日志记录
OpenShift Dedicated 的日志记录安装、使用和发行注记
摘要
第 1 章 发行注记
1.1. Logging 5.9
日志记录作为可安装的组件提供,它与 OpenShift Dedicated 核心不同。Red Hat OpenShift Container Platform 生命周期政策 概述了发行版本兼容性。
stable 频道只为日志记录的最新版本提供更新。要继续获得之前版本的更新,您必须将订阅频道改为 stable-x.y,其中 x.y
代表您安装的日志记录的主版本和次版本。例如,stable-5.7。
1.1.1. Logging 5.9.7
此发行版本包括 OpenShift Logging 程序错误修复 5.9.7。
1.1.1.1. 程序错误修复
-
在此次更新之前,当 Fluentd 用作收集器类型时,
clusterlogforwarder.spec.outputs.http.timeout
参数不会应用到 Fluentd 配置,从而导致 HTTP 超时被错误配置。在这个版本中,clusterlogforwarder.spec.outputs.http.timeout
参数会被正确应用,确保 Fluentd 遵循指定的超时,并根据用户的配置处理 HTTP 连接。(LOG-6125) -
在此次更新之前,在没有验证代理 URL 模式的情况下添加 TLS 部分,如果 URL 没有以
tls
开始,则 SSL 连接错误。在这个版本中,只有在代理 URL 以tls
开始时,才会添加 TLS 部分,以防止 SSL 连接错误。(LOG-6041)
1.1.1.2. CVE
有关红帽安全评级的详细信息,请查看 严重性评级。
1.1.2. Logging 5.9.6
此发行版本包括 OpenShift Logging 程序错误修复 5.9.6。
1.1.2.1. 程序错误修复
- 在此次更新之前,收集器部署会忽略 secret 更改,从而导致接收器拒绝日志。在这个版本中,当 secret 值有更改时,系统会推出新 pod,确保收集器重新加载更新的 secret。(LOG-5525)
-
在此次更新之前,向量无法正确解析包含单个美元符号(
$
)的字段值。在这个版本中,带有单个 $ 符号的字段值会自动改为两个$$
,确保 Vector 解析正确解析。(LOG-5602) -
在此次更新之前,丢弃过滤器无法处理非字符串值(如
.responseStatus.code: 403
)。在这个版本中,drop 过滤器可以与这些值正常工作。(LOG-5815) - 在此次更新之前,收集器使用默认设置来收集审计日志,而无需处理输出接收器的后端负载。在这个版本中,收集审计日志的过程已被改进,以更好地管理文件处理和日志读取效率。(LOG-5866)
-
在此次更新之前,在带有非 AMD64 架构(如 Azure Resource Manager (ARM)或 PowerPC)的集群中,
must-gather
工具会失败。在这个版本中,该工具会在运行时检测到集群架构,并使用独立于架构的路径和依赖项。检测允许must-gather
在 ARM 和 PowerPC 等平台上平稳运行。(LOG-5997) - 在此次更新之前,日志级别是使用不明确的结构化和无结构的关键字来设置的。在这个版本中,日志级别遵循以结构化关键字开始的明确记录的顺序。(LOG-6016)
-
在此次更新之前,多个未命名管道写入
ClusterLogForwarder
中的默认输出会导致验证错误,因为自动生成的名称。在这个版本中,管道名称会在不重复的情况下生成。(LOG-6033) -
在此次更新之前,收集器 Pod 没有
PreferredScheduling
注解。在这个版本中,PreferredScheduling
注解被添加到 collector daemonset 中。(LOG-6023)
1.1.2.2. CVE
1.1.3. Logging 5.9.5
此发行版本包括 OpenShift Logging 程序错误修复 5.9.5
1.1.3.1. 程序错误修复
- 在此次更新之前,LokiHost 资源状态中的重复条件会导致 Loki Operator 中的无效指标。在这个版本中,Operator 从状态中删除重复条件。(LOG-5855)
- 在此次更新之前,Loki Operator 在验证失败时丢弃日志事件时不会触发警报。在这个版本中,Loki Operator 包含一个新的警报定义,它会在 Loki 丢弃日志事件时触发警报。(LOG-5895)
- 在此次更新之前,Loki Operator 在 LokiStack Route 资源中覆盖用户注解,从而导致自定义丢弃。在这个版本中,Loki Operator 不再覆盖 Route 注解,从而解决了这个问题。(LOG-5945)
1.1.3.2. CVE
无。
1.1.4. Logging 5.9.4
此发行版本包括 OpenShift Logging 程序错误修复 5.9.4
1.1.4.1. 程序错误修复
- 在此次更新之前,错误格式化的超时配置会导致 OCP 插件崩溃。在这个版本中,验证可防止崩溃,并告知用户配置不正确。(LOG-5373)
-
在此次更新之前,带有标签的工作负载在规范化日志条目时会导致收集器中的错误。
在这个版本中,配置更改可确保收集器使用正确的语法。(LOG-5524)
- 在此次更新之前,存在一个问题会阻止选择不再存在的 pod,即使它们已经生成日志。在这个版本中,这个问题已被解决,允许选择此类 pod。(LOG-5697)
-
在此次更新之前,如果在没有
cloud-credentials-operator
的环境中注册CredentialRequest
规格,Loki Operator 会崩溃。在这个版本中,CredentialRequest
规格只在启用了cloud-credentials-operator
的环境中注册。(LOG-5701) - 在此次更新之前,日志记录 Operator 会监视并处理集群中的所有配置映射。在这个版本中,仪表板控制器只监视日志记录仪表板的配置映射。(LOG-5702)
-
在此次更新之前,
ClusterLogForwarder
在消息有效负载中引入了一个额外空间,它没有遵循RFC3164
规格。在这个版本中,额外的空间已被删除,从而解决了这个问题。(LOG-5707) -
在此次更新之前,删除
grafana-dashboard-cluster-logging
的 seeding 作为一个(LOG-5308)的一部分,会破坏新的 greenfield 部署,而无需仪表板。在这个版本中,Logging Operator 会在开始时看到仪表板,并继续更新它的更改。(LOG-5747) -
在此次更新之前,LokiStack 缺少 Volume API 的路由,从而导致以下错误:
404 not found
。在这个版本中,Lokial 会公开卷 API,从而解决了这个问题。(LOG-5749)
1.1.4.2. CVE
1.1.5. Logging 5.9.3
此发行版本包括 OpenShift Logging 程序错误修复 5.9.3
1.1.5.1. 程序错误修复
1.1.5.2. CVE
1.1.6. 日志记录 5.9.2
此发行版本包括 OpenShift Logging 程序错误修复 5.9.2
1.1.6.1. 程序错误修复
-
在此次更新之前,因为
ClusterLogForwarder
CR 中的配置不正确,对 Logging Operator 的更改会导致错误。因此,升级到日志记录会删除 daemonset 收集器。在这个版本中,日志记录 Operator 会重新创建收集器 daemonset,除非出现Not authorized to collect
错误。(LOG-4910) - 在此次更新之前,因为 Vector 日志收集器中的配置不正确,在有些情况下,轮转的基础架构日志文件会被发送到应用程序索引。在这个版本中,Vector 日志收集器配置可避免收集任何轮转的基础架构日志文件。(LOG-5156)
-
在此次更新之前,日志记录 Operator 不会监控
grafana-dashboard-cluster-logging
配置映射的更改。在这个版本中,日志记录 Operator 会监控ConfigMap
对象中的更改,确保系统保持同步并有效地响应配置映射修改。(LOG-5308) - 在此次更新之前,日志记录 Operator 的指标集合代码中的问题会导致它报告过时的遥测指标。在这个版本中,日志记录 Operator 不会报告过时的遥测指标。(LOG-5426)
-
在此更改前,Fluentd
out_http
插件会忽略no_proxy
环境变量。在这个版本中,Fluentd 对 ruby 的HTTP#start
方法进行了修改以接受no_proxy
环境变量。(LOG-5466)
1.1.6.2. CVE
1.1.7. 日志记录 5.9.1
此发行版本包括 OpenShift Logging 程序错误修复 5.9.1
1.1.7.1. 功能增强
1.1.7.2. 程序错误修复
- 在此次更新之前,LogQL 解析中的错误会从查询中排除一些行过滤器。在这个版本中,解析会包括所有行过滤器,同时保持原始查询保持不变。(LOG-5268)
-
在此次更新之前,没有定义的
pruneFilterSpec
的 prune 过滤器会导致 segfault。在这个版本中,如果修剪过滤器没有定义的puneFilterSpec
,会出现验证错误。(LOG-5322) -
在此次更新之前,没有定义的
dropTestsSpec
的 drop 过滤器会导致 segfault。在这个版本中,如果修剪过滤器没有定义的puneFilterSpec
,会出现验证错误。(LOG-5323) -
在此次更新之前,Loki Operator 不会验证存储 secret 中使用的 Amazon Simple Storage Service (S3)端点 URL 格式。在这个版本中,S3 端点 URL 会经过验证步骤,它反映了
LokiStack
的状态。(LOG-5397) -
在此次更新之前,审计日志记录中格式化的时间戳字段会导致 Red Hat OpenShift Logging Operator 日志中出现
WARN
信息。在这个版本中,重新映射转换可确保正确格式化 timestamp 字段。(LOG-4672) -
在此次更新之前,当验证
ClusterLogForwarder
资源名称和命名空间没有对应于正确的错误时,错误消息会抛出。在这个版本中,系统会检查同一命名空间中是否存在具有相同名称的ClusterLogForwarder
资源。如果没有,它对应于正确的错误。(LOG-5062) - 在此次更新之前,输出配置的验证功能需要一个 TLS URL,即使 Amazon CloudWatch 或 Google Cloud Logging 等服务,在设计不需要 URL。在这个版本中,在没有 URL 的服务的验证逻辑有所改进,错误消息会更为说明。(LOG-5307)
- 在此次更新之前,定义基础架构输入类型不会从集合中排除日志工作负载。在这个版本中,集合排除日志记录服务以避免反馈循环。(LOG-5309)
1.1.7.3. CVE
没有 CVE。
1.1.8. Logging 5.9.0
此发行版本包括 OpenShift Logging 程序错误修复 5.9.0
1.1.8.1. 删除通知
Logging 5.9 发行版本不包含 OpenShift Elasticsearch Operator 的更新版本。来自之前日志记录版本的 OpenShift Elasticsearch Operator 实例被支持,直到日志记录版本的 EOL 为止。您可以使用 Loki Operator 作为 OpenShift Elasticsearch Operator 的替代方案来管理默认日志存储。如需有关日志记录生命周期日期的更多信息,请参阅平台 Agnostic Operator。
1.1.8.2. 弃用通知
- 在 Logging 5.9 中,Kibana 已被弃用,计划在 Logging 6.0 中删除,该 6.0 应该与以后的 OpenShift Dedicated 版本一起提供。红帽将在当前发行生命周期中对这些组件提供关键及以上的 CVE 程序错误修复和支持,但这些组件将不再获得功能增强。由 Red Hat OpenShift Logging Operator 和 LokiStack 提供的基于 Vector 的收集器和 Loki Operator 提供的 LokiStack 是日志集合和存储的首选 Operator。我们鼓励所有用户使用 Vector 和 Loki 日志堆栈,因为这个组合会持续进一步进行改进。
-
在 Logging 5.9 中,Splunk 输出类型
的字段
选项没有实现,并现已弃用。它将在以后的发行版本中被删除。
1.1.8.3. 功能增强
1.1.8.3.1. 日志集合
-
此功能增强增加了使用工作负载的元数据根据其内容
drop
或prune
日志的功能。另外,它允许收集基础架构日志(如日志或容器日志)和审计日志(如kube api
或ovn
日志)仅收集单个源。(LOG-2155) - 此增强引入了一个新的远程日志接收器 (syslog 接收器)。您可以将其配置为通过网络公开端口,允许外部系统使用兼容工具(如 rsyslog)发送 syslog 日志。(LOG-3527)
-
在这个版本中,
ClusterLogForwarder
API 支持转发到 Azure Monitor 日志,为用户提供更好的监控功能。此功能可帮助用户维护最佳的系统性能,并简化 Azure Monitor 中的日志分析过程,从而加快问题解决并提高操作效率。(LOG-4605) -
此功能增强通过将收集器部署为带有两个副本的部署来提高收集器资源利用率。当
ClusterLogForwarder
自定义资源 (CR) 中定义的唯一输入源是接收器输入而不是在所有节点上使用守护进程集时,会出现这种情况。此外,以这种方式部署的收集器不会挂载主机文件系统。要使用此增强,您需要使用logging.openshift.io/dev-preview-enable-collector-as-deployment
注解来注解ClusterLogForwarder
CR。(LOG-4779) - 此功能增强引入了在所有支持的输出中自定义租户配置的功能,以逻辑方式促进日志记录的组织。但是,它不允许自定义租户配置来记录受管存储。(LOG-4843)
-
在这个版本中,
ClusterLogForwarder
CR 使用一个或多个基础架构命名空间(如default
、openshift*
或kube*
)指定应用程序输入,现在需要一个具有collect-infrastructure-logs
角色的服务帐户。(LOG-4943) -
此功能增强引入了调整一些输出设置(如压缩、重试持续时间和最大有效负载)的功能,以匹配接收器的特性。此外,此功能还包括一种交付模式,允许管理员在吞吐量和日志持久性之间进行选择。例如,
AtLeastOnce
选项配置收集日志的最小磁盘缓冲区,以便收集器重启后可以发送这些日志。(LOG-5026) - 此功能增强添加了三个新的 Prometheus 警报,警告用户有关 Elasticsearch、Fluentd 和 Kibana 弃用的信息。(LOG-5055)
1.1.8.3.2. 日志存储
- LokiStack 中的这个增强通过使用新的 V13 对象存储格式并默认启用自动流分片功能,改进了对 OTEL 的支持。这也可让收集器为将来的改进和配置准备。(LOG-4538)
-
此功能增强引进了对使用 Azure 和 AWS 日志存储的短期令牌工作负载身份联合的支持,启用了 STS 的 OpenShift Dedicated 4.14 及更新的版本。本地存储需要在 LokiStack CR 的
spec.storage.secret
下添加CredentialMode: static
注解。(LOG-4540) - 在这个版本中,Azure 存储 secret 的验证被扩展,为某些错误状况提供早期警告。(LOG-4571)
- 在这个版本中,Loki 添加了对 GCP 工作负载身份联邦机制的上游和下游支持。这允许对对应对象存储服务进行身份验证和授权访问。(LOG-4754)
1.1.8.4. 程序错误修复
-
在此次更新之前,日志记录 must-gather 无法收集启用了 FIPS 的集群中的任何日志。在这个版本中,
cluster-logging-rhel9-operator
中提供了一个新的oc
客户端,must-gather 可以在 FIPS 集群中正常工作。(LOG-4403) - 在此次更新之前,LokiStack 规则器 pod 无法将 IPv6 pod IP 格式化为用于跨 pod 通信的 HTTP URL。此问题导致通过与 Prometheus 兼容的 API 查询规则和警报失败。在这个版本中,LokiStack 规则器 pod 将 IPv6 pod IP 封装在方括号中,从而解决了这个问题。现在,通过与 Prometheus 兼容的 API 查询规则和警报的工作方式就像在 IPv4 环境中一样。(LOG-4709)
- 在这个版本中,日志记录 must-gather 的 YAML 内容在一行中导出,使其不可读取。在这个版本中,YAML 空格会被保留,确保该文件被正确格式化。(LOG-4792)
-
在此次更新之前,当启用
ClusterLogForwarder
CR 时,当ClusterLogging.Spec.Collection
为 nil 时,Red Hat OpenShift Logging Operator 可能会进入 nil pointer 异常。在这个版本中,这个问题已在 Red Hat OpenShift Logging Operator 中解决。(LOG-5006) -
在此次更新之前,在特定的基础情形中,替换
ClusterLogForwarder
CR status 字段会导致resourceVersion
在Status
条件中更改时间戳而持续更新。这个条件会导致一个无限的协调循环。在这个版本中,所有状态条件都会同步,以便在条件保持不变时时间戳保持不变。(LOG-5007) -
在此次更新之前,内部缓冲行为需要
drop_newest
来解决收集器高内存消耗,从而导致大量日志丢失。在这个版本中,行为恢复为使用收集器默认值。(LOG-5123) -
在此次更新之前,
openshift-operators-redhat
命名空间中的 Loki OperatorServiceMonitor
使用静态令牌和 CA 文件进行身份验证,从而导致ServiceMonitor
配置上的 User Workload Monitoring spec 中 Prometheus Operator 出现错误。在这个版本中,openshift-operators-redhat
命名空间中的 Loki OperatorServiceMonitor
现在通过LocalReference
对象引用服务帐户令牌 secret。这种方法允许 Prometheus Operator 中的 User Workload Monitoring spec 成功处理 Loki OperatorServiceMonitor
,使 Prometheus 能够提取 Loki Operator 指标。(LOG-5165) -
在此次更新之前,Loki Operator
ServiceMonitor
的配置可能与许多 Kubernetes 服务匹配,从而导致 Loki Operator 指标被多次收集。在这个版本中,ServiceMonitor
的配置只与专用指标服务匹配。(LOG-5212)
1.1.8.5. 已知问题
无。
1.1.8.6. CVE
第 2 章 支持
logging 只支持本文档中介绍的配置选项。
不要使用任何其他配置选项,因为它们不被支持。各个 OpenShift Dedicated 发行版本的配置范例可能会有所变化,只有掌握了所有可能的配置,才能稳妥应对这样的配置变化。如果您使用本文档中描述的配置以外的配置,您的更改会被覆盖,因为 Operator 旨在协调差异。
如果必须执行 OpenShift Dedicated 文档中未描述的配置,您需要将 Red Hat OpenShift Logging Operator 设置为 Unmanaged
。不支持非受管日志记录实例,且不会接收更新,直到您将其状态返回为 Managed
为止。
日志记录作为可安装的组件提供,它与 OpenShift Dedicated 核心不同。Red Hat OpenShift Container Platform 生命周期政策 概述了发行版本兼容性。
Red Hat OpenShift 的 logging 是一个建议的收集器,以及应用程序、基础架构和审计日志的规范化程序。它旨在将日志转发到各种支持的系统。
Logging 不是:
- 一个大规模日志收集系统
- 兼容安全信息和事件监控 (SIEM)
- 历史或长日志的保留或存储
- 保证的日志接收器
- 安全存储 - 默认不存储审计日志
2.1. 支持的 API 自定义资源定义
LokiStack 开发正在进行。目前还不支持所有 API。
CustomResourceDefinition (CRD) | ApiVersion | 支持状态 |
---|---|---|
LokiStack | lokistack.loki.grafana.com/v1 | 在 5.5 中支持 |
RulerConfig | rulerconfig.loki.grafana/v1 | 在 5.7 中支持 |
AlertingRule | alertingrule.loki.grafana/v1 | 在 5.7 中支持 |
RecordingRule | recordingrule.loki.grafana/v1 | 在 5.7 中支持 |
2.2. 不支持的配置
您必须将 Red Hat OpenShift Logging Operator 设置为 Unmanaged
状态才能修改以下组件:
-
Elasticsearch
自定义资源(CR) - Kibana 部署
-
fluent.conf
文件 - Fluentd 守护进程集
您必须将 OpenShift Elasticsearch Operator 设置为 Unmanaged
状态,才能修改 Elasticsearch 部署文件。
明确不支持的情形包括:
- 配置默认日志轮转。您无法修改默认的日志轮转配置。
-
配置所收集日志的位置。您无法更改日志收集器输出文件的位置,默认为
/var/log/fluentd/fluentd.log
。 - 日志收集节流。您不能减慢日志收集器读取日志的速度。
- 使用环境变量配置日志记录收集器。您不能使用环境变量来修改日志收集器。
- 配置日志收集器规范日志的方式。您无法修改默认日志规范化。
2.3. 非受管 Operator 的支持策略
Operator 的 管理状态 决定了一个 Operator 是否按设计积极管理集群中其相关组件的资源。如果 Operator 设置为 非受管(unmanaged) 状态,它不会响应配置更改,也不会收到更新。
虽然它可以在非生产环境集群或调试过程中使用,但处于非受管状态的 Operator 不被正式支持,集群管理员需要完全掌控各个组件的配置和升级。
可使用以下方法将 Operator 设置为非受管状态:
独立 Operator 配置
独立 Operator 的配置中具有
managementState
参数。这可以通过不同的方法来访问,具体取决于 Operator。例如,Red Hat OpenShift Logging Operator 通过修改它管理的自定义资源(CR)来达到此目的,而 Cluster Samples Operator 使用了集群范围配置资源。将
managementState
参数更改为Unmanaged
意味着 Operator 不会主动管理它的资源,也不会执行与相关组件相关的操作。一些 Operator 可能不支持此管理状态,因为它可能会损坏集群,需要手动恢复。警告将独立 Operator 更改为
非受管
状态会导致不支持该特定组件和功能。报告的问题必须在受管(Managed)
状态中可以重复出现才能继续获得支持。Cluster Version Operator (CVO) 覆盖
可将
spec.overrides
参数添加到 CVO 配置中,以便管理员提供对组件的 CVO 行为覆盖的列表。将一个组件的spec.overrides[].unmanaged
参数设置为true
会阻止集群升级并在设置 CVO 覆盖后提醒管理员:Disabling ownership via cluster version overrides prevents upgrades. Please remove overrides before continuing.
警告设置 CVO 覆盖会使整个集群处于不受支持状态。在删除所有覆盖后,必须可以重现报告的问题方可获得支持。
2.4. 为红帽支持收集日志记录数据
在提交问题单时,向红帽支持提供有关集群的调试信息会很有帮助。
您可以使用 must-gather
工具来收集有关 项目级别资源、集群级资源和每个日志记录组件的诊断信息。
为了获得快速支持,请提供 OpenShift Dedicated 和 OpenShift Logging 的诊断信息。
不要使用 hack/logging-dump.sh
脚本。这个脚本不再被支持且不收集数据。
2.4.1. 关于 must-gather 工具
oc adm must-gather
CLI 命令会收集最有助于解决问题的集群信息。
对于日志记录,must-gather
会收集以下信息:
- 项目级别资源,包括 Pod、配置映射、服务帐户、角色、角色绑定和事件
- 集群级资源,包括集群级别的节点、角色和角色绑定
-
openshift-logging
和openshift-operators-redhat
命名空间中的 OpenShift Logging 资源,包括日志收集器的健康状况、日志存储和日志可视化工具
在运行 oc adm must-gather
时,集群上会创建一个新 pod。在该 pod 上收集数据,并保存至以 must-gather.local
开头的一个新目录中。此目录在当前工作目录中创建。
2.4.2. 收集日志记录数据
您可以使用 oc adm must-gather
CLI 命令来收集有关日志记录的信息。
流程
使用 must-gather
来收集日志信息:
-
进入要存储
must-gather
信息的目录。 针对日志记录镜像运行
oc adm must-gather
命令:$ oc adm must-gather --image=$(oc -n openshift-logging get deployment.apps/cluster-logging-operator -o jsonpath='{.spec.template.spec.containers[?(@.name == "cluster-logging-operator")].image}')
must-gather
工具会创建一个以当前目录中must-gather.local
开头的新目录。例如:must-gather.local.4157245944708210408
。从刚刚创建的
must-gather
目录创建一个压缩文件。例如,在使用 Linux 操作系统的计算机上运行以下命令:$ tar -cvaf must-gather.tar.gz must-gather.local.4157245944708210408
- 在红帽客户门户中为您的问题单附上压缩文件。
第 3 章 日志故障排除
3.1. 查看日志记录状态
您可以查看 Red Hat OpenShift Logging Operator 的状态和其他日志记录组件。
3.1.1. 查看 Red Hat OpenShift Logging Operator 的状态
您可以查看 Red Hat OpenShift Logging Operator 的状态。
先决条件
- 安装了 Red Hat OpenShift Logging Operator 和 OpenShift Elasticsearch Operator。
流程
运行以下命令,切换到
openshift-logging
项目:$ oc project openshift-logging
运行以下命令来获取
ClusterLogging
实例状态:$ oc get clusterlogging instance -o yaml
输出示例
apiVersion: logging.openshift.io/v1 kind: ClusterLogging # ... status: 1 collection: logs: fluentdStatus: daemonSet: fluentd 2 nodes: collector-2rhqp: ip-10-0-169-13.ec2.internal collector-6fgjh: ip-10-0-165-244.ec2.internal collector-6l2ff: ip-10-0-128-218.ec2.internal collector-54nx5: ip-10-0-139-30.ec2.internal collector-flpnn: ip-10-0-147-228.ec2.internal collector-n2frh: ip-10-0-157-45.ec2.internal pods: failed: [] notReady: [] ready: - collector-2rhqp - collector-54nx5 - collector-6fgjh - collector-6l2ff - collector-flpnn - collector-n2frh logstore: 3 elasticsearchStatus: - ShardAllocationEnabled: all cluster: activePrimaryShards: 5 activeShards: 5 initializingShards: 0 numDataNodes: 1 numNodes: 1 pendingTasks: 0 relocatingShards: 0 status: green unassignedShards: 0 clusterName: elasticsearch nodeConditions: elasticsearch-cdm-mkkdys93-1: nodeCount: 1 pods: client: failed: notReady: ready: - elasticsearch-cdm-mkkdys93-1-7f7c6-mjm7c data: failed: notReady: ready: - elasticsearch-cdm-mkkdys93-1-7f7c6-mjm7c master: failed: notReady: ready: - elasticsearch-cdm-mkkdys93-1-7f7c6-mjm7c visualization: 4 kibanaStatus: - deployment: kibana pods: failed: [] notReady: [] ready: - kibana-7fb4fd4cc9-f2nls replicaSets: - kibana-7fb4fd4cc9 replicas: 1
3.1.1.1. 情况消息示例
以下是来自 ClusterLogging
实例的 Status.Nodes
部分的一些情况消息示例。
类似于以下内容的状态消息表示节点已超过配置的低水位线,并且没有分片将分配给此节点:
输出示例
nodes: - conditions: - lastTransitionTime: 2019-03-15T15:57:22Z message: Disk storage usage for node is 27.5gb (36.74%). Shards will be not be allocated on this node. reason: Disk Watermark Low status: "True" type: NodeStorage deploymentName: example-elasticsearch-clientdatamaster-0-1 upgradeStatus: {}
类似于以下内容的状态消息表示节点已超过配置的高水位线,并且分片将重新定位到其他节点:
输出示例
nodes: - conditions: - lastTransitionTime: 2019-03-15T16:04:45Z message: Disk storage usage for node is 27.5gb (36.74%). Shards will be relocated from this node. reason: Disk Watermark High status: "True" type: NodeStorage deploymentName: cluster-logging-operator upgradeStatus: {}
类似于以下内容的状态消息表示 CR 中的 Elasticsearch 节点选择器与集群中的任何节点都不匹配:
输出示例
Elasticsearch Status: Shard Allocation Enabled: shard allocation unknown Cluster: Active Primary Shards: 0 Active Shards: 0 Initializing Shards: 0 Num Data Nodes: 0 Num Nodes: 0 Pending Tasks: 0 Relocating Shards: 0 Status: cluster health unknown Unassigned Shards: 0 Cluster Name: elasticsearch Node Conditions: elasticsearch-cdm-mkkdys93-1: Last Transition Time: 2019-06-26T03:37:32Z Message: 0/5 nodes are available: 5 node(s) didn't match node selector. Reason: Unschedulable Status: True Type: Unschedulable elasticsearch-cdm-mkkdys93-2: Node Count: 2 Pods: Client: Failed: Not Ready: elasticsearch-cdm-mkkdys93-1-75dd69dccd-f7f49 elasticsearch-cdm-mkkdys93-2-67c64f5f4c-n58vl Ready: Data: Failed: Not Ready: elasticsearch-cdm-mkkdys93-1-75dd69dccd-f7f49 elasticsearch-cdm-mkkdys93-2-67c64f5f4c-n58vl Ready: Master: Failed: Not Ready: elasticsearch-cdm-mkkdys93-1-75dd69dccd-f7f49 elasticsearch-cdm-mkkdys93-2-67c64f5f4c-n58vl Ready:
类似于以下内容的状态消息表示请求的 PVC 无法绑定到 PV:
输出示例
Node Conditions: elasticsearch-cdm-mkkdys93-1: Last Transition Time: 2019-06-26T03:37:32Z Message: pod has unbound immediate PersistentVolumeClaims (repeated 5 times) Reason: Unschedulable Status: True Type: Unschedulable
类似于以下内容的状态消息表示无法调度 Fluentd Pod,因为节点选择器与任何节点都不匹配:
输出示例
Status: Collection: Logs: Fluentd Status: Daemon Set: fluentd Nodes: Pods: Failed: Not Ready: Ready:
3.1.2. 查看日志记录组件的状态
您可以查看多个日志记录组件的状态。
先决条件
- 安装了 Red Hat OpenShift Logging Operator 和 OpenShift Elasticsearch Operator。
流程
进入
openshift-logging
项目。$ oc project openshift-logging
查看日志记录环境的状态:
$ oc describe deployment cluster-logging-operator
输出示例
Name: cluster-logging-operator .... Conditions: Type Status Reason ---- ------ ------ Available True MinimumReplicasAvailable Progressing True NewReplicaSetAvailable .... Events: Type Reason Age From Message ---- ------ ---- ---- ------- Normal ScalingReplicaSet 62m deployment-controller Scaled up replica set cluster-logging-operator-574b8987df to 1----
查看日志记录副本集的状态:
获取副本集的名称:
输出示例
$ oc get replicaset
输出示例
NAME DESIRED CURRENT READY AGE cluster-logging-operator-574b8987df 1 1 1 159m elasticsearch-cdm-uhr537yu-1-6869694fb 1 1 1 157m elasticsearch-cdm-uhr537yu-2-857b6d676f 1 1 1 156m elasticsearch-cdm-uhr537yu-3-5b6fdd8cfd 1 1 1 155m kibana-5bd5544f87 1 1 1 157m
获取副本集的状态:
$ oc describe replicaset cluster-logging-operator-574b8987df
输出示例
Name: cluster-logging-operator-574b8987df .... Replicas: 1 current / 1 desired Pods Status: 1 Running / 0 Waiting / 0 Succeeded / 0 Failed .... Events: Type Reason Age From Message ---- ------ ---- ---- ------- Normal SuccessfulCreate 66m replicaset-controller Created pod: cluster-logging-operator-574b8987df-qjhqv----
3.2. 日志转发故障排除
3.2.1. 重新部署 Fluentd pod
当您创建 ClusterLogForwarder
自定义资源 (CR) 时,如果 Red Hat OpenShift Logging Operator 没有自动重新部署 Fluentd Pod,您可以删除 Fluentd Pod 来强制重新部署它们。
先决条件
-
您已创建了
ClusterLogForwarder
自定义资源 (CR) 对象。
流程
运行以下命令,删除 Fluentd pod 以强制重新部署:
$ oc delete pod --selector logging-infra=collector
3.2.2. Loki 速率限制错误故障排除
如果 Log Forwarder API 将超过速率限制的大量信息转发到 Loki,Loki 会生成速率限制(429
)错误。
这些错误可能会在正常操作过程中发生。例如,当将 logging 添加到已具有某些日志的集群中时,logging 会尝试充分利用现有日志条目时可能会出现速率限制错误。在这种情况下,如果添加新日志的速度小于总速率限值,历史数据最终会被处理,并且不要求用户干预即可解决速率限制错误。
如果速率限制错误持续发生,您可以通过修改 LokiStack
自定义资源(CR)来解决此问题。
LokiStack
CR 在 Grafana 托管的 Loki 上不可用。本主题不适用于 Grafana 托管的 Loki 服务器。
Conditions
- Log Forwarder API 配置为将日志转发到 Loki。
您的系统向 Loki 发送大于 2 MB 的消息块。例如:
"values":[["1630410392689800468","{\"kind\":\"Event\",\"apiVersion\":\ ....... ...... ...... ...... \"received_at\":\"2021-08-31T11:46:32.800278+00:00\",\"version\":\"1.7.4 1.6.0\"}},\"@timestamp\":\"2021-08-31T11:46:32.799692+00:00\",\"viaq_index_name\":\"audit-write\",\"viaq_msg_id\":\"MzFjYjJkZjItNjY0MC00YWU4LWIwMTEtNGNmM2E5ZmViMGU4\",\"log_type\":\"audit\"}"]]}]}
输入
oc logs -n openshift-logging -l component=collector
后,集群中的收集器日志会显示包含以下错误消息之一的行:429 Too Many Requests Ingestion rate limit exceeded
Vector 错误消息示例
2023-08-25T16:08:49.301780Z WARN sink{component_kind="sink" component_id=default_loki_infra component_type=loki component_name=default_loki_infra}: vector::sinks::util::retries: Retrying after error. error=Server responded with an error: 429 Too Many Requests internal_log_rate_limit=true
Fluentd 错误消息示例
2023-08-30 14:52:15 +0000 [warn]: [default_loki_infra] failed to flush the buffer. retry_times=2 next_retry_time=2023-08-30 14:52:19 +0000 chunk="604251225bf5378ed1567231a1c03b8b" error_class=Fluent::Plugin::LokiOutput::LogPostError error="429 Too Many Requests Ingestion rate limit exceeded for user infrastructure (limit: 4194304 bytes/sec) while attempting to ingest '4082' lines totaling '7820025' bytes, reduce log volume or contact your Loki administrator to see if the limit can be increased\n"
在接收结束时也会看到这个错误。例如,在 LokiStack ingester pod 中:
Loki ingester 错误消息示例
level=warn ts=2023-08-30T14:57:34.155592243Z caller=grpc_logging.go:43 duration=1.434942ms method=/logproto.Pusher/Push err="rpc error: code = Code(429) desc = entry with timestamp 2023-08-30 14:57:32.012778399 +0000 UTC ignored, reason: 'Per stream rate limit exceeded (limit: 3MB/sec) while attempting to ingest for stream
流程
更新
LokiStack
CR 中的ingestionBurstSize
和ingestionRate
字段:apiVersion: loki.grafana.com/v1 kind: LokiStack metadata: name: logging-loki namespace: openshift-logging spec: limits: global: ingestion: ingestionBurstSize: 16 1 ingestionRate: 8 2 # ...
3.3. 日志记录警报故障排除
您可以使用以下步骤排除集群中的日志记录警报。
3.3.1. Elasticsearch 集群健康状态为红色
至少一个主分片及其副本没有分配给节点。使用以下步骤对此警报进行故障排除。
本文档中的一些命令会使用 $ES_POD_NAME
shell 变量来引用 Elasticsearch pod。如果要直接从本文档中复制并粘贴命令,您必须将此变量设置为对 Elasticsearch 集群有效的值。
您可以运行以下命令来列出可用的 Elasticsearch pod:
$ oc -n openshift-logging get pods -l component=elasticsearch
运行以下命令,选择列出的 pod 并设置 $ES_POD_NAME
变量:
$ export ES_POD_NAME=<elasticsearch_pod_name>
现在,您可以在命令中使用 $ES_POD_NAME
变量。
流程
运行以下命令,检查 Elasticsearch 集群健康状况并验证集群
状态
是否为红色:$ oc exec -n openshift-logging -c elasticsearch $ES_POD_NAME -- health
运行以下命令,列出已加入集群的节点:
$ oc exec -n openshift-logging -c elasticsearch $ES_POD_NAME \ -- es_util --query=_cat/nodes?v
运行以下命令,列出 Elasticsearch Pod,并将它们与上一步中的命令输出中的节点进行比较:
$ oc -n openshift-logging get pods -l component=elasticsearch
如果某些 Elasticsearch 节点没有加入集群,请执行以下步骤。
运行以下命令并查看输出,确认 Elasticsearch 已选定 master 节点:
$ oc exec -n openshift-logging -c elasticsearch $ES_POD_NAME \ -- es_util --query=_cat/master?v
运行以下命令,并查看所选 master 节点的 pod 日志问题:
$ oc logs <elasticsearch_master_pod_name> -c elasticsearch -n openshift-logging
运行以下命令并查看没有加入集群的节点日志:
$ oc logs <elasticsearch_node_name> -c elasticsearch -n openshift-logging
如果所有节点都已加入集群,请运行以下命令检查集群是否处于恢复过程中,并观察输出:
$ oc exec -n openshift-logging -c elasticsearch $ES_POD_NAME \ -- es_util --query=_cat/recovery?active_only=true
如果没有命令输出,恢复过程可能会因为待处理的任务而延迟或停止。
运行以下命令并查看输出,检查是否有待处理的任务:
$ oc exec -n openshift-logging -c elasticsearch $ES_POD_NAME \ -- health | grep number_of_pending_tasks
- 如果有待处理的任务,请监控其状态。如果它们的状态发生变化,并且表示集群正在恢复,请继续等待。恢复时间因集群大小和其它因素而异。否则,如果待处理任务的状态没有改变,这表示恢复已停止。
如果恢复似乎已停止,请运行以下命令检查
cluster.routing.allocation.enable
值设置为none
,然后观察输出:$ oc exec -n openshift-logging -c elasticsearch $ES_POD_NAME \ -- es_util --query=_cluster/settings?pretty
如果
cluster.routing.allocation.enable
被设为none
,请运行以下命令将其设置为all
:$ oc exec -n openshift-logging -c elasticsearch $ES_POD_NAME \ -- es_util --query=_cluster/settings?pretty \ -X PUT -d '{"persistent": {"cluster.routing.allocation.enable":"all"}}'
运行以下命令并查看输出,检查任何索引仍然是红色的:
$ oc exec -n openshift-logging -c elasticsearch $ES_POD_NAME \ -- es_util --query=_cat/indices?v
如果有任何索引仍然是红色的,请尝试通过执行以下步骤清除它们。
运行以下命令来清除缓存:
$ oc exec -n openshift-logging -c elasticsearch $ES_POD_NAME \ -- es_util --query=<elasticsearch_index_name>/_cache/clear?pretty
运行以下命令来增加最大分配重试次数:
$ oc exec -n openshift-logging -c elasticsearch $ES_POD_NAME \ -- es_util --query=<elasticsearch_index_name>/_settings?pretty \ -X PUT -d '{"index.allocation.max_retries":10}'
运行以下命令来删除所有滚动项:
$ oc exec -n openshift-logging -c elasticsearch $ES_POD_NAME \ -- es_util --query=_search/scroll/_all -X DELETE
运行以下命令来增加超时:
$ oc exec -n openshift-logging -c elasticsearch $ES_POD_NAME \ -- es_util --query=<elasticsearch_index_name>/_settings?pretty \ -X PUT -d '{"index.unassigned.node_left.delayed_timeout":"10m"}'
如果前面的步骤没有清除红色索引,请单独删除索引。
运行以下命令来识别红色索引名称:
$ oc exec -n openshift-logging -c elasticsearch $ES_POD_NAME \ -- es_util --query=_cat/indices?v
运行以下命令来删除红色索引:
$ oc exec -n openshift-logging -c elasticsearch $ES_POD_NAME \ -- es_util --query=<elasticsearch_red_index_name> -X DELETE
如果没有红色索引且集群状态为红色,请在数据节点上检查是否有连续重量处理负载。
运行以下命令,检查 Elasticsearch JVM 堆使用率是否高:
$ oc exec -n openshift-logging -c elasticsearch $ES_POD_NAME \ -- es_util --query=_nodes/stats?pretty
在命令输出中,检查
node_name.jvm.mem.heap_used_percent
字段,以确定 JVM Heap 使用量。- 检查高 CPU 使用率。有关 CPU utilitzation 的更多信息,请参阅 OpenShift Dedicated "查看监控仪表板" 文档。
其他资源
3.3.2. Elasticsearch 集群健康状态黄色
至少一个主分片的副本分片没有分配给节点。通过调整 ClusterLogging
自定义资源 (CR) 中的 nodeCount
值来增加节点数。
其他资源
3.3.3. 已达到 Elasticsearch 节点磁盘低水位线
Elasticsearch 不会将分片分配给达到低水位线的节点。
本文档中的一些命令会使用 $ES_POD_NAME
shell 变量来引用 Elasticsearch pod。如果要直接从本文档中复制并粘贴命令,您必须将此变量设置为对 Elasticsearch 集群有效的值。
您可以运行以下命令来列出可用的 Elasticsearch pod:
$ oc -n openshift-logging get pods -l component=elasticsearch
运行以下命令,选择列出的 pod 并设置 $ES_POD_NAME
变量:
$ export ES_POD_NAME=<elasticsearch_pod_name>
现在,您可以在命令中使用 $ES_POD_NAME
变量。
流程
运行以下命令,识别在其上部署 Elasticsearch 的节点:
$ oc -n openshift-logging get po -o wide
运行以下命令,检查是否有未分配的分片:
$ oc exec -n openshift-logging -c elasticsearch $ES_POD_NAME \ -- es_util --query=_cluster/health?pretty | grep unassigned_shards
如果存在未分配的分片,请运行以下命令检查每个节点上的磁盘空间:
$ for pod in `oc -n openshift-logging get po -l component=elasticsearch -o jsonpath='{.items[*].metadata.name}'`; \ do echo $pod; oc -n openshift-logging exec -c elasticsearch $pod \ -- df -h /elasticsearch/persistent; done
在命令输出中,检查
Use
列以确定该节点上使用的磁盘百分比。输出示例
elasticsearch-cdm-kcrsda6l-1-586cc95d4f-h8zq8 Filesystem Size Used Avail Use% Mounted on /dev/nvme1n1 19G 522M 19G 3% /elasticsearch/persistent elasticsearch-cdm-kcrsda6l-2-5b548fc7b-cwwk7 Filesystem Size Used Avail Use% Mounted on /dev/nvme2n1 19G 522M 19G 3% /elasticsearch/persistent elasticsearch-cdm-kcrsda6l-3-5dfc884d99-59tjw Filesystem Size Used Avail Use% Mounted on /dev/nvme3n1 19G 528M 19G 3% /elasticsearch/persistent
如果使用的磁盘百分比超过 85%,则节点已超过低水位线,并且分片无法再分配给此节点。
要检查当前的
redundancyPolicy
,请运行以下命令:$ oc -n openshift-logging get es elasticsearch \ -o jsonpath='{.spec.redundancyPolicy}'
如果在集群中使用
ClusterLogging
资源,请运行以下命令:$ oc -n openshift-logging get cl \ -o jsonpath='{.items[*].spec.logStore.elasticsearch.redundancyPolicy}'
如果集群
redundancyPolicy
值高于SingleRedundancy
值,将其设置为SingleRedundancy
值并保存这个更改。如果前面的步骤没有解决这个问题,请删除旧的索引。
运行以下命令,检查 Elasticsearch 上所有索引的状态:
$ oc exec -n openshift-logging -c elasticsearch $ES_POD_NAME -- indices
- 确定可以删除的旧索引。
运行以下命令来删除索引:
$ oc exec -n openshift-logging -c elasticsearch $ES_POD_NAME \ -- es_util --query=<elasticsearch_index_name> -X DELETE
3.3.4. 已达到 Elasticsearch 节点磁盘高水位线
Elasticsearch 会尝试将分片从达到高水位线的节点重新定位到磁盘使用率较低且未超过任何水位线阈值的节点。
要将分片分配给特定节点,您必须释放该节点上的一些空间。如果无法增加磁盘空间,请尝试向集群添加新数据节点,或者减少集群冗余策略总数。
本文档中的一些命令会使用 $ES_POD_NAME
shell 变量来引用 Elasticsearch pod。如果要直接从本文档中复制并粘贴命令,您必须将此变量设置为对 Elasticsearch 集群有效的值。
您可以运行以下命令来列出可用的 Elasticsearch pod:
$ oc -n openshift-logging get pods -l component=elasticsearch
运行以下命令,选择列出的 pod 并设置 $ES_POD_NAME
变量:
$ export ES_POD_NAME=<elasticsearch_pod_name>
现在,您可以在命令中使用 $ES_POD_NAME
变量。
流程
运行以下命令,识别在其上部署 Elasticsearch 的节点:
$ oc -n openshift-logging get po -o wide
检查每个节点上的磁盘空间:
$ for pod in `oc -n openshift-logging get po -l component=elasticsearch -o jsonpath='{.items[*].metadata.name}'`; \ do echo $pod; oc -n openshift-logging exec -c elasticsearch $pod \ -- df -h /elasticsearch/persistent; done
检查集群是否重新平衡:
$ oc exec -n openshift-logging -c elasticsearch $ES_POD_NAME \ -- es_util --query=_cluster/health?pretty | grep relocating_shards
如果命令输出显示重新定位分片,则代表超过了高水位线。高水位线的默认值为 90%。
- 增加所有节点上的磁盘空间。如果无法增加磁盘空间,请尝试向集群添加新数据节点,或者减少集群冗余策略总数。
要检查当前的
redundancyPolicy
,请运行以下命令:$ oc -n openshift-logging get es elasticsearch \ -o jsonpath='{.spec.redundancyPolicy}'
如果在集群中使用
ClusterLogging
资源,请运行以下命令:$ oc -n openshift-logging get cl \ -o jsonpath='{.items[*].spec.logStore.elasticsearch.redundancyPolicy}'
如果集群
redundancyPolicy
值高于SingleRedundancy
值,将其设置为SingleRedundancy
值并保存这个更改。如果前面的步骤没有解决这个问题,请删除旧的索引。
运行以下命令,检查 Elasticsearch 上所有索引的状态:
$ oc exec -n openshift-logging -c elasticsearch $ES_POD_NAME -- indices
- 确定可以删除的旧索引。
运行以下命令来删除索引:
$ oc exec -n openshift-logging -c elasticsearch $ES_POD_NAME \ -- es_util --query=<elasticsearch_index_name> -X DELETE
3.3.5. 已达到 Elasticsearch 节点磁盘水位线
Elasticsearch 在每个具有这两个条件的索引中强制使用只读索引块:
- 为节点分配一个或多个分片。
- 一个个或多个磁盘超过 flood stage。
使用以下步骤对此警报进行故障排除。
本文档中的一些命令会使用 $ES_POD_NAME
shell 变量来引用 Elasticsearch pod。如果要直接从本文档中复制并粘贴命令,您必须将此变量设置为对 Elasticsearch 集群有效的值。
您可以运行以下命令来列出可用的 Elasticsearch pod:
$ oc -n openshift-logging get pods -l component=elasticsearch
运行以下命令,选择列出的 pod 并设置 $ES_POD_NAME
变量:
$ export ES_POD_NAME=<elasticsearch_pod_name>
现在,您可以在命令中使用 $ES_POD_NAME
变量。
流程
获取 Elasticsearch 节点的磁盘空间:
$ for pod in `oc -n openshift-logging get po -l component=elasticsearch -o jsonpath='{.items[*].metadata.name}'`; \ do echo $pod; oc -n openshift-logging exec -c elasticsearch $pod \ -- df -h /elasticsearch/persistent; done
在命令输出中,检查
Avail
列以确定该节点上的可用磁盘空间。输出示例
elasticsearch-cdm-kcrsda6l-1-586cc95d4f-h8zq8 Filesystem Size Used Avail Use% Mounted on /dev/nvme1n1 19G 522M 19G 3% /elasticsearch/persistent elasticsearch-cdm-kcrsda6l-2-5b548fc7b-cwwk7 Filesystem Size Used Avail Use% Mounted on /dev/nvme2n1 19G 522M 19G 3% /elasticsearch/persistent elasticsearch-cdm-kcrsda6l-3-5dfc884d99-59tjw Filesystem Size Used Avail Use% Mounted on /dev/nvme3n1 19G 528M 19G 3% /elasticsearch/persistent
- 增加所有节点上的磁盘空间。如果无法增加磁盘空间,请尝试向集群添加新数据节点,或者减少集群冗余策略总数。
要检查当前的
redundancyPolicy
,请运行以下命令:$ oc -n openshift-logging get es elasticsearch \ -o jsonpath='{.spec.redundancyPolicy}'
如果在集群中使用
ClusterLogging
资源,请运行以下命令:$ oc -n openshift-logging get cl \ -o jsonpath='{.items[*].spec.logStore.elasticsearch.redundancyPolicy}'
如果集群
redundancyPolicy
值高于SingleRedundancy
值,将其设置为SingleRedundancy
值并保存这个更改。如果前面的步骤没有解决这个问题,请删除旧的索引。
运行以下命令,检查 Elasticsearch 上所有索引的状态:
$ oc exec -n openshift-logging -c elasticsearch $ES_POD_NAME -- indices
- 确定可以删除的旧索引。
运行以下命令来删除索引:
$ oc exec -n openshift-logging -c elasticsearch $ES_POD_NAME \ -- es_util --query=<elasticsearch_index_name> -X DELETE
继续释放和监控磁盘空间。在使用的磁盘空间低于 90% 后,运行以下命令来取消阻塞写入此节点:
$ oc exec -n openshift-logging -c elasticsearch $ES_POD_NAME \ -- es_util --query=_all/_settings?pretty \ -X PUT -d '{"index.blocks.read_only_allow_delete": null}'
3.3.6. Elasticsearch JVM 堆使用率很高
使用的 Elasticsearch 节点 Java 虚拟机(JVM)堆内存超过 75%。考虑增大堆大小。
3.3.7. 聚合日志记录系统 CPU 为高
节点上的系统 CPU 使用率高。检查集群节点的 CPU。考虑向节点分配更多 CPU 资源。
3.3.8. Elasticsearch 进程 CPU 为高
节点上的 Elasticsearch 进程 CPU 使用率很高。检查集群节点的 CPU。考虑向节点分配更多 CPU 资源。
3.3.9. Elasticsearch 磁盘空间运行较低
根据当前的磁盘用量,Elasticsearch 被预测在下一个 6 小时内耗尽磁盘空间。使用以下步骤对此警报进行故障排除。
流程
获取 Elasticsearch 节点的磁盘空间:
$ for pod in `oc -n openshift-logging get po -l component=elasticsearch -o jsonpath='{.items[*].metadata.name}'`; \ do echo $pod; oc -n openshift-logging exec -c elasticsearch $pod \ -- df -h /elasticsearch/persistent; done
在命令输出中,检查
Avail
列以确定该节点上的可用磁盘空间。输出示例
elasticsearch-cdm-kcrsda6l-1-586cc95d4f-h8zq8 Filesystem Size Used Avail Use% Mounted on /dev/nvme1n1 19G 522M 19G 3% /elasticsearch/persistent elasticsearch-cdm-kcrsda6l-2-5b548fc7b-cwwk7 Filesystem Size Used Avail Use% Mounted on /dev/nvme2n1 19G 522M 19G 3% /elasticsearch/persistent elasticsearch-cdm-kcrsda6l-3-5dfc884d99-59tjw Filesystem Size Used Avail Use% Mounted on /dev/nvme3n1 19G 528M 19G 3% /elasticsearch/persistent
- 增加所有节点上的磁盘空间。如果无法增加磁盘空间,请尝试向集群添加新数据节点,或者减少集群冗余策略总数。
要检查当前的
redundancyPolicy
,请运行以下命令:$ oc -n openshift-logging get es elasticsearch -o jsonpath='{.spec.redundancyPolicy}'
如果在集群中使用
ClusterLogging
资源,请运行以下命令:$ oc -n openshift-logging get cl \ -o jsonpath='{.items[*].spec.logStore.elasticsearch.redundancyPolicy}'
如果集群
redundancyPolicy
值高于SingleRedundancy
值,将其设置为SingleRedundancy
值并保存这个更改。如果前面的步骤没有解决这个问题,请删除旧的索引。
运行以下命令,检查 Elasticsearch 上所有索引的状态:
$ oc exec -n openshift-logging -c elasticsearch $ES_POD_NAME -- indices
- 确定可以删除的旧索引。
运行以下命令来删除索引:
$ oc exec -n openshift-logging -c elasticsearch $ES_POD_NAME \ -- es_util --query=<elasticsearch_index_name> -X DELETE
其他资源
3.3.10. Elasticsearch FileDescriptor 使用是高
根据当前的使用趋势,预计节点上的文件描述符数量不足。检查每个节点的 max_file_descriptors
值,如 Elasticsearch File Descriptors 文档中所述。
3.4. 查看 Elasticsearch 日志存储的状态
您可以查看 OpenShift Elasticsearch Operator 的状态以及多个 Elasticsearch 组件的状态。
3.4.1. 查看 Elasticsearch 日志存储的状态
您可以查看 Elasticsearch 日志存储的状态。
先决条件
- 安装了 Red Hat OpenShift Logging Operator 和 OpenShift Elasticsearch Operator。
流程
运行以下命令,切换到
openshift-logging
项目:$ oc project openshift-logging
查看状态:
运行以下命令,获取 Elasticsearch 日志存储实例的名称:
$ oc get Elasticsearch
输出示例
NAME AGE elasticsearch 5h9m
运行以下命令来获取 Elasticsearch 日志存储状态:
$ oc get Elasticsearch <Elasticsearch-instance> -o yaml
例如:
$ oc get Elasticsearch elasticsearch -n openshift-logging -o yaml
输出中包含类似于如下的信息:
输出示例
status: 1 cluster: 2 activePrimaryShards: 30 activeShards: 60 initializingShards: 0 numDataNodes: 3 numNodes: 3 pendingTasks: 0 relocatingShards: 0 status: green unassignedShards: 0 clusterHealth: "" conditions: [] 3 nodes: 4 - deploymentName: elasticsearch-cdm-zjf34ved-1 upgradeStatus: {} - deploymentName: elasticsearch-cdm-zjf34ved-2 upgradeStatus: {} - deploymentName: elasticsearch-cdm-zjf34ved-3 upgradeStatus: {} pods: 5 client: failed: [] notReady: [] ready: - elasticsearch-cdm-zjf34ved-1-6d7fbf844f-sn422 - elasticsearch-cdm-zjf34ved-2-dfbd988bc-qkzjz - elasticsearch-cdm-zjf34ved-3-c8f566f7c-t7zkt data: failed: [] notReady: [] ready: - elasticsearch-cdm-zjf34ved-1-6d7fbf844f-sn422 - elasticsearch-cdm-zjf34ved-2-dfbd988bc-qkzjz - elasticsearch-cdm-zjf34ved-3-c8f566f7c-t7zkt master: failed: [] notReady: [] ready: - elasticsearch-cdm-zjf34ved-1-6d7fbf844f-sn422 - elasticsearch-cdm-zjf34ved-2-dfbd988bc-qkzjz - elasticsearch-cdm-zjf34ved-3-c8f566f7c-t7zkt shardAllocationEnabled: all
- 1
- 在输出中,集群状态字段显示在
status
小节中。 - 2
- Elasticsearch 日志存储的状态:
- 活跃的主分片的数量。
- 活跃分片的数量。
- 正在初始化的分片的数量。
- Elasticsearch 日志存储数据节点的数量。
- Elasticsearch 日志存储节点的总数。
- 待处理的任务数量。
-
Elasticsearch 日志存储状态:
绿色
、红色
、黄色
。 - 未分配分片的数量。
- 3
- 任何状态条件(若存在)。Elasticsearch 日志存储状态指示在无法放置 pod 时来自于调度程序的原因。显示与以下情况有关的所有事件:
- 容器正在等待 Elasticsearch 日志存储和代理容器。
- Elasticsearch 日志存储和代理容器的容器终止。
- Pod 不可调度。此外还显示适用于多个问题的情况,具体请参阅情况消息示例。
- 4
- 集群中的 Elasticsearch 日志存储节点,带有
upgradeStatus
。 - 5
- Elasticsearch 日志存储在集群中的客户端、数据和 master pod,列在
failed
、notReady
或ready
状态下。
3.4.1.1. 情况消息示例
以下是来自 Elasticsearch 实例的 Status
部分的一些情况消息的示例。
以下状态消息表示节点已超过配置的低水位线,并且没有分片将分配给此节点。
status: nodes: - conditions: - lastTransitionTime: 2019-03-15T15:57:22Z message: Disk storage usage for node is 27.5gb (36.74%). Shards will be not be allocated on this node. reason: Disk Watermark Low status: "True" type: NodeStorage deploymentName: example-elasticsearch-cdm-0-1 upgradeStatus: {}
以下状态消息表示节点已超过配置的高水位线,并且分片将重新定位到其他节点。
status: nodes: - conditions: - lastTransitionTime: 2019-03-15T16:04:45Z message: Disk storage usage for node is 27.5gb (36.74%). Shards will be relocated from this node. reason: Disk Watermark High status: "True" type: NodeStorage deploymentName: example-elasticsearch-cdm-0-1 upgradeStatus: {}
以下状态消息表示自定义资源(CR)中的 Elasticsearch 日志存储节点选择器与集群中的任何节点都不匹配:
status: nodes: - conditions: - lastTransitionTime: 2019-04-10T02:26:24Z message: '0/8 nodes are available: 8 node(s) didn''t match node selector.' reason: Unschedulable status: "True" type: Unschedulable
以下状态消息表示 Elasticsearch 日志存储 CR 使用不存在的持久性卷声明(PVC)。
status: nodes: - conditions: - last Transition Time: 2019-04-10T05:55:51Z message: pod has unbound immediate PersistentVolumeClaims (repeated 5 times) reason: Unschedulable status: True type: Unschedulable
以下状态消息表示 Elasticsearch 日志存储集群没有足够的节点来支持冗余策略。
status: clusterHealth: "" conditions: - lastTransitionTime: 2019-04-17T20:01:31Z message: Wrong RedundancyPolicy selected. Choose different RedundancyPolicy or add more nodes with data roles reason: Invalid Settings status: "True" type: InvalidRedundancy
此状态消息表示集群有太多 control plane 节点:
status: clusterHealth: green conditions: - lastTransitionTime: '2019-04-17T20:12:34Z' message: >- Invalid master nodes count. Please ensure there are no more than 3 total nodes with master roles reason: Invalid Settings status: 'True' type: InvalidMasters
以下状态消息表示 Elasticsearch 存储不支持您尝试进行的更改。
例如:
status: clusterHealth: green conditions: - lastTransitionTime: "2021-05-07T01:05:13Z" message: Changing the storage structure for a custom resource is not supported reason: StorageStructureChangeIgnored status: 'True' type: StorageStructureChangeIgnored
reason
和 type
类型字段指定不受支持的更改类型:
StorageClassNameChangeIgnored
- 不支持更改存储类名称。
StorageSizeChangeIgnored
- 不支持更改存储大小。
StorageStructureChangeIgnored
不支持在临时存储结构和持久性存储结构间更改。
重要如果您尝试将
ClusterLogging
CR 配置为从临时切换到持久性存储,OpenShift Elasticsearch Operator 会创建一个持久性卷声明(PVC),但不创建持久性卷(PV)。要清除StorageStructureChangeIgnored
状态,您必须恢复对ClusterLogging
CR 的更改并删除 PVC。
3.4.2. 查看日志存储组件的状态
您可以查看多个日志存储组件的状态。
- Elasticsearch 索引
您可以查看 Elasticsearch 索引的状态。
获取 Elasticsearch Pod 的名称:
$ oc get pods --selector component=elasticsearch -o name
输出示例
pod/elasticsearch-cdm-1godmszn-1-6f8495-vp4lw pod/elasticsearch-cdm-1godmszn-2-5769cf-9ms2n pod/elasticsearch-cdm-1godmszn-3-f66f7d-zqkz7
获取索引的状态:
$ oc exec elasticsearch-cdm-4vjor49p-2-6d4d7db474-q2w7z -- indices
输出示例
Defaulting container name to elasticsearch. Use 'oc describe pod/elasticsearch-cdm-4vjor49p-2-6d4d7db474-q2w7z -n openshift-logging' to see all of the containers in this pod. green open infra-000002 S4QANnf1QP6NgCegfnrnbQ 3 1 119926 0 157 78 green open audit-000001 8_EQx77iQCSTzFOXtxRqFw 3 1 0 0 0 0 green open .security iDjscH7aSUGhIdq0LheLBQ 1 1 5 0 0 0 green open .kibana_-377444158_kubeadmin yBywZ9GfSrKebz5gWBZbjw 3 1 1 0 0 0 green open infra-000001 z6Dpe__ORgiopEpW6Yl44A 3 1 871000 0 874 436 green open app-000001 hIrazQCeSISewG3c2VIvsQ 3 1 2453 0 3 1 green open .kibana_1 JCitcBMSQxKOvIq6iQW6wg 1 1 0 0 0 0 green open .kibana_-1595131456_user1 gIYFIEGRRe-ka0W3okS-mQ 3 1 1 0 0 0
- 日志存储 pod
您可以查看托管日志存储的 pod 的状态。
获取 Pod 的名称:
$ oc get pods --selector component=elasticsearch -o name
输出示例
pod/elasticsearch-cdm-1godmszn-1-6f8495-vp4lw pod/elasticsearch-cdm-1godmszn-2-5769cf-9ms2n pod/elasticsearch-cdm-1godmszn-3-f66f7d-zqkz7
获取 Pod 的状态:
$ oc describe pod elasticsearch-cdm-1godmszn-1-6f8495-vp4lw
输出中包括以下状态信息:
输出示例
.... Status: Running .... Containers: elasticsearch: Container ID: cri-o://b7d44e0a9ea486e27f47763f5bb4c39dfd2 State: Running Started: Mon, 08 Jun 2020 10:17:56 -0400 Ready: True Restart Count: 0 Readiness: exec [/usr/share/elasticsearch/probe/readiness.sh] delay=10s timeout=30s period=5s #success=1 #failure=3 .... proxy: Container ID: cri-o://3f77032abaddbb1652c116278652908dc01860320b8a4e741d06894b2f8f9aa1 State: Running Started: Mon, 08 Jun 2020 10:18:38 -0400 Ready: True Restart Count: 0 .... Conditions: Type Status Initialized True Ready True ContainersReady True PodScheduled True .... Events: <none>
- 日志存储 pod 部署配置
您可以查看日志存储部署配置的状态。
获取部署配置的名称:
$ oc get deployment --selector component=elasticsearch -o name
输出示例
deployment.extensions/elasticsearch-cdm-1gon-1 deployment.extensions/elasticsearch-cdm-1gon-2 deployment.extensions/elasticsearch-cdm-1gon-3
获取部署配置状态:
$ oc describe deployment elasticsearch-cdm-1gon-1
输出中包括以下状态信息:
输出示例
.... Containers: elasticsearch: Image: registry.redhat.io/openshift-logging/elasticsearch6-rhel8 Readiness: exec [/usr/share/elasticsearch/probe/readiness.sh] delay=10s timeout=30s period=5s #success=1 #failure=3 .... Conditions: Type Status Reason ---- ------ ------ Progressing Unknown DeploymentPaused Available True MinimumReplicasAvailable .... Events: <none>
- 日志存储副本集
您可以查看日志存储副本集的状态。
获取副本集的名称:
$ oc get replicaSet --selector component=elasticsearch -o name replicaset.extensions/elasticsearch-cdm-1gon-1-6f8495 replicaset.extensions/elasticsearch-cdm-1gon-2-5769cf replicaset.extensions/elasticsearch-cdm-1gon-3-f66f7d
获取副本集的状态:
$ oc describe replicaSet elasticsearch-cdm-1gon-1-6f8495
输出中包括以下状态信息:
输出示例
.... Containers: elasticsearch: Image: registry.redhat.io/openshift-logging/elasticsearch6-rhel8@sha256:4265742c7cdd85359140e2d7d703e4311b6497eec7676957f455d6908e7b1c25 Readiness: exec [/usr/share/elasticsearch/probe/readiness.sh] delay=10s timeout=30s period=5s #success=1 #failure=3 .... Events: <none>
3.4.3. Elasticsearch 集群状态
OpenShift Cluster Manager 控制台的 Observe 部分中的仪表板显示 Elasticsearch 集群的状态。
要获取 OpenShift Elasticsearch 集群的状态,请访问位于 <cluster_url>/monitoring/dashboards/grafana-dashboard-cluster-logging
的 OpenShift Cluster Manager 的 Observe 部分中的仪表板。
Elasticsearch 状态字段
eo_elasticsearch_cr_cluster_management_state
显示 Elasticsearch 集群是否处于受管状态或非受管状态。例如:
eo_elasticsearch_cr_cluster_management_state{state="managed"} 1 eo_elasticsearch_cr_cluster_management_state{state="unmanaged"} 0
eo_elasticsearch_cr_restart_total
显示 Elasticsearch 节点重启证书、滚动重启或调度重启的次数。例如:
eo_elasticsearch_cr_restart_total{reason="cert_restart"} 1 eo_elasticsearch_cr_restart_total{reason="rolling_restart"} 1 eo_elasticsearch_cr_restart_total{reason="scheduled_restart"} 3
es_index_namespaces_total
显示 Elasticsearch 索引命名空间的总数。例如:
Total number of Namespaces. es_index_namespaces_total 5
es_index_document_count
显示每个命名空间的记录数。例如:
es_index_document_count{namespace="namespace_1"} 25 es_index_document_count{namespace="namespace_2"} 10 es_index_document_count{namespace="namespace_3"} 5
"Secret Elasticsearch fields are either missing or empty" 信息
如果 Elasticsearch 缺少 admin-cert
、admin-key
、logging-es.crt
或 logging-es.key
文件,仪表板会显示类似以下示例的状态消息:
message": "Secret \"elasticsearch\" fields are either missing or empty: [admin-cert, admin-key, logging-es.crt, logging-es.key]", "reason": "Missing Required Secrets",
第 4 章 关于日志记录
作为集群管理员,您可以在 OpenShift Dedicated 集群上部署 logging,并使用它来收集和聚合节点系统日志、应用程序容器日志和基础架构日志。您可以将日志转发到所选的日志输出,包括在线集群、红帽管理的日志存储。您还可以视觉化 OpenShift Dedicated Web 控制台或 Kibana Web 控制台中的日志数据,具体取决于您部署的日志存储解决方案。
Kibana Web 控制台现已弃用,计划在以后的日志记录发行版本中删除。
OpenShift Dedicated 集群管理员可以使用 Operator 部署日志记录。如需更多信息,请参阅安装日志记录。
Operator 负责部署、升级和维护日志记录。安装 Operator 后,您可以创建一个 ClusterLogging
自定义资源(CR)来调度日志记录 pod 和支持日志记录所需的其他资源。您还可以创建一个 ClusterLogForwarder
CR 来指定收集哪些日志、如何转换日志以及它们被转发到的位置。
由于内部 OpenShift Dedicated Elasticsearch 日志存储无法为审计日志提供安全存储,所以审计日志默认不会存储在内部 Elasticsearch 实例中。如果要将审计日志发送到默认的内部 Elasticsearch 日志存储,例如要在 Kibana 中查看审计日志,则必须使用 Log Forwarding API,如 将审计日志转发到日志存储 中所述。
4.1. 日志记录架构
日志记录的主要组件有:
- Collector
收集器是一个守护进程集,它将 pod 部署到每个 OpenShift Dedicated 节点。它从每个节点收集日志数据,转换数据并将其转发到配置的输出。您可以使用 Vector 收集器或旧的 Fluentd 收集器。
注意Fluentd 已被弃用,计划在以后的发行版本中删除。红帽将在当前发行生命周期中将提供对这个功能的 bug 修复和支持,但此功能将不再获得改进。作为 Fluentd 的替代选择,您可以使用 Vector。
- 日志存储
日志存储存储用于分析的日志数据,是日志转发器的默认输出。您可以使用默认的 LokiStack 日志存储、传统的 Elasticsearch 日志存储,或将日志转发到额外的外部日志存储。
注意Logging 5.9 发行版本不包含 OpenShift Elasticsearch Operator 的更新版本。如果您目前使用随 Logging 5.8 发布的 OpenShift Elasticsearch Operator,它将继续使用 Logging,直到 Logging 5.8 的 EOL 为止。您可以使用 Loki Operator 作为 OpenShift Elasticsearch Operator 的替代方案来管理默认日志存储。如需有关日志记录生命周期日期的更多信息,请参阅平台 Agnostic Operator。
- 视觉化
您可以使用 UI 组件查看日志数据的可视化表示。UI 提供了一个图形界面,用于搜索、查询和查看存储的日志。OpenShift Dedicated Web 控制台 UI 通过启用 OpenShift Dedicated 控制台插件来提供。
注意Kibana Web 控制台现已弃用,计划在以后的日志记录发行版本中删除。
日志记录收集容器日志和节点日志。它们被归类为:
- 应用程序日志
- 由集群中运行的用户应用程序生成的容器日志(基础架构容器应用程序除外)。
- 基础架构日志
-
由基础架构命名空间生成的容器日志:
openshift*
、kube*
或default
,以及来自节点的 journald 信息。 - 审计日志
-
由 auditd 生成的日志,节点审计系统存储在 /var/log/audit/audit.log 文件中,以及
auditd
、kube-apiserver
、openshift-apiserver
服务以及ovn
项目(如果启用)中的日志。
其他资源
4.2. 关于部署日志记录
管理员可以使用 OpenShift Dedicated Web 控制台或 OpenShift CLI (oc
) 来安装 logging Operator。Operator 负责部署、升级和维护日志记录。
管理员和应用程序开发人员可以查看他们具有查看访问权限的项目的日志。
4.2.1. 日志记录自定义资源
您可以使用每个 Operator 实施的自定义资源 (CR) YAML 文件配置日志记录部署。
Red Hat OpenShift Logging Operator :
-
ClusterLogging
(CL) - 安装 Operator 后,您可以创建一个ClusterLogging
自定义资源 (CR) 来调度 logging pod 和支持 logging 所需的其他资源。ClusterLogging
CR 部署收集器和转发器,当前都由每个节点上运行的 daemonset 实施。Red Hat OpenShift Logging Operator 会监视ClusterLogging
CR,并相应地调整日志记录部署。 -
ClusterLogForwarder
(CLF)- 生成收集器配置,以为每个用户配置转发日志。
Loki Operator :
-
LokiStack
- 将 Loki 集群控制为日志存储,以及带有 OpenShift Dedicated 身份验证集成的 Web 代理,以强制实施多租户。
OpenShift Elasticsearch Operator :
这些 CR 由 OpenShift Elasticsearch Operator 生成和管理。在 Operator 被覆盖的情况下,无法进行手动更改。
-
Elasticsearch
- 配置和部署 Elasticsearch 实例作为默认日志存储。 -
Kibana
- 配置和部署 Kibana 实例以搜索、查询和查看日志。
4.2.2. 日志记录要求
托管您自己的日志记录堆栈需要大量计算资源和存储,这可能取决于您的云服务配额。计算资源要求可以从 48 GB 或更多 GB 开始,而存储要求可能会为 1600 GB 或更多。日志记录堆栈在 worker 节点上运行,这可减少您的可用工作负载资源。考虑到这些注意事项,托管您自己的日志记录堆栈会增加集群操作成本。
如需更多信息,请参阅关于日志收集和转发。
4.2.3. 关于 JSON OpenShift Dedicated Logging
您可以使用 JSON 日志记录配置 Log Forwarding API,将 JSON 字符串解析为结构化对象。您可以执行以下任务:
- 解析 JSON 日志
- 为 Elasticsearch 配置 JSON 日志数据
- 将 JSON 日志转发到 Elasticsearch 日志存储
4.2.4. 关于收集并存储 Kubernetes 事件
OpenShift Dedicated 事件路由器是一个 pod,它监视 Kubernetes 事件,并通过 OpenShift Dedicated Logging 记录它们以收集。您必须手动部署 Event Router。
如需更多信息,请参阅关于收集和存储 Kubernetes 事件。
4.2.5. 关于 OpenShift Dedicated Logging 故障排除
您可以通过执行以下任务排除日志问题:
- 查看日志记录状态
- 查看日志存储的状态
- 了解日志记录警报
- 为红帽支持收集日志记录数据
- 关键警报故障排除
4.2.6. 关于导出字段
日志记录系统导出字段。导出的字段出现在日志记录中,可从 Elasticsearch 和 Kibana 搜索。
如需更多信息,请参阅关于导出字段。
4.2.7. 关于事件路由
Event Router 是一个 pod,它监视 OpenShift Dedicated 事件,以便通过日志记录来收集这些事件。Event Router 从所有项目收集事件,并将其写入 STDOUT
。Fluentd 收集这些事件并将其转发到 OpenShift Dedicated Elasticsearch 实例。Elasticsearch 将事件索引到 infra
索引。
您必须手动部署 Event Router。
如需更多信息,请参阅收集并存储 Kubernetes 事件。
第 5 章 安装日志记录
OpenShift Dedicated Operator 使用自定义资源(CR)来管理应用程序及其组件。高级配置和设置由 CR 中的用户提供。Operator 根据 Operator 逻辑中嵌入的最佳实践,将高级别指令转换为低级操作。自定义资源定义(CRD)定义了一个 CR,并列出 Operator 用户可用的所有配置。安装 Operator 会创建 CRD,然后用于生成 CR。
您必须在日志存储 Operator 后 安装 Red Hat OpenShift Logging Operator。
您可以通过安装 Loki Operator 或 OpenShift Elasticsearch Operator 来部署日志记录,以管理您的日志存储,然后是 Red Hat OpenShift Logging Operator 来管理日志记录的组件。您可以使用 OpenShift Dedicated Web 控制台或 OpenShift Dedicated CLI 安装或配置日志记录。
Logging 5.9 发行版本不包含 OpenShift Elasticsearch Operator 的更新版本。如果您目前使用随 Logging 5.8 发布的 OpenShift Elasticsearch Operator,它将继续使用 Logging,直到 Logging 5.8 的 EOL 为止。您可以使用 Loki Operator 作为 OpenShift Elasticsearch Operator 的替代方案来管理默认日志存储。如需有关日志记录生命周期日期的更多信息,请参阅平台 Agnostic Operator。
您还可以应用所有示例对象。
5.1. 使用 Web 控制台安装 Elasticsearch
您可以使用 OpenShift Dedicated Web 控制台安装 OpenShift Elasticsearch 和 Red Hat OpenShift Logging Operator。Elasticsearch 是内存密集型应用程序。默认情况下,OpenShift Dedicated 安装三个 Elasticsearch 节点,内存请求和限值为 16 GB。初始设置的三个 OpenShift Dedicated 节点可能没有足够的内存在集群中运行 Elasticsearch。如果遇到与 Elasticsearch 相关的内存问题,在集群中添加更多 Elasticsearch 节点,而不是增加现有节点上的内存。
如果您不希望使用默认的 Elasticsearch 日志存储,您可以从 ClusterLogging
自定义资源 (CR) 中删除内部 Elasticsearch logStore
和 Kibana visualization
组件。删除这些组件是可选的,但会保存资源。
先决条件
确保具有 Elasticsearch 所需的持久性存储。注意每个 Elasticsearch 节点都需要自己的存储卷。
注意如果将本地卷用于持久性存储,请不要使用原始块卷,这在
LocalVolume
对象中的volumeMode: block
描述。Elasticsearch 无法使用原始块卷。
流程
使用 OpenShift Dedicated Web 控制台安装 OpenShift Elasticsearch Operator 和 Red Hat OpenShift Logging Operator:
安装 OpenShift Elasticsearch Operator:
- 在 OpenShift Dedicated Web 控制台中,点 Operators → OperatorHub。
- 从可用的 Operator 列表中选择 OpenShift Elasticsearch Operator,然后点 Install。
- 确定在 Installation Mode 下选择了 All namespaces on the cluster。
确定在 Installed Namespace 下选择了 openshift-operators-redhat。
您必须指定
openshift-operators-redhat
命名空间。openshift-operators
命名空间可能会包含社区提供的 operator。这些 operator 不被信任,其发布的 metric 可能与 OpenShift Dedicated 的名称相同,从而导致冲突。选择 Enable Operator recommended cluster monitoring on this namespace。
这个选项在 Namespace 对象中设置
openshift.io/cluster-monitoring: "true"
标识。您必须设置这个选项,以确保集群监控提取openshift-operators-redhat
命名空间。选择 stable-5.y 作为 更新频道。
注意stable 频道只为日志记录的最新版本提供更新。要继续获得之前版本的更新,您必须将订阅频道改为 stable-x.y,其中
x.y
代表您安装的日志记录的主版本和次版本。例如,stable-5.7。选择一个批准策略。
- Automatic 策略允许 Operator Lifecycle Manager(OLM)在有新版本可用时自动更新 Operator。
- Manual 策略需要拥有适当凭证的用户批准 Operator 更新。
- 点 Install。
- 通过切换到 Operators → Installed Operators 页来验证 OpenShift Elasticsearch Operator 已被安装。
- 确定 OpenShift Elasticsearch Operator 在所有项目中被列出,请 Status 为 Succeeded。
安装 Red Hat OpenShift Logging Operator:
- 在 OpenShift Dedicated Web 控制台中,点 Operators → OperatorHub。
- 从可用的 Operator 列表中选择 Red Hat OpenShift Logging,然后点 Install。
- 确定在 Installation Mode 下选择了 A specific namespace on the cluster。
- 确定在 Installed Namespace 下的 Operator recommended namespace 是 openshift-logging。
选择 Enable Operator recommended cluster monitoring on this namespace。
这个选项在 Namespace 对象中设置
openshift.io/cluster-monitoring: "true"
标识。您必须选择这个选项,以确保集群监控提取openshift-logging
命名空间。- 选择 stable-5.y 作为 更新频道。
选择一个批准策略。
- Automatic 策略允许 Operator Lifecycle Manager(OLM)在有新版本可用时自动更新 Operator。
- Manual 策略需要拥有适当凭证的用户批准 Operator 更新。
- 点 Install。
- 通过切换到 Operators → Installed Operators 页来验证 Red Hat OpenShift Logging Operator 已被安装。
确保 openshift-logging 项目中列出的 Red Hat OpenShift Logging 的 Status 为 InstallSucceeded。
如果 Operator 没有被成功安装,请按照以下步骤进行故障排除:
- 切换到 Operators → Installed Operators 页面,并检查 Status 列中是否有任何错误或故障。
-
切换到 Workloads → Pods 页面,并检查
openshift-logging
项目中报告问题的 pod 的日志。
创建 OpenShift Logging 实例:
- 切换到 Administration → Custom Resource Definitions 页面。
- 在 Custom Resource Definitions 页面上,点 ClusterLogging。
- 在 Custom Resource Definition details 页中,从 Actions 菜单中选择 View Instances。
在 ClusterLoggings 页中,点 Create ClusterLogging。
您可能需要刷新页面来加载数据。
将 YAML 项中的代码替换为以下内容:
注意此默认 OpenShift Logging 配置应该可以支持各种环境。参阅有关调优和配置日志记录子系统组件的主题,以了解有关可对 OpenShift Logging 集群进行修改的信息。
apiVersion: logging.openshift.io/v1 kind: ClusterLogging metadata: name: instance 1 namespace: openshift-logging spec: managementState: Managed 2 logStore: type: elasticsearch 3 retentionPolicy: 4 application: maxAge: 1d infra: maxAge: 7d audit: maxAge: 7d elasticsearch: nodeCount: 3 5 storage: storageClassName: <storage_class_name> 6 size: 200G resources: 7 limits: memory: 16Gi requests: memory: 16Gi proxy: 8 resources: limits: memory: 256Mi requests: memory: 256Mi redundancyPolicy: SingleRedundancy visualization: type: kibana 9 kibana: replicas: 1 collection: type: fluentd 10 fluentd: {}
- 1
- 名称必须是
instance
。 - 2
- OpenShift Logging 管理状态。在一些数情况下,如果更改了 OpenShift Logging 的默认值,则必须将其设置为
Unmanaged
。但是,非受管部署不接收更新,直到 OpenShift Logging 重新变为受管状态为止。 - 3
- 用于配置 Elasticsearch 的设置。通过使用 CR,您可以配置分片复制策略和持久性存储。
- 4
- 指定 Elasticsearch 应该保留每个日志源的时间长度。输入一个整数和时间单位: 周(w)、小时(h/H)、分钟(m)和秒。例如,
7d
代表 7 天。时间超过maxAge
的旧日志会被删除。您必须为每个日志源指定一个保留策略,否则不会为该源创建 Elasticsearch 索引。 - 5
- 指定 Elasticsearch 节点的数量。请参阅此列表后面的备注。
- 6
- 为 Elasticsearch 存储输入现有存储类的名称。为获得最佳性能,请指定分配块存储的存储类。如果没有指定存储类,OpenShift Logging 将使用临时存储。
- 7
- 根据需要指定 Elasticsearch 的 CPU 和内存请求。如果这些值留白,则 OpenShift Elasticsearch Operator 会设置默认值,它们应足以满足大多数部署的需要。内存请求的默认值为
16Gi
,CPU 请求为1
。 - 8
- 根据需要指定 Elasticsearch 代理的 CPU 和内存请求。如果这些值留白,则 OpenShift Elasticsearch Operator 会设置默认值,它们应足以满足大多数部署的需要。内存请求的默认值为
256Mi
,CPU 请求的默认值为100m
。 - 9
- 用于配置 Kibana 的设置。通过使用 CR,您可以扩展 Kibana 来实现冗余性,并为 Kibana 节点配置 CPU 和内存。如需更多信息,请参阅配置日志可视化工具。
- 10
- 用于配置 Fluentd 的设置。通过使用 CR,您可以配置 Fluentd CPU 和内存限值。如需更多信息,请参阅"配置 Fluentd"。
注意master 节点的最大数量为三个。如果您将
nodeCount
指定为大于3
,OpenShift Dedicated 只会创建三个符合 Master 节点条件的 Elasticsearch 节点(具有 master、client 和 data 角色)。其余 Elasticsearch 节点创建为“仅数据”节点,使用 client 和 data 角色。Master 节点执行集群范围的操作,如创建或删除索引、分配分片和跟踪节点等。数据节点保管分片,并执行与数据相关的操作,如 CRUD、搜索和聚合等。与数据相关的操作会占用大量 I/O、内存和 CPU。务必要监控这些资源,并在当前节点过载时添加更多数据节点。例如,如果
nodeCount = 4
,则创建以下节点:$ oc get deployment
输出示例
cluster-logging-operator-66f77ffccb-ppzbg 1/1 Running 0 7m elasticsearch-cd-tuhduuw-1-f5c885dbf-dlqws 1/1 Running 0 2m4s elasticsearch-cdm-ftuhduuw-1-ffc4b9566-q6bhp 2/2 Running 0 2m40s elasticsearch-cdm-ftuhduuw-2-7b4994dbfc-rd2gc 2/2 Running 0 2m36s elasticsearch-cdm-ftuhduuw-3-84b5ff7ff8-gqnm2 2/2 Running 0 2m4s
-
点 Create。这将创建日志记录组件、
Elasticsearch
自定义资源和组件以及 Kibana 接口。
验证安装:
- 切换到 Workloads → Pods 页面。
选择 openshift-logging 项目。
您应该会看到几个用于 OpenShift Logging、Elasticsearch、收集器和 Kibana 的 pod,类似于以下列表:
输出示例
cluster-logging-operator-66f77ffccb-ppzbg 1/1 Running 0 7m elasticsearch-cdm-ftuhduuw-1-ffc4b9566-q6bhp 2/2 Running 0 2m40s elasticsearch-cdm-ftuhduuw-2-7b4994dbfc-rd2gc 2/2 Running 0 2m36s elasticsearch-cdm-ftuhduuw-3-84b5ff7ff8-gqnm2 2/2 Running 0 2m4s collector-587vb 1/1 Running 0 2m26s collector-7mpb9 1/1 Running 0 2m30s collector-flm6j 1/1 Running 0 2m33s collector-gn4rn 1/1 Running 0 2m26s collector-nlgb6 1/1 Running 0 2m30s collector-snpkt 1/1 Running 0 2m28s kibana-d6d5668c5-rppqm 2/2 Running 0 2m39s
5.2. 使用 CLI 安装 Elasticsearch 的日志记录
Elasticsearch 是内存密集型应用程序。默认情况下,OpenShift Dedicated 安装三个 Elasticsearch 节点,内存请求和限值为 16 GB。初始设置的三个 OpenShift Dedicated 节点可能没有足够的内存在集群中运行 Elasticsearch。如果遇到与 Elasticsearch 相关的内存问题,在集群中添加更多 Elasticsearch 节点,而不是增加现有节点上的内存。
先决条件
确保具有 Elasticsearch 所需的持久性存储。注意每个 Elasticsearch 节点都需要自己的存储卷。
注意如果将本地卷用于持久性存储,请不要使用原始块卷,这在
LocalVolume
对象中的volumeMode: block
描述。Elasticsearch 无法使用原始块卷。
流程
为 OpenShift Elasticsearch Operator 创建
Namespace
对象:Namespace
对象示例apiVersion: v1 kind: Namespace metadata: name: openshift-operators-redhat 1 annotations: openshift.io/node-selector: "" labels: openshift.io/cluster-monitoring: "true" 2
运行以下命令来应用
Namespace
对象:$ oc apply -f <filename>.yaml
为 Red Hat OpenShift Logging Operator 创建一个
Namespace
对象:Namespace
对象示例apiVersion: v1 kind: Namespace metadata: name: openshift-logging 1 annotations: openshift.io/node-selector: "" labels: openshift.io/cluster-monitoring: "true"
- 1
- 您必须将
openshift-logging
指定为日志记录版本 5.7 及更早版本的命名空间。对于日志记录 5.8 及更新的版本,您可以使用任何命名空间。
运行以下命令来应用
Namespace
对象:$ oc apply -f <filename>.yaml
为 OpenShift Elasticsearch Operator 创建
OperatorGroup
对象:OperatorGroup
对象示例apiVersion: operators.coreos.com/v1 kind: OperatorGroup metadata: name: openshift-operators-redhat namespace: openshift-operators-redhat 1 spec: {}
- 1
- 您必须指定
openshift-operators-redhat
命名空间。
运行以下命令来应用
OperatorGroup
对象:$ oc apply -f <filename>.yaml
创建一个
Subscription
对象来订阅 OpenShift Elasticsearch Operator 的命名空间:注意stable 频道只为日志记录的最新版本提供更新。要继续获得之前版本的更新,您必须将订阅频道改为 stable-x.y,其中
x.y
代表您安装的日志记录的主版本和次版本。例如,stable-5.7。Subscription
对象示例apiVersion: operators.coreos.com/v1alpha1 kind: Subscription metadata: name: elasticsearch-operator namespace: openshift-operators-redhat 1 spec: channel: <channel> 2 installPlanApproval: Automatic 3 source: redhat-operators 4 sourceNamespace: openshift-marketplace name: elasticsearch-operator
- 1
- 您必须指定
openshift-operators-redhat
命名空间。 - 2
- 指定
stable
, 或stable-x.y
作为频道。 - 3
Automatic
允许 Operator Lifecycle Manager (OLM) 在有新版本可用时自动更新 Operator。Manual
要求具有适当凭证的用户批准 Operator 更新。- 4
- 指定
redhat-operators
。如果 OpenShift Dedicated 集群安装在受限网络中(也称为断开连接的集群),请指定配置 Operator Lifecycle Manager (OLM)时创建的CatalogSource
对象的名称。
运行以下命令来应用订阅:
$ oc apply -f <filename>.yaml
运行以下命令验证 Operator 已被删除:
$ oc get csv --all-namespaces
输出示例
NAMESPACE NAME DISPLAY VERSION REPLACES PHASE default elasticsearch-operator.v5.8.3 OpenShift Elasticsearch Operator 5.8.3 elasticsearch-operator.v5.8.2 Succeeded kube-node-lease elasticsearch-operator.v5.8.3 OpenShift Elasticsearch Operator 5.8.3 elasticsearch-operator.v5.8.2 Succeeded kube-public elasticsearch-operator.v5.8.3 OpenShift Elasticsearch Operator 5.8.3 elasticsearch-operator.v5.8.2 Succeeded kube-system elasticsearch-operator.v5.8.3 OpenShift Elasticsearch Operator 5.8.3 elasticsearch-operator.v5.8.2 Succeeded openshift-apiserver-operator elasticsearch-operator.v5.8.3 OpenShift Elasticsearch Operator 5.8.3 elasticsearch-operator.v5.8.2 Succeeded openshift-apiserver elasticsearch-operator.v5.8.3 OpenShift Elasticsearch Operator 5.8.3 elasticsearch-operator.v5.8.2 Succeeded openshift-authentication-operator elasticsearch-operator.v5.8.3 OpenShift Elasticsearch Operator 5.8.3 elasticsearch-operator.v5.8.2 Succeeded openshift-authentication elasticsearch-operator.v5.8.3 OpenShift Elasticsearch Operator 5.8.3 elasticsearch-operator.v5.8.2 Succeeded openshift-cloud-controller-manager-operator elasticsearch-operator.v5.8.3 OpenShift Elasticsearch Operator 5.8.3 elasticsearch-operator.v5.8.2 Succeeded openshift-cloud-controller-manager elasticsearch-operator.v5.8.3 OpenShift Elasticsearch Operator 5.8.3 elasticsearch-operator.v5.8.2 Succeeded openshift-cloud-credential-operator elasticsearch-operator.v5.8.3 OpenShift Elasticsearch Operator 5.8.3 elasticsearch-operator.v5.8.2 Succeeded
为 Red Hat OpenShift Logging Operator 创建
OperatorGroup
对象:OperatorGroup
对象示例apiVersion: operators.coreos.com/v1 kind: OperatorGroup metadata: name: cluster-logging namespace: openshift-logging 1 spec: targetNamespaces: - openshift-logging 2
运行以下命令来应用
OperatorGroup
对象:$ oc apply -f <filename>.yaml
创建一个
Subscription
对象来订阅 Red Hat OpenShift Logging Operator 的命名空间:Subscription
对象示例apiVersion: operators.coreos.com/v1alpha1 kind: Subscription metadata: name: cluster-logging namespace: openshift-logging 1 spec: channel: stable 2 name: cluster-logging source: redhat-operators 3 sourceNamespace: openshift-marketplace
运行以下命令来应用
Subscription
对象:$ oc apply -f <filename>.yaml
将
ClusterLogging
对象创建为 YAML 文件:ClusterLogging
对象示例apiVersion: logging.openshift.io/v1 kind: ClusterLogging metadata: name: instance 1 namespace: openshift-logging spec: managementState: Managed 2 logStore: type: elasticsearch 3 retentionPolicy: 4 application: maxAge: 1d infra: maxAge: 7d audit: maxAge: 7d elasticsearch: nodeCount: 3 5 storage: storageClassName: <storage_class_name> 6 size: 200G resources: 7 limits: memory: 16Gi requests: memory: 16Gi proxy: 8 resources: limits: memory: 256Mi requests: memory: 256Mi redundancyPolicy: SingleRedundancy visualization: type: kibana 9 kibana: replicas: 1 collection: type: fluentd 10 fluentd: {}
- 1
- 名称必须是
instance
。 - 2
- OpenShift Logging 管理状态。在一些数情况下,如果更改了 OpenShift Logging 的默认值,则必须将其设置为
Unmanaged
。但是,非受管部署不接收更新,直到 OpenShift Logging 重新变为受管状态为止。 - 3
- 用于配置 Elasticsearch 的设置。通过使用 CR,您可以配置分片复制策略和持久性存储。
- 4
- 指定 Elasticsearch 应该保留每个日志源的时间长度。输入一个整数和时间单位: 周(w)、小时(h/H)、分钟(m)和秒。例如,
7d
代表 7 天。时间超过maxAge
的旧日志会被删除。您必须为每个日志源指定一个保留策略,否则不会为该源创建 Elasticsearch 索引。 - 5
- 指定 Elasticsearch 节点的数量。
- 6
- 为 Elasticsearch 存储输入现有存储类的名称。为获得最佳性能,请指定分配块存储的存储类。如果没有指定存储类,OpenShift Logging 将使用临时存储。
- 7
- 根据需要指定 Elasticsearch 的 CPU 和内存请求。如果这些值留白,则 OpenShift Elasticsearch Operator 会设置默认值,它们应足以满足大多数部署的需要。内存请求的默认值为
16Gi
,CPU 请求为1
。 - 8
- 根据需要指定 Elasticsearch 代理的 CPU 和内存请求。如果这些值留白,则 OpenShift Elasticsearch Operator 会设置默认值,它们应足以满足大多数部署的需要。内存请求的默认值为
256Mi
,CPU 请求的默认值为100m
。 - 9
- 用于配置 Kibana 的设置。通过使用 CR,您可以扩展 Kibana 来实现冗余性,并为 Kibana 节点配置 CPU 和内存。
- 10
- 用于配置 Fluentd 的设置。通过使用 CR,您可以配置 Fluentd CPU 和内存限值。
注意master 节点的最大数量为三个。如果您将
nodeCount
指定为大于3
,OpenShift Dedicated 只会创建三个符合 Master 节点条件的 Elasticsearch 节点(具有 master、client 和 data 角色)。其余 Elasticsearch 节点创建为“仅数据”节点,使用 client 和 data 角色。Master 节点执行集群范围的操作,如创建或删除索引、分配分片和跟踪节点等。数据节点保管分片,并执行与数据相关的操作,如 CRUD、搜索和聚合等。与数据相关的操作会占用大量 I/O、内存和 CPU。务必要监控这些资源,并在当前节点过载时添加更多数据节点。例如,如果
nodeCount = 4
,则创建以下节点:$ oc get deployment
输出示例
cluster-logging-operator-66f77ffccb-ppzbg 1/1 Running 0 7m elasticsearch-cdm-ftuhduuw-1-ffc4b9566-q6bhp 2/2 Running 0 2m40s elasticsearch-cdm-ftuhduuw-2-7b4994dbfc-rd2gc 2/2 Running 0 2m36s elasticsearch-cdm-ftuhduuw-3-84b5ff7ff8-gqnm2 2/2 Running 0 2m4s
运行以下命令来应用
ClusterLogging
CR:$ oc apply -f <filename>.yaml
运行以下命令来验证安装。
$ oc get pods -n openshift-logging
输出示例
NAME READY STATUS RESTARTS AGE cluster-logging-operator-66f77ffccb-ppzbg 1/1 Running 0 7m elasticsearch-cdm-ftuhduuw-1-ffc4b9566-q6bhp 2/2 Running 0 2m40s elasticsearch-cdm-ftuhduuw-2-7b4994dbfc-rd2gc 2/2 Running 0 2m36s elasticsearch-cdm-ftuhduuw-3-84b5ff7ff8-gqnm2 2/2 Running 0 2m4s collector-587vb 1/1 Running 0 2m26s collector-7mpb9 1/1 Running 0 2m30s collector-flm6j 1/1 Running 0 2m33s collector-gn4rn 1/1 Running 0 2m26s collector-nlgb6 1/1 Running 0 2m30s collector-snpkt 1/1 Running 0 2m28s kibana-d6d5668c5-rppqm 2/2 Running 0 2m39s
如果没有在 s3 存储桶或 LokiStack 自定义资源(CR)中定义保留周期,则不会修剪日志,它们会永久保留在 s3 存储桶中,这可能会填满 s3 存储。
5.3. 使用 CLI 安装 Logging 和 Loki Operator
要在 OpenShift Dedicated 集群上安装和配置日志,必须首先安装用于日志存储的 Operator,如 Loki Operator。这可以通过 OpenShift Dedicated CLI 完成。
先决条件
- 有管理员权限。
-
已安装 OpenShift CLI(
oc
)。 - 您可以访问受支持的对象存储。例如:AWS S3、Google Cloud Storage、Azure、Swift、Minio 或 OpenShift Data Foundation。
stable 频道只为日志记录的最新版本提供更新。要继续获得之前版本的更新,您必须将订阅频道改为 stable-x.y,其中 x.y
代表您安装的日志记录的主版本和次版本。例如,stable-5.7。
为 Loki Operator 创建一个
Namespace
对象:Namespace
对象示例apiVersion: v1 kind: Namespace metadata: name: openshift-operators-redhat 1 annotations: openshift.io/node-selector: "" labels: openshift.io/cluster-monitoring: "true" 2
- 1
- 您必须指定
openshift-operators-redhat
命名空间。为了防止可能与指标(metrics)冲突,您应该将 Prometheus Cluster Monitoring 堆栈配置为从openshift-operators-redhat
命名空间中提取指标数据,而不是从openshift-operators
命名空间中提取。openshift-operators
命名空间可能会包含社区提供的 operator。这些 operator 不被信任,其发布的 metric 可能与 OpenShift Dedicated 的名称相同,从而导致冲突。 - 2
- 指定所示的标签的字符串值,以确保集群监控提取
openshift-operators-redhat
命名空间。
运行以下命令来应用
Namespace
对象:$ oc apply -f <filename>.yaml
为 Loki Operator 创建一个
Subscription
对象:Subscription
对象示例apiVersion: operators.coreos.com/v1alpha1 kind: Subscription metadata: name: loki-operator namespace: openshift-operators-redhat 1 spec: channel: stable 2 name: loki-operator source: redhat-operators 3 sourceNamespace: openshift-marketplace
运行以下命令来应用
Subscription
对象:$ oc apply -f <filename>.yaml
为 Red Hat OpenShift Logging Operator 创建一个
Namespace
对象:namespace
对象示例apiVersion: v1 kind: Namespace metadata: name: openshift-logging 1 annotations: openshift.io/node-selector: "" labels: openshift.io/cluster-logging: "true" openshift.io/cluster-monitoring: "true" 2
运行以下命令来应用
namespace
对象:$ oc apply -f <filename>.yaml
创建一个
OperatorGroup
对象:OperatorGroup
对象示例apiVersion: operators.coreos.com/v1 kind: OperatorGroup metadata: name: cluster-logging namespace: openshift-logging 1 spec: targetNamespaces: - openshift-logging
- 1
- 您必须指定
openshift-logging
命名空间。
运行以下命令来应用
OperatorGroup
对象:$ oc apply -f <filename>.yaml
创建
Subscription
对象:apiVersion: operators.coreos.com/v1alpha1 kind: Subscription metadata: name: cluster-logging namespace: openshift-logging 1 spec: channel: stable 2 name: cluster-logging source: redhat-operators 3 sourceNamespace: openshift-marketplace
运行以下命令来应用
Subscription
对象:$ oc apply -f <filename>.yaml
创建
LokiStack
CR:LokiStack
CR 示例apiVersion: loki.grafana.com/v1 kind: LokiStack metadata: name: logging-loki 1 namespace: openshift-logging 2 spec: size: 1x.small 3 storage: schemas: - version: v12 effectiveDate: "2022-06-01" secret: name: logging-loki-s3 4 type: s3 5 credentialMode: 6 storageClassName: <storage_class_name> 7 tenants: mode: openshift-logging 8
- 1
- 使用名称
logging-loki
。 - 2
- 您必须指定
openshift-logging
命名空间。 - 3
- 指定部署大小。在日志记录 5.8 及更新的版本中,Loki 实例支持的大小选项为
1x.extra-small
、1x.small
或1x.medium
。 - 4
- 指定日志存储 secret 的名称。
- 5
- 指定对应的存储类型。
- 6
- 可选字段,日志记录 5.9 及更新的版本。支持的用户配置值如下:
static
是所有受支持的对象存储类型的默认身份验证模式,使用存储在 Secret 中的凭证。从凭证源检索的短期令牌。在这个模式中,静态配置不包含对象存储所需的凭证。相反,它们会使用服务在运行时生成,允许提供较短的凭证,以及更精细的控制。所有对象存储类型不支持这个身份验证模式。当 Loki 在受管 STS 模式下运行并使用 CCO on STS/WIF 集群时,
token-cco
是默认值。 - 7
- 为临时存储指定存储类的名称。为获得最佳性能,请指定分配块存储的存储类。可以使用
oc get storageclasses
命令列出集群的可用存储类。 - 8
- LokiStack 默认为以多租户模式运行,无法修改。为每个日志类型提供一个租户: audit、infrastructure 和 application logs。这为单个用户和用户组启用对不同的日志流的访问控制。
运行以下命令来应用
LokiStack CR
对象:$ oc apply -f <filename>.yaml
创建一个
ClusterLogging
CR 实例。ClusterLogging CR 对象示例
apiVersion: logging.openshift.io/v1 kind: ClusterLogging metadata: name: instance 1 namespace: openshift-logging 2 spec: collection: type: vector logStore: lokistack: name: logging-loki retentionPolicy: application: maxAge: 7d audit: maxAge: 7d infra: maxAge: 7d type: lokistack visualization: ocpConsole: logsLimit: 15 managementState: Managed
运行以下命令来应用
ClusterLogging CR
:$ oc apply -f <filename>.yaml
运行以下命令来验证安装。
$ oc get pods -n openshift-logging
输出示例
$ oc get pods -n openshift-logging NAME READY STATUS RESTARTS AGE cluster-logging-operator-fb7f7cf69-8jsbq 1/1 Running 0 98m collector-222js 2/2 Running 0 18m collector-g9ddv 2/2 Running 0 18m collector-hfqq8 2/2 Running 0 18m collector-sphwg 2/2 Running 0 18m collector-vv7zn 2/2 Running 0 18m collector-wk5zz 2/2 Running 0 18m logging-view-plugin-6f76fbb78f-n2n4n 1/1 Running 0 18m lokistack-sample-compactor-0 1/1 Running 0 42m lokistack-sample-distributor-7d7688bcb9-dvcj8 1/1 Running 0 42m lokistack-sample-gateway-5f6c75f879-bl7k9 2/2 Running 0 42m lokistack-sample-gateway-5f6c75f879-xhq98 2/2 Running 0 42m lokistack-sample-index-gateway-0 1/1 Running 0 42m lokistack-sample-ingester-0 1/1 Running 0 42m lokistack-sample-querier-6b7b56bccc-2v9q4 1/1 Running 0 42m lokistack-sample-query-frontend-84fb57c578-gq2f7 1/1 Running 0 42m
5.4. 使用 web 控制台安装 Logging 和 Loki Operator
要在 OpenShift Dedicated 集群上安装和配置日志,必须首先安装用于日志存储的 Operator,如 Loki Operator。这可以通过 web 控制台中的 OperatorHub 完成。
先决条件
- 您可以访问受支持的对象存储 (AWS S3、Google Cloud Storage、Azure、Swift、Minio、OpenShift Data Foundation)。
- 有管理员权限。
- 您可以访问 OpenShift Dedicated Web 控制台。
流程
- 在 OpenShift Dedicated Web 控制台 Administrator 视角中,进入 Operators → OperatorHub。
在 Filter by keyword 字段中输入 Loki Operator。点可用 Operator 列表中的 Loki Operator,然后点 Install。
重要红帽不支持社区版本的 Loki Operator。
选择 stable 或 stable-x.y 作为 更新频道。
注意stable 频道只为日志记录的最新版本提供更新。要继续获得之前版本的更新,您必须将订阅频道改为 stable-x.y,其中
x.y
代表您安装的日志记录的主版本和次版本。例如,stable-5.7。Loki Operator 必须部署到全局 operator 组命名空间
openshift-operators-redhat
,因此已选择了 Installation mode 和 Installed Namespace。如果此命名空间不存在,则会为您创建它。选择 Enable Operator recommended cluster monitoring on this namespace。
这个选项在
Namespace
对象中设置openshift.io/cluster-monitoring: "true"
标签。您必须设置这个选项,以确保集群监控提取openshift-operators-redhat
命名空间。对于 Update approval,请选择 Automatic,然后点 Install。
如果订阅中的批准策略被设置为 Automatic,则更新过程会在所选频道中提供新的 Operator 版本时立即启动。如果批准策略设为 Manual,则必须手动批准待处理的更新。
安装 Red Hat OpenShift Logging Operator:
- 在 OpenShift Dedicated Web 控制台中,点 Operators → OperatorHub。
- 从可用的 Operator 列表中选择 Red Hat OpenShift Logging,然后点 Install。
- 确定在 Installation Mode 下选择了 A specific namespace on the cluster。
- 确定在 Installed Namespace 下的 Operator recommended namespace 是 openshift-logging。
选择 Enable Operator recommended cluster monitoring on this namespace。
这个选项在 Namespace 对象中设置
openshift.io/cluster-monitoring: "true"
标识。您必须选择这个选项,以确保集群监控提取openshift-logging
命名空间。- 选择 stable-5.y 作为 更新频道。
选择一个批准策略。
- Automatic 策略允许 Operator Lifecycle Manager(OLM)在有新版本可用时自动更新 Operator。
- Manual 策略需要拥有适当凭证的用户批准 Operator 更新。
- 点 Install。
- 进入 Operators → Installed Operators 页面。点 All instances 选项卡。
- 在 Create new 下拉列表中,选择 LokiStack。
选择 YAML 视图,然后使用以下模板来创建
LokiStack
CR:LokiStack
CR 示例apiVersion: loki.grafana.com/v1 kind: LokiStack metadata: name: logging-loki 1 namespace: openshift-logging 2 spec: size: 1x.small 3 storage: schemas: - version: v12 effectiveDate: "2022-06-01" secret: name: logging-loki-s3 4 type: s3 5 credentialMode: 6 storageClassName: <storage_class_name> 7 tenants: mode: openshift-logging 8
- 1
- 使用名称
logging-loki
。 - 2
- 您必须指定
openshift-logging
命名空间。 - 3
- 指定部署大小。在日志记录 5.8 及更新的版本中,Loki 实例支持的大小选项为
1x.extra-small
、1x.small
或1x.medium
。 - 4
- 指定日志存储 secret 的名称。
- 5
- 指定对应的存储类型。
- 6
- 可选字段,日志记录 5.9 及更新的版本。支持的用户配置值如下:对于所有被支持的对象存储,静态(static) 是默认的身份验证模式,它使用存储在 Secret 中的凭证。令牌用于从一个凭证源中获取的短生命令牌。在这个模式中,静态配置不包含对象存储所需的凭证。相反,它们会使用服务在运行时生成,允许提供较短的凭证,以及更精细的控制。这个身份验证模式并没有为所有对象存储提供。对于在受管 STS 模式中运行的 Loki, token-cco 是默认值,在 STS/WIF 集群中使用 CCO。
- 7
- 为临时存储指定存储类的名称。为获得最佳性能,请指定分配块存储的存储类。可以使用
oc get storageclasses
命令列出集群的可用存储类。 - 8
- LokiStack 默认为以多租户模式运行,无法修改。为每个日志类型提供一个租户: audit、infrastructure 和 application logs。这为单个用户和用户组启用对不同的日志流的访问控制。
重要对于部署大小,无法更改
1x
值。- 点 Create。
创建 OpenShift Logging 实例:
- 切换到 Administration → Custom Resource Definitions 页面。
- 在 Custom Resource Definitions 页面上,点 ClusterLogging。
- 在 Custom Resource Definition details 页中,从 Actions 菜单中选择 View Instances。
在 ClusterLoggings 页中,点 Create ClusterLogging。
您可能需要刷新页面来加载数据。
将 YAML 项中的代码替换为以下内容:
apiVersion: logging.openshift.io/v1 kind: ClusterLogging metadata: name: instance 1 namespace: openshift-logging 2 spec: collection: type: vector logStore: lokistack: name: logging-loki retentionPolicy: application: maxAge: 7d audit: maxAge: 7d infra: maxAge: 7d type: lokistack visualization: type: ocp-console ocpConsole: logsLimit: 15 managementState: Managed
验证
- 进入 Operators → Installed Operators。
- 确保已选中 openshift-logging 项目。
- 在 Status 列中,验证您看到了绿色的对勾标记,并为 InstallSucceeded,文本 Up to date。
Operator 可能会在安装完成前显示 Failed
状态。如果 Operator 安装完成并显示 InstallSucceeded
信息,请刷新页面。
第 6 章 更新日志记录
有两种日志记录更新: 次版本更新(5.y.z)和主版本更新(5.y)。
6.1. 次发行版本更新
如果您使用 Automatic 更新批准选项安装日志记录 Operator,您的 Operator 会自动接收次版本更新。您不需要完成任何手动更新步骤。
如果使用 Manual 更新批准选项安装日志记录 Operator,您必须手动批准次版本更新。如需更多信息,请参阅 手动批准待处理的 Operator 更新。
6.2. 主发行版本更新
对于主版本更新,您必须完成一些手动步骤。
有关主版本的兼容性和支持信息,请参阅 OpenShift Operator 生命周期。
6.3. 升级 Red Hat OpenShift Logging Operator 以监视所有命名空间
在日志记录 5.7 和旧版本中,Red Hat OpenShift Logging Operator 只监视 openshift-logging
命名空间。如果您希望 Red Hat OpenShift Logging Operator 监视集群中的所有命名空间,您必须重新部署 Operator。您可以完成以下步骤在不删除日志记录组件的情况下重新部署 Operator。
先决条件
-
已安装 OpenShift CLI(
oc
)。 - 有管理员权限。
流程
运行以下命令来删除订阅:
$ oc -n openshift-logging delete subscription <subscription>
运行以下命令来删除 Operator 组:
$ oc -n openshift-logging delete operatorgroup <operator_group_name>
运行以下命令来删除集群服务版本 (CSV):
$ oc delete clusterserviceversion cluster-logging.<version>
- 按照"安装日志记录"文档重新部署 Red Hat OpenShift Logging Operator。
验证
检查
OperatorGroup
资源中的targetNamespaces
字段是否不存在或设置为空字符串。要做到这一点,请运行以下命令并检查输出:
$ oc get operatorgroup <operator_group_name> -o yaml
输出示例
apiVersion: operators.coreos.com/v1 kind: OperatorGroup metadata: name: openshift-logging-f52cn namespace: openshift-logging spec: upgradeStrategy: Default status: namespaces: - "" # ...
6.4. 更新 Red Hat OpenShift Logging Operator
要将 Red Hat OpenShift Logging Operator 更新至新的主版本,您必须修改 Operator 订阅的更新频道。
先决条件
- 已安装 Red Hat OpenShift Logging Operator。
- 有管理员权限。
- 您可以访问 OpenShift Dedicated Web 控制台,并正在查看 Administrator 视角。
流程
- 导航到 Operators → Installed Operators。
- 选择 openshift-logging 项目。
- 点 Red Hat OpenShift Logging Operator。
- 点 Subscription。在 Subscription details 部分,点 Update channel 链接。根据您的当前更新频道,这个链接文本可能是 stable 或 stable-5.y。
-
在 Change Subscription Update Channel 窗口中,选择最新的主版本更新频道 stable-5.y,然后点 Save。请注意
cluster-logging.v5.y.z
版本。
验证
-
等待几秒钟,然后点 Operators → Installed Operators。验证 Red Hat OpenShift Logging Operator 版本是否与最新的
cluster-logging.v5.y.z
版本匹配。 - 在 Operators → Installed Operators 页面中,等待 Status 字段报告 Succeeded。
6.5. 更新 Loki Operator
要将 Loki Operator 更新至一个新的主版本,您必须修改 Operator 订阅的更新频道。
先决条件
- 已安装 Loki Operator。
- 有管理员权限。
- 您可以访问 OpenShift Dedicated Web 控制台,并正在查看 Administrator 视角。
流程
- 导航到 Operators → Installed Operators。
- 选择 openshift-operators-redhat 项目。
- 点 Loki Operator。
- 点 Subscription。在 Subscription details 部分,点 Update channel 链接。根据您的当前更新频道,这个链接文本可能是 stable 或 stable-5.y。
-
在 Change Subscription Update Channel 窗口中,选择最新的主版本更新频道 stable-5.y,然后点 Save。请注意
loki-operator.v5.y.z
版本。
验证
-
等待几秒钟,然后点 Operators → Installed Operators。验证 Loki Operator 版本是否与最新的
loki-operator.v5.y.z
版本匹配。 - 在 Operators → Installed Operators 页面中,等待 Status 字段报告 Succeeded。
6.6. 更新 OpenShift Elasticsearch Operator
要将 OpenShift Elasticsearch Operator 更新至当前版本,您必须修改订阅。
Logging 5.9 发行版本不包含 OpenShift Elasticsearch Operator 的更新版本。如果您目前使用随 Logging 5.8 发布的 OpenShift Elasticsearch Operator,它将继续使用 Logging,直到 Logging 5.8 的 EOL 为止。您可以使用 Loki Operator 作为 OpenShift Elasticsearch Operator 的替代方案来管理默认日志存储。如需有关日志记录生命周期日期的更多信息,请参阅平台 Agnostic Operator。
先决条件
如果您使用 Elasticsearch 作为默认日志存储,且 Kibana 作为 UI,请在更新 Red Hat OpenShift Logging Operator 前更新 OpenShift Elasticsearch Operator。
重要如果您以错误的顺序更新 Operator,则 Kibana 不会更新,并且不会创建 Kibana 自定义资源 (CR)。要解决这个问题,删除 Red Hat OpenShift Logging Operator pod。当 Red Hat OpenShift Logging Operator pod 重新部署时,它会创建 Kibana CR 和 Kibana 再次可用。
Logging 处于健康状态:
-
所有 pod 都处于
ready
状态。 - Elasticsearch 集群处于健康状态。
-
所有 pod 都处于
- 您的 Elasticsearch 和 Kibana 数据已被备份。
- 有管理员权限。
-
您已安装了 OpenShift CLI (
oc
) 进行验证步骤。
流程
- 在 Red Hat Hybrid Cloud Console 中,点 Operators → Installed Operators。
- 选择 openshift-operators-redhat 项目。
- 点 OpenShift Elasticsearch Operator。
- 点 Subscription → Channel。
-
在 Change Subscription Update Channel 窗口中,选择 stable-5.y 并点 Save。注意
elasticsearch-operator.v5.y.z
版本。 -
等待几秒钟,然后点 Operators → Installed Operators。验证 OpenShift Elasticsearch Operator 版本是否与最新的
elasticsearch-operator.v5.y.z
版本匹配。 - 在 Operators → Installed Operators 页面中,等待 Status 字段报告 Succeeded。
验证
输入以下命令并查看输出,验证所有 Elasticsearch pod 的状态是否为 Ready :
$ oc get pod -n openshift-logging --selector component=elasticsearch
输出示例
NAME READY STATUS RESTARTS AGE elasticsearch-cdm-1pbrl44l-1-55b7546f4c-mshhk 2/2 Running 0 31m elasticsearch-cdm-1pbrl44l-2-5c6d87589f-gx5hk 2/2 Running 0 30m elasticsearch-cdm-1pbrl44l-3-88df5d47-m45jc 2/2 Running 0 29m
输入以下命令并查看输出来验证 Elasticsearch 集群状态是否为
绿色
:$ oc exec -n openshift-logging -c elasticsearch elasticsearch-cdm-1pbrl44l-1-55b7546f4c-mshhk -- health
输出示例
{ "cluster_name" : "elasticsearch", "status" : "green", }
输入以下命令并查看输出来验证 Elasticsearch cron 作业是否已创建:
$ oc project openshift-logging
$ oc get cronjob
输出示例
NAME SCHEDULE SUSPEND ACTIVE LAST SCHEDULE AGE elasticsearch-im-app */15 * * * * False 0 <none> 56s elasticsearch-im-audit */15 * * * * False 0 <none> 56s elasticsearch-im-infra */15 * * * * False 0 <none> 56s
输入以下命令并验证日志存储是否已更新至正确的版本,并且索引是
绿色的
:$ oc exec -c elasticsearch <any_es_pod_in_the_cluster> -- indices
验证输出是否包含
app-00000x
、infra-00000x
、audit-00000x
、.security
索引;例 6.1. 带有绿色状态索引的输出示例
Tue Jun 30 14:30:54 UTC 2020 health status index uuid pri rep docs.count docs.deleted store.size pri.store.size green open infra-000008 bnBvUFEXTWi92z3zWAzieQ 3 1 222195 0 289 144 green open infra-000004 rtDSzoqsSl6saisSK7Au1Q 3 1 226717 0 297 148 green open infra-000012 RSf_kUwDSR2xEuKRZMPqZQ 3 1 227623 0 295 147 green open .kibana_7 1SJdCqlZTPWlIAaOUd78yg 1 1 4 0 0 0 green open infra-000010 iXwL3bnqTuGEABbUDa6OVw 3 1 248368 0 317 158 green open infra-000009 YN9EsULWSNaxWeeNvOs0RA 3 1 258799 0 337 168 green open infra-000014 YP0U6R7FQ_GVQVQZ6Yh9Ig 3 1 223788 0 292 146 green open infra-000015 JRBbAbEmSMqK5X40df9HbQ 3 1 224371 0 291 145 green open .orphaned.2020.06.30 n_xQC2dWQzConkvQqei3YA 3 1 9 0 0 0 green open infra-000007 llkkAVSzSOmosWTSAJM_hg 3 1 228584 0 296 148 green open infra-000005 d9BoGQdiQASsS3BBFm2iRA 3 1 227987 0 297 148 green open infra-000003 1-goREK1QUKlQPAIVkWVaQ 3 1 226719 0 295 147 green open .security zeT65uOuRTKZMjg_bbUc1g 1 1 5 0 0 0 green open .kibana-377444158_kubeadmin wvMhDwJkR-mRZQO84K0gUQ 3 1 1 0 0 0 green open infra-000006 5H-KBSXGQKiO7hdapDE23g 3 1 226676 0 295 147 green open infra-000001 eH53BQ-bSxSWR5xYZB6lVg 3 1 341800 0 443 220 green open .kibana-6 RVp7TemSSemGJcsSUmuf3A 1 1 4 0 0 0 green open infra-000011 J7XWBauWSTe0jnzX02fU6A 3 1 226100 0 293 146 green open app-000001 axSAFfONQDmKwatkjPXdtw 3 1 103186 0 126 57 green open infra-000016 m9c1iRLtStWSF1GopaRyCg 3 1 13685 0 19 9 green open infra-000002 Hz6WvINtTvKcQzw-ewmbYg 3 1 228994 0 296 148 green open infra-000013 KR9mMFUpQl-jraYtanyIGw 3 1 228166 0 298 148 green open audit-000001 eERqLdLmQOiQDFES1LBATQ 3 1 0 0 0 0
输入以下命令并查看输出,验证日志可视化工具是否已更新至正确的版本:
$ oc get kibana kibana -o json
验证输出是否包含具有
ready
状态的 Kibana Pod:例 6.2. 带有就绪 Kibana pod 的输出示例
[ { "clusterCondition": { "kibana-5fdd766ffd-nb2jj": [ { "lastTransitionTime": "2020-06-30T14:11:07Z", "reason": "ContainerCreating", "status": "True", "type": "" }, { "lastTransitionTime": "2020-06-30T14:11:07Z", "reason": "ContainerCreating", "status": "True", "type": "" } ] }, "deployment": "kibana", "pods": { "failed": [], "notReady": [] "ready": [] }, "replicaSets": [ "kibana-5fdd766ffd" ], "replicas": 1 } ]
第 7 章 可视化日志
7.1. 关于日志视觉化
您可以视觉化 OpenShift Dedicated Web 控制台或 Kibana Web 控制台中的日志数据,具体取决于您部署的日志存储解决方案。Kibana 控制台可用于 ElasticSearch 日志存储,OpenShift Dedicated Web 控制台可用于 ElasticSearch 日志存储或 LokiStack。
Kibana Web 控制台现已弃用,计划在以后的日志记录发行版本中删除。
7.1.1. 配置日志可视化工具
您可以通过修改 ClusterLogging
自定义资源(CR)来配置日志可视化工具类型。
先决条件
- 有管理员权限。
-
已安装 OpenShift CLI(
oc
)。 - 已安装 Red Hat OpenShift Logging Operator。
-
您已创建了
ClusterLogging
CR。
如果要使用 OpenShift Dedicated Web 控制台进行视觉化,您必须启用日志记录控制台插件。请参阅有关 "Log visualization with the web console" 的文档。
流程
修改
ClusterLogging
CRvisualization
规格:ClusterLogging
CR 示例apiVersion: logging.openshift.io/v1 kind: ClusterLogging metadata: # ... spec: # ... visualization: type: <visualizer_type> 1 kibana: 2 resources: {} nodeSelector: {} proxy: {} replicas: {} tolerations: {} ocpConsole: 3 logsLimit: {} timeout: {} # ...
运行以下命令来应用
ClusterLogging
CR:$ oc apply -f <filename>.yaml
7.1.2. 查看资源的日志
资源日志是一个默认功能,可提供有限的日志查看功能。您可以使用 OpenShift CLI (oc
) 和 Web 控制台查看各种资源的日志,如构建、部署和 pod。
为增强日志检索和查看体验,请安装 logging。logging 将 OpenShift Dedicated 集群中的所有日志(如节点系统审计日志、应用程序容器日志和基础架构日志)聚合到专用日志存储中。然后,您可以通过 Kibana 控制台或 OpenShift Dedicated Web 控制台查询、发现和视觉化您的日志数据。资源日志无法访问日志记录日志存储。
7.1.2.1. 查看资源日志
您可以在 OpenShift CLI (oc
) 和 Web 控制台中查看各种资源的日志。日志从日志的尾部或末尾读取。
先决条件
-
访问 OpenShift CLI(
oc
)。
流程 (UI)
在 OpenShift Dedicated 控制台中,进入到 Workloads → Pods,或通过您要调查的资源导航到 pod。
注意有些资源(如构建)没有直接查询的 pod。在这种情况下,您可以在资源的 Details 页面中找到 Logs 链接。
- 从下拉菜单中选择一个项目。
- 点您要调查的 pod 的名称。
- 点 Logs。
流程 (CLI)
查看特定 pod 的日志:
$ oc logs -f <pod_name> -c <container_name>
其中:
-f
- 可选:指定输出是否遵循要写到日志中的内容。
<pod_name>
- 指定 pod 的名称。
<container_name>
- 可选:指定容器的名称。当 pod 具有多个容器时,您必须指定容器名称。
例如:
$ oc logs ruby-58cd97df55-mww7r
$ oc logs -f ruby-57f7f4855b-znl92 -c ruby
输出的日志文件内容。
查看特定资源的日志:
$ oc logs <object_type>/<resource_name> 1
- 1
- 指定资源类型和名称。
例如:
$ oc logs deployment/ruby
输出的日志文件内容。
7.2. 使用 Web 控制台进行日志视觉化
您可以通过配置 logging 控制台插件,使用 OpenShift Dedicated Web 控制台来视觉化日志数据。在 web 控制台中安装日志记录过程中,提供了配置的选项。
如果您已经安装了日志记录并希望配置插件,请使用以下步骤之一。
7.2.1. 安装 Red Hat OpenShift Logging Operator 后启用 logging 控制台插件
作为 Red Hat OpenShift Logging Operator 安装的一部分,您可以启用 logging 控制台插件,但如果您已禁用了插件,也可以启用插件。
先决条件
- 有管理员权限。
- 已安装 Red Hat OpenShift Logging Operator,并为 Console 插件选择了 Disabled。
- 您可以访问 OpenShift Dedicated Web 控制台。
流程
- 在 OpenShift Dedicated Web 控制台 Administrator 视角中,进入到 Operators → Installed Operators。
- 点 Red Hat OpenShift Logging。这会进入 Operator Details 页面。
- 在 Details 页面中,为 控制台插件选项点 Disabled。
- 在控制台插件启用对话框中,选择 Enable。
- 点击 Save。
- 验证 控制台插件选项现在显示 Enabled。
- 应用更改后,web 控制台会显示一个弹出窗口。窗口提示您重新加载 Web 控制台。当您看到弹出窗口以应用更改时,刷新浏览器。
7.2.2. 安装 Elasticsearch 日志存储和 LokiStack 时配置日志记录控制台插件
在 logging 版本 5.8 及更高版本中,如果 Elasticsearch 日志存储是默认的日志存储,您也可以按照以下流程启用 logging 控制台插件。
先决条件
- 有管理员权限。
- 已安装 Red Hat OpenShift Logging Operator、OpenShift Elasticsearch Operator 和 Loki Operator。
-
已安装 OpenShift CLI(
oc
)。 -
您已创建了
ClusterLogging
自定义资源 (CR)。
流程
运行以下命令,确保启用了日志记录控制台插件:
$ oc get consoles.operator.openshift.io cluster -o yaml |grep logging-view-plugin \ || oc patch consoles.operator.openshift.io cluster --type=merge \ --patch '{ "spec": { "plugins": ["logging-view-plugin"]}}'
运行以下命令,将
.metadata.annotations.logging.openshift.io/ocp-console-migration-target: lokistack-dev
注解添加到ClusterLogging
CR:$ oc patch clusterlogging instance --type=merge --patch \ '{ "metadata": { "annotations": { "logging.openshift.io/ocp-console-migration-target": "lokistack-dev" }}}' \ -n openshift-logging
输出示例
clusterlogging.logging.openshift.io/instance patched
验证
运行以下命令并查看输出,验证注解是否已成功添加:
$ oc get clusterlogging instance \ -o=jsonpath='{.metadata.annotations.logging\.openshift\.io/ocp-console-migration-target}' \ -n openshift-logging
输出示例
"lokistack-dev"
现在,日志记录控制台插件 pod 已被部署。您可以通过进入到 OpenShift Dedicated Web 控制台并查看 Observe → Logs 页面来查看日志数据。
7.3. 查看集群仪表板
OpenShift Cluster Manager 中的 Logging/Elasticsearch Nodes 和 Openshift Logging 仪表板包含有关 Elasticsearch 实例以及用于防止和诊断问题的单个 Elasticsearch 节点的详细信息。
OpenShift Logging 仪表板包含 chart,在集群级别显示 Elasticsearch 实例的详情,包括集群资源、垃圾回收、集群中的分片和 Fluentd 统计。
Logging/Elasticsearch Nodes 仪表板包含 charts,显示 Elasticsearch 实例的详情,很多在节点级别,包括索引、分片、资源等详情。
7.3.1. 访问 Elasticsearch 和 OpenShift Logging 仪表板
您可以在 OpenShift Cluster Manager 控制台中查看 Logging/Elasticsearch Nodes 和 OpenShift Logging 仪表板。
流程
启动仪表板:
- 在 OpenShift Dedicated Red Hat Hybrid Cloud 控制台中,点 Observe → Dashboards。
在 Dashboards 页面中,从 Dashboard 菜单中选择 Logging/Elasticsearch Nodes 或 OpenShift Logging。
对于 Logging/Elasticsearch Nodes 仪表板,可以选择您要查看的 Elasticsearch 节点并设置数据解析。
此时会显示正确的仪表板,显示多个数据图表。
- 可选:从 Time Range 和 Refresh Interval 菜单中选择不同时间范围来显示或刷新数据。
有关仪表板图表的信息,请参阅 关于 OpenShift Logging 仪表板 和 关于 Logging/Elastisearch Nodes 仪表板。
7.3.2. 关于 OpenShift Logging 仪表板
OpenShift Logging 仪表板包含 chart,可在集群级别显示 Elasticsearch 实例的详情,用于诊断和预期问题。
指标 | 描述 |
---|---|
Elastic 集群状态 | 当前的 Elasticsearch 状态:
|
弹性节点 | Elasticsearch 实例中的 Elasticsearch 节点总数。 |
Elastic 分片 | Elasticsearch 实例中的 Elasticsearch 分片的总数。 |
Elastic 文档 | Elasticsearch 实例中的 Elasticsearch 文档总数。 |
磁盘上的总索引大小 | 正在用于 Elasticsearch 索引的总磁盘空间。 |
Elastic 待处理的任务 | Elasticsearch 尚未完成的更改总数,如索引创建、索引映射、分片分配或分片失败。 |
Elastic JVM GC 时间 | JVM 在集群中执行 Elasticsearch 垃圾回收操作所需的时间。 |
Elastic JVM GC 率 | JVM 每秒执行垃圾操作的次数总数。 |
Elastic Query/Fetch Latency Sum |
获取延迟的时间通常比查询延迟要短。如果抓取延迟持续增加,则代表磁盘、数据配置速度较慢,或者带有许多结果的大量请求。 |
Elastic 查询率 | 每个 Elasticsearch 节点每秒对 Elasticsearch 实例执行的查询总数。 |
CPU | Elasticsearch、Fluentd 和 Kibana 使用的 CPU 数量,显示了各个组件的 CPU 数量。 |
已使用的 Elastic JVM Heap | 使用的 JVM 内存量。在一个健康的集群中,图形显示由 JVM 垃圾回收所释放的内存。 |
Elasticsearch 磁盘使用量 | Elasticsearch 实例用于每个 Elasticsearch 节点的总磁盘空间。 |
使用中的文件描述符 | Elasticsearch、Fluentd 和 Kibana 使用的文件描述符总数。 |
Fluentd emit 数量 | Fluentd 默认输出每秒的 Fluentd 消息总数,以及默认输出的重试计数。 |
Fluentd 缓冲使用 | 用于块的 Fluentd 缓冲的百分比。完整缓冲可能表示 Fluentd 无法处理收到的日志数量。 |
Elastic rx 字节 | Elasticsearch 提供的 FluentD、Elasticsearch 节点和其它源的字节总数。 |
Elastic Index Failure Rate | Elasticsearch 索引失败的每秒总次数。高速率表示索引时出现问题。 |
Fluentd 输出错误率 | FluentD 无法输出日志的每秒总次数。 |
7.3.3. Logging/Elasticsearch 节点仪表板上的图表
Logging/Elasticsearch Nodes 仪表板包含 charts,显示 Elasticsearch 实例的详情(很多在节点级别),以进行进一步诊断。
- Elasticsearch 状态
- Logging/Elasticsearch Nodes 仪表板包含有关 Elasticsearch 实例状态的以下图表。
指标 | 描述 |
---|---|
集群状态 | 在所选时间段内的集群健康状态,使用 Elasticsearch 绿色、黄色和红色代表:
|
集群节点 | 集群中的 Elasticsearch 节点总数。 |
集群数据节点 | 集群中的 Elasticsearch 数据节点数量。 |
集群待定任务 | 集群状态更改的数量,这些更改尚未完成,并在集群队列中等待,例如索引创建、索引删除或分片分配。增长的倾向表示集群无法跟上变化。 |
- Elasticsearch 集群索引分片状态
- 每个 Elasticsearch 索引都是一个或多个分片的逻辑组,它们是持久化数据的基本单元。索引分片有两种类型:主分片和副本分片。当将文档索引为索引时,会将其保存在其主分片中,并复制到该分片的每个副本中。当索引被创建时,主分片的数量会被指定,在索引生命周期内这个数量不能改变。您可以随时更改副本分片的数量。
索引分片可能处于几个状态,具体取决于其生命周期阶段或集群中发生的事件。当分片能够执行搜索和索引请求时,分片就是活跃的。如果分片无法执行这些请求,分片就不是活跃的。如果分片正在初始化、重新分配、取消分配等等,分片可能不是活跃的。
索引分片由多个较小的内部块组成,称为索引片段,它们是数据的物理表示。索引分段是一个相对较小的不可变 Lucene 索引,它是 Lucene 提交新索引数据时生成的。Lucene 是 Elasticsearch 使用的搜索库,将索引片段合并到后台里的较大片段,从而使片段总数较低。如果合并片段的过程比生成新网段的速度慢,则可能表明问题。
当 Lucene 执行数据操作(如搜索操作)时,Lucene 会根据相关索引中的索引片段执行操作。为此,每个片段都包含在内存中载入并映射的特定数据结构。索引映射会对片段数据结构使用的内存有重大影响。
Logging/Elasticsearch Nodes 仪表板包含有关 Elasticsearch 索引分片的以下图表。
指标 | 描述 |
---|---|
集群活跃分片 | 集群中活跃的主分片的数量和分片(包括副本)的总数。如果分片数量增加,集群性能就可以启动它。 |
集群初始化分片 | 集群中的非活跃分片数量。非活跃分片是正在初始化、被重新分配到不同节点或未分配的分片。集群通常具有非活跃分片(non-active 分片)的短时间。较长时间的非活跃分片数量增加可能代表有问题。 |
集群重新定位分片 | Elasticsearch 重新定位到新节点的分片数量。Elasticsearch 由于多个原因重新定位节点,如在一个节点上或向集群中添加新节点时使用高内存。 |
集群未分配分片 | 未分配分片的数量。由于添加新索引或节点失败等原因,Elasticsearch 分片可能没有被分配。 |
- Elasticsearch 节点指标
- 每个 Elasticsearch 节点都有有限的资源,可用于处理任务。当所有资源都被已被使用,Elasticsearch 尝试执行新任务时,Elasticsearch 会将任务放入队列等待出现可用的资源。
Logging/Elasticsearch Nodes 仪表板包含以下有关所选节点的资源使用情况,以及 Elasticsearch 队列中等待的任务数量的图表。
指标 | 描述 |
---|---|
ThreadPool 任务 | 按任务类型显示的独立队列中等待的任务数量。在任何队列中的长期任务可能意味着节点资源短缺或其他问题。 |
CPU 用量 | 所选 Elasticsearch 节点使用的 CPU 量作为分配给主机容器的 CPU 总量的百分比。 |
内存用量 | 所选 Elasticsearch 节点使用的内存量。 |
磁盘用量 | 所选 Elasticsearch 节点上用于索引数据和元数据的总磁盘空间。 |
文档索引率 | 文档在所选 Elasticsearch 节点上索引的频率。 |
索引延迟 | 在所选 Elasticsearch 节点上索引文档所需时间。索引延迟会受到很多因素的影响,如 JVM Heap 内存和整个负载。延迟增加代表实例中资源容量不足。 |
搜索率 | 在所选 Elasticsearch 节点上运行的搜索请求数量。 |
搜索延迟 | 在所选 Elasticsearch 节点上完成搜索请求的时间。搜索延迟可能会受到很多因素的影响。延迟增加代表实例中资源容量不足。 |
文档计数(包括副本) | 存储在所选 Elasticsearch 节点上的 Elasticsearch 文档数量,包括存储在主分片和节点上分配的副本分片中的文档。 |
文档删除速率 | 要从分配给所选 Elasticsearch 节点的任何索引分片中删除 Elasticsearch 文档的数量。 |
文档合并率 | 分配给所选 Elasticsearch 节点的任何索引分片中合并的 Elasticsearch 文档数量。 |
- Elasticsearch 节点 fielddata
- Fielddata 是一个 Elasticsearch 数据结构,它以索引形式保存术语列表,并保存在 JVM 堆中。因为 fielddata 构建非常昂贵,所以 Elasticsearch 会缓存 fielddata 结构。当底层索引分段被删除或合并时,或者没有足够 JVM HEAP 内存用于所有 fielddata 缓存时,Elasticsearch 可以驱除 fielddata 缓存,。
Logging/Elasticsearch Nodes 仪表板包含有关 Elasticsearch 字段数据的以下图表。
指标 | 描述 |
---|---|
Fielddata 内存大小 | 用于所选 Elasticsearch 节点上的 fielddata 缓存的 JVM 堆数量。 |
Fielddata 驱除 | 从所选 Elasticsearch 节点中删除的 fielddata 结构数量。 |
- Elasticsearch 节点查询缓存
- 如果索引中存储的数据没有改变,搜索查询结果会在节点级别的查询缓存中缓存,以便 Elasticsearch 重复使用。
Logging/Elasticsearch Nodes 仪表板包含有关 Elasticsearch 节点查询缓存的以下图表。
指标 | 描述 |
---|---|
查询缓存大小 | 用于查询缓存的内存总量,用于分配给所选 Elasticsearch 节点的所有分片。 |
查询缓存驱除 | 所选 Elasticsearch 节点上的查询缓存驱除数量。 |
查询缓存点击 | 所选 Elasticsearch 节点上的查询缓存数量。 |
查询缓存丢失 | 所选 Elasticsearch 节点上丢失的查询缓存数。 |
- Elasticsearch 索引节流
- 在索引文档时,Elasticsearch 将文档存储在索引片段中,这些部分是数据的物理表示。同时,Elasticsearch 会定期将较小的片段合并到较大的片段中,以优化资源使用。如果索引速度更快,那么合并过程就无法迅速完成,从而导致搜索和性能出现问题。为了防止这种情况,Elasticsearch 节流(throttles)的索引通常是通过减少分配给索引到单个线程的线程数量来实现的。
Logging/Elasticsearch Nodes 仪表板包含有关 Elasticsearch 索引节流的以下图表。
指标 | 描述 |
---|---|
索引节流 | Elasticsearch 在所选 Elasticsearch 节点上节流索引操作的时间。 |
合并节流 | Elasticsearch 在所选 Elasticsearch 节点上节流部署片段合并操作的时间。 |
- 节点 JVM 堆统计
- Logging/Elasticsearch Nodes 仪表板包含以下有关 JVM Heap 操作的图表。
指标 | 描述 |
---|---|
使用的堆 | 所选 Elasticsearch 节点上分配的 JVM 堆空间量。 |
GC 计数 | 在所选 Elasticsearch 节点上运行的垃圾回收操作数量,包括旧垃圾回收量。 |
GC 时间 | JVM 在所选 Elasticsearch 节点上运行垃圾回收操作的时间、旧的垃圾回收时间。 |
7.4. 使用 Kibana 进行日志视觉化
如果使用 ElasticSearch 日志存储,您可以使用 Kibana 控制台来视觉化收集的日志数据。
使用 Kibana,您可以使用您的数据进行以下操作:
- 使用 Discover 标签页搜索并浏览数据。
- 使用 Visualize 选项卡对数据进行图表显示。
- 使用 Dashboard 标签页创建并查看自定义仪表板。
使用并配置 Kibana 界面的内容超出了本文档的范围。有关使用接口的更多信息,请参阅 Kibana 文档。
默认情况下,审计日志不会存储在 OpenShift Dedicated 内部 Elasticsearch 实例中。要在 Kibana 中查看审计日志,您必须使用 Log Forwarding API 配置使用审计日志的 default
输出的管道。
7.4.1. 定义 Kibana 索引模式
索引模式定义了您要视觉化的 Elasticsearch 索引。要在 Kibana 中探索和视觉化数据,您必须创建索引模式。
先决条件
用户必须具有
cluster-admin
角色、cluster-reader
角色或这两个角色,才能在 Kibana 中查看 infra 和 audit 索引。默认kubeadmin
用户具有查看这些索引的权限。如果可以查看
default
、kube-
和openshift-
项目中的 pod 和日志,则应该可以访问这些索引。您可以使用以下命令检查当前用户是否有适当的权限:$ oc auth can-i get pods --subresource log -n <project>
输出示例
yes
注意默认情况下,审计日志不会存储在 OpenShift Dedicated 内部 Elasticsearch 实例中。要在 Kibana 中查看审计日志,您必须使用 Log Forward API 配置使用审计日志的
default
输出的管道。- 在创建索引模式前,Elasticsearch 文档必须被索引。这会自动完成,但在一个新的或更新的集群中可能需要几分钟。
流程
在 Kibana 中定义索引模式并创建视觉化:
- 在 OpenShift Dedicated 控制台中,点 Application Launcher 并选择 Logging。
点 Management → Index Patterns → Create index pattern 创建 Kibana 索引模式:
-
首次登录 Kibana 时,每个用户必须手动创建索引模式才能查看其项目的日志。用户必须创建一个名为
app
的索引模式,并使用@timestamp
时间字段查看其容器日志。 -
每个 admin 用户在首次登录 Kibana 时,必须使用
@timestamp
时间字段为app
、infra
和audit
索引创建索引模式。
-
首次登录 Kibana 时,每个用户必须手动创建索引模式才能查看其项目的日志。用户必须创建一个名为
- 从新的索引模式创建 Kibana 视觉化。
7.4.2. 在 Kibana 中查看集群日志
您可以在 Kibana web 控制台中查看集群日志。在 Kibana 中查看和视觉化您的数据的方法,它们超出了本文档的范围。如需更多信息,请参阅 Kibana 文档。
先决条件
- 必须安装 Red Hat OpenShift Logging 和 Elasticsearch Operator。
- Kibana 索引模式必须存在。
用户必须具有
cluster-admin
角色、cluster-reader
角色或这两个角色,才能在 Kibana 中查看 infra 和 audit 索引。默认kubeadmin
用户具有查看这些索引的权限。如果可以查看
default
、kube-
和openshift-
项目中的 pod 和日志,则应该可以访问这些索引。您可以使用以下命令检查当前用户是否有适当的权限:$ oc auth can-i get pods --subresource log -n <project>
输出示例
yes
注意默认情况下,审计日志不会存储在 OpenShift Dedicated 内部 Elasticsearch 实例中。要在 Kibana 中查看审计日志,您必须使用 Log Forward API 配置使用审计日志的
default
输出的管道。
流程
在 Kibana 中查看日志:
- 在 OpenShift Dedicated 控制台中,点 Application Launcher 并选择 Logging。
使用用来登录到 OpenShift Dedicated 控制台的相同凭证进行登录。
Kibana 界面将出现。
- 在 Kibana 中,点 Discover。
从左上角的下拉菜单中选择您创建的索引模式: app、audit 或 infra。
日志数据显示为时间戳文档。
- 展开一个时间戳的文档。
点 JSON 选项卡显示该文件的日志条目。
例 7.1. Kibana 中的基础架构日志条目示例
{ "_index": "infra-000001", "_type": "_doc", "_id": "YmJmYTBlNDkZTRmLTliMGQtMjE3NmFiOGUyOWM3", "_version": 1, "_score": null, "_source": { "docker": { "container_id": "f85fa55bbef7bb783f041066be1e7c267a6b88c4603dfce213e32c1" }, "kubernetes": { "container_name": "registry-server", "namespace_name": "openshift-marketplace", "pod_name": "redhat-marketplace-n64gc", "container_image": "registry.redhat.io/redhat/redhat-marketplace-index:v4.7", "container_image_id": "registry.redhat.io/redhat/redhat-marketplace-index@sha256:65fc0c45aabb95809e376feb065771ecda9e5e59cc8b3024c4545c168f", "pod_id": "8f594ea2-c866-4b5c-a1c8-a50756704b2a", "host": "ip-10-0-182-28.us-east-2.compute.internal", "master_url": "https://kubernetes.default.svc", "namespace_id": "3abab127-7669-4eb3-b9ef-44c04ad68d38", "namespace_labels": { "openshift_io/cluster-monitoring": "true" }, "flat_labels": [ "catalogsource_operators_coreos_com/update=redhat-marketplace" ] }, "message": "time=\"2020-09-23T20:47:03Z\" level=info msg=\"serving registry\" database=/database/index.db port=50051", "level": "unknown", "hostname": "ip-10-0-182-28.internal", "pipeline_metadata": { "collector": { "ipaddr4": "10.0.182.28", "inputname": "fluent-plugin-systemd", "name": "fluentd", "received_at": "2020-09-23T20:47:15.007583+00:00", "version": "1.7.4 1.6.0" } }, "@timestamp": "2020-09-23T20:47:03.422465+00:00", "viaq_msg_id": "YmJmYTBlNDktMDMGQtMjE3NmFiOGUyOWM3", "openshift": { "labels": { "logging": "infra" } } }, "fields": { "@timestamp": [ "2020-09-23T20:47:03.422Z" ], "pipeline_metadata.collector.received_at": [ "2020-09-23T20:47:15.007Z" ] }, "sort": [ 1600894023422 ] }
7.4.3. 配置 Kibana
您可以通过修改 ClusterLogging
自定义资源(CR) 来使用 Kibana 控制台配置。
7.4.3.1. 配置 CPU 和内存限值
日志记录组件允许对 CPU 和内存限值进行调整。
流程
编辑
openshift-logging
项目中的ClusterLogging
自定义资源(CR):$ oc -n openshift-logging edit ClusterLogging instance
apiVersion: "logging.openshift.io/v1" kind: "ClusterLogging" metadata: name: "instance" namespace: openshift-logging ... spec: managementState: "Managed" logStore: type: "elasticsearch" elasticsearch: nodeCount: 3 resources: 1 limits: memory: 16Gi requests: cpu: 200m memory: 16Gi storage: storageClassName: "gp2" size: "200G" redundancyPolicy: "SingleRedundancy" visualization: type: "kibana" kibana: resources: 2 limits: memory: 1Gi requests: cpu: 500m memory: 1Gi proxy: resources: 3 limits: memory: 100Mi requests: cpu: 100m memory: 100Mi replicas: 2 collection: resources: 4 limits: memory: 736Mi requests: cpu: 200m memory: 736Mi type: fluentd
7.4.3.2. 为日志可视化器节点扩展冗余性
您可以扩展托管日志视觉化器的 pod 以增加它的冗余性。
流程
编辑
openshift-logging
项目中的ClusterLogging
自定义资源(CR):$ oc edit ClusterLogging instance
$ oc edit ClusterLogging instance apiVersion: "logging.openshift.io/v1" kind: "ClusterLogging" metadata: name: "instance" .... spec: visualization: type: "kibana" kibana: replicas: 1 1
- 1
- 指定 Kibana 节点的数量。
第 8 章 配置日志部署
8.1. 为日志记录组件配置 CPU 和内存限值
您可以根据需要配置每个日志记录组件的 CPU 和内存限值。
8.1.1. 配置 CPU 和内存限值
日志记录组件允许对 CPU 和内存限值进行调整。
流程
编辑
openshift-logging
项目中的ClusterLogging
自定义资源(CR):$ oc -n openshift-logging edit ClusterLogging instance
apiVersion: "logging.openshift.io/v1" kind: "ClusterLogging" metadata: name: "instance" namespace: openshift-logging ... spec: managementState: "Managed" logStore: type: "elasticsearch" elasticsearch: nodeCount: 3 resources: 1 limits: memory: 16Gi requests: cpu: 200m memory: 16Gi storage: storageClassName: "gp2" size: "200G" redundancyPolicy: "SingleRedundancy" visualization: type: "kibana" kibana: resources: 2 limits: memory: 1Gi requests: cpu: 500m memory: 1Gi proxy: resources: 3 limits: memory: 100Mi requests: cpu: 100m memory: 100Mi replicas: 2 collection: resources: 4 limits: memory: 736Mi requests: cpu: 200m memory: 736Mi type: fluentd
第 9 章 日志收集和转发
9.1. 关于日志收集和转发
Red Hat OpenShift Logging Operator 根据 ClusterLogForwarder
资源规格部署一个收集器。此 Operator 支持两个收集器选项:旧的 Fluentd 收集器和 Vector 收集器。
Fluentd 已被弃用,计划在以后的发行版本中删除。红帽将在当前发行生命周期中将提供对这个功能的 bug 修复和支持,但此功能将不再获得改进。作为 Fluentd 的替代选择,您可以使用 Vector。
9.1.1. 日志集合
日志收集器是一个守护进程集,它将 Pod 部署到每个 OpenShift Dedicated 节点,以收集容器和节点日志。
默认情况下,日志收集器使用以下源:
- 系统及基础架构日志由来自操作系统、容器运行时和 OpenShift Dedicated 的日志消息生成。
-
/var/log/containers/*.log
用于所有容器日志
如果您将日志收集器配置为收集审计日志,它会从 /var/log/audit/audit.log
收集它们。
日志收集器从这些源收集日志,并根据日志记录配置在内部或外部转发它们。
9.1.1.1. 日志收集器类型
Vector 是一个日志收集器,作为日志记录的 Fluentd 的一个替代方案。
您可以通过修改 ClusterLogging
自定义资源(CR) collection
规格来配置集群使用的日志记录收集器类型:
将 Vector 配置为收集器的 ClusterLogging CR 示例
apiVersion: logging.openshift.io/v1 kind: ClusterLogging metadata: name: instance namespace: openshift-logging spec: collection: logs: type: vector vector: {} # ...
9.1.1.2. 日志收集限制
容器运行时提供少许信息来标识日志消息的来源,如项目、容器名称和容器 ID。这些信息不足以区分日志的来源。如果在日志收集器开始处理日志之前删除了具有指定名称和项目的 Pod,则来自 API 服务器的信息(如标签和注解)可能会不可用。可能没有办法区分来自名称相似的 Pod 和项目的日志消息,也无法追溯日志的来源。这种限制意味着日志收集和规范化被视为 最佳工作。
可用的容器运行时提供少许信息来标识日志消息来源,无法确保唯一的个别日志消息,也不能保证可以追溯这些消息的来源。
9.1.1.3. 按类型划分的日志收集器功能
功能 | Fluentd | Vector |
---|---|---|
应用程序容器日志 | ✓ | ✓ |
特定于应用程序的路由 | ✓ | ✓ |
命名空间划分应用程序特定路由 | ✓ | ✓ |
Infra 容器日志 | ✓ | ✓ |
Infra 日志 | ✓ | ✓ |
kube API 审计日志 | ✓ | ✓ |
OpenShift API 审计日志 | ✓ | ✓ |
打开虚拟网络 (OVN) 审计日志 | ✓ | ✓ |
功能 | Fluentd | Vector |
---|---|---|
Elasticsearch 证书 | ✓ | ✓ |
Elasticsearch 用户名/密码 | ✓ | ✓ |
Amazon Cloudwatch 密钥 | ✓ | ✓ |
Amazon Cloudwatch STS | ✓ | ✓ |
Kafka 证书 | ✓ | ✓ |
Kafka 用户名/密码 | ✓ | ✓ |
Kafka SASL | ✓ | ✓ |
Loki bearer 令牌 | ✓ | ✓ |
功能 | Fluentd | Vector |
---|---|---|
ViaQ 数据模型 - 应用程序 | ✓ | ✓ |
ViaQ 数据模型 - infra | ✓ | ✓ |
ViaQ 数据模型 - infra(journal) | ✓ | ✓ |
ViaQ 数据模型 - Linux 审计 | ✓ | ✓ |
ViaQ 数据模型 - kube-apiserver 审计 | ✓ | ✓ |
ViaQ 数据模型 - OpenShift API 审计 | ✓ | ✓ |
ViaQ 数据模型 - OVN | ✓ | ✓ |
loglevel Normalization | ✓ | ✓ |
JSON 解析 | ✓ | ✓ |
结构化索引 | ✓ | ✓ |
多行错误检测 | ✓ | ✓ |
multicontainer/ split 索引 | ✓ | ✓ |
Flatten 标签 | ✓ | ✓ |
CLF 静态标签 | ✓ | ✓ |
功能 | Fluentd | Vector |
---|---|---|
Fluentd readlinelimit | ✓ | |
Fluentd 缓冲 | ✓ | |
- chunklimitsize | ✓ | |
- totallimitsize | ✓ | |
- overflowaction | ✓ | |
- flushthreadcount | ✓ | |
- flushmode | ✓ | |
- flushinterval | ✓ | |
- retrywait | ✓ | |
- retrytype | ✓ | |
- retrymaxinterval | ✓ | |
- retrytimeout | ✓ |
功能 | Fluentd | Vector |
---|---|---|
指标 | ✓ | ✓ |
Dashboard | ✓ | ✓ |
警报 | ✓ | ✓ |
功能 | Fluentd | Vector |
---|---|---|
全局代理支持 | ✓ | ✓ |
x86 支持 | ✓ | ✓ |
ARM 支持 | ✓ | ✓ |
IBM Power® 支持 | ✓ | ✓ |
IBM Z® 支持 | ✓ | ✓ |
IPv6 支持 | ✓ | ✓ |
日志事件缓冲 | ✓ | |
断开连接的集群 | ✓ | ✓ |
9.1.1.4. 收集器输出
支持以下收集器输出:
功能 | Fluentd | Vector |
---|---|---|
Elasticsearch v6-v8 | ✓ | ✓ |
Fluent 转发 | ✓ | |
Syslog RFC3164 | ✓ | ✓ (Logging 5.7+) |
Syslog RFC5424 | ✓ | ✓ (Logging 5.7+) |
Kafka | ✓ | ✓ |
Amazon Cloudwatch | ✓ | ✓ |
Amazon Cloudwatch STS | ✓ | ✓ |
Loki | ✓ | ✓ |
HTTP | ✓ | ✓ (Logging 5.7+) |
Google Cloud Logging | ✓ | ✓ |
Splunk | ✓ (Logging 5.6+) |
9.1.2. 日志转发
管理员可以创建 ClusterLogForwarder
资源,以指定要收集哪些日志、它们的转换方式以及它们被转发到的位置。
ClusterLogForwarder
资源可用于将容器、基础架构和审计日志转发到集群内部或外部的特定端点。支持传输层安全性(TLS),以便可以配置日志转发来安全地发送日志。
管理员也可以授权 RBAC 权限来定义哪些服务帐户和用户可以访问和转发哪些日志类型。
9.1.2.1. 日志转发实现
可用的日志转发实现有两个:旧的实现和多日志转发器功能。
仅支持 Vector 收集器与多日志转发器功能一起使用。Fluentd 收集器只能用于旧的实现。
9.1.2.1.1. 旧实施
在旧的实现中,集群中只能使用一个日志转发器。此模式的 ClusterLogForwarder
资源必须命名为 instance
,且必须在 openshift-logging
命名空间中创建。ClusterLogForwarder
资源还需要 openshift-logging
命名空间中名为 instance
的对应 ClusterLogging
资源。
9.1.2.1.2. 多日志转发器功能
日志记录 5.8 及更高版本中提供了多日志转发器功能,并提供以下功能:
- 管理员可以控制哪些用户被允许定义日志收集以及允许收集哪些日志。
- 具有所需权限的用户可以指定额外的日志收集配置。
- 从已弃用的 Fluentd 收集器迁移到 Vector 收集器的管理员可以独立于现有部署部署新的日志转发程序。在迁移工作负载时,现有和新的日志转发程序可以同时运行。
在多日志转发器实现中,您不需要为 ClusterLogForwarder
资源创建对应的 ClusterLogging
资源。您可以使用任何命名空间中的任何名称创建多个 ClusterLogForwarder
资源,但以下例外:
-
您无法在
openshift-logging
命名空间中创建一个名为instance
的ClusterLogForwarder
资源,因为它为支持使用 Fluentd 收集器的传统工作流的日志转发器保留。 -
您无法在
openshift-logging
命名空间中创建一个名为collector
的ClusterLogForwarder
资源,因为这为收集器保留。
9.1.2.2. 为集群启用多日志转发器功能
要使用多日志转发器功能,您必须为该服务帐户创建服务帐户和集群角色绑定。然后,您可以在 ClusterLogForwarder
资源中引用服务帐户来控制访问权限。
要在 openshift-logging
命名空间以外的额外命名空间中支持多日志转发功能,您必须更新 Red Hat OpenShift Logging Operator 以监视所有命名空间。在新的 Red Hat OpenShift Logging Operator 版本 5.8 版本中默认支持此功能。
9.1.2.2.1. 授权日志收集 RBAC 权限
在日志记录 5.8 及更高版本中,Red Hat OpenShift Logging Operator 提供了 collect-audit-logs
、collect-application-logs
和 collect-infrastructure-logs
集群角色,该角色可让收集器分别收集审计日志、应用程序日志和基础架构日志。
您可以通过将所需的集群角色绑定到服务帐户来授权日志收集的 RBAC 权限。
先决条件
-
Red Hat OpenShift Logging Operator 安装在
openshift-logging
命名空间中。 - 有管理员权限。
流程
- 为收集器创建服务帐户。如果要将日志写入需要令牌进行身份验证的存储,则必须在服务帐户中包含令牌。
将适当的集群角色绑定到服务帐户:
绑定命令示例
$ oc adm policy add-cluster-role-to-user <cluster_role_name> system:serviceaccount:<namespace_name>:<service_account_name>
9.2. 日志输出类型
输出 (output) 定义了日志转发器将日志发送到的目的地。您可以在 ClusterLogForwarder
自定义资源 (CR) 中配置多种输出类型,将日志发送到支持不同协议的服务器。
9.2.1. 支持的日志转发输出
输出可以是以下任意类型:
输出类型 | 协议 | 测试使用 | 日志记录版本 | 支持的收集器类型 |
---|---|---|---|---|
Elasticsearch v6 | HTTP 1.1 | 6.8.1, 6.8.23 | 5.6+ | Fluentd, Vector |
Elasticsearch v7 | HTTP 1.1 | 7.12.2, 7.17.7, 7.10.1 | 5.6+ | Fluentd, Vector |
Elasticsearch v8 | HTTP 1.1 | 8.4.3, 8.6.1 | 5.6+ | Fluentd [1], Vector |
Fluent Forward | Fluentd forward v1 | Fluentd 1.14.6, Logstash 7.10.1, Fluentd 1.14.5 | 5.4+ | Fluentd |
Google Cloud Logging | 通过 HTTPS 的 REST | Latest | 5.7+ | Vector |
HTTP | HTTP 1.1 | Fluentd 1.14.6, Vector 0.21 | 5.7+ | Fluentd, Vector |
Kafka | Kafka 0.11 | Kafka 2.4.1, 2.7.0, 3.3.1 | 5.4+ | Fluentd, Vector |
Loki | 使用 HTTP 和 HTTPS 的 REST | 2.3.0, 2.5.0, 2.7, 2.2.1 | 5.4+ | Fluentd, Vector |
Splunk | HEC | 8.2.9, 9.0.0 | 5.7+ | Vector |
Syslog | RFC3164, RFC5424 | rsyslog 8.37.0-9.el7, rsyslog-8.39.0 | 5.4+ | Fluentd, Vector [2] |
Amazon CloudWatch | 通过 HTTPS 的 REST | Latest | 5.4+ | Fluentd, Vector |
- Fluentd 不支持日志记录版本 5.6.2 中的 Elasticsearch 8。
- Vector 支持日志记录版本 5.7 及更高版本中的 Syslog。
9.2.2. 输出类型描述
default
On-cluster、Red Hat 管理的日志存储。您不需要配置默认输出。
注意如果您配置了
默认
输出,您会收到错误消息,因为保留了default
输出名称以引用 on-cluster,Red Hat managed log store。loki
- Loki,一个可横向扩展的、高可用性、多租户日志聚合系统。
kafka
-
Kafka 代理。
kafka
输出可以使用 TCP 或 TLS 连接。 elasticsearch
-
一个外部 Elasticsearch 实例。
elasticsearch
输出可以使用 TLS 连接。 fluentdForward
一个支持 Fluentd 的外部日志聚合解决方案。这个选项使用 Fluentd
转发
协议。fluentForward
输出可以使用 TCP 或 TLS 连接,并通过在 secret 中提供shared_key
字段来支持共享密钥身份验证。共享密钥身份验证可在使用或不使用 TLS 的情况下使用。重要只有在使用 Fluentd 收集器时,才会支持
fluentdForward
输出。如果您使用 Vector 收集器,则不支持它。如果使用 Vector 收集器,您可以使用http
输出将日志转发到 Fluentd。syslog
-
支持 syslog RFC3164 或 RFC5424 协议的外部日志聚合解决方案。
syslog
输出可以使用 UDP、TCP 或 TLS 连接。 cloudwatch
- Amazon CloudWatch,一种由 Amazon Web Services (AWS) 托管的监控和日志存储服务。
Cloudlogging
- Google Cloud Logging,由 Google Cloud Platform (GCP)托管的监控和日志存储服务。
9.3. 启用 JSON 日志转发
您可以配置 Log Forwarding API,将 JSON 字符串解析为结构化对象。
9.3.1. 解析 JSON 日志
您可以使用 ClusterLogForwarder
对象将 JSON 日志解析到结构化对象,并将它们转发到受支持的输出。
为了说明其工作原理,假定您有以下结构化 JSON 日志条目:
结构化 JSON 日志条目示例
{"level":"info","name":"fred","home":"bedrock"}
要启用解析 JSON 日志,您需要将 parse: json
添加到 ClusterLogForwarder
CR 的管道中,如下例所示。
显示 parse: json
的片段示例
pipelines: - inputRefs: [ application ] outputRefs: myFluentd parse: json
当使用 parse: json
来启用 JSON 日志解析时,CR 会复制 structured
项中的 JSON 结构化日志条目,如下例所示。
包含结构化 JSON 日志条目的 structured
输出示例
{"structured": { "level": "info", "name": "fred", "home": "bedrock" }, "more fields..."}
如果日志条目不包含有效的结构化 JSON,则将缺少 structured
字段。
9.3.2. 为 Elasticsearch 配置 JSON 日志数据
如果您的 JSON 日志遵循多个模式,在单个索引中存储它们可能会导致类型冲突和卡性问题。要避免这种情况,您必须配置 ClusterLogForwarder
自定义资源 (CR),将每个 schema 分组到单个输出定义中。这样,每个架构被转发到单独的索引。
如果您将 JSON 日志转发到 OpenShift Logging 管理的默认 Elasticsearch 实例,它会根据您的配置生成新的索引。为避免与索引数量过多相关的性能问题,请考虑通过标准化到常见模式来保持可能的模式数量较低。
结构类型
您可以使用 ClusterLogForwarder
CR 中的以下结构类型来为 Elasticsearch 日志存储构建索引名称:
structuredTypeKey
是 message 字段的名称。该字段的值用于构造索引名称。-
kubernetes.labels.<key>
是 Kubernetes pod 标签,其值用于构造索引名称。 -
openshift.labels.<key>
是ClusterLogForwarder
CR 中的pipeline.label.<key>
元素,其值用于构造索引名称。 -
kubernetes.container_name
使用容器名称来构造索引名称。
-
-
structuredTypeName
: 如果没有设置structuredTypeKey
字段,或者其键不存在,则structuredTypeName
值将用作结构化类型。当您将structuredTypeKey
字段和structuredTypeName
字段一起使用时,如果 JSON 日志数据中缺少structuredTypeKey
字段中的密钥,则structuredTypeName
值将提供一个回退索引名称。
虽然您可以将 structuredTypeKey
的值设置为 "Log Record Fields" 主题中显示的任何字段,但最有用的字段将显示在前面的结构类型列表中。
structuredTypeKey: kubernetes.labels.<key> 示例
假设如下:
- 集群正在运行以两种不同格式生成 JSON 日志的应用 pod,即 "apache" 和 "google"。
-
用户使用
logFormat=apache
和logFormat=google
标记这些应用 pod。 -
您可以在
ClusterLogForwarder
CR YAML 文件中使用以下代码片段。
apiVersion: logging.openshift.io/v1 kind: ClusterLogForwarder metadata: # ... spec: # ... outputDefaults: elasticsearch: structuredTypeKey: kubernetes.labels.logFormat 1 structuredTypeName: nologformat pipelines: - inputRefs: - application outputRefs: - default parse: json 2
在这种情况下,以下结构化日志记录进入 app-apache-write
索引:
{ "structured":{"name":"fred","home":"bedrock"}, "kubernetes":{"labels":{"logFormat": "apache", ...}} }
以下结构化日志记录进入 app-google-write
索引中:
{ "structured":{"name":"wilma","home":"bedrock"}, "kubernetes":{"labels":{"logFormat": "google", ...}} }
structuredTypeKey: openshift.labels.<key> 示例
假设您在 ClusterLogForwarder
CR YAML 文件中使用了以下代码片段:
outputDefaults: elasticsearch: structuredTypeKey: openshift.labels.myLabel 1 structuredTypeName: nologformat pipelines: - name: application-logs inputRefs: - application - audit outputRefs: - elasticsearch-secure - default parse: json labels: myLabel: myValue 2
在这种情况下,以下结构化日志记录进入 app-myValue-write
索引中:
{ "structured":{"name":"fred","home":"bedrock"}, "openshift":{"labels":{"myLabel": "myValue", ...}} }
其他注意事项
- 结构化记录的 Elasticsearch 索引通过将"app-"添加到结构化类型并附加 "-write" 来形成。
- 非结构化记录不会发送到结构化索引。在应用、基础架构或审计索引中,它们按照常态进行索引。
-
如果没有非空的结构化类型,则转发一个没有
structured
项的 unstructured 记录。
不要过载有太多索引的 Elasticsearch。仅对不同的日志格式使用不同的结构化类型,而不用为每个应用程序或命名空间都使用不同的结构化类型。例如,大多数 Apache 应用使用相同的 JSON 日志格式和结构化类型,如 LogApache
。
9.3.3. 将 JSON 日志转发到 Elasticsearch 日志存储
对于 Elasticsearch 日志存储,如果您的 JSON 日志条目遵循不同的模式,请将 ClusterLogForwarder
自定义资源 (CR) 配置为将每个 JSON 模式分组到单个输出定义中。这样,Elasticsearch 会为每个 schema 使用一个单独的索引。
因为将不同的模式转发到同一索引可能会导致类型冲突和卡化问题,所以您必须在将数据转发到 Elasticsearch 存储前执行此配置。
为避免与索引数量过多相关的性能问题,请考虑通过标准化到常见模式来保持可能的模式数量较低。
流程
将以下代码片段添加到
ClusterLogForwarder
CR YAML 文件中。outputDefaults: elasticsearch: structuredTypeKey: <log record field> structuredTypeName: <name> pipelines: - inputRefs: - application outputRefs: default parse: json
-
使用
structuredTypeKey
字段指定其中一个日志记录字段。 使用
structuredTypeName
字段指定名称。重要要解析 JSON 日志,您必须同时设置
structuredTypeKey
和structuredTypeName
字段。-
对于
inputRefs
,指定要使用该管道转发哪些日志类型,如application
、infrastructure
或audit
。 -
将
parse: json
元素添加到管道。 创建 CR 对象:
$ oc create -f <filename>.yaml
Red Hat OpenShift Logging Operator 会重新部署收集器 Pod。但是,如果没有重新部署,请删除收集器 Pod 以强制重新部署。
$ oc delete pod --selector logging-infra=collector
9.3.4. 将同一 pod 中的容器的 JSON 日志转发到单独的索引
您可以将来自同一 pod 的不同容器的结构化日志转发到不同的索引。要使用此功能,您必须使用多容器支持配置管道并注解 pod。日志被写入带有 app-
前缀的索引。建议将 Elasticsearch 配置为使用别名来容纳此目的。
日志的 JSON 格式化因应用程序而异。因为创建太多索引会影响性能,所以请限制使用此功能,仅对与 JSON 格式不兼容的日志创建索引。使用查询将日志与不同命名空间分离,或使用兼容 JSON 格式的应用程序进行隔离。
先决条件
- Red Hat OpenShift 的日志记录: 5.5
流程
创建或编辑定义
ClusterLogForwarder
CR 对象的 YAML 文件:apiVersion: logging.openshift.io/v1 kind: ClusterLogForwarder metadata: name: instance namespace: openshift-logging spec: outputDefaults: elasticsearch: structuredTypeKey: kubernetes.labels.logFormat 1 structuredTypeName: nologformat enableStructuredContainerLogs: true 2 pipelines: - inputRefs: - application name: application-logs outputRefs: - default parse: json
创建或编辑定义
Pod
CR 对象的 YAML 文件:apiVersion: v1 kind: Pod metadata: annotations: containerType.logging.openshift.io/heavy: heavy 1 containerType.logging.openshift.io/low: low spec: containers: - name: heavy 2 image: heavyimage - name: low image: lowimage
此配置可能会显著增加集群中的分片数量。
其他资源
其他资源
9.4. 配置日志转发
在日志记录部署中,容器和基础架构日志默认转发到 ClusterLogging
自定义资源(CR)中定义的内部日志存储。
默认情况下,审计日志不会转发到内部日志存储,因为这不提供安全存储。您需要自己确保转发审计日志的系统符合您所在机构及政府的相关要求,并具有适当的安全性。
如果此默认配置满足您的需要,则不需要配置一个 ClusterLogForwarder
CR。如果存在 ClusterLogForwarder
CR,日志不会转发到内部日志存储,除非定义了包含 default
输出的管道。
9.4.1. 关于将日志转发到第三方系统
要将日志发送到 OpenShift Dedicated 集群内部和外部的特定端点,您可以在 ClusterLogForwarder
自定义资源(CR)中指定输出和管道的组合。您还可以使用 输入 将与特定项目关联的应用程序日志转发到端点。身份验证由 Kubernetes Secret 对象提供。
- pipeline
定义从一个日志类型到一个或多个输出的简单路由,或定义您要发送的日志。日志类型是以下之一:
-
application
.由集群中运行的用户应用程序生成的容器日志(基础架构容器应用程序除外)。 -
infrastructure
.在openshift*
、kube*
或default
项目中运行的容器日志,以及来源于节点文件系统的 journal 日志。 -
audit
.由节点审计系统、auditd
、Kubernetes API 服务器、OpenShift API 服务器和 OVN 网络生成的审计日志。
您可以使用管道中的
key:value
对为出站日志消息添加标签。例如,您可以在转发给其他数据中心的消息中添加一个标签,或者根据类型为日志添加标签。添加到对象的标签也会通过日志消息转发。-
- 输入
将与特定项目关联的应用程序日志转发到管道。
在管道中,您要定义使用
inputRef
参数转发哪些日志类型,以及将日志转发到使用outputRef
参数的位置。- Secret
-
包含机密数据的
key:value 映射
,如用户凭据。
注意以下几点:
-
如果您没有为日志类型定义管道,则将丢弃未定义类型的日志。例如,如果您为
application
和audit
类型指定管道,但没有为infrastructure
类型指定管道,则infrastructure
日志会丢弃。 -
您可以使用
ClusterLogForwarder
自定义资源(CR)中的多种输出类型将日志发送到支持不同协议的服务器。
以下示例将审计日志转发到安全的外部 Elasticsearch 实例,基础架构日志发送到不安全的外部 Elasticsearch 实例,应用程序日志发送到 Kafka 代理,以及 my-apps-logs
项目中的应用程序日志发送到内部 Elasticsearch 实例。
日志转发输出和管道示例
apiVersion: "logging.openshift.io/v1" kind: ClusterLogForwarder metadata: name: <log_forwarder_name> 1 namespace: <log_forwarder_namespace> 2 spec: serviceAccountName: <service_account_name> 3 outputs: - name: elasticsearch-secure 4 type: "elasticsearch" url: https://elasticsearch.secure.com:9200 secret: name: elasticsearch - name: elasticsearch-insecure 5 type: "elasticsearch" url: http://elasticsearch.insecure.com:9200 - name: kafka-app 6 type: "kafka" url: tls://kafka.secure.com:9093/app-topic inputs: 7 - name: my-app-logs application: namespaces: - my-project pipelines: - name: audit-logs 8 inputRefs: - audit outputRefs: - elasticsearch-secure - default labels: secure: "true" 9 datacenter: "east" - name: infrastructure-logs 10 inputRefs: - infrastructure outputRefs: - elasticsearch-insecure labels: datacenter: "west" - name: my-app 11 inputRefs: - my-app-logs outputRefs: - default - inputRefs: 12 - application outputRefs: - kafka-app labels: datacenter: "south"
- 1
- 在传统的实现中,CR 名称必须是
instance
。在多日志转发器实现中,您可以使用任何名称。 - 2
- 在旧的实现中,CR 命名空间必须是
openshift-logging
。在多日志转发器实现中,您可以使用任何命名空间。 - 3
- 服务帐户的名称。如果没有在
openshift-logging
命名空间中部署日志转发器,则只有多日志转发器实现中才需要服务帐户。 - 4
- 使用带有安全 URL 的 secret 来配置安全 Elasticsearch 输出。
- 描述输出的名称。
-
输出类型:
elasticsearch
。 - Elasticsearch 实例的安全 URL 和端口作为有效的绝对 URL,包括前缀。
-
用于 TLS 通信的端点所需的 secret。secret 必须存在于
openshift-logging
项目中。
- 5
- 配置不安全的 Elasticsearch 输出:
- 描述输出的名称。
-
输出类型:
elasticsearch
。 - Elasticsearch 实例的不安全 URL 和端口作为有效的绝对 URL,包括前缀。
- 6
- 使用客户端验证的 TLS 通信通过安全 URL 配置 Kafka 输出:
- 描述输出的名称。
-
输出的类型:
kafka
。 - 将 Kafka 代理的 URL 和端口指定为一个有效的绝对 URL,包括前缀。
- 7
- 用于过滤
my-project
命名空间中的应用程序日志的输入配置。 - 8
- 用于将审计日志发送到安全的外部 Elasticsearch 实例的管道配置:
- 描述管道的名称。
-
inputRefs
是日志类型,在这个示例中是audit
。 -
outputRefs
是输出使用的名称,在本例中,elasticsearch-secure
可以转发到安全的 Elasticsearch 实例,default
转发到内部 Elasticsearch 实例。 - 可选:添加到日志的标签。
- 9
- 可选:字符串。要添加到日志中的一个或多个标签。对值加引号(如 "true"),以便它们被识别为字符串值,而不是作为布尔值。
- 10
- 管道配置,将基础架构日志发送到不安全的外部 Elasticsearch 实例。
- 11
- 管道配置,用于将日志从
my-project
项目发送到内部 Elasticsearch 实例。- 描述管道的名称。
-
inputRefs
是一个特定的输入:my-app-logs
。 -
outputRefs
是default
。 - 可选:字符串。要添加到日志中的一个或多个标签。
- 12
- 将日志发送到 Kafka 代理的管道配置,不带有管道名称:
-
inputRefs
是日志类型,在这个示例中是application
。 -
outputRefs
是要使用的输出名称。 - 可选:字符串。要添加到日志中的一个或多个标签。
-
当外部日志聚合器不可用时,Fluentd 日志处理
如果外部日志记录聚合器不可用且无法接收日志,Fluentd 会继续收集日志并将其存储在缓冲中。当日志聚合器可用时,日志转发会恢复,包括缓冲的日志。如果缓冲区已满,Fluentd 会停止收集日志。OpenShift Dedicated 轮转日志并删除日志。您无法调整缓冲区大小,或者将持久性卷声明(PVC)添加到 Fluentd 守护进程集或 Pod 中。
支持的授权密钥
这里提供了常见的密钥类型。某些输出类型支持额外的专用密钥,记录在特定于输出的配置字段中。所有 secret 密钥都是可选的。通过设置相关密钥来启用您想要的安全功能。您需要创建并维护外部目的地可能需要的额外配置,如密钥和 secret 、服务帐户、端口打开或全局代理服务器配置。Open Shift Logging 不会尝试验证授权组合间的不匹配。
- 传输层安全性(TLS)
使用没有 secret 的 TLS URL (
http://...
或ssl://...
) 启用基本的 TLS 服务器端身份验证。可通过包含 Secret 并设置以下可选字段来启用额外的 TLS 功能:-
密码短语
:(字符串)对编码的 TLS 私钥进行解码。需要tls.key
。 -
ca-bundle.crt
: (字符串)用于服务器身份验证的客户 CA 的文件名。
-
- 用户名和密码
-
username
:(字符串)身份验证用户名。需要password
。 -
password
:(字符串)身份验证密码。需要username
。
-
- 简单身份验证安全层(SASL)
-
sasl.enable
(布尔值)明确指定启用或禁用 SASL。如果缺失,则设置了任何其他sasl.
密钥时自动启用 SASL。 -
sasl.mechanisms
:(array)允许的 SASL 机制名称列表。如果缺少或为空,则使用系统默认值。 -
sasl.allow-insecure
:(布尔值)允许发送明文密码的机制。默认为false。
-
9.4.1.1. 创建 Secret
您可以使用以下命令在包含您的证书和密钥文件的目录中创建 secret:
$ oc create secret generic -n <namespace> <secret_name> \ --from-file=ca-bundle.crt=<your_bundle_file> \ --from-literal=username=<your_username> \ --from-literal=password=<your_password>
建议使用通用或不透明 secret 来获得最佳结果。
9.4.2. 创建日志转发器
要创建日志转发器,您必须创建一个 ClusterLogForwarder
CR,以指定服务帐户可以收集的日志输入类型。您还可以指定日志可以转发到的输出。如果使用多日志转发器功能,还必须在 ClusterLogForwarder
CR 中引用服务帐户。
如果您在集群中使用多日志转发器功能,您可以使用任何名称在任意命名空间中创建 ClusterLogForwarder
自定义资源 (CR)。如果使用旧的实现,ClusterLogForwarder
CR 必须命名为 instance
,且必须在 openshift-logging
命名空间中创建。
创建 ClusterLogForwarder
CR 的命名空间需要管理员权限。
ClusterLogForwarder 资源示例
apiVersion: logging.openshift.io/v1 kind: ClusterLogForwarder metadata: name: <log_forwarder_name> 1 namespace: <log_forwarder_namespace> 2 spec: serviceAccountName: <service_account_name> 3 pipelines: - inputRefs: - <log_type> 4 outputRefs: - <output_name> 5 outputs: - name: <output_name> 6 type: <output_type> 7 url: <log_output_url> 8 # ...
- 1
- 在传统的实现中,CR 名称必须是
instance
。在多日志转发器实现中,您可以使用任何名称。 - 2
- 在旧的实现中,CR 命名空间必须是
openshift-logging
。在多日志转发器实现中,您可以使用任何命名空间。 - 3
- 服务帐户的名称。如果没有在
openshift-logging
命名空间中部署日志转发器,则只有多日志转发器实现中才需要服务帐户。 - 4
- 收集的日志类型。此字段的值可以是
audit
(用于审计日志)、application
(用于应用程序日志)、infrastructure
(用于基础架构日志),或输入为您的应用程序定义的名称。 - 5 7
- 要将日志转发到的输出类型。此字段的值可以是
default
,loki
,kafka
,elasticsearch
,fluentdForward
,syslog
, 或cloudwatch
。注意多日志转发器实现不支持
default
输出类型。 - 6
- 要将日志转发到的输出的名称。
- 8
- 要将日志转发到的输出的 URL。
9.4.3. 调整日志有效负载和交付
在日志记录 5.9 及更新版本中,ClusterLogForwarder
自定义资源(CR)中的 tuning
spec 提供了配置部署以优先选择日志吞吐量或持久性的方法。
例如,如果您需要减少收集器重启时日志丢失的可能性,或者您需要在收集器重启后收集日志消息来支持规范,您可以调整部署以优先选择日志持久性。如果您使用对可以接收的批处理大小有硬限制的输出,您可能需要调整部署以优先处理日志吞吐量。
要使用这个功能,您的日志记录部署必须配置为使用 Vector 收集器。使用 Fluentd 收集器时,不支持 ClusterLogForwarder
CR 中的 tuning
spec。
以下示例显示了您可以修改的 ClusterLogForwarder
CR 选项来调整日志转发器输出:
ClusterLogForwarder
CR 调整选项示例
apiVersion: logging.openshift.io/v1 kind: ClusterLogForwarder metadata: # ... spec: tuning: delivery: AtLeastOnce 1 compression: none 2 maxWrite: <integer> 3 minRetryDuration: 1s 4 maxRetryDuration: 1s 5 # ...
- 1
- 指定日志转发的交付模式。
-
AtLeastOnce
交付表示如果日志转发器崩溃或重启,则任何在崩溃前读取的日志都会重新发送到其目的地。有些日志可能会在崩溃后重复。 -
AtMostOnce
交付意味着日志转发器不会努力恢复崩溃期间丢失的日志。这个模式可以提供更好的吞吐量,但可能会导致日志丢失。
-
- 2
- 指定
compression
配置会导致在通过网络发送数据前压缩数据。请注意,并非所有输出类型都支持压缩,如果输出不支持指定的压缩类型,这会导致错误。此配置的可能值为none
(不压缩)、gzip
、snappy
、zlib
或zstd
。如果您使用 Kafka 输出,也可以使用lz4
压缩。如需更多信息,请参阅表"支持压缩类型用于调优输出"。 - 3
- 为向输出发送操作的最大有效负载指定限制。
- 4
- 指定在失败后重试发送前在尝试之间等待的时间。这个值是一个字符串,可指定为毫秒(
ms
)、秒(s
)或分钟(m
)。 - 5
- 指定在失败后重试发送前在尝试之间等待的最长时间。这个值是一个字符串,可指定为毫秒(
ms
)、秒(s
)或分钟(m
)。
压缩算法 | Splunk | Amazon Cloudwatch | Elasticsearch 8 | LokiStack | Apache Kafka | HTTP | Syslog | Google Cloud | Microsoft Azure Monitoring |
---|---|---|---|---|---|---|---|---|---|
| X | X | X | X | X | ||||
| X | X | X | X | |||||
| X | X | X | ||||||
| X | X | X | ||||||
| X |
9.4.4. 启用多行异常检测
启用容器日志的多行错误检测。
启用此功能可能会对性能有影响,可能需要额外的计算资源或备用日志记录解决方案。
日志解析器通常会错误地将同一个例外中的不同的行识别为不同的例外。这会导致额外的日志条目,以及要跟踪的信息的不完整或不正确。
java 异常示例
java.lang.NullPointerException: Cannot invoke "String.toString()" because "<param1>" is null at testjava.Main.handle(Main.java:47) at testjava.Main.printMe(Main.java:19) at testjava.Main.main(Main.java:10)
-
要启用日志记录来检测多行异常,并将其重新编译到一个日志条目中,请确保
ClusterLogForwarder
自定义资源 (CR) 包含detectMultilineErrors
字段,值为true
。
ClusterLogForwarder CR 示例
apiVersion: logging.openshift.io/v1 kind: ClusterLogForwarder metadata: name: instance namespace: openshift-logging spec: pipelines: - name: my-app-logs inputRefs: - application outputRefs: - default detectMultilineErrors: true
9.4.4.1. 详情
当日志消息作为一系列针对一个例外的信息出现时,会将它们合并到一个统一的日志记录中。第一个日志消息的内容被替换为序列中所有消息字段的连接内容。
语言 | Fluentd | Vector |
---|---|---|
Java | ✓ | ✓ |
JS | ✓ | ✓ |
Ruby | ✓ | ✓ |
Python | ✓ | ✓ |
Golang | ✓ | ✓ |
PHP | ✓ | ✓ |
Dart | ✓ | ✓ |
9.4.4.2. 故障排除
启用后,收集器配置将包括一个新的部分,类型是:detect_exceptions
vector 配置部分的示例
[transforms.detect_exceptions_app-logs] type = "detect_exceptions" inputs = ["application"] languages = ["All"] group_by = ["kubernetes.namespace_name","kubernetes.pod_name","kubernetes.container_name"] expire_after_ms = 2000 multiline_flush_interval_ms = 1000
fluentd config 部分的示例
<label @MULTILINE_APP_LOGS> <match kubernetes.**> @type detect_exceptions remove_tag_prefix 'kubernetes' message message force_line_breaks true multiline_flush_interval .2 </match> </label>
9.4.5. 将日志转发到 Google Cloud Platform (GCP)
除了内部的默认 OpenShift Dedicated 日志存储外,您还可以将日志转发到 Google Cloud Logging。
不支持在 Fluentd 中使用此功能。
先决条件
- Red Hat OpenShift Logging Operator 5.5.1 及更新的版本
流程
使用 Google 服务帐户密钥创建 secret。
$ oc -n openshift-logging create secret generic gcp-secret --from-file google-application-credentials.json=<your_service_account_key_file.json>
使用以下模板创建
ClusterLogForwarder
自定义资源 YAML:apiVersion: logging.openshift.io/v1 kind: ClusterLogForwarder metadata: name: <log_forwarder_name> 1 namespace: <log_forwarder_namespace> 2 spec: serviceAccountName: <service_account_name> 3 outputs: - name: gcp-1 type: googleCloudLogging secret: name: gcp-secret googleCloudLogging: projectId : "openshift-gce-devel" 4 logId : "app-gcp" 5 pipelines: - name: test-app inputRefs: 6 - application outputRefs: - gcp-1
9.4.6. 将日志转发到 Splunk
除了内部的默认 OpenShift Dedicated 日志存储外,您还可以将日志转发到 Splunk HTTP 事件收集器 (HEC)。
不支持在 Fluentd 中使用此功能。
先决条件
- Red Hat OpenShift Logging Operator 5.6 或更高版本
-
带有指定了
vector
的ClusterLogging
实例作为收集器 - Base64 编码的 Splunk HEC 令牌
流程
使用您的 Base64 编码的 Splunk HEC 令牌创建 secret。
$ oc -n openshift-logging create secret generic vector-splunk-secret --from-literal hecToken=<HEC_Token>
使用以下模板创建或编辑
ClusterLogForwarder
自定义资源 (CR):apiVersion: logging.openshift.io/v1 kind: ClusterLogForwarder metadata: name: <log_forwarder_name> 1 namespace: <log_forwarder_namespace> 2 spec: serviceAccountName: <service_account_name> 3 outputs: - name: splunk-receiver 4 secret: name: vector-splunk-secret 5 type: splunk 6 url: <http://your.splunk.hec.url:8088> 7 pipelines: 8 - inputRefs: - application - infrastructure name: 9 outputRefs: - splunk-receiver 10
- 1
- 在传统的实现中,CR 名称必须是
instance
。在多日志转发器实现中,您可以使用任何名称。 - 2
- 在旧的实现中,CR 命名空间必须是
openshift-logging
。在多日志转发器实现中,您可以使用任何命名空间。 - 3
- 服务帐户的名称。如果没有在
openshift-logging
命名空间中部署日志转发器,则只有多日志转发器实现中才需要服务帐户。 - 4
- 指定输出的名称。
- 5
- 指定包含 HEC 令牌的 secret 名称。
- 6
- 将输出类型指定为
mvapich
。 - 7
- 指定 Splunk HEC 的 URL (包括端口)。
- 8
- 使用管道指定要转发的日志类型:
application
,infrastructure
, 或audit
。 - 9
- 可选:指定管道的名称。
- 10
- 指定使用此管道转发日志时使用的输出名称。
9.4.7. 通过 HTTP 转发日志
Fluentd 和 Vector 日志收集器都支持通过 HTTP 转发日志。要启用,在 ClusterLogForwarder
自定义资源 (CR) 中指定 http
作为输出类型。
流程
使用以下模板创建或编辑
ClusterLogForwarder
CR:ClusterLogForwarder CR 示例
apiVersion: logging.openshift.io/v1 kind: ClusterLogForwarder metadata: name: <log_forwarder_name> 1 namespace: <log_forwarder_namespace> 2 spec: serviceAccountName: <service_account_name> 3 outputs: - name: httpout-app type: http url: 4 http: headers: 5 h1: v1 h2: v2 method: POST secret: name: 6 tls: insecureSkipVerify: 7 pipelines: - name: inputRefs: - application outputRefs: - 8
9.4.8. 转发到 Azure Monitor 日志
使用日志记录 5.9 及之后的版本时,除了默认的日志存储外,您还可以将日志转发到 Azure Monitor 日志。这个功能由 Vector Azure Monitor Logs sink 提供。
先决条件
-
熟悉如何管理和创建
ClusterLogging
自定义资源 (CR) 实例。 -
熟悉如何管理和创建
ClusterLogForwarder
CR 实例。 -
您了解
ClusterLogForwarder
CR 规格。 - 您对 Azure 服务有一定的了解。
- 您已为 Azure Portal 或 Azure CLI 访问配置了 Azure 帐户。
- 您已获取了 Azure Monitor Logs 主或从安全密钥。
- 您已确定要转发的日志类型。
通过 HTTP Data Collector API 启用日志转发到 Azure Monitor 日志:
使用您的共享密钥创建 secret:
apiVersion: v1
kind: Secret
metadata:
name: my-secret
namespace: openshift-logging
type: Opaque
data:
shared_key: <your_shared_key> 1
- 1
- 必须包含生成请求的 Log Analytics 工作区 的主或从密钥。
要获取共享密钥,您可以在 Azure CLI 中使用这个命令:
Get-AzOperationalInsightsWorkspaceSharedKey -ResourceGroupName "<resource_name>" -Name "<workspace_name>”
使用与日志选择匹配的模板创建或编辑 ClusterLogForwarder
CR。
转发所有日志
apiVersion: "logging.openshift.io/v1" kind: "ClusterLogForwarder" metadata: name: instance namespace: openshift-logging spec: outputs: - name: azure-monitor type: azureMonitor azureMonitor: customerId: my-customer-id 1 logType: my_log_type 2 secret: name: my-secret pipelines: - name: app-pipeline inputRefs: - application outputRefs: - azure-monitor
转发应用程序和基础架构日志
apiVersion: "logging.openshift.io/v1"
kind: "ClusterLogForwarder"
metadata:
name: instance
namespace: openshift-logging
spec:
outputs:
- name: azure-monitor-app
type: azureMonitor
azureMonitor:
customerId: my-customer-id
logType: application_log 1
secret:
name: my-secret
- name: azure-monitor-infra
type: azureMonitor
azureMonitor:
customerId: my-customer-id
logType: infra_log #
secret:
name: my-secret
pipelines:
- name: app-pipeline
inputRefs:
- application
outputRefs:
- azure-monitor-app
- name: infra-pipeline
inputRefs:
- infrastructure
outputRefs:
- azure-monitor-infra
高级配置选项
apiVersion: "logging.openshift.io/v1" kind: "ClusterLogForwarder" metadata: name: instance namespace: openshift-logging spec: outputs: - name: azure-monitor type: azureMonitor azureMonitor: customerId: my-customer-id logType: my_log_type azureResourceId: "/subscriptions/111111111" 1 host: "ods.opinsights.azure.com" 2 secret: name: my-secret pipelines: - name: app-pipeline inputRefs: - application outputRefs: - azure-monitor
9.4.9. 从特定项目转发应用程序日志
除了内部日志存储外,您还可以将特定项目的应用程序日志副本转发到外部日志聚合器。您还必须配置外部日志聚合器,以接收来自 OpenShift Dedicated 的日志数据。
要从项目中配置转发应用程序日志,创建一个 ClusterLogForwarder
自定义资源(CR),其中至少从一个项目中输入,为其他日志聚合器提供可选输出,以及使用这些输入和输出的管道。
先决条件
- 您必须有配置为使用指定协议或格式接收日志数据的日志服务器。
流程
创建或编辑定义
ClusterLogForwarder
CR 的 YAML 文件:ClusterLogForwarder
CR 示例apiVersion: logging.openshift.io/v1 kind: ClusterLogForwarder metadata: name: instance 1 namespace: openshift-logging 2 spec: outputs: - name: fluentd-server-secure 3 type: fluentdForward 4 url: 'tls://fluentdserver.security.example.com:24224' 5 secret: 6 name: fluentd-secret - name: fluentd-server-insecure type: fluentdForward url: 'tcp://fluentdserver.home.example.com:24224' inputs: 7 - name: my-app-logs application: namespaces: - my-project 8 pipelines: - name: forward-to-fluentd-insecure 9 inputRefs: 10 - my-app-logs outputRefs: 11 - fluentd-server-insecure labels: project: "my-project" 12 - name: forward-to-fluentd-secure 13 inputRefs: - application 14 - audit - infrastructure outputRefs: - fluentd-server-secure - default labels: clusterId: "C1234"
- 1
ClusterLogForwarder
CR 的名称必须是instance
。- 2
ClusterLogForwarder
CR 的命名空间必须是openshift-logging
。- 3
- 输出的名称。
- 4
- 输出类型:
elasticsearch
,fluentdForward
,syslog
, 或kafka
。 - 5
- 外部日志聚合器的 URL 和端口作为有效的绝对 URL。如果启用了使用 CIDR 注解的集群范围代理,输出必须是服务器名称或 FQDN,而不是 IP 地址。
- 6
- 如果使用
tls
前缀,您必须为 TLS 通信指定端点所需的 secret 名称。secret 必须存在于openshift-logging
项目中,并具有每个指向它们所代表证书的 tls.crt、tls.key 和 ca-bundle.crt 密钥。 - 7
- 用于过滤指定项目的应用程序日志的输入配置。
- 8
- 如果没有指定命名空间,则会从所有命名空间收集日志。
- 9
- 管道配置将来自一个命名输入的日志定向到一个命名的输出。在本例中,名为
forward-to-fluentd-insecure
的管道将日志从一个名为my-app-logs
的输入转发到名为fluentd-server-insecure
的输出。 - 10
- 输入列表。
- 11
- 要使用的输出名称。
- 12
- 可选:字符串。要添加到日志中的一个或多个标签。
- 13
- 管道配置,将日志发送到其他日志聚合器。
- 可选:指定管道的名称。
-
使用管道指定要转发的日志类型:
application
、infrastructure
或audit
。 - 指定使用此管道转发日志时使用的输出名称。
-
可选:指定将日志转发到默认日志存储的
默认
输出。 - 可选:字符串。要添加到日志中的一个或多个标签。
- 14
- 请注意,使用此配置时,会从所有命名空间收集应用程序日志。
运行以下命令来应用
ClusterLogForwarder
CR:$ oc apply -f <filename>.yaml
9.4.10. 从特定 pod 转发应用程序日志
作为集群管理员,您可以使用 Kubernetes pod 标签从特定 pod 收集日志数据并将其转发到日志收集器。
假设您的应用由容器集组成,并与不同命名空间中的其他容器集一起运行。如果这些 pod 具有标识应用程序标签,您可以收集和输出其日志数据到特定的日志收集器。
要指定 pod 标签,请使用一个或多个 matchLabels
键值对。如果指定了多个键值对,pod 必须与要选择的所有值匹配。
流程
创建或编辑定义
ClusterLogForwarder
CR 对象的 YAML 文件。在文件中,使用inputs[].name.application.selector.matchLabels
下的简单基于平等的选择器来指定 pod 标签,如下例所示。ClusterLogForwarder
CR YAML 文件示例apiVersion: logging.openshift.io/v1 kind: ClusterLogForwarder metadata: name: <log_forwarder_name> 1 namespace: <log_forwarder_namespace> 2 spec: pipelines: - inputRefs: [ myAppLogData ] 3 outputRefs: [ default ] 4 inputs: 5 - name: myAppLogData application: selector: matchLabels: 6 environment: production app: nginx namespaces: 7 - app1 - app2 outputs: 8 - <output_name> ...
- 1
- 在传统的实现中,CR 名称必须是
instance
。在多日志转发器实现中,您可以使用任何名称。 - 2
- 在旧的实现中,CR 命名空间必须是
openshift-logging
。在多日志转发器实现中,您可以使用任何命名空间。 - 3
- 指定来自
inputs[].name
的一个或多个以逗号分隔的值。 - 4
- 指定来自
outputs[]
的一个或多个以逗号分隔的值。 - 5
- 为具有一组唯一 pod 标签的每个应用程序定义唯一的
inputs[].name
。 - 6
- 指定您要收集的日志数据的 pod 标签的键值对。您必须指定一个键和值,而不仅仅是一个键。要被选择,pod 必须与所有键值对匹配。
- 7
- 可选:指定一个或多个命名空间。
- 8
- 指定要将日志数据转发到的一个或多个输出。
-
可选: 要将日志数据收集限制为特定的命名空间,请使用
inputs[].name.application.namespaces
,如上例中所示。 可选: 您可以从具有不同 pod 标签的额外应用程序向同一管道发送日志数据。
-
对于 pod 标签的每个唯一组合,创建一个类似于显示的
inputs[].name
部分。 -
更新
选择器(selectors)
以匹配此应用的容器集标签。 将新的
inputs[].name
值添加到inputRefs
。例如:- inputRefs: [ myAppLogData, myOtherAppLogData ]
-
对于 pod 标签的每个唯一组合,创建一个类似于显示的
创建 CR 对象。
$ oc create -f <file-name>.yaml
其他资源
-
如需有关 Kubernetes 中
matchLabels
的更多信息,请参阅支持基于集合的要求的资源。
9.4.11. API 审计过滤器概述
OpenShift API 服务器为每个 API 调用生成审计事件,详细说明请求者的请求、响应和请求者的身份,从而导致大量数据。API 审计过滤器使用规则启用非必要事件和事件大小减少,从而提高更易于管理的审计跟踪。按顺序检查规则,检查会在第一个匹配项时停止。事件中包含的数据量由 level
字段的值决定:
-
None
: 事件被丢弃。 -
Metadata
:只包含审计元数据,请求和响应正文会被删除。 -
Request
:包含审计元数据和请求正文,响应正文会被删除。 -
RequestResponse
:包含所有数据:元数据、请求正文和响应正文。响应正文可能非常大。例如,oc get pods -A
生成包含集群中每个 pod 的 YAML 描述的响应正文。
只有在日志记录部署中设置了 Vector 收集器时,才能使用此功能。
在日志记录 5.8 及更高版本中,ClusterLogForwarder
自定义资源 (CR) 使用与标准 Kubernetes Audit 策略相同的格式,同时提供以下附加功能:
- 通配符
-
用户、组、命名空间和资源的名称可以在前导或尾部带有
*
星号字符。例如,命名空间openshift-\*
与openshift-apiserver
或openshift-authentication
匹配。资源\*/status
匹配Pod/status
或Deployment/status
。 - 默认规则
与策略中任何规则不匹配的事件将被过滤,如下所示:
-
只读系统事件(如
get
、list
、watch
)将被丢弃。 - 服务帐户写入发生在与服务帐户相同的命名空间中的事件将被丢弃。
- 所有其他事件都会被转发,受任何配置的速率限制。
-
只读系统事件(如
要禁用这些默认值,请使用只有一个 level
字段的规则结束您的规则列表,或者添加一条空规则。
- 省略响应代码
-
要省略的整数状态代码列表。您可以使用
OmitResponseCodes
字段(没有创建事件)的 HTTP 状态代码列表根据响应中的 HTTP 状态代码丢弃事件。默认值为[404, 409, 422, 429]
。如果该值为空列表[]
,则不会省略状态代码。
ClusterLogForwarder
CR Audit 策作为 OpenShift Dedicated 审计策略外的补充起作用。ClusterLogForwarder
CR 审计过滤器更改日志收集器转发的内容,并提供按操作动词、用户、组、命名空间或资源过滤的功能。您可以创建多个过滤器,将同一审计流的不同摘要发送到不同的位置。例如,您可以将详细的流发送到本地集群日志存储,并将不太详细的流发送到远程站点。
提供的示例旨在说明审计策略中可能的规则范围,不是推荐的配置。
Audit 策略示例
apiVersion: logging.openshift.io/v1 kind: ClusterLogForwarder metadata: name: instance namespace: openshift-logging spec: pipelines: - name: my-pipeline inputRefs: audit 1 filterRefs: my-policy 2 outputRefs: default filters: - name: my-policy type: kubeAPIAudit kubeAPIAudit: # Don't generate audit events for all requests in RequestReceived stage. omitStages: - "RequestReceived" rules: # Log pod changes at RequestResponse level - level: RequestResponse resources: - group: "" resources: ["pods"] # Log "pods/log", "pods/status" at Metadata level - level: Metadata resources: - group: "" resources: ["pods/log", "pods/status"] # Don't log requests to a configmap called "controller-leader" - level: None resources: - group: "" resources: ["configmaps"] resourceNames: ["controller-leader"] # Don't log watch requests by the "system:kube-proxy" on endpoints or services - level: None users: ["system:kube-proxy"] verbs: ["watch"] resources: - group: "" # core API group resources: ["endpoints", "services"] # Don't log authenticated requests to certain non-resource URL paths. - level: None userGroups: ["system:authenticated"] nonResourceURLs: - "/api*" # Wildcard matching. - "/version" # Log the request body of configmap changes in kube-system. - level: Request resources: - group: "" # core API group resources: ["configmaps"] # This rule only applies to resources in the "kube-system" namespace. # The empty string "" can be used to select non-namespaced resources. namespaces: ["kube-system"] # Log configmap and secret changes in all other namespaces at the Metadata level. - level: Metadata resources: - group: "" # core API group resources: ["secrets", "configmaps"] # Log all other resources in core and extensions at the Request level. - level: Request resources: - group: "" # core API group - group: "extensions" # Version of group should NOT be included. # A catch-all rule to log all other requests at the Metadata level. - level: Metadata
其他资源
9.4.12. 将日志转发到外部 Loki 日志记录系统
除了默认的日志存储外,您还可以将日志转发到外部 Loki 日志记录系统。
要配置日志转发到 Loki,您必须创建一个 ClusterLogForwarder
自定义资源 (CR),并创建一个输出到 Loki 的 ClusterLogForwarder 自定义资源 (CR),以及使用输出的管道。到 Loki 的输出可以使用 HTTP(不安全)或 HTTPS(安全 HTTP)连接。
先决条件
-
您必须有一个 Loki 日志记录系统在您通过 CR 中的
url
字段指定的 URL 中运行。
流程
创建或编辑定义
ClusterLogForwarder
CR 对象的 YAML 文件:apiVersion: logging.openshift.io/v1 kind: ClusterLogForwarder metadata: name: <log_forwarder_name> 1 namespace: <log_forwarder_namespace> 2 spec: serviceAccountName: <service_account_name> 3 outputs: - name: loki-insecure 4 type: "loki" 5 url: http://loki.insecure.com:3100 6 loki: tenantKey: kubernetes.namespace_name labelKeys: - kubernetes.labels.foo - name: loki-secure 7 type: "loki" url: https://loki.secure.com:3100 secret: name: loki-secret 8 loki: tenantKey: kubernetes.namespace_name 9 labelKeys: - kubernetes.labels.foo 10 pipelines: - name: application-logs 11 inputRefs: 12 - application - audit outputRefs: 13 - loki-secure
- 1
- 在传统的实现中,CR 名称必须是
instance
。在多日志转发器实现中,您可以使用任何名称。 - 2
- 在旧的实现中,CR 命名空间必须是
openshift-logging
。在多日志转发器实现中,您可以使用任何命名空间。 - 3
- 服务帐户的名称。如果没有在
openshift-logging
命名空间中部署日志转发器,则只有多日志转发器实现中才需要服务帐户。 - 4
- 指定输出的名称。
- 5
- 将类型指定为
"loki"
。 - 6
- 将 Loki 系统的 URL 和端口指定为有效的绝对 URL。您可以使用
http
(不安全)或https
(安全 HTTP)协议。如果启用了使用 CIDR 注解的集群范围代理,输出必须是服务器名称或 FQDN,而不是 IP 地址。Loki 用于 HTTP(S) 通讯的默认端口为 3100。 - 7
- 对于安全连接,您可以通过指定
secret
来指定您进行身份验证的https
或http
URL。 - 8
- 对于
https
前缀,请指定 TLS 通信端点所需的 secret 名称。secret 必须包含一个ca-bundle.crt
键,它指向它所代表的证书。否则,对于http
和https
前缀,您可以指定一个包含用户名和密码的 secret。在旧的实现中,secret 必须存在于openshift-logging
项目中。如需更多信息,请参阅以下"示例:设置包含用户名和密码的 secret"。 - 9
- 可选:指定一个 metadata key 字段,为 Loki 中的
TenantID
字段生成值。例如,设置tenantKey: kubernetes.namespace_name
使用 Kubernetes 命名空间的名称作为 Loki 中的租户 ID 的值。要查看您可以指定的其他日志记录字段,请查看以下"Additional resources"部分中的"Log Record Fields"链接。 - 10
- 可选:指定一个 metadata 字段键列表来替换默认的 Loki 标签。Loki 标签名称必须与正则表达式
[a-zA-Z_:][a-zA-Z0-9_:]*
匹配。元数据键中的非法字符被替换为_
,以组成标签名称。例如,kubernetes.labels.foo
元数据键变成 Loki 标签kubernetes_labels_foo
。如果没有设置labelKeys
,则默认值为:[log_type, kubernetes.namespace_name, kubernetes.pod_name, kubernetes_host]
。尽量保持标签数量少,因为 Loki 会限制允许标签的大小和数量。请参阅配置 Loki、limit_config。您仍然可以使用查询过滤器基于任何日志记录字段进行查询。 - 11
- 可选:指定管道的名称。
- 12
- 使用管道指定要转发的日志类型:
application
、infrastructure
或audit
。 - 13
- 指定使用此管道转发日志时使用的输出名称。
注意由于 Loki 要求按时间戳正确排序日志流,
labelKeys
始终包含kubernetes_host
标签,即使您没有指定它。此包含确保每个流源自单一主机,这样可防止因为不同主机上的时钟差异而导致时间戳出现问题。运行以下命令来应用
ClusterLogForwarder
CR 对象:$ oc apply -f <filename>.yaml
其他资源
9.4.13. 将日志转发到外部 Elasticsearch 实例
除了内部日志存储外,您还可以将日志转发到外部 Elasticsearch 实例。您需要配置外部日志聚合器,以从 OpenShift Dedicated 接收日志数据。
要配置日志转发到外部 Elasticsearch 实例,请创建一个 ClusterLogForwarder
自定义资源(CR),其中包含输出到该实例的输出以及使用输出的管道。外部 Elasticsearch 输出可以使用 HTTP(不安全)或 HTTPS(安全 HTTP)连接。
要将日志转发到外部和内部 Elasticsearch 实例,请将输出和管道创建到外部实例,以及一个使用 default
输出将日志转发到内部实例的管道。
如果您只想将日志转发到内部 Elasticsearch 实例,则不需要创建一个 ClusterLogForwarder
CR。
先决条件
- 您必须有配置为使用指定协议或格式接收日志数据的日志服务器。
流程
创建或编辑定义
ClusterLogForwarder
CR 的 YAML 文件:ClusterLogForwarder
CR 示例apiVersion: logging.openshift.io/v1 kind: ClusterLogForwarder metadata: name: <log_forwarder_name> 1 namespace: <log_forwarder_namespace> 2 spec: serviceAccountName: <service_account_name> 3 outputs: - name: elasticsearch-example 4 type: elasticsearch 5 elasticsearch: version: 8 6 url: http://elasticsearch.example.com:9200 7 secret: name: es-secret 8 pipelines: - name: application-logs 9 inputRefs: 10 - application - audit outputRefs: - elasticsearch-example 11 - default 12 labels: myLabel: "myValue" 13 # ...
- 1
- 在传统的实现中,CR 名称必须是
instance
。在多日志转发器实现中,您可以使用任何名称。 - 2
- 在旧的实现中,CR 命名空间必须是
openshift-logging
。在多日志转发器实现中,您可以使用任何命名空间。 - 3
- 服务帐户的名称。如果没有在
openshift-logging
命名空间中部署日志转发器,则只有多日志转发器实现中才需要服务帐户。 - 4
- 指定输出的名称。
- 5
- 指定
elasticsearch
类型。 - 6
- 指定 Elasticsearch 版本。这可以是
6
、7
或8
。 - 7
- 指定外部 Elasticsearch 实例的 URL 和端口作为有效的绝对 URL。您可以使用
http
(不安全)或https
(安全 HTTP)协议。如果启用了使用 CIDR 注解的集群范围代理,输出必须是服务器名称或 FQDN,而不是 IP 地址。 - 8
- 对于
https
前缀,请指定 TLS 通信端点所需的 secret 名称。secret 必须包含一个ca-bundle.crt
键,它指向它所代表的证书。否则,对于http
和https
前缀,您可以指定一个包含用户名和密码的 secret。在旧的实现中,secret 必须存在于openshift-logging
项目中。如需更多信息,请参阅以下"示例:设置包含用户名和密码的 secret"。 - 9
- 可选:指定管道的名称。
- 10
- 使用管道指定要转发的日志类型:
application
、infrastructure
或audit
。 - 11
- 指定使用此管道转发日志时使用的输出名称。
- 12
- 可选:指定将日志发送到内部 Elasticsearch 实例的
default
输出。 - 13
- 可选:字符串。要添加到日志中的一个或多个标签。
应用
ClusterLogForwarder
CR:$ oc apply -f <filename>.yaml
示例:设置包含用户名和密码的 secret
您可以使用包含用户名和密码的 secret 来验证与外部 Elasticsearch 实例的安全连接。
例如,如果无法使用 mutual TLS (mTLS) 密钥,因为第三方运行 Elasticsearch 实例,您可以使用 HTTP 或 HTTPS 并设置包含用户名和密码的 secret。
创建类似于以下示例的
Secret
YAML 文件。将 base64 编码的值用于username
和password
字段。secret 类型默认为 opaque。apiVersion: v1 kind: Secret metadata: name: openshift-test-secret data: username: <username> password: <password> # ...
创建 secret:
$ oc create secret -n openshift-logging openshift-test-secret.yaml
在
ClusterLogForwarder
CR 中指定 secret 的名称:kind: ClusterLogForwarder metadata: name: instance namespace: openshift-logging spec: outputs: - name: elasticsearch type: "elasticsearch" url: https://elasticsearch.secure.com:9200 secret: name: openshift-test-secret # ...
注意在
url
字段中,前缀可以是http
或https
。应用 CR 对象:
$ oc apply -f <filename>.yaml
9.4.14. 使用 Fluentd 转发协议转发日志
您可以使用 Fluentd forward 协议将日志副本发送到配置为接受协议的外部日志聚合器,而非默认的 Elasticsearch 日志存储。您需要配置外部日志聚合器,以接收 OpenShift Dedicated 的日志。
要使用 forward 协议配置日志转发,请创建一个 ClusterLogForwarder
自定义资源(CR),并将一个或多个输出输出到使用这些输出的 Fluentd 服务器和管道。Fluentd 输出可以使用 TCP(不安全)或 TLS(安全 TCP)连接。
先决条件
- 您必须有配置为使用指定协议或格式接收日志数据的日志服务器。
流程
创建或编辑定义
ClusterLogForwarder
CR 对象的 YAML 文件:apiVersion: logging.openshift.io/v1 kind: ClusterLogForwarder metadata: name: instance 1 namespace: openshift-logging 2 spec: outputs: - name: fluentd-server-secure 3 type: fluentdForward 4 url: 'tls://fluentdserver.security.example.com:24224' 5 secret: 6 name: fluentd-secret - name: fluentd-server-insecure type: fluentdForward url: 'tcp://fluentdserver.home.example.com:24224' pipelines: - name: forward-to-fluentd-secure 7 inputRefs: 8 - application - audit outputRefs: - fluentd-server-secure 9 - default 10 labels: clusterId: "C1234" 11 - name: forward-to-fluentd-insecure 12 inputRefs: - infrastructure outputRefs: - fluentd-server-insecure labels: clusterId: "C1234"
- 1
ClusterLogForwarder
CR 的名称必须是instance
。- 2
ClusterLogForwarder
CR 的命名空间必须是openshift-logging
。- 3
- 指定输出的名称。
- 4
- 指定
fluentdForward
类型。 - 5
- 指定外部 Fluentd 实例的 URL 和端口作为有效的绝对 URL。您可以使用
tcp
(不安全)或者tls
(安全 TCP)协议。如果启用了使用 CIDR 注解的集群范围代理,输出必须是服务器名称或 FQDN,而不是 IP 地址。 - 6
- 如果使用
tls
前缀,您必须为 TLS 通信指定端点所需的 secret 名称。secret 必须存在于openshift-logging
项目中,且必须包含指向它所代表证书的ca-bundle.crt
键。 - 7
- 可选:指定管道的名称。
- 8
- 使用管道指定要转发的日志类型:
application
、infrastructure
或audit
。 - 9
- 指定使用此管道转发日志时使用的输出名称。
- 10
- 可选:指定将日志转发到内部 Elasticsearch 实例的
default
输出。 - 11
- 可选:字符串。要添加到日志中的一个或多个标签。
- 12
- 可选:配置多个输出,将日志转发到任何受支持类型的其他外部日志聚合器:
- 描述管道的名称。
-
inputRefs
是使用管道转发的日志类型:application
、infrastructure
或audit
。 -
outputRefs
是要使用的输出名称。 - 可选:字符串。要添加到日志中的一个或多个标签。
创建 CR 对象:
$ oc create -f <file-name>.yaml
9.4.14.1. 为 Logstash 启用 nanosecond 精度来从 fluentd 摄取数据
对于 Logstash 从 fluentd 摄取数据,您必须在 Logstash 配置文件中启用 nanosecond 精度。
流程
-
在 Logstash 配置文件中,将
nanosecond_precision
设置为true
。
Logstash 配置文件示例
input { tcp { codec => fluent { nanosecond_precision => true } port => 24114 } } filter { } output { stdout { codec => rubydebug } }
9.4.15. 使用 syslog 协议转发日志
您可以使用 syslog RFC3164 或 RFC5424 协议将日志副本发送到配置为接受该协议的外部日志聚合器(替代默认的 Elasticsearch 日志存储或作为它的补充)。您需要配置外部日志聚合器(如 syslog 服务器)来接收来自 OpenShift Dedicated 的日志。
要使用 syslog 协议配置日志转,,请创建一个 ClusterLogForwarder
自定义资源(CR),并将一个或多个输出输出到使用这些输出的 syslog 服务器和管道。syslog 输出可以使用 UDP、TCP 或 TLS 连接。
先决条件
- 您必须有配置为使用指定协议或格式接收日志数据的日志服务器。
流程
创建或编辑定义
ClusterLogForwarder
CR 对象的 YAML 文件:apiVersion: logging.openshift.io/v1 kind: ClusterLogForwarder metadata: name: <log_forwarder_name> 1 namespace: <log_forwarder_namespace> 2 spec: serviceAccountName: <service_account_name> 3 outputs: - name: rsyslog-east 4 type: syslog 5 syslog: 6 facility: local0 rfc: RFC3164 payloadKey: message severity: informational url: 'tls://rsyslogserver.east.example.com:514' 7 secret: 8 name: syslog-secret - name: rsyslog-west type: syslog syslog: appName: myapp facility: user msgID: mymsg procID: myproc rfc: RFC5424 severity: debug url: 'tcp://rsyslogserver.west.example.com:514' pipelines: - name: syslog-east 9 inputRefs: 10 - audit - application outputRefs: 11 - rsyslog-east - default 12 labels: secure: "true" 13 syslog: "east" - name: syslog-west 14 inputRefs: - infrastructure outputRefs: - rsyslog-west - default labels: syslog: "west"
- 1
- 在传统的实现中,CR 名称必须是
instance
。在多日志转发器实现中,您可以使用任何名称。 - 2
- 在旧的实现中,CR 命名空间必须是
openshift-logging
。在多日志转发器实现中,您可以使用任何命名空间。 - 3
- 服务帐户的名称。如果没有在
openshift-logging
命名空间中部署日志转发器,则只有多日志转发器实现中才需要服务帐户。 - 4
- 指定输出的名称。
- 5
- 指定
syslog
类型。 - 6
- 可选:指定 syslog 参数,如下所列。
- 7
- 指定外部 syslog 实例的 URL 和端口。您可以使用
udp
(不安全)、tcp
(不安全)或者tls
(安全 TCP)协议。如果启用了使用 CIDR 注解的集群范围代理,输出必须是服务器名称或 FQDN,而不是 IP 地址。 - 8
- 如果使用
tls
前缀,您必须为 TLS 通信指定端点所需的 secret 名称。secret 必须包含一个ca-bundle.crt
键,它指向它所代表的证书。在旧的实现中,secret 必须存在于openshift-logging
项目中。 - 9
- 可选:指定管道的名称。
- 10
- 使用管道指定要转发的日志类型:
application
、infrastructure
或audit
。 - 11
- 指定使用此管道转发日志时使用的输出名称。
- 12
- 可选:指定将日志转发到内部 Elasticsearch 实例的
default
输出。 - 13
- 可选:字符串。要添加到日志中的一个或多个标签。对值加引号(如 "true"),以便它们被识别为字符串值,而不是作为布尔值。
- 14
- 可选:配置多个输出,将日志转发到任何受支持类型的其他外部日志聚合器:
- 描述管道的名称。
-
inputRefs
是使用管道转发的日志类型:application
、infrastructure
或audit
。 -
outputRefs
是要使用的输出名称。 - 可选:字符串。要添加到日志中的一个或多个标签。
创建 CR 对象:
$ oc create -f <filename>.yaml
9.4.15.1. 在消息输出中添加日志消息
您可以通过将 AddLogSource
字段添加到 ClusterLogForwarder
自定义资源(CR)将 namespace_name
、pod_name
和 container_name
元素添加到记录的 message
字段中。
spec: outputs: - name: syslogout syslog: addLogSource: true facility: user payloadKey: message rfc: RFC3164 severity: debug tag: mytag type: syslog url: tls://syslog-receiver.openshift-logging.svc:24224 pipelines: - inputRefs: - application name: test-app outputRefs: - syslogout
这个配置与 RFC3164 和 RFC5424 兼容。
没有 AddLogSource
的 syslog 消息输出示例
<15>1 2020-11-15T17:06:14+00:00 fluentd-9hkb4 mytag - - - {"msgcontent"=>"Message Contents", "timestamp"=>"2020-11-15 17:06:09", "tag_key"=>"rec_tag", "index"=>56}
带有 AddLogSource
的 syslog 消息输出示例
<15>1 2020-11-16T10:49:37+00:00 crc-j55b9-master-0 mytag - - - namespace_name=clo-test-6327,pod_name=log-generator-ff9746c49-qxm7l,container_name=log-generator,message={"msgcontent":"My life is my message", "timestamp":"2020-11-16 10:49:36", "tag_key":"rec_tag", "index":76}
9.4.15.2. syslog 参数
您可以为 syslog
输出配置以下内容。如需更多信息,请参阅 syslog RFC3164 或 RFC5424 RFC。
facility: syslog facility.该值可以是十进制整数,也可以是区分大小写的关键字:
-
0
或kern
用于内核信息 -
1
或user
代表用户级信息(默认)。 -
2
或mail
用于邮件系统。 -
3
或daemon
用于系统守护进程 -
4
或auth
用于安全/身份验证信息 -
5
或syslog
用于 syslogd 内部生成的信息 -
6
或lpr
用于行打印机子系统 -
7
或news
用于网络新闻子系统 -
8
或uucp
用于 UUCP 子系统 -
9
或cron
用于 clock 守护进程 -
10
或authpriv
用于安全身份验证信息 -
11
或ftp
用于 FTP 守护进程 -
12
或ntp
用于 NTP 子系统 -
13
或security
用于 syslog audit 日志 -
14
或console
用于 syslog alert 日志 -
15
或solaris-cron
用于 scheduling 守护进程 -
16
-23
或local0
-local7
用于本地使用的工具
-
可选:
payloadKey
:用作 syslog 消息有效负载的记录字段。注意配置
payloadKey
参数可防止将其他参数转发到 syslog。- RFC:用于使用 syslog 发送日志的 RFC。默认为 RFC5424。
severity:设置传出的 syslog 记录的syslog 的严重性。该值可以是十进制整数,也可以是区分大小写的关键字:
-
0
或Emergency
用于代表系统不可用的信息 -
1
或Alert
用于代表立即执行操作的信息 -
2
或Critical
用于代表关键状况的信息 -
3
或Error
用于代表错误状况的信息 -
4
或Warning
用于代表警告条件的信息 -
5
或Notice
用于代表正常但存在重要条件的信息 -
6
或Informational
用于代表提示信息的信息 -
7
或Debug
用于代表调试级别的信息(默认)
-
- tag:Tag 指定记录字段,用作 syslog 消息上的标签。
- trimPrefix:从标签中删除指定的前缀。
9.4.15.3. 其他 RFC5424 syslog 参数
以下参数适用于 RFC5424:
-
appName: APP-NAME 是一个自由文本字符串,用于标识发送日志的应用程序。必须为
RFC5424
指定。 -
msgID: MSGID 是一个用于标识消息类型的自由文本字符串。必须为
RFC5424
指定。 -
PROCID: PROCID 是一个自由文本字符串。该值的变化表示 syslog 报告不连续。必须为
RFC5424
指定。
9.4.16. 将日志转发到 Kafka 代理
除了默认的日志存储外,您还可以将日志转发到外部 Kafka 代理。
要配置日志转发到外部 Kafka 实例,请创建一个 ClusterLogForwarder
自定义资源(CR),包括输出到该实例的输出以及使用输出的管道。您可以在输出中包括特定的 Kafka 主题,也可以使用默认值。Kafka 输出可以使用 TCP(不安全)或者 TLS(安全 TCP)连接。
流程
创建或编辑定义
ClusterLogForwarder
CR 对象的 YAML 文件:apiVersion: logging.openshift.io/v1 kind: ClusterLogForwarder metadata: name: <log_forwarder_name> 1 namespace: <log_forwarder_namespace> 2 spec: serviceAccountName: <service_account_name> 3 outputs: - name: app-logs 4 type: kafka 5 url: tls://kafka.example.devlab.com:9093/app-topic 6 secret: name: kafka-secret 7 - name: infra-logs type: kafka url: tcp://kafka.devlab2.example.com:9093/infra-topic 8 - name: audit-logs type: kafka url: tls://kafka.qelab.example.com:9093/audit-topic secret: name: kafka-secret-qe pipelines: - name: app-topic 9 inputRefs: 10 - application outputRefs: 11 - app-logs labels: logType: "application" 12 - name: infra-topic 13 inputRefs: - infrastructure outputRefs: - infra-logs labels: logType: "infra" - name: audit-topic inputRefs: - audit outputRefs: - audit-logs labels: logType: "audit"
- 1
- 在传统的实现中,CR 名称必须是
instance
。在多日志转发器实现中,您可以使用任何名称。 - 2
- 在旧的实现中,CR 命名空间必须是
openshift-logging
。在多日志转发器实现中,您可以使用任何命名空间。 - 3
- 服务帐户的名称。如果没有在
openshift-logging
命名空间中部署日志转发器,则只有多日志转发器实现中才需要服务帐户。 - 4
- 指定输出的名称。
- 5
- 指定
kafka
类型。 - 6
- 将 Kafka 代理的 URL 和端口指定为一个有效的绝对 URL,也可以同时指定特定标题。您可以使用
tcp
(不安全)或者tls
(安全 TCP)协议。如果启用了使用 CIDR 注解的集群范围代理,输出必须是服务器名称或 FQDN,而不是 IP 地址。 - 7
- 如果使用
tls
前缀,您必须为 TLS 通信指定端点所需的 secret 名称。secret 必须包含一个ca-bundle.crt
键,它指向它所代表的证书。在旧的实现中,secret 必须存在于openshift-logging
项目中。 - 8
- 可选: 要发送不安全的输出,在 URL 前面使用
tcp
前缀。另外,省略此输出中的secret
键及其name
。 - 9
- 可选:指定管道的名称。
- 10
- 使用管道指定要转发的日志类型:
application
、infrastructure
或audit
。 - 11
- 指定使用此管道转发日志时使用的输出名称。
- 12
- 可选:字符串。要添加到日志中的一个或多个标签。
- 13
- 可选:配置多个输出,将日志转发到任何受支持类型的其他外部日志聚合器:
- 描述管道的名称。
-
inputRefs
是使用管道转发的日志类型:application
、infrastructure
或audit
。 -
outputRefs
是要使用的输出名称。 - 可选:字符串。要添加到日志中的一个或多个标签。
可选: 要将单个输出转发到多个 Kafka 代理,请指定 Kafka 代理数组,如下例所示:
# ... spec: outputs: - name: app-logs type: kafka secret: name: kafka-secret-dev kafka: 1 brokers: 2 - tls://kafka-broker1.example.com:9093/ - tls://kafka-broker2.example.com:9093/ topic: app-topic 3 # ...
运行以下命令来应用
ClusterLogForwarder
CR:$ oc apply -f <filename>.yaml
9.4.17. 将日志转发到 Amazon CloudWatch
您可以将日志转发到 Amazon CloudWatch,这是由 Amazon Web Services (AWS) 托管的监控和日志存储服务。除了默认的日志存储外,您还可以将日志转发到 CloudWatch。
要配置日志转发到 CloudWatch,您必须创建一个 ClusterLogForwarder
自定义资源 (CR),其中包含 CloudWatch 的输出,以及使用输出的管道。
流程
创建一个
Secret
YAML 文件,它使用aws_access_key_id
和aws_secret_access_key
字段来指定您的 base64 编码的 AWS 凭证。例如:apiVersion: v1 kind: Secret metadata: name: cw-secret namespace: openshift-logging data: aws_access_key_id: QUtJQUlPU0ZPRE5ON0VYQU1QTEUK aws_secret_access_key: d0phbHJYVXRuRkVNSS9LN01ERU5HL2JQeFJmaUNZRVhBTVBMRUtFWQo=
创建 secret.例如:
$ oc apply -f cw-secret.yaml
创建或编辑定义
ClusterLogForwarder
CR 对象的 YAML 文件。在文件中,指定 secret 的名称。例如:apiVersion: logging.openshift.io/v1 kind: ClusterLogForwarder metadata: name: <log_forwarder_name> 1 namespace: <log_forwarder_namespace> 2 spec: serviceAccountName: <service_account_name> 3 outputs: - name: cw 4 type: cloudwatch 5 cloudwatch: groupBy: logType 6 groupPrefix: <group prefix> 7 region: us-east-2 8 secret: name: cw-secret 9 pipelines: - name: infra-logs 10 inputRefs: 11 - infrastructure - audit - application outputRefs: - cw 12
- 1
- 在传统的实现中,CR 名称必须是
instance
。在多日志转发器实现中,您可以使用任何名称。 - 2
- 在旧的实现中,CR 命名空间必须是
openshift-logging
。在多日志转发器实现中,您可以使用任何命名空间。 - 3
- 服务帐户的名称。如果没有在
openshift-logging
命名空间中部署日志转发器,则只有多日志转发器实现中才需要服务帐户。 - 4
- 指定输出的名称。
- 5
- 指定
cloudwatch
类型。 - 6
- 可选:指定如何对日志进行分组:
-
logType
为每个日志类型创建日志组。 -
namespaceName
为每个应用程序命名空间创建一个日志组。它还会为基础架构和审计日志创建单独的日志组。 -
namespaceUUID
为每个应用命名空间 UUID 创建一个新的日志组。它还会为基础架构和审计日志创建单独的日志组。
-
- 7
- 可选:指定一个字符串来替换日志组名称中的默认
infrastructureName
前缀。 - 8
- 指定 AWS 区域。
- 9
- 指定包含 AWS 凭证的 secret 名称。
- 10
- 可选:指定管道的名称。
- 11
- 使用管道指定要转发的日志类型:
application
、infrastructure
或audit
。 - 12
- 指定使用此管道转发日志时使用的输出名称。
创建 CR 对象。
$ oc create -f <file-name>.yaml
示例:在 Amazon CloudWatch 中使用 ClusterLogForwarder
在这里,您会看到 ClusterLogForwarder
自定义资源 (CR) 示例及其输出到 Amazon CloudWatch 的日志数据。
假设您正在运行名为 mycluster
的 OpenShift Dedicated 集群。以下命令返回集群的 infrastructureName
,稍后您将用它来编写 aws
命令:
$ oc get Infrastructure/cluster -ojson | jq .status.infrastructureName "mycluster-7977k"
要为本例生成日志数据,您可以在名为 app
的命名空间中运行 busybox
pod。busybox
pod 每隔三秒钟将消息写入 stdout:
$ oc run busybox --image=busybox -- sh -c 'while true; do echo "My life is my message"; sleep 3; done' $ oc logs -f busybox My life is my message My life is my message My life is my message ...
您可以查找 busybox
pod 运行的 app
命名空间的 UUID:
$ oc get ns/app -ojson | jq .metadata.uid "794e1e1a-b9f5-4958-a190-e76a9b53d7bf"
在 ClusterLogForwarder
自定义资源 (CR) 中,您可以将 infrastructure
、audit
和 application
日志类型配置为 all-logs
管道的输入。您还可以将此管道连接到 cw
输出,输出将日志转发到 us-east-2
区域的 CloudWatch 实例:
apiVersion: "logging.openshift.io/v1" kind: ClusterLogForwarder metadata: name: instance namespace: openshift-logging spec: outputs: - name: cw type: cloudwatch cloudwatch: groupBy: logType region: us-east-2 secret: name: cw-secret pipelines: - name: all-logs inputRefs: - infrastructure - audit - application outputRefs: - cw
CloudWatch 中的每个地区都包含三个级别的对象:
日志组
日志流
- 日志事件
使用 ClusterLogForwarding
CR 中的 groupBy: logType
,inputRefs
中的三种日志类型会在 Amazon Cloudwatch 中生成三个日志组:
$ aws --output json logs describe-log-groups | jq .logGroups[].logGroupName "mycluster-7977k.application" "mycluster-7977k.audit" "mycluster-7977k.infrastructure"
每个日志组都包含日志流:
$ aws --output json logs describe-log-streams --log-group-name mycluster-7977k.application | jq .logStreams[].logStreamName "kubernetes.var.log.containers.busybox_app_busybox-da085893053e20beddd6747acdbaf98e77c37718f85a7f6a4facf09ca195ad76.log"
$ aws --output json logs describe-log-streams --log-group-name mycluster-7977k.audit | jq .logStreams[].logStreamName "ip-10-0-131-228.us-east-2.compute.internal.k8s-audit.log" "ip-10-0-131-228.us-east-2.compute.internal.linux-audit.log" "ip-10-0-131-228.us-east-2.compute.internal.openshift-audit.log" ...
$ aws --output json logs describe-log-streams --log-group-name mycluster-7977k.infrastructure | jq .logStreams[].logStreamName "ip-10-0-131-228.us-east-2.compute.internal.kubernetes.var.log.containers.apiserver-69f9fd9b58-zqzw5_openshift-oauth-apiserver_oauth-apiserver-453c5c4ee026fe20a6139ba6b1cdd1bed25989c905bf5ac5ca211b7cbb5c3d7b.log" "ip-10-0-131-228.us-east-2.compute.internal.kubernetes.var.log.containers.apiserver-797774f7c5-lftrx_openshift-apiserver_openshift-apiserver-ce51532df7d4e4d5f21c4f4be05f6575b93196336be0027067fd7d93d70f66a4.log" "ip-10-0-131-228.us-east-2.compute.internal.kubernetes.var.log.containers.apiserver-797774f7c5-lftrx_openshift-apiserver_openshift-apiserver-check-endpoints-82a9096b5931b5c3b1d6dc4b66113252da4a6472c9fff48623baee761911a9ef.log" ...
每个日志流都包含日志事件。要查看 busybox
Pod 的日志事件,您可以从 application
日志组中指定其日志流:
$ aws logs get-log-events --log-group-name mycluster-7977k.application --log-stream-name kubernetes.var.log.containers.busybox_app_busybox-da085893053e20beddd6747acdbaf98e77c37718f85a7f6a4facf09ca195ad76.log { "events": [ { "timestamp": 1629422704178, "message": "{\"docker\":{\"container_id\":\"da085893053e20beddd6747acdbaf98e77c37718f85a7f6a4facf09ca195ad76\"},\"kubernetes\":{\"container_name\":\"busybox\",\"namespace_name\":\"app\",\"pod_name\":\"busybox\",\"container_image\":\"docker.io/library/busybox:latest\",\"container_image_id\":\"docker.io/library/busybox@sha256:0f354ec1728d9ff32edcd7d1b8bbdfc798277ad36120dc3dc683be44524c8b60\",\"pod_id\":\"870be234-90a3-4258-b73f-4f4d6e2777c7\",\"host\":\"ip-10-0-216-3.us-east-2.compute.internal\",\"labels\":{\"run\":\"busybox\"},\"master_url\":\"https://kubernetes.default.svc\",\"namespace_id\":\"794e1e1a-b9f5-4958-a190-e76a9b53d7bf\",\"namespace_labels\":{\"kubernetes_io/metadata_name\":\"app\"}},\"message\":\"My life is my message\",\"level\":\"unknown\",\"hostname\":\"ip-10-0-216-3.us-east-2.compute.internal\",\"pipeline_metadata\":{\"collector\":{\"ipaddr4\":\"10.0.216.3\",\"inputname\":\"fluent-plugin-systemd\",\"name\":\"fluentd\",\"received_at\":\"2021-08-20T01:25:08.085760+00:00\",\"version\":\"1.7.4 1.6.0\"}},\"@timestamp\":\"2021-08-20T01:25:04.178986+00:00\",\"viaq_index_name\":\"app-write\",\"viaq_msg_id\":\"NWRjZmUyMWQtZjgzNC00MjI4LTk3MjMtNTk3NmY3ZjU4NDk1\",\"log_type\":\"application\",\"time\":\"2021-08-20T01:25:04+00:00\"}", "ingestionTime": 1629422744016 }, ...
示例:在日志组群名称中自定义前缀
在日志组名称中,您可以将默认的 infrastructureName
前缀 mycluster-7977k
替换为一个任意字符串,如 demo-group-prefix
。要进行此更改,您需要更新 ClusterLogForwarding
CR 中的 groupPrefix
字段:
cloudwatch: groupBy: logType groupPrefix: demo-group-prefix region: us-east-2
groupPrefix
的值替换默认的 infrastructureName
前缀:
$ aws --output json logs describe-log-groups | jq .logGroups[].logGroupName "demo-group-prefix.application" "demo-group-prefix.audit" "demo-group-prefix.infrastructure"
示例:应用程序命名空间名称后命名日志组
对于集群中的每个应用程序命名空间,您可以在 CloudWatch 中创建日志组,其名称基于应用程序命名空间的名称。
如果您删除应用程序命名空间对象并创建名称相同的新对象,CloudWatch 会继续使用与以前相同的日志组。
如果您认为名称相同的连续应用程序命名空间对象相互等效,请使用本例中描述的方法。否则,如果您需要将生成的日志组相互区分,请参阅以下"为应用命名空间 UUID 注入日志组"部分。
要创建名称基于应用程序命名空间名称的应用程序日志组,您可以在 ClusterLogForwarder
CR 中将 groupBy
字段的值设置为 namespaceName
:
cloudwatch: groupBy: namespaceName region: us-east-2
将 groupBy
设置为 namespaceName
只会影响应用程序日志组。它不会影响 audit
和 infrastructure
日志组。
在 Amazon Cloudwatch 中,命名空间名称显示在每个日志组名称的末尾。因为只有一个应用程序命名空间 "app",以下输出显示一个新的 mycluster-7977k.app
日志组,而不是 mycluster-7977k.application
:
$ aws --output json logs describe-log-groups | jq .logGroups[].logGroupName "mycluster-7977k.app" "mycluster-7977k.audit" "mycluster-7977k.infrastructure"
如果本例中的集群包含多个应用命名空间,则输出中会显示多个日志组,每个命名空间对应一个日志组。
groupBy
字段仅影响应用日志组。它不会影响 audit
和 infrastructure
日志组。
示例:应用程序命名空间 UUID 后命名日志组
对于集群中的每个应用程序命名空间,您可以在 CloudWatch 中创建日志组,其名称是基于应用程序命名空间的 UUID。
如果您删除应用程序命名空间对象并创建新对象,CloudWatch 会创建一个新的日志组。
如果您考虑使用名称相同的连续应用程序命名空间对象,请使用本例中描述的方法。否则,请参阅前面的 "Example: Naming log groups for application namespace name" 部分。
要在应用程序命名空间 UUID 后命名日志组,您可以在 ClusterLogForwarder
CR 中将 groupBy
字段的值设置为 namespaceUUID
:
cloudwatch: groupBy: namespaceUUID region: us-east-2
在 Amazon Cloudwatch 中,命名空间 UUID 出现在每个日志组名称的末尾。因为有一个应用程序命名空间 "app",以下输出显示一个新的 mycluster-7977k.794e1e1a-b9f5-4958-a190-e76a9b53d7bf
日志组,而不是 mycluster-7977k.application
:
$ aws --output json logs describe-log-groups | jq .logGroups[].logGroupName "mycluster-7977k.794e1e1a-b9f5-4958-a190-e76a9b53d7bf" // uid of the "app" namespace "mycluster-7977k.audit" "mycluster-7977k.infrastructure"
groupBy
字段仅影响应用日志组。它不会影响 audit
和 infrastructure
日志组。
9.4.18. 使用现有 AWS 角色为 AWS CloudWatch 创建 secret
如果您有一个 AWS 的现有角色,您可以使用 oc create secret --from-literal
命令为 AWS 使用 STS 创建 secret。
流程
在 CLI 中,输入以下内容来为 AWS 生成 secret:
$ oc create secret generic cw-sts-secret -n openshift-logging --from-literal=role_arn=arn:aws:iam::123456789012:role/my-role_with-permissions
Secret 示例
apiVersion: v1 kind: Secret metadata: namespace: openshift-logging name: my-secret-name stringData: role_arn: arn:aws:iam::123456789012:role/my-role_with-permissions
9.4.19. 从启用了 STS 的集群将日志转发到 Amazon CloudWatch
对于启用了 AWS Security Token Service (STS)的集群,您可以手动创建 AWS 服务帐户,或使用 Cloud Credential Operator (CCO)实用程序 ccoctl
创建凭证请求。
先决条件
- Logging for Red Hat OpenShift: 5.5 及更新的版本
流程
使用以下模板创建
CredentialsRequest
自定义资源 YAML:Cloudwatch 凭证请求模板
apiVersion: cloudcredential.openshift.io/v1 kind: CredentialsRequest metadata: name: <your_role_name>-credrequest namespace: openshift-cloud-credential-operator spec: providerSpec: apiVersion: cloudcredential.openshift.io/v1 kind: AWSProviderSpec statementEntries: - action: - logs:PutLogEvents - logs:CreateLogGroup - logs:PutRetentionPolicy - logs:CreateLogStream - logs:DescribeLogGroups - logs:DescribeLogStreams effect: Allow resource: arn:aws:logs:*:*:* secretRef: name: <your_role_name> namespace: openshift-logging serviceAccountNames: - logcollector
使用
ccoctl
命令,使用CredentialsRequest
CR 为 AWS 创建角色。使用CredentialsRequest
对象时,这个ccoctl
命令会创建一个带有信任策略的 IAM 角色,该角色与指定的 OIDC 身份提供程序相关联,以及一个授予对 CloudWatch 资源执行操作的权限策略。此命令在/<path_to_ccoctl_output_dir>/manifests/openshift-logging-<your_role_name>-credentials.yaml
中创建了一个 YAML 配置文件。此 secret 文件包含与 AWS IAM 身份提供程序进行身份验证时使用的role_arn
键/值。$ ccoctl aws create-iam-roles \ --name=<name> \ --region=<aws_region> \ --credentials-requests-dir=<path_to_directory_with_list_of_credentials_requests>/credrequests \ --identity-provider-arn=arn:aws:iam::<aws_account_id>:oidc-provider/<name>-oidc.s3.<aws_region>.amazonaws.com 1
- 1
- <name> 是用于标记云资源的名称,应该与 STS 集群安装过程中使用的名称匹配
应用创建的 secret:
$ oc apply -f output/manifests/openshift-logging-<your_role_name>-credentials.yaml
创建或编辑
ClusterLogForwarder
自定义资源:apiVersion: logging.openshift.io/v1 kind: ClusterLogForwarder metadata: name: <log_forwarder_name> 1 namespace: <log_forwarder_namespace> 2 spec: serviceAccountName: clf-collector 3 outputs: - name: cw 4 type: cloudwatch 5 cloudwatch: groupBy: logType 6 groupPrefix: <group prefix> 7 region: us-east-2 8 secret: name: <your_secret_name> 9 pipelines: - name: to-cloudwatch 10 inputRefs: 11 - infrastructure - audit - application outputRefs: - cw 12
- 1
- 在传统的实现中,CR 名称必须是
instance
。在多日志转发器实现中,您可以使用任何名称。 - 2
- 在旧的实现中,CR 命名空间必须是
openshift-logging
。在多日志转发器实现中,您可以使用任何命名空间。 - 3
- 指定
clf-collector
服务帐户。如果没有在openshift-logging
命名空间中部署日志转发器,则只有多日志转发器实现中才需要服务帐户。 - 4
- 指定输出的名称。
- 5
- 指定
cloudwatch
类型。 - 6
- 可选:指定如何对日志进行分组:
-
logType
为每个日志类型创建日志组。 -
namespaceName
为每个应用程序命名空间创建一个日志组。基础架构和审计日志不受影响,剩余的日志按照logType
分组。 -
namespaceUUID
为每个应用命名空间 UUID 创建一个新的日志组。它还会为基础架构和审计日志创建单独的日志组。
-
- 7
- 可选:指定一个字符串来替换日志组名称中的默认
infrastructureName
前缀。 - 8
- 指定 AWS 区域。
- 9
- 指定包含 AWS 凭证的 secret 名称。
- 10
- 可选:指定管道的名称。
- 11
- 使用管道指定要转发的日志类型:
application
、infrastructure
或audit
。 - 12
- 指定使用此管道转发日志时使用的输出名称。
其他资源
9.5. 配置日志记录收集器
Red Hat OpenShift 的 logging 从集群中收集操作和应用程序日志,并使用 Kubernetes pod 和项目元数据丰富数据。所有支持的对日志收集器的修改,均可通过 ClusterLogging
自定义资源(CR)中的 spec.collection
小节来执行。
9.5.1. 配置日志收集器
您可以通过修改 ClusterLogging
自定义资源(CR)来配置日志使用哪个日志收集器类型。
Fluentd 已被弃用,计划在以后的发行版本中删除。红帽将在当前发行生命周期中将提供对这个功能的 bug 修复和支持,但此功能将不再获得改进。作为 Fluentd 的替代选择,您可以使用 Vector。
先决条件
- 有管理员权限。
-
已安装 OpenShift CLI(
oc
)。 - 已安装 Red Hat OpenShift Logging Operator。
-
您已创建了
ClusterLogging
CR。
流程
修改
ClusterLogging
CRcollection
规格:ClusterLogging
CR 示例apiVersion: logging.openshift.io/v1 kind: ClusterLogging metadata: # ... spec: # ... collection: type: <log_collector_type> 1 resources: {} tolerations: {} # ...
- 1
- 要用于日志记录的日志收集器类型。这可以是
vector
或fluentd
。
运行以下命令来应用
ClusterLogging
CR:$ oc apply -f <filename>.yaml
9.5.2. 创建 LogFileMetricExporter 资源
在日志记录版本 5.8 及更新版本中,LogFileMetricExporter 不再默认使用收集器部署。您需要手动创建一个 LogFileMetricExporter
自定义资源 (CR),从运行容器生成的日志中生成指标。
如果没有创建 LogFileMetricExporter
CR,您可能会在 Produced Logs 的 OpenShift Dedicated Web 控制台仪表板中看到 No datapoints found 信息。
先决条件
- 有管理员权限。
- 已安装 Red Hat OpenShift Logging Operator。
-
已安装 OpenShift CLI(
oc
)。
流程
创建一个
LogFileMetricExporter
CR 作为 YAML 文件:Example
LogFileMetricExporter
CRapiVersion: logging.openshift.io/v1alpha1 kind: LogFileMetricExporter metadata: name: instance namespace: openshift-logging spec: nodeSelector: {} 1 resources: 2 limits: cpu: 500m memory: 256Mi requests: cpu: 200m memory: 128Mi tolerations: [] 3 # ...
运行以下命令来应用
LogFileMetricExporter
CR:$ oc apply -f <filename>.yaml
验证
logfilesmetricexporter
pod 在每个节点上同时运行 collector
pod。
运行以下命令,验证
logfilesmetricexporter
pod 是否在您创建LogFileMetricExporter
CR 的命名空间中运行:$ oc get pods -l app.kubernetes.io/component=logfilesmetricexporter -n openshift-logging
输出示例
NAME READY STATUS RESTARTS AGE logfilesmetricexporter-9qbjj 1/1 Running 0 2m46s logfilesmetricexporter-cbc4v 1/1 Running 0 2m46s
9.5.3. 配置日志收集器 CPU 和内存限值
日志收集器允许对 CPU 和内存限值进行调整。
流程
编辑
openshift-logging
项目中的ClusterLogging
自定义资源(CR):$ oc -n openshift-logging edit ClusterLogging instance
apiVersion: logging.openshift.io/v1 kind: ClusterLogging metadata: name: instance namespace: openshift-logging spec: collection: type: fluentd resources: limits: 1 memory: 736Mi requests: cpu: 100m memory: 736Mi # ...
- 1
- 根据需要指定 CPU 和内存限值及请求。显示的值是默认值。
9.5.4. 配置输入接收器
Red Hat OpenShift Logging Operator 为每个配置的输入接收器部署服务,以便客户端可以写入收集器。此服务公开为输入接收器指定的端口。服务名称基于以下内容生成:
-
对于多日志转发器
ClusterLogForwarder
CR 部署,服务名称格式为<ClusterLogForwarder_CR_name>-<input_name>
。例如,example-http-receiver
。 -
对于旧的
ClusterLogForwarder
CR 部署,这意味着名为instance
且位于openshift-logging
命名空间中,服务名称采用collector-<input_name>
格式。例如,collector-http-receiver
。
9.5.4.1. 配置收集器以接收审计日志作为 HTTP 服务器
您可以通过在 ClusterLogForwarder
自定义资源(CR)中将 http
指定为接收器输入,将日志收集器配置为侦听 HTTP 连接,并将审计日志作为 HTTP 服务器接收。这可让您对从 OpenShift Dedicated 集群内部和外部收集的审计日志使用通用日志存储。
先决条件
- 有管理员权限。
-
已安装 OpenShift CLI(
oc
)。 - 已安装 Red Hat OpenShift Logging Operator。
-
您已创建了
ClusterLogForwarder
CR。
流程
修改
ClusterLogForwarder
CR,以添加http
接收器输入的配置:使用多日志转发器部署的
ClusterLogForwarder
CR 示例apiVersion: logging.openshift.io/v1beta1 kind: ClusterLogForwarder metadata: # ... spec: serviceAccountName: <service_account_name> inputs: - name: http-receiver 1 receiver: type: http 2 http: format: kubeAPIAudit 3 port: 8443 4 pipelines: 5 - name: http-pipeline inputRefs: - http-receiver # ...
使用旧部署的
ClusterLogForwarder
CR 示例apiVersion: logging.openshift.io/v1 kind: ClusterLogForwarder metadata: name: instance namespace: openshift-logging spec: inputs: - name: http-receiver 1 receiver: type: http 2 http: format: kubeAPIAudit 3 port: 8443 4 pipelines: 5 - inputRefs: - http-receiver name: http-pipeline # ...
运行以下命令,将更改应用到
ClusterLogForwarder
CR:$ oc apply -f <filename>.yaml
其他资源
9.5.5. Fluentd 日志转发器的高级配置
Fluentd 已被弃用,计划在以后的发行版本中删除。红帽将在当前发行生命周期中将提供对这个功能的 bug 修复和支持,但此功能将不再获得改进。作为 Fluentd 的替代选择,您可以使用 Vector。
日志记录包括多个 Fluentd 参数,可用于调整 Fluentd 日志转发器的性能。通过这些参数,可以更改以下 Fluentd 行为:
- 块和块缓冲大小
- 块清除行为
- 块转发重试行为
Fluentd 在名为 chunk(块) 的单个 blob 中收集日志数据 。当 Fluentd 创建一个块时,块被视为处于 stage,在这个阶段,数据会被填充到块中。当块已满时,Fluentd 会将块移到 queue,在块被清除或将其写入其目的地前,数据会被保存在这里。有一些原因会导致 Fluentd 清除块,如网络问题或目的地的容量问题。如果无法清除块,Fluentd 会按照配置重试清除操作( flushing)。
在 OpenShift Dedicated 中,Fluentd 会使用 exponential backoff 方法来重试清理(flushing)操作,Fluentd 会加倍尝试重试清理操作之间的等待时间,这有助于减少到目的地的连接请求。您可以禁用 exponential backoff 的方法,并使用 定期重试的方法。它可在指定的时间间隔里重试 flush 块。
这些参数可帮助您权衡延迟和吞吐量之间的利弊。
- 要优化 Fluentd 的吞吐量,您可以使用这些参数通过配置较大的缓冲和队列、延迟清除以及设置重试间隔间的更多时间来减少网络数据包的数量。请注意,大型缓冲区需要在节点文件系统有更多空间。
- 要优化低延迟,您可以使用参数尽快发送数据,避免批量的构建,具有较短的队列和缓冲,并使用更频繁的清理和重试。
您可以使用 ClusterLogging
自定义资源(CR)中的以下参数配置 chunking 和 flushing 行为。然后这些参数会自动添加到 Fluentd 配置映射中,供 Fluentd 使用。
这些参数:
- 与大多数用户无关。默认设置应该就可以提供良好的一般性能。
- 只适用于对 Fluentd 配置和性能有详细了解的高级用户。
- 仅用于性能调整。它们对日志的功能性没有影响。
参数 | 描述 | 默认 |
---|---|---|
| 每个块的最大值。当数据达到这个大小时,Fluentd 会停止将数据写入一个块。然后,Fluentd 将块发送到队列并打开一个新的块。 |
|
| 缓冲区的最大大小,即阶段(stage)和队列(stage)的总大小。如果缓冲区的大小超过这个值,Fluentd 会停止将数据添加到块,并显示错误失败。所有不在块中的数据都丢失。 | 大约 15% 的节点磁盘分布在所有输出中。 |
|
块清除之间的间隔。您可以使用 |
|
| 执行清除的方法:
|
|
| 执行块清除(flushing)的线程数量。增加线程数量可提高冲刷吞吐量,这会隐藏网络延迟的情况。 |
|
| 当队列满时块的行为:
|
|
|
|
|
| flushing 失败时重试的方法:
|
|
| 在放弃记录前尝试重试的最长时间。 |
|
| 下一次块清除前的时间(以秒为单位)。 |
|
如需有关 Fluentd 块生命周期的更多信息,请参阅 Fluentd 文档 中的缓冲插件。
流程
编辑
openshift-logging
项目中的ClusterLogging
自定义资源(CR):$ oc edit ClusterLogging instance
添加或修改以下任何参数:
apiVersion: logging.openshift.io/v1 kind: ClusterLogging metadata: name: instance namespace: openshift-logging spec: collection: fluentd: buffer: chunkLimitSize: 8m 1 flushInterval: 5s 2 flushMode: interval 3 flushThreadCount: 3 4 overflowAction: throw_exception 5 retryMaxInterval: "300s" 6 retryType: periodic 7 retryWait: 1s 8 totalLimitSize: 32m 9 # ...
验证 Fluentd Pod 是否已重新部署:
$ oc get pods -l component=collector -n openshift-logging
检查
fluentd
配置映射中的新值:$ oc extract configmap/collector-config --confirm
fluentd.conf 示例
<buffer> @type file path '/var/lib/fluentd/default' flush_mode interval flush_interval 5s flush_thread_count 3 retry_type periodic retry_wait 1s retry_max_interval 300s retry_timeout 60m queued_chunks_limit_size "#{ENV['BUFFER_QUEUE_LIMIT'] || '32'}" total_limit_size "#{ENV['TOTAL_LIMIT_SIZE_PER_BUFFER'] || '8589934592'}" chunk_limit_size 8m overflow_action throw_exception disable_chunk_backup true </buffer>
9.6. 收集并存储 Kubernetes 事件
OpenShift Dedicated 事件路由器是一个 pod,它监视 Kubernetes 事件,并通过 logging 记录它们以收集。您必须手动部署 Event Router。
Event Router 从所有项目收集事件,并将其写入 STDOUT
。然后,收集器将这些事件转发到 ClusterLogForwarder
自定义资源(CR)中定义的存储。
事件路由器为 Fluentd 增加额外的负载,并可能会影响其他可以被处理的日志消息数量。
9.6.1. 部署和配置事件路由器
使用以下步骤将事件路由器部署到集群中。您应该始终将 Event Router 部署到 openshift-logging
项目,以确保其从集群中收集事件。
Event Router 镜像不是 Red Hat OpenShift Logging Operator 的一部分,必须单独下载。
以下 Template
对象创建事件路由器所需的服务帐户、集群角色和集群角色绑定。模板还会配置和部署 Event Router pod。您可以使用此模板而无需更改或编辑模板来更改部署对象 CPU 和内存请求。
先决条件
- 需要适当的权限,以便能创建服务帐户和更新集群角色绑定。例如,您可以使用具有 cluster-admin 角色的用户来运行以下模板。
- 必须安装 Red Hat OpenShift Logging Operator。
流程
为事件路由器创建模板:
apiVersion: template.openshift.io/v1 kind: Template metadata: name: eventrouter-template annotations: description: "A pod forwarding kubernetes events to OpenShift Logging stack." tags: "events,EFK,logging,cluster-logging" objects: - kind: ServiceAccount 1 apiVersion: v1 metadata: name: eventrouter namespace: ${NAMESPACE} - kind: ClusterRole 2 apiVersion: rbac.authorization.k8s.io/v1 metadata: name: event-reader rules: - apiGroups: [""] resources: ["events"] verbs: ["get", "watch", "list"] - kind: ClusterRoleBinding 3 apiVersion: rbac.authorization.k8s.io/v1 metadata: name: event-reader-binding subjects: - kind: ServiceAccount name: eventrouter namespace: ${NAMESPACE} roleRef: kind: ClusterRole name: event-reader - kind: ConfigMap 4 apiVersion: v1 metadata: name: eventrouter namespace: ${NAMESPACE} data: config.json: |- { "sink": "stdout" } - kind: Deployment 5 apiVersion: apps/v1 metadata: name: eventrouter namespace: ${NAMESPACE} labels: component: "eventrouter" logging-infra: "eventrouter" provider: "openshift" spec: selector: matchLabels: component: "eventrouter" logging-infra: "eventrouter" provider: "openshift" replicas: 1 template: metadata: labels: component: "eventrouter" logging-infra: "eventrouter" provider: "openshift" name: eventrouter spec: serviceAccount: eventrouter containers: - name: kube-eventrouter image: ${IMAGE} imagePullPolicy: IfNotPresent resources: requests: cpu: ${CPU} memory: ${MEMORY} volumeMounts: - name: config-volume mountPath: /etc/eventrouter securityContext: allowPrivilegeEscalation: false capabilities: drop: ["ALL"] securityContext: runAsNonRoot: true seccompProfile: type: RuntimeDefault volumes: - name: config-volume configMap: name: eventrouter parameters: - name: IMAGE 6 displayName: Image value: "registry.redhat.io/openshift-logging/eventrouter-rhel9:v0.4" - name: CPU 7 displayName: CPU value: "100m" - name: MEMORY 8 displayName: Memory value: "128Mi" - name: NAMESPACE displayName: Namespace value: "openshift-logging" 9
- 1
- 在
openshift-logging
项目中为事件路由器创建一个服务帐户。 - 2
- 创建用于监控集群中事件的 ClusterRole。
- 3
- 创建一个 ClusterRoleBinding 将 ClusterRole 绑定到服务帐户。
- 4
- 在
openshift-logging
项目中创建一个配置映射来生成所需的config.json
文件。 - 5
- 在
openshift-logging
项目中创建一个部署,以生成并配置 Event Router pod。 - 6
- 指定镜像,由标签标识,如
v0.4
。 - 7
- 指定分配给事件路由器 pod 的最小 CPU 量。默认值为
100m
。 - 8
- 指定分配给事件路由器 pod 的最小内存量。默认值为
128Mi
。 - 9
- 指定要在其中安装对象的
openshift-logging
项目。
使用以下命令来处理和应用模板:
$ oc process -f <templatefile> | oc apply -n openshift-logging -f -
例如:
$ oc process -f eventrouter.yaml | oc apply -n openshift-logging -f -
输出示例
serviceaccount/eventrouter created clusterrole.rbac.authorization.k8s.io/event-reader created clusterrolebinding.rbac.authorization.k8s.io/event-reader-binding created configmap/eventrouter created deployment.apps/eventrouter created
验证
openshift-logging
项目中安装的 Event Router:查看新的事件路由器 Pod:
$ oc get pods --selector component=eventrouter -o name -n openshift-logging
输出示例
pod/cluster-logging-eventrouter-d649f97c8-qvv8r
查看事件路由器收集的事件:
$ oc logs <cluster_logging_eventrouter_pod> -n openshift-logging
例如:
$ oc logs cluster-logging-eventrouter-d649f97c8-qvv8r -n openshift-logging
输出示例
{"verb":"ADDED","event":{"metadata":{"name":"openshift-service-catalog-controller-manager-remover.1632d931e88fcd8f","namespace":"openshift-service-catalog-removed","selfLink":"/api/v1/namespaces/openshift-service-catalog-removed/events/openshift-service-catalog-controller-manager-remover.1632d931e88fcd8f","uid":"787d7b26-3d2f-4017-b0b0-420db4ae62c0","resourceVersion":"21399","creationTimestamp":"2020-09-08T15:40:26Z"},"involvedObject":{"kind":"Job","namespace":"openshift-service-catalog-removed","name":"openshift-service-catalog-controller-manager-remover","uid":"fac9f479-4ad5-4a57-8adc-cb25d3d9cf8f","apiVersion":"batch/v1","resourceVersion":"21280"},"reason":"Completed","message":"Job completed","source":{"component":"job-controller"},"firstTimestamp":"2020-09-08T15:40:26Z","lastTimestamp":"2020-09-08T15:40:26Z","count":1,"type":"Normal"}}
您还可以使用 Elasticsearch
infra
index 创建索引模式来使用 Kibana 来查看事件。
第 10 章 日志存储
10.1. 关于日志存储
您可以使用集群中的内部 Loki 或 Elasticsearch 日志存储来存储日志,也可以使用 ClusterLogForwarder
自定义资源(CR) 将日志转发到外部存储。
10.1.1. 日志存储类型
Loki 是一个可横向扩展的、高度可用、多租户日志聚合系统,作为 Red Hat OpenShift 的日志记录的 GA 日志存储,可以使用 OpenShift Observability UI 视觉化。OpenShift Logging 提供的 Loki 配置是一个短期日志存储,旨在让用户使用收集的日志执行快速故障排除。为此,Loki 的 Red Hat OpenShift 配置的日志记录具有短期存储,并针对非常最新的查询进行了优化。对于长期存储或长时间查询,用户应查找其集群外部的日志存储。
Elasticsearch 在 ingestion 过程中完全索引传入的日志记录。Loki 在 ingestion 期间只索引几个固定标签,并延迟更复杂的解析,直到日志存储后为止。这意味着 Loki 可以更快地收集日志。
10.1.1.1. 关于 Elasticsearch 日志存储
日志记录 Elasticsearch 实例经过优化并测试,用于大约 7 天的简短存储。如果要更长时间保留日志,建议您将数据移至第三方存储系统。
Elasticsearch 将日志数据从 Fluentd 整理到数据存储或 索引 中,然后将每个索引分成多个碎片(称为 shard(分片) ),分散到 Elasticsearch 集群中的一组 Elasticsearch 节点上。您可以配置 Elasticsearch 来为分片制作备份(称为 replica(副本) ),Elasticsearch 也会分散到 Elasticsearch 节点上。ClusterLogging
自定义资源(CR)允许您指定如何复制分片,以提供数据冗余和故障恢复能力。您还可以使用 ClusterLogging
CR 中的保留策略来指定不同类型的日志的保留的时长。
索引模板的主分片数量等于 Elasticsearch 数据节点的数目。
Red Hat OpenShift Logging Operator 和相应的 OpenShift Elasticsearch Operator 确保每个 Elasticsearch 节点都使用带有自身存储卷的唯一部署来进行部署。在需要时,可以使用 ClusterLogging
自定义资源(CR)来增加 Elasticsearch 节点的数量。有关配置存储的注意事项,请参阅 Elasticsearch 文档。
高可用性 Elasticsearch 环境需要至少三个 Elasticsearch 节点,各自在不同的主机上。
Elasticsearch 索引中应用的基于角色的访问控制 (RBAC) 可让开发人员控制对日志的访问。管理员可以获取所有日志,开发人员只能访问自己项目中的日志。
10.1.2. 查询日志存储
您可以使用 LogQL 日志查询语言查询 Loki。
10.1.3. 其他资源
10.2. 安装日志存储
您可以使用 OpenShift CLI (oc
) 或 OpenShift Dedicated Web 控制台在 OpenShift Dedicated 集群上部署日志存储。
Logging 5.9 发行版本不包含 OpenShift Elasticsearch Operator 的更新版本。如果您目前使用随 Logging 5.8 发布的 OpenShift Elasticsearch Operator,它将继续使用 Logging,直到 Logging 5.8 的 EOL 为止。您可以使用 Loki Operator 作为 OpenShift Elasticsearch Operator 的替代方案来管理默认日志存储。如需有关日志记录生命周期日期的更多信息,请参阅平台 Agnostic Operator。
10.2.1. 部署 Loki 日志存储
您可以使用 Loki Operator 在 OpenShift Dedicated 集群上部署内部 Loki 日志存储。安装 Loki Operator 后,您必须通过创建一个 secret 来配置 Loki 对象存储,并创建一个 LokiStack
自定义资源(CR)。
10.2.1.1. Loki 部署大小
Loki 的大小使用 1x.<size>
格式,其中值 1x
是实例数量,<size>
指定性能功能。
对于部署大小,无法更改 1x
值。
1x.demo | 1x.extra-small | 1x.small | 1x.medium | |
---|---|---|---|---|
数据传输 | 仅用于演示 | 100GB/day | 500GB/day | 2TB/day |
每秒查询数 (QPS) | 仅用于演示 | 1-25 QPS at 200ms | 25-50 QPS at 200ms | 25-75 QPS at 200ms |
复制因子 | None | 2 | 2 | 2 |
总 CPU 请求 | None | 14 个 vCPU | 34 个 vCPU | 54 个 vCPU |
使用标尺的 CPU 请求总数 | None | 16 个 vCPU | 42 个 vCPU | 70 个 vCPU |
内存请求总数 | None | 31Gi | 67Gi | 139Gi |
使用规则器的内存请求总数 | None | 35Gi | 83Gi | 171Gi |
磁盘请求总数 | 40Gi | 430Gi | 430Gi | 590Gi |
使用标尺的磁盘请求总数 | 80Gi | 750Gi | 750Gi | 910Gi |
10.2.1.2. 使用 Web 控制台安装 Logging 和 Loki Operator
要在 OpenShift Dedicated 集群上安装和配置日志,必须首先安装用于日志存储的 Operator,如 Loki Operator。这可以通过 web 控制台中的 OperatorHub 来完成。
先决条件
- 您可以访问受支持的对象存储 (AWS S3、Google Cloud Storage、Azure、Swift、Minio、OpenShift Data Foundation)。
- 有管理员权限。
- 您可以访问 OpenShift Dedicated Web 控制台。
流程
- 在 OpenShift Dedicated Web 控制台 Administrator 视角中,进入 Operators → OperatorHub。
在 Filter by keyword 字段中输入 Loki Operator。点可用 Operator 列表中的 Loki Operator,然后点 Install。
重要红帽不支持 Community Loki Operator。
选择 stable 或 stable-x.y 作为 更新频道。
注意stable 频道只为日志记录的最新版本提供更新。要继续获得之前版本的更新,您必须将订阅频道改为 stable-x.y,其中
x.y
代表您安装的日志记录的主版本和次版本。例如,stable-5.7。Loki Operator 必须部署到全局 operator 组命名空间
openshift-operators-redhat
,因此已选择了 Installation mode 和 Installed Namespace。如果此命名空间不存在,则会为您创建它。选择 Enable Operator-recommended cluster monitoring on this namespace。
这个选项在
Namespace
对象中设置openshift.io/cluster-monitoring: "true"
标签。您必须设置这个选项,以确保集群监控提取openshift-operators-redhat
命名空间。对于 Update approval,请选择 Automatic,然后点 Install。
如果订阅中的批准策略被设置为 Automatic,则更新过程会在所选频道中提供新的 Operator 版本时立即启动。如果批准策略设为 Manual,则必须手动批准待处理的更新。
安装 Red Hat OpenShift Logging Operator:
- 在 OpenShift Dedicated Web 控制台中,点 Operators → OperatorHub。
- 从可用的 Operator 列表中选择 Red Hat OpenShift Logging,然后点 Install。
- 确定在 Installation Mode 下选择了 A specific namespace on the cluster。
- 确定在 Installed Namespace 下的 Operator recommended namespace 是 openshift-logging。
选择 Enable Operator recommended cluster monitoring on this namespace。
这个选项在 Namespace 对象中设置
openshift.io/cluster-monitoring: "true"
标识。您必须选择这个选项,以确保集群监控提取openshift-logging
命名空间。- 选择 stable-5.y 作为 更新频道。
选择一个批准策略。
- Automatic 策略允许 Operator Lifecycle Manager(OLM)在有新版本可用时自动更新 Operator。
- Manual 策略需要拥有适当凭证的用户批准 Operator 更新。
- 点 Install。
- 进入 Operators → Installed Operators 页面。点 All instances 选项卡。
- 在 Create new 下拉列表中,选择 LokiStack。
选择 YAML 视图,然后使用以下模板来创建
LokiStack
CR:LokiStack
CR 示例apiVersion: loki.grafana.com/v1 kind: LokiStack metadata: name: logging-loki 1 namespace: openshift-logging 2 spec: size: 1x.small 3 storage: schemas: - version: v12 effectiveDate: "2022-06-01" secret: name: logging-loki-s3 4 type: s3 5 credentialMode: 6 storageClassName: <storage_class_name> 7 tenants: mode: openshift-logging 8
- 1
- 使用名称
logging-loki
。 - 2
- 您必须指定
openshift-logging
命名空间。 - 3
- 指定部署大小。在日志记录 5.8 及更新的版本中,Loki 实例支持的大小选项为
1x.extra-small
、1x.small
或1x.medium
。 - 4
- 指定日志存储 secret 的名称。
- 5
- 指定对应的存储类型。
- 6
- 可选字段,日志记录 5.9 及更新的版本。支持的用户配置的值如下: static 是使用存储在 Secret 中所有支持的对象存储类型的默认身份验证模式。令牌用于从凭证源检索的简短令牌。在这个模式中,静态配置不包含对象存储所需的凭证。相反,它们会使用服务在运行时生成,允许提供较短的凭证,以及更精细的控制。所有对象存储类型都不支持此身份验证模式。当 Loki 在受管 STS 模式上运行并使用 STS/WIF 集群上时,token-cco 是默认值。
- 7
- 为临时存储指定存储类的名称。为获得最佳性能,请指定分配块存储的存储类。可以使用
oc get storageclasses
命令列出集群的可用存储类。 - 8
- LokiStack 默认为以多租户模式运行,无法修改。为每个日志类型提供一个租户: audit、infrastructure 和 application logs。这为单个用户和用户组启用对不同的日志流的访问控制。
重要对于部署大小,无法更改
1x
值。- 点 Create。
创建 OpenShift Logging 实例:
- 切换到 Administration → Custom Resource Definitions 页面。
- 在 Custom Resource Definitions 页面上,点 ClusterLogging。
- 在 Custom Resource Definition details 页中,从 Actions 菜单中选择 View Instances。
在 ClusterLoggings 页中,点 Create ClusterLogging。
您可能需要刷新页面来加载数据。
将 YAML 项中的代码替换为以下内容:
apiVersion: logging.openshift.io/v1 kind: ClusterLogging metadata: name: instance 1 namespace: openshift-logging 2 spec: collection: type: vector logStore: lokistack: name: logging-loki retentionPolicy: application: maxAge: 7d audit: maxAge: 7d infra: maxAge: 7d type: lokistack visualization: type: ocp-console ocpConsole: logsLimit: 15 managementState: Managed
验证
- 进入 Operators → Installed Operators。
- 确保已选中 openshift-logging 项目。
- 在 Status 列中,验证您看到了绿色的对勾标记,并为 InstallSucceeded,文本 Up to date。
Operator 可能会在安装完成前显示 Failed
状态。如果 Operator 安装完成并显示 InstallSucceeded
信息,请刷新页面。
10.2.1.3. 使用 Web 控制台为 Loki 对象存储创建 secret
要配置 Loki 对象存储,您必须创建一个 secret。您可以使用 OpenShift Dedicated Web 控制台创建 secret。
先决条件
- 有管理员权限。
- 您可以访问 OpenShift Dedicated Web 控制台。
- 已安装 Loki Operator。
流程
- 在 OpenShift Dedicated Web 控制台的 Administrator 视角中,进入 Workloads → Secrets。
- 从 Create 下拉列表中选择 From YAML。
创建一个 secret,它使用
access_key_id
和access_key_secret
字段指定您的凭证和bucketnames
、endpoint
和region
字段来定义对象存储位置。AWS 在以下示例中使用:Secret
对象示例apiVersion: v1 kind: Secret metadata: name: logging-loki-s3 namespace: openshift-logging stringData: access_key_id: AKIAIOSFODNN7EXAMPLE access_key_secret: wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY bucketnames: s3-bucket-name endpoint: https://s3.eu-central-1.amazonaws.com region: eu-central-1
其他资源
10.2.1.4. 工作负载身份联邦
工作负载身份联邦允许使用简短的令牌对基于云的日志存储进行身份验证。
先决条件
- OpenShift Dedicated 4.14 及更新的版本
- 日志记录 5.9 及更新的版本
流程
-
如果使用 OpenShift Dedicated Web 控制台安装 Loki Operator,则会自动检测到使用简短令牌的集群。系统将提示您创建角色,并提供 Loki Operator 所需的数据,以创建
CredentialsRequest
对象,该对象填充 secret。 -
如果使用 OpenShift CLI (
oc
)安装 Loki Operator,则必须使用存储供应商的适当模板手动创建订阅对象,如下例所示。此身份验证策略只支持所示的存储供应商。
Azure 订阅示例
apiVersion: operators.coreos.com/v1alpha1 kind: Subscription metadata: name: loki-operator namespace: openshift-operators-redhat spec: channel: "stable-5.9" installPlanApproval: Manual name: loki-operator source: redhat-operators sourceNamespace: openshift-marketplace config: env: - name: CLIENTID value: <your_client_id> - name: TENANTID value: <your_tenant_id> - name: SUBSCRIPTIONID value: <your_subscription_id> - name: REGION value: <your_region>
AWS 订阅示例
apiVersion: operators.coreos.com/v1alpha1 kind: Subscription metadata: name: loki-operator namespace: openshift-operators-redhat spec: channel: "stable-5.9" installPlanApproval: Manual name: loki-operator source: redhat-operators sourceNamespace: openshift-marketplace config: env: - name: ROLEARN value: <role_ARN>
10.2.1.5. 使用 Web 控制台创建 LokiStack 自定义资源
您可以使用 OpenShift Dedicated Web 控制台创建 LokiStack
自定义资源 (CR)。
先决条件
- 有管理员权限。
- 您可以访问 OpenShift Dedicated Web 控制台。
- 已安装 Loki Operator。
流程
- 进入 Operators → Installed Operators 页面。点 All instances 选项卡。
- 在 Create new 下拉列表中,选择 LokiStack。
选择 YAML 视图,然后使用以下模板来创建
LokiStack
CR:apiVersion: loki.grafana.com/v1 kind: LokiStack metadata: name: logging-loki 1 namespace: openshift-logging spec: size: 1x.small 2 storage: schemas: - effectiveDate: '2023-10-15' version: v13 secret: name: logging-loki-s3 3 type: s3 4 credentialMode: 5 storageClassName: <storage_class_name> 6 tenants: mode: openshift-logging
- 1
- 使用名称
logging-loki
。 - 2
- 指定部署大小。在日志记录 5.8 及更新的版本中,Loki 实例支持的大小选项为
1x.extra-small
、1x.small
或1x.medium
。 - 3
- 指定用于日志存储的 secret。
- 4
- 指定对应的存储类型。
- 5
- 可选字段,日志记录 5.9 及更新的版本。支持的用户配置值如下:
static
是所有受支持的对象存储类型的默认身份验证模式,使用存储在 Secret 中的凭证。从凭证源检索的短期令牌。在这个模式中,静态配置不包含对象存储所需的凭证。相反,它们会使用服务在运行时生成,允许提供较短的凭证,以及更精细的控制。所有对象存储类型不支持这个身份验证模式。当 Loki 在受管 STS 模式下运行并使用 CCO on STS/WIF 集群时,
token-cco
是默认值。 - 6
- 为临时存储输入存储类的名称。为获得最佳性能,请指定分配块存储的存储类。可以使用
oc get storageclasses
命令列出集群的可用存储类。
10.2.1.6. 使用 CLI 安装 Logging 和 Loki Operator
要在 OpenShift Dedicated 集群上安装和配置日志,必须首先安装用于日志存储的 Operator,如 Loki Operator。这可以通过 OpenShift Dedicated CLI 完成。
先决条件
- 有管理员权限。
-
已安装 OpenShift CLI(
oc
)。 - 您可以访问受支持的对象存储。例如:AWS S3、Google Cloud Storage、Azure、Swift、Minio 或 OpenShift Data Foundation。
stable 频道只为日志记录的最新版本提供更新。要继续获得之前版本的更新,您必须将订阅频道改为 stable-x.y,其中 x.y
代表您安装的日志记录的主版本和次版本。例如,stable-5.7。
为 Loki Operator 创建
Namespace
对象:Namespace
对象示例apiVersion: v1 kind: Namespace metadata: name: openshift-operators-redhat 1 annotations: openshift.io/node-selector: "" labels: openshift.io/cluster-monitoring: "true" 2
- 1
- 您必须指定
openshift-operators-redhat
命名空间。为了防止可能与指标(metrics)冲突,您应该将 Prometheus Cluster Monitoring 堆栈配置为从openshift-operators-redhat
命名空间中提取指标数据,而不是从openshift-operators
命名空间中提取。openshift-operators
命名空间可能会包含社区提供的 operator。这些 operator 不被信任,其发布的 metric 可能与 OpenShift Dedicated 的名称相同,从而导致冲突。 - 2
- 指定所示的标签的字符串值,以确保集群监控提取
openshift-operators-redhat
命名空间。
运行以下命令来应用
Namespace
对象:$ oc apply -f <filename>.yaml
为 Loki Operator 创建
Subscription
对象:Subscription
对象示例apiVersion: operators.coreos.com/v1alpha1 kind: Subscription metadata: name: loki-operator namespace: openshift-operators-redhat 1 spec: channel: stable 2 name: loki-operator source: redhat-operators 3 sourceNamespace: openshift-marketplace
运行以下命令来应用
Subscription
对象:$ oc apply -f <filename>.yaml
为 Red Hat OpenShift Logging Operator
创建命名空间
对象:命名空间
对象示例apiVersion: v1 kind: Namespace metadata: name: openshift-logging 1 annotations: openshift.io/node-selector: "" labels: openshift.io/cluster-logging: "true" openshift.io/cluster-monitoring: "true" 2
运行以下命令来应用
命名空间
对象:$ oc apply -f <filename>.yaml
创建
OperatorGroup
对象OperatorGroup
对象示例apiVersion: operators.coreos.com/v1 kind: OperatorGroup metadata: name: cluster-logging namespace: openshift-logging 1 spec: targetNamespaces: - openshift-logging
- 1
- 您必须指定
openshift-logging
命名空间。
运行以下命令来应用
OperatorGroup
对象:$ oc apply -f <filename>.yaml
创建
Subscription
对象:apiVersion: operators.coreos.com/v1alpha1 kind: Subscription metadata: name: cluster-logging namespace: openshift-logging 1 spec: channel: stable 2 name: cluster-logging source: redhat-operators 3 sourceNamespace: openshift-marketplace
运行以下命令来应用
Subscription
对象:$ oc apply -f <filename>.yaml
创建
LokiStack
CR:LokiStack
CR 示例apiVersion: loki.grafana.com/v1 kind: LokiStack metadata: name: logging-loki 1 namespace: openshift-logging 2 spec: size: 1x.small 3 storage: schemas: - version: v12 effectiveDate: "2022-06-01" secret: name: logging-loki-s3 4 type: s3 5 credentialMode: 6 storageClassName: <storage_class_name> 7 tenants: mode: openshift-logging 8
- 1
- 使用名称
logging-loki
。 - 2
- 您必须指定
openshift-logging
命名空间。 - 3
- 指定部署大小。在日志记录 5.8 及更新的版本中,Loki 实例支持的大小选项为
1x.extra-small
、1x.small
或1x.medium
。 - 4
- 指定日志存储 secret 的名称。
- 5
- 指定对应的存储类型。
- 6
- 可选字段,日志记录 5.9 及更新的版本。支持的用户配置值如下:
static
是所有受支持的对象存储类型的默认身份验证模式,使用存储在 Secret 中的凭证。从凭证源检索的短期令牌。在这个模式中,静态配置不包含对象存储所需的凭证。相反,它们会使用服务在运行时生成,允许提供较短的凭证,以及更精细的控制。所有对象存储类型不支持这个身份验证模式。当 Loki 在受管 STS 模式下运行并使用 CCO on STS/WIF 集群时,
token-cco
是默认值。 - 7
- 为临时存储指定存储类的名称。为获得最佳性能,请指定分配块存储的存储类。可以使用
oc get storageclasses
命令列出集群的可用存储类。 - 8
- LokiStack 默认为以多租户模式运行,无法修改。为每个日志类型提供一个租户: audit、infrastructure 和 application logs。这为单个用户和用户组启用对不同的日志流的访问控制。
运行以下命令来应用
LokiStack CR
对象:$ oc apply -f <filename>.yaml
创建
ClusterLogging
CR 对象:ClusterLogging CR 对象示例
apiVersion: logging.openshift.io/v1 kind: ClusterLogging metadata: name: instance 1 namespace: openshift-logging 2 spec: collection: type: vector logStore: lokistack: name: logging-loki retentionPolicy: application: maxAge: 7d audit: maxAge: 7d infra: maxAge: 7d type: lokistack visualization: ocpConsole: logsLimit: 15 managementState: Managed
运行以下命令来应用
ClusterLogging CR
对象:$ oc apply -f <filename>.yaml
运行以下命令来验证安装。
$ oc get pods -n openshift-logging
输出示例
$ oc get pods -n openshift-logging NAME READY STATUS RESTARTS AGE cluster-logging-operator-fb7f7cf69-8jsbq 1/1 Running 0 98m collector-222js 2/2 Running 0 18m collector-g9ddv 2/2 Running 0 18m collector-hfqq8 2/2 Running 0 18m collector-sphwg 2/2 Running 0 18m collector-vv7zn 2/2 Running 0 18m collector-wk5zz 2/2 Running 0 18m logging-view-plugin-6f76fbb78f-n2n4n 1/1 Running 0 18m lokistack-sample-compactor-0 1/1 Running 0 42m lokistack-sample-distributor-7d7688bcb9-dvcj8 1/1 Running 0 42m lokistack-sample-gateway-5f6c75f879-bl7k9 2/2 Running 0 42m lokistack-sample-gateway-5f6c75f879-xhq98 2/2 Running 0 42m lokistack-sample-index-gateway-0 1/1 Running 0 42m lokistack-sample-ingester-0 1/1 Running 0 42m lokistack-sample-querier-6b7b56bccc-2v9q4 1/1 Running 0 42m lokistack-sample-query-frontend-84fb57c578-gq2f7 1/1 Running 0 42m
10.2.1.7. 使用 CLI 为 Loki 对象存储创建 secret
要配置 Loki 对象存储,您必须创建一个 secret。您可以使用 OpenShift CLI (oc
)完成此操作。
先决条件
- 有管理员权限。
- 已安装 Loki Operator。
-
已安装 OpenShift CLI(
oc
)。
流程
运行以下命令,在包含您的证书和密钥文件的目录中创建 secret:
$ oc create secret generic -n openshift-logging <your_secret_name> \ --from-file=tls.key=<your_key_file> --from-file=tls.crt=<your_crt_file> --from-file=ca-bundle.crt=<your_bundle_file> --from-literal=username=<your_username> --from-literal=password=<your_password>
使用通用或 opaque secret 以获得最佳结果。
验证
运行以下命令验证 secret 是否已创建:
$ oc get secrets
其他资源
10.2.1.8. 使用 CLI 创建 LokiStack 自定义资源
您可以使用 OpenShift CLI (oc
)创建 LokiStack
自定义资源(CR)。
先决条件
- 有管理员权限。
- 已安装 Loki Operator。
-
已安装 OpenShift CLI(
oc
)。
流程
-
创建
LokiStack
CR:
LokiStack
CR 示例
apiVersion: loki.grafana.com/v1 kind: LokiStack metadata: name: logging-loki 1 namespace: openshift-logging spec: size: 1x.small 2 storage: schemas: - effectiveDate: '2023-10-15' version: v13 secret: name: logging-loki-s3 3 type: s3 4 credentialMode: 5 storageClassName: <storage_class_name> 6 tenants: mode: openshift-logging
- 1
- 使用名称
logging-loki
。 - 2
- 指定部署大小。在日志记录 5.8 及更新的版本中,Loki 实例支持的大小选项为
1x.extra-small
、1x.small
或1x.medium
。 - 3
- 指定用于日志存储的 secret。
- 4
- 指定对应的存储类型。
- 5
- 可选字段,日志记录 5.9 及更新的版本。支持的用户配置值如下:
static
是所有受支持的对象存储类型的默认身份验证模式,使用存储在 Secret 中的凭证。从凭证源检索的短期令牌。在这个模式中,静态配置不包含对象存储所需的凭证。相反,它们会使用服务在运行时生成,允许提供较短的凭证,以及更精细的控制。所有对象存储类型不支持这个身份验证模式。当 Loki 在受管 STS 模式下运行并使用 CCO on STS/WIF 集群时,
token-cco
是默认值。 - 6
- 为临时存储输入存储类的名称。为获得最佳性能,请指定分配块存储的存储类。可以使用
oc get storageclasses
命令列出集群的可用存储类。-
运行以下命令来应用
LokiStack
CR:
-
运行以下命令来应用
验证
运行以下命令并查看输出,在
openshift-logging
项目中列出 pod 来验证安装:$ oc get pods -n openshift-logging
确认您看到了多个用于日志记录组件的 pod,类似于以下列表:
输出示例
NAME READY STATUS RESTARTS AGE cluster-logging-operator-78fddc697-mnl82 1/1 Running 0 14m collector-6cglq 2/2 Running 0 45s collector-8r664 2/2 Running 0 45s collector-8z7px 2/2 Running 0 45s collector-pdxl9 2/2 Running 0 45s collector-tc9dx 2/2 Running 0 45s collector-xkd76 2/2 Running 0 45s logging-loki-compactor-0 1/1 Running 0 8m2s logging-loki-distributor-b85b7d9fd-25j9g 1/1 Running 0 8m2s logging-loki-distributor-b85b7d9fd-xwjs6 1/1 Running 0 8m2s logging-loki-gateway-7bb86fd855-hjhl4 2/2 Running 0 8m2s logging-loki-gateway-7bb86fd855-qjtlb 2/2 Running 0 8m2s logging-loki-index-gateway-0 1/1 Running 0 8m2s logging-loki-index-gateway-1 1/1 Running 0 7m29s logging-loki-ingester-0 1/1 Running 0 8m2s logging-loki-ingester-1 1/1 Running 0 6m46s logging-loki-querier-f5cf9cb87-9fdjd 1/1 Running 0 8m2s logging-loki-querier-f5cf9cb87-fp9v5 1/1 Running 0 8m2s logging-loki-query-frontend-58c579fcb7-lfvbc 1/1 Running 0 8m2s logging-loki-query-frontend-58c579fcb7-tjf9k 1/1 Running 0 8m2s logging-view-plugin-79448d8df6-ckgmx 1/1 Running 0 46s
10.2.2. Loki 对象存储
Loki Operator 支持 AWS S3,以及 Minio 和 OpenShift Data Foundation 等其他 S3 兼容对象存储。Azure、GCS 和 Swift 也支持。
对于 Loki 存储,推荐的 nomenclature 是 logging-loki-<your_storage_provider>
。
下表显示了每个存储供应商 LokiStack
自定义资源(CR) 中的 type
值。如需更多信息,请参阅存储供应商部分。
存储供应商 | Secret type 值 |
---|---|
AWS | s3 |
Azure | azure |
Google Cloud | gcs |
Minio | s3 |
OpenShift Data Foundation | s3 |
Swift | swift |
10.2.2.1. AWS 存储
先决条件
- 已安装 Loki Operator。
-
已安装 OpenShift CLI(
oc
)。 - 您在 AWS 上创建了存储桶。
- 您创建了 AWS IAM 策略和 IAM 用户。
流程
运行以下命令,创建一个名为
logging-loki-aws
的对象存储 secret:$ oc create secret generic logging-loki-aws \ --from-literal=bucketnames="<bucket_name>" \ --from-literal=endpoint="<aws_bucket_endpoint>" \ --from-literal=access_key_id="<aws_access_key_id>" \ --from-literal=access_key_secret="<aws_access_key_secret>" \ --from-literal=region="<aws_region_of_your_bucket>"
10.2.2.1.1. 启用 STS 的集群的 AWS 存储
如果您的集群启用了 STS,Cloud Credential Operator (CCO)支持使用 AWS 令牌进行短期身份验证。
您可以运行以下命令来手动创建 Loki 对象存储 secret:
$ oc -n openshift-logging create secret generic "logging-loki-aws" \
--from-literal=bucketnames="<s3_bucket_name>" \
--from-literal=region="<bucket_region>" \
--from-literal=audience="<oidc_audience>" 1
- 1
- 可选注解,默认值为
openshift
。
10.2.2.2. Azure 存储
先决条件
- 已安装 Loki Operator。
-
已安装 OpenShift CLI(
oc
)。 - 您在 Azure 上创建了存储桶。
流程
运行以下命令,使用名称
logging-loki-azure
创建对象存储 secret:$ oc create secret generic logging-loki-azure \ --from-literal=container="<azure_container_name>" \ --from-literal=environment="<azure_environment>" \ 1 --from-literal=account_name="<azure_account_name>" \ --from-literal=account_key="<azure_account_key>"
- 1
- 支持的环境值包括
AzureGlobal
、AzureChinaCloud
、AzureGermanCloud
或AzureUSGovernment
。
10.2.2.2.1. 为 Microsoft Entra Workload ID 启用集群的 Azure 存储
如果您的集群启用了 Microsoft Entra Workload ID,Cloud Credential Operator (CCO)支持使用 Workload ID 进行短期身份验证。
您可以运行以下命令来手动创建 Loki 对象存储 secret:
$ oc -n openshift-logging create secret generic logging-loki-azure \ --from-literal=environment="<azure_environment>" \ --from-literal=account_name="<storage_account_name>" \ --from-literal=container="<container_name>"
10.2.2.3. Google Cloud Platform 存储
先决条件
流程
-
将从 GCP 接收的服务帐户凭证复制到名为
key.json
的文件中。 运行以下命令,使用名称
logging-loki-gcs
创建对象存储 secret:$ oc create secret generic logging-loki-gcs \ --from-literal=bucketname="<bucket_name>" \ --from-file=key.json="<path/to/key.json>"
10.2.2.4. Minio 存储
流程
运行以下命令,创建一个名为
logging-loki-minio
的对象存储 secret:$ oc create secret generic logging-loki-minio \ --from-literal=bucketnames="<bucket_name>" \ --from-literal=endpoint="<minio_bucket_endpoint>" \ --from-literal=access_key_id="<minio_access_key_id>" \ --from-literal=access_key_secret="<minio_access_key_secret>"
10.2.2.5. OpenShift Data Foundation 存储
先决条件
- 已安装 Loki Operator。
-
已安装 OpenShift CLI(
oc
)。 - 您已部署了 OpenShift Data Foundation。
- 为对象存储配置了 OpenShift Data Foundation 集群。
流程
在
openshift-logging
命名空间中创建ObjectBucketClaim
自定义资源:apiVersion: objectbucket.io/v1alpha1 kind: ObjectBucketClaim metadata: name: loki-bucket-odf namespace: openshift-logging spec: generateBucketName: loki-bucket-odf storageClassName: openshift-storage.noobaa.io
运行以下命令,从关联的
ConfigMap
对象获取存储桶属性:BUCKET_HOST=$(oc get -n openshift-logging configmap loki-bucket-odf -o jsonpath='{.data.BUCKET_HOST}') BUCKET_NAME=$(oc get -n openshift-logging configmap loki-bucket-odf -o jsonpath='{.data.BUCKET_NAME}') BUCKET_PORT=$(oc get -n openshift-logging configmap loki-bucket-odf -o jsonpath='{.data.BUCKET_PORT}')
运行以下命令,从关联的 secret 获取存储桶访问密钥:
ACCESS_KEY_ID=$(oc get -n openshift-logging secret loki-bucket-odf -o jsonpath='{.data.AWS_ACCESS_KEY_ID}' | base64 -d) SECRET_ACCESS_KEY=$(oc get -n openshift-logging secret loki-bucket-odf -o jsonpath='{.data.AWS_SECRET_ACCESS_KEY}' | base64 -d)
运行以下命令,创建一个名为
logging-loki-odf
的对象存储 secret:$ oc create -n openshift-logging secret generic logging-loki-odf \ --from-literal=access_key_id="<access_key_id>" \ --from-literal=access_key_secret="<secret_access_key>" \ --from-literal=bucketnames="<bucket_name>" \ --from-literal=endpoint="https://<bucket_host>:<bucket_port>"
10.2.2.6. Swift 存储
先决条件
- 已安装 Loki Operator。
-
已安装 OpenShift CLI(
oc
)。 - 您在 Swift 上创建了一个存储桶。
流程
运行以下命令,创建一个名为
logging-loki-swift
的对象存储 secret:$ oc create secret generic logging-loki-swift \ --from-literal=auth_url="<swift_auth_url>" \ --from-literal=username="<swift_usernameclaim>" \ --from-literal=user_domain_name="<swift_user_domain_name>" \ --from-literal=user_domain_id="<swift_user_domain_id>" \ --from-literal=user_id="<swift_user_id>" \ --from-literal=password="<swift_password>" \ --from-literal=domain_id="<swift_domain_id>" \ --from-literal=domain_name="<swift_domain_name>" \ --from-literal=container_name="<swift_container_name>"
您可以通过运行以下命令来提供项目特定数据、区域或两者:
$ oc create secret generic logging-loki-swift \ --from-literal=auth_url="<swift_auth_url>" \ --from-literal=username="<swift_usernameclaim>" \ --from-literal=user_domain_name="<swift_user_domain_name>" \ --from-literal=user_domain_id="<swift_user_domain_id>" \ --from-literal=user_id="<swift_user_id>" \ --from-literal=password="<swift_password>" \ --from-literal=domain_id="<swift_domain_id>" \ --from-literal=domain_name="<swift_domain_name>" \ --from-literal=container_name="<swift_container_name>" \ --from-literal=project_id="<swift_project_id>" \ --from-literal=project_name="<swift_project_name>" \ --from-literal=project_domain_id="<swift_project_domain_id>" \ --from-literal=project_domain_name="<swift_project_domain_name>" \ --from-literal=region="<swift_region>"
10.2.3. 部署 Elasticsearch 日志存储
您可以使用 OpenShift Elasticsearch Operator 在 OpenShift Dedicated 集群上部署内部 Elasticsearch 日志存储。
Logging 5.9 发行版本不包含 OpenShift Elasticsearch Operator 的更新版本。如果您目前使用随 Logging 5.8 发布的 OpenShift Elasticsearch Operator,它将继续使用 Logging,直到 Logging 5.8 的 EOL 为止。您可以使用 Loki Operator 作为 OpenShift Elasticsearch Operator 的替代方案来管理默认日志存储。如需有关日志记录生命周期日期的更多信息,请参阅平台 Agnostic Operator。
10.2.3.1. Elasticsearch 的存储注意事项
每个 Elasticsearch 部署配置都需要一个持久性卷。在 OpenShift Dedicated 中,这使用持久性卷声明(PVC)来实现。
如果将本地卷用于持久性存储,请不要使用原始块卷,这在 LocalVolume
对象中的 volumeMode: block
描述。Elasticsearch 无法使用原始块卷。
OpenShift Elasticsearch Operator 使用 Elasticsearch 资源名称为 PVC 命名。
Fluentd 将 systemd journal 和 /var/log/containers/*.log 的所有日志都传输到 Elasticsearch。
Elasticsearch 需要足够内存来执行大型合并操作。如果没有足够的内存,它将会变得无响应。要避免这个问题,请评估应用程序日志数据的数量,并分配大约两倍的可用存储容量。
默认情况下,当存储容量为 85% 满时,Elasticsearch 会停止向节点分配新数据。90% 时,Elasticsearch 会在可能的情况下将现有分片重新定位到其他节点。但是,如果存储消耗低于 85% 时无节点有可用存储空间,Elasticsearch 会拒绝创建新索引并且变为 RED。
这些高、低水位线值是当前版本中的 Elasticsearch 默认值。您可以修改这些默认值。虽然警报使用相同的默认值,但无法在警报中更改这些值。
10.2.3.2. 使用 Web 控制台安装 OpenShift Elasticsearch Operator
OpenShift Elasticsearch Operator 会创建和管理 OpenShift Logging 使用的 Elasticsearch 集群。
先决条件
Elasticsearch 是内存密集型应用程序。每个 Elasticsearch 节点都需要至少 16GB 内存来满足内存请求和限值的需要,除非
ClusterLogging
自定义资源中另有指定。最初的 OpenShift Dedicated 节点组可能不足以支持 Elasticsearch 集群。您必须在 OpenShift Dedicated 集群中添加额外的节点才能使用推荐或更高的内存运行,每个 Elasticsearch 节点最多可使用 64GB 内存。
Elasticsearch 节点都可以在较低的内存设置下运行,但在生产环境中不建议这样做。
确保具有 Elasticsearch 所需的持久性存储。注意每个 Elasticsearch 节点都需要自己的存储卷。
注意如果将本地卷用于持久性存储,请不要使用原始块卷,这在
LocalVolume
对象中的volumeMode: block
描述。Elasticsearch 无法使用原始块卷。
流程
- 在 OpenShift Dedicated Web 控制台中,点 Operators → OperatorHub。
- 从可用的 Operator 列表中选择 OpenShift Elasticsearch Operator,然后点 Install。
- 确保在 Installation mode 下选择了 All namespaces on the cluster。
确定在 Installed Namespace 下选择了 openshift-operators-redhat。
您必须指定
openshift-operators-redhat
命名空间。openshift-operators
命名空间可能会包含社区提供的 operator。这些 operator 不被信任,其发布的 metric 可能与 OpenShift Dedicated 的名称相同,从而导致冲突。选择 Enable operator recommended cluster monitoring on this namespace。
这个选项在
Namespace
对象中设置openshift.io/cluster-monitoring: "true"
标签。您必须设置这个选项,以确保集群监控提取openshift-operators-redhat
命名空间。- 选择 stable-5.x 作为 更新频道。
选择一个 更新批准策略:
- Automatic 策略允许 Operator Lifecycle Manager(OLM)在有新版本可用时自动更新 Operator。
- Manual 策略需要拥有适当凭证的用户批准 Operator 更新。
- 点 Install。
验证
- 通过切换到 Operators → Installed Operators 页来验证 OpenShift Elasticsearch Operator 已被安装。
- 确定 OpenShift Elasticsearch Operator 在所有项目中被列出,请 Status 为 Succeeded。
10.2.3.3. 使用 CLI 安装 OpenShift Elasticsearch Operator
您可以使用 OpenShift CLI (oc
)安装 OpenShift Elasticsearch Operator。
先决条件
确保具有 Elasticsearch 所需的持久性存储。注意每个 Elasticsearch 节点都需要自己的存储卷。
注意如果将本地卷用于持久性存储,请不要使用原始块卷,这在
LocalVolume
对象中的volumeMode: block
描述。Elasticsearch 无法使用原始块卷。Elasticsearch 是内存密集型应用程序。默认情况下,OpenShift Dedicated 安装三个 Elasticsearch 节点,内存请求和限值为 16 GB。初始设置的三个 OpenShift Dedicated 节点可能没有足够的内存在集群中运行 Elasticsearch。如果遇到与 Elasticsearch 相关的内存问题,在集群中添加更多 Elasticsearch 节点,而不是增加现有节点上的内存。
- 有管理员权限。
-
已安装 OpenShift CLI(
oc
)。
流程
创建一个
Namespace
对象作为一个 YAML 文件:apiVersion: v1 kind: Namespace metadata: name: openshift-operators-redhat 1 annotations: openshift.io/node-selector: "" labels: openshift.io/cluster-monitoring: "true" 2
- 1
- 您必须指定
openshift-operators-redhat
命名空间。要防止可能与指标冲突,请将 Prometheus Cluster Monitoring 堆栈配置为从openshift-operators-redhat
命名空间中提取指标,而不是从openshift-operators
命名空间中提取。openshift-operators
命名空间可能会包含社区提供的 operator。这些 operator 不被信任,其发布的 metric 可能与 OpenShift Dedicated 的名称相同,从而导致冲突。 - 2
- 字符串。您必须按照所示指定该标签,以确保集群监控提取
openshift-operators-redhat
命名空间。
运行以下命令来应用
Namespace
对象:$ oc apply -f <filename>.yaml
以 YAML 文件形式创建
OperatorGroup
对象:apiVersion: operators.coreos.com/v1 kind: OperatorGroup metadata: name: openshift-operators-redhat namespace: openshift-operators-redhat 1 spec: {}
- 1
- 您必须指定
openshift-operators-redhat
命名空间。
运行以下命令来应用
OperatorGroup
对象:$ oc apply -f <filename>.yaml
创建一个
Subscription
对象来订阅 OpenShift Elasticsearch Operator 的命名空间:订阅示例
apiVersion: operators.coreos.com/v1alpha1 kind: Subscription metadata: name: elasticsearch-operator namespace: openshift-operators-redhat 1 spec: channel: stable-x.y 2 installPlanApproval: Automatic 3 source: redhat-operators 4 sourceNamespace: openshift-marketplace name: elasticsearch-operator
- 1
- 您必须指定
openshift-operators-redhat
命名空间。 - 2
- 指定
stable
, 或stable-x.y
作为频道。请参见以下注释。 - 3
Automatic
允许 Operator Lifecycle Manager (OLM) 在有新版本可用时自动更新 Operator。Manual
要求具有适当凭证的用户批准 Operator 更新。- 4
- 指定
redhat-operators
。如果 OpenShift Dedicated 集群安装在受限网络中(也称为断开连接的集群),请指定配置 Operator Lifecycle Manager (OLM)时创建的CatalogSource
对象的名称。
注意指定
stable
安装最新稳定版本的当前版本。使用带有installPlanApproval: "Automatic"
的stable
会自动将 Operator 升级到最新的稳定主版本和次版本。指定
stable-x.y
会安装特定主版本的当前次版本。使用带有installPlanApproval: "Automatic"
的stable-x.y
会自动将 Operator 升级到主发行版本中的最新稳定次版本。运行以下命令来应用订阅:
$ oc apply -f <filename>.yaml
OpenShift Elasticsearch Operator 已安装到
openshift-operators-redhat
命名空间,并复制到集群中的每个项目。
验证
运行以下命令:
$ oc get csv -n --all-namespaces
观察输出,并确认每个命名空间中存在 OpenShift Elasticsearch Operator 的 Pod
输出示例
NAMESPACE NAME DISPLAY VERSION REPLACES PHASE default elasticsearch-operator.v5.8.1 OpenShift Elasticsearch Operator 5.8.1 elasticsearch-operator.v5.8.0 Succeeded kube-node-lease elasticsearch-operator.v5.8.1 OpenShift Elasticsearch Operator 5.8.1 elasticsearch-operator.v5.8.0 Succeeded kube-public elasticsearch-operator.v5.8.1 OpenShift Elasticsearch Operator 5.8.1 elasticsearch-operator.v5.8.0 Succeeded kube-system elasticsearch-operator.v5.8.1 OpenShift Elasticsearch Operator 5.8.1 elasticsearch-operator.v5.8.0 Succeeded non-destructive-test elasticsearch-operator.v5.8.1 OpenShift Elasticsearch Operator 5.8.1 elasticsearch-operator.v5.8.0 Succeeded openshift-apiserver-operator elasticsearch-operator.v5.8.1 OpenShift Elasticsearch Operator 5.8.1 elasticsearch-operator.v5.8.0 Succeeded openshift-apiserver elasticsearch-operator.v5.8.1 OpenShift Elasticsearch Operator 5.8.1 elasticsearch-operator.v5.8.0 Succeeded ...
10.2.4. 配置日志存储
您可以通过修改 ClusterLogging
自定义资源(CR)来配置日志使用的日志存储类型。
先决条件
- 有管理员权限。
-
已安装 OpenShift CLI(
oc
)。 - 已安装 Red Hat OpenShift Logging Operator 和一个内部日志存储,它是 LokiStack 或 Elasticsearch。
-
您已创建了
ClusterLogging
CR。
Logging 5.9 发行版本不包含 OpenShift Elasticsearch Operator 的更新版本。如果您目前使用随 Logging 5.8 发布的 OpenShift Elasticsearch Operator,它将继续使用 Logging,直到 Logging 5.8 的 EOL 为止。您可以使用 Loki Operator 作为 OpenShift Elasticsearch Operator 的替代方案来管理默认日志存储。如需有关日志记录生命周期日期的更多信息,请参阅平台 Agnostic Operator。
流程
修改
ClusterLogging
CRlogStore
规格:ClusterLogging
CR 示例apiVersion: logging.openshift.io/v1 kind: ClusterLogging metadata: # ... spec: # ... logStore: type: <log_store_type> 1 elasticsearch: 2 nodeCount: <integer> resources: {} storage: {} redundancyPolicy: <redundancy_type> 3 lokistack: 4 name: {} # ...
将 LokiStack 指定为日志存储的
ClusterLogging
CR 示例apiVersion: logging.openshift.io/v1 kind: ClusterLogging metadata: name: instance namespace: openshift-logging spec: managementState: Managed logStore: type: lokistack lokistack: name: logging-loki # ...
运行以下命令来应用
ClusterLogging
CR:$ oc apply -f <filename>.yaml
10.3. 配置 LokiStack 日志存储
在日志记录文档中,LokiStack 指的是 Loki 和 Web 代理与 OpenShift Dedicated 身份验证集成的日志记录组合。LokiStack 的代理使用 OpenShift Dedicated 身份验证来强制实施多租户。Loki 将日志存储指代为单个组件或外部存储。
10.3.1. 为 cluster-admin 用户角色创建新组
以 cluster-admin
用户身份查询多个命名空间的应用程序日志,其中集群中所有命名空间的字符总和大于 5120,会导致错误 Parse error: input size too long (XXXX > 5120)
。为了更好地控制 LokiStack 中日志的访问,请使 cluster-admin
用户成为 cluster-admin
组的成员。如果 cluster-admin
组不存在,请创建它并将所需的用户添加到其中。
使用以下步骤为具有 cluster-admin
权限的用户创建新组。
流程
输入以下命令创建新组:
$ oc adm groups new cluster-admin
输入以下命令将所需的用户添加到
cluster-admin
组中:$ oc adm groups add-users cluster-admin <username>
输入以下命令在组中添加
cluster-admin
用户角色:$ oc adm policy add-cluster-role-to-group cluster-admin cluster-admin
10.3.2. 集群重启过程中的 LokiStack 行为
在日志记录版本 5.8 及更新版本中,当 OpenShift Dedicated 集群重启时,Loki ingestion 和查询路径将继续在节点的可用 CPU 和内存资源中运行。这意味着 OpenShift Dedicated 集群更新过程中,LokiStack 没有停机。此行为通过使用 PodDisruptionBudget
资源来实现。Loki Operator 为 Loki 置备 PodDisruptionBudget
资源,它决定了每个组件必须可用的最少 pod 数量,以确保特定条件下正常操作。
10.3.3. 配置 Loki 以容忍节点故障
在日志记录 5.8 及更新的版本中,Loki Operator 支持设置 pod 反关联性规则,以请求同一组件的 pod 调度到集群中的不同可用节点上。
关联性是 pod 的一个属性,用于控制它们希望调度到的节点。反关联性是 pod 的一个属性,用于阻止 pod 调度到某个节点上。
在 OpenShift Dedicated 中,可以借助 pod 关联性和 pod 反关联性来根据其他 pod 上的键/值标签限制 pod 有资格调度到哪些节点。
Operator 会为所有 Loki 组件设置默认、首选的 podAntiAffinity
规则,其中包括 compactor
, distributor
, gateway
, indexGateway
, ingester
, querier
, queryFrontend
, 和 ruler
组件。
您可以通过在 requiredDuringSchedulingIgnoredDuringExecution
字段中配置所需的设置来覆盖 Loki 组件的首选 podAntiAffinity
设置:
ingester 组件的用户设置示例
apiVersion: loki.grafana.com/v1 kind: LokiStack metadata: name: logging-loki namespace: openshift-logging spec: # ... template: ingester: podAntiAffinity: # ... requiredDuringSchedulingIgnoredDuringExecution: 1 - labelSelector: matchLabels: 2 app.kubernetes.io/component: ingester topologyKey: kubernetes.io/hostname # ...
10.3.4. 支持区域的数据复制
在日志记录 5.8 及更新的版本中,Loki Operator 通过 pod 拓扑分布限制支持区感知数据复制。启用这个功能可提高可靠性,并防止出现单一区域故障的日志丢失。在将部署大小配置为 1x.extra.small
、1x.small
或 1x.medium
时,replication.factor
字段会自动设置为 2。
为确保正确复制,您需要至少具有与复制因子指定的可用区数量。虽然可用区可能会比复制因素更多,但区域数量较少可能会导致写入失败。每个区域应托管相等的实例数量,以实现最佳操作。
启用区复制的 LokiStack CR 示例
apiVersion: loki.grafana.com/v1 kind: LokiStack metadata: name: logging-loki namespace: openshift-logging spec: replicationFactor: 2 1 replication: factor: 2 2 zones: - maxSkew: 1 3 topologyKey: topology.kubernetes.io/zone 4
10.3.4.1. 从失败的区恢复 Loki pod
在 OpenShift Dedicated 中,当特定可用区资源无法访问时,会发生区失败。可用性区域是云提供商数据中心内的隔离区域,旨在增强冗余和容错能力。如果您的 OpenShift Dedicated 集群没有配置为处理此功能,则区失败可能会导致服务或数据丢失。
Loki pod 是 StatefulSet 的一部分,它们附带 StorageClass
对象置备的 PVC。每个 Loki pod 及其 PVC 驻留在同一区域中。当在集群中发生区故障时,StatefulSet 控制器会自动尝试恢复失败的区中受影响的 pod。
以下流程将删除失败的区中的 PVC,以及其中包含的所有数据。为了避免完成数据丢失的 LokiStack
CR 的 replication factor 字段,应该始终设置为大于 1 的值,以确保 Loki 复制。
先决条件
- 日志记录版本 5.8 或更高版本。
-
验证
LokiStack
CR 是否具有大于 1 的复制因素。 - control plane 检测到区失败,故障区中的节点由云供应商集成标记。
StatefulSet 控制器会自动尝试重新调度失败的区中的 pod。因为关联的 PVC 也位于失败的区中,所以自动重新调度到不同的区无法正常工作。您必须手动删除失败的区中 PVC,以便在新区中成功重新创建有状态 Loki Pod 及其置备的 PVC。
流程
运行以下命令,列出处于
Pending
状态的 pod:oc get pods --field-selector status.phase==Pending -n openshift-logging
oc get pods
输出示例NAME READY STATUS RESTARTS AGE 1 logging-loki-index-gateway-1 0/1 Pending 0 17m logging-loki-ingester-1 0/1 Pending 0 16m logging-loki-ruler-1 0/1 Pending 0 16m
- 1
- 这些 pod 处于
Pending
状态,因为它们对应的 PVC 位于失败的区中。
运行以下命令,列出处于
Pending
状态的 PVC:oc get pvc -o=json -n openshift-logging | jq '.items[] | select(.status.phase == "Pending") | .metadata.name' -r
oc get pvc
输出示例storage-logging-loki-index-gateway-1 storage-logging-loki-ingester-1 wal-logging-loki-ingester-1 storage-logging-loki-ruler-1 wal-logging-loki-ruler-1
运行以下命令,删除 pod 的 PVC:
oc delete pvc __<pvc_name>__ -n openshift-logging
然后,运行以下命令来删除 pod:
oc delete pod __<pod_name>__ -n openshift-logging
成功删除这些对象后,应在可用区域中自动重新调度它们。
10.3.4.1.1. 对处于终止状态的 PVC 进行故障排除
如果 PVC 元数据终结器被设置为 kubernetes.io/pv-protection
,PVC 可能会处于 terminating 状态。删除终结器应该允许 PVC 成功删除。
运行以下命令删除每个 PVC 的终结器,然后重试删除。
oc patch pvc __<pvc_name>__ -p '{"metadata":{"finalizers":null}}' -n openshift-logging
10.3.5. 对 Loki 日志的精细访问
在日志记录 5.8 及更高版本中,Red Hat OpenShift Logging Operator 默认不授予所有用户对日志的访问权限。作为管理员,您需要配置用户访问权限,除非 Operator 已升级并且以前的配置已就位。根据您的配置和需要,您可以使用以下内容配置对日志的精细访问:
- 集群范围内的策略
- 命名空间范围策略
- 创建自定义 admin 组
作为管理员,您需要创建适合部署的角色绑定和集群角色绑定。Red Hat OpenShift Logging Operator 提供以下集群角色:
-
cluster-logging-application-view
授予读取应用程序日志的权限。 -
cluster-logging-infrastructure-view
授予读取基础架构日志的权限。 -
cluster-logging-audit-view
授予读取审计日志的权限。
如果您从以前的版本升级,则额外的集群角色 logging-application-logs-reader
和关联的集群角色绑定 logging-all-authenticated-application-logs-reader
提供向后兼容性,允许任何经过身份验证的用户在命名空间中读取访问权限。
在查询应用程序日志时,具有命名空间权限的用户必须提供命名空间。
10.3.5.1. 集群范围内的访问
集群角色绑定资源引用集群角色,以及设置集群范围的权限。
ClusterRoleBinding 示例
kind: ClusterRoleBinding apiVersion: rbac.authorization.k8s.io/v1 metadata: name: logging-all-application-logs-reader roleRef: apiGroup: rbac.authorization.k8s.io kind: ClusterRole name: cluster-logging-application-view 1 subjects: 2 - kind: Group name: system:authenticated apiGroup: rbac.authorization.k8s.io
10.3.5.2. 命名空间访问
RoleBinding
资源可用于 ClusterRole
对象来定义用户或组可以访问日志的命名空间。
RoleBinding 示例
kind: RoleBinding
apiVersion: rbac.authorization.k8s.io/v1
metadata:
name: allow-read-logs
namespace: log-test-0 1
roleRef:
apiGroup: rbac.authorization.k8s.io
kind: ClusterRole
name: cluster-logging-application-view
subjects:
- kind: User
apiGroup: rbac.authorization.k8s.io
name: testuser-0
- 1
- 指定此
RoleBinding
应用到的命名空间。
10.3.5.3. 自定义 admin 组访问
如果您的大型部署具有多个需要更广泛的权限的用户,您可以使用 adminGroup
字段创建一个自定义组。属于 LokiStack
CR 的 adminGroups
字段中指定的任何组的成员的用户被视为管理员。
如果管理员还分配了 cluster-logging-application-view
角色,则管理员用户可以访问所有命名空间中的所有应用程序日志。
LokiStack CR 示例
apiVersion: loki.grafana.com/v1 kind: LokiStack metadata: name: logging-loki namespace: openshift-logging spec: tenants: mode: openshift-logging 1 openshift: adminGroups: 2 - cluster-admin - custom-admin-group 3
10.3.6. 使用 Loki 启用基于流的保留
其他资源
使用日志记录版本 5.6 及更高版本,您可以根据日志流配置保留策略。这些规则可全局设置,每个租户或两个都设置。如果同时配置这两个,则租户规则会在全局规则之前应用。
如果没有在 s3 存储桶或 LokiStack 自定义资源(CR)中定义保留周期,则不会修剪日志,它们会永久保留在 s3 存储桶中,这可能会填满 s3 存储。
虽然日志记录版本 5.9 和更高版本支持模式 v12,但建议使用 v13。
要启用基于流的保留,请创建一个
LokiStack
CR:AWS 的基于流的全局保留示例
apiVersion: loki.grafana.com/v1 kind: LokiStack metadata: name: logging-loki namespace: openshift-logging spec: limits: global: 1 retention: 2 days: 20 streams: - days: 4 priority: 1 selector: '{kubernetes_namespace_name=~"test.+"}' 3 - days: 1 priority: 1 selector: '{log_type="infrastructure"}' managementState: Managed replicationFactor: 1 size: 1x.small storage: schemas: - effectiveDate: "2020-10-11" version: v11 secret: name: logging-loki-s3 type: aws storageClassName: gp3-csi tenants: mode: openshift-logging
AWS 的基于流的基于流的保留示例
apiVersion: loki.grafana.com/v1 kind: LokiStack metadata: name: logging-loki namespace: openshift-logging spec: limits: global: retention: days: 20 tenants: 1 application: retention: days: 1 streams: - days: 4 selector: '{kubernetes_namespace_name=~"test.+"}' 2 infrastructure: retention: days: 5 streams: - days: 1 selector: '{kubernetes_namespace_name=~"openshift-cluster.+"}' managementState: Managed replicationFactor: 1 size: 1x.small storage: schemas: - effectiveDate: "2020-10-11" version: v11 secret: name: logging-loki-s3 type: aws storageClassName: gp3-csi tenants: mode: openshift-logging
2 应用 LokiStack
CR:
$ oc apply -f <filename>.yaml
这不适用于为存储的日志管理保留。使用对象存储配置存储在支持的最大 30 天的全局保留周期。
10.3.7. Loki 速率限制错误故障排除
如果 Log Forwarder API 将超过速率限制的大量信息转发到 Loki,Loki 会生成速率限制(429
)错误。
这些错误可能会在正常操作过程中发生。例如,当将 logging 添加到已具有某些日志的集群中时,logging 会尝试充分利用现有日志条目时可能会出现速率限制错误。在这种情况下,如果添加新日志的速度小于总速率限值,历史数据最终会被处理,并且不要求用户干预即可解决速率限制错误。
如果速率限制错误持续发生,您可以通过修改 LokiStack
自定义资源(CR)来解决此问题。
LokiStack
CR 在 Grafana 托管的 Loki 上不可用。本主题不适用于 Grafana 托管的 Loki 服务器。
Conditions
- Log Forwarder API 配置为将日志转发到 Loki。
您的系统向 Loki 发送大于 2 MB 的消息块。例如:
"values":[["1630410392689800468","{\"kind\":\"Event\",\"apiVersion\":\ ....... ...... ...... ...... \"received_at\":\"2021-08-31T11:46:32.800278+00:00\",\"version\":\"1.7.4 1.6.0\"}},\"@timestamp\":\"2021-08-31T11:46:32.799692+00:00\",\"viaq_index_name\":\"audit-write\",\"viaq_msg_id\":\"MzFjYjJkZjItNjY0MC00YWU4LWIwMTEtNGNmM2E5ZmViMGU4\",\"log_type\":\"audit\"}"]]}]}
输入
oc logs -n openshift-logging -l component=collector
后,集群中的收集器日志会显示包含以下错误消息之一的行:429 Too Many Requests Ingestion rate limit exceeded
Vector 错误消息示例
2023-08-25T16:08:49.301780Z WARN sink{component_kind="sink" component_id=default_loki_infra component_type=loki component_name=default_loki_infra}: vector::sinks::util::retries: Retrying after error. error=Server responded with an error: 429 Too Many Requests internal_log_rate_limit=true
Fluentd 错误消息示例
2023-08-30 14:52:15 +0000 [warn]: [default_loki_infra] failed to flush the buffer. retry_times=2 next_retry_time=2023-08-30 14:52:19 +0000 chunk="604251225bf5378ed1567231a1c03b8b" error_class=Fluent::Plugin::LokiOutput::LogPostError error="429 Too Many Requests Ingestion rate limit exceeded for user infrastructure (limit: 4194304 bytes/sec) while attempting to ingest '4082' lines totaling '7820025' bytes, reduce log volume or contact your Loki administrator to see if the limit can be increased\n"
在接收结束时也会看到这个错误。例如,在 LokiStack ingester pod 中:
Loki ingester 错误消息示例
level=warn ts=2023-08-30T14:57:34.155592243Z caller=grpc_logging.go:43 duration=1.434942ms method=/logproto.Pusher/Push err="rpc error: code = Code(429) desc = entry with timestamp 2023-08-30 14:57:32.012778399 +0000 UTC ignored, reason: 'Per stream rate limit exceeded (limit: 3MB/sec) while attempting to ingest for stream
流程
更新
LokiStack
CR 中的ingestionBurstSize
和ingestionRate
字段:apiVersion: loki.grafana.com/v1 kind: LokiStack metadata: name: logging-loki namespace: openshift-logging spec: limits: global: ingestion: ingestionBurstSize: 16 1 ingestionRate: 8 2 # ...
10.3.8. 配置 Loki 以容许 memberlist 创建失败
在 OpenShift 集群中,管理员通常使用非专用 IP 网络范围。因此,Loki memberlist 配置会失败,因为默认情况下,它只使用私有 IP 网络。
作为管理员,您可以为 memberlist 配置选择 pod 网络。您可以修改 LokiStack CR,以使用 hashRing
spec 中的 podIP
。要配置 LokiStack CR,请使用以下命令:
$ oc patch LokiStack logging-loki -n openshift-logging --type=merge -p '{"spec": {"hashRing":{"memberlist":{"instanceAddrType":"podIP","type": "memberlist"}}}}'
LokiStack 示例,使其包含 podIP
apiVersion: loki.grafana.com/v1 kind: LokiStack metadata: name: logging-loki namespace: openshift-logging spec: # ... hashRing: type: memberlist memberlist: instanceAddrType: podIP # ...
10.3.9. 其他资源
10.4. 配置 Elasticsearch 日志存储
您可以使用 Elasticsearch 6 来存储和组织日志数据。
您可以修改日志存储,包括:
- Elasticsearch 集群的存储
- 在集群中的数据节点之间复制分片,从完整复制到不复制
- 外部访问 Elasticsearch 数据
10.4.1. 配置日志存储
您可以通过修改 ClusterLogging
自定义资源(CR)来配置日志使用的日志存储类型。
先决条件
- 有管理员权限。
-
已安装 OpenShift CLI(
oc
)。 - 已安装 Red Hat OpenShift Logging Operator 和一个内部日志存储,它是 LokiStack 或 Elasticsearch。
-
您已创建了
ClusterLogging
CR。
Logging 5.9 发行版本不包含 OpenShift Elasticsearch Operator 的更新版本。如果您目前使用随 Logging 5.8 发布的 OpenShift Elasticsearch Operator,它将继续使用 Logging,直到 Logging 5.8 的 EOL 为止。您可以使用 Loki Operator 作为 OpenShift Elasticsearch Operator 的替代方案来管理默认日志存储。如需有关日志记录生命周期日期的更多信息,请参阅平台 Agnostic Operator。
流程
修改
ClusterLogging
CRlogStore
规格:ClusterLogging
CR 示例apiVersion: logging.openshift.io/v1 kind: ClusterLogging metadata: # ... spec: # ... logStore: type: <log_store_type> 1 elasticsearch: 2 nodeCount: <integer> resources: {} storage: {} redundancyPolicy: <redundancy_type> 3 lokistack: 4 name: {} # ...
将 LokiStack 指定为日志存储的
ClusterLogging
CR 示例apiVersion: logging.openshift.io/v1 kind: ClusterLogging metadata: name: instance namespace: openshift-logging spec: managementState: Managed logStore: type: lokistack lokistack: name: logging-loki # ...
运行以下命令来应用
ClusterLogging
CR:$ oc apply -f <filename>.yaml
10.4.2. 将审计日志转发到日志存储
在日志记录部署中,容器和基础架构日志默认转发到 ClusterLogging
自定义资源(CR)中定义的内部日志存储。
默认情况下,审计日志不会转发到内部日志存储,因为这不提供安全存储。您需要自己确保转发审计日志的系统符合您所在机构及政府的相关要求,并具有适当的安全性。
如果此默认配置满足您的需要,则不需要配置一个 ClusterLogForwarder
CR。如果存在 ClusterLogForwarder
CR,日志不会转发到内部日志存储,除非定义了包含 default
输出的管道。
流程
使用 Log Forward API 将审计日志转发到内部 Elasticsearch 实例:
创建或编辑定义
ClusterLogForwarder
CR 对象的 YAML 文件:创建 CR 以将所有日志类型发送到内部 Elasticsearch 实例。您可以在不进行任何更改的情况下使用以下示例:
apiVersion: logging.openshift.io/v1 kind: ClusterLogForwarder metadata: name: instance namespace: openshift-logging spec: pipelines: 1 - name: all-to-default inputRefs: - infrastructure - application - audit outputRefs: - default
- 1
- 管道(pipeline)定义使用指定输出转发的日志类型。默认输出将日志转发到内部 Elasticsearch 实例。
注意您必须在管道中指定所有三种类型的日志:应用程序、基础架构和审核。如果没有指定日志类型,这些日志将不会被存储并丢失。
如果您有一个现有的
ClusterLogForwarder
CR,请将管道添加到审计日志的默认输出中。您不需要定义默认输出。例如:apiVersion: "logging.openshift.io/v1" kind: ClusterLogForwarder metadata: name: instance namespace: openshift-logging spec: outputs: - name: elasticsearch-insecure type: "elasticsearch" url: http://elasticsearch-insecure.messaging.svc.cluster.local insecure: true - name: elasticsearch-secure type: "elasticsearch" url: https://elasticsearch-secure.messaging.svc.cluster.local secret: name: es-audit - name: secureforward-offcluster type: "fluentdForward" url: https://secureforward.offcluster.com:24224 secret: name: secureforward pipelines: - name: container-logs inputRefs: - application outputRefs: - secureforward-offcluster - name: infra-logs inputRefs: - infrastructure outputRefs: - elasticsearch-insecure - name: audit-logs inputRefs: - audit outputRefs: - elasticsearch-secure - default 1
- 1
- 此管道除外部实例外,还会将审计日志发送到内部 Elasticsearch 实例。
其他资源
10.4.3. 配置日志保留时间
您可以配置保留策略,指定默认 Elasticsearch 日志存储保留三个日志源的索引的时长:基础架构日志、应用程序日志和审计日志。
要配置保留策略,您需要为 ClusterLogging
自定义资源 (CR) 中的每个日志源设置 maxAge
参数。CR 将这些值应用到 Elasticsearch 滚动调度,它决定 Elasticsearch 何时删除滚动索引。
如果索引与以下条件之一匹配,Elasticsearch 会滚动索引,移动当前的索引并创建新索引:
-
索引早于
Elasticsearch
CR 中的rollover.maxAge
值。 - 索引大小超过主分片数乘以 40GB 的值。
- 索引的 doc 数大于主分片数乘以 40960 KB 的值。
Elasticsearch 会根据您配置的保留策略删除滚动索引。如果您没有为任何日志源创建保留策略,则默认在 7 天后删除日志。
先决条件
- 必须安装 Red Hat OpenShift Logging Operator 和 OpenShift Elasticsearch Operator。
流程
配置日志保留时间:
编辑
ClusterLogging
CR,以添加或修改reservedPolicy
参数:apiVersion: "logging.openshift.io/v1" kind: "ClusterLogging" ... spec: managementState: "Managed" logStore: type: "elasticsearch" retentionPolicy: 1 application: maxAge: 1d infra: maxAge: 7d audit: maxAge: 7d elasticsearch: nodeCount: 3 ...
- 1
- 指定 Elasticsearch 应该保留每个日志源的时间。输入一个整数和时间单位: 周(w)、小时(h/H)、分钟(m)和秒。例如,
1d
代表一天。时间超过maxAge
的旧日志会被删除。默认情况下,日志会保留 7 天。
您可以验证
Elasticsearch
自定义资源(CR)中的设置。例如,Red Hat OpenShift Logging Operator 更新了以下
Elasticsearch
CR 以配置保留策略,包括设置以每八小时滚动基础架构日志的活跃索引,并在滚动后 7 天删除滚动的索引。OpenShift Dedicated 每 15 分钟检查一次,以确定是否需要滚动索引。apiVersion: "logging.openshift.io/v1" kind: "Elasticsearch" metadata: name: "elasticsearch" spec: ... indexManagement: policies: 1 - name: infra-policy phases: delete: minAge: 7d 2 hot: actions: rollover: maxAge: 8h 3 pollInterval: 15m 4 ...
注意不支持修改
Elasticsearch
CR。对保留策略的所有更改都必须在ClusterLogging
CR 中进行。OpenShift Elasticsearch Operator 部署 cron job,以使用定义的策略为每个映射滚动索引,并使用
pollInterval
调度。$ oc get cronjob
输出示例
NAME SCHEDULE SUSPEND ACTIVE LAST SCHEDULE AGE elasticsearch-im-app */15 * * * * False 0 <none> 4s elasticsearch-im-audit */15 * * * * False 0 <none> 4s elasticsearch-im-infra */15 * * * * False 0 <none> 4s
10.4.4. 为日志存储配置 CPU 和内存请求
每个组件规格都允许调整 CPU 和内存请求。您不应该手动调整这些值,因为 OpenShift Elasticsearch Operator 会设置适当的值以满足环境的要求。
在大型集群中,Elasticsearch 代理容器的默认内存限值可能不足,从而导致代理容器被 OOMKilled。如果您遇到这个问题,请提高 Elasticsearch 代理的内存请求和限值。
每个 Elasticsearch 节点都可以在较低的内存设置下运行,但在生产部署中不建议这样做。对于生产环境,为每个 pod 应该分配的数量应不少于默认的 16Gi。最好为每个 pod 分配不超过 64Gi 的尽量多的数量。
先决条件
- 必须安装 Red Hat OpenShift Logging 和 Elasticsearch Operator。
流程
编辑
openshift-logging
项目中的ClusterLogging
自定义资源(CR):$ oc edit ClusterLogging instance
apiVersion: "logging.openshift.io/v1" kind: "ClusterLogging" metadata: name: "instance" .... spec: logStore: type: "elasticsearch" elasticsearch:1 resources: limits: 2 memory: "32Gi" requests: 3 cpu: "1" memory: "16Gi" proxy: 4 resources: limits: memory: 100Mi requests: memory: 100Mi
在调整 Elasticsearch 内存量时,相同的值应该用于请求
和限值
。
例如:
resources: limits: 1 memory: "32Gi" requests: 2 cpu: "8" memory: "32Gi"
Kubernetes 一般遵循节点配置,不允许 Elasticsearch 使用指定的限值。为 请求(request)
和 限值(limit)
设置相同的值可确保 Elasticsearch 可以使用您想要的内存,假设节点具有可用内存。
10.4.5. 为日志存储配置复制策略
您可以定义如何在集群中的数据节点之间复制 Elasticsearch 分片:
先决条件
- 必须安装 Red Hat OpenShift Logging 和 Elasticsearch Operator。
流程
编辑
openshift-logging
项目中的ClusterLogging
自定义资源(CR):$ oc edit clusterlogging instance
apiVersion: "logging.openshift.io/v1" kind: "ClusterLogging" metadata: name: "instance" .... spec: logStore: type: "elasticsearch" elasticsearch: redundancyPolicy: "SingleRedundancy" 1
- 1
- 为分片指定冗余策略。更改会在保存后应用。
- FullRedundancy:Elasticsearch 将每个索引的主分片完整复制到每个数据节点。这可提供最高的安全性,但代价是需要最大数量的磁盘并且性能最差。
- MultipleRedundancy:Elasticsearch 将每个索引的主分片完整复制到一半的数据节点。这可在安全性和性能之间提供很好的折衷。
- SingleRedundancy:Elasticsearch 为每个索引的主分片制作一个副本。只要存在至少两个数据节点,日志就能始终可用且可恢复。使用 5 个或更多节点时,性能胜过 MultipleRedundancy。您不能将此策略应用于单个 Elasticsearch 节点的部署。
- ZeroRedundancy:Elasticsearch 不制作主分片的副本。如果节点关闭或发生故障, 则可能无法获得日志数据。如果您更关注性能而非安全性,或者实施了自己的磁盘/PVC 备份/恢复策略,可以考虑使用此模式。
索引模板的主分片数量等于 Elasticsearch 数据节点的数目。
10.4.6. 缩减 Elasticsearch pod
减少集群中的 Elasticsearch pod 数量可能会导致数据丢失或 Elasticsearch 性能下降。
如果缩减,应该一次缩减一个 pod,并允许集群重新平衡分片和副本。Elasticsearch 健康状态返回绿色
后,您可以根据另一个 pod 进行缩减。
如果 Elasticsearch 集群设置为 ZeroRedundancy
,则不应缩减 Elasticsearch pod。
10.4.7. 为日志存储配置持久性存储
Elasticsearch 需要持久性存储。存储速度越快,Elasticsearch 性能越高。
在 Elasticsearch 存储中不支持将 NFS 存储用作卷或持久性卷(或者通过 NAS 比如 Gluster),因为 Lucene 依赖于 NFS 不提供的文件系统行为。数据崩溃和其他问题可能会发生。
先决条件
- 必须安装 Red Hat OpenShift Logging 和 Elasticsearch Operator。
流程
编辑
ClusterLogging
CR,将集群中的每个数据节点指定为绑定到持久性卷声明。apiVersion: "logging.openshift.io/v1" kind: "ClusterLogging" metadata: name: "instance" # ... spec: logStore: type: "elasticsearch" elasticsearch: nodeCount: 3 storage: storageClassName: "gp2" size: "200G"
本例中指定,集群中的每个数据节点都绑定到请求“200G”的 AWS 通用 SSD (gp2) 存储的 PVC。
如果将本地卷用于持久性存储,请不要使用原始块卷,这在 LocalVolume
对象中的 volumeMode: block
描述。Elasticsearch 无法使用原始块卷。
10.4.8. 为 emptyDir 存储配置日志存储
您可以将 emptyDir 与 日志存储搭配使用来创建一个临时部署,临时部署一旦重启其中所有 Pod 的数据都会丢失。
使用 emptyDir 时,如果重启或重新部署日志存储,数据将会丢失。
先决条件
- 必须安装 Red Hat OpenShift Logging 和 Elasticsearch Operator。
流程
编辑
ClusterLogging
CR 以指定 emptyDir:spec: logStore: type: "elasticsearch" elasticsearch: nodeCount: 3 storage: {}
10.4.9. 执行 Elasticsearch 集群滚动重启
在更改 elasticsearch
配置映射或任何 elasticsearch-*
部署配置时,执行滚动重启。
此外,如果运行 Elasticsearch Pod 的节点需要重启,则建议滚动重启。
先决条件
- 必须安装 Red Hat OpenShift Logging 和 Elasticsearch Operator。
流程
执行集群滚动重启:
进入
openshift-logging
项目:$ oc project openshift-logging
获取 Elasticsearch Pod 的名称:
$ oc get pods -l component=elasticsearch
缩减收集器 Pod,以便它们停止向 Elasticsearch 发送新日志:
$ oc -n openshift-logging patch daemonset/collector -p '{"spec":{"template":{"spec":{"nodeSelector":{"logging-infra-collector": "false"}}}}}'
使用 OpenShift Dedicated es_util 工具执行分片同步刷新,确保在关机之前没有等待写入磁盘的待定操作:
$ oc exec <any_es_pod_in_the_cluster> -c elasticsearch -- es_util --query="_flush/synced" -XPOST
例如:
$ oc exec -c elasticsearch-cdm-5ceex6ts-1-dcd6c4c7c-jpw6 -c elasticsearch -- es_util --query="_flush/synced" -XPOST
输出示例
{"_shards":{"total":4,"successful":4,"failed":0},".security":{"total":2,"successful":2,"failed":0},".kibana_1":{"total":2,"successful":2,"failed":0}}
使用 OpenShift Dedicated es_util 工具防止在有意关闭节点时进行分片平衡:
$ oc exec <any_es_pod_in_the_cluster> -c elasticsearch -- es_util --query="_cluster/settings" -XPUT -d '{ "persistent": { "cluster.routing.allocation.enable" : "primaries" } }'
例如:
$ oc exec elasticsearch-cdm-5ceex6ts-1-dcd6c4c7c-jpw6 -c elasticsearch -- es_util --query="_cluster/settings" -XPUT -d '{ "persistent": { "cluster.routing.allocation.enable" : "primaries" } }'
输出示例
{"acknowledged":true,"persistent":{"cluster":{"routing":{"allocation":{"enable":"primaries"}}}},"transient":
完成后,会在每个部署中都有一个 ES 集群:
默认情况下,OpenShift Dedicated Elasticsearch 集群会阻止向其节点推出部署。使用以下命令来允许推出部署并允许 Pod 获取更改:
$ oc rollout resume deployment/<deployment-name>
例如:
$ oc rollout resume deployment/elasticsearch-cdm-0-1
输出示例
deployment.extensions/elasticsearch-cdm-0-1 resumed
部署了一个新 Pod。当 Pod 具有就绪的容器后,就能继续进行下一部署。
$ oc get pods -l component=elasticsearch-
输出示例
NAME READY STATUS RESTARTS AGE elasticsearch-cdm-5ceex6ts-1-dcd6c4c7c-jpw6k 2/2 Running 0 22h elasticsearch-cdm-5ceex6ts-2-f799564cb-l9mj7 2/2 Running 0 22h elasticsearch-cdm-5ceex6ts-3-585968dc68-k7kjr 2/2 Running 0 22h
部署完成后,重置 Pod 以禁止推出部署:
$ oc rollout pause deployment/<deployment-name>
例如:
$ oc rollout pause deployment/elasticsearch-cdm-0-1
输出示例
deployment.extensions/elasticsearch-cdm-0-1 paused
检查 Elasticsearch 集群是否处于
green
或yellow
状态:$ oc exec <any_es_pod_in_the_cluster> -c elasticsearch -- es_util --query=_cluster/health?pretty=true
注意如果您对先前命令中使用的 Elasticsearch Pod 执行了推出部署,该 Pod 将不再存在,并且此处需要使用新的 Pod 名称。
例如:
$ oc exec elasticsearch-cdm-5ceex6ts-1-dcd6c4c7c-jpw6 -c elasticsearch -- es_util --query=_cluster/health?pretty=true
{ "cluster_name" : "elasticsearch", "status" : "yellow", 1 "timed_out" : false, "number_of_nodes" : 3, "number_of_data_nodes" : 3, "active_primary_shards" : 8, "active_shards" : 16, "relocating_shards" : 0, "initializing_shards" : 0, "unassigned_shards" : 1, "delayed_unassigned_shards" : 0, "number_of_pending_tasks" : 0, "number_of_in_flight_fetch" : 0, "task_max_waiting_in_queue_millis" : 0, "active_shards_percent_as_number" : 100.0 }
- 1
- 在继续操作前,请确保此参数值为
green
或者yellow
。
- 如果更改了 Elasticsearch 配置映射,请对每个 Elasticsearch Pod 重复这些步骤。
推出集群的所有部署后,重新启用分片平衡:
$ oc exec <any_es_pod_in_the_cluster> -c elasticsearch -- es_util --query="_cluster/settings" -XPUT -d '{ "persistent": { "cluster.routing.allocation.enable" : "all" } }'
例如:
$ oc exec elasticsearch-cdm-5ceex6ts-1-dcd6c4c7c-jpw6 -c elasticsearch -- es_util --query="_cluster/settings" -XPUT -d '{ "persistent": { "cluster.routing.allocation.enable" : "all" } }'
输出示例
{ "acknowledged" : true, "persistent" : { }, "transient" : { "cluster" : { "routing" : { "allocation" : { "enable" : "all" } } } } }
扩展收集器 Pod,以便它们会将新日志发送到 Elasticsearch。
$ oc -n openshift-logging patch daemonset/collector -p '{"spec":{"template":{"spec":{"nodeSelector":{"logging-infra-collector": "true"}}}}}'
10.4.10. 将日志存储服务公开为路由
默认情况下,无法从日志记录集群外部访问部署了日志记录的日志存储。您可以启用一个 re-encryption termination 模式的路由,以实现外部对日志存储服务的访问来获取数据。
另外,还可以在外部创建一个重新加密路由,使用 OpenShift Dedicated 令牌和已安装的 Elasticsearch CA 证书以从外部访问日志存储。然后,使用包含以下内容的 cURL 请求访问托管日志存储服务的节点:
-
Authorization: Bearer ${token}
- Elasticsearch 重新加密路由和 Elasticsearch API 请求。
在内部,可以使用日志存储集群 IP 访问日志存储服务。您可以使用以下命令之一获取它:
$ oc get service elasticsearch -o jsonpath={.spec.clusterIP} -n openshift-logging
输出示例
172.30.183.229
$ oc get service elasticsearch -n openshift-logging
输出示例
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE elasticsearch ClusterIP 172.30.183.229 <none> 9200/TCP 22h
您可以使用类似如下的命令检查集群 IP 地址:
$ oc exec elasticsearch-cdm-oplnhinv-1-5746475887-fj2f8 -n openshift-logging -- curl -tlsv1.2 --insecure -H "Authorization: Bearer ${token}" "https://172.30.183.229:9200/_cat/health"
输出示例
% Total % Received % Xferd Average Speed Time Time Time Current Dload Upload Total Spent Left Speed 100 29 100 29 0 0 108 0 --:--:-- --:--:-- --:--:-- 108
先决条件
- 必须安装 Red Hat OpenShift Logging 和 Elasticsearch Operator。
- 您必须具有项目的访问权限,以便能访问其日志。
流程
对外部公开日志存储:
进入
openshift-logging
项目:$ oc project openshift-logging
从日志存储提取 CA 证书并写入 admin-ca 文件:
$ oc extract secret/elasticsearch --to=. --keys=admin-ca
输出示例
admin-ca
以 YAML 文件形式创建日志存储服务的路由:
使用以下内容创建一个 YAML文件:
apiVersion: route.openshift.io/v1 kind: Route metadata: name: elasticsearch namespace: openshift-logging spec: host: to: kind: Service name: elasticsearch tls: termination: reencrypt destinationCACertificate: | 1
- 1
- 添加日志存储 CA 证书或使用下一步中的命令。您不必设置一些重新加密路由所需的
spec.tls.key
、spec.tls.certificate
和spec.tls.caCertificate
参数。
运行以下命令,将日志存储 CA 证书添加到您在上一步中创建的路由 YAML 中:
$ cat ./admin-ca | sed -e "s/^/ /" >> <file-name>.yaml
创建路由:
$ oc create -f <file-name>.yaml
输出示例
route.route.openshift.io/elasticsearch created
检查是否公开了 Elasticsearch 服务:
获取此服务帐户的令牌,以便在请求中使用:
$ token=$(oc whoami -t)
将您创建的 Elasticsearch 路由设置为环境变量。
$ routeES=`oc get route elasticsearch -o jsonpath={.spec.host}`
要验证路由是否创建成功,请运行以下命令来通过公开的路由访问 Elasticsearch:
curl -tlsv1.2 --insecure -H "Authorization: Bearer ${token}" "https://${routeES}"
其响应类似于如下:
输出示例
{ "name" : "elasticsearch-cdm-i40ktba0-1", "cluster_name" : "elasticsearch", "cluster_uuid" : "0eY-tJzcR3KOdpgeMJo-MQ", "version" : { "number" : "6.8.1", "build_flavor" : "oss", "build_type" : "zip", "build_hash" : "Unknown", "build_date" : "Unknown", "build_snapshot" : true, "lucene_version" : "7.7.0", "minimum_wire_compatibility_version" : "5.6.0", "minimum_index_compatibility_version" : "5.0.0" }, "<tagline>" : "<for search>" }
10.4.11. 如果不使用默认的 Elasticsearch 日志存储,请删除未使用的组件
作为管理员,在非常罕见的情况下,当您将日志转发到第三方日志存储且不使用默认的 Elasticsearch 存储时,您可以从日志集群中移除几个未使用的组件。
换句话说,如果没有使用默认的 Elasticsearch 日志存储,您可以从 ClusterLogging
自定义资源 (CR) 中删除内部 Elasticsearch logStore
和 Kibana visualization
组件。删除这些组件是可选的,但会保存资源。
先决条件
验证您的日志转发程序没有将日志数据发送到默认的内部 Elasticsearch 集群。检查您用来配置日志转发的
ClusterLogForwarder
CR YAML 文件。验证它没有指定default
的outputRefs
元素。例如:outputRefs: - default
假定 ClusterLogForwarder
CR 将日志数据转发到内部 Elasticsearch 集群,并从 ClusterLogging
CR 中删除 logStore
组件。在这种情况下,内部 Elasticsearch 集群将不存在来存储日志数据。这会导致数据丢失。
流程
编辑
openshift-logging
项目中的ClusterLogging
自定义资源(CR):$ oc edit ClusterLogging instance
-
如果存在,请从
ClusterLogging
CR 中删除logStore
和visualization
小节。 保留
ClusterLogging
CR 的collection
小节。结果应类似以下示例:apiVersion: "logging.openshift.io/v1" kind: "ClusterLogging" metadata: name: "instance" namespace: "openshift-logging" spec: managementState: "Managed" collection: type: "fluentd" fluentd: {}
验证收集器 Pod 是否已重新部署:
$ oc get pods -l component=collector -n openshift-logging
第 11 章 日志记录警报
11.1. 默认日志记录警报
日志记录警报作为 Red Hat OpenShift Logging Operator 安装的一部分安装。警报取决于日志收集和日志存储后端导出的指标。如果在安装 Red Hat OpenShift Logging Operator 时选择了 Enable Operator recommended cluster monitoring on this namespace 选项,则启用这些指标。
默认日志记录警报发送到 openshift-monitoring
命名空间中的 OpenShift Dedicated 监控堆栈 Alertmanager,除非您禁用了本地 Alertmanager 实例。
11.1.1. 在 Administrator 和 Developer 视角中访问 Alerting UI
Alerting UI 可通过 OpenShift Dedicated Web 控制台的 Administrator 视角和 Developer 视角访问。
- 在 Administrator 视角中,进入 Observe → Alerting。此视角中的 Alerting UI 中的三个主要页面是 Alerts、Silences 和 Alerting 规则 页面。
- 在 Developer 视角中,进入 Observe → <project_name> → Alerts。在这个视角中,警报、静默和警报规则都通过 Alerts 页面管理。Alerts 页面中显示的结果特定于所选项目。
在 Developer 视角中,您可以从可在 Project: <project_name> 列表中访问的核心 OpenShift Dedicated 和用户定义的项目中选择。但是,如果您没有以集群管理员身份登录,则不会显示与 OpenShift Dedicated 核心项目相关的警报、静默和警报规则。
11.1.2. 日志记录收集器警报
在日志记录 5.8 及更新的版本中,Red Hat OpenShift Logging Operator 生成以下警报。您可以在 OpenShift Dedicated Web 控制台中查看这些警报。
警报名称 | 消息 | 描述 | 重要性 |
---|---|---|---|
CollectorNodeDown |
Prometheus 无法为超过 10m 提取 | 无法提取收集器。 | Critical |
CollectorHighErrorRate |
|
| Critical |
CollectorVeryHighErrorRate |
|
| Critical |
11.1.3. Vector 收集器警报
在日志记录 5.7 及更新的版本中,向量收集器生成以下警报。您可以在 OpenShift Dedicated Web 控制台中查看这些警报。
警报 | 消息 | 描述 | 重要性 |
---|---|---|---|
|
| 在前 15 分钟内,向量输出错误的数量很高,默认为 10。 | Warning |
|
| 向量报告 Prometheus 无法提取特定的 Vector 实例。 | Critical |
|
| 向量组件错误的数量很高,默认为在前 15 分钟内有 25 个。 | Critical |
|
| Fluentd 报告队列大小正在增加。 | Warning |
11.1.4. Fluentd 收集器警报
以下警报由旧的 Fluentd 日志收集器生成。您可以在 OpenShift Dedicated Web 控制台中查看这些警报。
警报 | 消息 | 描述 | 重要性 |
---|---|---|---|
|
| FluentD 输出错误数量很高,在前 15 分钟中默认超过 10。 | Warning |
|
| Fluentd 报告 Prometheus 可能无法抓取特定的 Fluentd 实例。 | Critical |
|
| Fluentd 报告队列大小正在增加。 | Warning |
|
| FluentD 输出错误的数量非常大,在之前的 15 分钟中,默认情况下超过 25 个。 | Critical |
11.1.5. Elasticsearch 警报规则
您可以在 OpenShift Dedicated web 控制台中查看这些警报规则。
警报 | 描述 | 重要性 |
---|---|---|
| 集群健康状态处于 RED 至少 2 分钟。集群不接受写操作,分片可能缺失,或者 master 节点尚未选定。 | Critical |
| 集群健康状态为 YELLOW 至少 20 分钟。某些分片副本尚未分配。 | Warning |
| 集群预期在以后的 6 小时内处于磁盘空间之外。 | Critical |
| 在下一个小时内,集群预计会在下一个小时内消耗掉所有文件描述符。 | Warning |
| 指定节点上的 JVM 堆使用率很高。 | 警报 |
| 由于可用磁盘空间较低,指定节点达到低水位线。分片无法再分配给此节点。应该考虑向节点添加更多磁盘空间。 | info |
| 由于可用磁盘空间较低,指定节点达到高水位线。若有可能,某些分片将重新分配到其他节点。确保向节点添加更多磁盘空间,或者丢弃分配给此节点的旧索引。 | Warning |
| 由于可用磁盘空间不足,指定节点达到洪水水位线。每个在这个节点上分配了分片的索引都会强制使用只读块。当磁盘使用低于高水位线时,索引块必须手动发布。 | Critical |
| 指定节点上的 JVM 堆使用率太高。 | 警报 |
| Elasticsearch 在指定节点上的写入增加。此节点可能无法跟上索引速度。 | Warning |
| 该系统在指定节点上使用的 CPU 太高。 | 警报 |
| Elasticsearch 在指定节点上使用的 CPU 太高。 | 警报 |
11.1.6. 其他资源
11.2. 自定义日志记录警报
在日志记录 5.7 及更新的版本中,用户可以配置 LokiStack 部署来生成自定义警报和记录的指标。如果要使用自定义 警报和记录规则,您必须启用 LokiStack 规则器组件。
LokiStack 基于日志的警报和记录的指标通过将 LogQL 表达式提供给 ruler 组件来触发。Loki Operator 管理了一个针对所选 LokiStack 大小优化的标尺,可以是 1x.extra-small
、1x.small
或 1x.medium
。
要提供这些表达式,您必须创建一个 AlertingRule
自定义资源 (CR),其中包含与 Prometheus 兼容的 警报规则,或包含 Prometheus 兼容的 记录规则 的 RecordingRule
CR。
管理员可以为 application
, audit
, 或 infrastructure
租户配置基于日志的警报或记录指标数据。没有管理员权限的用户可为他们有权访问的应用程序
租户配置基于日志的警报或记录指标。
应用程序、审计和基础架构警报默认发送到 openshift-monitoring
命名空间中的 OpenShift Dedicated 监控堆栈 Alertmanager,除非您禁用了本地 Alertmanager 实例。如果启用了用于监控 openshift-user-workload-monitoring
命名空间中的用户定义的项目的 Alertmanager,应用程序警报默认发送到此命名空间中的 Alertmanager。
11.2.1. 配置规则器
启用 LokiStack 规则器组件后,用户可以定义一组 LogQL 表达式,用于触发日志记录警报或记录指标。
管理员可以通过修改 LokiStack
自定义资源(CR) 来启用规则器。
先决条件
- 已安装 Red Hat OpenShift Logging Operator 和 Loki Operator。
-
您已创建了
LokiStack
CR。 - 有管理员权限。
流程
通过确保
LokiStack
CR 包含以下 spec 配置来启用规则器:apiVersion: loki.grafana.com/v1 kind: LokiStack metadata: name: <name> namespace: <namespace> spec: # ... rules: enabled: true 1 selector: matchLabels: openshift.io/<label_name>: "true" 2 namespaceSelector: matchLabels: openshift.io/<label_name>: "true" 3
11.2.2. 授权 LokiStack 规则 RBAC 权限
管理员可以允许用户通过将集群角色绑定到 username 来创建和管理自己的警报和记录规则。集群角色定义为 ClusterRole
对象,其中包含用户所需的基于角色的访问控制(RBAC)权限。
在日志记录 5.8 及更高版本中,为 LokiStack 提供了以下用于警报和记录规则的集群角色:
运行名称 | 描述 |
---|---|
|
具有此角色的用户具有管理级别访问权限来管理警报规则。此集群角色授予在 |
|
具有此角色的用户可以查看与 |
|
具有此角色的用户有权创建、更新和删除 |
|
具有此角色的用户可以读取 |
|
具有此角色的用户具有管理记录规则的管理级别访问权限。此集群角色授予在 |
|
具有此角色的用户可以查看与 |
|
具有此角色的用户有权创建、更新和删除 |
|
具有此角色的用户可以读取 |
11.2.2.1. 例子
要为用户应用集群角色,您必须将现有集群角色绑定到特定用户名。
集群角色可以是集群或命名空间范围,具体取决于您使用的角色绑定。使用 RoleBinding
对象时,如使用 oc adm policy add-role-to-user
命令时,集群角色仅适用于指定的命名空间。当使用 ClusterRoleBinding
对象时,如使用 oc adm policy add-cluster-role-to-user
命令时,集群角色会应用到集群中的所有命名空间。
以下示例命令为指定用户在集群中的特定命名空间中创建、读取、更新和删除(CRUD)权限:
特定命名空间中警报规则 CRUD 权限的集群角色绑定命令示例
$ oc adm policy add-role-to-user alertingrules.loki.grafana.com-v1-admin -n <namespace> <username>
以下命令为所有命名空间中的警报规则授予指定用户管理员权限:
管理员权限的集群角色绑定命令示例
$ oc adm policy add-cluster-role-to-user alertingrules.loki.grafana.com-v1-admin <username>
11.2.3. 使用 Loki 创建基于日志的警报规则
AlertingRule
CR 包含一组规格和 webhook 验证定义,用于声明单个 LokiStack
实例的警报规则组。另外,webhook 验证定义支持规则验证条件:
-
如果
AlertingRule
CR 包含无效的interval
周期,则它是一个无效的警报规则 -
如果
AlertingRule
CR 包含无效的for
周期,则它是一个无效的警报规则 -
如果
AlertingRule
CR 包含无效的 LogQLexpr
,则它是一个无效的警报规则。 -
如果
AlertingRule
CR 包含两个同名的组,则它是一个无效的警报规则。 - 如果以上都不适用,则警报规则被视为有效。
租户类型 | AlertingRule CR 的有效命名空间 |
---|---|
application | |
audit |
|
infrastructure |
|
先决条件
- Red Hat OpenShift Logging Operator 5.7 及更新的版本
- OpenShift Dedicated 4.13 及更新的版本
流程
创建
AlertingRule
自定义资源 (CR):基础架构 AlertingRule CR 示例
apiVersion: loki.grafana.com/v1 kind: AlertingRule metadata: name: loki-operator-alerts namespace: openshift-operators-redhat 1 labels: 2 openshift.io/<label_name>: "true" spec: tenantID: "infrastructure" 3 groups: - name: LokiOperatorHighReconciliationError rules: - alert: HighPercentageError expr: | 4 sum(rate({kubernetes_namespace_name="openshift-operators-redhat", kubernetes_pod_name=~"loki-operator-controller-manager.*"} |= "error" [1m])) by (job) / sum(rate({kubernetes_namespace_name="openshift-operators-redhat", kubernetes_pod_name=~"loki-operator-controller-manager.*"}[1m])) by (job) > 0.01 for: 10s labels: severity: critical 5 annotations: summary: High Loki Operator Reconciliation Errors 6 description: High Loki Operator Reconciliation Errors 7
- 1
- 创建此
AlertingRule
CR 的命名空间必须具有与 LokiStackspec.rules.namespaceSelector
定义匹配的标签。 - 2
labels
块必须与 LokiStackspec.rules.selector
定义匹配。- 3
infrastructure
租户的AlertingRule
CR 只在openshift-*
,kube-\*
, 或default
命名空间中被支持。- 4
kubernetes_namespace_name:
的值必须与metadata.namespace
的值匹配。- 5
- 此必需字段的值必须是
critical
、warning
或info
。 - 6
- 这个字段是必须的。
- 7
- 这个字段是必须的。
应用程序 AlertingRule CR 示例
apiVersion: loki.grafana.com/v1 kind: AlertingRule metadata: name: app-user-workload namespace: app-ns 1 labels: 2 openshift.io/<label_name>: "true" spec: tenantID: "application" groups: - name: AppUserWorkloadHighError rules: - alert: expr: | 3 sum(rate({kubernetes_namespace_name="app-ns", kubernetes_pod_name=~"podName.*"} |= "error" [1m])) by (job) for: 10s labels: severity: critical 4 annotations: summary: 5 description: 6
应用
AlertingRule
CR:$ oc apply -f <filename>.yaml
11.2.4. 其他资源
第 12 章 性能和可靠性调整
12.1. 流控制机制
如果生成日志比可以收集的速度快,很难预测或控制发送到输出的日志卷。无法预测或控制发送到输出的日志卷可能会导致日志丢失。如果有系统中断,且日志缓冲区在没有用户控制的情况下被累计,则在连接被恢复时可能会造成长时间恢复时间和高延迟。
作为管理员,您可以通过为日志记录配置流控制机制来限制日志记录率。
12.1.1. 流控制机制的好处
- 提前可以更准确地预测日志的成本和卷。
- 无容器无法生成分离其他容器的未绑定日志流量。
- 忽略低值日志可减少日志记录基础架构的负载。
- 通过分配更高的速率限制,可以首选使用高值日志。
12.1.2. 配置速率限制
每个收集器配置速率限制,这意味着日志收集器的最大速率是收集器实例的数量乘以速率限制。
因为从每个节点的文件系统收集日志,所以会在每个集群节点上部署收集器。例如,在 3 节点集群中,每个收集器的最大速率限制为每秒 10 个记录,日志集合的最大速率为每秒 30 个记录。
因为写入输出的记录的确切字节大小可能会因转换、不同的编码或其他因素而不同,因此速率限制以记录数而不是字节设置。
您可以通过两种方式在 ClusterLogForwarder
自定义资源 (CR) 中配置速率限制:
- 输出速率限制
- 将出站日志的速度限制为所选输出,例如,与输出的网络或存储容量匹配。输出速率限制控制每个输出率的聚合。
- 输入速率限制
- 限制所选容器的日志收集的每容器速率。
12.1.3. 配置日志转发器输出速率限制
您可以通过配置 ClusterLogForwarder
自定义资源 (CR) 来限制出站日志到指定输出的速度。
先决条件
- 已安装 Red Hat OpenShift Logging Operator。
- 有管理员权限。
流程
在指定输出的
ClusterLogForwarder
CR 中添加maxRecordsPerSecond
limit 值。以下示例演示了如何为名为
kafka-example
的 Kafka 代理输出配置每个收集器输出速率限制:ClusterLogForwarder
CR 示例apiVersion: logging.openshift.io/v1 kind: ClusterLogForwarder metadata: # ... spec: # ... outputs: - name: kafka-example 1 type: kafka 2 limit: maxRecordsPerSecond: 1000000 3 # ...
应用
ClusterLogForwarder
CR:示例命令
$ oc apply -f <filename>.yaml
其他资源
12.1.4. 配置日志转发器输入速率限制
您可以通过配置 ClusterLogForwarder
自定义资源(CR)来限制收集的传入日志率。您可以根据每个容器或每个命名空间设置输入限制。
先决条件
- 已安装 Red Hat OpenShift Logging Operator。
- 有管理员权限。
流程
在一个指定输出的
ClusterLogForwarder
CR 中添加maxRecordsPerSecond
limit 值。以下示例演示了如何为不同的场景配置输入速率限制:
ClusterLogForwarder
CR 示例,为具有特定标签的容器设置每个容器限制apiVersion: logging.openshift.io/v1 kind: ClusterLogForwarder metadata: # ... spec: # ... inputs: - name: <input_name> 1 application: selector: matchLabels: { example: label } 2 containerLimit: maxRecordsPerSecond: 0 3 # ...
ClusterLogForwarder
CR 示例,为所选命名空间中的容器设置每个容器限制apiVersion: logging.openshift.io/v1 kind: ClusterLogForwarder metadata: # ... spec: # ... inputs: - name: <input_name> 1 application: namespaces: [ example-ns-1, example-ns-2 ] 2 containerLimit: maxRecordsPerSecond: 10 3 - name: <input_name> application: namespaces: [ test ] containerLimit: maxRecordsPerSecond: 1000 # ...
应用
ClusterLogForwarder
CR:示例命令
$ oc apply -f <filename>.yaml
12.2. 按内容过滤日志
从集群中收集所有日志可能会产生大量数据,传输和存储这些数据可能比较昂贵。
您可以通过过滤不需要存储的低优先级数据来减少日志数据的卷。日志记录提供内容过滤器,可用于减少日志数据的卷。
内容过滤器与 input
选择器不同。input
选择器选择或忽略基于源元数据的整个日志流。内容过滤器编辑日志流,以根据记录内容删除和修改记录。
您可以使用以下方法之一减少日志数据卷:
12.2.1. 配置内容过滤器以丢弃不需要的日志记录
配置 drop
过滤器后,日志收集器会根据过滤器在转发前评估日志流。收集器丢弃与指定配置匹配的不需要的日志记录。
先决条件
- 已安装 Red Hat OpenShift Logging Operator。
- 有管理员权限。
-
您已创建了
ClusterLogForwarder
自定义资源 (CR)。
流程
将过滤器的配置添加到
ClusterLogForwarder
CR 中的filters
spec 中。以下示例演示了如何配置
ClusterLogForwarder
CR,以根据正则表达式丢弃日志记录:ClusterLogForwarder
CR 示例apiVersion: logging.openshift.io/v1 kind: ClusterLogForwarder metadata: # ... spec: filters: - name: <filter_name> type: drop 1 drop: 2 - test: 3 - field: .kubernetes.labels."foo-bar/baz" 4 matches: .+ 5 - field: .kubernetes.pod_name notMatches: "my-pod" 6 pipelines: - name: <pipeline_name> 7 filterRefs: ["<filter_name>"] # ...
- 1
- 指定过滤器的类型。
drop
过滤器丢弃与过滤器配置匹配的日志记录。 - 2
- 指定应用
drop
过滤器的配置选项。 - 3
- 指定用于评估是否丢弃日志记录的测试配置。
- 如果为测试指定的所有条件都为 true,则测试会通过,记录将被丢弃。
-
当为
drop
过滤器配置指定多个测试时,如果有任何测试通过,则会丢弃记录。 - 如果评估条件时出错,例如,被评估的日志记录中缺少该字段,则条件评估为 false。
- 4
- 指定点分隔的字段路径,它是日志记录中字段的路径。该路径可以包含字母数字字符和下划线 (
a-zA-Z0-9_
),例如.kubernetes.namespace_name
。如果网段包含此范围之外的字符,段必须放在引号内,例如,.kubernetes.labels."foo.bar-bar/baz"
。您可以在单个test
配置中包含多个字段路径,但它们都必须评估为 true 才能通过测试以及要应用的drop
过滤器。 - 5
- 指定正则表达式。如果日志记录与此正则表达式匹配,它们将被丢弃。您可以为单个
field
路径设置matches
或notMatches
条件,但不能同时设置这两个条件。 - 6
- 指定正则表达式。如果日志记录与此正则表达式不匹配,它们将被丢弃。您可以为单个
field
路径设置matches
或notMatches
条件,但不能同时设置这两个条件。 - 7
- 指定
drop
过滤器应用到的管道。
运行以下命令来应用
ClusterLogForwarder
CR:$ oc apply -f <filename>.yaml
其他示例
下面的额外示例演示了如何将 drop
过滤器配置为仅保留更高优先级的日志记录:
apiVersion: logging.openshift.io/v1 kind: ClusterLogForwarder metadata: # ... spec: filters: - name: important type: drop drop: test: - field: .message notMatches: "(?i)critical|error" - field: .level matches: "info|warning" # ...
除了在单一 test
配置中包含多个字段路径外,您还可以包含被视为 OR 检查的额外测试。在以下示例中,如果 test
配置评估为 true,则记录将被丢弃。但是,对于第二个 test
配置,两个字段 specs 都必须是 true,才能将其评估为 true :
apiVersion: logging.openshift.io/v1 kind: ClusterLogForwarder metadata: # ... spec: filters: - name: important type: drop drop: test: - field: .kubernetes.namespace_name matches: "^open" test: - field: .log_type matches: "application" - field: .kubernetes.pod_name notMatches: "my-pod" # ...
12.2.2. 配置内容过滤器以修剪日志记录
配置 prune
过滤器时,日志收集器会根据过滤器在转发前评估日志流。收集器通过删除 pod 注解等低值字段来修剪日志记录。
先决条件
- 已安装 Red Hat OpenShift Logging Operator。
- 有管理员权限。
-
您已创建了
ClusterLogForwarder
自定义资源 (CR)。
流程
将过滤器的配置添加到
ClusterLogForwarder
CR 中的prune
spec 中。以下示例演示了如何配置
ClusterLogForwarder
CR,以根据字段路径修剪日志记录:重要如果指定了这两个信息,则首先根据
notIn
数组修剪记录,这优先于in
数组。在使用notIn
数组修剪记录后,会使用in
数组来修剪这些记录。ClusterLogForwarder
CR 示例apiVersion: logging.openshift.io/v1 kind: ClusterLogForwarder metadata: # ... spec: filters: - name: <filter_name> type: prune 1 prune: 2 in: [.kubernetes.annotations, .kubernetes.namespace_id] 3 notIn: [.kubernetes,.log_type,.message,."@timestamp"] 4 pipelines: - name: <pipeline_name> 5 filterRefs: ["<filter_name>"] # ...
- 1
- 指定过滤器的类型。
prune
过滤器根据配置的字段修剪日志记录。 - 2
- 指定应用
prune
过滤器的配置选项。in
和notIn
字段被指定为点分隔字段路径的数组,它们是日志记录中字段的路径。这些路径可以包含字母数字字符和下划线 (a-zA-Z0-9_
),例如.kubernetes.namespace_name
。如果网段包含此范围之外的字符,段必须放在引号内,例如,.kubernetes.labels."foo.bar-bar/baz"
。 - 3
- 可选:此阵列中指定的任何字段都会从日志记录中删除。
- 4
- 可选:没有在此阵列中指定的任何字段都会从日志记录中删除。
- 5
- 指定
prune
过滤器应用到的管道。
运行以下命令来应用
ClusterLogForwarder
CR:$ oc apply -f <filename>.yaml
12.2.3. 其他资源
12.3. 按元数据过滤日志
您可以使用 input
选择器过滤 ClusterLogForwarder
CR 中的日志,以根据元数据选择或忽略整个日志流。作为管理员或开发人员,您可以包含或排除日志记录,以减少收集器上的内存和 CPU 负载。
只有在日志记录部署中设置了 Vector 收集器时,才能使用此功能。
input
spec 过滤与内容过滤不同。input
选择器选择或忽略基于源元数据的整个日志流。内容过滤器编辑日志流,以根据记录内容删除和修改记录。
12.3.1. 通过包含或排除命名空间或容器名称,在输入中过滤应用程序日志
您可以使用 input
选择器根据命名空间和容器名称包含或排除应用程序日志。
先决条件
- 已安装 Red Hat OpenShift Logging Operator。
- 有管理员权限。
-
您已创建了
ClusterLogForwarder
自定义资源 (CR)。
流程
添加配置,以在
ClusterLogForwarder
CR 中包含或排除命名空间和容器名称。以下示例演示了如何配置
ClusterLogForwarder
CR 以包含或排除命名空间和容器名称:ClusterLogForwarder
CR 示例apiVersion: "logging.openshift.io/v1" kind: ClusterLogForwarder # ... spec: inputs: - name: mylogs application: includes: - namespace: "my-project" 1 container: "my-container" 2 excludes: - container: "other-container*" 3 namespace: "other-namespace" 4 # ...
运行以下命令来应用
ClusterLogForwarder
CR:$ oc apply -f <filename>.yaml
excludes
选项优先于 includes
。
12.3.2. 通过包括标签表达式或匹配标签键和值在输入中过滤应用程序日志
您可以使用 input
选择器,根据标签表达式或匹配的标签键及其值包含应用程序日志。
先决条件
- 已安装 Red Hat OpenShift Logging Operator。
- 有管理员权限。
-
您已创建了
ClusterLogForwarder
自定义资源 (CR)。
流程
将过滤器的配置添加到
ClusterLogForwarder
CR 中的input
spec 中。以下示例演示了如何配置
ClusterLogForwarder
CR,使其包含基于标签表达式或匹配的标签键/值的日志:ClusterLogForwarder
CR 示例apiVersion: "logging.openshift.io/v1" kind: ClusterLogForwarder # ... spec: inputs: - name: mylogs application: selector: matchExpressions: - key: env 1 operator: In 2 values: [“prod”, “qa”] 3 - key: zone operator: NotIn values: [“east”, “west”] matchLabels: 4 app: one name: app1 # ...
运行以下命令来应用
ClusterLogForwarder
CR:$ oc apply -f <filename>.yaml
12.3.3. 根据源过滤审计和基础架构日志输入
您可以使用 input
选择器定义 audit
和 infrastructure
源列表,以收集日志。
先决条件
- 已安装 Red Hat OpenShift Logging Operator。
- 有管理员权限。
-
您已创建了
ClusterLogForwarder
自定义资源 (CR)。
流程
添加配置,以在
ClusterLogForwarder
CR 中定义audit
和infrastructure
源。以下示例演示了如何配置
ClusterLogForwarder
CR 以定义aduit
和infrastructure
源:ClusterLogForwarder
CR 示例apiVersion: "logging.openshift.io/v1" kind: ClusterLogForwarder # ... spec: inputs: - name: mylogs1 infrastructure: sources: 1 - node - name: mylogs2 audit: sources: 2 - kubeAPI - openshiftAPI - ovn # ...
运行以下命令来应用
ClusterLogForwarder
CR:$ oc apply -f <filename>.yaml
第 13 章 调度资源
13.1. 使用节点选择器移动日志记录资源
节点选择器指定一个键/值对映射,该映射使用 pod 中指定的自定义标签和选择器定义。
要使 pod 有资格在节点上运行,pod 必须具有与节点上标签相同的键值节点选择器。
13.1.1. 关于节点选择器
您可以使用节点上的 pod 和标签上的节点选择器来控制 pod 的调度位置。使用节点选择器时,OpenShift Dedicated 会将 pod 调度到包含匹配标签的节点。
您可以使用节点选择器将特定的 pod 放置到特定的节点上,集群范围节点选择器将新 pod 放置到集群中的任何特定节点上,以及项目节点选择器,将新 pod 放置到特定的节点上。
例如,作为集群管理员,您可以创建一个基础架构,应用程序开发人员可以通过在创建的每个 pod 中包括节点选择器,将 pod 部署到最接近其地理位置的节点。在本例中,集群由五个数据中心组成,分布在两个区域。在美国,将节点标记为 us-east
、us-central
或 us-west
。在亚太地区(APAC),将节点标记为 apac-east
或 apac-west
。开发人员可在其创建的 pod 中添加节点选择器,以确保 pod 调度到这些节点上。
如果 Pod
对象包含节点选择器,但没有节点具有匹配的标签,则不会调度 pod。
如果您在同一 pod 配置中使用节点选择器和节点关联性,则以下规则控制 pod 放置到节点上:
-
如果同时配置了
nodeSelector
和nodeAffinity
,则必须满足这两个条件时 pod 才能调度到候选节点。 -
如果您指定了多个与
nodeAffinity
类型关联的nodeSelectorTerms
,那么其中一个nodeSelectorTerms
满足时 pod 就能调度到节点上。 -
如果您指定了多个与
nodeSelectorTerms
关联的matchExpressions
,那么只有所有matchExpressions
都满足时 pod 才能调度到节点上。
- 特定 pod 和节点上的节点选择器
您可以使用节点选择器和标签控制特定 pod 调度到哪些节点上。
要使用节点选择器和标签,首先标记节点以避免 pod 被取消调度,然后将节点选择器添加到 pod。
注意您不能直接将节点选择器添加到现有调度的 pod 中。您必须标记控制 pod 的对象,如部署配置。
例如,以下
Node
对象具有region: east
标签:带有标识的
Node
对象示例kind: Node apiVersion: v1 metadata: name: ip-10-0-131-14.ec2.internal selfLink: /api/v1/nodes/ip-10-0-131-14.ec2.internal uid: 7bc2580a-8b8e-11e9-8e01-021ab4174c74 resourceVersion: '478704' creationTimestamp: '2019-06-10T14:46:08Z' labels: kubernetes.io/os: linux topology.kubernetes.io/zone: us-east-1a node.openshift.io/os_version: '4.5' node-role.kubernetes.io/worker: '' topology.kubernetes.io/region: us-east-1 node.openshift.io/os_id: rhcos node.kubernetes.io/instance-type: m4.large kubernetes.io/hostname: ip-10-0-131-14 kubernetes.io/arch: amd64 region: east 1 type: user-node #...
- 1
- 与 pod 节点选择器匹配的标签。
pod 具有
type: user-node,region: east
节点选择器:使用节点选择器的
Pod
对象示例apiVersion: v1 kind: Pod metadata: name: s1 #... spec: nodeSelector: 1 region: east type: user-node #...
- 1
- 与节点标签匹配的节点选择器。节点必须具有每个节点选择器的标签。
使用示例 pod 规格创建 pod 时,它可以调度到示例节点上。
- 默认集群范围节点选择器
使用默认集群范围节点选择器时,如果您在集群中创建 pod, OpenShift Dedicated 会将默认节点选择器添加到 pod,并将该 pod 调度到具有匹配标签的节点。
例如,以下
Scheduler
对象具有默认的集群范围的region=east
和type=user-node
节点选择器:Scheduler Operator 自定义资源示例
apiVersion: config.openshift.io/v1 kind: Scheduler metadata: name: cluster #... spec: defaultNodeSelector: type=user-node,region=east #...
集群中的节点具有
type=user-node,region=east
标签:Node
对象示例apiVersion: v1 kind: Node metadata: name: ci-ln-qg1il3k-f76d1-hlmhl-worker-b-df2s4 #... labels: region: east type: user-node #...
使用节点选择器的
Pod
对象示例apiVersion: v1 kind: Pod metadata: name: s1 #... spec: nodeSelector: region: east #...
当您使用示例集群中的 pod spec 创建 pod 时,该 pod 会使用集群范围节点选择器创建,并调度到标记的节点:
在标记的节点上带有 pod 的 pod 列表示例
NAME READY STATUS RESTARTS AGE IP NODE NOMINATED NODE READINESS GATES pod-s1 1/1 Running 0 20s 10.131.2.6 ci-ln-qg1il3k-f76d1-hlmhl-worker-b-df2s4 <none> <none>
注意如果您在其中创建 pod 的项目具有项目节点选择器,则该选择器优先于集群范围节点选择器。如果 pod 没有项目节点选择器,则 pod 不会被创建或调度。
- 项目节点选择器
使用项目节点选择器时,如果您在此项目中创建 pod, OpenShift Dedicated 会将节点选择器添加到 pod,并将 pod 调度到具有匹配标签的节点。如果存在集群范围默认节点选择器,则以项目节点选择器为准。
例如,以下项目具有
region=east
节点选择器:Namespace
对象示例apiVersion: v1 kind: Namespace metadata: name: east-region annotations: openshift.io/node-selector: "region=east" #...
以下节点具有
type=user-node,region=east
标签:Node
对象示例apiVersion: v1 kind: Node metadata: name: ci-ln-qg1il3k-f76d1-hlmhl-worker-b-df2s4 #... labels: region: east type: user-node #...
当您使用本例项目中的示例 pod 规格创建 pod 时,pod 会使用项目节点选择器创建,并调度到标记的节点:
Pod
对象示例apiVersion: v1 kind: Pod metadata: namespace: east-region #... spec: nodeSelector: region: east type: user-node #...
在标记的节点上带有 pod 的 pod 列表示例
NAME READY STATUS RESTARTS AGE IP NODE NOMINATED NODE READINESS GATES pod-s1 1/1 Running 0 20s 10.131.2.6 ci-ln-qg1il3k-f76d1-hlmhl-worker-b-df2s4 <none> <none>
如果 pod 包含不同的节点选择器,则项目中的 pod 不会被创建或调度。例如,如果您将以下 Pod 部署到示例项目中,则不会创建它:
带有无效节点选择器的
Pod
对象示例apiVersion: v1 kind: Pod metadata: name: west-region #... spec: nodeSelector: region: west #...
13.1.2. Loki pod 放置
您可以通过在 pod 上使用容忍度或节点选择器来控制 Loki pod 在哪些节点上运行,并防止其他工作负载使用这些节点。
您可以使用 LokiStack 自定义资源 (CR) 将容限应用到日志存储 pod,并将污点应用到具有节点规格的节点。节点上的污点是一个 key:value
对,它指示节点排斥所有不允许污点的 pod。通过使用不在其他 pod 上的特定 key:value
对,可确保只有日志存储 pod 能够在该节点上运行。
带有节点选择器的 LokiStack 示例
apiVersion: loki.grafana.com/v1 kind: LokiStack metadata: name: logging-loki namespace: openshift-logging spec: # ... template: compactor: 1 nodeSelector: node-role.kubernetes.io/infra: "" 2 distributor: nodeSelector: node-role.kubernetes.io/infra: "" gateway: nodeSelector: node-role.kubernetes.io/infra: "" indexGateway: nodeSelector: node-role.kubernetes.io/infra: "" ingester: nodeSelector: node-role.kubernetes.io/infra: "" querier: nodeSelector: node-role.kubernetes.io/infra: "" queryFrontend: nodeSelector: node-role.kubernetes.io/infra: "" ruler: nodeSelector: node-role.kubernetes.io/infra: "" # ...
在上例配置中,所有 Loki pod 都移到包含 node-role.kubernetes.io/infra: ""
标签的节点。
带有节点选择器和容限的 LokiStack CR 示例
apiVersion: loki.grafana.com/v1 kind: LokiStack metadata: name: logging-loki namespace: openshift-logging spec: # ... template: compactor: nodeSelector: node-role.kubernetes.io/infra: "" tolerations: - effect: NoSchedule key: node-role.kubernetes.io/infra value: reserved - effect: NoExecute key: node-role.kubernetes.io/infra value: reserved distributor: nodeSelector: node-role.kubernetes.io/infra: "" tolerations: - effect: NoSchedule key: node-role.kubernetes.io/infra value: reserved - effect: NoExecute key: node-role.kubernetes.io/infra value: reserved nodeSelector: node-role.kubernetes.io/infra: "" tolerations: - effect: NoSchedule key: node-role.kubernetes.io/infra value: reserved - effect: NoExecute key: node-role.kubernetes.io/infra value: reserved indexGateway: nodeSelector: node-role.kubernetes.io/infra: "" tolerations: - effect: NoSchedule key: node-role.kubernetes.io/infra value: reserved - effect: NoExecute key: node-role.kubernetes.io/infra value: reserved ingester: nodeSelector: node-role.kubernetes.io/infra: "" tolerations: - effect: NoSchedule key: node-role.kubernetes.io/infra value: reserved - effect: NoExecute key: node-role.kubernetes.io/infra value: reserved querier: nodeSelector: node-role.kubernetes.io/infra: "" tolerations: - effect: NoSchedule key: node-role.kubernetes.io/infra value: reserved - effect: NoExecute key: node-role.kubernetes.io/infra value: reserved queryFrontend: nodeSelector: node-role.kubernetes.io/infra: "" tolerations: - effect: NoSchedule key: node-role.kubernetes.io/infra value: reserved - effect: NoExecute key: node-role.kubernetes.io/infra value: reserved ruler: nodeSelector: node-role.kubernetes.io/infra: "" tolerations: - effect: NoSchedule key: node-role.kubernetes.io/infra value: reserved - effect: NoExecute key: node-role.kubernetes.io/infra value: reserved gateway: nodeSelector: node-role.kubernetes.io/infra: "" tolerations: - effect: NoSchedule key: node-role.kubernetes.io/infra value: reserved - effect: NoExecute key: node-role.kubernetes.io/infra value: reserved # ...
要配置 LokiStack (CR) 的 nodeSelector
和 tolerations
字段,您可以使用 oc explain
命令查看特定资源的描述和字段:
$ oc explain lokistack.spec.template
输出示例
KIND: LokiStack VERSION: loki.grafana.com/v1 RESOURCE: template <Object> DESCRIPTION: Template defines the resource/limits/tolerations/nodeselectors per component FIELDS: compactor <Object> Compactor defines the compaction component spec. distributor <Object> Distributor defines the distributor component spec. ...
如需更多信息,您可以添加一个特定字段:
$ oc explain lokistack.spec.template.compactor
输出示例
KIND: LokiStack VERSION: loki.grafana.com/v1 RESOURCE: compactor <Object> DESCRIPTION: Compactor defines the compaction component spec. FIELDS: nodeSelector <map[string]string> NodeSelector defines the labels required by a node to schedule the component onto it. ...
13.1.3. 配置日志记录收集器的资源和调度
管理员可以通过创建位于同一命名空间中的 ClusterLogging
自定义资源(CR)来修改收集器的资源或调度,其名称与它支持的 ClusterLogForwarder
CR 的名称相同。
在部署中使用多个日志转发器时,ClusterClusterLogging
CR 的适用小节是 managementState
和 collection
。所有其他小节将被忽略。
先决条件
- 有管理员权限。
- 已安装 Red Hat OpenShift Logging Operator 版本 5.8 或更新版本。
-
您已创建了
ClusterLogForwarder
CR。
流程
创建支持现有
ClusterLogForwarder
CR 的ClusterLogging
CR:ClusterLogging
CR YAML 示例apiVersion: logging.openshift.io/v1 kind: ClusterLogging metadata: name: <name> 1 namespace: <namespace> 2 spec: managementState: "Managed" collection: type: "vector" tolerations: - key: "logging" operator: "Exists" effect: "NoExecute" tolerationSeconds: 6000 resources: limits: memory: 1Gi requests: cpu: 100m memory: 1Gi nodeSelector: collector: needed # ...
运行以下命令来应用
ClusterLogging
CR:$ oc apply -f <filename>.yaml
13.1.4. 查看日志记录收集器 Pod
您可以查看日志记录收集器 Pod 及其运行的对应节点。
流程
在项目中运行以下命令查看日志记录收集器 Pod 及其详情:
$ oc get pods --selector component=collector -o wide -n <project_name>
输出示例
NAME READY STATUS RESTARTS AGE IP NODE NOMINATED NODE READINESS GATES collector-8d69v 1/1 Running 0 134m 10.130.2.30 master1.example.com <none> <none> collector-bd225 1/1 Running 0 134m 10.131.1.11 master2.example.com <none> <none> collector-cvrzs 1/1 Running 0 134m 10.130.0.21 master3.example.com <none> <none> collector-gpqg2 1/1 Running 0 134m 10.128.2.27 worker1.example.com <none> <none> collector-l9j7j 1/1 Running 0 134m 10.129.2.31 worker2.example.com <none> <none>
13.1.5. 其他资源
13.2. 使用污点和容限来控制日志记录 pod 放置
通过污点和容限,节点可以控制哪些 pod 应该(或不应该)调度到节点上。
13.2.1. 了解污点和容限
通过使用污点(taint),节点可以拒绝调度 pod,除非 pod 具有匹配的容限(toleration)。
您可以通过节点规格(NodeSpec
)将污点应用到节点
,并通过 Pod
规格(PodSpec
)将容限应用到 pod。当您应用污点时,调度程序无法将 pod 放置到该节点上,除非 pod 可以容限该污点。
节点规格中的污点示例
apiVersion: v1 kind: Node metadata: name: my-node #... spec: taints: - effect: NoExecute key: key1 value: value1 #...
Pod
规格中的容限示例
apiVersion: v1 kind: Pod metadata: name: my-pod #... spec: tolerations: - key: "key1" operator: "Equal" value: "value1" effect: "NoExecute" tolerationSeconds: 3600 #...
污点与容限由 key、value 和 effect 组成。
参数 | 描述 | ||||||
---|---|---|---|---|---|---|---|
|
| ||||||
|
| ||||||
| effect 的值包括:
| ||||||
|
|
如果向 control plane 节点添加了一个
NoSchedule
污点,节点必须具有node-role.kubernetes.io/master=:NoSchedule
污点,这默认会添加。例如:
apiVersion: v1 kind: Node metadata: annotations: machine.openshift.io/machine: openshift-machine-api/ci-ln-62s7gtb-f76d1-v8jxv-master-0 machineconfiguration.openshift.io/currentConfig: rendered-master-cdc1ab7da414629332cc4c3926e6e59c name: my-node #... spec: taints: - effect: NoSchedule key: node-role.kubernetes.io/master #...
容限与污点匹配:
如果
operator
参数设为Equal
:-
key
参数相同; -
value
参数相同; -
effect
参数相同。
-
如果
operator
参数设为Exists
:-
key
参数相同; -
effect
参数相同。
-
OpenShift Dedicated 中内置了以下污点:
-
node.kubernetes.io/not-ready
:节点未就绪。这与节点状况Ready=False
对应。 -
node.kubernetes.io/unreachable
:节点无法从节点控制器访问。这与节点状况Ready=Unknown
对应。 -
node.kubernetes.io/memory-pressure
:节点存在内存压力问题。这与节点状况MemoryPressure=True
对应。 -
node.kubernetes.io/disk-pressure
:节点存在磁盘压力问题。这与节点状况DiskPressure=True
对应。 -
node.kubernetes.io/network-unavailable
:节点网络不可用。 -
node.kubernetes.io/unschedulable
:节点不可调度。 -
node.cloudprovider.kubernetes.io/uninitialized
:当节点控制器通过外部云提供商启动时,在节点上设置这个污点来将其标记为不可用。在云控制器管理器中的某个控制器初始化这个节点后,kubelet 会移除此污点。 node.kubernetes.io/pid-pressure
:节点具有 pid 压力。这与节点状况PIDPressure=True
对应。重要OpenShift Dedicated 不设置默认 pid.available
evictionHard
。
13.2.2. Loki pod 放置
您可以通过在 pod 上使用容忍度或节点选择器来控制 Loki pod 在哪些节点上运行,并防止其他工作负载使用这些节点。
您可以使用 LokiStack 自定义资源 (CR) 将容限应用到日志存储 pod,并将污点应用到具有节点规格的节点。节点上的污点是一个 key:value
对,它指示节点排斥所有不允许污点的 pod。通过使用不在其他 pod 上的特定 key:value
对,可确保只有日志存储 pod 能够在该节点上运行。
带有节点选择器的 LokiStack 示例
apiVersion: loki.grafana.com/v1 kind: LokiStack metadata: name: logging-loki namespace: openshift-logging spec: # ... template: compactor: 1 nodeSelector: node-role.kubernetes.io/infra: "" 2 distributor: nodeSelector: node-role.kubernetes.io/infra: "" gateway: nodeSelector: node-role.kubernetes.io/infra: "" indexGateway: nodeSelector: node-role.kubernetes.io/infra: "" ingester: nodeSelector: node-role.kubernetes.io/infra: "" querier: nodeSelector: node-role.kubernetes.io/infra: "" queryFrontend: nodeSelector: node-role.kubernetes.io/infra: "" ruler: nodeSelector: node-role.kubernetes.io/infra: "" # ...
在上例配置中,所有 Loki pod 都移到包含 node-role.kubernetes.io/infra: ""
标签的节点。
带有节点选择器和容限的 LokiStack CR 示例
apiVersion: loki.grafana.com/v1 kind: LokiStack metadata: name: logging-loki namespace: openshift-logging spec: # ... template: compactor: nodeSelector: node-role.kubernetes.io/infra: "" tolerations: - effect: NoSchedule key: node-role.kubernetes.io/infra value: reserved - effect: NoExecute key: node-role.kubernetes.io/infra value: reserved distributor: nodeSelector: node-role.kubernetes.io/infra: "" tolerations: - effect: NoSchedule key: node-role.kubernetes.io/infra value: reserved - effect: NoExecute key: node-role.kubernetes.io/infra value: reserved nodeSelector: node-role.kubernetes.io/infra: "" tolerations: - effect: NoSchedule key: node-role.kubernetes.io/infra value: reserved - effect: NoExecute key: node-role.kubernetes.io/infra value: reserved indexGateway: nodeSelector: node-role.kubernetes.io/infra: "" tolerations: - effect: NoSchedule key: node-role.kubernetes.io/infra value: reserved - effect: NoExecute key: node-role.kubernetes.io/infra value: reserved ingester: nodeSelector: node-role.kubernetes.io/infra: "" tolerations: - effect: NoSchedule key: node-role.kubernetes.io/infra value: reserved - effect: NoExecute key: node-role.kubernetes.io/infra value: reserved querier: nodeSelector: node-role.kubernetes.io/infra: "" tolerations: - effect: NoSchedule key: node-role.kubernetes.io/infra value: reserved - effect: NoExecute key: node-role.kubernetes.io/infra value: reserved queryFrontend: nodeSelector: node-role.kubernetes.io/infra: "" tolerations: - effect: NoSchedule key: node-role.kubernetes.io/infra value: reserved - effect: NoExecute key: node-role.kubernetes.io/infra value: reserved ruler: nodeSelector: node-role.kubernetes.io/infra: "" tolerations: - effect: NoSchedule key: node-role.kubernetes.io/infra value: reserved - effect: NoExecute key: node-role.kubernetes.io/infra value: reserved gateway: nodeSelector: node-role.kubernetes.io/infra: "" tolerations: - effect: NoSchedule key: node-role.kubernetes.io/infra value: reserved - effect: NoExecute key: node-role.kubernetes.io/infra value: reserved # ...
要配置 LokiStack (CR) 的 nodeSelector
和 tolerations
字段,您可以使用 oc explain
命令查看特定资源的描述和字段:
$ oc explain lokistack.spec.template
输出示例
KIND: LokiStack VERSION: loki.grafana.com/v1 RESOURCE: template <Object> DESCRIPTION: Template defines the resource/limits/tolerations/nodeselectors per component FIELDS: compactor <Object> Compactor defines the compaction component spec. distributor <Object> Distributor defines the distributor component spec. ...
如需更多信息,您可以添加一个特定字段:
$ oc explain lokistack.spec.template.compactor
输出示例
KIND: LokiStack VERSION: loki.grafana.com/v1 RESOURCE: compactor <Object> DESCRIPTION: Compactor defines the compaction component spec. FIELDS: nodeSelector <map[string]string> NodeSelector defines the labels required by a node to schedule the component onto it. ...
13.2.3. 使用容忍度来控制日志收集器 pod 放置
默认情况下,日志收集器 pod 具有以下 tolerations
配置:
apiVersion: v1 kind: Pod metadata: name: collector-example namespace: openshift-logging spec: # ... collection: type: vector tolerations: - effect: NoSchedule key: node-role.kubernetes.io/master operator: Exists - effect: NoSchedule key: node.kubernetes.io/disk-pressure operator: Exists - effect: NoExecute key: node.kubernetes.io/not-ready operator: Exists - effect: NoExecute key: node.kubernetes.io/unreachable operator: Exists - effect: NoSchedule key: node.kubernetes.io/memory-pressure operator: Exists - effect: NoSchedule key: node.kubernetes.io/pid-pressure operator: Exists - effect: NoSchedule key: node.kubernetes.io/unschedulable operator: Exists # ...
先决条件
-
已安装 Red Hat OpenShift Logging Operator 和 OpenShift CLI (
oc
)。
流程
运行以下命令,将污点添加到要在其上调度日志记录收集器 pod 的节点:
$ oc adm taint nodes <node_name> <key>=<value>:<effect>
示例命令
$ oc adm taint nodes node1 collector=node:NoExecute
本例在
node1
上放置一个键为collector
且值为node
的污点,污点效果是NoExecute
。您必须使用NoExecute
污点设置。NoExecute
仅调度与污点匹配的 pod,并删除不匹配的现有 pod。编辑
ClusterLogging
自定义资源(CR)的collection
小节,以配置日志记录收集器 Pod 的容忍度:apiVersion: logging.openshift.io/v1 kind: ClusterLogging metadata: # ... spec: # ... collection: type: vector tolerations: - key: collector 1 operator: Exists 2 effect: NoExecute 3 tolerationSeconds: 6000 4 resources: limits: memory: 2Gi requests: cpu: 100m memory: 1Gi # ...
此容忍度与 oc adm taint
命令创建的污点匹配。具有此容忍度的 pod 可以调度到 node1
上。
13.2.4. 配置日志记录收集器的资源和调度
管理员可以通过创建位于同一命名空间中的 ClusterLogging
自定义资源(CR)来修改收集器的资源或调度,其名称与它支持的 ClusterLogForwarder
CR 的名称相同。
在部署中使用多个日志转发器时,ClusterClusterLogging
CR 的适用小节是 managementState
和 collection
。所有其他小节将被忽略。
先决条件
- 有管理员权限。
- 已安装 Red Hat OpenShift Logging Operator 版本 5.8 或更新版本。
-
您已创建了
ClusterLogForwarder
CR。
流程
创建支持现有
ClusterLogForwarder
CR 的ClusterLogging
CR:ClusterLogging
CR YAML 示例apiVersion: logging.openshift.io/v1 kind: ClusterLogging metadata: name: <name> 1 namespace: <namespace> 2 spec: managementState: "Managed" collection: type: "vector" tolerations: - key: "logging" operator: "Exists" effect: "NoExecute" tolerationSeconds: 6000 resources: limits: memory: 1Gi requests: cpu: 100m memory: 1Gi nodeSelector: collector: needed # ...
运行以下命令来应用
ClusterLogging
CR:$ oc apply -f <filename>.yaml
13.2.5. 查看日志记录收集器 Pod
您可以查看日志记录收集器 Pod 及其运行的对应节点。
流程
在项目中运行以下命令查看日志记录收集器 Pod 及其详情:
$ oc get pods --selector component=collector -o wide -n <project_name>
输出示例
NAME READY STATUS RESTARTS AGE IP NODE NOMINATED NODE READINESS GATES collector-8d69v 1/1 Running 0 134m 10.130.2.30 master1.example.com <none> <none> collector-bd225 1/1 Running 0 134m 10.131.1.11 master2.example.com <none> <none> collector-cvrzs 1/1 Running 0 134m 10.130.0.21 master3.example.com <none> <none> collector-gpqg2 1/1 Running 0 134m 10.128.2.27 worker1.example.com <none> <none> collector-l9j7j 1/1 Running 0 134m 10.129.2.31 worker2.example.com <none> <none>
13.2.6. 其他资源
第 14 章 卸载日志记录
您可以通过删除安装的 Operator 和相关自定义资源 (CR) 从 OpenShift Dedicated 集群中删除 logging。
14.1. 卸载日志记录
您可以通过删除 Red Hat OpenShift Logging Operator 和 ClusterLogging
自定义资源(CR)来停止聚合日志。
先决条件
- 有管理员权限。
- 您可以访问 OpenShift Dedicated Web 控制台的 Administrator 视角。
流程
- 进入 Administration → Custom Resource Definitions 页面,然后点 ClusterLogging。
- 在 Custom Resource Definition Details 页面中点 Instances。
- 点实例旁的 Options 菜单 ,然后选择 Delete ClusterLogging。
- 进入到 Administration → Custom Resource Definitions 页面。
点 ClusterLogging 旁边的 Options 菜单 ,然后选择 Delete Custom Resource Definition。
警告删除
ClusterLogging
CR 不会删除持久性卷声明(PVC)。要删除剩余的 PVC、持久性卷(PV)和相关数据,您必须执行进一步操作。释放或删除 PVC 可能会导致 PV 删除并导致数据丢失。-
如果您已创建了
ClusterLogForwarder
CR,点 ClusterLogForwarder 旁边的选项菜单 ,然后点 Delete Custom Resource Definition。 - 进入 Operators → Installed Operators 页面。
- 点 Red Hat OpenShift Logging Operator 旁边的选项菜单 ,然后点 Uninstall Operator。
可选:删除
openshift-logging
项目。警告删除
openshift-logging
项目会删除该命名空间中的所有内容,包括任何持久性卷声明 (PVC)。如果要保留日志记录数据,请不要删除openshift-logging
项目。- 进入 Home → Projects 页面。
- 点 openshift-logging 项目旁边的选项菜单 ,然后点 Delete Project。
-
通过在对话框中输入
openshift-logging
并点 Delete 来确认删除。
14.2. 删除日志记录 PVC
要保留持久性卷声明 (PVC) 以与其他 pod 重复使用,保留标签或 PVC 名称,以回收 PVC。如果您不想保留 PVC,可以删除它们。如果要恢复存储空间,您还可以删除持久性卷 (PV)。
先决条件
- 有管理员权限。
- 您可以访问 OpenShift Dedicated Web 控制台的 Administrator 视角。
流程
- 进入 Storage → Persistent Volume Claims 页面。
- 点每个 PVC 旁边的选项菜单 ,然后选择 Delete Persistent Volume Claim。
14.3. 卸载 Loki
先决条件
- 有管理员权限。
- 您可以访问 OpenShift Dedicated Web 控制台的 Administrator 视角。
-
如果您还没有删除 Red Hat OpenShift Logging Operator 和相关资源,已从
ClusterLogging
自定义资源中删除了对 LokiStack 的引用。
流程
- 进入 Administration → Custom Resource Definitions 页面,然后点 LokiStack。
- 在 Custom Resource Definition Details 页面中点 Instances。
- 点实例旁的选项菜单 ,然后点 Delete LokiStack。
- 进入到 Administration → Custom Resource Definitions 页面。
- 点 LokiStack 旁边的选项菜单 ,然后选择 Delete Custom Resource Definition。
- 删除对象存储 secret。
- 进入 Operators → Installed Operators 页面。
- 点 Loki Operator 旁边的选项菜单 ,然后点 Uninstall Operator。
可选:删除
openshift-operators-redhat
项目。重要如果在这个命名空间中安装了其他全局 Operator,请不要删除
openshift-operators-redhat
项目。- 进入 Home → Projects 页面。
- 点 openshift-operators-redhat 项目旁的选项菜单 ,然后点 Delete Project。
-
通过在对话框中输入
openshift-operators-redhat
并点 Delete 来确认删除。
14.4. 卸载 Elasticsearch
先决条件
- 有管理员权限。
- 您可以访问 OpenShift Dedicated Web 控制台的 Administrator 视角。
-
如果您还没有删除 Red Hat OpenShift Logging Operator 和相关资源,则必须从
ClusterLogging
自定义资源中删除对 Elasticsearch 的引用。
流程
- 进入 Administration → Custom Resource Definitions 页面,然后点 Elasticsearch。
- 在 Custom Resource Definition Details 页面中点 Instances。
- 点实例旁的选项菜单 ,然后点 Delete Elasticsearch。
- 进入到 Administration → Custom Resource Definitions 页面。
- 点 Elasticsearch 旁边的 Options 菜单 并选择 Delete Custom Resource Definition。
- 删除对象存储 secret。
- 进入 Operators → Installed Operators 页面。
- 点 OpenShift Elasticsearch Operator 旁边的选项菜单 ,然后点 Uninstall Operator。
可选:删除
openshift-operators-redhat
项目。重要如果在这个命名空间中安装了其他全局 Operator,请不要删除
openshift-operators-redhat
项目。- 进入 Home → Projects 页面。
- 点 openshift-operators-redhat 项目旁的选项菜单 ,然后点 Delete Project。
-
通过在对话框中输入
openshift-operators-redhat
并点 Delete 来确认删除。
14.5. 使用 CLI 从集群中删除 Operator
集群管理员可以使用 CLI 从所选命名空间中删除已安装的 Operator。
先决条件
-
您可以使用具有
dedicated-admin
权限的账户访问 OpenShift Dedicated 集群。 -
OpenShift CLI (
oc
)安装在您的工作站上。
流程
确保在
currentCSV
字段中标识了订阅 Operator 的最新版本(如serverless-operator
)。$ oc get subscription.operators.coreos.com serverless-operator -n openshift-serverless -o yaml | grep currentCSV
输出示例
currentCSV: serverless-operator.v1.28.0
删除订阅(如
serverless-operator
):$ oc delete subscription.operators.coreos.com serverless-operator -n openshift-serverless
输出示例
subscription.operators.coreos.com "serverless-operator" deleted
使用上一步中的
currentCSV
值来删除目标命名空间中相应 Operator 的 CSV:$ oc delete clusterserviceversion serverless-operator.v1.28.0 -n openshift-serverless
输出示例
clusterserviceversion.operators.coreos.com "serverless-operator.v1.28.0" deleted
其他资源
第 15 章 日志记录字段
日志导出的日志记录中可以包括以下字段。虽然日志记录通常格式为 JSON 对象,但相同的数据模型可以应用到其他编码。
要从 Elasticsearch 和 Kibana 搜索这些字段,在搜索时使用完整的点号字段名称。例如,使用 Elasticsearch /_search URL,若要查找 Kubernetes pod 名称,请使用 /_search/q=kubernetes.pod_name:name-of-my-pod
。
顶级字段可以出现在每条记录中。
message
原始日志条目文本 UTF-8 编码。如果存在非空的 structured
字段,则此字段可能不存在或为空。请参见关于结构化
的描述,了解更多。
数据类型 | text |
示例值 |
|
结构化
原始日志条目作为结构化对象.如果转发器配置为解析结构化 JSON 日志,则可能存在此字段。如果原始日志条目是有效的结构化日志,此字段将包含等同的 JSON 结构。否则此字段为空或不存在,message
字段将包含原始日志消息。structured
字段可以包含日志消息中包含的任何子字段,此处没有定义任何限制。
数据类型 | group |
示例值 | map[message:starting fluentd worker pid=21631 ppid=21618 worker=0 pid:21631 ppid:21618 worker:0] |
@timestamp
一个 UTC 值,用于标记日志有效负载创建的时间,如果创建时间未知,则标记首次收集日志有效负载的时间。"@"前缀表示为特定用途保留的字段。默认情况下,大多数工具都通过 ElasticSearch 来查找 "@timestamp"。
数据类型 | date |
示例值 |
|
主机名
此日志消息的来源主机的名称。在 Kubernetes 集群中,这与 kubernetes.host
相同。
数据类型 | 关键字 |
ipaddr4
源服务器的 IPv4 地址。可以是一个数组。
数据类型 | ip |
ipaddr6
源服务器的 IPv6 地址(如果可用)。可以是一个数组。
数据类型 | ip |
level
来自各种来源的日志记录级别,包括 rsyslog(severitytext property)
、一个 Python 日志记录模块等。
以下值来自 syslog.h
,并在前面加上它们的 等效数字:
-
0
=emerg
,系统不可用。 -
1
=alert
,必须立即执行操作。 -
2
=crit
,关键条件。 -
3
=err
,错误条件。 -
4
=warn
,警告条件。 -
5
=notice
,正常但有严重情况。 -
6
=info
,信息。 -
7
=debug
,debug 级信息。
以下两个值不是 syslog.h
的一部分,但被广泛使用:
-
8
=trace
,trace 级的信息,它比debug
信息更详细。 -
9
=unknown
,当日志系统获得一个无法被识别的值。
在前面的列表中,将其他日志记录系统的日志级别或优先级映射到其最接近的匹配项。例如,在 python logging 中,您可以使用 CRITICAL
匹配 crit
,使用 ERROR
匹配 err
,以此类推。
数据类型 | 关键字 |
示例值 |
|
pid
日志记录实体的进程 ID(若有)。
数据类型 | 关键字 |
service
与日志记录实体(若有)关联的服务的名称。例如,syslog 的 APP-NAME
和 rsyslog 的 programname
属性映射到 service 字段。
数据类型 | 关键字 |
第 16 章 tags
可选。由 Operator 定义的标签的列表,这些标签由收集器或规范化程序放置在每个日志上。有效负载可以是带有空格分隔字符串令牌的字符串,也可以是字符串令牌的 JSON 列表。
数据类型 | text |
file
收集器从中读取此日志条目的日志文件路径。通常,这是集群节点的 /var/log
文件系统中的路径。
数据类型 | text |
offset
偏移值。可以表示文件中日志行开头的字节数(从零或一算起),或者表示日志行号(从零或一算起),只要这些值在单个日志的上下文中严格单调递增。允许对这些值换行,以表示日志文件的新版本(轮转)。
数据类型 | long |
第 17 章 kubernetes
特定于 Kubernetes 元数据的命名空间
数据类型 | group |
17.1. kubernetes.pod_name
pod 的名称
数据类型 | 关键字 |
17.2. kubernetes.pod_id
pod 的 Kubernetes ID
数据类型 | 关键字 |
17.3. kubernetes.namespace_name
Kubernetes 中命名空间的名称
数据类型 | 关键字 |
17.4. kubernetes.namespace_id
Kubernetes 中命名空间的 ID
数据类型 | 关键字 |
17.5. kubernetes.host
Kubernetes 节点名称
数据类型 | 关键字 |
17.6. kubernetes.container_name
Kubernetes 中容器的名称
数据类型 | 关键字 |
17.7. kubernetes.annotations
与 Kubernetes 对象关联的注解
数据类型 | group |
17.8. kubernetes.labels
原始 Kubernetes Pod 上存在的标签
数据类型 | group |
17.9. kubernetes.event
从 Kubernetes 主机 API 获取的 Kubernetes 事件。此事件描述大致跟随 Event v1 core 中的类型事件
。
数据类型 | group |
17.9.1. kubernetes.event.verb
事件类型,ADDED
、MODIFIED
或 DELETED
数据类型 | 关键字 |
示例值 |
|
17.9.2. kubernetes.event.metadata
与事件创建位置和时间相关的信息
数据类型 | group |
17.9.2.1. kubernetes.event.metadata.name
触发事件创建的对象名称
数据类型 | 关键字 |
示例值 |
|
17.9.2.2. kubernetes.event.metadata.namespace
最初发生事件的命名空间的名称。请注意,它与 kubernetes.namespace_name
不同,后者是部署 eventrouter
应用程序的命名空间。
数据类型 | 关键字 |
示例值 |
|
17.9.2.3. kubernetes.event.metadata.selfLink
到事件的链接
数据类型 | 关键字 |
示例值 |
|
17.9.2.4. kubernetes.event.metadata.uid
事件的唯一 ID
数据类型 | 关键字 |
示例值 |
|
17.9.2.5. kubernetes.event.metadata.resourceVersion
标识服务器内部版本的事件的字符串。客户端可以使用此字符串来确定对象何时更改。
数据类型 | 整数 |
示例值 |
|
17.9.3. kubernetes.event.involvedObject
事件所针对的对象。
数据类型 | group |
17.9.3.1. kubernetes.event.involvedObject.kind
对象的类型
数据类型 | 关键字 |
示例值 |
|
17.9.3.2. kubernetes.event.involvedObject.namespace
相关对象的命名空间名称。请注意,它可能与 kubernetes.namespace_name
不同,后者是部署 eventrouter
应用程序的命名空间。
数据类型 | 关键字 |
示例值 |
|
17.9.3.3. kubernetes.event.involvedObject.name
触发事件的对象名称
数据类型 | 关键字 |
示例值 |
|
17.9.3.4. kubernetes.event.involvedObject.uid
对象的唯一 ID
数据类型 | 关键字 |
示例值 |
|
17.9.3.5. kubernetes.event.involvedObject.apiVersion
kubernetes master API 的版本
数据类型 | 关键字 |
示例值 |
|
17.9.3.6. kubernetes.event.involvedObject.resourceVersion
标识触发该事件的 pod 的内部版本的字符串。客户端可以使用此字符串来确定对象何时更改。
数据类型 | 关键字 |
示例值 |
|
17.9.4. kubernetes.event.reason
简短的机器可读字符串,给出生成此事件的原因
数据类型 | 关键字 |
示例值 |
|
17.9.5. kubernetes.event.source_component
报告此事件的组件
数据类型 | 关键字 |
示例值 |
|
17.9.6. kubernetes.event.firstTimestamp
事件首次记录的时间
数据类型 | date |
示例值 |
|
17.9.7. kubernetes.event.count
发生此事件的次数
数据类型 | 整数 |
示例值 |
|
17.9.8. kubernetes.event.type
事件类型,Normal
或 Warning
。以后可能会添加新类型。
数据类型 | 关键字 |
示例值 |
|
第 18 章 OpenShift
openshift-logging 特定元数据的命名空间
数据类型 | group |
18.1. openshift.labels
由 Cluster Log Forwarder 配置添加的标签
数据类型 | group |
第 19 章 API 参考
19.1. 5.6 日志记录 API 参考
19.1.1. Logging 5.6 API 参
19.1.1.1. ClusterLogForwarder
ClusterLogForwarder 是一个 API,用于配置转发日志。
您可以通过指定一个 pipelines
列表来配置转发,该列表从一组命名输入转发到一组命名输出。
常用日志类别有内置输入名称,您可以定义自定义输入来执行额外的过滤。
默认 openshift 日志存储有一个内置输出名称,但您可以使用 URL 和其他连接信息定义您自己的输出,将日志转发到集群内部或处理器的其他连接信息。
如需了解更多详细信息,请参阅 API 字段的文档。
属性 | 类型 | 描述 |
---|---|---|
spec | 对象 | ClusterLogForwarder 所需的行为规格 |
status | 对象 | ClusterLogForwarder 的状态 |
19.1.1.1.1. .spec
19.1.1.1.1.1. 描述
ClusterLogForwarderSpec 定义如何将日志转发到远程目标。
19.1.1.1.1.1.1. 类型
- 对象
属性 | 类型 | 描述 |
---|---|---|
输入 | 数组 | (可选) 输入被命名过滤器,用于转发日志消息。 |
outputDefaults | 对象 | (可选) DEPRECATED OutputDefaults 为默认存储明确指定 forwarder 配置。 |
输出 | 数组 | (可选) 输出的名称是日志消息的目的地。 |
pipelines | 数组 | Pipelines 将一组输入选择的消息转发到一组输出。 |
19.1.1.1.2. .spec.inputs[]
19.1.1.1.2.1. 描述
InputSpec 定义日志消息的选择器。
19.1.1.1.2.1.1. 类型
- 数组
属性 | 类型 | 描述 |
---|---|---|
application | 对象 |
(可选) 如果存在,应用程序启用命名的 |
name | 字符串 |
用于引用 |
19.1.1.1.3. .spec.inputs[].application
19.1.1.1.3.1. 描述
应用程序日志选择器。必须满足选择器中的所有条件(逻辑 AND)才能选择日志。
19.1.1.1.3.1.1. 类型
- 对象
属性 | 类型 | 描述 |
---|---|---|
命名空间 | 数组 | (可选) 从中收集应用程序日志的命名空间。 |
selector | 对象 | (可选) 匹配标签的 pod 的日志的 Selector。 |
19.1.1.1.4. .spec.inputs[].application.namespaces[]
19.1.1.1.4.1. 描述
19.1.1.1.4.1.1. 类型
- 数组
19.1.1.1.5. .spec.inputs[].application.selector
19.1.1.1.5.1. 描述
标签选择器,即一组资源的标签查询。
19.1.1.1.5.1.1. 类型
- 对象
属性 | 类型 | 描述 |
---|---|---|
matchLabels | 对象 | (可选) matchLabels 是 {key,value} 对的映射。matchLabels 中的单个 {key,value} |
19.1.1.1.6. .spec.inputs[].application.selector.matchLabels
19.1.1.1.6.1. 描述
19.1.1.1.6.1.1. 类型
- 对象
19.1.1.1.7. .spec.outputDefaults
19.1.1.1.7.1. 描述
19.1.1.1.7.1.1. 类型
- 对象
属性 | 类型 | 描述 |
---|---|---|
elasticsearch | 对象 | (可选) Elasticsearch OutputSpec 默认值 |
19.1.1.1.8. .spec.outputDefaults.elasticsearch
19.1.1.1.8.1. 描述
ElasticsearchStructuredSpec 与结构化日志更改相关的 spec,以确定 elasticsearch 索引
19.1.1.1.8.1.1. 类型
- 对象
属性 | 类型 | 描述 |
---|---|---|
enableStructuredContainerLogs | bool | (可选) 启用StructuredContainerLogs 启用多容器结构化日志来允许 |
structuredTypeKey | 字符串 | (可选) StructuredTypeKey 指定要用作 elasticsearch 索引名称的元数据键 |
structuredTypeName | 字符串 | (可选) StructuredTypeName 指定 elasticsearch 模式的名称 |
19.1.1.1.9. .spec.outputs[]
19.1.1.1.9.1. 描述
输出定义日志消息的目的地。
19.1.1.1.9.1.1. 类型
- 数组
属性 | 类型 | 描述 |
---|---|---|
syslog | 对象 | (可选) |
fluentdForward | 对象 | (可选) |
elasticsearch | 对象 | (可选) |
kafka | 对象 | (可选) |
cloudwatch | 对象 | (可选) |
loki | 对象 | (可选) |
googleCloudLogging | 对象 | (可选) |
splunk | 对象 | (可选) |
name | 字符串 |
用于引用来自 |
secret | 对象 | (可选) 用于身份验证的 Secret。 |
tls | 对象 | TLS 包含控制 TLS 客户端连接上的选项的设置。 |
type | 字符串 | 输出插件的类型。 |
url | 字符串 | (可选) 将日志记录发送到的 URL。 |
19.1.1.1.10. .spec.outputs[].secret
19.1.1.1.10.1. 描述
OutputSecretSpec 是仅包含名称的一个 secret 引用,没有命名空间。
19.1.1.1.10.1.1. 类型
- 对象
属性 | 类型 | 描述 |
---|---|---|
name | 字符串 | 为日志转发器 secret 配置的命名空间中 secret 的名称。 |
19.1.1.1.11. .spec.outputs[].tls
19.1.1.1.11.1. 描述
OutputTLSSpec 包含与输出类型无关的 TLS 连接选项。
19.1.1.1.11.1.1. 类型
- 对象
属性 | 类型 | 描述 |
---|---|---|
insecureSkipVerify | bool | 如果 InsecureSkipVerify 为 true,则将配置 TLS 客户端来忽略证书的错误。 |
19.1.1.1.12. .spec.pipelines[]
19.1.1.1.12.1. 描述
PipelinesSpec 将一组输入链接到一组输出。
19.1.1.1.12.1.1. 类型
- 数组
属性 | 类型 | 描述 |
---|---|---|
detectMultilineErrors | bool | (可选) DetectMultilineErrors 启用容器日志的多行错误检测 |
inputRefs | 数组 |
inputRefs 列出此管道输入的名称 ( |
labels | 对象 | (可选) 应用于通过此管道传递的记录的标签。 |
name | 字符串 |
(可选) 名称是可选的,但如果提供,则必须在 |
outputRefs | 数组 |
outputRefs 列出此管道输出的名称( |
parse | 字符串 | (可选) Parse 允许将日志条目解析为结构化日志中 |
19.1.1.1.13. .spec.pipelines[].inputRefs[]
19.1.1.1.13.1. 描述
19.1.1.1.13.1.1. 类型
- 数组
19.1.1.1.14. .spec.pipelines[].labels
19.1.1.1.14.1. 描述
19.1.1.1.14.1.1. 类型
- 对象
19.1.1.1.15. .spec.pipelines[].outputRefs[]
19.1.1.1.15.1. 描述
19.1.1.1.15.1.1. 类型
- 数组
19.1.1.1.16. .status
19.1.1.1.16.1. 描述
ClusterLogForwarderStatus 定义 ClusterLogForwarder 的观察状态
19.1.1.1.16.1.1. 类型
- 对象
属性 | 类型 | 描述 |
---|---|---|
conditions | 对象 | 日志转发器的条件。 |
输入 | Conditions | 输入将输入名称映射到输入条件。 |
输出 | Conditions | 输出将输出名称映射到输出的条件。 |
pipelines | Conditions | Pipelines 将管道名称映射到管道的条件。 |
19.1.1.1.17. .status.conditions
19.1.1.1.17.1. 描述
19.1.1.1.17.1.1. 类型
- 对象
19.1.1.1.18. .status.inputs
19.1.1.1.18.1. 描述
19.1.1.1.18.1.1. 类型
- Conditions
19.1.1.1.19. .status.outputs
19.1.1.1.19.1. 描述
19.1.1.1.19.1.1. 类型
- Conditions
19.1.1.1.20. .status.pipelines
19.1.1.1.20.1. 描述
19.1.1.1.20.1.1. 类型
- conditions== ClusterLogging 一个 Red Hat OpenShift Logging 实例。ClusterLogging 是 clusterloggings API 的 Schema
属性 | 类型 | 描述 |
---|---|---|
spec | 对象 | ClusterLogging 所需的行为规格 |
status | 对象 | Status 定义 ClusterLogging 的观察状态 |
19.1.1.1.21. .spec
19.1.1.1.21.1. 描述
ClusterLoggingSpec 定义 ClusterLogging 的所需状态
19.1.1.1.21.1.1. 类型
- 对象
属性 | 类型 | 描述 |
---|---|---|
集合 | 对象 | 集群的 Collection 组件的规格 |
curation | 对象 | (已弃用) (可选) 已弃用。集群的 Curation 组件的规格 |
forwarder | 对象 | (已弃用) (可选) 已弃用。集群的 Forwarder 组件的规格 |
logStore | 对象 | (可选) 集群的日志存储组件的规格 |
managementState | 字符串 | (可选) 如果 Operator 是 'Managed' 或 'Unmanaged',则查询 |
visualization | 对象 | (可选) 集群的可视化组件的规格 |
19.1.1.1.22. .spec.collection
19.1.1.1.22.1. 描述
这是包含日志和事件集合信息的结构
19.1.1.1.22.1.1. 类型
- 对象
属性 | 类型 | 描述 |
---|---|---|
资源 | 对象 | (可选) 收集器的资源要求 |
nodeSelector | 对象 | (可选) 定义 Pod 调度到哪些节点上。 |
容限(tolerations) | 数组 | (可选) 定义 Pod 将接受的容限 |
fluentd | 对象 | (可选) Fluentd 代表类型为 fluentd 的转发器的配置。 |
logs | 对象 | (已弃用) (可选) 已弃用。集群的 Log Collection 规格 |
type | 字符串 | (可选) 要配置的 Log Collection 类型 |
19.1.1.1.23. .spec.collection.fluentd
19.1.1.1.23.1. 描述
FluentdForwarderSpec 代表类型为 fluentd 的转发器的配置。
19.1.1.1.23.1.1. 类型
- 对象
属性 | 类型 | 描述 |
---|---|---|
buffer | 对象 | |
inFile | 对象 |
19.1.1.1.24. .spec.collection.fluentd.buffer
19.1.1.1.24.1. 描述
FluentdBufferSpec 代表 fluentd 缓冲参数的子集,用于调整所有 fluentd 输出的缓冲配置。它支持参数子集来配置缓冲区和队列大小、清空操作和重试清除。
有关常规参数,请参阅:https://docs.fluentd.org/configuration/buffer-section#buffering-parameters
有关 flush 参数,请参阅:https://docs.fluentd.org/configuration/buffer-section#flushing-parameters
有关重试参数请参考:https://docs.fluentd.org/configuration/buffer-section#retries-parameters
19.1.1.1.24.1.1. 类型
- 对象
属性 | 类型 | 描述 |
---|---|---|
chunkLimitSize | 字符串 | (可选) ChunkLimitSize 代表每个块的最大大小。事件将是 |
flushInterval | 字符串 | (可选) FlushInterval 代表两个连续清除之间等待的时长 |
flushMode | 字符串 | (可选) FlushMode 代表要写入块的清除线程的模式。模式 |
flushThreadCount | int | (可选) FlushThreadCount reprents 缓冲区使用的线程数量 |
overflowAction | 字符串 | (可选) OverflowAction 代表 fluentd 缓冲插件的操作 |
retryMaxInterval | 字符串 | (可选) RetryMaxInterval 代表 exponential backoff 的最大时间间隔 |
retryTimeout | 字符串 | (可选) RetryTimeout 代表在放弃前尝试重试的最长时间 |
retryType | 字符串 | (可选) RetryType 代表重试清除操作的类型。flush 操作可以 |
retryWait | 字符串 | (可选) RetryWait 代表两个连续重试刷新之间的持续时间 |
totalLimitSize | 字符串 | (可选) TotalLimitSize 代表每个 fluentd 允许的节点空间阈值 |
19.1.1.1.25. .spec.collection.fluentd.inFile
19.1.1.1.25.1. 描述
FluentdInFileSpec 代表 fluentd in-tail 插件参数的子集,用于调整所有 fluentd in-tail 输入的配置。
有关常规参数,请参阅: https://docs.fluentd.org/input/tail#parameters
19.1.1.1.25.1.1. 类型
- 对象
属性 | 类型 | 描述 |
---|---|---|
readLinesLimit | int | (可选) ReadlinesLimit 代表要随每个 I/O 操作读取的行数 |
19.1.1.1.26. .spec.collection.logs
19.1.1.1.26.1. 描述
19.1.1.1.26.1.1. 类型
- 对象
属性 | 类型 | 描述 |
---|---|---|
fluentd | 对象 | Fluentd Log Collection 组件的规格 |
type | 字符串 | 要配置的日志集合类型 |
19.1.1.1.27. .spec.collection.logs.fluentd
19.1.1.1.27.1. 描述
CollectorSpec 是 spec,用于定义收集器的调度和资源
19.1.1.1.27.1.1. 类型
- 对象
属性 | 类型 | 描述 |
---|---|---|
nodeSelector | 对象 | (可选) 定义 Pod 调度到哪些节点上。 |
资源 | 对象 | (可选) 收集器的资源要求 |
容限(tolerations) | 数组 | (可选) 定义 Pod 将接受的容限 |
19.1.1.1.28. .spec.collection.logs.fluentd.nodeSelector
19.1.1.1.28.1. 描述
19.1.1.1.28.1.1. 类型
- 对象
19.1.1.1.29. .spec.collection.logs.fluentd.resources
19.1.1.1.29.1. 描述
19.1.1.1.29.1.1. 类型
- 对象
属性 | 类型 | 描述 |
---|---|---|
limits | 对象 | (可选) 限制描述了允许的最大计算资源量。 |
requests | 对象 | (可选) 请求描述了所需的最少计算资源。 |
19.1.1.1.30. .spec.collection.logs.fluentd.resources.limits
19.1.1.1.30.1. 描述
19.1.1.1.30.1.1. 类型
- 对象
19.1.1.1.31. .spec.collection.logs.fluentd.resources.requests
19.1.1.1.31.1. 描述
19.1.1.1.31.1.1. 类型
- 对象
19.1.1.1.32. .spec.collection.logs.fluentd.tolerations[]
19.1.1.1.32.1. 描述
19.1.1.1.32.1.1. 类型
- 数组
属性 | 类型 | 描述 |
---|---|---|
effect | 字符串 | (可选) 效果表示要匹配的污点效果。空意味着匹配所有污点效果。 |
key | 字符串 | (可选) key 是容限应用到的污点键。empty 表示与所有污点键匹配。 |
operator | 字符串 | (可选) Operator 代表键与值的关系。 |
tolerationSeconds | int | (可选) TolerationSeconds 代表容限的期间(必须是 |
value | 字符串 | (可选) 值是容限匹配的污点值。 |
19.1.1.1.33. .spec.collection.logs.fluentd.tolerations[].tolerationSeconds
19.1.1.1.33.1. 描述
19.1.1.1.33.1.1. 类型
- int
19.1.1.1.34. .spec.curation
19.1.1.1.34.1. 描述
这是包含日志策展信息的结构 (Curator)
19.1.1.1.34.1.1. 类型
- 对象
属性 | 类型 | 描述 |
---|---|---|
curator | 对象 | 要配置的策展规格 |
type | 字符串 | 要配置的策展类型 |
19.1.1.1.35. .spec.curation.curator
19.1.1.1.35.1. 描述
19.1.1.1.35.1.1. 类型
- 对象
属性 | 类型 | 描述 |
---|---|---|
nodeSelector | 对象 | 定义 Pod 调度到哪些节点上。 |
资源 | 对象 | (可选) Curator 的资源要求 |
调度 | 字符串 | Curator 作业运行的 cron 调度。默认为 "30 3 * * *" |
容限(tolerations) | 数组 |
19.1.1.1.36. .spec.curation.curator.nodeSelector
19.1.1.1.36.1. 描述
19.1.1.1.36.1.1. 类型
- 对象
19.1.1.1.37. .spec.curation.curator.resources
19.1.1.1.37.1. 描述
19.1.1.1.37.1.1. 类型
- 对象
属性 | 类型 | 描述 |
---|---|---|
limits | 对象 | (可选) 限制描述了允许的最大计算资源量。 |
requests | 对象 | (可选) 请求描述了所需的最少计算资源。 |
19.1.1.1.38. .spec.curation.curator.resources.limits
19.1.1.1.38.1. 描述
19.1.1.1.38.1.1. 类型
- 对象
19.1.1.1.39. .spec.curation.curator.resources.requests
19.1.1.1.39.1. 描述
19.1.1.1.39.1.1. 类型
- 对象
19.1.1.1.40. .spec.curation.curator.tolerations[]
19.1.1.1.40.1. 描述
19.1.1.1.40.1.1. 类型
- 数组
属性 | 类型 | 描述 |
---|---|---|
effect | 字符串 | (可选) 效果表示要匹配的污点效果。空意味着匹配所有污点效果。 |
key | 字符串 | (可选) key 是容限应用到的污点键。empty 表示与所有污点键匹配。 |
operator | 字符串 | (可选) Operator 代表键与值的关系。 |
tolerationSeconds | int | (可选) TolerationSeconds 代表容限的期间(必须是 |
value | 字符串 | (可选) 值是容限匹配的污点值。 |
19.1.1.1.41. .spec.curation.curator.tolerations[].tolerationSeconds
19.1.1.1.41.1. 描述
19.1.1.1.41.1.1. 类型
- int
19.1.1.1.42. .spec.forwarder
19.1.1.1.42.1. 描述
ForwarderSpec 包含特定转发器实现的全局调优参数。一般用途不需要此字段,用户可以熟悉底层转发器技术的用户进行性能调优。目前支持: fluentd
。
19.1.1.1.42.1.1. 类型
- 对象
属性 | 类型 | 描述 |
---|---|---|
fluentd | 对象 |
19.1.1.1.43. .spec.forwarder.fluentd
19.1.1.1.43.1. 描述
FluentdForwarderSpec 代表类型为 fluentd 的转发器的配置。
19.1.1.1.43.1.1. 类型
- 对象
属性 | 类型 | 描述 |
---|---|---|
buffer | 对象 | |
inFile | 对象 |
19.1.1.1.44. .spec.forwarder.fluentd.buffer
19.1.1.1.44.1. 描述
FluentdBufferSpec 代表 fluentd 缓冲参数的子集,用于调整所有 fluentd 输出的缓冲配置。它支持参数子集来配置缓冲区和队列大小、清空操作和重试清除。
有关常规参数,请参阅:https://docs.fluentd.org/configuration/buffer-section#buffering-parameters
有关 flush 参数,请参阅:https://docs.fluentd.org/configuration/buffer-section#flushing-parameters
有关重试参数请参考:https://docs.fluentd.org/configuration/buffer-section#retries-parameters
19.1.1.1.44.1.1. 类型
- 对象
属性 | 类型 | 描述 |
---|---|---|
chunkLimitSize | 字符串 | (可选) ChunkLimitSize 代表每个块的最大大小。事件将是 |
flushInterval | 字符串 | (可选) FlushInterval 代表两个连续清除之间等待的时长 |
flushMode | 字符串 | (可选) FlushMode 代表要写入块的清除线程的模式。模式 |
flushThreadCount | int | (可选) FlushThreadCount reprents 缓冲区使用的线程数量 |
overflowAction | 字符串 | (可选) OverflowAction 代表 fluentd 缓冲插件的操作 |
retryMaxInterval | 字符串 | (可选) RetryMaxInterval 代表 exponential backoff 的最大时间间隔 |
retryTimeout | 字符串 | (可选) RetryTimeout 代表在放弃前尝试重试的最长时间 |
retryType | 字符串 | (可选) RetryType 代表重试清除操作的类型。flush 操作可以 |
retryWait | 字符串 | (可选) RetryWait 代表两个连续重试刷新之间的持续时间 |
totalLimitSize | 字符串 | (可选) TotalLimitSize 代表每个 fluentd 允许的节点空间阈值 |
19.1.1.1.45. .spec.forwarder.fluentd.inFile
19.1.1.1.45.1. 描述
FluentdInFileSpec 代表 fluentd in-tail 插件参数的子集,用于调整所有 fluentd in-tail 输入的配置。
有关常规参数,请参阅: https://docs.fluentd.org/input/tail#parameters
19.1.1.1.45.1.1. 类型
- 对象
属性 | 类型 | 描述 |
---|---|---|
readLinesLimit | int | (可选) ReadlinesLimit 代表要随每个 I/O 操作读取的行数 |
19.1.1.1.46. .spec.logStore
19.1.1.1.46.1. 描述
LogStoreSpec 包含有关日志存储方式的信息。
19.1.1.1.46.1.1. 类型
- 对象
属性 | 类型 | 描述 |
---|---|---|
elasticsearch | 对象 | Elasticsearch 日志存储组件的规格 |
lokistack | 对象 | LokiStack 包含有关当 Type 设置为 LogStoreTypeLokiStack 时用于日志存储的信息。 |
retentionPolicy | 对象 | (可选) 保留策略定义了应删除它的索引的最长期限 |
type | 字符串 | 要配置的日志存储的类型。Operator 目前支持使用 ElasticSearch |
19.1.1.1.47. .spec.logStore.elasticsearch
19.1.1.1.47.1. 描述
19.1.1.1.47.1.1. 类型
- 对象
属性 | 类型 | 描述 |
---|---|---|
nodeCount | int | 为 Elasticsearch 部署的节点数量 |
nodeSelector | 对象 | 定义 Pod 调度到哪些节点上。 |
proxy | 对象 | Elasticsearch Proxy 组件的规格 |
redundancyPolicy | 字符串 | (可选) |
资源 | 对象 | (可选) Elasticsearch 的资源要求 |
storage | 对象 | (可选) Elasticsearch 数据节点的存储规格 |
容限(tolerations) | 数组 |
19.1.1.1.48. .spec.logStore.elasticsearch.nodeSelector
19.1.1.1.48.1. 描述
19.1.1.1.48.1.1. 类型
- 对象
19.1.1.1.49. .spec.logStore.elasticsearch.proxy
19.1.1.1.49.1. 描述
19.1.1.1.49.1.1. 类型
- 对象
属性 | 类型 | 描述 |
---|---|---|
资源 | 对象 |
19.1.1.1.50. .spec.logStore.elasticsearch.proxy.resources
19.1.1.1.50.1. 描述
19.1.1.1.50.1.1. 类型
- 对象
属性 | 类型 | 描述 |
---|---|---|
limits | 对象 | (可选) 限制描述了允许的最大计算资源量。 |
requests | 对象 | (可选) 请求描述了所需的最少计算资源。 |
19.1.1.1.51. .spec.logStore.elasticsearch.proxy.resources.limits
19.1.1.1.51.1. 描述
19.1.1.1.51.1.1. 类型
- 对象
19.1.1.1.52. .spec.logStore.elasticsearch.proxy.resources.requests
19.1.1.1.52.1. 描述
19.1.1.1.52.1.1. 类型
- 对象
19.1.1.1.53. .spec.logStore.elasticsearch.resources
19.1.1.1.53.1. 描述
19.1.1.1.53.1.1. 类型
- 对象
属性 | 类型 | 描述 |
---|---|---|
limits | 对象 | (可选) 限制描述了允许的最大计算资源量。 |
requests | 对象 | (可选) 请求描述了所需的最少计算资源。 |
19.1.1.1.54. .spec.logStore.elasticsearch.resources.limits
19.1.1.1.54.1. 描述
19.1.1.1.54.1.1. 类型
- 对象
19.1.1.1.55. .spec.logStore.elasticsearch.resources.requests
19.1.1.1.55.1. 描述
19.1.1.1.55.1.1. 类型
- 对象
19.1.1.1.56. .spec.logStore.elasticsearch.storage
19.1.1.1.56.1. 描述
19.1.1.1.56.1.1. 类型
- 对象
属性 | 类型 | 描述 |
---|---|---|
size | 对象 | 要置备的节点的最大存储容量。 |
storageClassName | 字符串 | (可选) 用于创建节点的 PVC 的存储类的名称。 |
19.1.1.1.57. .spec.logStore.elasticsearch.storage.size
19.1.1.1.57.1. 描述
19.1.1.1.57.1.1. 类型
- 对象
属性 | 类型 | 描述 |
---|---|---|
æ ¼å¼� | 字符串 | 更改格式将:有关 Reonicalize 的评论信息 |
d | 对象 | 如果 d.Dec != nil, d 是 inf.Dec 表单的数量 |
i | int | 如果 d.Dec == nil,i 是 int64 扩展形式的数量 |
s | 字符串 | s 是生成的这个数量的值,以避免重新计算 |
19.1.1.1.58. .spec.logStore.elasticsearch.storage.size.d
19.1.1.1.58.1. 描述
19.1.1.1.58.1.1. 类型
- 对象
属性 | 类型 | 描述 |
---|---|---|
Dec | 对象 |
19.1.1.1.59. .spec.logStore.elasticsearch.storage.size.d.Dec
19.1.1.1.59.1. 描述
19.1.1.1.59.1.1. 类型
- 对象
属性 | 类型 | 描述 |
---|---|---|
scale | int | |
unscaled | 对象 |
19.1.1.1.60. .spec.logStore.elasticsearch.storage.size.d.Dec.unscaled
19.1.1.1.60.1. 描述
19.1.1.1.60.1.1. 类型
- 对象
属性 | 类型 | 描述 |
---|---|---|
abs | Word | sign |
neg | bool |
19.1.1.1.61. .spec.logStore.elasticsearch.storage.size.d.Dec.unscaled.abs
19.1.1.1.61.1. 描述
19.1.1.1.61.1.1. 类型
- Word
19.1.1.1.62. .spec.logStore.elasticsearch.storage.size.i
19.1.1.1.62.1. 描述
19.1.1.1.62.1.1. 类型
- int
属性 | 类型 | 描述 |
---|---|---|
scale | int | |
value | int |
19.1.1.1.63. .spec.logStore.elasticsearch.tolerations[]
19.1.1.1.63.1. 描述
19.1.1.1.63.1.1. 类型
- 数组
属性 | 类型 | 描述 |
---|---|---|
effect | 字符串 | (可选) 效果表示要匹配的污点效果。空意味着匹配所有污点效果。 |
key | 字符串 | (可选) key 是容限应用到的污点键。empty 表示与所有污点键匹配。 |
operator | 字符串 | (可选) Operator 代表键与值的关系。 |
tolerationSeconds | int | (可选) TolerationSeconds 代表容限的期间(必须是 |
value | 字符串 | (可选) 值是容限匹配的污点值。 |
19.1.1.1.64. .spec.logStore.elasticsearch.tolerations[].tolerationSeconds
19.1.1.1.64.1. 描述
19.1.1.1.64.1.1. 类型
- int
19.1.1.1.65. .spec.logStore.lokistack
19.1.1.1.65.1. 描述
LokiStackStoreSpec 用来设置 cluster-logging 以使用 LokiStack 作为日志存储。它指向同一命名空间中的现有 LokiStack。
19.1.1.1.65.1.1. 类型
- 对象
属性 | 类型 | 描述 |
---|---|---|
name | 字符串 | LokiStack 资源的名称。 |
19.1.1.1.66. .spec.logStore.retentionPolicy
19.1.1.1.66.1. 描述
19.1.1.1.66.1.1. 类型
- 对象
属性 | 类型 | 描述 |
---|---|---|
application | 对象 | |
audit | 对象 | |
Infra | 对象 |
19.1.1.1.67. .spec.logStore.retentionPolicy.application
19.1.1.1.67.1. 描述
19.1.1.1.67.1.1. 类型
- 对象
属性 | 类型 | 描述 |
---|---|---|
diskThresholdPercent | int | (可选) 一个 ES 磁盘用量的阈值,当达到这个阈值时应该删除旧索引(如 75) |
maxAge | 字符串 | (可选) |
namespaceSpec | 数组 | (可选) 每个命名空间规格,用于删除超过给定最小年龄的文档 |
pruneNamespacesInterval | 字符串 | (可选) 运行新修剪命名空间作业的频率 |
19.1.1.1.68. .spec.logStore.retentionPolicy.application.namespaceSpec[]
19.1.1.1.68.1. 描述
19.1.1.1.68.1.1. 类型
- 数组
属性 | 类型 | 描述 |
---|---|---|
minAge | 字符串 | (可选) 删除与这个 MinAge 旧的命名空间匹配的记录(例如 1d) |
namespace | 字符串 | 目标命名空间删除早于 MinAge 的日志(默认为 7d) |
19.1.1.1.69. .spec.logStore.retentionPolicy.audit
19.1.1.1.69.1. 描述
19.1.1.1.69.1.1. 类型
- 对象
属性 | 类型 | 描述 |
---|---|---|
diskThresholdPercent | int | (可选) 一个 ES 磁盘用量的阈值,当达到这个阈值时应该删除旧索引(如 75) |
maxAge | 字符串 | (可选) |
namespaceSpec | 数组 | (可选) 每个命名空间规格,用于删除超过给定最小年龄的文档 |
pruneNamespacesInterval | 字符串 | (可选) 运行新修剪命名空间作业的频率 |
19.1.1.1.70. .spec.logStore.retentionPolicy.audit.namespaceSpec[]
19.1.1.1.70.1. 描述
19.1.1.1.70.1.1. 类型
- 数组
属性 | 类型 | 描述 |
---|---|---|
minAge | 字符串 | (可选) 删除与这个 MinAge 旧的命名空间匹配的记录(例如 1d) |
namespace | 字符串 | 目标命名空间删除早于 MinAge 的日志(默认为 7d) |
19.1.1.1.71. .spec.logStore.retentionPolicy.infra
19.1.1.1.71.1. 描述
19.1.1.1.71.1.1. 类型
- 对象
属性 | 类型 | 描述 |
---|---|---|
diskThresholdPercent | int | (可选) 一个 ES 磁盘用量的阈值,当达到这个阈值时应该删除旧索引(如 75) |
maxAge | 字符串 | (可选) |
namespaceSpec | 数组 | (可选) 每个命名空间规格,用于删除超过给定最小年龄的文档 |
pruneNamespacesInterval | 字符串 | (可选) 运行新修剪命名空间作业的频率 |
19.1.1.1.72. .spec.logStore.retentionPolicy.infra.namespaceSpec[]
19.1.1.1.72.1. 描述
19.1.1.1.72.1.1. 类型
- 数组
属性 | 类型 | 描述 |
---|---|---|
minAge | 字符串 | (可选) 删除与这个 MinAge 旧的命名空间匹配的记录(例如 1d) |
namespace | 字符串 | 目标命名空间删除早于 MinAge 的日志(默认为 7d) |
19.1.1.1.73. .spec.visualization
19.1.1.1.73.1. 描述
这是包含日志视觉化信息的结构 (Kibana)
19.1.1.1.73.1.1. 类型
- 对象
属性 | 类型 | 描述 |
---|---|---|
kibana | 对象 | Kibana 视觉化组件的规格 |
type | 字符串 | 要配置的可视化类型 |
19.1.1.1.74. .spec.visualization.kibana
19.1.1.1.74.1. 描述
19.1.1.1.74.1.1. 类型
- 对象
属性 | 类型 | 描述 |
---|---|---|
nodeSelector | 对象 | 定义 Pod 调度到哪些节点上。 |
proxy | 对象 | Kibana Proxy 组件的规格 |
replicas | int | 为 Kibana 部署部署的实例数量 |
资源 | 对象 | (可选) Kibana 的资源要求 |
容限(tolerations) | 数组 |
19.1.1.1.75. .spec.visualization.kibana.nodeSelector
19.1.1.1.75.1. 描述
19.1.1.1.75.1.1. 类型
- 对象
19.1.1.1.76. .spec.visualization.kibana.proxy
19.1.1.1.76.1. 描述
19.1.1.1.76.1.1. 类型
- 对象
属性 | 类型 | 描述 |
---|---|---|
资源 | 对象 |
19.1.1.1.77. .spec.visualization.kibana.proxy.resources
19.1.1.1.77.1. 描述
19.1.1.1.77.1.1. 类型
- 对象
属性 | 类型 | 描述 |
---|---|---|
limits | 对象 | (可选) 限制描述了允许的最大计算资源量。 |
requests | 对象 | (可选) 请求描述了所需的最少计算资源。 |
19.1.1.1.78. .spec.visualization.kibana.proxy.resources.limits
19.1.1.1.78.1. 描述
19.1.1.1.78.1.1. 类型
- 对象
19.1.1.1.79. .spec.visualization.kibana.proxy.resources.requests
19.1.1.1.79.1. 描述
19.1.1.1.79.1.1. 类型
- 对象
19.1.1.1.80. .spec.visualization.kibana.replicas
19.1.1.1.80.1. 描述
19.1.1.1.80.1.1. 类型
- int
19.1.1.1.81. .spec.visualization.kibana.resources
19.1.1.1.81.1. 描述
19.1.1.1.81.1.1. 类型
- 对象
属性 | 类型 | 描述 |
---|---|---|
limits | 对象 | (可选) 限制描述了允许的最大计算资源量。 |
requests | 对象 | (可选) 请求描述了所需的最少计算资源。 |
19.1.1.1.82. .spec.visualization.kibana.resources.limits
19.1.1.1.82.1. 描述
19.1.1.1.82.1.1. 类型
- 对象
19.1.1.1.83. .spec.visualization.kibana.resources.requests
19.1.1.1.83.1. 描述
19.1.1.1.83.1.1. 类型
- 对象
19.1.1.1.84. .spec.visualization.kibana.tolerations[]
19.1.1.1.84.1. 描述
19.1.1.1.84.1.1. 类型
- 数组
属性 | 类型 | 描述 |
---|---|---|
effect | 字符串 | (可选) 效果表示要匹配的污点效果。空意味着匹配所有污点效果。 |
key | 字符串 | (可选) key 是容限应用到的污点键。empty 表示与所有污点键匹配。 |
operator | 字符串 | (可选) Operator 代表键与值的关系。 |
tolerationSeconds | int | (可选) TolerationSeconds 代表容限的期间(必须是 |
value | 字符串 | (可选) 值是容限匹配的污点值。 |
19.1.1.1.85. .spec.visualization.kibana.tolerations[].tolerationSeconds
19.1.1.1.85.1. 描述
19.1.1.1.85.1.1. 类型
- int
19.1.1.1.86. .status
19.1.1.1.86.1. 描述
ClusterLoggingStatus 定义 ClusterLogging 的观察状态
19.1.1.1.86.1.1. 类型
- 对象
属性 | 类型 | 描述 |
---|---|---|
集合 | 对象 | (可选) |
conditions | 对象 | (可选) |
curation | 对象 | (可选) |
logStore | 对象 | (可选) |
visualization | 对象 | (可选) |
19.1.1.1.87. .status.collection
19.1.1.1.87.1. 描述
19.1.1.1.87.1.1. 类型
- 对象
属性 | 类型 | 描述 |
---|---|---|
logs | 对象 | (可选) |
19.1.1.1.88. .status.collection.logs
19.1.1.1.88.1. 描述
19.1.1.1.88.1.1. 类型
- 对象
属性 | 类型 | 描述 |
---|---|---|
fluentdStatus | 对象 | (可选) |
19.1.1.1.89. .status.collection.logs.fluentdStatus
19.1.1.1.89.1. 描述
19.1.1.1.89.1.1. 类型
- 对象
属性 | 类型 | 描述 |
---|---|---|
clusterCondition | 对象 | (可选) |
daemonSet | 字符串 | (可选) |
节点 | 对象 | (可选) |
pods | 字符串 | (可选) |
19.1.1.1.90. .status.collection.logs.fluentdStatus.clusterCondition
19.1.1.1.90.1. 描述
operator-sdk generate crds
不允许映射内容,必须使用命名类型。
19.1.1.1.90.1.1. 类型
- 对象
19.1.1.1.91. .status.collection.logs.fluentdStatus.nodes
19.1.1.1.91.1. 描述
19.1.1.1.91.1.1. 类型
- 对象
19.1.1.1.92. .status.conditions
19.1.1.1.92.1. 描述
19.1.1.1.92.1.1. 类型
- 对象
19.1.1.1.93. .status.curation
19.1.1.1.93.1. 描述
19.1.1.1.93.1.1. 类型
- 对象
属性 | 类型 | 描述 |
---|---|---|
curatorStatus | 数组 | (可选) |
19.1.1.1.94. .status.curation.curatorStatus[]
19.1.1.1.94.1. 描述
19.1.1.1.94.1.1. 类型
- 数组
属性 | 类型 | 描述 |
---|---|---|
clusterCondition | 对象 | (可选) |
cronJobs | 字符串 | (可选) |
调度 | 字符串 | (可选) |
暂停 | bool | (可选) |
19.1.1.1.95. .status.curation.curatorStatus[].clusterCondition
19.1.1.1.95.1. 描述
operator-sdk generate crds
不允许映射内容,必须使用命名类型。
19.1.1.1.95.1.1. 类型
- 对象
19.1.1.1.96. .status.logStore
19.1.1.1.96.1. 描述
19.1.1.1.96.1.1. 类型
- 对象
属性 | 类型 | 描述 |
---|---|---|
elasticsearchStatus | 数组 | (可选) |
19.1.1.1.97. .status.logStore.elasticsearchStatus[]
19.1.1.1.97.1. 描述
19.1.1.1.97.1.1. 类型
- 数组
属性 | 类型 | 描述 |
---|---|---|
cluster | 对象 | (可选) |
clusterConditions | 对象 | (可选) |
clusterHealth | 字符串 | (可选) |
clusterName | 字符串 | (可选) |
部署 | 数组 | (可选) |
nodeConditions | 对象 | (可选) |
nodeCount | int | (可选) |
pods | 对象 | (可选) |
replicaSets | 数组 | (可选) |
shardAllocationEnabled | 字符串 | (可选) |
statefulSets | 数组 | (可选) |
19.1.1.1.98. .status.logStore.elasticsearchStatus[].cluster
19.1.1.1.98.1. 描述
19.1.1.1.98.1.1. 类型
- 对象
属性 | 类型 | 描述 |
---|---|---|
activePrimaryShards | int | Elasticsearch 集群的活跃主分片数量 |
activeShards | int | Elasticsearch 集群的活跃分片数量 |
initializingShards | int | Elasticsearch 集群的 Initializing Shards 数量 |
numDataNodes | int | Elasticsearch 集群的数据节点数量 |
numNodes | int | Elasticsearch 集群的节点数量 |
pendingTasks | int | |
relocatingShards | int | Elasticsearch 集群的重定位分片的数量 |
status | 字符串 | Elasticsearch 集群的当前状态 |
unassignedShards | int | Elasticsearch 集群的未分配的分片数量 |
19.1.1.1.99. .status.logStore.elasticsearchStatus[].clusterConditions
19.1.1.1.99.1. 描述
19.1.1.1.99.1.1. 类型
- 对象
19.1.1.1.100. .status.logStore.elasticsearchStatus[].deployments[]
19.1.1.1.100.1. 描述
19.1.1.1.100.1.1. 类型
- 数组
19.1.1.1.101. .status.logStore.elasticsearchStatus[].nodeConditions
19.1.1.1.101.1. 描述
19.1.1.1.101.1.1. 类型
- 对象
19.1.1.1.102. .status.logStore.elasticsearchStatus[].pods
19.1.1.1.102.1. 描述
19.1.1.1.102.1.1. 类型
- 对象
19.1.1.1.103. .status.logStore.elasticsearchStatus[].replicaSets[]
19.1.1.1.103.1. 描述
19.1.1.1.103.1.1. 类型
- 数组
19.1.1.1.104. .status.logStore.elasticsearchStatus[].statefulSets[]
19.1.1.1.104.1. 描述
19.1.1.1.104.1.1. 类型
- 数组
19.1.1.1.105. .status.visualization
19.1.1.1.105.1. 描述
19.1.1.1.105.1.1. 类型
- 对象
属性 | 类型 | 描述 |
---|---|---|
kibanaStatus | 数组 | (可选) |
19.1.1.1.106. .status.visualization.kibanaStatus[]
19.1.1.1.106.1. 描述
19.1.1.1.106.1.1. 类型
- 数组
属性 | 类型 | 描述 |
---|---|---|
clusterCondition | 对象 | (可选) |
部署 | 字符串 | (可选) |
pods | 字符串 | (可选) Visualization 组件的每个 Kibana Pod 的状态 |
replicaSets | 数组 | (可选) |
replicas | int | (可选) |
19.1.1.1.107. .status.visualization.kibanaStatus[].clusterCondition
19.1.1.1.107.1. 描述
19.1.1.1.107.1.1. 类型
- 对象
19.1.1.1.108. .status.visualization.kibanaStatus[].replicaSets[]
19.1.1.1.108.1. 描述
19.1.1.1.108.1.1. 类型
- 数组
第 20 章 术语表
该术语表定义了日志记录文档中使用的常用术语。
- 注解
- 您可以使用注解将元数据附加到对象。
- Red Hat OpenShift Logging Operator
- Red Hat OpenShift Logging Operator 提供了一组 API,用于控制应用程序、基础架构和审计日志的集合和转发。
- 自定义资源 (CR)
-
CR 是 Kubernetes API 的扩展。要配置日志记录和日志转发,您可以自定义
ClusterLogging
和ClusterLogForwarder
自定义资源。 - 事件路由器
- 事件路由器是一个 pod,它监视 OpenShift Dedicated 事件。它使用日志记录来收集日志。
- Fluentd
- Fluentd 是一个日志收集器,它位于每个 OpenShift Dedicated 节点上。它收集应用程序、基础架构和审计日志并将其转发到不同的输出。
- 垃圾回收
- 垃圾回收是清理集群资源的过程,如终止的容器和没有被任何正在运行的 pod 引用的镜像。
- Elasticsearch
- Elasticsearch 是一个分布式搜索和分析引擎。OpenShift Dedicated 使用 Elasticsearch 作为日志的默认日志存储。
- OpenShift Elasticsearch Operator
- OpenShift Elasticsearch Operator 用于在 OpenShift Dedicated 上运行 Elasticsearch 集群。OpenShift Elasticsearch Operator 为 Elasticsearch 集群操作提供自助服务,供日志记录使用。
- 索引
- 索引是一种数据结构技术,用于快速查找和访问数据。索引通过最大程度减少处理查询时所需的磁盘访问量来优化性能。
- JSON 日志记录
- Log Forwarding API 可让您将 JSON 日志解析到结构化对象,并将其转发到受管 Elasticsearch 的 logging 或 Log Forwarding API 支持的任何其他第三方系统。
- Kibana
- Kibana 是基于浏览器的控制台界面,可通过直方图、行图和 pie chart 查询、发现和视觉化您的 Elasticsearch 数据。
- Kubernetes API 服务器
- Kubernetes API 服务器验证并配置 API 对象的数据。
- 标签
- 标签是可用于组织和选择对象子集(如 pod)的键值对。
- 日志记录
- 通过日志记录,您可以聚合整个集群中的应用程序、基础架构和审计日志。您还可以将它们存储在默认日志存储中,将它们转发到第三方系统,并查询和视觉化存储在默认日志存储中的存储日志。
- 日志记录收集器
- 日志记录收集器从集群收集日志,对其进行格式化,并将它们转发到日志存储或第三方系统。
- 日志存储
- 日志存储用于存储聚合的日志。您可以使用内部日志存储或将日志转发到外部日志存储。
- 日志可视化工具
- 日志可视化工具是用户界面 (UI) 组件,可用于查看日志、图形、图表和其他指标等信息。
- 节点
- 节点是 OpenShift Dedicated 集群中的 worker 机器。节点是虚拟机 (VM) 或物理计算机。
- Operator
- Operator 是 OpenShift Dedicated 集群中打包、部署和管理 Kubernetes 应用程序的首选方法。Operator 将人类操作知识编码到一个软件程序中,易于打包并与客户共享。
- Pod
- pod 是 Kubernetes 中的最小逻辑单元。pod 由一个或多个容器组成,并在 worker 节点上运行。
- 基于角色的访问控制(RBAC)
- RBAC 是一个关键安全控制,可确保集群用户和工作负载只能访问执行其角色所需的资源。
- 分片
- Elasticsearch 将日志数据从 Fluentd 整理到数据存储或索引中,然后将每个索引划分为多个碎片,称为分片。
- 污点(taint)
- 污点可确保 pod 调度到适当的节点上。您可以在节点上应用一个或多个污点。
- 容限(toleration)
- 您可以将容限应用到 pod。容限 (toleration) 允许调度程序调度具有匹配污点的 pod。
- Web 控制台
- 用于管理 OpenShift Dedicated 的用户界面 (UI)。OpenShift Dedicated 的 Web 控制台可在 https://console.redhat.com/openshift 中找到。
Legal Notice
Copyright © 2024 Red Hat, Inc.
OpenShift documentation is licensed under the Apache License 2.0 (https://www.apache.org/licenses/LICENSE-2.0).
Modified versions must remove all Red Hat trademarks.
Portions adapted from https://github.com/kubernetes-incubator/service-catalog/ with modifications by Red Hat.
Red Hat, Red Hat Enterprise Linux, the Red Hat logo, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other countries.
Linux® is the registered trademark of Linus Torvalds in the United States and other countries.
Java® is a registered trademark of Oracle and/or its affiliates.
XFS® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States and/or other countries.
MySQL® is a registered trademark of MySQL AB in the United States, the European Union and other countries.
Node.js® is an official trademark of Joyent. Red Hat Software Collections is not formally related to or endorsed by the official Joyent Node.js open source or commercial project.
The OpenStack® Word Mark and OpenStack logo are either registered trademarks/service marks or trademarks/service marks of the OpenStack Foundation, in the United States and other countries and are used with the OpenStack Foundation’s permission. We are not affiliated with, endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.
All other trademarks are the property of their respective owners.