらを未初期化としてマークします。
full
fallocate モードを使用できない場合は、基礎となるストレージにデータを書き込むことで、full モードがイメージの領域を割り当てます。ストレージの場所によっては、空の割り当て領域がすべてゼロになる場合があります。
7.18.5.2. 事前割り当てグローバルに有効にする

prellocation フィールドを CDI オブジェクトに追加して、Containerized Data Importer (CDI) のクラスター全体の事前割り当てモードを有効にすることができます。

前提条件

  • OpenShift CLI (oc) をインストールすること。

手順

  1. oc クライアントを使用して CDI オブジェクトを編集します。

    $ oc edit cdi
  2. spec.config.preallocation フィールドを true の値で設定します。

    apiVersion: cdi.kubevirt.io/v1beta1
    kind: CDI
    metadata:
    ...
    spec:
      config:
        preallocation: true 1
    1
    preallocation フィールドは、デフォルトで false に設定されるブール値です。
  3. エディターを保存して終了し、CDI オブジェクトを更新して事前割り当てモードを有効にします。
7.18.5.3. データボリュームの事前割り当ての有効化

事前割り当てがクラスターに対してグローバルに有効化されていない場合、データボリュームマニフェストに spec.preallocation フィールドを追加して、特定のデータボリュームに対してこれを有効化することができます。Web コンソールで、または OpenShift クライアント (oc) を使用して、事前割り当てモードを有効化することができます。

事前割り当てモードは、すべての CDI ソースタイプでサポートされます。

手順

  • データボリュームマニフェストの spec.preallocation フィールドを指定します。

    apiVersion: cdi.kubevirt.io/v1beta1
    kind: DataVolume
    metadata:
      name: preallocated-datavolume
    spec:
      source: 1
        ...
      pvc:
        ...
      preallocation: true 2
    1
    すべての CDI ソースタイプは事前割り当てをサポートしますが、クローンの操作では事前割り当ては無視されます。
    2
    preallocation フィールドは、デフォルトで false に設定されるブール値です。

7.18.6. Web コンソールの使用によるローカルディスクイメージのアップロード

Web コンソールを使用して、ローカルに保存されたディスクイメージファイルをアップロードできます。

7.18.6.1. 前提条件
7.18.6.2. CDI がサポートする操作マトリックス

このマトリックスにはエンドポイントに対してコンテンツタイプのサポートされる CDI 操作が表示されます。これらの操作にはスクラッチ領域が必要です。

コンテンツタイプHTTPHTTPSHTTP Basic 認証レジストリーアップロード

kubevirt (QCOW2)

✓ QCOW2
✓ GZ*
✓ XZ*

✓ QCOW2**
✓ GZ*
✓ XZ*

✓ QCOW2
✓ GZ*
✓ XZ*

✓ QCOW2*
□ GZ
□ XZ

✓ QCOW2*
✓ GZ*
✓ XZ*

KubeVirt (RAW)

✓ RAW
✓ GZ
✓ XZ

✓ RAW
✓ GZ
✓ XZ

✓ RAW
✓ GZ
✓ XZ

✓ RAW*
□ GZ
□ XZ

✓ RAW*
✓ GZ*
✓ XZ*

✓ サポートされる操作

□ サポートされない操作

* スクラッチ領域が必要

**カスタム認証局が必要な場合にスクラッチ領域が必要

7.18.6.3. Web コンソールを使用したイメージファイルのアップロード

Web コンソールを使用して、イメージファイルを新規の永続ボリューム要求 (PVC) にアップロードします。この PVC を後で使用して、イメージを新規の仮想マシンに割り当てることができます。

前提条件

  • 以下のいずれかが必要である。

    • ISO または IMG 形式のいずれかの raw 仮想マシンイメージファイル。
    • QCOW2 形式の仮想マシンのイメージファイル。
  • 最善の結果を得るには、アップロードする前にイメージファイルを以下のガイドラインに従って圧縮すること。

    • xz または gzip を使用して raw イメージファイルを圧縮します。

      注記

      圧縮された raw イメージファイルを使用すると、最も効率的にアップロードできます。

    • クライアントについて推奨される方法を使用して、QCOW2 イメージファイルを圧縮します。

      • Linux クライアントを使用する場合は、virt-sparsify ツールを使用して、QCOW2 ファイルをスパース化 (sparsify) します。
      • Windows クライアントを使用する場合は、xz または gzip を使用して QCOW2 ファイルを圧縮します。

手順

  1. Web コンソールのサイドメニューから、StoragePersistent Volume Claims をクリックします。
  2. Create Persistent Volume Claim ドロップダウンリストをクリックし、これを拡張します。
  3. With Data Upload Form をクリックし、Upload Data to Persistent Volume Claim ページを開きます。
  4. Browse をクリックし、ファイルマネージャーを開き、アップロードするイメージを選択するか、ファイルを Drag a file here or browse to upload フィールドにドラッグします。
  5. オプション: 特定のオペレーティングシステムのデフォルトイメージとしてこのイメージを設定します。

    1. Attach this data to a virtual machine operating system チェックボックスを選択します。
    2. 一覧からオペレーティングシステムを選択します。
  6. Persistent Volume Claim Name フィールドには、一意の名前が自動的に入力され、これを編集することはできません。PVC に割り当てられた名前をメモし、必要に応じてこれを後で特定できるようにします。
  7. Storage Class 一覧からストレージクラスを選択します。
  8. Size フィールドに PVC のサイズ値を入力します。ドロップダウンリストから、対応する測定単位を選択します。

    警告

    PVC サイズは圧縮解除された仮想ディスクのサイズよりも大きくなければなりません。

  9. 選択したストレージクラスに一致する Access Mode を選択します。
  10. Upload をクリックします。
7.18.6.4. 関連情報

7.18.7. virtctl ツールの使用によるローカルディスクイメージのアップロード

virtctl コマンドラインユーティリティーを使用して、ローカルに保存されたディスクイメージを新規または既存のデータボリュームにアップロードできます。

7.18.7.1. 前提条件
7.18.7.2. データボリュームについて

DataVolume オブジェクトは、Containerized Data Importer (CDI) プロジェクトで提供されるカスタムリソースです。データボリュームは、基礎となる永続ボリューム要求 (PVC) に関連付けられるインポート、クローン作成、およびアップロード操作のオーケストレーションを行います。データボリュームは OpenShift Virtualization に統合され、仮想マシンが PVC の作成前に起動することを防ぎます。

7.18.7.3. アップロードデータボリュームの作成

ローカルディスクイメージのアップロードに使用する upload データソースでデータボリュームを手動で作成できます。

手順

  1. spec: source: upload{} を指定するデータボリューム設定を作成します。

    apiVersion: cdi.kubevirt.io/v1beta1
    kind: DataVolume
    metadata:
      name: <upload-datavolume> 1
    spec:
      source:
          upload: {}
      pvc:
        accessModes:
          - ReadWriteOnce
        resources:
          requests:
            storage: <2Gi> 2
    1
    データボリュームの名前。
    2
    データボリュームのサイズ。この値がアップロードするディスクのサイズ以上であることを確認します。
  2. 以下のコマンドを実行してデータボリュームを作成します。

    $ oc create -f <upload-datavolume>.yaml
7.18.7.4. ローカルディスクイメージのデータボリュームへのアップロード

virtctl CLI ユーティリティーを使用して、ローカルディスクイメージをクライアントマシンからクラスター内のデータボリューム (DV) にアップロードできます。この手順の実行時に、すでにクラスターに存在する DV を使用するか、または新規の DV を作成することができます。

注記

ローカルディスクイメージのアップロード後に、これを仮想マシンに追加できます。

前提条件

  • 以下のいずれかが必要である。

    • ISO または IMG 形式のいずれかの raw 仮想マシンイメージファイル。
    • QCOW2 形式の仮想マシンのイメージファイル。
  • 最善の結果を得るには、アップロードする前にイメージファイルを以下のガイドラインに従って圧縮すること。

    • xz または gzip を使用して raw イメージファイルを圧縮します。

      注記

      圧縮された raw イメージファイルを使用すると、最も効率的にアップロードできます。

    • クライアントについて推奨される方法を使用して、QCOW2 イメージファイルを圧縮します。

      • Linux クライアントを使用する場合は、virt-sparsify ツールを使用して、QCOW2 ファイルをスパース化 (sparsify) します。
      • Windows クライアントを使用する場合は、xz または gzip を使用して QCOW2 ファイルを圧縮します。
  • kubevirt-virtctl パッケージがクライアントマシンにインストールされていること。
  • クライアントマシンが OpenShift Container Platform ルーターの証明書を信頼するように設定されていること。

手順

  1. 以下を特定します。

    • 使用するアップロードデータボリュームの名前。このデータボリュームが存在しない場合、これは自動的に作成されます。
    • データボリュームのサイズ (アップロード手順の実行時に作成する必要がある場合)。サイズはディスクイメージのサイズ以上である必要があります。
    • アップロードする必要のある仮想マシンディスクイメージのファイルの場所。
  2. virtctl image-upload コマンドを実行してディスクイメージをアップロードします。直前の手順で特定したパラメーターを指定します。以下に例を示します。

    $ virtctl image-upload dv <datavolume_name> \ 1
    --size=<datavolume_size> \ 2
    --image-path=</path/to/image> \ 3
    1
    データボリュームの名前。
    2
    データボリュームのサイズ。例: --size=500Mi--size=1G
    3
    仮想マシンディスクイメージのファイルパス。
    注記
    • 新規データボリュームを作成する必要がない場合は、--size パラメーターを省略し、--no-create フラグを含めます。
    • ディスクイメージを PVC にアップロードする場合、PVC サイズは圧縮されていない仮想ディスクのサイズよりも大きくなければなりません。
    • HTTPS を使用したセキュアでないサーバー接続を許可するには、--insecure パラメーターを使用します。--insecure フラグを使用する際に、アップロードエンドポイントの信頼性は検証 されない 点に注意してください。
  3. オプション。データボリュームが作成されたことを確認するには、以下のコマンドを実行してすべてのデータボリュームを表示します。

    $ oc get dvs
7.18.7.5. CDI がサポートする操作マトリックス

このマトリックスにはエンドポイントに対してコンテンツタイプのサポートされる CDI 操作が表示されます。これらの操作にはスクラッチ領域が必要です。

コンテンツタイプHTTPHTTPSHTTP Basic 認証レジストリーアップロード

kubevirt (QCOW2)

✓ QCOW2
✓ GZ*
✓ XZ*

✓ QCOW2**
✓ GZ*
✓ XZ*

✓ QCOW2
✓ GZ*
✓ XZ*

✓ QCOW2*
□ GZ
□ XZ

✓ QCOW2*
✓ GZ*
✓ XZ*

KubeVirt (RAW)

✓ RAW
✓ GZ
✓ XZ

✓ RAW
✓ GZ
✓ XZ

✓ RAW
✓ GZ
✓ XZ

✓ RAW*
□ GZ
□ XZ

✓ RAW*
✓ GZ*
✓ XZ*

✓ サポートされる操作

□ サポートされない操作

* スクラッチ領域が必要

**カスタム認証局が必要な場合にスクラッチ領域が必要

7.18.7.6. 関連情報

7.18.8. ブロックストレージデータボリュームへのローカルディスクイメージのアップロード

virtctl コマンドラインユーティリティーを使用して、ローカルのディスクイメージをブロックデータボリュームにアップロードできます。

このワークフローでは、ローカルブロックデバイスを使用して永続ボリュームを使用し、このブロックボリュームを upload データボリュームに関連付け、 virtctl を使用してローカルディスクイメージをデータボリュームにアップロードできます。

7.18.8.1. 前提条件
7.18.8.2. データボリュームについて

DataVolume オブジェクトは、Containerized Data Importer (CDI) プロジェクトで提供されるカスタムリソースです。データボリュームは、基礎となる永続ボリューム要求 (PVC) に関連付けられるインポート、クローン作成、およびアップロード操作のオーケストレーションを行います。データボリュームは OpenShift Virtualization に統合され、仮想マシンが PVC の作成前に起動することを防ぎます。

7.18.8.3. ブロック永続ボリュームについて

ブロック永続ボリューム (PV) は、raw ブロックデバイスによってサポートされる PV です。これらのボリュームにはファイルシステムがなく、オーバーヘッドを削減することで、仮想マシンのパフォーマンス上の利点をもたらすことができます。

raw ブロックボリュームは、PV および永続ボリューム要求 (PVC) 仕様で volumeMode: Block を指定してプロビジョニングされます。

7.18.8.4. ローカルブロック永続ボリュームの作成

ファイルにデータを設定し、これをループデバイスとしてマウントすることにより、ノードでローカルブロック永続ボリューム (PV) を作成します。次に、このループデバイスを PV マニフェストで Block ボリュームとして参照し、これを仮想マシンイメージのブロックデバイスとして使用できます。

手順

  1. ローカル PV を作成するノードに root としてログインします。この手順では、node01 を例に使用します。
  2. ファイルを作成して、これを null 文字で設定し、ブロックデバイスとして使用できるようにします。以下の例では、2Gb (20 100Mb ブロック) のサイズのファイル loop10 を作成します。

    $ dd if=/dev/zero of=<loop10> bs=100M count=20
  3. loop10 ファイルをループデバイスとしてマウントします。

    $ losetup </dev/loop10>d3 <loop10> 1 2
    1
    ループデバイスがマウントされているファイルパスです。
    2
    前の手順で作成したファイルはループデバイスとしてマウントされます。
  4. マウントされたループデバイスを参照する PersistentVolume マニフェストを作成します。

    kind: PersistentVolume
    apiVersion: v1
    metadata:
      name: <local-block-pv10>
      annotations:
    spec:
      local:
        path: </dev/loop10> 1
      capacity:
        storage: <2Gi>
      volumeMode: Block 2
      storageClassName: local 3
      accessModes:
        - ReadWriteOnce
      persistentVolumeReclaimPolicy: Delete
      nodeAffinity:
        required:
          nodeSelectorTerms:
          - matchExpressions:
            - key: kubernetes.io/hostname
              operator: In
              values:
              - <node01> 4
    1
    ノード上のループデバイスのパス。
    2
    ブロック PV であることを指定します。
    3
    オプション: PV にストレージクラスを設定します。これを省略する場合、クラスターのデフォルトが使用されます。
    4
    ブロックデバイスがマウントされたノード。
  5. ブロック PV を作成します。

    # oc create -f <local-block-pv10.yaml>1
    1
    直前の手順で作成された永続ボリュームのファイル名。
7.18.8.5. アップロードデータボリュームの作成

ローカルディスクイメージのアップロードに使用する upload データソースでデータボリュームを手動で作成できます。

手順

  1. spec: source: upload{} を指定するデータボリューム設定を作成します。

    apiVersion: cdi.kubevirt.io/v1beta1
    kind: DataVolume
    metadata:
      name: <upload-datavolume> 1
    spec:
      source:
          upload: {}
      pvc:
        accessModes:
          - ReadWriteOnce
        resources:
          requests:
            storage: <2Gi> 2
    1
    データボリュームの名前。
    2
    データボリュームのサイズ。この値がアップロードするディスクのサイズ以上であることを確認します。
  2. 以下のコマンドを実行してデータボリュームを作成します。

    $ oc create -f <upload-datavolume>.yaml
7.18.8.6. ローカルディスクイメージのデータボリュームへのアップロード

virtctl CLI ユーティリティーを使用して、ローカルディスクイメージをクライアントマシンからクラスター内のデータボリューム (DV) にアップロードできます。この手順の実行時に、すでにクラスターに存在する DV を使用するか、または新規の DV を作成することができます。

注記

ローカルディスクイメージのアップロード後に、これを仮想マシンに追加できます。

前提条件

  • 以下のいずれかが必要である。

    • ISO または IMG 形式のいずれかの raw 仮想マシンイメージファイル。
    • QCOW2 形式の仮想マシンのイメージファイル。
  • 最善の結果を得るには、アップロードする前にイメージファイルを以下のガイドラインに従って圧縮すること。

    • xz または gzip を使用して raw イメージファイルを圧縮します。

      注記

      圧縮された raw イメージファイルを使用すると、最も効率的にアップロードできます。

    • クライアントについて推奨される方法を使用して、QCOW2 イメージファイルを圧縮します。

      • Linux クライアントを使用する場合は、virt-sparsify ツールを使用して、QCOW2 ファイルをスパース化 (sparsify) します。
      • Windows クライアントを使用する場合は、xz または gzip を使用して QCOW2 ファイルを圧縮します。
  • kubevirt-virtctl パッケージがクライアントマシンにインストールされていること。
  • クライアントマシンが OpenShift Container Platform ルーターの証明書を信頼するように設定されていること。

手順

  1. 以下を特定します。

    • 使用するアップロードデータボリュームの名前。このデータボリュームが存在しない場合、これは自動的に作成されます。
    • データボリュームのサイズ (アップロード手順の実行時に作成する必要がある場合)。サイズはディスクイメージのサイズ以上である必要があります。
    • アップロードする必要のある仮想マシンディスクイメージのファイルの場所。
  2. virtctl image-upload コマンドを実行してディスクイメージをアップロードします。直前の手順で特定したパラメーターを指定します。以下に例を示します。

    $ virtctl image-upload dv <datavolume_name> \ 1
    --size=<datavolume_size> \ 2
    --image-path=</path/to/image> \ 3
    1
    データボリュームの名前。
    2
    データボリュームのサイズ。例: --size=500Mi--size=1G
    3
    仮想マシンディスクイメージのファイルパス。
    注記
    • 新規データボリュームを作成する必要がない場合は、--size パラメーターを省略し、--no-create フラグを含めます。
    • ディスクイメージを PVC にアップロードする場合、PVC サイズは圧縮されていない仮想ディスクのサイズよりも大きくなければなりません。
    • HTTPS を使用したセキュアでないサーバー接続を許可するには、--insecure パラメーターを使用します。--insecure フラグを使用する際に、アップロードエンドポイントの信頼性は検証 されない 点に注意してください。
  3. オプション。データボリュームが作成されたことを確認するには、以下のコマンドを実行してすべてのデータボリュームを表示します。

    $ oc get dvs
7.18.8.7. CDI がサポートする操作マトリックス

このマトリックスにはエンドポイントに対してコンテンツタイプのサポートされる CDI 操作が表示されます。これらの操作にはスクラッチ領域が必要です。

コンテンツタイプHTTPHTTPSHTTP Basic 認証レジストリーアップロード

kubevirt (QCOW2)

✓ QCOW2
✓ GZ*
✓ XZ*

✓ QCOW2**
✓ GZ*
✓ XZ*

✓ QCOW2
✓ GZ*
✓ XZ*

✓ QCOW2*
□ GZ
□ XZ

✓ QCOW2*
✓ GZ*
✓ XZ*

KubeVirt (RAW)

✓ RAW
✓ GZ
✓ XZ

✓ RAW
✓ GZ
✓ XZ

✓ RAW
✓ GZ
✓ XZ

✓ RAW*
□ GZ
□ XZ

✓ RAW*
✓ GZ*
✓ XZ*

✓ サポートされる操作

□ サポートされない操作

* スクラッチ領域が必要

**カスタム認証局が必要な場合にスクラッチ領域が必要

7.18.8.8. 関連情報

7.18.9. オフラインの仮想マシンスナップショットの管理

オフ (オフライン) になっている仮想マシンの仮想マシン (VM) スナップショットを作成し、復元し、削除できます。OpenShift Virtualization は、以下でオフラインの仮想マシンスナップショットをサポートします。

  • Red Hat OpenShift Container Storage
  • Kubernetes Volume Snapshot API をサポートする Container Storage Interface (CSI) ドライバーを使用するその他のストレージプロバイダー
7.18.9.1. 仮想マシンスナップショットについて

スナップショット は、特定の時点における仮想マシン (VM) の状態およびデータを表します。スナップショットを使用して、バックアップおよび障害復旧のために既存の仮想マシンを (スナップショットで表される) 以前の状態に復元したり、以前の開発バージョンに迅速にロールバックしたりできます。

オフラインの仮想マシンのスナップショットは、電源がオフになった (停止状態の) 仮想マシンから作成されます。スナップショットは、仮想マシンに割り当てられた各 Container Storage Interface (CSI) ボリュームのコピーと、仮想マシンの仕様およびメタデータのコピーを保存します。スナップショットは作成後に変更できません。

オフラインの仮想マシンスナップショット機能を使用すると、クラスター管理者、およびアプリケーション開発者は以下を実行できます。

  • 新規 SCC の作成
  • 特定の仮想マシンに割り当てられているすべてのスナップショットの一覧表示
  • スナップショットからの仮想マシンの復元
  • 既存の仮想マシンスナップショットの削除
7.18.9.1.1. 仮想マシンスナップショットコントローラーおよびカスタムリソース定義 (CRD)

仮想マシンスナップショット機能では、スナップショットを管理するための CRD として定義された 3 つの新規 API オブジェクトが導入されました。

  • VirtualMachineSnapshot: スナップショットを作成するユーザー要求を表します。これには、仮想マシンの現在の状態に関する情報が含まれます。
  • VirtualMachineSnapshotContent: クラスター上のプロビジョニングされたリソース (スナップショット) を表します。これは、仮想マシンのスナップショットコントローラーによって作成され、仮想マシンの復元に必要なすべてのリソースへの参照が含まれます。
  • VirtualMachineRestore: スナップショットから仮想マシンを復元するユーザー要求を表します。

仮想マシンスナップショットコントローラーは、1 対 1 のマッピングで、VirtualMachineSnapshotContent オブジェクトを、この作成に使用した VirtualMachineSnapshot オブジェクトにバインドします。

7.18.9.2. Web コンソールでのオフライン仮想マシンスナップショットの作成

Web コンソールを使用して仮想マシン (VM) を作成することができます。

注記

仮想マシンスナップショットには、以下の要件を満たすディスクのみが含まれます。

  • データボリュームまたは永続ボリューム要求 (PVC) のいずれかでなければなりません。
  • Container Storage Interface (CSI) ボリュームスナップショットをサポートするストレージクラスに属している必要があります。

仮想マシンストレージにスナップショットをサポートしないディスクが含まれる場合、それらを編集するか、またはクラスター管理者にお問い合わせください。

手順

  1. サイドメニューから WorkloadsVirtualization をクリックします。
  2. Virtual Machines タブをクリックします。
  3. 仮想マシンを選択して、Virtual Machine Overview 画面を開きます。
  4. 仮想マシンが実行されている場合、ActionsStop Virtual Machine をクリックしてこの電源をオフにします。
  5. Snapshots タブをクリックしてから Take Snapshot をクリックします。
  6. Snapshot Name およびオプションの Description フィールドに入力します。
  7. Disks included in this Snapshot を拡張し、スナップショットに組み込むストレージボリュームを表示します。
  8. 仮想マシンにスナップショットに追加できないディスクがあり、それでも続行する場合は、I am aware of this warning and wish to proceed チェックボックスを選択します。
  9. Save をクリックします。
7.18.9.3. CLI でのオフライン仮想マシンスナップショットの作成

VirtualMachineSnapshot オブジェクトを作成し、オフライン仮想マシンの仮想マシン (VM) スナップショットを作成できます。

前提条件

  • 永続ボリューム要求 (PVC) が Container Storage Interface (CSI) ボリュームスナップショットをサポートするストレージクラスにあることを確認する。
  • OpenShift CLI (oc) をインストールしている。
  • スナップショットを作成する仮想マシンの電源を切ること。

手順

  1. YAML ファイルを作成し、新規の VirtualMachineSnapshot の名前およびソース仮想マシンの名前を指定する VirtualMachineSnapshot オブジェトを定義します。

    以下に例を示します。

    apiVersion: snapshot.kubevirt.io/v1alpha1
    kind: VirtualMachineSnapshot
    metadata:
      name: my-vmsnapshot 1
    spec:
      source:
        apiGroup: kubevirt.io
        kind: VirtualMachine
        name: my-vm 2
    1
    新規 VirtualMachineSnapshot オブジェクトの名前。
    2
    ソース仮想マシンの名前。
  2. VirtualMachineSnapshot リソースを作成します。スナップコントローラーは VirtualMachineSnapshotContent オブジェクトを作成し、これを VirtualMachineSnapshot にバインドし、 VirtualMachineSnapshot オブジェクトの status および readyToUse フィールドを更新します。

    $ oc create -f <my-vmsnapshot>.yaml

検証

  1. VirtualMachineSnapshot オブジェクトが作成されており、VirtualMachineSnapshotContent にバインドされていることを確認します。readyToUse フラグを true に設定する必要があります。

    $ oc describe vmsnapshot <my-vmsnapshot>

    出力例

    apiVersion: snapshot.kubevirt.io/v1alpha1
    kind: VirtualMachineSnapshot
    metadata:
    creationTimestamp: "2020-09-30T14:41:51Z"
    finalizers:
    - snapshot.kubevirt.io/vmsnapshot-protection
    generation: 5
    name: mysnap
    namespace: default
    resourceVersion: "3897"
    selfLink: /apis/snapshot.kubevirt.io/v1alpha1/namespaces/default/virtualmachinesnapshots/my-vmsnapshot
    uid: 28eedf08-5d6a-42c1-969c-2eda58e2a78d
    spec:
    source:
    apiGroup: kubevirt.io
    kind: VirtualMachine
    name: my-vm
    status:
    conditions:
      - lastProbeTime: null
      lastTransitionTime: "2020-09-30T14:42:03Z"
      reason: Operation complete
      status: "False" 1
      type: Progressing
      - lastProbeTime: null
      lastTransitionTime: "2020-09-30T14:42:03Z"
      reason: Operation complete
      status: "True" 2
      type: Ready
    creationTime: "2020-09-30T14:42:03Z"
    readyToUse: true 3
    sourceUID: 355897f3-73a0-4ec4-83d3-3c2df9486f4f
    virtualMachineSnapshotContentName: vmsnapshot-content-28eedf08-5d6a-42c1-969c-2eda58e2a78d 4

    1
    Progressing 状態の status フィールドは、スナップショットが作成中であるかどうかを指定します。
    2
    Ready 状態の status フィールドは、スナップショットの作成プロセスが完了しているかどうかを指定します。
    3
    スナップショットを使用する準備ができているかどうかを指定します。
    4
    スナップショットが、スナップショットコントローラーで作成される VirtualMachineSnapshotContent オブジェクトにバインドされるように指定します。
  2. VirtualMachineSnapshotContent リソースの spec:volumeBackups プロパティーをチェックし、予想される PVC がスナップショットに含まれることを確認します。
7.18.9.4. Web コンソールでのスナップショットからの仮想マシンの復元

仮想マシン (VM) は、Web コンソールのスナップショットで表される以前の設定に復元できます。

手順

  1. サイドメニューから WorkloadsVirtualization をクリックします。
  2. Virtual Machines タブをクリックします。
  3. 仮想マシンを選択して、Virtual Machine Overview 画面を開きます。
  4. 仮想マシンが実行されている場合、ActionsStop Virtual Machine をクリックしてこの電源をオフにします。
  5. Snapshots タブをクリックします。このページには、仮想マシンに関連付けられたスナップショットの一覧が表示されます。
  6. 仮想マシンのスナップショットを復元するには、以下のいずれかの方法を選択します。

    1. 仮想マシンを復元する際にソースとして使用するスナップショットの場合は、Restore をクリックします。
    2. スナップショットを選択して Snapshot Details 画面を開き、ActionsRestore Virtual Machine Snapshot をクリックします。
  7. 確認のポップアップウィンドウで Restore をクリックし、仮想マシンをスナップショットで表される以前の設定に戻します。
7.18.9.5. CLI でのスナップショットからの仮想マシンの復元

仮想マシンスナップショットを使用して、既存の仮想マシン (VM) を以前の設定に復元できます。

前提条件

  • OpenShift CLI (oc) をインストールしている。
  • 以前の状態に復元する仮想マシンの電源を切ること。

手順

  1. 復元する仮想マシンの名前およびソースとして使用されるスナップショットの名前を指定する VirtualMachineRestore オブジェクトを定義するために YAML ファイルを作成します。

    以下に例を示します。

    apiVersion: snapshot.kubevirt.io/v1alpha1
    kind: VirtualMachineRestore
    metadata:
      name: my-vmrestore 1
    spec:
      target:
        apiGroup: kubevirt.io
        kind: VirtualMachine
        name: my-vm 2
      virtualMachineSnapshotName: my-vmsnapshot 3
    1
    新規 VirtualMachineRestore オブジェクトの名前。
    2
    復元するターゲット仮想マシンの名前。
    3
    ソースとして使用する VirtualMachineSnapshot オブジェクトの名前。
  2. VirtualMachineRestore リソースを作成します。スナップショットコントローラーは、VirtualMachineRestore オブジェクトのステータスフィールドを更新し、既存の仮想マシン設定をスナップショットのコンテンツに置き換えます。

    $ oc create -f <my-vmrestore>.yaml

検証

  • 仮想マシンがスナップショットで表される以前の状態に復元されていることを確認します。complete フラグは true に設定される必要があります。

    $ oc get vmrestore <my-vmrestore>

    出力例

    apiVersion: snapshot.kubevirt.io/v1alpha1
    kind: VirtualMachineRestore
    metadata:
    creationTimestamp: "2020-09-30T14:46:27Z"
    generation: 5
    name: my-vmrestore
    namespace: default
    ownerReferences:
    - apiVersion: kubevirt.io/v1alpha3
      blockOwnerDeletion: true
      controller: true
      kind: VirtualMachine
      name: my-vm
      uid: 355897f3-73a0-4ec4-83d3-3c2df9486f4f
      resourceVersion: "5512"
      selfLink: /apis/snapshot.kubevirt.io/v1alpha1/namespaces/default/virtualmachinerestores/my-vmrestore
      uid: 71c679a8-136e-46b0-b9b5-f57175a6a041
      spec:
        target:
          apiGroup: kubevirt.io
          kind: VirtualMachine
          name: my-vm
      virtualMachineSnapshotName: my-vmsnapshot
      status:
      complete: true 1
      conditions:
      - lastProbeTime: null
      lastTransitionTime: "2020-09-30T14:46:28Z"
      reason: Operation complete
      status: "False" 2
      type: Progressing
      - lastProbeTime: null
      lastTransitionTime: "2020-09-30T14:46:28Z"
      reason: Operation complete
      status: "True" 3
      type: Ready
      deletedDataVolumes:
      - test-dv1
      restoreTime: "2020-09-30T14:46:28Z"
      restores:
      - dataVolumeName: restore-71c679a8-136e-46b0-b9b5-f57175a6a041-datavolumedisk1
      persistentVolumeClaim: restore-71c679a8-136e-46b0-b9b5-f57175a6a041-datavolumedisk1
      volumeName: datavolumedisk1
      volumeSnapshotName: vmsnapshot-28eedf08-5d6a-42c1-969c-2eda58e2a78d-volume-datavolumedisk1

    1
    仮想マシンをスナップショットで表される状態に復元するプロセスが完了しているかどうかを指定します。
    2
    Progressing 状態の status フィールドは、仮想マシンが復元されているかどうかを指定します。
    3
    Ready 状態の status フィールドは、仮想マシンの復元プロセスが完了しているかどうかを指定します。
7.18.9.6. Web コンソールでの仮想マシンのスナップショットの削除

Web コンソールを使用して既存の仮想マシンスナップショットを削除できます。

手順

  1. サイドメニューから WorkloadsVirtualization をクリックします。
  2. Virtual Machines タブをクリックします。
  3. 仮想マシンを選択して、Virtual Machine Overview 画面を開きます。
  4. Snapshots タブをクリックします。このページには、仮想マシンに関連付けられたスナップショットの一覧が表示されます。
  5. 仮想マシンスナップショットを削除するには、以下のいずれかの方法を選択します。

    1. 削除する仮想マシンスナップショットの Options メニュー kebab をクリックして、 Delete Virtual Machine Snapshot を選択します。
    2. スナップショットを選択して Snapshot Details 画面を開き、ActionsDelete Virtual Machine Snapshot をクリックします。
  6. 確認のポップアップウィンドウで、Delete をクリックしてスナップショットを削除します。
7.18.9.7. CLI での仮想マシンのスナップショットの削除

適切な VirtualMachineSnapshot オブジェクトを削除して、既存の仮想マシン (VM) スナップショットを削除できます。

前提条件

  • OpenShift CLI (oc) をインストールしている。

手順

  • VirtualMachineSnapshot オブジェクトを削除します。スナップショットコントローラーは、VirtualMachineSnapshot を、関連付けられた VirtualMachineSnapshotContent オブジェクトと共に削除します。

    $ oc delete vmsnapshot <my-vmsnapshot>

検証

  • スナップショットが削除され、この仮想マシンに割り当てられていないことを確認します。

    $ oc get vmsnapshot
7.18.9.8. 関連情報

7.18.10. ローカル仮想マシンディスクの別のノードへの移動

ローカルボリュームストレージを使用する仮想マシンは、特定のノードで実行されるように移動することができます。

以下の理由により、仮想マシンを特定のノードに移動する場合があります。

  • 現在のノードにローカルストレージ設定に関する制限がある。
  • 新規ノードがその仮想マシンのワークロードに対して最適化されている。

ローカルストレージを使用する仮想マシンを移行するには、データボリュームを使用して基礎となるボリュームのクローンを作成する必要があります。クローン操作が完了したら、新規データボリュームを使用できるように 仮想マシン設定を編集 するか、または 新規データボリュームを別の仮想マシンに追加 できます。

注記

cluster-admin ロールのないユーザーには、複数の namespace 間でボリュームのクローンを作成できるように 追加のユーザーパーミッション が必要になります。

7.18.10.1. ローカルボリュームの別のノードへのクローン作成

基礎となる永続ボリューム要求 (PVC) のクローンを作成して、仮想マシンディスクを特定のノードで実行するように移行することができます。

仮想マシンディスクのノードが適切なノードに作成されることを確認するには、新規の永続ボリューム (PV) を作成するか、または該当するノードでそれを特定します。一意のラベルを PV に適用し、これがデータボリュームで参照できるようにします。

注記

宛先 PV のサイズはソース PVC と同じか、またはそれよりも大きくなければなりません。宛先 PV がソース PVC よりも小さい場合、クローン作成操作は失敗します。

前提条件

  • 仮想マシンが実行されていないこと。仮想マシンディスクのクローンを作成する前に、仮想マシンの電源を切ります。

手順

  1. ノードに新規のローカル PV を作成するか、またはノードにすでに存在しているローカル PV を特定します。

    • nodeAffinity.nodeSelectorTerms パラメーターを含むローカル PV を作成します。以下のマニフェストは、node0110Gi のローカル PV を作成します。

      kind: PersistentVolume
      apiVersion: v1
      metadata:
        name: <destination-pv> 1
        annotations:
      spec:
        accessModes:
        - ReadWriteOnce
        capacity:
          storage: 10Gi 2
        local:
          path: /mnt/local-storage/local/disk1 3
        nodeAffinity:
          required:
            nodeSelectorTerms:
            - matchExpressions:
              - key: kubernetes.io/hostname
                operator: In
                values:
                - node01 4
        persistentVolumeReclaimPolicy: Delete
        storageClassName: local
        volumeMode: Filesystem
      1
      PV の名前。
      2
      PV のサイズ。十分な領域を割り当てる必要があります。そうでない場合には、クローン操作は失敗します。サイズはソース PVC と同じか、またはそれよりも大きくなければなりません。
      3
      ノードのマウントパス。
      4
      PV を作成するノードの名前。
    • ターゲットノードに存在する PV を特定します。設定の nodeAffinity フィールドを確認して、PV がプロビジョニングされるノードを特定することができます。

      $ oc get pv <destination-pv> -o yaml

      以下のスニペットは、PV が node01 にあることを示しています。

      出力例

      ...
      spec:
        nodeAffinity:
          required:
            nodeSelectorTerms:
            - matchExpressions:
              - key: kubernetes.io/hostname 1
                operator: In
                values:
                - node01 2
      ...

      1
      kubernetes.io/hostname キーでは、ノードを選択するためにノードホスト名を使用します。
      2
      ノードのホスト名。
  2. PV に一意のラベルを追加します。

    $ oc label pv <destination-pv> node=node01
  3. 以下を参照するデータボリュームマニフェストを作成します。

    • 仮想マシンの PVC 名と namespace。
    • 直前の手順で PV に適用されたラベル。
    • 宛先 PV のサイズ。

      apiVersion: cdi.kubevirt.io/v1beta1
      kind: DataVolume
      metadata:
        name: <clone-datavolume> 1
      spec:
        source:
          pvc:
            name: "<source-vm-disk>" 2
            namespace: "<source-namespace>" 3
        pvc:
          accessModes:
            - ReadWriteOnce
          selector:
            matchLabels:
              node: node01 4
          resources:
            requests:
              storage: <10Gi> 5
      1
      新規データボリュームの名前。
      2
      ソース PVC の名前。PVC 名が分からない場合は、仮想マシン設定 spec.volumes.persistentVolumeClaim.claimName で確認できます。
      3
      ソース PVC が存在する namespace。
      4
      直前の手順で PV に追加したラベル。
      5
      宛先 PV のサイズ。
  4. データボリュームマニフェストをクラスターに適用してクローン作成の操作を開始します。

    $ oc apply -f <clone-datavolume.yaml>

データボリュームは、仮想マシンの PVC のクローンを特定のノード上の PV に作成します。

7.18.11. 空のディスクイメージを追加して仮想ストレージを拡張する

空のディスクイメージを OpenShift Virtualization に追加することによって、ストレージ容量を拡張したり、新規のデータパーティションを作成したりできます。

7.18.11.1. データボリュームについて

DataVolume オブジェクトは、Containerized Data Importer (CDI) プロジェクトで提供されるカスタムリソースです。データボリュームは、基礎となる永続ボリューム要求 (PVC) に関連付けられるインポート、クローン作成、およびアップロード操作のオーケストレーションを行います。データボリュームは OpenShift Virtualization に統合され、仮想マシンが PVC の作成前に起動することを防ぎます。

7.18.11.2. データボリュームを使用した空のディスクイメージの作成

データボリューム設定ファイルをカスタマイズし、デプロイすることにより、新規の空のディスクイメージを永続ボリューム要求 (PVC) に作成することができます。

前提条件

  • 1 つ以上の利用可能な永続ボリュームがあること。
  • OpenShift CLI (oc) をインストールしている。

手順

  1. データボリューム設定ファイルを編集します。

    apiVersion: cdi.kubevirt.io/v1beta1
    kind: DataVolume
    metadata:
      name: blank-image-datavolume
    spec:
      source:
          blank: {}
      pvc:
        # Optional: Set the storage class or omit to accept the default
        # storageClassName: "hostpath"
        accessModes:
          - ReadWriteOnce
        resources:
          requests:
            storage: 500Mi
  2. 以下のコマンドを実行して、空のディスクイメージを作成します。

    $ oc create -f <blank-image-datavolume>.yaml
7.18.11.3. テンプレート: 空のディスクイメージのデータボリューム設定ファイル

blank-image-datavolume.yaml

apiVersion: cdi.kubevirt.io/v1beta1
kind: DataVolume
metadata:
  name: blank-image-datavolume
spec:
  source:
      blank: {}
  pvc:
    # Optional: Set the storage class or omit to accept the default
    # storageClassName: "hostpath"
    accessModes:
      - ReadWriteOnce
    resources:
      requests:
        storage: 500Mi
7.18.11.4. 関連情報

7.18.12. smart-cloning を使用したデータボリュームのクローン作成

smart-cloning は OpenShift Container Platform Storage (OCS) のビルトイン機能であり、クローン作成プロセスのパフォーマンスを強化するように設計されています。smart-cloning で作成したクローンは、ホスト支援型のクローン作成よりも速く、効率的です。

smart-cloning を有効にするためにアクションを実行する必要はありませんが、この機能を使用するには、ストレージ環境が smart-cloning と互換性があることを確認する必要があります。

永続ボリューム要求 (PVC) ソースでデータボリュームを作成すると、クローン作成プロセスが自動的に開始します。お使いの環境で smart-cloning をサポートするかどうかにかかわらず、データボリュームのクローンは常に受信できます。ただし、ストレージプロバイダーが smart-cloning に対応している場合、smart-cloning によるパフォーマンス上のメリットが得られます。

7.18.12.1. smart-cloning について

データボリュームに smart-cloning が実行された場合、以下が発生します。

  1. ソースの永続ボリューム要求 (PVC) のスナップショットが作成されます。
  2. PVC はスナップショットから作成されます。
  3. スナップショットは削除されます。
7.18.12.2. データボリュームのクローン作成

前提条件

smart-cloning が実行されるには、以下の条件が必要です。

  • ストレージプロバイダーはスナップショットをサポートする必要がある。
  • ソースおよびターゲット PVC は、同じ namespace に定義される必要がある。
  • ソースおよびターゲット PVC は、同じストレージクラスに定義される必要がある。
  • VolumeSnapshotClass オブジェクトは、ソースおよびターゲット PVC の両方に定義されるストレージクラスを参照する必要がある。

これらの前提条件のいずれかが満たされない場合、PVC ソースでデータボリュームを作成すると、ホスト支援型クローンが自動的に実行されます。

手順

データボリュームのクローン作成を開始するには、以下を実行します。

  1. 新規データボリュームの名前、ソース PVC の名前および namespace、および新規データボリュームのサイズを指定する DataVolume オブジェクトの YAML ファイルを作成します。この例では、ソース PVC のクローンをブロックモードで作成し、volumeMode: Block が使用されます。

    apiVersion: cdi.kubevirt.io/v1beta1
    kind: DataVolume
    metadata:
      name: <cloner-datavolume> 1
    spec:
      source:
        pvc:
          namespace: "<source-namespace>" 2
          name: "<my-favorite-vm-disk>" 3
      pvc:
        accessModes:
          - ReadWriteMany
        resources:
          requests:
            storage: <2Gi> 4
        volumeMode: Block 5
    1
    新規データボリュームの名前。
    2
    ソース PVC が存在する namespace。
    3
    ソース PVC の名前。
    4
    新規データボリュームのサイズ。十分な領域を割り当てる必要があります。そうでない場合には、クローン操作は失敗します。サイズはソース PVC と同じか、またはそれよりも大きくなければなりません。
    5
    宛先がブロック PV であることを指定します。
  2. データボリュームを作成して PVC のクローン作成を開始します。

    $ oc create -f <cloner-datavolume>.yaml
    注記

    データボリュームは仮想マシンが PVC の作成前に起動することを防ぐため、PVC のクローン作成中に新規データボリュームを参照する仮想マシンを作成できます。

7.18.12.3. 関連情報

7.18.13. データボリュームのストレージのデフォルト

kubevirt-storage-class-defaults 設定マップはデータボリュームの アクセスモード および ボリュームモード のデフォルト設定を提供します。Web コンソールで、基礎となるストレージにより適したデータボリュームを作成するために、設定マップに対してストレージクラスのデフォルトを編集したり、追加したりできます。

7.18.13.1. データボリュームのストレージ設定について

データボリュームでは、定義された アクセスモードボリュームモード を Web コンソールで作成する必要があります。これらのストレージ設定は、デフォルトで ReadWriteOnce アクセスモードおよび Filesystem ボリュームモードで設定されます。

これらの設定は、openshift-cnv namespace で kubevirt-storage-class-defaults 設定マップを編集して変更できます。また、異なるストレージタイプについて Web コンソールでデータボリュームを作成するために、他のストレージクラスの設定を追加することもできます。

注記

基礎となるストレージでサポートされるストレージ設定を設定する必要があります。

Web コンソールで作成するすべてのデータボリュームは、設定マップにも定義されるストレージクラスを指定しない限り、デフォルトのストレージ設定を使用します。

7.18.13.1.1. アクセスモード

データボリュームは以下のアクセスモードをサポートします。

  • ReadWriteOnce: ボリュームは単一ノードで、read-write としてマウントできます。ReadWriteOnce にはより多様性があり、これはデフォルトの設定です。
  • ReadWriteMany: ボリュームは数多くのノードで、read-write としてマウントできます。ReadWriteMany は、ノード間の仮想マシンのライブマイグレーションなどの、一部の機能で必要になります。

ReadWriteMany は、基礎となるストレージがこれをサポートしている場合に推奨されます。

7.18.13.1.2. ボリュームモード

ボリュームモードは、ボリュームをフォーマットされたファイルシステムで使用するか、または raw ブロック状態のままにするかを定義します。データボリュームは以下のボリュームモードをサポートします。

  • Filesystem: データボリュームにファイルシステムを作成します。これはデフォルトの設定です。
  • Block: ブロックデータボリュームを作成します。基礎となるストレージがサポートしている場合は、 Block を使用します。
7.18.13.2. Web コンソールでの kubevirt-storage-class-defaults 設定マップの編集

データボリュームのストレージ設定を、openshift-cnv namespace の kubevirt-storage-class-defaults 設定マップを編集して変更します。また、異なるストレージタイプについて Web コンソールでデータボリュームを作成するために、他のストレージクラスの設定を追加することもできます。

注記

基礎となるストレージでサポートされるストレージ設定を設定する必要があります。

手順

  1. サイドメニューから、WorkloadsConfig Maps をクリックします。
  2. Project 一覧で、openshift-cnv を選択します。
  3. kubevirt-storage-class-defaults をクリックして Config Map Overview を開きます。
  4. YAML タブをクリックして編集可能な設定を表示します。
  5. 基礎となるストレージに適したストレージ設定で data の値を更新します。

    ...
    data:
      accessMode: ReadWriteOnce 1
      volumeMode: Filesystem 2
      <new>.accessMode: ReadWriteMany 3
      <new>.volumeMode: Block 4
    1
    デフォルトの accessMode は ReadWriteOnce です。
    2
    デフォルトの volumeMode は Filesystem です。
    3
    ストレージクラスのアクセスモードを追加する場合は、パラメーターの <new> 部分をストレージクラス名に置き換えます。
    4
    ストレージクラスのボリュームモードを追加する場合は、パラメーターの <new> 部分をストレージクラス名に置き換えます。
  6. Save をクリックして設定マップを更新します。
7.18.13.3. CLI での kubevirt-storage-class-defaults 設定マップの編集

データボリュームのストレージ設定を、openshift-cnv namespace の kubevirt-storage-class-defaults 設定マップを編集して変更します。また、異なるストレージタイプについて Web コンソールでデータボリュームを作成するために、他のストレージクラスの設定を追加することもできます。

注記

基礎となるストレージでサポートされるストレージ設定を設定する必要があります。

手順

  1. 以下のコマンドを実行して設定マップを編集します。

    $ oc edit configmap kubevirt-storage-class-defaults -n openshift-cnv
  2. 設定マップの data 値を更新します。

    ...
    data:
      accessMode: ReadWriteOnce 1
      volumeMode: Filesystem 2
      <new>.accessMode: ReadWriteMany 3
      <new>.volumeMode: Block 4
    1
    デフォルトの accessMode は ReadWriteOnce です。
    2
    デフォルトの volumeMode は Filesystem です。
    3
    ストレージクラスのアクセスモードを追加する場合は、パラメーターの <new> 部分をストレージクラス名に置き換えます。
    4
    ストレージクラスのボリュームモードを追加する場合は、パラメーターの <new> 部分をストレージクラス名に置き換えます。
  3. エディターを保存し、終了して設定マップを更新します。
7.18.13.4. 複数のストレージクラスのデフォルト例

以下の YAML ファイルは、kubevirt-storage-class-defaults 設定マップの例です。これには、migration および block の 2 つのストレージクラスについてストレージが設定されます。

設定マップを更新する前に、すべての設定が基礎となるストレージでサポートされていることを確認してください。

kind: ConfigMap
apiVersion: v1
metadata:
  name: kubevirt-storage-class-defaults
  namespace: openshift-cnv
...
data:
  accessMode: ReadWriteOnce
  volumeMode: Filesystem
  nfs-sc.accessMode: ReadWriteMany
  nfs-sc.volumeMode: Filesystem
  block-sc.accessMode: ReadWriteMany
  block-sc.volumeMode: Block

7.18.14. ブートソースの作成および使用

ブートソース には、ブート可能なオペレーティングシステム (OS) とドライバーなどの OS のすべての設定が含まれます。

ブートソースを使用して、特定の設定で仮想マシンテンプレートを作成します。これらのテンプレートを使用して、利用可能な仮想マシンを多数作成することができます。

カスタムブートソースの作成、ブートソースのアップロード、およびその他のタスクを支援するために、OpenShift Container Platform Web コンソールでクイックスタートツアーを利用できます。Help メニューから Quick Starts を選択して、クイックスタートツアーを表示します。

前提条件

  • ブートソースを追加するには、os-images.kubevirt.io:edit RBAC ロールを持つユーザー、または管理者としてログインしていること。ブートソースが割り当てられたテンプレートから仮想マシンを作成するには、特別な権限は必要ありません。
注記

Microsoft Windows の要件の詳細は、Creating installation media for Windows boot sources を参照してください。

7.18.14.1. 仮想マシンテンプレートのブートソースの追加

ブートソースは、仮想マシンの作成に使用するすべての仮想マシンテンプレートまたはカスタムテンプレートに設定できます。仮想マシンテンプレートがブートソースを使用して設定されている場合、それらには Templates タブで Available というラベルが付けられます。ブートソースをテンプレートに追加した後に、テンプレートから新規仮想マシンを作成できます。

Web コンソールでブートソースを選択および追加する方法は 4 つあります。

  • ローカルファイルのアップロード (PVC の作成)
  • URL を使用したインポート (PVC の作成)
  • 既存の PVC のクローン作成 (PVC の作成)
  • レジストリーを使用したインポート (PVC の作成)

前提条件

  • ブートソースを追加するには、os-images.kubevirt.io:edit RBAC ロールを持つユーザー、または管理者としてログインしていること。ブートソースが追加されたテンプレートから仮想マシンを作成するには、特別な権限は必要ありません。
  • ローカルファイルをアップロードするには、オペレーティングシステムのイメージファイルがローカルマシンに存在している必要がある。
  • URL を使用してインポートするには、オペレーティングシステムイメージのある Web サーバーへのアクセスが必要である。例: イメージが含まれる Red Hat Enterprise Linux Web ページ。
  • 既存の PVC のクローンを作成するには、PVC を含むプロジェクトへのアクセスが必要である。
  • レジストリーを使用してインポートするには、コンテナーレジストリーへのアクセスが必要である。

手順

  1. OpenShift Virtualization コンソールのサイドメニューから WorkloadsVirtualization をクリックします。
  2. Templates タブをクリックします。
  3. ブートソースを設定する仮想マシンテンプレートを特定し、Add source をクリックします。
  4. Add boot source to template ウィンドウで、 Select boot source をクリックし、永続ボリューム要求 (PVC) を作成するための方法を選択します: ローカルファイルのアップロードURL を使用したインポート既存 PVC のクローン作成、またはレジストリーを使用したインポート
  5. オプション:This is a CD-ROM boot source をクリックして CD-ROM をマウントし、これを使用してオペレーティングシステムを空のディスクにインストールします。追加の空のディスクは OpenShift Virtualization で自動作成およびマウントされます。追加のディスクが必要ない場合には、仮想マシンの作成時に削除できます。
  6. Persistent Volume Claim size の値を入力し、圧縮解除されたイメージおよび必要な追加の領域に十分な PVC サイズを指定します。

    1. オプション: このテンプレートに名前を関連付けるために Source provider の名前を入力します。
    2. Advanced: Storage class をクリックし、ディスクを作成するために使用されるストレージクラスを選択します。
    3. Advanced: Access mode をクリックし、永続ボリュームのアクセスモードを選択します。サポートされるアクセスモード: Single User (RWO)Shared Access (RWX)、および Read Only (ROX)
    4. Advanced: デフォルト値の Filesystem の代わりに Block を選択する場合は、Volume mode をクリックします。
  7. ブートソースを保存する適切な方法を選択します。

    1. ローカルファイルをアップロードしている場合に、Save and upload をクリックします。
    2. URL またはレジストリーからコンテンツをインポートしている場合は、Save and import をクリックします。
    3. 既存の PVC のクローンを作成している場合は、Save and clone をクリックします。

ブートソースが含まれるカスタム仮想マシンテンプレートは Templates タブに一覧表示され、このテンプレートを使用して仮想マシンを作成できます。

7.18.14.2. ブートソースが割り当てられたテンプレートからの仮想マシンの作成

ブートソースをテンプレートに追加した後に、テンプレートから新規仮想マシンを作成できます。

手順

  1. OpenShift Container Platform Web コンソールで、サイドメニューの Workloads > Virtualization をクリックします。
  2. Virtual Machines タブまたは Templates タブで、Create をクリックし、Virtual Machine with Wizard を選択します。
  3. General ステップで、OS およびバージョン名の横にある (Source available) ラベルのあるオペレーティングシステムの一覧から OS を選択します。(Source available) ラベルは、この OS でブートソースが利用可能であることを示します。
  4. Select a template ステップで、OS およびバージョン名の横にある (Source available) ラベルのあるオペレーティングシステムの一覧から OS を選択します。(Source available) ラベルは、この OS でブートソースが利用可能であることを示します。
  5. Review and Confirm をクリックします。
  6. 必要に応じて、仮想マシンの設定を確認し、これを編集します。
  7. Create Virtual Machine をクリックし、仮想マシンを作成します。Successfully created virtual machine ページが表示されます。
7.18.14.3. 関連情報

7.18.15. 仮想マシンでのコンテナーディスクの使用

仮想マシンイメージをコンテナーディスクにビルドし、これをコンテナーレジストリーに保存することができます。次に、コンテナーディスクを仮想マシンの永続ストレージにインポートしたり、一時ストレージの仮想マシンに直接割り当てたりすることができます。

重要

大規模なコンテナーディスクを使用する場合、I/O トラフィックが増え、ワーカーノードに影響を与える可能性があります。これにより、ノードが利用できなくなる可能性があります。この問題を解決するには、以下を実行します。

7.18.15.1. コンテナーディスクについて

コンテナーディスクは、コンテナーイメージレジストリーにコンテナーイメージとして保存される仮想マシンのイメージです。コンテナーディスクを使用して、同じディスクイメージを複数の仮想マシンに配信し、多数の仮想マシンのクローンを作成することができます。

コンテナーディスクは、仮想マシンに割り当てられるデータボリュームを使用して永続ボリューム要求 (PVC) にインポートするか、または一時 containerDisk ボリュームとして仮想マシンに直接割り当てることができます。

7.18.15.1.1. データボリュームの使用によるコンテナーディスクの PVC へのインポート

Containerized Data Importer (CDI) を使用し、データボリュームを使用してコンテナーディスクを PVC にインポートします。次に、データボリュームを永続ストレージの仮想マシンに割り当てることができます。

7.18.15.1.2. コンテナーディスクの containerDisk ボリュームとしての仮想マシンへの割り当て

containerDisk ボリュームは一時的なボリュームです。これは、仮想マシンが停止されるか、再起動するか、または削除される際に破棄されます。containerDisk ボリュームを持つ仮想マシンが起動すると、コンテナーイメージはレジストリーからプルされ、仮想マシンをホストするノードでホストされます。

containerDisk ボリュームは、CD-ROM などの読み取り専用ファイルシステム用に、または破棄可能な仮想マシン用に使用します。

重要

データはホストノードのローカルストレージに一時的に書き込まれるため、読み取り/書き込みファイルシステムに containerDisk ボリュームを使用することは推奨されません。これにより、データを移行先ノードに移行する必要があるため、ノードのメンテナンス時など、仮想マシンのライブマイグレーションが遅くなります。さらに、ノードの電源が切れた場合や、予期せずにシャットダウンする場合にすべてのデータが失われます。

7.18.15.2. 仮想マシン用のコンテナーディスクの準備

仮想マシンイメージでコンテナーディスクをビルドし、これを仮想マシンで使用する前にこれをコンテナーレジストリーにプッシュする必要があります。次に、データボリュームを使用してコンテナーディスクを PVC にインポートし、これを仮想マシンに割り当てるか、またはコンテナーディスクを一時的な containerDisk ボリュームとして仮想マシンに直接割り当てることができます。

コンテナーディスク内のディスクイメージのサイズは、コンテナーディスクがホストされるレジストリーの最大レイヤーサイズによって制限されます。

注記

Red Hat Quay の場合、Red Hat Quay の初回デプロイ時に作成される YAML 設定ファイルを編集して、最大レイヤーサイズを変更できます。

前提条件

  • podman がインストールされていない場合はインストールすること。
  • 仮想マシンイメージは QCOW2 または RAW 形式のいずれかであること。

手順

  1. Dockerfile を作成して、仮想マシンイメージをコンテナーイメージにビルドします。仮想マシンイメージは、UID が 107 の QEMU で所有され、コンテナー内の /disk/ ディレクトリーに置かれる必要があります。次に、/disk/ ディレクトリーのパーミッションは 0440 に設定する必要があります。

    以下の例では、Red Hat Universal Base Image (UBI) を使用して最初の段階でこれらの設定変更を処理し、2 番目の段階で最小の scratch イメージを使用して結果を保存します。

    $ cat > Dockerfile << EOF
    FROM registry.access.redhat.com/ubi8/ubi:latest AS builder
    ADD --chown=107:107 <vm_image>.qcow2 /disk/ 1
    RUN chmod 0440 /disk/*
    
    FROM scratch
    COPY --from=builder /disk/* /disk/
    EOF
    1
    ここで、<vm_image> は QCOW2 または RAW 形式の仮想マシンイメージです。
    リモートの仮想マシンイメージを使用するには、<vm_image>.qcow2 をリモートイメージの完全な URL に置き換えます。
  2. コンテナーをビルドし、これにタグ付けします。

    $ podman build -t <registry>/<container_disk_name>:latest .
  3. コンテナーイメージをレジストリーにプッシュします。

    $ podman push <registry>/<container_disk_name>:latest

コンテナーレジストリーに TLS がない場合は、コンテナーディスクを永続ストレージにインポートする前に非セキュアなレジストリーとしてこれを追加する必要があります。

7.18.15.3. 非セキュアなレジストリーとして使用するコンテナーレジストリーの TLS の無効化

レジストリーを cdi-insecure-registries 設定マップに追加することで、コンテナーレジストリーの TLS (トランスポート層セキュリティー) を無効にできます。

前提条件

  • cluster-admin ロールを持つユーザーとしてクラスターにログインすること。

手順

  • openshift-cnv namespace の cdi-insecure-registries 設定マップにレジストリーを追加します。

    $ oc patch configmap cdi-insecure-registries -n openshift-cnv \
      --type merge -p '{"data":{"mykey": "<insecure-registry-host>:5000"}}' 1
    1
    <insecure-registry-host> をレジストリーのホスト名に置き換えます。
7.18.15.4. 次のステップ

7.18.16. CDI のスクラッチ領域の用意

7.18.16.1. データボリュームについて

DataVolume オブジェクトは、Containerized Data Importer (CDI) プロジェクトで提供されるカスタムリソースです。データボリュームは、基礎となる永続ボリューム要求 (PVC) に関連付けられるインポート、クローン作成、およびアップロード操作のオーケストレーションを行います。データボリュームは OpenShift Virtualization に統合され、仮想マシンが PVC の作成前に起動することを防ぎます。

7.18.16.2. スクラッチ領域について

Containerized Data Importer (CDI) では、仮想マシンイメージのインポートやアップロードなどの、一部の操作を実行するためにスクラッチ領域 (一時ストレージ) が必要になります。このプロセスで、CDI は、宛先データボリューム (DV) をサポートする PVC のサイズと同じサイズのスクラッチ領域 PVC をプロビジョニングします。スクラッチ領域 PVC は操作の完了または中止後に削除されます。

CDI オブジェクトの spec.config.scratchSpaceStorageClass フィールドでスクラッチ領域 PVC をバインドするために使用されるストレージクラスを定義できます。

定義されたストレージクラスがクラスターのストレージクラスに一致しない場合、クラスターに定義されたデフォルトのストレージクラス が使用されます。クラスターで定義されたデフォルトのストレージクラスがない場合、元の DV または PVC のプロビジョニングに使用されるストレージクラスが使用されます。

注記

CDI では、元のデータボリュームをサポートする PVC の種類を問わず、file ボリュームモードが設定されているスクラッチ領域が必要です。元の PVC が block ボリュームモードでサポートされる場合、 file ボリュームモード PVC をプロビジョニングできるストレージクラスを定義する必要があります。

手動プロビジョニング

ストレージクラスがない場合、CDI はイメージのサイズ要件に一致するプロジェクトの PVC を使用します。これらの要件に一致する PVC がない場合、CDI インポート Pod は適切な PVC が利用可能になるまで、またはタイムアウト機能が Pod を強制終了するまで Pending 状態になります。

7.18.16.3. スクラッチ領域を必要とする CDI 操作
Type理由

レジストリーのインポート

CDI はイメージをスクラッチ領域にダウンロードし、イメージファイルを見つけるためにレイヤーを抽出する必要があります。その後、raw ディスクに変換するためにイメージファイルが QEMU-img に渡されます。

イメージのアップロード

QEMU-IMG は STDIN の入力を受け入れません。代わりに、アップロードするイメージは、変換のために QEMU-IMG に渡される前にスクラッチ領域に保存されます。

アーカイブされたイメージの HTTP インポート

QEMU-IMG は、CDI がサポートするアーカイブ形式の処理方法を認識しません。イメージが QEMU-IMG に渡される前にアーカイブは解除され、スクラッチ領域に保存されます。

認証されたイメージの HTTP インポート

QEMU-IMG が認証を適切に処理しません。イメージが QEMU-IMG に渡される前にスクラッチ領域に保存され、認証されます。

カスタム証明書の HTTP インポート

QEMU-IMG は HTTPS エンドポイントのカスタム証明書を適切に処理しません。代わりに CDI は、ファイルを QEMU-IMG に渡す前にイメージをスクラッチ領域にダウンロードします。

7.18.16.4. CDI オブジェクトでのストレージクラスの定義

CDI オブジェクトでストレージクラスを定義し、CDI 操作のスクラッチ領域を動的にプロビジョニングします。

前提条件

  • OpenShift CLI (oc) をインストールすること。

手順

  1. oc クライアントを使用して CDI オブジェクトを編集します。

    $ oc edit cdi
  2. spec.config.scratchSpaceStorageClass フィールドを、クラスターのストレージクラスに一致するように編集します。

    apiVersion: cdi.kubevirt.io/v1beta1
    kind: CDI
    ...
    spec:
      config:
        scratchSpaceStorageClass: "<storage_class>" 1
    ...
    1
    <storage_class> を、クラスター内の CDI 操作のスクラッチ領域をプロビジョニングするために使用するストレージクラスに置き換えます。
  3. デフォルトエディターを保存し、終了して CDI オブジェクトを更新します。
7.18.16.5. CDI がサポートする操作マトリックス

このマトリックスにはエンドポイントに対してコンテンツタイプのサポートされる CDI 操作が表示されます。これらの操作にはスクラッチ領域が必要です。

コンテンツタイプHTTPHTTPSHTTP Basic 認証レジストリーアップロード

kubevirt (QCOW2)

✓ QCOW2
✓ GZ*
✓ XZ*

✓ QCOW2**
✓ GZ*
✓ XZ*

✓ QCOW2
✓ GZ*
✓ XZ*

✓ QCOW2*
□ GZ
□ XZ

✓ QCOW2*
✓ GZ*
✓ XZ*

KubeVirt (RAW)

✓ RAW
✓ GZ
✓ XZ

✓ RAW
✓ GZ
✓ XZ

✓ RAW
✓ GZ
✓ XZ

✓ RAW*
□ GZ
□ XZ

✓ RAW*
✓ GZ*
✓ XZ*

✓ サポートされる操作

□ サポートされない操作

* スクラッチ領域が必要

**カスタム認証局が必要な場合にスクラッチ領域が必要

関連情報

  • ストレージクラスおよびこれらがクラスターで定義される方法についての詳細は、動的プロビジョニング セクションを参照してください。

7.18.17. 永続ボリュームの再利用

静的にプロビジョニングされた永続ボリューム (PV) を再利用するには、まずボリュームを回収する必要があります。これには、ストレージ設定を再利用できるように PV を削除する必要があります。

7.18.17.1. 静的にプロビジョニングされた永続ボリュームの回収について

永続ボリューム (PV) を回収する場合、PV のバインドを永続ボリューム要求 (PVC) から解除し、PV を削除します。基礎となるストレージによっては、共有ストレージを手動で削除する必要がある場合があります。

次に、PV 設定を再利用し、異なる名前の PV を作成できます。

静的にプロビジョニングされる PV には、回収に Retain の回収 (reclaim) ポリシーが必要です。これがない場合、PV は PVC が PV からのバインド解除時に failed 状態になります。

重要

Recycle 回収ポリシーは OpenShift Container Platform 4 では非推奨となっています。

7.18.17.2. 静的にプロビジョニングされた永続ボリュームの回収

永続ボリューム要求 (PVC) のバインドを解除し、PV を削除して静的にプロビジョニングされた永続ボリューム (PV) を回収します。共有ストレージを手動で削除する必要がある場合もあります。

静的にプロビジョニングされる PV の回収方法は、基礎となるストレージによって異なります。この手順では、ストレージに応じてカスタマイズする必要がある可能性のある一般的な方法を示します。

手順

  1. PV の回収ポリシーが Retain に設定されていることを確認します。

    1. PV の回収ポリシーを確認します。

      $ oc get pv <pv_name> -o yaml | grep 'persistentVolumeReclaimPolicy'
    2. persistentVolumeReclaimPolicyRetain に設定されていない場合、以下のコマンドで回収ポリシーを編集します。

      $ oc patch pv <pv_name> -p '{"spec":{"persistentVolumeReclaimPolicy":"Retain"}}'
  2. PV を使用しているリソースがないことを確認します。

    $ oc describe pvc <pvc_name> | grep 'Mounted By:'

    PVC を使用するリソースをすべて削除してから継続します。

  3. PVC を削除して PV を解放します。

    $ oc delete pvc <pvc_name>
  4. オプション: PV 設定を YAML ファイルにエクスポートします。この手順の後半で共有ストレージを手動で削除する場合は、この設定を参照してください。このファイルで spec パラメーターをベースとして使用し、PV の回収後に同じストレージ設定で新規 PV を作成することもできます。

    $ oc get pv <pv_name> -o yaml > <file_name>.yaml
  5. PV を削除します。

    $ oc delete pv <pv_name>
  6. オプション: ストレージタイプによっては、共有ストレージフォルダーの内容を削除する必要がある場合があります。

    $ rm -rf <path_to_share_storage>
  7. オプション: 削除された PV と同じストレージ設定を使用する PV を作成します。回収された PV 設定をすでにエクスポートしている場合、そのファイルの spec パラメーターを新規 PV マニフェストのベースとして使用することができます。

    注記

    競合の可能性を回避するには、新規 PV オブジェクトに削除されたものとは異なる名前を割り当てることが推奨されます。

    $ oc create -f <new_pv_name>.yaml

関連情報

7.18.18. データボリュームの削除

oc コマンドラインインターフェイスを使用して、データボリュームを手動で削除できます。

注記

仮想マシンを削除する際に、これが使用するデータボリュームは自動的に削除されます。

7.18.18.1. データボリュームについて

DataVolume オブジェクトは、Containerized Data Importer (CDI) プロジェクトで提供されるカスタムリソースです。データボリュームは、基礎となる永続ボリューム要求 (PVC) に関連付けられるインポート、クローン作成、およびアップロード操作のオーケストレーションを行います。データボリュームは OpenShift Virtualization に統合され、仮想マシンが PVC の作成前に起動することを防ぎます。

7.18.18.2. すべてのデータボリュームの一覧表示

oc コマンドラインインターフェイスを使用して、クラスターのデータボリュームを一覧表示できます。

手順

  • 以下のコマンドを実行して、データボリュームを一覧表示します。

    $ oc get dvs
7.18.18.3. データボリュームの削除

oc コマンドラインインターフェイス (CLI) を使用してデータボリュームを削除できます。

前提条件

  • 削除する必要のあるデータボリュームの名前を特定すること。

手順

  • 以下のコマンドを実行し、データボリューム を削除します。

    $ oc delete dv <datavolume_name>
    注記

    このコマンドは、現在のプロジェクトに存在するオブジェクトのみを削除します。削除する必要のあるオブジェクトが別のプロジェクトまたは namespace にある場合、-n <project_name> オプションを指定します。

第8章 仮想マシンテンプレート

8.1. 仮想マシンテンプレートの作成

8.1.1. 仮想マシンテンプレートについて

事前に設定された Red Hat 仮想マシンテンプレートは、Virtualization ページの Templates タブに一覧表示されます。このテンプレートは、Red Hat Enterprise Linux、Fedora、Microsoft Windows 10、および Microsoft Windows Server の異なるバージョンで利用できます。各 Red Hat 仮想マシンテンプレートは、オペレーティングシステムイメージ、オペレーティングシステム、フレーバー (CPU およびメモリー)、およびワークロードタイプ (サーバー) のデフォルト設定で事前に設定されます。

Templates タブには、4 種類の仮想マシンテンプレートが表示されます。

  • Red Hat でサポートされる テンプレートは、Red Hat によって完全にサポートされています。
  • ユーザーがサポート するテンプレートは、ユーザーがクローンして作成した Red Hat でサポートされる テンプレートです。
  • Red Hat が提供する テンプレートには、Red Hat の制限されたサポートがあります。
  • User Provided テンプレートは、ユーザーがクローンして作成した Red Hat Provided テンプレートです。
注記

Templates タブでは、Red Hat がサポートするテンプレートまたは Red Hat が提供するテンプレートを編集したり、削除したりすることはできません。ユーザーによって作成されたカスタム仮想マシンテンプレートのみを編集したり、削除したりすることができます。

テンプレートがすでに事前に設定されているため、Red Hat テンプレートを使用すると便利です。Red Hat テンプレートを選択して独自のカスタムテンプレートを作成すると、ブートソースが以前に追加されていない場合に、Create Virtual Machine Template ウィザードにより、ブートソースの追加を求めるプロンプトが出されます。次に、カスタムテンプレートを保存するか、または続行してこれをカスタマイズし、保存することができます。

Create Virtual Machine Template ウィザードを直接選択し、カスタム仮想マシンテンプレートを作成することもできます。このウィザードにより、オペレーティングシステム、フレーバー、ワークロードタイプおよび他の設定の詳細情報を提供するように求めるプロンプトが出されます。ブートソースを追加して、続行してテンプレートをカスタマイズし、保存できます。

8.1.2. 仮想マシンテンプレートのブートソースの追加

ブートソースは、仮想マシンの作成に使用するすべての仮想マシンテンプレートまたはカスタムテンプレートに設定できます。仮想マシンテンプレートがブートソースを使用して設定されている場合、それらには Templates タブで Available というラベルが付けられます。ブートソースをテンプレートに追加した後に、テンプレートから新規仮想マシンを作成できます。

Web コンソールでブートソースを選択および追加する方法は 4 つあります。

  • ローカルファイルのアップロード (PVC の作成)
  • URL を使用したインポート (PVC の作成)
  • 既存の PVC のクローン作成 (PVC の作成)
  • レジストリーを使用したインポート (PVC の作成)

前提条件

  • ブートソースを追加するには、os-images.kubevirt.io:edit RBAC ロールを持つユーザー、または管理者としてログインしていること。ブートソースが追加されたテンプレートから仮想マシンを作成するには、特別な権限は必要ありません。
  • ローカルファイルをアップロードするには、オペレーティングシステムのイメージファイルがローカルマシンに存在している必要がある。
  • URL を使用してインポートするには、オペレーティングシステムイメージのある Web サーバーへのアクセスが必要である。例: イメージが含まれる Red Hat Enterprise Linux Web ページ。
  • 既存の PVC のクローンを作成するには、PVC を含むプロジェクトへのアクセスが必要である。
  • レジストリーを使用してインポートするには、コンテナーレジストリーへのアクセスが必要である。

手順

  1. OpenShift Virtualization コンソールのサイドメニューから WorkloadsVirtualization をクリックします。
  2. Templates タブをクリックします。
  3. ブートソースを設定する仮想マシンテンプレートを特定し、Add source をクリックします。
  4. Add boot source to template ウィンドウで、 Select boot source をクリックし、永続ボリューム要求 (PVC) を作成するための方法を選択します: ローカルファイルのアップロードURL を使用したインポート既存 PVC のクローン作成、またはレジストリーを使用したインポート
  5. オプション:This is a CD-ROM boot source をクリックして CD-ROM をマウントし、これを使用してオペレーティングシステムを空のディスクにインストールします。追加の空のディスクは OpenShift Virtualization で自動作成およびマウントされます。追加のディスクが必要ない場合には、仮想マシンの作成時に削除できます。
  6. Persistent Volume Claim size の値を入力し、圧縮解除されたイメージおよび必要な追加の領域に十分な PVC サイズを指定します。

    1. オプション: このテンプレートに名前を関連付けるために Source provider の名前を入力します。
    2. Advanced: Storage class をクリックし、ディスクを作成するために使用されるストレージクラスを選択します。
    3. Advanced: Access mode をクリックし、永続ボリュームのアクセスモードを選択します。サポートされるアクセスモード: Single User (RWO)Shared Access (RWX)、および Read Only (ROX)
    4. Advanced: デフォルト値の Filesystem の代わりに Block を選択する場合は、Volume mode をクリックします。
  7. ブートソースを保存する適切な方法を選択します。

    1. ローカルファイルをアップロードしている場合に、Save and upload をクリックします。
    2. URL またはレジストリーからコンテンツをインポートしている場合は、Save and import をクリックします。
    3. 既存の PVC のクローンを作成している場合は、Save and clone をクリックします。

ブートソースが含まれるカスタム仮想マシンテンプレートは Templates タブに一覧表示され、このテンプレートを使用して仮想マシンを作成できます。

8.1.2.1. ブートソースを追加するための仮想マシンテンプレートフィールド

以下の表は、Add boot source to template ウインドウのフィールドについて説明しています。このウィンドウは、Templates タブで仮想マシンテンプレートの Add Source をクリックすると表示されます。

名前パラメーター説明

ブートソースタイプ

ローカルファイルのアップロード (PVC の作成)

ローカルデバイスからファイルをアップロードします。サポートされるファイルタイプには、gz、xz、tar、および qcow2 が含まれます。

URL を使用したインポート (PVC の作成)

HTTP または HTTPS エンドポイントで利用できるイメージからコンテンツをインポートします。イメージのダウンロードが利用可能である Web ページからダウンロードリンク URL を取得し、その URL リンクを Import via URL (creates PVC) フィールドに入力します。例: Red Hat Enterprise Linux イメージについては、Red Hat カスタマーポータルにログインしてイメージのダウンロードページにアクセスし、KVM ゲストイメージのダウンロードリンク URL をコピーします。

既存の PVC のクローン作成 (PVC の作成)

クラスターですでに利用可能な PVC を使用し、このクローンを作成します。

レジストリーを使用したインポート (PVC の作成)

クラスターからアクセスでき、レジストリーにある起動可能なオペレーティングシステムコンテナーを指定します。例: kubevirt/cirros-registry-dis-demo

ソースプロバイダー

 

オプションフィールド。テンプレートのソース、またはテンプレートを作成したユーザーの名前についての説明テキストを追加します。例: Red Hat

Advanced

ストレージクラス

ディスクの作成に使用されるストレージクラス。

アクセスモード

永続ボリュームのアクセスモード。サポートされるアクセスモードは、Single User(RWO)Shared Access(RWX)Read Only (ROX) です。Single User (RWO) が選択される場合、ディスクは単一ノードによって読み取り/書き込み ( read/write) としてマウントできます。Shared Access (RWX) が選択される場合、ディスクは多数のノードによって読み取り/書き込み (read-write) としてマウントできます。kubevirt-storage-class-defaults 設定マップはデータボリュームのアクセスモードを提供します。デフォルト値は、クラスターの各ストレージクラスについての最適なオプションに従って設定されます。

+

注記

Shared Access (RWX) は、ノード間の仮想マシンのライブマイグレーションなどの、一部の機能で必要になります。

ボリュームモード

永続ボリュームがフォーマットされたファイルシステムまたは raw ブロック状態を使用するかどうかを定義します。サポートされるモードは Block および Filesystem です。kubevirt-storage-class-defaults 設定マップはデータボリュームのボリュームモードのデフォルト設定を提供します。デフォルト値は、クラスターの各ストレージクラスについての最適なオプションに従って設定されます。

8.1.3. 仮想マシンテンプレートをお気に入りとしてマーク

頻繁に使用される仮想マシンテンプレートへのアクセスを容易にするため、これらのテンプレートをお気に入りとしてマークすることができます。

手順

  1. OpenShift Virtualization コンソールのサイドメニューから WorkloadsVirtualization をクリックします。
  2. Templates タブをクリックします。
  3. お気に入りとしてマークを付ける Red Hat テンプレートを特定します。
  4. Options メニュー kebab をクリックし、 Favorite template を選択します。テンプレートは、表示されるテンプレート一覧の上位に移動します。

8.1.4. プロバイダーによる仮想マシンテンプレート一覧のフィルター

Templates タブで、Search by name フィールドを使用し、テンプレートの名前、またはテンプレートを特定するラベルのいずれかを指定して仮想マシンテンプレートを検索できます。プロバイダーでテンプレートをフィルターし、フィルター条件を満たすテンプレートのみを表示することもできます。

手順

  1. OpenShift Virtualization コンソールのサイドメニューから WorkloadsVirtualization をクリックします。
  2. Templates タブをクリックします。
  3. テンプレートをフィルターするには、Filter をクリックします。
  4. 一覧から該当するチェックボックスを選択してテンプレートをフィルターします: Red Hat SupportedUser SupportedRed Hat Provided、および User Provided

8.1.5. Web コンソールでのウィザードを使用した仮想マシンテンプレートの作成

Web コンソールは、GeneralNetworkingStorageAdvanced、および Review ステップへの移動を可能にし、仮想マシンテンプレートの作成プロセスを単純化する Create Virtual Machine Template ウィザードを特長としています。すべての必須フィールドには * のマークが付けられます。Create Virtual Machine Template ウィザードは必須フィールドへの値の入力が完了するまで次のステップに移動することを防ぎます。

注記

ウィザードを使用して、オペレーティングシステム、ブートソース、フレーバーその他の設定を指定するカスタム仮想マシンテンプレートを作成できます。

手順

  1. OpenShift Virtualization コンソールのサイドメニューから WorkloadsVirtualization をクリックします。
  2. Templates タブをクリックします。
  3. Create をクリックし、Template with Wizard を選択します。
  4. General ステップで必要なすべてのフィールドに入力します。
  5. Next をクリックして Networking ステップに進みます。デフォルトで nic0 という名前の NIC が割り当てられます。

    1. オプション: Add Network Interface をクリックし、追加の NIC を作成します。
    2. オプション: すべての NIC の削除は、Options メニュー kebab をクリックし、Delete を選択して実行できます。テンプレートから作成される仮想マシンには、割り当てられている NIC は不要です。NIC は仮想マシンの作成後に作成できます。
  6. Next をクリックして Storage ステップに進みます。
  7. Add Disk をクリックしてディスクを追加し、Add Disk 画面でフィールドの選択を完了します。

    注記

    Import via URL (creates PVC)Import via Registry (creates PVC)、または Container (ephemeral)Source として選択される場合、rootdisk ディスクが作成され、Bootable Disk として仮想マシンに割り当てられます。

    Bootable Disk は、仮想マシンにディスクが割り当てられていない場合、PXE ソースからプロビジョニングされる仮想マシンには不要です。1 つ以上のディスクが仮想マシンに割り当てられている場合、Bootable Disk を 1 つを選択する必要があります。

    空のディスク、有効なブートソースのない PVC ディスク、および cloudinitdisk をブートソースとして使用することはできません。

  8. オプション: Advanced をクリックして Cloud-init を設定します。
  9. Review をクリックして、設定を確認し、確定します。
  10. Create Virtual Machine template をクリックします。
  11. See virtual machine template details をクリックして、仮想マシンテンプレートの詳細を表示します。

テンプレートは Templates タブにも一覧表示されます。

8.1.6. 仮想マシンテンプレートウィザードのフィールド

以下の表は、Create Virtual Machine Template ウィザードの GeneralNetworkingStorage、および Advanced ステップのフィールドを説明しています。

8.1.6.1. 仮想マシンテンプレートウィザードのフィールド
名前パラメーター説明

Template

 

仮想マシンの作成に使用するテンプレート。テンプレートを選択すると、他のフィールドが自動的に入力されます。

名前

 

この名前には、小文字 (a-z)、数字 (0-9)、およびハイフン (-) を含めることができ、最大 253 文字を使用できます。最初と最後の文字は英数字にする必要があります。この名前には、大文字、スペース、ピリオド (.)、または特殊文字を使用できません。

テンプレートプロバイダー

 

クラスターのテンプレートを作成するユーザーの名前、またはこのテンプレートを識別しやすい名前。

テンプレートサポート

追加のサポートはありません

このテンプレートには、クラスターの追加サポートは含まれません。

テンプレートプロバイダーによるサポート

このテンプレートは、テンプレートプロバイダーによってサポートされます。

説明

 

オプションの説明フィールド。

Operating System

 

仮想マシン用に選択される主なオペレーティングシステム。オペレーティングシステムを選択すると、そのオペレーティングシステムのデフォルトの Flavor および Workload Type が自動的に選択されます。

Boot Source

URL を使用したインポート (PVC の作成)

HTTP または HTTPS エンドポイントで利用できるイメージからコンテンツをインポートします。例: オペレーティングシステムイメージのある Web ページから URL リンクを取得します。

既存の PVC のクローン作成 (PVC の作成)

クラスターで利用可能な既存の永続ボリューム要求 (PVC) を選択し、これをクローンします。

レジストリーを使用したインポート (PVC の作成)

クラスターからアクセスできるレジストリーの起動可能なオペレーティングシステムコンテナーから仮想マシンをプロビジョニングします。例: kubevirt/cirros-registry-disk-demo

PXE (ネットワークブート: ネットワークインターフェイスの追加)

ネットワークのサーバーからオペレーティングシステムを起動します。PXE ブート可能なネットワーク接続定義が必要です。

永続ボリューム要求 (PVC) のプロジェクト

 

PVC のクローン作成に使用するプロジェクト名。

永続ボリューム要求 (PVC) の名前

 

既存の PVC のクローンを作成する場合にこの仮想マシンテンプレートに適用する必要のある PVC 名。

これを CD-ROM ブートソースとしてマウントする

 

CD-ROM には、オペレーティングシステムをインストールするための追加のディスクが必要です。チェックボックスを選択して、ディスクを追加し、後でカスタマイズします。

Flavor

Tiny、Small、Medium、Large、Custom

仮想マシンに割り当てられる CPU およびメモリーの量を決定するプリセット。Flavor に設定される Preset はオペレーティングシステムによって決まります。

Workload Type

Desktop

デスクトップで使用するための仮想マシン設定。小規模な環境での使用に適しています。Web コンソールでの使用に推奨されます。

Server

パフォーマンスのバランスを図り、さまざまなサーバーのワークロードと互換性があります。

High-Performance

高パフォーマンスのワークロードに対して最適化された仮想マシン設定。

8.1.6.2. ネットワークフィールド
名前説明

名前

ネットワークインターフェイスコントローラーの名前。

モデル

ネットワークインターフェイスコントローラーのモデルを示します。サポートされる値は e1000e および virtio です。

ネットワーク

利用可能なネットワーク接続定義の一覧。

Type

利用可能なバインディングメソッドの一覧。デフォルトの Pod ネットワークについては、masquerade が唯一の推奨されるバインディングメソッドになります。セカンダリーネットワークの場合は、 bridge バインディングメソッドを使用します。masquerade メソッドは、デフォルト以外のネットワークではサポートされません。SR-IOV ネットワークデバイスを設定し、namespace でそのネットワークを定義した場合は、SR-IOV を選択します。

MAC Address

ネットワークインターフェイスコントローラーの MAC アドレス。MAC アドレスが指定されていない場合、これは自動的に割り当てられます。

8.1.6.3. ストレージフィールド
名前選択説明

Source

空白 (PVC の作成)

空のディスクを作成します。

URL を使用したインポート (PVC の作成)

URL (HTTP または HTTPS エンドポイント) を介してコンテンツをインポートします。

既存 PVC の使用

クラスターですでに利用可能な PVC を使用します。

既存の PVC のクローン作成 (PVC の作成)

クラスターで利用可能な既存の PVC を選択し、このクローンを作成します。

レジストリーを使用したインポート (PVC の作成)

コンテナーレジストリーを使用してコンテンツをインポートします。

コンテナー (一時的)

クラスターからアクセスできるレジストリーにあるコンテナーからコンテンツをアップロードします。コンテナーディスクは、CD-ROM や一時的な仮想マシンなどの読み取り専用ファイルシステムにのみ使用する必要があります。

名前

 

ディスクの名前。この名前には、小文字 (a-z)、数字 (0-9)、ハイフン (-) およびピリオド (.) を含めることができ、最大 253 文字を使用できます。最初と最後の文字は英数字にする必要があります。この名前には、大文字、スペース、または特殊文字を使用できません。

Size

 

ディスクのサイズ (GiB 単位)。

Type

 

ディスクのタイプ。例: Disk または CD-ROM

Interface

 

ディスクデバイスのタイプ。サポートされるインターフェイスは、virtIOSATA、および SCSI です。

Storage Class

 

ディスクの作成に使用されるストレージクラス。

Advanced → Volume Mode

 

永続ボリュームがフォーマットされたファイルシステムまたは raw ブロック状態を使用するかどうかを定義します。デフォルトは Filesystem です。

Advanced → Access Mode

 

永続ボリュームのアクセスモード。サポートされるアクセスモードは、Single User (RWO)Shared Access (RWX)、および Read Only (ROX) です。

ストレージの詳細設定

以下のストレージの詳細設定は、BlankImport via URLURL、および Clone existing PVC ディスクで利用できます。これらのパラメーターはオプションです。これらのパラメーターを指定しない場合、システムは kubevirt-storage-class-defaults 設定マップのデフォルト値を使用します。

名前パラメーター説明

ボリュームモード

Filesystem

ファイルシステムベースのボリュームで仮想ディスクを保存します。

Block

ブロックボリュームで仮想ディスクを直接保存します。基礎となるストレージがサポートしている場合は、 Block を使用します。

アクセスモード

Single User (RWO)

ディスクは単一ノードで読み取り/書き込みとしてマウントできます。

Shared Access (RWX)

ディスクは数多くのノードで読み取り/書き込みとしてマウントできます。

注記

これは、ノード間の仮想マシンのライブマイグレーションなどの、一部の機能で必要になります。

Read Only (ROX)

ディスクは数多くのノードで読み取り専用としてマウントできます。

8.1.6.4. Cloud-init フィールド
名前説明

Hostname

仮想マシンの特定のホスト名を設定します。

認可された SSH キー

仮想マシンの ~/.ssh/authorized_keys にコピーされるユーザーの公開鍵。

カスタムスクリプト

他のオプションを、カスタム cloud-init スクリプトを貼り付けるフィールドに置き換えます。

8.1.7. 追加リソース

8.2. 仮想マシンテンプレートの編集

仮想マシンテンプレートは、Web コンソールで YAML エディターの詳細な設定を編集するか、または Templates タブでカスタムテンプレートを選択し、編集可能な項目を変更して更新できます。

8.2.1. Web コンソールでの仮想マシンテンプレートの編集

関連するフィールドの横にある鉛筆アイコンをクリックして、Web コンソールの仮想マシンテンプレートの選択する値 (select values) を編集します。他の値は、CLI を使用して編集できます。

ラベルとアノテーションは、事前に設定された Red Hat テンプレートとカスタム仮想マシンテンプレートの両方について編集されます。その他のすべての値は、ユーザーが Red Hat テンプレートまたは Create Virtual Machine Template ウィザードを使用して作成したカスタム仮想マシンテンプレートについてのみ編集されます。

手順

  1. サイドメニューから WorkloadsVirtualization をクリックします。
  2. Templates タブをクリックします。
  3. 仮想マシンテンプレートを選択します。
  4. VM Template Details タブをクリックします。
  5. 鉛筆アイコンをクリックして、フィールドを編集可能にします。
  6. 関連する変更を加え、Save をクリックします。

仮想マシンテンプレートの編集は、そのテンプレートですでに作成された仮想マシンには影響を与えません。

8.2.2. Web コンソールでの仮想マシンテンプレート YAML 設定の編集

Web コンソールで仮想マシンテンプレートの YAML 設定を編集できます。

一部のパラメーターは変更できません。無効な設定で Save をクリックすると、エラーメッセージで変更できないパラメーターが示唆されます。

注記

編集中に YAML 画面から離れると、設定に対して加えた変更が取り消されます。

手順

  1. OpenShift Virtualization コンソールのサイドメニューから WorkloadsVirtualization をクリックします。
  2. Templates タブをクリックします。
  3. テンプレートを選択して VM Template Details 画面を開きます。
  4. YAML タブをクリックして編集可能な設定を表示します。
  5. ファイルを編集し、Save をクリックします。

オブジェクトの更新されたバージョン番号を含む、YAML 設定が正常に編集されたことを示す確認メッセージが表示されます。

8.2.3. 仮想マシンテンプレートへの仮想ディスクの追加

以下の手順を使用して、仮想ディスクを仮想マシンテンプレートに追加します。

手順

  1. サイドメニューから WorkloadsVirtualization をクリックします。
  2. Templates タブをクリックします。
  3. 仮想マシンテンプレートを選択して、VM Template Details 画面を開きます。
  4. Disks タブをクリックします。
  5. Add Disk ウィンドウで、SourceNameSizeTypeInterface、および Storage Class を指定します。

    1. オプション: Advanced 一覧で、仮想ディスクの Volume Mode および Access Mode を指定します。これらのパラメーターを指定しない場合、システムは kubevirt-storage-class-defaults 設定マップのデフォルト値を使用します。
  6. Add をクリックします。

8.2.4. ネットワークインターフェイスの仮想マシンテンプレートへの追加

以下の手順を使用して、ネットワークインターフェイスを仮想マシンテンプレートに追加します。

手順

  1. サイドメニューから WorkloadsVirtualization をクリックします。
  2. Templates タブをクリックします。
  3. 仮想マシンテンプレートを選択して、VM Template Details 画面を開きます。
  4. Network Interfaces タブをクリックします。
  5. Add Network Interface をクリックします。
  6. Add Network Interface ウィンドウで、ネットワークインターフェイスの NameModelNetworkType、および MAC Address を指定します。
  7. Add をクリックします。

8.2.5. テンプレートの CD-ROM の編集

以下の手順を使用して、仮想マシンテンプレートの CD-ROM を設定します。

手順

  1. サイドメニューから WorkloadsVirtualization をクリックします。
  2. Templates タブをクリックします。
  3. 仮想マシンテンプレートを選択して、VM Template Details 画面を開きます。
  4. Disks タブをクリックします。
  5. 編集する CD-ROM の Options メニュー kebab をクリックし、Edit を選択します。
  6. Edit CD-ROM ウィンドウで、SourcePersistent Volume ClaimNameType、および Interface フィールドを編集します。
  7. Save をクリックします。

8.3. 仮想マシンテンプレートの専用リソースの有効化

パフォーマンスを向上させるために、仮想マシンには CPU などのノードの専用リソースを持たせることができます。

8.3.1. 専用リソースについて

仮想マシンの専用リソースを有効にする場合、仮想マシンのワークロードは他のプロセスで使用されない CPU でスケジュールされます。専用リソースを使用することで、仮想マシンのパフォーマンスとレイテンシーの予測の精度を向上させることができます。

8.3.2. 前提条件

  • CPU マネージャー はノードに設定される必要がある。仮想マシンのワークロードをスケジュールする前に、ノードに cpumanager = true ラベルが設定されていることを確認します。

8.3.3. 仮想マシンテンプレートの専用リソースの有効化

Details タブで仮想マシンテンプレートの専用リソースを有効にすることができます。Red Hat テンプレートまたはウィザードを使用して作成された仮想マシンは、専用のリソースで有効にできます。

手順

  1. サイドメニューから WorkloadsVirtual Machine Templates をクリックします。
  2. 仮想マシンテンプレートを選択して、Virtual Machine Template Overview タブを開きます。
  3. Details タブをクリックします。
  4. Dedicated Resources フィールドの右側にある鉛筆アイコンをクリックして、Dedicated Resources ウィンドウを開きます。
  5. Schedule this workload with dedicated resources (guaranteed policy) を選択します。
  6. Save をクリックします。

8.4. 仮想マシンテンプレートの削除

Red Hat 仮想マシンテンプレートは削除できません。Web コンソールを使用して以下を削除できます。

  • Red Hat テンプレートから作成される仮想マシンテンプレート
  • Create Virtual Machine Template ウィザードを使用して作成されたカスタム仮想マシンテンプレート。

8.4.1. Web コンソールでの仮想マシンテンプレートの削除

仮想マシンテンプレートを削除すると、仮想マシンはクラスターから永続的に削除されます。

注記

Red Hat テンプレート、または Create Virtual Machine Template ウィザードを使用して作成された仮想マシンテンプレートを削除できます。Red Hat が提供する事前に設定された仮想マシンテンプレートは削除できません。

手順

  1. OpenShift Virtualization コンソールのサイドメニューから WorkloadsVirtualization をクリックします。
  2. Templates タブをクリックします。仮想マシンテンプレートを削除する適切な方法を選択します。

    • 削除するテンプレートの Options メニュー kebab をクリックし、Delete Template を選択します。
    • テンプレート名をクリックして Virtual Machine Template Details 画面を開き、ActionsDelete Template をクリックします。
  3. 確認のポップアップウィンドウで、Delete をクリックし、テンプレートを永続的に削除します。

第9章 ライブマイグレーション

9.1. 仮想マシンのライブマイグレーション

9.1.1. ライブマイグレーションについて

ライブマイグレーションは、仮想ワークロードまたはアクセスに支障を与えることなく、実行中の仮想マシンインスタンス (VMI) をクラスター内の別のノードに移行するプロセスです。VMI が LiveMigrate エビクションストラテジーを使用する場合、VMI が実行されるノードがメンテナンスモードになると自動的に移行されます。移行する VMI を選択して、ライブマイグレーションを手動で開始することもできます。

仮想マシンでは、共有 ReadWriteMany (RWX) アクセスモードを持つ永続ボリューム要求 (PVC) のライブマイグレーションが必要です。

注記

ライブマイグレーションは SR-IOV ネットワークインターフェイスに接続されている仮想マシンにはサポートされません。

9.1.2. ライブマイグレーションのアクセスモードの更新

ライブマイグレーションが適切に機能するには、ReadWriteMany (RWX) アクセスモードを使用する必要があります。必要に応じて、以下の手順でアクセスモードを更新します。

手順

  • RWX アクセスモードを設定するには、以下の oc patch コマンドを実行します。

    $ oc patch -n openshift-cnv \
        cm kubevirt-storage-class-defaults \
        -p '{"data":{"'$<STORAGE_CLASS>'.accessMode":"ReadWriteMany"}}'

9.2. ライブマイグレーションの制限およびタイムアウト

ライブマイグレーションの制限およびタイムアウトは、移行プロセスがクラスターに負担をかけないようにするために適用されます。kubevirt-config 設定ファイルを編集してこれらの設定を行います。

9.2.1. ライブマイグレーションの制限およびタイムアウトの設定

更新された key:value フィールドを openshift-cnv namespace にある kubevirt-config 設定ファイルに追加することによってライブマイグレーションの制限およびタイムアウトを設定します。

手順

  • kubevirt-config 設定ファイルを編集し、必要なライブマイグレーションパラメーターを追加します。以下の例は、デフォルト値を示しています。

    $ oc edit configmap kubevirt-config -n openshift-cnv

    設定ファイルのサンプル

    apiVersion: v1
    data:
      default-network-interface: masquerade
      feature-gates: DataVolumes,SRIOV,LiveMigration,CPUManager,CPUNodeDiscovery,Sidecar,Snapshot
      migrations: |-
        parallelMigrationsPerCluster: "5"
        parallelOutboundMigrationsPerNode: "2"
        bandwidthPerMigration: "64Mi"
        completionTimeoutPerGiB: "800"
        progressTimeout: "150"
      machine-type: pc-q35-rhel8.3.0
      selinuxLauncherType: virt_launcher.process
      smbios: |-
        Family: Red Hat
        Product: Container-native virtualization
        Manufacturer: Red Hat
        Sku: 2.6.0
        Version: 2.6.0
    kind: ConfigMap
    metadata:
      creationTimestamp: "2021-03-26T18:01:04Z"
      labels:
        app: kubevirt-hyperconverged
      name: kubevirt-config
      namespace: openshift-cnv
      resourceVersion: "15371295"
      selfLink: /api/v1/namespaces/openshift-cnv/configmaps/kubevirt-config
      uid: <uuid>

9.2.2. クラスター全体のライブマイグレーションの制限およびタイムアウト

表9.1 移行パラメーター
パラメーター説明デフォルト

parallelMigrationsPerCluster

クラスターで並行して実行される移行の数。

5

parallelOutboundMigrationsPerNode

ノードごとのアウトバウンドの移行の最大数。

2

bandwidthPerMigration

それぞれの移行の帯域幅 (MiB/s)。

64Mi

completionTimeoutPerGiB

移行がこの時間内に終了しない場合 (単位はメモリーの GiB あたりの秒数)、移行は取り消されます。たとえば、6GiB メモリーを持つ仮想マシンインスタンスは、4800 秒内に移行を完了しない場合にタイムアウトします。Migration MethodBlockMigration の場合、移行するディスクのサイズは計算に含められます。

800

progressTimeout

メモリーのコピーの進捗がこの時間内 (秒単位) に見られない場合に、移行は取り消されます。

150

9.3. 仮想マシンインスタンスの別のノードへの移行

Web コンソールまたは CLI のいずれかで仮想マシンインスタンスのライブマイグレーションを手動で開始します。

9.3.1. Web コンソールでの仮想マシンインスタンスのライブマイグレーションの開始

実行中の仮想マシンインスタンスをクラスター内の別のノードに移行します。

注記

Migrate Virtual Machine アクションはすべてのユーザーに対して表示されますが、仮想マシンの移行を開始できるのは管理者ユーザーのみとなります。

手順

  1. OpenShift Virtualization コンソールのサイドメニューから WorkloadsVirtualization をクリックします。
  2. Virtual Machines タブをクリックします。
  3. この画面から移行を開始できます。 これにより、1 つの画面で複数のマシンに対してアクションを実行することがより容易になります。 または、Virtual Machine Overview 画面から仮想マシンを停止することもできます。 この場合、選択された仮想マシンの総合的な詳細情報を確認できます。

    • 仮想マシンの末尾の Options メニュー kebab をクリックし、Migrate Virtual Machine を選択します。
    • 仮想マシン名をクリックし、Virtual Machine Overview 画面を開き、ActionsMigrate Virtual Machine をクリックします。
  4. Migrate をクリックして、仮想マシンを別のノードに移行します。

9.3.2. CLI での仮想マシンインスタンスのライブマイグレーションの開始

クラスターに VirtualMachineInstanceMigration オブジェクトを作成し、仮想マシンインスタンスの名前を参照して、実行中の仮想マシンインスタンスのライブマイグレーションを開始します。

手順

  1. 移行する仮想マシンインスタンスの VirtualMachineInstanceMigration 設定ファイルを作成します。vmi-migrate.yaml はこの例になります。

    apiVersion: kubevirt.io/v1alpha3
    kind: VirtualMachineInstanceMigration
    metadata:
      name: migration-job
    spec:
      vmiName: vmi-fedora
  2. 以下のコマンドを実行して、クラスター内にオブジェクトを作成します。

    $ oc create -f vmi-migrate.yaml

VirtualMachineInstanceMigration オブジェクトは、仮想マシンインスタンスのライブマイグレーションをトリガーします。このオブジェクトは、手動で削除されない場合、仮想マシンインスタンスが実行中である限りクラスターに存在します。

9.4. 仮想マシンインスタンスのライブマイグレーションのモニター

Web コンソールまたは CLI のいずれかで仮想マシンインスタンスのライブマイグレーションの進捗をモニターできます。

9.4.1. Web コンソールでの仮想マシンインスタンスのライブマイグレーションのモニター

移行期間中、仮想マシンのステータスは Migrating になります。このステータスは Virtual Machines タブに表示されるか、または移行中の仮想マシンの Virtual Machine Overview 画面に表示されます。

手順

  1. OpenShift Virtualization コンソールのサイドメニューから WorkloadsVirtualization をクリックします。
  2. Virtual Machines タブをクリックします。
  3. 仮想マシンを選択して、Virtual Machine Overview 画面を開きます。

9.4.2. CLI での仮想マシンインスタンスのライブマイグレーションのモニター

仮想マシンの移行のステータスは、VirtualMachineInstance 設定の Status コンポーネントに保存されます。

手順

  • 移行中の仮想マシンインスタンスで oc describe コマンドを使用します。

    $ oc describe vmi vmi-fedora

    出力例

    ...
    Status:
      Conditions:
        Last Probe Time:       <nil>
        Last Transition Time:  <nil>
        Status:                True
        Type:                  LiveMigratable
      Migration Method:  LiveMigration
      Migration State:
        Completed:                    true
        End Timestamp:                2018-12-24T06:19:42Z
        Migration UID:                d78c8962-0743-11e9-a540-fa163e0c69f1
        Source Node:                  node2.example.com
        Start Timestamp:              2018-12-24T06:19:35Z
        Target Node:                  node1.example.com
        Target Node Address:          10.9.0.18:43891
        Target Node Domain Detected:  true

9.5. 仮想マシンインスタンスのライブマイグレーションの取り消し

仮想マシンインスタンスを元のノードに残すためにライブマイグレーションを取り消すことができます。

Web コンソールまたは CLI のいずれかでライブマイグレーションを取り消します。

9.5.1. Web コンソールでの仮想マシンインスタンスのライブマイグレーションの取り消し

VirtualizationVirtual Machines タブの各仮想マシンにある Options メニュー kebab を使用して仮想マシンインスタンスのライブマイグレーションを取り消すか、または Virtual Machine Overview 画面のすべてのタブで利用可能な Actions メニューからこれを取り消すことができます。

手順

  1. OpenShift Virtualization コンソールのサイドメニューから WorkloadsVirtualization をクリックします。
  2. Virtual Machines タブをクリックします。
  3. この画面から移行を取り消すことができます。 これにより、複数のマシンに対してアクションを実行することがより容易になります。 または、Virtual Machine Overview 画面からこれを実行できます。この場合、選択された仮想マシンの総合的な詳細情報を確認できます。

    • 仮想マシンの末尾の Options メニュー kebab をクリックし、Cancel Virtual Machine Migration を選択します。
    • 仮想マシン名を選択して Virtual Machine Overview 画面を開き、ActionsCancel Virtual Machine Migration をクリックします。
  4. Cancel Migration をクリックして仮想マシンのライブマイグレーションを取り消します。

9.5.2. CLI での仮想マシンインスタンスのライブマイグレーションの取り消し

移行に関連付けられた VirtualMachineInstanceMigration オブジェクトを削除して、仮想マシンインスタンスのライブマイグレーションを取り消します。

手順

  • ライブマイグレーションをトリガーした VirtualMachineInstanceMigration オブジェクトを削除します。 この例では、migration-job が使用されています。

    $ oc delete vmim migration-job

9.6. 仮想マシンのエビクションストラテジーの設定

LiveMigrate エビクションストラテジーは、ノードがメンテナンス状態になるか、ドレイン (解放) される場合に仮想マシンインスタンスが中断されないようにします。このエビクションストラテジーを持つ仮想マシンインスタンスのライブマイグレーションが別のノードに対して行われます。

9.6.1. LiveMigration エビクションストラテジーでのカスタム仮想マシンの設定

LiveMigration エビクションストラテジーはカスタム仮想マシンでのみ設定する必要があります。共通テンプレートには、デフォルトでこのエビクションストラテジーが設定されています。

手順

  1. evictionStrategy: LiveMigrate オプションを、仮想マシン設定ファイルの spec.template.spec セクションに追加します。この例では、oc edit を使用して VirtualMachine 設定ファイルの関連するスニペットを更新します。

    $ oc edit vm <custom-vm> -n <my-namespace>
    apiVersion: kubevirt.io/v1alpha3
    kind: VirtualMachine
    metadata:
      name: custom-vm
    spec:
      template:
        spec:
          evictionStrategy: LiveMigrate
    ...
  2. 更新を有効にするために仮想マシンを再起動します。

    $ virtctl restart <custom-vm> -n <my-namespace>

第10章 ノードのメンテナンス

10.1. ノードのメンテナンスについて

10.1.1. ノードのメンテナンスモードについて

oc adm ユーティリティーまたは NodeMaintenance カスタムリソース (CR) を使用してノードをメンテナンスモードにすることができます。

ノードがメンテナンス状態になると、ノードにはスケジュール対象外のマークが付けられ、ノードからすべての仮想マシンおよび Pod がドレイン (解放) されます。LiveMigrate エビクションストラテジーを持つ仮想マシンインスタンスのライブマイグレーションは、サービスが失われることなく実行されます。このエビクションストラテジーはデフォルトで共通テンプレートから作成される仮想マシンで設定されますが、カスタム仮想マシンの場合には手動で設定される必要があります。

エビクションストラテジーのない仮想マシンインスタンスはシャットダウンします。RunStrategyRunning または RerunOnFailure の仮想マシンは別のノードで再作成されます。RunStrategyManual の仮想マシンは自動的に再起動されません。

重要

仮想マシンでは、共有 ReadWriteMany (RWX) アクセスモードを持つ永続ボリューム要求 (PVC) のライブマイグレーションが必要です。

OpenShift Virtualization の一部としてインストールされる場合、Node Maintenance Operator は新規または削除された NodeMaintenance CR の有無を監視します。新規の NodeMaintenance CR が検出されると、新規ワークロードはスケジュールされず、ノードは残りのクラスターから遮断されます。エビクトできるすべての Pod はノードからエビクトされます。NodeMaintenance CR が削除されると、CR で参照されるノードは新規ワークロードで利用可能になります。

注記

ノードのメンテナンスタスクに NodeMaintenance CR を使用すると、標準の OpenShift Container Platform カスタムリソース処理を使用して oc adm cordon および oc adm drain コマンドの場合と同じ結果が得られます。

10.1.2. ベアメタルノードのメンテナンス

OpenShift Container Platform をベアメタルインフラストラクチャーにデプロイする場合、クラウドインフラストラクチャーにデプロイする場合と比較すると、追加で考慮する必要のある点があります。クラスターノードが一時的とみなされるクラウド環境とは異なり、ベアメタルノードを再プロビジョニングするには、メンテナンスタスクにより多くの時間と作業が必要になります。

致命的なカーネルエラーが発生したり、NIC カードのハードウェア障害が発生する場合などにベアメタルノードに障害が発生した場合には、障害のあるノードが修復または置き換えられている間に、障害が発生したノード上のワークロードをクラスターの別の場所で再起動する必要があります。ノードのメンテナンスモードにより、クラスター管理者はノードの電源を正常に停止し、ワークロードをクラスターの他の部分に移動させ、ワークロードが中断されないようにします。詳細な進捗とノードのステータスについての詳細は、メンテナンス時に提供されます。

10.2. ノードのメンテナンスモードへの設定

Web コンソール、CLI、または NodeMaintenance カスタムリソースを使用してノードをメンテナンス状態にします。

10.2.1. Web コンソールでのノードのメンテナンスモードへの設定

ComputeNodes 一覧で各ノードにある Options メニュー kebab を使用するか、または Node Details 画面の Actions コントロールを使用してノードをメンテナンスモードに設定します。

手順

  1. OpenShift Virtualization コンソールで、 ComputeNodes をクリックします。
  2. この画面からノードをメンテナンスモードに設定できます。 これにより、1 つの画面で複数のノードに対してアクションを実行することがより容易になります。 または、Node Details 画面からノードをメンテナンスモードに設定することもできます。 この場合、選択されたノードの総合的な詳細情報を確認できます。

    • ノードの末尾の Options メニュー kebab をクリックし、Start Maintenance を選択します。
    • ノード名をクリックし、Node Details 画面を開いて ActionsStat Maintenance をクリックします。
  3. 確認ウィンドウで Start Maintenance をクリックします。

ノードは liveMigration エビクションストラテジーを持つ仮想マシンインスタンスのライブマイグレーションを行い、このノードはスケジュール対象外となります。このノードの他のすべての Pod および仮想マシンは削除され、別のノードで再作成されます。

10.2.2. CLI でのノードのメンテナンスモードへの設定

ノードをスケジュール対象外としてマークし、oc adm drain コマンドを使用してノードから Pod をエビクトまたは削除して、ノードをメンテナンスモードに設定します。

手順

  1. ノードにスケジュール対象外 (unschedulable) のマークを付けます。ノードのステータスが NotReady,SchedulingDisabled に切り替わります。

    $ oc adm cordon <node1>
  2. メンテナンスの準備のためにノードをドレイン (解放) します。ノードは、LiveMigratable の状態が True に設定され、 spec:evictionStrategy フィールドが LiveMigrate に設定された仮想マシンインスタンスのライブマイグレーションを行います。このノードの他のすべての Pod および仮想マシンは削除され、別のノードで再作成されます。

    $ oc adm drain <node1> --delete-emptydir-data --ignore-daemonsets=true --force
    • --delete-emptydir-data フラグは、emptyDir ボリュームを使用するノード上の仮想マシンインスタンスを削除します。これらのボリュームのデータは一時的なものであり、終了後に削除しても問題はありません。
    • --ignore-daemonsets=true フラグは、デーモンセットは無視され、Pod のエビクションが正常に続行されるようにします。
    • --force フラグは、レプリカセットまたはデーモンセットコントローラーによって管理されない Pod を削除するために必要です。

10.2.3. NodeMaintenance カスタムリソースを使用したノードのメンテナンスモードへの設定

NodeMaintenance カスタムリソース (CR) を使用してノードをメンテナンスモードにできます。NodeMaintenance CR を適用する場合、許可されるすべての Pod はエビクトされ、ノードはシャットダウンします。エビクトされた Pod は、クラスター内の別のノードに移動するようにキューに置かれます。

前提条件

  • OpenShift Container Platform CLI (oc) をインストールしている。
  • cluster-admin 権限を持つユーザーとしてクラスターにログインしている。

手順

  1. 以下のノードメンテナンス CR を作成し、そのファイルを nodemaintenance-cr.yaml として保存します。

    apiVersion: nodemaintenance.kubevirt.io/v1beta1
    kind: NodeMaintenance
    metadata:
      name: maintenance-example  1
    spec:
      nodeName: node-1.example.com 2
      reason: "Node maintenance" 3
    1
    ノードのメンテナンス CR 名
    2
    メンテナンスモードに設定するノードの名前
    3
    メンテナンスの理由のプレーンテキストの説明
  2. 以下のコマンドを実行してノードのメンテナンススケジュールを適用します。

    $ oc apply -f nodemaintenance-cr.yaml
  3. 以下のコマンドを実行して、<node-name> をノードの名前に置き換えて、メンテナンスタスクの進捗を確認します。

    $ oc describe node <node-name>

    出力例

    Events:
      Type     Reason                     Age                   From     Message
      ----     ------                     ----                  ----     -------
      Normal   NodeNotSchedulable         61m                   kubelet  Node node-1.example.com status is now: NodeNotSchedulable

10.2.3.1. 現在の NodeMaintenance CR タスクのステータスの確認

現在の NodeMaintenance CR タスクのステータスを確認できます。

前提条件

  • OpenShift Container Platform CLI (oc) をインストールしている。
  • cluster-admin 権限を持つユーザーとしてログインしている。

手順

  • 以下のコマンドを実行して、現在のノードのメンテナンスタスクのステータスを確認します。

    $ oc get NodeMaintenance -o yaml

    出力例

    apiVersion: v1
    items:
    - apiVersion: nodemaintenance.kubevirt.io/v1beta1
      kind: NodeMaintenance
      metadata:
    ...
      spec:
        nodeName: node-1.example.com
        reason: Node maintenance
      status:
        evictionPods: 3   1
        pendingPods:
        - pod-example-workload-0
        - httpd
        - httpd-manual
        phase: Running
        lastError: "Last failure message" 2
        totalpods: 5
    ...

    1
    evictionPods はエビクションにスケジュールされる Pod 数です。
    2
    lastError は、最新のエビクションエラーが存在する場合は、最新のエビクションエラーを記録します。

10.3. メンテナンスモードからのノードの再開

ノードを再起動することにより、ノードをメンテナンスモードから切り替え、再度スケジュール可能な状態にできます。

Web コンソール、CLI を使用するか、または NodeMaintenance カスタムリソースを削除して、メンテナンスモードからノードを再開します。

10.3.1. Web コンソールでのメンテナンスモードからのノードの再開

Options メニュー kebab (ComputeNodes 一覧の各ノードにある) を使用するか、または Node Details 画面の Actions コントロールを使用してノードをメンテナンスモードから再開します。

手順

  1. OpenShift Virtualization コンソールで、 ComputeNodes をクリックします。
  2. この画面からノードを再開できます。 これにより、1 つの画面で複数のノードに対してアクションを実行することがより容易になります。 または、Node Details 画面からノードを再開することもできます。 この場合、選択されたノードの総合的な詳細情報を確認できます。

    • ノードの末尾の Options メニュー kebab をクリックし、Stop Maintenance を選択します。
    • ノード名をクリックし、Node Details 画面を開いて ActionsStop Maintenance をクリックします。
  3. 確認ウィンドウで Stop Maintenance をクリックします。

ノードはスケジュール可能な状態になりますが、メンテナンス前にノード上で実行されていた仮想マシンインスタンスはこのノードに自動的に戻されません。

10.3.2. CLI でのメンテナンスモードからのノードの再開

ノードを再度スケジュール可能にすることで、メンテナンスモードのノードを再開します。

手順

  • ノードにスケジュール可能のマークを付けます。次に、ノードで新規ワークロードのスケジューリングを再開できます。

    $ oc adm uncordon <node1>

10.3.3. NodeMaintenance CR を使用して開始されたメンテナンスモードからのノードの再起動

NodeMaintenance CR を削除してノードを再起動できます。

前提条件

  • OpenShift Container Platform CLI (oc) をインストールしている。
  • cluster-admin 権限を持つユーザーとしてクラスターにログインしている。

手順

  • ノードのメンテナンスタスクが完了したら、アクティブな NodeMaintenance CR を削除します。

    $ oc delete -f nodemaintenance-cr.yaml

    出力例

    nodemaintenance.nodemaintenance.kubevirt.io "maintenance-example" deleted

10.4. TLS 証明書の自動更新

OpenShift Virtualization コンポーネントの TLS 証明書はすべて更新され、自動的にローテーションされます。手動で更新する必要はありません。

10.4.1. TLS 証明書の自動更新スケジュール

TLS 証明書は自動的に削除され、以下のスケジュールに従って置き換えられます。

  • KubeVirt 証明書は毎日更新されます。
  • Containerized Data Importer controller (CDI) 証明書は、15 日ごとに更新されます。
  • MAC プール証明書は毎年更新されます。

TLS 証明書の自動ローテーションはいずれの操作も中断しません。たとえば、以下の操作は中断せずに引き続き機能します。

  • 移行
  • イメージのアップロード
  • VNC およびコンソールの接続

10.5. 古い CPU モデルのノードラベルの管理

仮想マシン (VM) の CPU モデルおよびポリシー属性が、ノードがサポートする CPU モデルおよびポリシー属性と互換性があるノードで仮想マシン (VM) をスケジュールできます。設定マップ で古くなった CPU モデルの一覧を指定すると、これらを CPU モデル用に作成されたラベルの一覧から除外できます。

10.5.1. 古い CPU モデルのノードのラベル付けについて

ノードがスケジュールされた仮想マシンの有効な CPU モデルのみをサポートするようにするには、古い CPU モデルの一覧で設定マップを作成します。node-labeller が古くなった CPU モデルの一覧を取得すると、それらの CPU モデルは削除され、有効な CPU モデルのラベルが作成されます。

注記

古くなった CPU モデルの一覧で設定マップを設定しない場合、すべての CPU モデルは、お使いの環境に存在しない古い CPU モデルを含め、それらのラベルについて評価されます。

反復処理により、最小 CPU モデルのベース CPU 機能の一覧はノード用に生成されたラベルの一覧から削除されます。たとえば、環境には、PenrynHaswell という 2 つのサポートされる CPU モデルが含まれる可能性があります。

PenrynminCPU の CPU モデルとして指定される場合、node-labellerPenryn のそれぞれのベース CPU 機能を評価し、これを Haswell でサポートされる各 CPU 機能と比較します。CPU 機能が PenrynHaswell の両方でサポートされる場合、node-labeller は、ラベルを作成するために CPU 機能の一覧からこの機能を排除します。CPU 機能が Haswell によってのみサポートされ、Penryn でサポートされていない場合、その CPU 機能は生成されたラベルの一覧に含まれます。node-labeller はこの反復プロセスに従い、最小 CPU モデルにあるベース CPU 機能を排除し、ラベルを作成します。

以下の例は、minCPU の CPU モデルとして指定される Penryn の CPU 機能の詳細一覧を示しています。

Penryn の CPU 機能の例

apic
clflush
cmov
cx16
cx8
de
fpu
fxsr
lahf_lm
lm
mca
mce
mmx
msr
mtrr
nx
pae
pat
pge
pni
pse
pse36
sep
sse
sse2
sse4.1
ssse3
syscall
tsc

以下の例は、Haswell の CPU 機能の詳細一覧を示しています。

Haswell の CPU 機能の例

aes
apic
avx
avx2
bmi1
bmi2
clflush
cmov
cx16
cx8
de
erms
fma
fpu
fsgsbase
fxsr
hle
invpcid
lahf_lm
lm
mca
mce
mmx
movbe
msr
mtrr
nx
pae
pat
pcid
pclmuldq
pge
pni
popcnt
pse
pse36
rdtscp
rtm
sep
smep
sse
sse2
sse4.1
sse4.2
ssse3
syscall
tsc
tsc-deadline
x2apic
xsave

以下の例は、CPU 機能について反復プロセスを実行しし、Penryn の CPU 機能を Haswell の CPU 機能と比較した後に node-labeller によって生成されるノードラベルの一覧を示します。

反復後のノードラベルの例

aes
avx
avx2
bmi1
bmi2
erms
fma
fsgsbase
hle
invpcid
movbe
pcid
pclmuldq
popcnt
rdtscp
rtm
sse4.2
tsc-deadline
x2apic
xsave

10.5.2. 古い CPU モデルの設定マップの設定

以下の手順を使用して、古い CPU モデルの設定マップを設定します。

手順

  • 古い CPU モデルを obsoleteCPUs 配列に指定して、ConfigMap オブジェクトを作成します。以下は例になります。

    apiVersion: v1
    kind: ConfigMap
    metadata:
      name: cpu-plugin-configmap 1
    data: 2
      cpu-plugin-configmap:
        obsoleteCPUs: 3
          - "486"
          - "pentium"
          - "pentium2"
          - "pentium3"
          - "pentiumpro"
        minCPU: "Penryn" 4
    1
    設定マップの名前。
    2
    設定データ。
    3
    古い CPU モデルの一覧。
    4
    基本的な CPU 機能に使用される最小 CPU モデル。

第11章 ノードのネットワーク

11.1. ノードのネットワーク状態の確認

ノードのネットワーク状態は、クラスター内のすべてのノードのネットワーク設定です。

11.1.1. nmstate について

OpenShift Virtualization は nmstate を使用してノードネットワークの状態を報告し、設定します。これにより、単一の設定マニフェストをクラスターに適用して、すべてのノードに Linux ブリッジを作成するなどして、ネットワークポリシーの設定を変更することができます。

ノードのネットワークは、以下のオブジェクトによって監視され更新されます。

NodeNetworkState
そのノード上のネットワークの状態を報告します。
NodeNetworkConfigurationPolicy
ノードで要求されるネットワーク設定について説明します。NodeNetworkConfigurationPolicy マニフェストをクラスターに適用して、インターフェイスの追加および削除など、ノードネットワーク設定を更新します。
NodeNetworkConfigurationEnactment
各ノードに制定されたネットワークポリシーを報告します。

OpenShift Virtualization は以下の nmstate インターフェイスタイプの使用をサポートします。

  • Linux Bridge
  • VLAN
  • Bond
  • イーサネット
注記

OpenShift Container Platform クラスターが OVN-Kubernetes をデフォルトの Container Network Interface (CNI) プロバイダーとして使用する場合、OVN-Kubernetes のホストネットワークトポロジーの変更により、Linux ブリッジまたはボンディングをホストのデフォルトインターフェイスに割り当てることはできません。回避策として、ホストに接続されたセカンダリーネットワークインターフェイスを使用するか、OpenShift SDN デフォルト CNI プロバイダーに切り替えることができます。

11.1.2. ノードのネットワーク状態の表示

NodeNetworkState オブジェクトはクラスター内のすべてのノードにあります。このオブジェクトは定期的に更新され、ノードのネットワークの状態を取得します。

手順

  1. クラスターのすべての NodeNetworkState オブジェクトを一覧表示します。

    $ oc get nns
  2. NodeNetworkState オブジェクトを検査して、そのノードにネットワークを表示します。この例の出力は、明確にするために編集されています。

    $ oc get nns node01 -o yaml

    出力例

    apiVersion: nmstate.io/v1beta1
    kind: NodeNetworkState
    metadata:
      name: node01 1
    status:
      currentState: 2
        dns-resolver:
    ...
        interfaces:
    ...
        route-rules:
    ...
        routes:
    ...
      lastSuccessfulUpdateTime: "2020-01-31T12:14:00Z" 3

    1
    NodeNetworkState オブジェクトの名前はノードから取られています。
    2
    currentState には、DNS、インターフェイス、およびルートを含む、ノードの完全なネットワーク設定が含まれます。
    3
    最後に成功した更新のタイムスタンプ。これは、ノードが到達可能であり、レポートの鮮度の評価に使用できる限り定期的に更新されます。

11.2. ノードのネットワーク設定の更新

NodeNetworkConfigurationPolicy マニフェストをクラスターに適用して、ノードからのインターフェイスの追加または削除など、ノードネットワーク設定を更新できます。

11.2.1. nmstate について

OpenShift Virtualization は nmstate を使用してノードネットワークの状態を報告し、設定します。これにより、単一の設定マニフェストをクラスターに適用して、すべてのノードに Linux ブリッジを作成するなどして、ネットワークポリシーの設定を変更することができます。

ノードのネットワークは、以下のオブジェクトによって監視され更新されます。

NodeNetworkState
そのノード上のネットワークの状態を報告します。
NodeNetworkConfigurationPolicy
ノードで要求されるネットワーク設定について説明します。NodeNetworkConfigurationPolicy マニフェストをクラスターに適用して、インターフェイスの追加および削除など、ノードネットワーク設定を更新します。
NodeNetworkConfigurationEnactment
各ノードに制定されたネットワークポリシーを報告します。

OpenShift Virtualization は以下の nmstate インターフェイスタイプの使用をサポートします。

  • Linux Bridge
  • VLAN
  • Bond
  • イーサネット
注記

OpenShift Container Platform クラスターが OVN-Kubernetes をデフォルトの Container Network Interface (CNI) プロバイダーとして使用する場合、OVN-Kubernetes のホストネットワークトポロジーの変更により、Linux ブリッジまたはボンディングをホストのデフォルトインターフェイスに割り当てることはできません。回避策として、ホストに接続されたセカンダリーネットワークインターフェイスを使用するか、OpenShift SDN デフォルト CNI プロバイダーに切り替えることができます。

11.2.2. ノード上でのインターフェイスの作成

NodeNetworkConfigurationPolicy マニフェストをクラスターに適用してクラスター内のノード上にインターフェイスを作成します。マニフェストには、インターフェイスの要求された設定の詳細が含まれます。

デフォルトでは、マニフェストはクラスター内のすべてのノードに適用されます。インターフェイスを特定ノードに追加するには、ノードセレクターの spec: nodeSelector パラメーターおよび適切な <key>:<value> を追加します。

手順

  1. NodeNetworkConfigurationPolicy マニフェストを作成します。以下の例は、すべてのワーカーノードで Linux ブリッジを設定します。

    apiVersion: nmstate.io/v1beta1
    kind: NodeNetworkConfigurationPolicy
    metadata:
      name: <br1-eth1-policy> 1
    spec:
      nodeSelector: 2
        node-role.kubernetes.io/worker: "" 3
      desiredState:
        interfaces:
          - name: br1
            description: Linux bridge with eth1 as a port 4
            type: linux-bridge
            state: up
            ipv4:
              dhcp: true
              enabled: true
            bridge:
              options:
                stp:
                  enabled: false
              port:
                - name: eth1
    1
    ポリシーの名前。
    2
    オプション: nodeSelector パラメーターを含めない場合、ポリシーはクラスター内のすべてのノードに適用されます。
    3
    この例では node-role.kubernetes.io/worker: "" ノードセレクターを使用し、クラスター内のすべてのワーカーノードを選択します。
    4
    オプション: インターフェイスの人間が判読できる説明。
  2. ノードのネットワークポリシーを作成します。

    $ oc apply -f <br1-eth1-policy.yaml> 1
    1
    ノードネットワーク設定ポリシーマニフェストのファイル名。
関連情報

11.2.3. ノード上でのノードネットワークポリシー更新の確認

NodeNetworkConfigurationPolicy マニフェストは、クラスターのノードについて要求されるネットワーク設定を記述します。ノードネットワークポリシーには、要求されたネットワーク設定と、クラスター全体でのポリシーの実行ステータスが含まれます。

ノードネットワークポリシーを適用する際に、NodeNetworkConfigurationEnactment オブジェクトがクラスター内のすべてのノードについて作成されます。ノードネットワーク設定の enactment (実行) は、そのノードでのポリシーの実行ステータスを表す読み取り専用オブジェクトです。ポリシーがノードに適用されない場合、そのノードの enactment (実行) にはトラブルシューティングのためのトレースバックが含まれます。

手順

  1. ポリシーがクラスターに適用されていることを確認するには、ポリシーとそのステータスを一覧表示します。

    $ oc get nncp
  2. オプション: ポリシーの設定に想定されている以上の時間がかかる場合は、特定のポリシーの要求される状態とステータスの状態を検査できます。

    $ oc get nncp <policy> -o yaml
  3. オプション: ポリシーのすべてのノード上での設定に想定されている以上の時間がかかる場合は、クラスターの enactment (実行) のステータスを一覧表示できます。

    $ oc get nnce
  4. オプション: 特定の enactment (実行) の設定 (失敗した設定のエラーレポートを含む) を表示するには、以下を実行します。

    $ oc get nnce <node>.<policy> -o yaml

11.2.4. ノードからインターフェイスの削除

NodeNetworkConfigurationPolicy オブジェクトを編集し、インターフェイスの stateabsent に設定して、クラスターの 1 つ以上のノードからインターフェイスを削除できます。

ノードからインターフェイスを削除しても、ノードのネットワーク設定は以前の状態に自動的に復元されません。以前の状態に復元する場合、そのノードのネットワーク設定をポリシーで定義する必要があります。

ブリッジまたはボンディングインターフェイスを削除すると、そのブリッジまたはボンディングインターフェイスに以前に接続されたか、またはそれらの下位にあるノード NIC は down の状態になり、到達できなくなります。接続が失われないようにするには、同じポリシーでノード NIC を設定し、ステータスを up にし、DHCP または静的 IP アドレスのいずれかになるようにします。

注記

インターフェイスを追加したポリシーを削除しても、ノード上のポリシーの設定は変更されません。NodeNetworkConfigurationPolicy はクラスターのオブジェクトですが、これは要求される設定のみを表します。
同様に、インターフェイスを削除してもポリシーは削除されません。

手順

  1. インターフェイスの作成に使用する NodeNetworkConfigurationPolicy マニフェストを更新します。以下の例は Linux ブリッジを削除し、接続が失われないように DHCP で eth1 NIC を設定します。

    apiVersion: nmstate.io/v1beta1
    kind: NodeNetworkConfigurationPolicy
    metadata:
      name: <br1-eth1-policy> 1
    spec:
      nodeSelector: 2
        node-role.kubernetes.io/worker: "" 3
      desiredState:
        interfaces:
        - name: br1
          type: linux-bridge
          state: absent 4
        - name: eth1 5
          type: ethernet 6
          state: up 7
          ipv4:
            dhcp: true 8
            enabled: true 9
    1
    ポリシーの名前。
    2
    オプション: nodeSelector パラメーターを含めない場合、ポリシーはクラスター内のすべてのノードに適用されます。
    3
    この例では node-role.kubernetes.io/worker: "" ノードセレクターを使用し、クラスター内のすべてのワーカーノードを選択します。
    4
    状態を absent に変更すると、インターフェイスが削除されます。
    5
    ブリッジインターフェイスから接続が解除されるインターフェイスの名前。
    6
    インターフェイスのタイプ。この例では、イーサネットネットワークインターフェイスを作成します。
    7
    インターフェイスの要求された状態。
    8
    オプション: dhcp を使用しない場合は、静的 IP を設定するか、IP アドレスなしでインターフェイスを出ることができます。
    9
    この例では ipv4 を有効にします。
  2. ノード上でポリシーを更新し、インターフェイスを削除します。

    $ oc apply -f <br1-eth1-policy.yaml> 1
    1
    ポリシーマニフェストのファイル名。

11.2.5. 異なるインターフェイスのポリシー設定の例

11.2.5.1. 例: Linux ブリッジインターフェイスノードネットワーク設定ポリシー

NodeNetworkConfigurationPolicy マニフェストをクラスターに適用してクラスター内のノード上に Linux ブリッジインターフェイスを作成します。

以下の YAML ファイルは、Linux ブリッジインターフェイスのマニフェストの例です。これには、独自の情報で置き換える必要のあるサンプルの値が含まれます。

apiVersion: nmstate.io/v1beta1
kind: NodeNetworkConfigurationPolicy
metadata:
  name: br1-eth1-policy 1
spec:
  nodeSelector: 2
    kubernetes.io/hostname: <node01> 3
  desiredState:
    interfaces:
      - name: br1 4
        description: Linux bridge with eth1 as a port 5
        type: linux-bridge 6
        state: up 7
        ipv4:
          dhcp: true 8
          enabled: true 9
        bridge:
          options:
            stp:
              enabled: false 10
          port:
            - name: eth1 11
1
ポリシーの名前。
2
オプション: nodeSelector パラメーターを含めない場合、ポリシーはクラスター内のすべてのノードに適用されます。
3
この例では、hostname ノードセレクターを使用します。
4
インターフェイスの名前。
5
オプション: 人間が判読できるインターフェイスの説明。
6
インターフェイスのタイプ。この例では、ブリッジを作成します。
7
作成後のインターフェイスの要求された状態。
8
オプション: dhcp を使用しない場合は、静的 IP を設定するか、IP アドレスなしでインターフェイスを出ることができます。
9
この例では ipv4 を有効にします。
10
この例では stp を無効にします。
11
ブリッジが接続されるノードの NIC。
11.2.5.2. 例: VLAN インターフェイスノードネットワークの設定ポリシー

NodeNetworkConfigurationPolicy マニフェストをクラスターに適用してクラスター内のノード上に VLAN インターフェイスを作成します。

以下の YAML ファイルは、VLAN インターフェイスのマニフェストの例です。これには、独自の情報で置き換える必要のあるサンプルの値が含まれます。

apiVersion: nmstate.io/v1beta1
kind: NodeNetworkConfigurationPolicy
metadata:
  name: vlan-eth1-policy 1
spec:
  nodeSelector: 2
    kubernetes.io/hostname: <node01> 3
  desiredState:
    interfaces:
    - name: eth1.102 4
      description: VLAN using eth1 5
      type: vlan 6
      state: up 7
      vlan:
        base-iface: eth1 8
        id: 102 9
1
ポリシーの名前。
2
オプション: nodeSelector パラメーターを含めない場合、ポリシーはクラスター内のすべてのノードに適用されます。
3
この例では、hostname ノードセレクターを使用します。
4
インターフェイスの名前。
5
オプション: 人間が判読できるインターフェイスの説明。
6
インターフェイスのタイプ。以下の例では VLAN を作成します。
7
作成後のインターフェイスの要求された状態。
8
VLAN が接続されているノードの NIC。
9
VLAN タグ。
11.2.5.3. 例: ボンドインターフェイスノードネットワークの設定ポリシー

NodeNetworkConfigurationPolicy マニフェストをクラスターに適用してノード上にボンドインターフェイスを作成します。

注記

OpenShift Virtualization は以下のボンドモードのみをサポートします。

  • mode=1 active-backup
  • mode=2 balance-xor
  • mode=4 802.3ad
  • mode=5 balance-tlb
  • mode=6 balance-alb

以下の YAML ファイルは、ボンドインターフェイスのマニフェストの例です。これには、独自の情報で置き換える必要のあるサンプルの値が含まれます。

apiVersion: nmstate.io/v1beta1
kind: NodeNetworkConfigurationPolicy
metadata:
  name: bond0-eth1-eth2-policy 1
spec:
  nodeSelector: 2
    kubernetes.io/hostname: <node01> 3
  desiredState:
    interfaces:
    - name: bond0 4
      description: Bond enslaving eth1 and eth2 5
      type: bond 6
      state: up 7
      ipv4:
        dhcp: true 8
        enabled: true 9
      link-aggregation:
        mode: active-backup 10
        options:
          miimon: '140' 11
        slaves: 12
        - eth1
        - eth2
      mtu: 1450 13
1
ポリシーの名前。
2
オプション: nodeSelector パラメーターを含めない場合、ポリシーはクラスター内のすべてのノードに適用されます。
3
この例では、hostname ノードセレクターを使用します。
4
インターフェイスの名前。
5
オプション: 人間が判読できるインターフェイスの説明。
6
インターフェイスのタイプ。この例では、ボンドを作成します。
7
作成後のインターフェイスの要求された状態。
8
オプション: dhcp を使用しない場合は、静的 IP を設定するか、IP アドレスなしでインターフェイスを出ることができます。
9
この例では ipv4 を有効にします。
10
ボンドのドライバーモード。この例では、アクティブなバックアップモードを使用します。
11
オプション: この例では、miimon を使用して 140ms ごとにボンドリンクを検査します。
12
ボンド内の下位ノードの NIC。
13
オプション: ボンドの Maximum transmission unit (MTU)指定がない場合、この値はデフォルトで 1500 に設定されます。
11.2.5.4. 例: イーサネットインターフェイスノードネットワークの設定ポリシー

NodeNetworkConfigurationPolicy マニフェストをクラスターに適用してクラスター内のノードにイーサネットインターフェイスを作成します。

以下の YAML ファイルは、イーサネットインターフェイスのマニフェストの例です。これには、独自の情報で置き換える必要のあるサンプルの値が含まれます。

apiVersion: nmstate.io/v1beta1
kind: NodeNetworkConfigurationPolicy
metadata:
  name: eth1-policy 1
spec:
  nodeSelector: 2
    kubernetes.io/hostname: <node01> 3
  desiredState:
    interfaces:
    - name: eth1 4
      description: Configuring eth1 on node01 5
      type: ethernet 6
      state: up 7
      ipv4:
        dhcp: true 8
        enabled: true 9
1
ポリシーの名前。
2
オプション: nodeSelector パラメーターを含めない場合、ポリシーはクラスター内のすべてのノードに適用されます。
3
この例では、hostname ノードセレクターを使用します。
4
インターフェイスの名前。
5
オプション: 人間が判読できるインターフェイスの説明。
6
インターフェイスのタイプ。この例では、イーサネットネットワークインターフェイスを作成します。
7
作成後のインターフェイスの要求された状態。
8
オプション: dhcp を使用しない場合は、静的 IP を設定するか、IP アドレスなしでインターフェイスを出ることができます。
9
この例では ipv4 を有効にします。
11.2.5.5. 例: 同じノードネットワーク設定ポリシーでの複数のインターフェイス

同じノードネットワーク設定ポリシーで複数のインターフェイスを作成できます。これらのインターフェイスは相互に参照でき、単一のポリシーマニフェストを使用してネットワーク設定をビルドし、デプロイできます。

以下のスニペット例では、2 つの NIC 間に bond10 という名前のボンドと、ボンドに接続する br1 という名前の Linux ブリッジを作成します。

...
    interfaces:
    - name: bond10
      description: Bonding eth2 and eth3 for Linux bridge
      type: bond
      state: up
      link-aggregation:
        slaves:
        - eth2
        - eth3
    - name: br1
      description: Linux bridge on bond
      type: linux-bridge
      state: up
      bridge:
        port:
        - name: bond10
...

11.2.6. 例: IP 管理

以下の設定スニペットの例は、さまざまな IP 管理方法を示しています。

これらの例では、ethernet インターフェイスタイプを使用して、ポリシー設定に関連するコンテキストを表示しつつ、サンプルを単純化します。これらの IP 管理のサンプルは、他のインターフェイスタイプでも使用できます。

11.2.6.1. 静的

以下のスニペットは、イーサネットインターフェイスで IP アドレスを静的に設定します。

...
    interfaces:
    - name: eth1
      description: static IP on eth1
      type: ethernet
      state: up
      ipv4:
        address:
        - ip: 192.168.122.250 1
          prefix-length: 24
        enabled: true
...
1
この値を、インターフェイスの静的 IP アドレスに置き換えます。
11.2.6.2. IP アドレスなし

以下のスニペットでは、インターフェイスに IP アドレスがないことを確認できます。

...
    interfaces:
    - name: eth1
      description: No IP on eth1
      type: ethernet
      state: up
      ipv4:
        enabled: false
...
11.2.6.3. 動的ホストの設定

以下のスニペットは、動的 IP アドレス、ゲートウェイアドレス、および DNS を使用するイーサネットインターフェイスを設定します。

...
    interfaces:
    - name: eth1
      description: DHCP on eth1
      type: ethernet
      state: up
      ipv4:
        dhcp: true
        enabled: true
...

以下のスニペットは、動的 IP アドレスを使用しますが、動的ゲートウェイアドレスまたは DNS を使用しないイーサネットインターフェイスを設定します。

...
    interfaces:
    - name: eth1
      description: DHCP without gateway or DNS on eth1
      type: ethernet
      state: up
      ipv4:
        dhcp: true
        auto-gateway: false
        auto-dns: false
        enabled: true
...
11.2.6.4. DNS

以下のスニペットは、ホストに DNS 設定を設定します。

...
    interfaces:
       ...
    dns-resolver:
      config:
        search:
        - example.com
        - example.org
        server:
        - 8.8.8.8
...
11.2.6.5. 静的ルーティング

以下のスニペットは、インターフェイス eth1 に静的ルートおよび静的 IP を設定します。

...
    interfaces:
    - name: eth1
      description: Static routing on eth1
      type: ethernet
      state: up
      ipv4:
        address:
        - ip: 192.0.2.251 1
          prefix-length: 24
        enabled: true
    routes:
      config:
      - destination: 198.51.100.0/24
        metric: 150
        next-hop-address: 192.0.2.1 2
        next-hop-interface: eth1
        table-id: 254
...
1
イーサネットインターフェイスの静的 IP アドレス。
2
ノードトラフィックのネクストホップアドレス。これは、イーサネットインターフェイスに設定される IP アドレスと同じサブネットにある必要があります。

11.3. ノードのネットワーク設定のトラブルシューティング

ノードのネットワーク設定で問題が発生した場合には、ポリシーが自動的にロールバックされ、enactment (実行) レポートは失敗します。これには、以下のような問題が含まれます。

  • ホストで設定を適用できません。
  • ホストはデフォルトゲートウェイへの接続を失います。
  • ホストは API サーバーへの接続を失います。

11.3.1. 正確でないノードネットワーク設定のポリシー設定のトラブルシューティング

ノードネットワーク設定ポリシーを適用し、クラスター全体でノードのネットワーク設定への変更を適用することができます。正確でない設定を適用する場合、以下の例を使用して、失敗したノードネットワークポリシーのトラブルシューティングと修正を行うことができます。

この例では、Linux ブリッジポリシーは、3 つのコントロールプレーンノード (マスター) と 3 つのコンピュート (ワーカー) ノードを持つクラスターのサンプルに適用されます。ポリシーは正しくないインターフェイスを参照するために、適用することができません。エラーを確認するには、利用可能な NMState リソースを調べます。その後に、正しい設定でポリシーを更新できます。

手順

  1. ポリシーを作成し、これをクラスターに適用します。以下の例では、ens01 インターフェイスに単純なブリッジを作成します。

    apiVersion: nmstate.io/v1beta1
    kind: NodeNetworkConfigurationPolicy
    metadata:
      name: ens01-bridge-testfail
    spec:
      desiredState:
        interfaces:
          - name: br1
            description: Linux bridge with the wrong port
            type: linux-bridge
            state: up
            ipv4:
              dhcp: true
              enabled: true
            bridge:
              options:
                stp:
                  enabled: false
              port:
                - name: ens01
    $ oc apply -f ens01-bridge-testfail.yaml

    出力例

    nodenetworkconfigurationpolicy.nmstate.io/ens01-bridge-testfail created

  2. 以下のコマンドを実行してポリシーのステータスを確認します。

    $ oc get nncp

    この出力は、ポリシーが失敗したことを示しています。

    出力例

    NAME                    STATUS
    ens01-bridge-testfail   FailedToConfigure

    ただし、ポリシーのステータスのみでは、すべてのノードで失敗したか、またはノードのサブセットで失敗したかを確認することはできません。

  3. ノードのネットワーク設定の enactment (実行) を一覧表示し、ポリシーがいずれかのノードで成功したかどうかを確認します。このポリシーがノードのサブセットに対してのみ失敗した場合は、問題が特定のノード設定にあることが示唆されます。このポリシーがすべてのノードで失敗した場合には、問題はポリシーに関連するものであることが示唆されます。

    $ oc get nnce

    この出力は、ポリシーがすべてのノードで失敗したことを示しています。

    出力例

    NAME                                   STATUS
    control-plane-1.ens01-bridge-testfail        FailedToConfigure
    control-plane-2.ens01-bridge-testfail        FailedToConfigure
    control-plane-3.ens01-bridge-testfail        FailedToConfigure
    compute-1.ens01-bridge-testfail              FailedToConfigure
    compute-2.ens01-bridge-testfail              FailedToConfigure
    compute-3.ens01-bridge-testfail              FailedToConfigure

  4. 失敗した enactment (実行) のいずれかを表示し、トレースバックを確認します。以下のコマンドは、出力ツール jsonpath を使用して出力をフィルターします。

    $ oc get nnce compute-1.ens01-bridge-testfail -o jsonpath='{.status.conditions[?(@.type=="Failing")].message}'

    このコマンドは、簡潔にするために編集されている大きなトレースバックを返します。

    出力例

    error reconciling NodeNetworkConfigurationPolicy at desired state apply: , failed to execute nmstatectl set --no-commit --timeout 480: 'exit status 1' ''
    ...
    libnmstate.error.NmstateVerificationError:
    desired
    =======
    ---
    name: br1
    type: linux-bridge
    state: up
    bridge:
      options:
        group-forward-mask: 0
        mac-ageing-time: 300
        multicast-snooping: true
        stp:
          enabled: false
          forward-delay: 15
          hello-time: 2
          max-age: 20
          priority: 32768
      port:
      - name: ens01
    description: Linux bridge with the wrong port
    ipv4:
      address: []
      auto-dns: true
      auto-gateway: true
      auto-routes: true
      dhcp: true
      enabled: true
    ipv6:
      enabled: false
    mac-address: 01-23-45-67-89-AB
    mtu: 1500
    
    current
    =======
    ---
    name: br1
    type: linux-bridge
    state: up
    bridge:
      options:
        group-forward-mask: 0
        mac-ageing-time: 300
        multicast-snooping: true
        stp:
          enabled: false
          forward-delay: 15
          hello-time: 2
          max-age: 20
          priority: 32768
      port: []
    description: Linux bridge with the wrong port
    ipv4:
      address: []
      auto-dns: true
      auto-gateway: true
      auto-routes: true
      dhcp: true
      enabled: true
    ipv6:
      enabled: false
    mac-address: 01-23-45-67-89-AB
    mtu: 1500
    
    difference
    ==========
    --- desired
    +++ current
    @@ -13,8 +13,7 @@
           hello-time: 2
           max-age: 20
           priority: 32768
    -  port:
    -  - name: ens01
    +  port: []
     description: Linux bridge with the wrong port
     ipv4:
       address: []
      line 651, in _assert_interfaces_equal\n    current_state.interfaces[ifname],\nlibnmstate.error.NmstateVerificationError:

    NmstateVerificationError は、desired ポリシー設定、ノード上のポリシーの current 設定、および一致しないパラメーターを強調表示する difference を一覧表示します。この例では、portdifference に組み込まれ、これは問題がポリシーのポート設定に関連するものであることを示唆します。

  5. ポリシーが適切に設定されていることを確認するには、NodeNetworkState オブジェクトを要求して、1 つまたはすべてのノードのネットワーク設定を表示します。以下のコマンドは、control-plane-1 ノードのネットワーク設定を返します。

    $ oc get nns control-plane-1 -o yaml

    出力は、ノード上のインターフェイス名は ens1 であるものの、失敗したポリシーが ens01 を誤って使用していることを示します。

    出力例

       - ipv4:
     ...
          name: ens1
          state: up
          type: ethernet

  6. 既存のポリシーを編集してエラーを修正します。

    $ oc edit nncp ens01-bridge-testfail
    ...
              port:
                - name: ens1

    ポリシーを保存して修正を適用します。

  7. ポリシーのステータスをチェックして、更新が正常に行われたことを確認します。

    $ oc get nncp

    出力例

    NAME                    STATUS
    ens01-bridge-testfail   SuccessfullyConfigured

更新されたポリシーは、クラスターのすべてのノードで正常に設定されました。

第12章 ロギング、イベント、およびモニターリング

12.1. 仮想マシンログの表示

12.1.1. 仮想マシンのログについて

ログは、OpenShift Container Platform ビルド、デプロイメント、および Pod について収集されます。OpenShift Virtualization では、仮想マシンのログは Web コンソールまたは CLI のいずれかで仮想マシンランチャー Pod から取得されます。

-f オプションは、リアルタイムでログ出力をフォローします。 これは進捗のモニターおよびエラーの確認に役立ちます。

ランチャー Pod の起動が失敗する場合、--previous オプションを使用して最後の試行時のログを確認します。

警告

ErrImagePull および ImagePullBackOff エラーは、誤ったデプロイメント設定または参照されるイメージに関する問題によって引き起こされる可能性があります。

12.1.2. CLI での仮想マシンログの表示

仮想マシンランチャー Pod から仮想マシンログを取得します。

手順

  • 以下のコマンドを使用します。

    $ oc logs <virt-launcher-name>

12.1.3. Web コンソールでの仮想マシンログの表示

関連付けられた仮想マシンランチャー Pod から仮想マシンログを取得します。

手順

  1. OpenShift Virtualization コンソールのサイドメニューから WorkloadsVirtualization をクリックします。
  2. Virtual Machines タブをクリックします。
  3. 仮想マシンを選択して、Virtual Machine Overview 画面を開きます。
  4. Details タブで、Pod セクションの virt-launcher-<name> Pod をクリックします。
  5. Logs をクリックします。

12.2. イベントの表示

12.2.1. 仮想マシンイベントについて

OpenShift Container Platform イベントは、namespace 内の重要なライフサイクル情報のレコードであり、リソースのスケジュール、作成、および削除に関する問題のモニターおよびトラブルシューティングに役立ちます。

OpenShift Virtualization は、仮想マシンおよび仮想マシンインスタンスについてのイベントを追加します。これらは Web コンソールまたは CLI のいずれかで表示できます。

OpenShift Container Platform クラスター内のシステムイベント情報の表示 も参照してください。

12.2.2. Web コンソールでの仮想マシンのイベントの表示

実行中の仮想マシンのストリームイベントは、Web コンソールの Virtual Machine Overview パネルから確認できます。

▮▮ ボタンはイベントストリームを一時停止します。
▶ ボタンは一時停止されたイベントストリームを継続します。

手順

  1. サイドメニューから WorkloadsVirtualization をクリックします。
  2. Virtual Machines タブをクリックします。
  3. 仮想マシンを選択して、Virtual Machine Overview 画面を開きます。
  4. Events をクリックして、仮想マシンのすべてのイベントを表示します。

12.2.3. CLI での namespace イベントの表示

OpenShift Container Platform クライアントを使用して namespace のイベントを取得します。

手順

  • namespace で、oc get コマンドを使用します。

    $ oc get events

12.2.4. CLI でのリソースイベントの表示

イベントはリソース説明に組み込むこともできます。 これは OpenShift Container Platform クライアントを使用して取得できます。

手順

  • namespace で、oc describe コマンドを使用します。以下の例は、仮想マシン、仮想マシンインスタンス、および仮想マシンの virt-launcher Pod のイベント取得する方法を示しています。

    $ oc describe vm <vm>
    $ oc describe vmi <vmi>
    $ oc describe pod virt-launcher-<name>

12.3. イベントおよび状態を使用したデータボリュームの診断

oc describe コマンドを使用してデータボリュームの問題を分析し、解決できるようにします。

12.3.1. 状態およびイベントについて

コマンドで生成される Conditions および Events セクションの出力を検査してデータボリュームの問題を診断します。

$ oc describe dv <DataVolume>

表示される Conditions セクションには、3 つの Types があります。

  • Bound
  • running
  • Ready

Events セクションでは、以下の追加情報を提供します。

  • イベントの Type
  • ロギングの Reason
  • イベントの Source
  • 追加の診断情報が含まれる Message

oc describe からの出力には常に Events が含まれるとは限りません。

イベントは StatusReason、または Message のいずれかの変更時に生成されます。状態およびイベントはどちらもデータボリュームの状態の変更に対応します。

たとえば、インポート操作中に URL のスペルを誤ると、インポートにより 404 メッセージが生成されます。メッセージの変更により、理由と共にイベントが生成されます。Conditions セクションの出力も更新されます。

12.3.2. 状態およびイベントを使用したデータボリュームの分析

describe コマンドで生成される Conditions セクションおよび Events セクションを検査することにより、永続ボリューム要求 (PVC) に関連してデータボリュームの状態を判別します。また、操作がアクティブに実行されているか、または完了しているかどうかを判断します。また、データボリュームのステータスについての特定の詳細、およびどのように現在の状態になったかについての情報を提供するメッセージを受信する可能性があります。

状態の組み合わせは多数あります。それぞれは一意のコンテキストで評価される必要があります。

各種の組み合わせの例を以下に示します。

  • Bound: この例では正常にバインドされた PVC が表示されます。

    TypeBound であるため、StatusTrue になります。PVC がバインドされていない場合、StatusFalse になります。

    PVC がバインドされると、PVC がバインドされていることを示すイベントが生成されます。この場合、ReasonBound で、StatusTrue です。Message はデータボリュームを所有する PVC を示します。

    Events セクションの Message では、PVC がバインドされている期間 (Age) およびどのリソース (From) によってバインドされているか、datavolume-controller に関する詳細が提供されます。

    出力例

    Status:
    	Conditions:
    		Last Heart Beat Time:  2020-07-15T03:58:24Z
    		Last Transition Time:  2020-07-15T03:58:24Z
    		Message:               PVC win10-rootdisk Bound
    		Reason:                Bound
    		Status:                True
    		Type:                  Bound
    
    	Events:
    		Type     Reason     Age    From                   Message
    		----     ------     ----   ----                   -------
    		Normal   Bound      24s    datavolume-controller  PVC example-dv Bound

  • Running: この場合、TypeRunning であり、StatusFalse であることに注意してください。これは、操作の失敗の原因となったイベントが発生したことを示しています。ステータスを True から False に変更します。

    ただし、ReasonCompleted であり、Message フィールドには Import Complete が表示されることに注意してください。

    Events セクションには、Reason および Message に失敗した操作に関する追加のトラブルシューティング情報が含まれます。この例では、Events セクションの最初の Warning に一覧表示される Message に、404 によって接続できないことが示唆されます。

    この情報から、インポート操作が実行されており、データボリュームにアクセスしようとしている他の操作に対して競合が生じることを想定できます。

    出力例

    Status:
    	 Conditions:
    		 Last Heart Beat Time:  2020-07-15T04:31:39Z
    		 Last Transition Time:  2020-07-15T04:31:39Z
    		 Message:               Import Complete
    		 Reason:                Completed
    		 Status:                False
    		 Type:                  Running
    
    	Events:
    		Type     Reason           Age                From                   Message
    		----     ------           ----               ----                   -------
    		Warning  Error            12s (x2 over 14s)  datavolume-controller  Unable to connect
    		to http data source: expected status code 200, got 404. Status: 404 Not Found

  • Ready: TypeReady であり、StatusTrue の場合、以下の例のようにデータボリュームは使用可能な状態になります。データボリュームが使用可能な状態にない場合、StatusFalse になります。

    出力例

    Status:
    	 Conditions:
    		 Last Heart Beat Time: 2020-07-15T04:31:39Z
    		 Last Transition Time:  2020-07-15T04:31:39Z
    		 Status:                True
    		 Type:                  Ready

12.4. 仮想マシンのワークロードに関する情報の表示

OpenShift Container Platform Web コンソールで Virtual Machines ダッシュボードを使用して、仮想マシンについての概要を表示できます。

12.4.1. Virtual Machines ダッシュボードについて

OpenShift Container Platform Web コンソールの WorkloadsVirtualization ページに移動して、仮想マシンにアクセスします。WorkloadsVirtualization ページには、以下の 2 つのタブが含まれます。

  • 仮想マシン
  • 仮想マシンテンプレート

以下のカードは、それぞれの仮想マシンについて説明しています。

  • Details: 以下を含む、仮想マシンについての識別情報を提供します。

    • 名前
    • namespace
    • 作成日
    • ノード名
    • IP アドレス
  • Inventory: 以下を含む、仮想マシンのリソースを一覧表示します。

    • ネットワークインターフェイスコントローラー (NIC)
    • ディスク
  • Status には、以下が含まれます。

    • 仮想マシンの現在の状態
    • QEMU ゲストエージェントが仮想マシンにインストールされているかどうかを示す注記
  • Utilization: 以下の使用状況についてのデータを表示するチャートが含まれます。

    • CPU
    • メモリー
    • Filesystem
    • ネットワーク転送
注記

ドロップダウンリストを使用して、使用状況データの期間を選択します。選択できるオプションは、1 Hour6 Hours、および 24 Hours です。

  • Events: 過去 1 時間における仮想マシンのアクティビティーについてのメッセージを一覧表示します。追加のイベントを表示するには、View all をクリックします。

12.5. 仮想マシンの正常性のモニターリング

仮想マシンインスタンス (VMI) は、接続の損失、デッドロック、または外部の依存関係に関する問題など、一時的な問題が原因で正常でなくなることがあります。ヘルスチェックは、readiness および liveness プローブの組み合わせを使用して VMI で診断を定期的に実行します。

12.5.1. readiness および liveness プローブについて

readiness および liveness プローブを使用して、正常でない仮想マシンインスタンス (VMI) を検出して処理します。VMI の仕様に 1 つ以上のプローブを追加して、トラフィックが準備状態にない VMI に到達せず、VMI が応答不能になると新規インスタンスが作成されるようにすることができます。

readiness プローブ は、VMI がサービス要求を受け入れることができるかどうかを判別します。プローブに失敗すると、VMI は準備状態になるまで、利用可能なエンドポイントの一覧から削除されます。

liveness プローブは、VMI が応答しているかどうかを判断します。プローブに失敗すると、VMI が削除され、新規インスタンスが作成されて応答性を復元します。

VirtualMachineInstance オブジェクトの spec.readinessProbespec.livenessProbe フィールドを設定して、readiness および liveness プローブを設定できます。これらのフィールドは、以下のテストをサポートします。

HTTP GET
プローブは Web フックを使用して VMI の正常性を判別します。このテストは、HTTP の応答コードが 200 から 399 までの値の場合に正常と見なされます。完全に初期化されている場合に、HTTP ステータスコードを返すアプリケーションで HTTP GET テストを使用できます。
TCP ソケット
プローブは、VMI に対してソケットを開くことを試行します。VMI はプローブで接続を確立できる場合にのみ正常であるとみなされます。TCP ソケットテストは、初期化が完了するまでリスニングを開始しないアプリケーションで使用できます。

12.5.2. HTTP readiness プローブの定義

仮想マシンインスタンス (VMI) 設定の spec.readinessProbe.httpGet フィールドを設定して HTTP readiness プローブを定義します。

手順

  1. VMI 設定ファイルに readiness プローブの詳細を追加します。

    HTTP GET テストを使用した readiness プローブの例

    # ...
    spec:
      readinessProbe:
        httpGet: 1
          port: 1500 2
          path: /healthz 3
          httpHeaders:
          - name: Custom-Header
            value: Awesome
        initialDelaySeconds: 120 4
        periodSeconds: 20 5
        timeoutSeconds: 10 6
        failureThreshold: 3 7
        successThreshold: 3 8
    # ...

    1
    VMI への接続に使用する HTTP GET 要求。
    2
    プローブがクエリーする VMI のポート。上記の例では、プローブはポート 1500 をクエリーします。
    3
    HTTP サーバーでアクセスするパス。上記の例では、サーバーの /healthz パスのハンドラーが成功コードを返す場合に、VMI は正常であるとみなされます。ハンドラーが失敗コードを返すと、VMI は利用可能なエンドポイントの一覧から削除されます。
    4
    VMI が起動してから readiness プローブが開始されるまでの時間 (秒単位)。
    5
    プローブの実行間の遅延 (秒単位)。デフォルトの遅延は 10 秒です。この値は timeoutSeconds よりも大きくなければなりません。
    6
    プローブがタイムアウトし、VMI が失敗したと想定されてから非アクティブになるまでの時間 (秒数)。デフォルト値は 1 です。この値は periodSeconds 未満である必要があります。
    7
    プローブが失敗できる回数。デフォルトは 3 です。指定された試行回数になると、Pod には Unready というマークが付けられます。
    8
    成功とみなされるまでにプローブが失敗後に成功を報告する必要のある回数。デフォルトでは 1 回です。
  2. 以下のコマンドを実行して VMI を作成します。

    $ oc create -f <file_name>.yaml

12.5.3. TCP readiness プローブの定義

仮想マシンインスタンス (VMI) 設定の spec.readinessProbe.tcpSocket フィールドを設定して TCP readiness プローブを定義します。

手順

  1. TCP readiness プローブの詳細を VMI 設定ファイルに追加します。

    TCP ソケットテストを含む readiness プローブの例

    ...
    spec:
      readinessProbe:
        initialDelaySeconds: 120 1
        periodSeconds: 20 2
        tcpSocket: 3
          port: 1500 4
        timeoutSeconds: 10 5
    ...

    1
    VMI が起動してから readiness プローブが開始されるまでの時間 (秒単位)。
    2
    プローブの実行間の遅延 (秒単位)。デフォルトの遅延は 10 秒です。この値は timeoutSeconds よりも大きくなければなりません。
    3
    実行する TCP アクション。
    4
    プローブがクエリーする VMI のポート。
    5
    プローブがタイムアウトし、VMI が失敗したと想定されてから非アクティブになるまでの時間 (秒数)。デフォルト値は 1 です。この値は periodSeconds 未満である必要があります。
  2. 以下のコマンドを実行して VMI を作成します。

    $ oc create -f <file_name>.yaml

12.5.4. HTTP liveness プローブの定義

仮想マシンインスタンス (VMI) 設定の spec.livenessProbe.httpGet フィールドを設定して HTTP liveness プローブを定義します。readiness プローブと同様に、liveness プローブの HTTP および TCP テストの両方を定義できます。この手順では、HTTP GET テストを使用して liveness プローブのサンプルを設定します。

手順

  1. HTTP liveness プローブの詳細を VMI 設定ファイルに追加します。

    HTTP GET テストを使用した liveness プローブの例

    # ...
    spec:
      livenessProbe:
        initialDelaySeconds: 120 1
        periodSeconds: 20 2
        httpGet: 3
          port: 1500 4
          path: /healthz 5
          httpHeaders:
          - name: Custom-Header
            value: Awesome
        timeoutSeconds: 10 6
    # ...

    1
    VMI が起動してから liveness プローブが開始されるまでの時間 (秒単位)。
    2
    プローブの実行間の遅延 (秒単位)。デフォルトの遅延は 10 秒です。この値は timeoutSeconds よりも大きくなければなりません。
    3
    VMI への接続に使用する HTTP GET 要求。
    4
    プローブがクエリーする VMI のポート。上記の例では、プローブはポート 1500 をクエリーします。VMI は、cloud-init 経由でポート 1500 に最小限の HTTP サーバーをインストールし、実行します。
    5
    HTTP サーバーでアクセスするパス。上記の例では、サーバーの /healthz パスのハンドラーが成功コードを返す場合に、VMI は正常であるとみなされます。ハンドラーが失敗コードを返すと、VMI が削除され、新規インスタンスが作成されます。
    6
    プローブがタイムアウトし、VMI が失敗したと想定されてから非アクティブになるまでの時間 (秒数)。デフォルト値は 1 です。この値は periodSeconds 未満である必要があります。
  2. 以下のコマンドを実行して VMI を作成します。

    $ oc create -f <file_name>.yaml

12.5.5. テンプレート: ヘルスチェックを定義するための仮想マシンインスタンスの設定ファイル

apiVersion: kubevirt.io/v1alpha3
kind: VirtualMachineInstance
metadata:
  labels:
    special: vmi-fedora
  name: vmi-fedora
spec:
  domain:
    devices:
      disks:
      - disk:
          bus: virtio
        name: containerdisk
      - disk:
          bus: virtio
        name: cloudinitdisk
    resources:
      requests:
        memory: 1024M
  readinessProbe:
    httpGet:
      port: 1500
    initialDelaySeconds: 120
    periodSeconds: 20
    timeoutSeconds: 10
    failureThreshold: 3
    successThreshold: 3
  terminationGracePeriodSeconds: 0
  volumes:
  - name: containerdisk
    containerDisk:
      image: kubevirt/fedora-cloud-registry-disk-demo
  - cloudInitNoCloud:
      userData: |-
        #cloud-config
        password: fedora
        chpasswd: { expire: False }
        bootcmd:
          - setenforce 0
          - dnf install -y nmap-ncat
          - systemd-run --unit=httpserver nc -klp 1500 -e '/usr/bin/echo -e HTTP/1.1 200 OK\\n\\nHello World!'
    name: cloudinitdisk

12.5.6. 関連情報

12.6. OpenShift Container Platform Dashboard を使用したクラスター情報の取得

OpenShift Container Platform Web コンソールから Home > Dashboards > Overview をクリックしてクラスターについてのハイレベルな情報をキャプチャーする OpenShift Container Platform ダッシュボードにアクセスします。

OpenShift Container Platform ダッシュボードは、個別のダッシュボード カード でキャプチャーされるさまざまなクラスター情報を提供します。

12.6.1. OpenShift Container Platform ダッシュボードページについて

OpenShift Container Platform ダッシュボードは以下のカードで設定されます。

  • Details は、クラスターの詳細情報の概要を表示します。

    ステータスには、okerrorwarningin progress、および unknown が含まれます。リソースでは、カスタムのステータス名を追加できます。

    • クラスター
    • プロバイダー
    • バージョン
  • Cluster Inventory は、リソースの数および関連付けられたステータスの詳細を表示します。これは、問題の解決に介入が必要な場合に役立ちます。以下についての情報が含まれます。

    • ノード数
    • Pod 数
    • 永続ストレージボリューム要求
    • 仮想マシン (OpenShift Virtualization がインストールされている場合に利用可能)
    • クラスター内のベアメタルホスト。これらはステータス別に一覧表示されます (metal3 環境でのみ利用可能)。
  • Cluster Health では、関連するアラートおよび説明を含む、クラスターの現在の健全性についてのサマリーを表示します。OpenShift Virtualization がインストールされている場合、OpenShift Virtualization の健全性についても全体的に診断されます。複数のサブシステムが存在する場合は、See All をクリックして、各サブシステムのステータスを表示します。
  • Cluster Capacity チャートは、管理者が追加リソースがクラスターで必要になるタイミングを把握するのに役立ちます。このチャートには、現在の消費量を表示する内側の円が含まれ、外側の円には、以下の情報を含む、リソースに対して設定されたしきい値が表示されます。

    • CPU 時間
    • メモリー割り当て
    • 消費されるストレージ
    • 消費されるネットワークリソース
  • Cluster Utilization は指定された期間における各種リソースの容量を表示します。これは、管理者がリソースの高い消費量の規模および頻度を理解するのに役立ちます。
  • Events は、Pod の作成または別のホストへの仮想マシンの移行などのクラスター内の最近のアクティビティーに関連したメッセージを一覧表示します。
  • Top Consumers は、管理者がクラスターリソースが消費される状況を把握するのに役立ちます。リソースをクリックし、指定されたクラスターリソース (CPU、メモリー、またはストレージ) の最大量を消費する Pod およびノードを一覧表示する詳細ページに切り替えます。

12.7. OpenShift Container Platform クラスターモニターリング、ロギング、および Telemetry

OpenShift Container Platform は、クラスターレベルでモニターするための各種のリソースを提供します。

12.7.1. OpenShift Container Platform モニターリングについて

OpenShift Container Platform には、コアプラットフォームコンポーネントのモニターリング を提供する事前に設定され、事前にインストールされた自己更新型のモニターリングスタックが含まれます。OpenShift Container Platform は、追加設定が不要のモニターリングのベストプラクティスを提供します。クラスター管理者にクラスターの問題について即時に通知するアラートのセットがデフォルトで含まれます。OpenShift Container Platform Web コンソールのデフォルトのダッシュボードには、クラスターの状態をすぐに理解できるようにするクラスターのメトリクスの視覚的な表示が含まれます。

OpenShift Container Platform 4.7 のインストール後に、クラスター管理者はオプションで ユーザー定義プロジェクトのモニターリング を有効にできます。この機能を使用することで、クラスター管理者、開発者、および他のユーザーは、サービスと Pod を独自のプロジェクトでモニターする方法を指定できます。次に、OpenShift Container Platform Web コンソールでメトリクスのクエリー、ダッシュボードの確認、および独自のプロジェクトのアラートルールおよびサイレンスを管理できます。

注記

クラスター管理者は、開発者およびその他のユーザーに、独自のプロジェクトをモニターするパーミッションを付与できます。事前に定義されたモニターリングロールのいずれかを割り当てると、特権が付与されます。

12.7.2. OpenShift Logging コンポーネントについて

OpenShift ロギングコンポーネントには、すべてのノードおよびコンテナーログを収集し、それらをログストアに書き込む OpenShift Container Platform クラスターの各ノードにデプロイされるコレクターが含まれます。一元化された Web UI を使用し、集計されたデータを使用して高度な可視化 (visualization) およびダッシュボードを作成できます。

クラスターロギングの主要コンポーネントは以下の通りです。

  • collection: これは、クラスターからログを収集し、それらをフォーマットし、ログストアに転送するコンポーネントです。現在の実装は Fluentd です。
  • log store: これはログが保存される場所です。デフォルトの実装は Elasticsearch です。デフォルトの Elasticsearch ログストアを使用するか、またはログを外部ログストアに転送することができます。デフォルトのログストアは、短期の保存について最適化され、テストされています。
  • visualization: これは、ログ、グラフ、チャートなどを表示するために使用される UI コンポーネントです。現在の実装は Kibana です。

OpenShift Logging の詳細は、OpenShift Logging のドキュメント を参照してください。

12.7.3. Telemetry について

Telemetry は厳選されたクラスターモニターリングメトリクスのサブセットを Red Hat に送信します。Telemeter Client はメトリクス値を 4 分 30 秒ごとにフェッチし、データを Red Hat にアップロードします。これらのメトリクスについては、本書で説明しています。

このデータのストリームは、Red Hat によってリアルタイムでクラスターをモニターし、お客様に影響を与える問題に随時対応するために使用されます。またこれにより、Red Hat がサービスへの影響を最小限に抑えつつつアップグレードエクスペリエンスの継続的な改善に向けた OpenShift Container Platform のアップグレードの展開を可能にします。

このデバッグ情報は、サポートケースでレポートされるデータへのアクセスと同じ制限が適用された状態で Red Hat サポートおよびエンジニアリングチームが利用できます。接続クラスターのすべての情報は、OpenShift Container Platform をより使用しやすく、より直感的に使用できるようにするために Red Hat によって使用されます。

12.7.3.1. Telemetry で収集される情報

以下の情報は、Telemetry によって収集されます。

  • インストール時に生成される一意でランダムな識別子
  • OpenShift Container Platform クラスターのバージョン情報、および更新バージョンの可用性を特定するために使用されるインストールの更新の詳細を含むバージョン情報
  • クラスターごとに利用可能な更新の数、更新に使用されるチャネルおよびイメージリポジトリー、更新の進捗情報、および更新で発生するエラーの数などの更新情報
  • OpenShift Container Platform がデプロイされているプラットフォームの名前およびデータセンターの場所
  • CPU コアの数およびそれぞれに使用される RAM の容量を含む、クラスター、マシンタイプ、およびマシンについてのサイジング情報
  • クラスター内での実行中の仮想マシンインスタンスの数
  • etcd メンバーの数および etcd クラスターに保存されるオブジェクトの数
  • クラスターにインストールされている OpenShift Container Platform フレームワークコンポーネントおよびそれらの状態とステータス
  • コンポーネント、機能および拡張機能に関する使用状況の情報
  • テクノロジープレビューおよびサポート対象外の設定に関する使用状況の詳細
  • 動作が低下したソフトウェアに関する情報
  • NotReady とマークされているノードについての情報
  • 動作が低下した Operator の関連オブジェクトとして一覧表示されるすべての namespace のイベント
  • Red Hat サポートがお客様にとって有用なサポートを提供するのに役立つ設定の詳細。これには、クラウドインフラストラクチャーレベルのノード設定、ホスト名、IP アドレス、Kubernetes Pod 名、namespace、およびサービスが含まれます。
  • 証明書の有効性についての情報

Telemetry は、ユーザー名やパスワードなどの識別情報を収集しません。Red Hat は、個人情報を収集することを意図していません。Red Hat は、個人情報が誤って受信したことを検知した場合に、該当情報を削除します。Telemetry データが個人データを設定する場合において、Red Hat のプライバシー方針については、Red Hat Privacy Statement を参照してください。

12.7.4. CLI のトラブルシューティングおよびデバッグコマンド

oc クライアントのトラブルシューティングおよびデバッグコマンドの一覧については、OpenShift Container Platform CLI ツール のドキュメントを参照してください。

12.8. Red Hat サポート用のデータ収集

Red Hat サポートに サポートケース を送信する際、以下のツールを使用して OpenShift Container Platform および OpenShift Virtualization のデバッグ情報を提供すると役立ちます。

must-gather ツール
must-gather ツールは、リソース定義やサービスログなどの診断情報を収集します。
Prometheus
Prometheus は Time Series を使用するデータベースであり、メトリクスのルール評価エンジンです。Prometheus は処理のためにアラートを Alertmanager に送信します。
Alertmanager
Alertmanager サービスは、Prometheus から送信されるアラートを処理します。また、Alertmanager は外部の通知システムにアラートを送信します。

12.8.1. 環境に関するデータの収集

環境に関するデータを収集すると、根本原因の分析および特定に必要な時間が最小限に抑えられます。

前提条件

  • Prometheus メトリクスデータの保持期間を最低 7 日間に設定します。
  • Alertmanager を設定して、関連するアラートを取得して、それらを専用のメールボックスに送信して、クラスター外で表示および保持できるようにします。
  • 影響を受けるノードおよび仮想マシンの正確な数を記録します。

手順

  1. デフォルトの must-gather イメージを使用して、クラスターの must-gather データを収集します。
  2. 必要に応じて、Red Hat OpenShift Container Storage の must-gather データを収集します。
  3. OpenShift Virtualization の must-gather イメージを使用して、OpenShift Virtualization の must-gather データを収集します。
  4. クラスターの Prometheus メトリクスを収集します。
12.8.1.1. 関連情報

12.8.2. 仮想マシンに関するデータの収集

仮想マシン (VM) の誤動作に関するデータを収集することで、根本原因の分析および特定に必要な時間を最小限に抑えることができます。

前提条件

  • Windows 仮想マシン:

    • Red Hat サポート用に Windows パッチ更新の詳細を記録します。
    • VirtIO ドライバーの最新バージョンをインストールします。VirtIO ドライバーには、QEMU ゲストエージェントが含まれています。
    • リモートデスクトッププロトコル (RDP) が有効になっている場合は、RDP を使用して仮想マシンに接続し、接続ソフトウェアに問題があるかどうかを判断します。

手順

  1. 誤動作している仮想マシンに関する詳細な must-gather を収集します。
  2. 仮想マシンを再起動する前に、クラッシュした仮想マシンのスクリーンショットを収集します。
  3. 誤動作している仮想マシンに共通する要因を記録します。たとえば、仮想マシンには同じホストまたはネットワークがあります。
12.8.2.1. 関連情報

12.8.3. OpenShift Virtualization の must-gather ツールの使用

OpenShift Virtualization イメージで must-gather コマンドを実行することにより、OpenShift Virtualization リソースに関するデータを収集できます。

デフォルトのデータ収集には、次のリソースに関する情報が含まれています。

  • 子オブジェクトを含む OpenShift Virtualization Operator namespace
  • すべての OpenShift Virtualization カスタムリソース定義 (CRD)
  • 仮想マシンを含むすべての namespace
  • 基本的な仮想マシン定義

手順

  • 以下のコマンドを実行して、OpenShift Virtualization に関するデータを収集します。

    $ oc adm must-gather --image-stream=openshift/must-gather \
      --image=registry.redhat.io/container-native-virtualization/cnv-must-gather-rhel8:v{HCOVersion}
12.8.3.1. must-gather ツールオプション

次のオプションに対して、スクリプトおよび環境変数の組み合わせを指定できます。

  • namespace から詳細な仮想マシン (VM) 情報の収集する
  • 特定の仮想マシンに関する詳細情報の収集
  • イメージおよびイメージストリーム情報の収集
  • must-gather ツールが使用する並列プロセスの最大数の制限
12.8.3.1.1. パラメーター

環境変数

互換性のあるスクリプトの環境変数を指定できます。

NS=<namespace_name>
指定した namespace から virt-launcher Pod の詳細を含む仮想マシン情報を収集します。VirtualMachine および VirtualMachineInstance CR データはすべての namespace で収集されます。
VM=<vm_name>
特定の仮想マシンに関する詳細を収集します。このオプションを使用するには、NS 環境変数を使用して namespace も指定する必要があります。
PROS=<number_of_processes>

must-gather ツールが使用する並列処理の最大数を変更します。デフォルト値は 5 です。

重要

並列処理が多すぎると、パフォーマンスの問題が発生する可能性があります。並列処理の最大数を増やすことは推奨されません。

スクリプト

各スクリプトは、特定の環境変数の組み合わせとのみ互換性があります。

gather_vms_details
OpenShift Virtualization リソースに属する仮想マシンログファイル、仮想マシン定義、ならびに namespace (およびそれらのサブオブジェクト) を収集します。namespace または仮想マシンを指定せずにこのパラメーターを使用する場合、must-gather ツールはクラスター内のすべての仮想マシンについてこのデータを収集します。このスクリプトはすべての環境変数と互換性がありますが、VM 変数を使用する場合は namespace を指定する必要があります。
gather
デフォルトの must-gather スクリプトを使用します。すべての namespace からクラスターデータが収集され、基本的な仮想マシン情報のみが含まれます。このスクリプトは、PROS 変数とのみ互換性があります。
gather_images
イメージおよびイメージストリームのカスタムリソース情報を収集します。このスクリプトは、PROS 変数とのみ互換性があります。
12.8.3.1.2. 使用方法および例

環境変数はオプションです。スクリプトは、単独で実行することも、1 つ以上の互換性のある環境変数を使用して実行することもできます。

表12.1 互換性のあるパラメーター
スクリプト互換性のある環境変数

gather_vms_details

  • namespace の場合: NS=<namespace_name>
  • 仮想マシンの場合: VM=<vm_name> NS=<namespace_name>
  • PROS=<number_of_processes>

gather

  • PROS=<number_of_processes>

gather_images

  • PROS=<number_of_processes>

must-gather が収集するデータをカスタマイズするには、コマンドに二重ダッシュ (--) を追加し、その後にスペースと 1 つ以上の互換性のあるパラメーターを追加します。

構文

$ oc adm must-gather \
  --image=registry.redhat.io/container-native-virtualization/cnv-must-gather-rhel8:v2.6.10 \
  -- <environment_variable_1> <environment_variable_2> <script_name>

詳細な仮想マシン情報

次のコマンドは、mynamespace namespace にある my-vm 仮想マシンの詳細な仮想マシン情報を収集します。

$ oc adm must-gather \
  --image=registry.redhat.io/container-native-virtualization/cnv-must-gather-rhel8:v2.6.10 \
  -- NS=mynamespace VM=my-vm gather_vms_details 1
1
VM 環境変数を使用する場合、NS 環境変数は必須です。

3 つの並列プロセスに限定されたデフォルトのデータ収集

以下のコマンドは、最大 3 つの並列処理を使用して、デフォルトの must-gather 情報を収集します。

$ oc adm must-gather \
  --image=registry.redhat.io/container-native-virtualization/cnv-must-gather-rhel8:v2.6.10 \
  -- PROS=3 gather

イメージおよびイメージストリーム情報

以下のコマンドは、クラスターからイメージおよびイメージストリームの情報を収集します。

$ oc adm must-gather \
  --image=registry.redhat.io/container-native-virtualization/cnv-must-gather-rhel8:v2.6.10 \
  -- gather_images
12.8.3.2. 関連情報
Red Hat logoGithubRedditYoutubeTwitter

詳細情報

試用、購入および販売

コミュニティー

Red Hat ドキュメントについて

Red Hat をお使いのお客様が、信頼できるコンテンツが含まれている製品やサービスを活用することで、イノベーションを行い、目標を達成できるようにします。

多様性を受け入れるオープンソースの強化

Red Hat では、コード、ドキュメント、Web プロパティーにおける配慮に欠ける用語の置き換えに取り組んでいます。このような変更は、段階的に実施される予定です。詳細情報: Red Hat ブログ.

会社概要

Red Hat は、企業がコアとなるデータセンターからネットワークエッジに至るまで、各種プラットフォームや環境全体で作業を簡素化できるように、強化されたソリューションを提供しています。

© 2024 Red Hat, Inc.