Ce contenu n'est pas disponible dans la langue sélectionnée.

Chapter 8. Quotas


8.1. Resource quotas per project

A resource quota, defined by a ResourceQuota object, provides constraints that limit aggregate resource consumption per project. It can limit the quantity of objects that can be created in a project by type, as well as the total amount of compute resources and storage that might be consumed by resources in that project.

This guide describes how resource quotas work, how cluster administrators can set and manage resource quotas on a per project basis, and how developers and cluster administrators can view them.

8.1.1. Resources managed by quotas

The following describes the set of compute resources and object types that can be managed by a quota.

Note

A pod is in a terminal state if status.phase in (Failed, Succeeded) is true.

Table 8.1. Compute resources managed by quota
Resource NameDescription

cpu

The sum of CPU requests across all pods in a non-terminal state cannot exceed this value. cpu and requests.cpu are the same value and can be used interchangeably.

memory

The sum of memory requests across all pods in a non-terminal state cannot exceed this value. memory and requests.memory are the same value and can be used interchangeably.

requests.cpu

The sum of CPU requests across all pods in a non-terminal state cannot exceed this value. cpu and requests.cpu are the same value and can be used interchangeably.

requests.memory

The sum of memory requests across all pods in a non-terminal state cannot exceed this value. memory and requests.memory are the same value and can be used interchangeably.

limits.cpu

The sum of CPU limits across all pods in a non-terminal state cannot exceed this value.

limits.memory

The sum of memory limits across all pods in a non-terminal state cannot exceed this value.

Table 8.2. Storage resources managed by quota
Resource NameDescription

requests.storage

The sum of storage requests across all persistent volume claims in any state cannot exceed this value.

persistentvolumeclaims

The total number of persistent volume claims that can exist in the project.

<storage-class-name>.storageclass.storage.k8s.io/requests.storage

The sum of storage requests across all persistent volume claims in any state that have a matching storage class, cannot exceed this value.

<storage-class-name>.storageclass.storage.k8s.io/persistentvolumeclaims

The total number of persistent volume claims with a matching storage class that can exist in the project.

ephemeral-storage

The sum of local ephemeral storage requests across all pods in a non-terminal state cannot exceed this value. ephemeral-storage and requests.ephemeral-storage are the same value and can be used interchangeably.

requests.ephemeral-storage

The sum of ephemeral storage requests across all pods in a non-terminal state cannot exceed this value. ephemeral-storage and requests.ephemeral-storage are the same value and can be used interchangeably.

limits.ephemeral-storage

The sum of ephemeral storage limits across all pods in a non-terminal state cannot exceed this value.

Table 8.3. Object counts managed by quota
Resource NameDescription

pods

The total number of pods in a non-terminal state that can exist in the project.

replicationcontrollers

The total number of ReplicationControllers that can exist in the project.

resourcequotas

The total number of resource quotas that can exist in the project.

services

The total number of services that can exist in the project.

services.loadbalancers

The total number of services of type LoadBalancer that can exist in the project.

services.nodeports

The total number of services of type NodePort that can exist in the project.

secrets

The total number of secrets that can exist in the project.

configmaps

The total number of ConfigMap objects that can exist in the project.

persistentvolumeclaims

The total number of persistent volume claims that can exist in the project.

openshift.io/imagestreams

The total number of imagestreams that can exist in the project.

8.1.2. Quota scopes

Each quota can have an associated set of scopes. A quota only measures usage for a resource if it matches the intersection of enumerated scopes.

Adding a scope to a quota restricts the set of resources to which that quota can apply. Specifying a resource outside of the allowed set results in a validation error.

Scope

Description

BestEffort

Match pods that have best effort quality of service for either cpu or memory.

NotBestEffort

Match pods that do not have best effort quality of service for cpu and memory.

A BestEffort scope restricts a quota to limiting the following resources:

  • pods

A NotBestEffort scope restricts a quota to tracking the following resources:

  • pods
  • memory
  • requests.memory
  • limits.memory
  • cpu
  • requests.cpu
  • limits.cpu

8.1.3. Quota enforcement

After a resource quota for a project is first created, the project restricts the ability to create any new resources that may violate a quota constraint until it has calculated updated usage statistics.

After a quota is created and usage statistics are updated, the project accepts the creation of new content. When you create or modify resources, your quota usage is incremented immediately upon the request to create or modify the resource.

When you delete a resource, your quota use is decremented during the next full recalculation of quota statistics for the project. A configurable amount of time determines how long it takes to reduce quota usage statistics to their current observed system value.

If project modifications exceed a quota usage limit, the server denies the action, and an appropriate error message is returned to the user explaining the quota constraint violated, and what their currently observed usage statistics are in the system.

8.1.4. Requests versus limits

When allocating compute resources, each container might specify a request and a limit value each for CPU, memory, and ephemeral storage. Quotas can restrict any of these values.

If the quota has a value specified for requests.cpu or requests.memory, then it requires that every incoming container make an explicit request for those resources. If the quota has a value specified for limits.cpu or limits.memory, then it requires that every incoming container specify an explicit limit for those resources.

8.1.5. Sample resource quota definitions

core-object-counts.yaml

apiVersion: v1
kind: ResourceQuota
metadata:
  name: core-object-counts
spec:
  hard:
    configmaps: "10" 1
    persistentvolumeclaims: "4" 2
    replicationcontrollers: "20" 3
    secrets: "10" 4
    services: "10" 5
    services.loadbalancers: "2" 6

1
The total number of ConfigMap objects that can exist in the project.
2
The total number of persistent volume claims (PVCs) that can exist in the project.
3
The total number of replication controllers that can exist in the project.
4
The total number of secrets that can exist in the project.
5
The total number of services that can exist in the project.
6
The total number of services of type LoadBalancer that can exist in the project.

openshift-object-counts.yaml

apiVersion: v1
kind: ResourceQuota
metadata:
  name: openshift-object-counts
spec:
  hard:
    openshift.io/imagestreams: "10" 1

1
The total number of image streams that can exist in the project.

compute-resources.yaml

apiVersion: v1
kind: ResourceQuota
metadata:
  name: compute-resources
spec:
  hard:
    pods: "4" 1
    requests.cpu: "1" 2
    requests.memory: 1Gi 3
    limits.cpu: "2" 4
    limits.memory: 2Gi 5

1
The total number of pods in a non-terminal state that can exist in the project.
2
Across all pods in a non-terminal state, the sum of CPU requests cannot exceed 1 core.
3
Across all pods in a non-terminal state, the sum of memory requests cannot exceed 1Gi.
4
Across all pods in a non-terminal state, the sum of CPU limits cannot exceed 2 cores.
5
Across all pods in a non-terminal state, the sum of memory limits cannot exceed 2Gi.

besteffort.yaml

apiVersion: v1
kind: ResourceQuota
metadata:
  name: besteffort
spec:
  hard:
    pods: "1" 1
  scopes:
  - BestEffort 2

1
The total number of pods in a non-terminal state with BestEffort quality of service that can exist in the project.
2
Restricts the quota to only matching pods that have BestEffort quality of service for either memory or CPU.

compute-resources-long-running.yaml

apiVersion: v1
kind: ResourceQuota
metadata:
  name: compute-resources-long-running
spec:
  hard:
    pods: "4" 1
    limits.cpu: "4" 2
    limits.memory: "2Gi" 3
  scopes:
  - NotTerminating 4

1
The total number of pods in a non-terminal state.
2
Across all pods in a non-terminal state, the sum of CPU limits cannot exceed this value.
3
Across all pods in a non-terminal state, the sum of memory limits cannot exceed this value.
4
Restricts the quota to only matching pods where spec.activeDeadlineSeconds is set to nil. Build pods fall under NotTerminating unless the RestartNever policy is applied.

compute-resources-time-bound.yaml

apiVersion: v1
kind: ResourceQuota
metadata:
  name: compute-resources-time-bound
spec:
  hard:
    pods: "2" 1
    limits.cpu: "1" 2
    limits.memory: "1Gi" 3
  scopes:
  - Terminating 4

1
The total number of pods in a terminating state.
2
Across all pods in a terminating state, the sum of CPU limits cannot exceed this value.
3
Across all pods in a terminating state, the sum of memory limits cannot exceed this value.
4
Restricts the quota to only matching pods where spec.activeDeadlineSeconds >=0. For example, this quota charges for build or deployer pods, but not long running pods like a web server or database.

storage-consumption.yaml

apiVersion: v1
kind: ResourceQuota
metadata:
  name: storage-consumption
spec:
  hard:
    persistentvolumeclaims: "10" 1
    requests.storage: "50Gi" 2
    gold.storageclass.storage.k8s.io/requests.storage: "10Gi" 3
    silver.storageclass.storage.k8s.io/requests.storage: "20Gi" 4
    silver.storageclass.storage.k8s.io/persistentvolumeclaims: "5" 5
    bronze.storageclass.storage.k8s.io/requests.storage: "0" 6
    bronze.storageclass.storage.k8s.io/persistentvolumeclaims: "0" 7
    requests.ephemeral-storage: 2Gi 8
    limits.ephemeral-storage: 4Gi 9

1
The total number of persistent volume claims in a project
2
Across all persistent volume claims in a project, the sum of storage requested cannot exceed this value.
3
Across all persistent volume claims in a project, the sum of storage requested in the gold storage class cannot exceed this value.
4
Across all persistent volume claims in a project, the sum of storage requested in the silver storage class cannot exceed this value.
5
Across all persistent volume claims in a project, the total number of claims in the silver storage class cannot exceed this value.
6
Across all persistent volume claims in a project, the sum of storage requested in the bronze storage class cannot exceed this value. When this is set to 0, it means bronze storage class cannot request storage.
7
Across all persistent volume claims in a project, the sum of storage requested in the bronze storage class cannot exceed this value. When this is set to 0, it means bronze storage class cannot create claims.
8
Across all pods in a non-terminal state, the sum of ephemeral storage requests cannot exceed 2Gi.
9
Across all pods in a non-terminal state, the sum of ephemeral storage limits cannot exceed 4Gi.

8.1.6. Creating a quota

You can create a quota to constrain resource usage in a given project.

Procedure

  1. Define the quota in a file.
  2. Use the file to create the quota and apply it to a project:

    $ oc create -f <file> [-n <project_name>]

    For example:

    $ oc create -f core-object-counts.yaml -n demoproject

8.1.6.1. Creating object count quotas

You can create an object count quota for all standard namespaced resource types on OpenShift Container Platform, such as BuildConfig and DeploymentConfig objects. An object quota count places a defined quota on all standard namespaced resource types.

When using a resource quota, an object is charged against the quota upon creation. These types of quotas are useful to protect against exhaustion of resources. The quota can only be created if there are enough spare resources within the project.

Procedure

To configure an object count quota for a resource:

  1. Run the following command:

    $ oc create quota <name> \
        --hard=count/<resource>.<group>=<quota>,count/<resource>.<group>=<quota> 1
    1
    The <resource> variable is the name of the resource, and <group> is the API group, if applicable. Use the oc api-resources command for a list of resources and their associated API groups.

    For example:

    $ oc create quota test \
        --hard=count/deployments.extensions=2,count/replicasets.extensions=4,count/pods=3,count/secrets=4

    Example output

    resourcequota "test" created

    This example limits the listed resources to the hard limit in each project in the cluster.

  2. Verify that the quota was created:

    $ oc describe quota test

    Example output

    Name:                         test
    Namespace:                    quota
    Resource                      Used  Hard
    --------                      ----  ----
    count/deployments.extensions  0     2
    count/pods                    0     3
    count/replicasets.extensions  0     4
    count/secrets                 0     4

8.1.6.2. Setting resource quota for extended resources

Overcommitment of resources is not allowed for extended resources, so you must specify requests and limits for the same extended resource in a quota. Currently, only quota items with the prefix requests. is allowed for extended resources. The following is an example scenario of how to set resource quota for the GPU resource nvidia.com/gpu.

Procedure

  1. Determine how many GPUs are available on a node in your cluster. For example:

    # oc describe node ip-172-31-27-209.us-west-2.compute.internal | egrep 'Capacity|Allocatable|gpu'

    Example output

                        openshift.com/gpu-accelerator=true
    Capacity:
     nvidia.com/gpu:  2
    Allocatable:
     nvidia.com/gpu:  2
      nvidia.com/gpu  0           0

    In this example, 2 GPUs are available.

  2. Create a ResourceQuota object to set a quota in the namespace nvidia. In this example, the quota is 1:

    Example output

    apiVersion: v1
    kind: ResourceQuota
    metadata:
      name: gpu-quota
      namespace: nvidia
    spec:
      hard:
        requests.nvidia.com/gpu: 1

  3. Create the quota:

    # oc create -f gpu-quota.yaml

    Example output

    resourcequota/gpu-quota created

  4. Verify that the namespace has the correct quota set:

    # oc describe quota gpu-quota -n nvidia

    Example output

    Name:                    gpu-quota
    Namespace:               nvidia
    Resource                 Used  Hard
    --------                 ----  ----
    requests.nvidia.com/gpu  0     1

  5. Define a pod that asks for a single GPU. The following example definition file is called gpu-pod.yaml:

    apiVersion: v1
    kind: Pod
    metadata:
      generateName: gpu-pod-
      namespace: nvidia
    spec:
      restartPolicy: OnFailure
      containers:
      - name: rhel7-gpu-pod
        image: rhel7
        env:
          - name: NVIDIA_VISIBLE_DEVICES
            value: all
          - name: NVIDIA_DRIVER_CAPABILITIES
            value: "compute,utility"
          - name: NVIDIA_REQUIRE_CUDA
            value: "cuda>=5.0"
        command: ["sleep"]
        args: ["infinity"]
        resources:
          limits:
            nvidia.com/gpu: 1
  6. Create the pod:

    # oc create -f gpu-pod.yaml
  7. Verify that the pod is running:

    # oc get pods

    Example output

    NAME              READY     STATUS      RESTARTS   AGE
    gpu-pod-s46h7     1/1       Running     0          1m

  8. Verify that the quota Used counter is correct:

    # oc describe quota gpu-quota -n nvidia

    Example output

    Name:                    gpu-quota
    Namespace:               nvidia
    Resource                 Used  Hard
    --------                 ----  ----
    requests.nvidia.com/gpu  1     1

  9. Attempt to create a second GPU pod in the nvidia namespace. This is technically available on the node because it has 2 GPUs:

    # oc create -f gpu-pod.yaml

    Example output

    Error from server (Forbidden): error when creating "gpu-pod.yaml": pods "gpu-pod-f7z2w" is forbidden: exceeded quota: gpu-quota, requested: requests.nvidia.com/gpu=1, used: requests.nvidia.com/gpu=1, limited: requests.nvidia.com/gpu=1

    This Forbidden error message is expected because you have a quota of 1 GPU and this pod tried to allocate a second GPU, which exceeds its quota.

8.1.7. Viewing a quota

You can view usage statistics related to any hard limits defined in a project’s quota by navigating in the web console to the project’s Quota page.

You can also use the CLI to view quota details.

Procedure

  1. Get the list of quotas defined in the project. For example, for a project called demoproject:

    $ oc get quota -n demoproject

    Example output

    NAME                           AGE    REQUEST                                                                                                      LIMIT
    besteffort                     4s     pods: 1/2
    compute-resources-time-bound   10m    pods: 0/2                                                                                                    limits.cpu: 0/1, limits.memory: 0/1Gi
    core-object-counts             109s   configmaps: 2/10, persistentvolumeclaims: 1/4, replicationcontrollers: 1/20, secrets: 9/10, services: 2/10

  2. Describe the quota you are interested in, for example the core-object-counts quota:

    $ oc describe quota core-object-counts -n demoproject

    Example output

    Name:			core-object-counts
    Namespace:		demoproject
    Resource		Used	Hard
    --------		----	----
    configmaps		3	10
    persistentvolumeclaims	0	4
    replicationcontrollers	3	20
    secrets			9	10
    services		2	10

8.1.8. Configuring explicit resource quotas

Configure explicit resource quotas in a project request template to apply specific resource quotas in new projects.

Prerequisites

  • Access to the cluster as a user with the cluster-admin role.
  • Install the OpenShift CLI (oc).

Procedure

  1. Add a resource quota definition to a project request template:

    • If a project request template does not exist in a cluster:

      1. Create a bootstrap project template and output it to a file called template.yaml:

        $ oc adm create-bootstrap-project-template -o yaml > template.yaml
      2. Add a resource quota definition to template.yaml. The following example defines a resource quota named 'storage-consumption'. The definition must be added before the parameters: section in the template:

        - apiVersion: v1
          kind: ResourceQuota
          metadata:
            name: storage-consumption
            namespace: ${PROJECT_NAME}
          spec:
            hard:
              persistentvolumeclaims: "10" 1
              requests.storage: "50Gi" 2
              gold.storageclass.storage.k8s.io/requests.storage: "10Gi" 3
              silver.storageclass.storage.k8s.io/requests.storage: "20Gi" 4
              silver.storageclass.storage.k8s.io/persistentvolumeclaims: "5" 5
              bronze.storageclass.storage.k8s.io/requests.storage: "0" 6
              bronze.storageclass.storage.k8s.io/persistentvolumeclaims: "0" 7
        1
        The total number of persistent volume claims in a project.
        2
        Across all persistent volume claims in a project, the sum of storage requested cannot exceed this value.
        3
        Across all persistent volume claims in a project, the sum of storage requested in the gold storage class cannot exceed this value.
        4
        Across all persistent volume claims in a project, the sum of storage requested in the silver storage class cannot exceed this value.
        5
        Across all persistent volume claims in a project, the total number of claims in the silver storage class cannot exceed this value.
        6
        Across all persistent volume claims in a project, the sum of storage requested in the bronze storage class cannot exceed this value. When this value is set to 0, the bronze storage class cannot request storage.
        7
        Across all persistent volume claims in a project, the sum of storage requested in the bronze storage class cannot exceed this value. When this value is set to 0, the bronze storage class cannot create claims.
      3. Create a project request template from the modified template.yaml file in the openshift-config namespace:

        $ oc create -f template.yaml -n openshift-config
        Note

        To include the configuration as a kubectl.kubernetes.io/last-applied-configuration annotation, add the --save-config option to the oc create command.

        By default, the template is called project-request.

    • If a project request template already exists within a cluster:

      Note

      If you declaratively or imperatively manage objects within your cluster by using configuration files, edit the existing project request template through those files instead.

      1. List templates in the openshift-config namespace:

        $ oc get templates -n openshift-config
      2. Edit an existing project request template:

        $ oc edit template <project_request_template> -n openshift-config
      3. Add a resource quota definition, such as the preceding storage-consumption example, into the existing template. The definition must be added before the parameters: section in the template.
  2. If you created a project request template, reference it in the cluster’s project configuration resource:

    1. Access the project configuration resource for editing:

      • By using the web console:

        1. Navigate to the Administration Cluster Settings page.
        2. Click Configuration to view all configuration resources.
        3. Find the entry for Project and click Edit YAML.
      • By using the CLI:

        1. Edit the project.config.openshift.io/cluster resource:

          $ oc edit project.config.openshift.io/cluster
    2. Update the spec section of the project configuration resource to include the projectRequestTemplate and name parameters. The following example references the default project request template name project-request:

      apiVersion: config.openshift.io/v1
      kind: Project
      metadata:
      #  ...
      spec:
        projectRequestTemplate:
          name: project-request
  3. Verify that the resource quota is applied when projects are created:

    1. Create a project:

      $ oc new-project <project_name>
    2. List the project’s resource quotas:

      $ oc get resourcequotas
    3. Describe the resource quota in detail:

      $ oc describe resourcequotas <resource_quota_name>

8.2. Resource quotas across multiple projects

A multi-project quota, defined by a ClusterResourceQuota object, allows quotas to be shared across multiple projects. Resources used in each selected project are aggregated and that aggregate is used to limit resources across all the selected projects.

This guide describes how cluster administrators can set and manage resource quotas across multiple projects.

Important

Do not run workloads in or share access to default projects. Default projects are reserved for running core cluster components.

The following default projects are considered highly privileged: default, kube-public, kube-system, openshift, openshift-infra, openshift-node, and other system-created projects that have the openshift.io/run-level label set to 0 or 1. Functionality that relies on admission plugins, such as pod security admission, security context constraints, cluster resource quotas, and image reference resolution, does not work in highly privileged projects.

8.2.1. Selecting multiple projects during quota creation

When creating quotas, you can select multiple projects based on annotation selection, label selection, or both.

Procedure

  1. To select projects based on annotations, run the following command:

    $ oc create clusterquota for-user \
         --project-annotation-selector openshift.io/requester=<user_name> \
         --hard pods=10 \
         --hard secrets=20

    This creates the following ClusterResourceQuota object:

    apiVersion: quota.openshift.io/v1
    kind: ClusterResourceQuota
    metadata:
      name: for-user
    spec:
      quota: 1
        hard:
          pods: "10"
          secrets: "20"
      selector:
        annotations: 2
          openshift.io/requester: <user_name>
        labels: null 3
    status:
      namespaces: 4
      - namespace: ns-one
        status:
          hard:
            pods: "10"
            secrets: "20"
          used:
            pods: "1"
            secrets: "9"
      total: 5
        hard:
          pods: "10"
          secrets: "20"
        used:
          pods: "1"
          secrets: "9"
    1
    The ResourceQuotaSpec object that will be enforced over the selected projects.
    2
    A simple key-value selector for annotations.
    3
    A label selector that can be used to select projects.
    4
    A per-namespace map that describes current quota usage in each selected project.
    5
    The aggregate usage across all selected projects.

    This multi-project quota document controls all projects requested by <user_name> using the default project request endpoint. You are limited to 10 pods and 20 secrets.

  2. Similarly, to select projects based on labels, run this command:

    $  oc create clusterresourcequota for-name \1
        --project-label-selector=name=frontend \2
        --hard=pods=10 --hard=secrets=20
    1
    Both clusterresourcequota and clusterquota are aliases of the same command. for-name is the name of the ClusterResourceQuota object.
    2
    To select projects by label, provide a key-value pair by using the format --project-label-selector=key=value.

    This creates the following ClusterResourceQuota object definition:

    apiVersion: quota.openshift.io/v1
    kind: ClusterResourceQuota
    metadata:
      creationTimestamp: null
      name: for-name
    spec:
      quota:
        hard:
          pods: "10"
          secrets: "20"
      selector:
        annotations: null
        labels:
          matchLabels:
            name: frontend

8.2.2. Viewing applicable cluster resource quotas

A project administrator is not allowed to create or modify the multi-project quota that limits his or her project, but the administrator is allowed to view the multi-project quota documents that are applied to his or her project. The project administrator can do this via the AppliedClusterResourceQuota resource.

Procedure

  1. To view quotas applied to a project, run:

    $ oc describe AppliedClusterResourceQuota

    Example output

    Name:   for-user
    Namespace:  <none>
    Created:  19 hours ago
    Labels:   <none>
    Annotations:  <none>
    Label Selector: <null>
    AnnotationSelector: map[openshift.io/requester:<user-name>]
    Resource  Used  Hard
    --------  ----  ----
    pods        1     10
    secrets     9     20

8.2.3. Selection granularity

Because of the locking consideration when claiming quota allocations, the number of active projects selected by a multi-project quota is an important consideration. Selecting more than 100 projects under a single multi-project quota can have detrimental effects on API server responsiveness in those projects.

Red Hat logoGithubRedditYoutubeTwitter

Apprendre

Essayez, achetez et vendez

Communautés

À propos de la documentation Red Hat

Nous aidons les utilisateurs de Red Hat à innover et à atteindre leurs objectifs grâce à nos produits et services avec un contenu auquel ils peuvent faire confiance.

Rendre l’open source plus inclusif

Red Hat s'engage à remplacer le langage problématique dans notre code, notre documentation et nos propriétés Web. Pour plus de détails, consultez leBlog Red Hat.

À propos de Red Hat

Nous proposons des solutions renforcées qui facilitent le travail des entreprises sur plusieurs plates-formes et environnements, du centre de données central à la périphérie du réseau.

© 2024 Red Hat, Inc.